WO2017006804A1 - Aluminum alloy manufacturing method, aluminum alloy, and conjugate - Google Patents

Aluminum alloy manufacturing method, aluminum alloy, and conjugate Download PDF

Info

Publication number
WO2017006804A1
WO2017006804A1 PCT/JP2016/069090 JP2016069090W WO2017006804A1 WO 2017006804 A1 WO2017006804 A1 WO 2017006804A1 JP 2016069090 W JP2016069090 W JP 2016069090W WO 2017006804 A1 WO2017006804 A1 WO 2017006804A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy material
surface treatment
oxide film
less
Prior art date
Application number
PCT/JP2016/069090
Other languages
French (fr)
Japanese (ja)
Inventor
悟 高田
佑輔 高橋
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016113753A external-priority patent/JP2017203209A/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US15/741,594 priority Critical patent/US20180216236A1/en
Priority to CN201680040156.XA priority patent/CN107835869A/en
Publication of WO2017006804A1 publication Critical patent/WO2017006804A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a method for producing an aluminum alloy material, an aluminum alloy material, and a joined body using the aluminum alloy material.
  • JIS5000-based Al—Mg-based alloy materials, JIS6000-based Al—Mg—Si-based alloy plates, and JIS7000-based Al—Zn—Mg-based alloy materials are used for automobile members. It has been.
  • As a joining method of these aluminum alloy materials there are welding and adhesion by an adhesive, and these methods may be used in combination. Whereas welding joins an aluminum alloy material with dots or lines, bonding with an adhesive bonds the aluminum alloy material over the entire surface, which is advantageous in terms of high joint strength and impact safety. For this reason, in recent years, adhesion by an adhesive tends to increase in automobile members.
  • a composite of an aluminum alloy material and a resin is used to reduce the weight of an automobile.
  • Patent Document 1 proposes a method of removing the Mg concentrated layer on the surface of the aluminum alloy plate by pickling and simultaneously concentrating Cu on the surface of the aluminum alloy plate.
  • Patent Document 2 proposes a method in which the amount of Mg concentrated on the surface of an aluminum alloy plate and the OH absorption rate have a specific relationship.
  • Patent Document 3 proposes a method in which the Mg concentration, Si concentration, and OH concentration in the oxide film surface layer of the aluminum material are set to specific ranges by continuously performing solution treatment and hot water treatment. .
  • Japanese Unexamined Patent Publication No. 6-256881 Japanese Unexamined Patent Publication No. 2006-200007 Japanese Unexamined Patent Publication No. 2007-217750 Japanese Patent Laid-Open No. 8-144064 Japanese Laid-Open Patent Publication No. 7-188956
  • Patent Documents 1 to 3 described above are exposed to a high-temperature and humid environment in which moisture, oxygen, chloride ions, and the like permeate, the deterioration of the interface proceeds, and the interface peels off. There is a problem that the strength is lowered or the corrosion of Al is promoted.
  • the technique described in Patent Document 1 describes that the bonding with an adhesive is strengthened by concentration of Cu and the adhesiveness is improved.
  • an aluminum alloy plate to which this technique is applied is a resin in a wet environment. Decomposition may be accelerated, and high durability cannot be expected.
  • the present invention provides an aluminum alloy material production method, an aluminum alloy material, which can produce an aluminum alloy material that is less likely to have a reduced adhesive strength even when exposed to a high-temperature and humid environment, has excellent adhesion durability, and excellent productivity. And a joined body using an aluminum alloy material.
  • the present inventor has conducted extensive experiments to solve the above-described problems, and as a result, has obtained the following knowledge.
  • the interface is hydrated and bonding strength (hydrogen bonding) decreases when exposed to a high temperature and wet environment. To do.
  • the base of the aluminum alloy plate and the adhesive layer are basically bonded by hydrogen bonding, and when exposed to a high temperature and humidity environment where moisture, oxygen, chloride ions, etc. penetrate. , The interface is hydrated and the bond strength decreases.
  • the method of performing anodization complicates the apparatus and costs equipment, and further requires a long time for film formation, resulting in a reduction in production efficiency.
  • the interface deteriorates due to the hydration of the interface, and the interface peels off. Occurs and the adhesive strength decreases.
  • the present inventors examined the bonding state between the substrate surface and the adhesive resin layer, and after forming a film made of an oxide film on the surface of the aluminum alloy substrate, at least a part of this oxide film, It has been found that by applying a specific aqueous solution containing a silicate and an organosilane compound to form a surface treatment film, it is possible to suppress a decrease in adhesive strength when exposed to a high-temperature and humid environment, and the present invention has been achieved.
  • At least a part of the surface of the aluminum alloy substrate contains Mg at 0.1 atomic% or more and less than 30 atomic%, and Cu is less than 0.6 atomic%.
  • a surface treatment film forming step including applying an aqueous solution having an organic silane compound of less than mass% and a pH of 7 or more and 14 or less.
  • the amount of Mg and the amount of Cu in the film are values measured by a high-frequency glow discharge emission spectroscopic analysis (GD-OES: Glow Discharge-Optical Emission Spectroscopy).
  • the organosilane compound may include a silane compound having a plurality of hydrolyzable trialkoxysilyl groups in the molecule, a hydrolyzate thereof, or a polymer thereof. .
  • the silicate is a silicate represented by mM 2 O ⁇ nSiO 2 , wherein M is a monovalent cation, and M 2 O
  • the ratio n / m of m which is the number of moles of n and n which is the number of moles of SiO 2 may be 1.5 or more.
  • M may be sodium ion.
  • the said oxide film formation process may include an etching process step, and the etching amount in the said etching process step may be 1.9 g / m ⁇ 2 > or less.
  • the aluminum alloy substrate can be formed of, for example, an Al—Mg alloy, an Al—Cu—Mg alloy, an Al—Mg—Si alloy, or an Al—Zn—Mg alloy.
  • the present invention also includes an aluminum alloy material obtained by the method for producing an aluminum alloy material.
  • the joined body of the present invention is obtained by joining the aluminum alloy material and another member via an adhesive resin.
  • an aluminum alloy substrate on which an oxide film is formed can be simplified by simultaneously performing silicate treatment and organosilane treatment using an aqueous solution containing a silicate and an organosilane compound. With this process, an aluminum alloy material (also referred to as a surface-treated aluminum alloy material) can be manufactured, and capital investment costs and manufacturing costs can be reduced.
  • FIG. 1 is a flowchart showing a method for producing an aluminum alloy material according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the aluminum alloy material before the surface treatment process in a state where an oxide film is formed on the surface of the aluminum alloy substrate.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the aluminum alloy material with an adhesive resin layer according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a configuration of an aluminum alloy material with an adhesive resin layer according to a modification of the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing a method of manufacturing the aluminum alloy material with an adhesive resin layer shown in FIG. FIG.
  • FIG. 6 is a cross-sectional view schematically showing a configuration example of a joined body according to the second embodiment of the present invention.
  • FIG. 7A is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 7B is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 9A is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 9B is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention.
  • FIG. 10A is a side view schematically showing a method for measuring the cohesive failure rate.
  • FIG. 10B is a plan view schematically showing a method for measuring the cohesive failure rate.
  • the manufacturing method of the aluminum alloy material of this embodiment and the aluminum alloy material obtained by the manufacturing method will be described.
  • the percentage based on mass (% by mass) is the same as the percentage based on weight (% by weight).
  • Mg is contained in at least a part of the surface of the aluminum alloy base material in an amount of 0.1 atomic percent or more and less than 30 atomic percent, and Cu is restricted to less than 0.6 atomic percent
  • a surface treatment film forming step including applying an aqueous solution having a pH of 7 or more and 14 or less.
  • FIG. 1 is a flowchart showing a method for manufacturing an aluminum alloy material 10 of this embodiment. As shown in FIG. 1, when manufacturing the aluminum alloy material 10 of this embodiment, base material preparation process S1, oxide film formation process S2, and surface treatment film formation process S3 are performed. Hereinafter, each step will be described.
  • the shape of the substrate is not particularly limited, and depending on the shape of a member produced using an aluminum alloy material, in addition to a plate shape, a cast material, a forged material, an extruded material (for example, a hollow bar shape), etc. Any shape that can be taken as In the base material manufacturing step S1, when a plate-shaped base material (substrate) is manufactured as an example, the substrate is manufactured by the following procedure, for example. First, an aluminum alloy having a predetermined composition is melted by continuous casting and cast to produce an ingot (melting casting process). Next, the produced ingot is subjected to homogenization heat treatment (homogenization heat treatment step).
  • the ingot subjected to homogenization heat treatment is hot-rolled to produce a hot-rolled sheet (hot-rolling step).
  • the hot-rolled sheet is subjected to rough annealing or intermediate annealing at 300 to 580 ° C., and cold rolling with a final cold rolling rate of 5% or more is performed at least once, so that a cold-rolled sheet (substrate) having a predetermined thickness is obtained. (Cold rolling process).
  • the temperature of rough annealing or intermediate annealing it is preferable to set the temperature of rough annealing or intermediate annealing to 300 ° C. or higher, and thereby the effect of improving formability is more exhibited.
  • the temperature of rough annealing or intermediate annealing shall be 580 degrees C or less, and this becomes easy to suppress the fall of the moldability by generation
  • the final cold rolling rate is preferably 5% or more, and thereby, the effect of improving the formability is more exhibited.
  • the conditions of homogenization heat processing and hot rolling are not specifically limited, It can carry out on the conditions in the case of obtaining a hot rolled sheet normally. Further, intermediate annealing may not be performed.
  • the base material is made of an aluminum alloy.
  • the type of aluminum alloy that forms the base material is not particularly limited, and various non-heat treatment type or heat treatment type aluminum alloys that are prescribed in JIS or approximate to JIS, depending on the application of the member to be processed. Can be appropriately selected and used.
  • the non-heat treatment type aluminum alloy there are pure aluminum (1000 series), Al—Mn series alloy (3000 series), Al—Si series alloy (4000 series), and Al—Mg series alloy (5000 series).
  • the heat-treatable aluminum alloy there are an Al—Cu—Mg alloy (2000 series), an Al—Mg—Si alloy (6000 series), and an Al—Zn—Mg alloy (7000 series).
  • the base material when used for an automobile member, the base material preferably has a 0.2% proof stress of 100 MPa or more from the viewpoint of strength.
  • Aluminum alloys that can form a base material that satisfies such characteristics include those containing relatively large amounts of magnesium, such as 2000 series, 5000 series, 6000 series, and 7000 series, and these alloys are necessary. Depending on the condition, it may be tempered. Among various aluminum alloys, it is preferable to use a 6000 series aluminum alloy because it has excellent age-hardening ability, has a relatively small amount of alloy elements, and is excellent in scrap recyclability and formability.
  • Step S2 oxide film forming step>
  • Mg is 0.1 atomic% or more and 30 atomic% in at least a part (that is, part or all) of the surface of the base material manufactured in the base material manufacturing step in step S1. It forms less than, and forms the oxide film by which Cu was controlled to less than 0.6 atomic%.
  • the oxide film forming step (step S2) specifically includes, for example, a heat treatment stage in which the base material 3 is heat-treated to form the oxide film 1, and an etching treatment stage after the heat treatment stage. With.
  • FIG. 2 shows the aluminum alloy material before the surface treatment film forming step in which the oxide film 1 is formed on the surface of the base material 3.
  • the oxide film 1 is formed on the entire one surface of the base material 3, but this embodiment is not limited to this. Absent.
  • the oxide film 1 may be formed only on a part of the surface of the substrate 3.
  • the oxide film 1 may be formed on both surfaces of the base material 3.
  • the base material 3 is heated to a temperature of, for example, 400 to 580 ° C. to form the oxide film 1 on the surface of the base material 3. Further, the heat treatment also has an effect of adjusting the strength of the aluminum alloy material 10.
  • the heat treatment performed here is a solution treatment when the substrate 3 is formed of a heat-treatable aluminum alloy, and is annealed when the substrate 3 is formed of a non-heat-treatable aluminum alloy. It is heat processing in (final annealing).
  • This heat treatment is preferably rapid heating at a heating rate of 100 ° C./min or more from the viewpoint of improving the strength.
  • the strength of the aluminum alloy material 10 and the strength after heating (baking) of the aluminum alloy material 10 can be further increased by setting the heating temperature to 400 ° C. or higher and performing rapid heating.
  • the heating temperature is set to 580 ° C. or less and performing rapid heating, it is possible to suppress a decrease in formability due to the occurrence of burning.
  • the holding time in the heat treatment is preferably 3 to 30 seconds.
  • the etching treatment stage after the heat treatment at least one of treatment with an acidic solution (pickling) and treatment with an alkaline solution (alkali washing, alkaline degreasing) is performed on part or all of the surface of the substrate 3.
  • the chemical solution (acid detergent) used in the pickling is not particularly limited, for example, a solution containing one or more selected from the group selected from sulfuric acid, nitric acid and hydrofluoric acid can be used.
  • the acid detergent may contain a surfactant in order to improve the degreasing property.
  • the pickling conditions can be appropriately set in consideration of the alloy composition of the base material 3, the thickness of the oxide film 1 and the like, and are not particularly limited.
  • the pH is 4 or less (preferably pH 2 or less), Conditions of a processing temperature of 10 to 80 ° C. and a processing time of 1 to 120 seconds can be applied.
  • the chemical solution used for alkali cleaning is not particularly limited, and for example, a solution containing at least one selected from the group selected from sodium hydroxide and potassium hydroxide can be used.
  • the conditions for the treatment with the alkaline solution can be appropriately set in consideration of the alloy composition of the base material 3, the thickness of the oxide film 1, etc., and are not particularly limited. Conditions of 80 ° C. and processing time of 1 to 120 seconds can be applied.
  • the pickling when performing alkali cleaning, it is preferable to perform pickling after alkali cleaning. Further, only the pickling may be performed without alkali cleaning. That is, in the etching treatment stage, it is preferable that the last stage is pickling.
  • the reason for this is as follows. That is, with alkali cleaning, it is difficult to remove Mg on the substrate surface, and the amount of etching needs to be increased due to the presence of Mg on the substrate surface. However, increasing the etching amount causes the concentration of Cu, so it is necessary to remove Mg by pickling.
  • the rinsing method is not particularly limited, and examples thereof include spraying and dipping.
  • Examples of the cleaning liquid used for rinsing include industrial water, pure water, and ion exchange water.
  • the Mg content in the oxide film 1 is adjusted to 0.1 atomic% or more and less than 30 atomic%, and the Cu content is regulated to less than 0.6 atomic%.
  • the amount of Mg and the amount of Cu in the oxide film can be adjusted or regulated by appropriately controlling various conditions (treatment time, treatment temperature, concentration of chemical solution, pH, etc.) in pickling and alkali washing. it can.
  • the etching amount in an etching process step is 1.9 g / m ⁇ 2 > or less.
  • the etching amount exceeds 1.9 g / m 2 , copper concentration occurs on the surface of the base material 3, which may cause deterioration of the adhesive resin in a high temperature wet environment which is a deterioration environment.
  • the etching amount is more preferably 1.5 g / m 2 or less, and further preferably 1.3 g / m 2 or less.
  • the lower limit of the etching amount is not particularly limited, but is preferably 0.005 g / m 2 .
  • the amount of etching (unit: g / m 2 ) in the present specification is the amount of decrease in the weight of the base material before and after the oxide film forming step (unit: g), and this is the surface area (unit) of the base material. : A value calculated by dividing by m 2 ).
  • At least a part of the surface of the base material 3 contains Mg in an amount of 0.1 atomic% to less than 30 atomic%, and Cu is regulated to less than 0.6 atomic%. Is formed.
  • the suitable range of each component amount contained in the oxide film 1 will be described.
  • the aluminum alloy constituting the base material of the aluminum alloy material usually contains magnesium as an alloy component.
  • the oxide film 1 which is a composite oxide of aluminum and magnesium is formed on the surface of the base material 3.
  • the magnesium oxide film is present on the surface in a concentrated state. Therefore, in this state, since the magnesium oxide film layer is too thick even if it passes through the surface treatment film forming step that is the next step S3 described later, the surface treatment film 2 described later contains a large amount of magnesium, In the surface treatment film 2 thus formed, the strength of the film itself cannot be obtained, and the initial adhesiveness is lowered.
  • the Mg content in the oxide film 1 before the surface treatment film formation described later is 30 atomic% or more, the initial adhesiveness and adhesion durability of the aluminum alloy material after the surface treatment film formation is lowered. Tend. Therefore, in the manufacturing method of the aluminum alloy material 10 of the present embodiment, the Mg content in the oxide film 1 before the formation of the surface treatment film is restricted to less than 30 atomic%. Thereby, initial adhesiveness and adhesion durability can be improved.
  • the Mg content of the oxide film 1 before forming the surface treatment film is preferably less than 25 atomic%, more preferably less than 20 atomic%, and even more preferably 10 atomic% from the viewpoint of improving the initial adhesiveness and adhesion durability. Is less than.
  • the lower limit value of the Mg content of the oxide film 1 before the formation of the surface treatment film is 0.1 atomic% or more from the viewpoint of economy.
  • the Mg content in the oxide film 1 before the formation of the surface treatment film can be measured by high-frequency glow discharge emission spectroscopy (GD-OES).
  • ⁇ Cu content> When excessive etching is performed on the base material 3 by a degreasing process or a pickling process when forming the oxide film 1, Cu contained in the base material 3 is concentrated on the surface, and the Cu content of the oxide film 1 is increased. To increase. If Cu is present on the surface of the oxide film 1, Cu is excessively contained in the surface treatment film 2 formed in the surface treatment film formation step, which is the next step S3 described later, which causes a decrease in adhesion durability. .
  • the Cu content in the oxide film 1 before the formation of the surface treatment film is restricted to less than 0.6 atomic%.
  • Cu content in the oxide film 1 before surface treatment film formation it is more preferable that it is less than 0.5 atomic%.
  • the thickness of the oxide film 1 before the formation of the surface treatment film is preferably 1 to 30 nm.
  • the film thickness of the oxide film 1 before forming the surface treatment film is less than 1 nm, the oxide film 1 to which the surface treatment liquid used in the surface treatment film formation process reacts is thin, the surface treatment liquid becomes excessive, and the unreacted surface The treatment liquid remains on the substrate, which may cause a decrease in adhesion durability.
  • the etching amount is 1.9 g / m 2 or less. It is preferable.
  • the film thickness of the oxide film 1 before the surface treatment film formation exceeds 30 nm
  • the surface treatment liquid used in the surface treatment film formation step is insufficient with respect to the oxide film 1 that reacts and reacts with the oxide film 1. Becomes insufficient, and this may cause a decrease in adhesion durability.
  • the oxide film 1 having a film thickness exceeding 30 nm contains a large amount of magnesium, so that the strength of the film itself is lowered and the initial adhesiveness may be deteriorated.
  • the film thickness of the oxide film 1 before surface treatment film formation it is more preferable that they are 2 nm or more and less than 20 nm from viewpoints, such as a chemical conversion property and productivity.
  • Step S3 Surface treatment film forming step>
  • the oxide film 1 formed in step 2 has a silicate of 0.001 mass% or more and less than 0.5 mass%, and 0.001 mass% or more.
  • the oxide film 1 reacts with the surface treatment liquid, and at least aluminum (Al), silicon ( A surface treatment film 2 containing Si), oxygen (O), and an organosilane compound is formed on the surface of the substrate 3.
  • the oxide film 1 does not become a uniform surface-treated film 2, and the oxide film 1 is modified to a film containing mainly Al and O and containing Si (including Al—O—Si bond).
  • a film mainly containing Si and O (siloxane bond) and containing Al (including Al—O—Si bond) is formed, and the Si concentration decreases from the outermost surface side to the substrate side, Moreover, it becomes a film
  • the Al—Si ratio of the Al—O—Si bond is different in the cross-sectional direction, and the bond between the surface treatment film 2 and the substrate 3 is an Al-rich Al—O—Si bond, and the aluminum alloy substrate And the surface of the surface treatment material (aluminum alloy material after the surface treatment) have Si-rich Al—O—Si bonds.
  • corrosion resistance can be improved.
  • the surface treatment film 2 itself is very thin, and the distribution state in the film thickness direction of the silicate and the organosilane compound is different, but at least a mixed structure is formed, and the surface treatment film 2 is extremely thin. Its strength is also high.
  • the surface treatment film 2 is formed by performing the surface treatment using the surface treatment liquid containing both the silicate and the organosilane compound, and the surface treatment is performed using only the organosilane compound.
  • an alloy material with improved adhesion durability can be obtained.
  • FIG. 3 shows the aluminum alloy material of the present embodiment in which the surface treatment film 2 is formed on the surface of the substrate 3.
  • the surface treatment film 2 is formed on the entire one surface of the substrate 3, but the present embodiment is not limited to this.
  • the surface treatment film 2 may be formed on only a part of the surface of the substrate 3. Further, the surface treatment film 2 may be formed on both surfaces of the substrate 3.
  • the surface treatment solution has a pH of 7 or more and 14 or less.
  • the pH of the surface treatment liquid is higher than 14, most of the organosilane compound is polymerized and precipitated, so that the solution itself becomes an unstable solution.
  • the polymerized organic silane compound is bonded to the oxide film on the surface of the aluminum alloy substrate, the resulting organic silane treatment layer becomes thick, and therefore, when stress is applied, the organic silane treatment layer is destroyed inside.
  • the pH of the surface treatment solution is lower than 7, silicate precipitates, so that aluminum and silicon cannot react. Therefore, the pH of the surface treatment liquid needs to be in the range of 7 or more and 14 or less.
  • the pH of the surface treatment solution is preferably 8 or more, more preferably 9 or more.
  • the pH of the surface treatment solution can be appropriately adjusted by adding a base such as sodium hydroxide, sodium carbonate, or ammonia, or an acid such as acetic acid.
  • the concentration of silicate in the surface treatment liquid is 0.001% by mass or more and less than 0.5% by mass. When the concentration of the silicate in the surface treatment liquid is 0.5% by mass or more, the formed film becomes thick and the strength decreases. On the other hand, if the concentration of silicate in the surface treatment liquid is less than 0.001% by mass, the concentration of silicate is too low, so that aluminum and silicon cannot sufficiently react, and sufficient adhesion durability is achieved. Sex cannot be obtained.
  • the concentration of the silicate in the surface treatment liquid is preferably 0.01% by mass or more, and more preferably 0.015% by mass or more. Further, the concentration of silicate in the surface treatment liquid is preferably less than 0.3% by mass, and more preferably less than 0.2% by mass.
  • the concentration of the organosilane compound in the surface treatment liquid is 0.001% by mass or more and less than 0.5% by mass.
  • concentration of the organosilane compound in the surface treatment liquid is 0.5% by mass or more, the generated surface treatment film becomes thick and the strength is lowered.
  • concentration of the organic silane compound in the surface treatment liquid is less than 0.001% by mass, the concentration of the organic silane compound is too low, so that a surface treatment film containing the organic silane compound cannot be sufficiently formed. Thus, sufficient adhesion durability cannot be obtained.
  • the concentration of the organosilane compound in the surface treatment liquid is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more.
  • concentration of the organosilane compound in the surface treatment liquid is preferably less than 0.4% by mass, more preferably less than 0.3% by mass.
  • the type of silicate contained in the surface treatment liquid is not particularly limited, but from the viewpoint of water solubility, for example, basic silicates include silicates of alkali metals such as lithium, sodium, and potassium. Silicates containing monovalent cations (M), such as salts and ammonium silicates (mM 2 O ⁇ nSiO 2, and in the following, the number of moles of M 2 O and the moles of SiO 2 And a ratio n / m to n which is a number) is preferable.
  • M monovalent cations
  • alkali metal ions such as lithium ion, sodium ion and potassium ion are preferable, and sodium ion is particularly preferable from the viewpoint of economy.
  • n / m range of about 1.5 to 4
  • a silicate having an n / m of 1.5 or more is preferable because good adhesion durability is obtained. If the n / m ratio is less than 1.5, the corrosion resistance of the film formed by the reaction between the aqueous solution containing the silicate and the organosilane compound and the aluminum oxide film tends to be slightly lowered, and the adhesion durability may be lowered. There is.
  • the upper limit of n / m ratio is not defined, 4 or less is preferable from the problem on the production of silicate. Specific examples include layered crystal sodium silicate and water glass.
  • a layered crystal silicate is particularly preferable from the viewpoint of stabilization of operation because a high amount of reaction products with minerals is reduced due to high ion exchange capacity and adhesion to an apparatus or a container is reduced.
  • a silicate only 1 type may be used independently and may be used in combination of 2 or more type.
  • the type of the organic silane compound contained in the surface treatment liquid is not particularly limited, but the organic silane compound is a silane compound having a plurality of hydrolyzable trialkoxysilyl groups in the molecule, a hydrolyzate thereof, or a polymer thereof. May be included.
  • a silane compound having a plurality of hydrolyzable trialkoxysilyl groups in the molecule not only forms a dense siloxane bond, but also has a high reactivity with a metal oxide and forms a chemically stable film. The wet durability of the film can be further increased.
  • organosilane-treated films have high mutual solubility with machine oils such as processing oil and press oil and organic compounds such as adhesives, and even if machine oil such as process oil and press oil adheres to the film Since the influence can be mitigated, it also plays a role in preventing a decrease in adhesion durability due to oiling.
  • the kind of the silane compound is not particularly limited, from the viewpoint of economy, a silane compound (bissilane compound) having two hydrolyzable trialkoxysilyl groups in the molecule is preferable, and examples thereof include bistrialkoxysilylethane and bistrimethyl.
  • bistrialkoxysilylbenzene bistrialkoxysilylpropylamine, bistrialkoxysilylpropylamine, bistrialkoxysilylpropyltetrasulfide, and the like can be used.
  • bistriethoxysilylethane BTSE
  • an organosilane compound only 1 type may be used independently and it may be used in combination of 2 or more type.
  • the organic silane compound may include a silane coupling agent having a reactive functional group that can chemically bond with the organic resin component, a hydrolyzate thereof, or a polymer thereof.
  • a silane coupling agent having a reactive functional group such as amino group, epoxy group, methacryl group, vinyl group and mercapto group alone or in combination with the above silane compound, between the film and the resin A chemical bond can be formed to further enhance the adhesion durability.
  • the functional group of a silane coupling agent is not limited to what was mentioned above, The silane coupling agent which has various functional groups can be selected suitably according to the adhesive resin to be used.
  • silane coupling agents include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (N-aminoethyl) -aminopropyltrimethoxysilane, 3- (N— Aminoethyl) -aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-methacryloxy Examples thereof include propyltrimethoxysilane and 3-methacryloxypropyltriethoxysilane.
  • silane coupling agent only 1 type may be used independently and it may be used in combination of 2 or more type.
  • the surface treatment liquid may further contain one or more of a stabilizer, an auxiliary agent and the like, if desired, in addition to the silicate and the organosilane compound.
  • the stabilizer may include organic compounds such as carboxylic acids having 1 to 4 carbon atoms such as formic acid and acetic acid, and alcohols having 1 to 4 carbon atoms such as methanol and ethanol.
  • Examples of the method for applying the surface treatment liquid include immersion treatment, spraying, roll coating, bar coating, electrostatic coating, and the like. Moreover, it is better that there is no rinsing after the surface treatment, but in some cases, it may be performed with pure water or the like.
  • the surface treatment liquid is dried by heating as necessary.
  • the heating temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and still more preferably 90 ° C. or higher. Further, if the heating temperature is too high, the characteristics of the aluminum alloy are affected. Therefore, the heating temperature is preferably 220 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 190 ° C. or lower.
  • the drying time is preferably 2 seconds or more, more preferably 5 seconds or more, and further preferably 10 seconds or more, although it depends on the heating temperature. Moreover, the said drying time becomes like this. Preferably it is 20 minutes or less, More preferably, it is 5 minutes or less, More preferably, it is 2 minutes or less.
  • the coating amount of the surface treatment liquid is preferably adjusted so that the coating amount after drying is 0.001 mg / m 2 or more and 30 mg / m 2 or less from the viewpoint of obtaining a sufficient effect of improving the adhesion durability. More preferably, the coating amount after drying is adjusted to be 0.01 mg / m 2 or more and 20 mg / m 2 or less. If the coating amount of the surface treatment solution is too small, the amount of silicate or organosilane compound may be too small to obtain good adhesion durability. Moreover, when the coating amount of the surface treatment liquid is too large, the surface treatment film to be formed becomes too thick, peeling may occur in the surface treatment film, and adhesion durability may be impaired. In addition, for example, the surface treatment film is not removed in a degreasing etching process for painting after an automobile assembly process, which may adversely affect paint adhesion or may give a difference in paint paste.
  • ⁇ Other processes> In the manufacturing method of the aluminum alloy material 10 of the present embodiment, other steps may be included between or before and after each step within a range that does not adversely affect each step described above.
  • a preliminary aging treatment step for performing a preliminary aging treatment may be provided after the surface treatment film forming step S3.
  • This preliminary aging treatment is preferably performed by heating at 40 to 120 ° C. within 72 hours at a low temperature of 8 to 36 hours.
  • pre-aging treatment By performing pre-aging treatment under these conditions, it is possible to improve moldability and strength after baking.
  • a foreign matter removing step for removing foreign matter on the surface of the aluminum alloy material 10 or a defective product removing step for removing defective products generated in each step may be performed.
  • the manufactured aluminum alloy material 10 is coated with machine oil such as press oil on the surface thereof before manufacturing the joined body or before processing into a member for an automobile.
  • machine oil such as press oil
  • one containing an ester component is mainly used.
  • the method and conditions for applying the press oil to the aluminum alloy material 10 are not particularly limited, and methods and conditions for applying the normal press oil can be widely applied.
  • a press containing ethyl oleate as an ester component What is necessary is just to immerse the aluminum alloy material 10 in oil.
  • the ester component is not limited to ethyl oleate, and various materials such as butyl stearate and sorbitan monostearate can be used.
  • the aluminum alloy material 10 of this embodiment is provided with the surface treatment film 2 rich in the solubility of machine oil on the outermost surface, the adhesive resin is satisfactorily formed thereon even after the machine oil is applied. Can be joined.
  • an aqueous solution containing a silicate and an organosilane compound is used for an aluminum alloy base material on which an oxide film is formed.
  • the amount of Cu in the oxide film 1 before the surface treatment film forming step is regulated to be less than a specific amount, the adhesion durability between the surface treatment film 2 formed by subjecting the oxide film 1 to the surface treatment and the adhesive resin. Improves. As a result, even when the aluminum alloy material 10 of the present embodiment is exposed to a high-temperature and humid environment, the interfacial peeling is suppressed, and a decrease in adhesive strength can be suppressed over a long period of time. Further, the adhesion durability can be improved as compared with the surface treatment using only the organosilane compound.
  • FIG. 4 is a cross-sectional view schematically showing a configuration of an aluminum alloy material with an adhesive resin layer according to this modification.
  • the same components as those of the aluminum alloy material 10 shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the aluminum alloy material 11 with an adhesive resin layer of the present modification is an adhesive resin layer 4 made of an adhesive resin so as to cover the surface treatment film 2 in the aluminum alloy material of the first embodiment described above. Is formed.
  • the adhesive resin layer 4 is made of an adhesive resin or the like, and the aluminum alloy material 11 with the adhesive resin layer of this modification is joined to another member via the adhesive resin layer 4.
  • the other members as with the aluminum alloy material 11 with the adhesive resin layer, another aluminum alloy material on which a surface treatment film is formed, an aluminum alloy material on which an oxide film and a surface treatment film are not formed, resin molding Body and the like are included.
  • the adhesive resin that constitutes the adhesive resin layer 4 is not particularly limited. When an aluminum alloy material such as an epoxy resin, a urethane resin, a nitrile resin, a nylon resin, or an acrylic resin is conventionally joined. The adhesive resin that has been used can be used.
  • the thickness of the adhesive resin layer 4 is not particularly limited, but is preferably 10 to 500 ⁇ m, and more preferably 50 to 400 ⁇ m. When the thickness of the adhesive resin layer 4 is less than 10 ⁇ m, the aluminum alloy material 11 with the adhesive resin layer and the aluminum alloy material not provided with another adhesive resin layer are joined via the adhesive resin layer 4. , High adhesion durability may not be obtained. On the other hand, when the thickness of the adhesive resin layer 4 exceeds 500 ⁇ m, the adhesive strength may be reduced.
  • FIG. 5 is a flowchart showing a method for manufacturing the aluminum alloy material 11 with an adhesive resin layer according to this modification. As shown in FIG. 5, when manufacturing the aluminum alloy material 11 with the adhesive resin layer of this modification, an adhesive resin layer forming step S4 is performed in addition to the above-described steps S1 to S3.
  • Step S4 Adhesive resin layer forming step
  • the adhesive resin layer 4 made of an adhesive or the like is formed so as to cover the surface treatment film 2.
  • the method for forming the adhesive resin layer 4 is not particularly limited. For example, when the adhesive resin is a solid, it is heated and pressure-bonded, or dissolved in a solvent to obtain a solution. Further, when the adhesive resin is in a liquid state, a method of spraying or coating the surface of the surface treatment film 2 as it is can be mentioned.
  • the oxide film forming step S2, the surface treatment film forming step S3, and / or the adhesive resin layer forming step S4 are performed as in the first embodiment.
  • a preliminary aging treatment step for performing preliminary aging treatment may be provided later.
  • the adhesive resin layer is provided in advance, the work such as applying the adhesive resin to the surface of the aluminum alloy material is omitted when producing a joined body or an automobile member. can do.
  • the configuration and effects other than those described above in the aluminum alloy material with an adhesive resin layer of the present modification are the same as those in the first embodiment described above.
  • the joined body of this embodiment uses the aluminum alloy material of the first embodiment described above or an aluminum alloy material with an adhesive resin layer of a modification thereof.
  • 6 to 9B are cross-sectional views schematically showing a configuration example of the joined body of this embodiment. 6 to 9B, the same components as those of the aluminum alloy material 10 and the aluminum alloy material 11 with the adhesive resin layer 11 shown in FIGS. 3 and 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the two aluminum alloy materials 10 shown in FIG. 3 are arranged so that the surfaces on which the surface treatment film 2 is formed face each other. It can be set as the structure arrange
  • the same adhesive resin as the adhesive resin layer 4 described above can be used as the adhesive resin 5.
  • an epoxy resin, a urethane resin, a nitrile resin, a nylon resin, an acrylic resin, or the like can be used as the adhesive resin 5.
  • the thickness of the adhesive resin 5 is not particularly limited, but is preferably 10 to 500 ⁇ m, more preferably 50 to 400 ⁇ m from the viewpoint of improving the adhesive strength.
  • both surfaces of the adhesive resin 5 are the surface treatment film 2 of the aluminum alloy material 10 of the first embodiment.
  • the adhesive strength at the interface between the adhesive resin 5 and the surface treatment film 2 is hardly lowered, and the adhesion durability is improved.
  • the adhesive durability at the interface is improved in all adhesive resins conventionally used for joining aluminum alloy materials without being affected by the type of the adhesive resin 5.
  • the surface where the surface treatment film 2 of the aluminum alloy material 10 shown in FIG. It can also be set as the structure which joined the other aluminum alloy material 6 or the resin molding 7 in which the membrane
  • the other aluminum alloy material 6 on which the oxide film and the surface treatment film are not formed the same material as the base material 3 described above can be used, and specifically, as defined in JIS or Those made of various non-heat treatment type or heat treatment type aluminum alloys similar to JIS can be used.
  • Examples of the resin molded body 7 include glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), boron fiber reinforced plastic (BFRP), aramid fiber reinforced plastic (AFRP, KFRP), polyethylene fiber reinforced plastic (A fiber reinforced plastic molded body formed of various fiber reinforced plastics such as DFRP) and Zylon reinforced plastic (ZFRP) can be used. By using these fiber-reinforced plastic molded bodies, it is possible to reduce the weight of the joined body while maintaining a certain strength.
  • GFRP glass fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • BFRP boron fiber reinforced plastic
  • AFRP aramid fiber reinforced plastic
  • KFRP polyethylene fiber reinforced plastic
  • a fiber reinforced plastic molded body formed of various fiber reinforced plastics such as DFRP
  • ZFRP Zylon reinforced plastic
  • the resin molded body 7 is made of polypropylene (PP), acrylic-butadiene-styrene copolymer (ABS) resin, polyurethane (PU), polyethylene (PE), polyvinyl chloride (PVC). , Nylon 6, nylon 6,6, polystyrene (PS), polyethylene terephthalate (PET), polyamide (PA), polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyphthalamide (PPA), etc. No resin can be used.
  • PP polypropylene
  • ABS acrylic-butadiene-styrene copolymer
  • PU polyurethane
  • PE polyethylene
  • PVC polyvinyl chloride
  • the joined bodies 21a and 21b shown in FIGS. 7A and 7B since one surface of the adhesive resin 5 is joined to the surface treatment film 2 side, when used for a member for an automobile as in the above-described joined body 20, the temperature is high. Even when exposed to a wet environment, the adhesion durability at the interface is improved without being affected by the type of the adhesive resin. Moreover, since the joined body 21b shown to FIG. 7B has joined the aluminum alloy material 10 and the resin molding 7, it is lightweight compared with the joined body of aluminum alloy materials, By using this joined body 21b, Further weight reduction of the automobile can be realized. The other configurations and effects of the joined bodies 21a and 21b shown in FIGS. 7A and 7B are the same as those of the joined body 20 shown in FIG.
  • the aluminum alloy material 11 with the adhesive resin layer provided with the adhesive resin layer 4 shown in FIG. 4 and the aluminum alloy material 10 not provided with the adhesive resin layer 4 shown in FIG. It can also be set as the structure which joined. Specifically, the surface treatment film 2 of the aluminum alloy material 10 is bonded to the adhesive resin layer 4 side of the aluminum alloy material 11 with the adhesive resin layer. As a result, the film 2 of the aluminum alloy material 10 and the film 2 of the aluminum alloy material 11 with the adhesive resin layer were arranged to face each other via the adhesive resin layer 4 of the aluminum alloy material 11 with the adhesive resin layer. It has a configuration.
  • the surface treatment is performed on the adhesive resin layer 4 side of the aluminum alloy material 11 with the adhesive resin layer provided with the adhesive resin layer 4 shown in FIG.
  • Another aluminum alloy material 6 on which a film is not formed or a resin molded body 7 such as a fiber reinforced plastic molded body may be joined.
  • a high-temperature wet environment is used. Even if it is exposed to, the durability of adhesion at the interface is improved without being affected by the type of adhesive resin.
  • the joined body 23b shown to FIG. 9B has joined the aluminum alloy material 11 with an adhesive resin layer, and the resin molding 7, it is lightweight compared with the joined body of aluminum alloy materials, and weight reduction is calculated
  • the structure and effect other than the above in the joined bodies 23a and 23b shown in FIGS. 9A and 9B are the same as those of the joined body 20 shown in FIG.
  • a manufacturing method of the joined bodies 20 to 23 As a manufacturing method of the joined bodies 20 to 23, particularly a joining method, a conventionally known joining method can be used.
  • the method for forming the adhesive resin 5 on the aluminum alloy material is not particularly limited.
  • an adhesive sheet prepared in advance using the adhesive resin 5 may be used, or the adhesive resin 5 may be used as the surface treatment film 2. You may form by spraying or apply
  • the joined bodies 20 to 23 may be coated with a machine oil such as press oil on the surface thereof before being processed into a member for an automobile, like the aluminum alloy material 10 and the aluminum alloy material 11 with an adhesive resin layer. .
  • the member for motor vehicles of this embodiment uses the joined object of a 2nd embodiment mentioned above, for example, is a panel for motor vehicles.
  • the manufacturing method of the automobile member of the present embodiment is not particularly limited, but a conventionally known manufacturing method can be applied.
  • the joined members 20 to 23b shown in FIGS. 6 to 9B are cut or pressed to produce a predetermined-shaped automobile member.
  • the automobile member according to the present embodiment is manufactured from the joined body according to the second embodiment described above, even if it is exposed to a high temperature and wet environment, the influence of the hydration of the adhesive resin or the adhesive resin layer and the oxide film is affected. Almost no elution of the aluminum alloy base material can be suppressed with little. As a result, in the automotive member of this embodiment, it is possible to suppress interfacial peeling when exposed to a high-temperature and humid environment, and to suppress a decrease in adhesive strength.
  • an aluminum alloy material was produced by the following method and conditions, and its adhesion durability and the like were evaluated.
  • Examples 1 and 2> Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut
  • a solution containing potassium hydroxide adjusted to pH 13 at a temperature of 50 ° C. for a treatment time of 1 to 120 seconds, and then washed with water.
  • the nitric acid solution treatment was performed under the conditions of a temperature of 40 ° C. and a treatment time of 1 to 120 seconds, and then washed with water to obtain the etching amounts shown in Table 1. As described in 1, an oxide film in which the amount of Mg and the amount of Cu were controlled was formed.
  • Examples 3 to 5> Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut
  • a solution containing potassium hydroxide adjusted to pH 13 at a temperature of 50 ° C. for a treatment time of 1 to 120 seconds, and then washed with water.
  • the sulfuric acid / hydrofluoric acid solution treatment was performed under the conditions of a temperature of 50 ° C. and a treatment time of 1 to 120 seconds, and then washed with water.
  • An oxide film was formed in which the etching amount was as described and the Mg amount and Cu amount were controlled as shown in Table 1.
  • Examples 6 to 7> Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut
  • Examples 8 to 9> Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut
  • Ethanol and acetic acid were used for dissolution of BTSE and pH adjustment in the preparation process of the aqueous solution (surface treatment solution), but no fluorine-based drug was used.
  • the amount of ethanol in the entire solution was about 2%.
  • coating of a surface treatment liquid was performed for 1 minute at 105 degreeC. The coating amount after drying was confirmed to be about 4 mg / m 2 by measurement with before and after coating with fluorescent X-rays.
  • Example 10 To the oxide film on the surface of the aluminum alloy substrate on which the oxide film was formed, obtained in Example 1, 0.1% by mass of sodium metasilicate (a molar ratio of SiO 2 and Na 2 O of about 1), An aqueous solution (surface treatment solution) containing 0.09% by mass of bistriethoxysilylethane (BTSE) and having a pH adjusted to 11.2 was applied by a bar coater to form a surface treatment film. An aluminum alloy material was produced. Ethanol and acetic acid were used for dissolution of BTSE and pH adjustment in the preparation process of the aqueous solution (surface treatment solution), but no fluorine-based drug was used. The amount of ethanol in the entire solution was about 2%. In addition, drying after application
  • BTSE bistriethoxysilylethane
  • Example 11 0.1% by mass of water glass (SiO 2 to Na 2 O molar ratio of 3 to 3.4) was added to the oxide film on the surface of the aluminum alloy substrate on which the oxide film was formed, obtained in Example 1. And an aqueous solution (surface treatment liquid) containing 0.09% by mass of bistriethoxysilylethane (BTSE) and having a pH adjusted to 11.2 is applied by a bar coater to form a surface treatment film. 11 aluminum alloy materials were produced. Ethanol and acetic acid were used for dissolution of BTSE and pH adjustment in the preparation process of the aqueous solution (surface treatment solution), but no fluorine-based drug was used. The amount of ethanol in the entire solution was about 2%. In addition, drying after application
  • ⁇ Comparative Example 3> In the oxide film on the surface of the aluminum alloy substrate on which the oxide film was formed, obtained in Example 1, 0.55% by mass of crystalline layered sodium silicate (SiO 2: Na 2 O molar ratio is about 2) (Pre-feed made by Tokuyama Siltec) and 0.05% by mass of bistriethoxysilylethane (BTSE), and an aqueous solution (surface treatment liquid) adjusted to pH 12.1 was applied by a bar coater. A treatment film was formed, and an aluminum alloy material of Comparative Example 3 was produced. Ethanol and acetic acid were used for dissolution of BTSE and pH adjustment in the preparation process of the aqueous solution (surface treatment solution), but no fluorine-based drug was used.
  • crystalline layered sodium silicate SiO 2: Na 2 O molar ratio is about 2
  • BTSE bistriethoxysilylethane
  • the amount of ethanol in the entire solution was about 2%.
  • coating of a surface treatment liquid was performed for 1 minute at 105 degreeC.
  • the coating amount after drying was confirmed to be 35 mg / m 2 by fluorescence X-rays and measured before and after coating.
  • BTSE bistriethoxysilylethane
  • the amount of ethanol in the entire solution was about 2%.
  • coating of a surface treatment liquid was performed for 1 minute at 105 degreeC.
  • the coating amount after drying was confirmed to be 36 mg / m 2 by fluorescence X-rays and measured before and after coating.
  • the press oil diluted with toluene was applied to the surface of the aluminum alloy material according to each of Examples and Comparative Examples produced in this way so that the coating amount after drying was 1 g / m 2 .
  • the oxide film of the aluminum alloy base material according to each of Examples and Comparative Examples was subjected to high-frequency glow discharge emission spectroscopy (GD-OES: model manufactured by Horiba Joban Yvon) JY-5000RF) while sputtering in the film thickness direction, metal elements such as aluminum (Al), magnesium (Mg), copper (Cu), iron (Fe), and titanium (Ti), and oxygen (O), The amount of each component was measured for elements such as nitrogen (N), carbon (C), silicon (Si) and sulfur (S).
  • GD-OES high-frequency glow discharge emission spectroscopy
  • the maximum concentration of magnesium (Mg), copper (Cu) and silicon (Si) in the oxide film was defined as the film concentration in the film.
  • oxygen (O) and carbon (C) are particularly susceptible to contamination on the outermost surface and in the vicinity thereof. From the above, in the concentration calculation of each element, the concentration was calculated excluding oxygen (O) and carbon (C). Note that oxygen (O) is likely to be affected by contamination at the outermost surface and in the vicinity thereof, and it is difficult to measure the exact concentration. However, the oxide film of all samples contains oxygen (O). It was clear that
  • the etching amount (unit: g / cm 2 ) is obtained by measuring the amount of decrease in the weight of the base material before and after the oxide film formation step (unit: g) and dividing this by the surface area of the base material (unit: m 2 ). Calculated.
  • 10A and 10B are diagrams schematically showing a method for measuring the cohesive failure rate
  • FIG. 10A is a side view
  • FIG. 10B is a plan view.
  • the adhesive resin 35 used here is a thermosetting epoxy resin-based adhesive resin (bisphenol A type epoxy resin amount 40 to 50 mass%).
  • the prepared adhesion test specimen was held in a high temperature and humidity environment of 50 ° C. and a relative humidity of 95% for 30 days, and then pulled at a rate of 50 mm / min with a tensile tester to evaluate the cohesive failure rate of the adhesive resin at the adhesion portion.
  • the cohesive failure rate was calculated based on Equation 1 below.
  • the test specimen a was used as one side after the tension of the adhesion test specimen, and the test specimen b was used as the other side.
  • the cohesive failure rate was the average value of the three samples. Further, the evaluation criteria are that the cohesive failure rate is less than 60% as bad (x), 60% or more and less than 70% is slightly good ( ⁇ ), 70% or more and less than 90% is good ( ⁇ ), and 90% or more is particularly good. ( ⁇ ) and 60% or more was accepted.
  • the aluminum alloy material of Comparative Example 1 in which the concentration of Cu in the oxide film is out of the range specified in the present invention has a poor cohesive failure rate of less than 60%, and is in a high temperature humid environment.
  • the adhesion durability was inferior.
  • the aluminum alloy material of Comparative Example 2 manufactured without pickling or alkali cleaning has a Mg concentration in the oxide film that is out of the scope of the present invention, and the cohesive failure rate is less than 60%. It was inferior in adhesion durability in a high-temperature and humid environment.
  • the aluminum alloy material of Comparative Example 3 in which the concentration of silicate in the surface treatment liquid is out of the range defined in the present invention has a poor cohesive failure rate of less than 60%, and the adhesion durability in a high-temperature and humid environment. It was inferior in nature.
  • the aluminum alloy material of Comparative Example 4 in which the concentration of the organosilane compound in the surface treatment liquid is out of the range defined in the present invention has a poor cohesive failure rate of less than 60%, and the adhesion durability in a high-temperature and humid environment. It was inferior in nature.
  • Examples 10 instead of the crystalline layered sodium silicate as used in Example 1 (molar ratio of SiO 2 and Na 2 O of about 2) (Tokuyama Siltech made pre feed), sodium metasilicate (SiO 2 And the Na 2 O molar ratio is about 1), and is an example produced under substantially the same conditions as in Example 1 except that the sodium silicate species was changed.
  • Example 10 the molar ratio of SiO 2 and Na 2 O was used sodium metasilicate less than 1.5 (about 1), although the cohesive failure rate was less than 90% to 70% pass level, SiO 2 The cohesive failure rate was slightly inferior to Example 1 using crystalline layered sodium silicate in which the molar ratio of Na 2 O was about 2. Further, in Example 11, instead of the crystalline layered sodium silicate (a molar ratio of SiO 2 and Na 2 O of about 2) used in Example 1 (pre-feed made by Tokuyama Siltec), water glass (SiO 2 and This is an example in which the molar ratio of Na 2 O is 3 to 3.4), and is an example prepared under substantially the same conditions as in Example 1 except that the sodium silicate species is changed.
  • crystalline layered sodium silicate a molar ratio of SiO 2 and Na 2 O of about 2
  • water glass SiO 2 and This is an example in which the molar ratio of Na 2 O is 3 to 3.4
  • Example 11 using a water glass having a molar ratio of SiO 2 to Na 2 O of 1.5 or more (about 3 to 3.4), a crystalline layered structure having a molar ratio of SiO 2 to Na 2 O of about 2 A cohesive failure rate equivalent to that in Example 1 using sodium silicate was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

The present invention relates to an aluminum alloy manufacturing method provided with: an oxide coating formation step for forming an oxide coating, which contains 0.1 atom% to less than 30 atom% of Mg and in which Cu is restricted to less than 0.6 atom%, on at least a portion of the surface of an aluminum alloy base material; and a treated surface coating formation step comprising the coating of an aqueous solution, which contains 0.001 mass% to less than 0.5 mass% of a silicic acid salt and 0.001 mass% to less than 0.5 mass% of an organic silane compound and the pH of which is 7 to 14, on at least a portion of said oxide coating. With this aluminum alloy manufacturing method, it is possible to manufacture an aluminum alloy that is not susceptible to reduction of adhesive strength even when exposed to a hot and humid environment, has excellent adhesion durability, and can be produced efficiently.

Description

アルミニウム合金材の製造方法、アルミニウム合金材、及び接合体Method for producing aluminum alloy material, aluminum alloy material, and joined body
 本発明は、アルミニウム合金材の製造方法、アルミニウム合金材、及びアルミニウム合金材を用いた接合体に関する。 The present invention relates to a method for producing an aluminum alloy material, an aluminum alloy material, and a joined body using the aluminum alloy material.
 自動車、船舶及び航空機などの輸送機の部材には、各種アルミニウム合金板材がその特性に応じて適宜選択されて用いられている。また、近年、CO排出抑制などの地球環境問題を意識して、部材の軽量化による燃費の向上が求められており、比重が鉄の約1/3であり、かつ優れたエネルギー吸収性を有するアルミニウム合金材の使用が増加している。 Various aluminum alloy sheet materials are appropriately selected and used for members of transport equipment such as automobiles, ships, and airplanes according to their characteristics. In recent years, in consideration of global environmental problems such as CO 2 emission suppression, there has been a demand for improvement in fuel efficiency by reducing the weight of members, the specific gravity is about 1/3 that of iron, and excellent energy absorption. The use of aluminum alloy materials is increasing.
 例えば、自動車用部材には、JIS5000系のAl-Mg系合金材、JIS6000系のAl-Mg-Si系合金板やJIS7000系のAl-Zn-Mg系合金材等のMg含有アルミニウム合金材が用いられている。これらのアルミニウム合金材の接合方法としては、溶接及び接着剤による接着があり、これらの方法が併用されることもある。溶接が点や線でアルミニウム合金材を接合するのに対し、接着剤による接着はアルミニウム合金材を面全体で接合するため、接合強度が高く、衝突安全性などの面で有利である。このため、近年、自動車用部材では、接着剤による接着が増加傾向にある。また、自動車の軽量化のためにアルミニウム合金材と樹脂の複合体が用いられる場合もある。 For example, JIS5000-based Al—Mg-based alloy materials, JIS6000-based Al—Mg—Si-based alloy plates, and JIS7000-based Al—Zn—Mg-based alloy materials are used for automobile members. It has been. As a joining method of these aluminum alloy materials, there are welding and adhesion by an adhesive, and these methods may be used in combination. Whereas welding joins an aluminum alloy material with dots or lines, bonding with an adhesive bonds the aluminum alloy material over the entire surface, which is advantageous in terms of high joint strength and impact safety. For this reason, in recent years, adhesion by an adhesive tends to increase in automobile members. In some cases, a composite of an aluminum alloy material and a resin is used to reduce the weight of an automobile.
 一方、接着剤で接合したアルミニウム合金製自動車用部材は、使用中に水分、酸素及び塩化物イオンなどが接合部に浸入すると、次第に、接着剤層とアルミニウム合金板との界面が劣化し、界面剥離が生じて、接着強度が低下するという問題がある。そこで、従来、このような接着強度の低下を防止し、接着剤層を有するアルミニウム合金製自動車用部材の接着耐久性を向上させる方法が検討されている(例えば、特許文献1~3参照)。 On the other hand, an aluminum alloy automobile member joined with an adhesive gradually deteriorates in the interface between the adhesive layer and the aluminum alloy plate when moisture, oxygen, chloride ions, etc. enter the joint during use. There is a problem that peeling occurs and the adhesive strength decreases. Therefore, conventionally, a method for preventing such a decrease in adhesive strength and improving the adhesion durability of an aluminum alloy automobile member having an adhesive layer has been studied (see, for example, Patent Documents 1 to 3).
 例えば、特許文献1には、酸洗処理によってアルミニウム合金板表面のMg濃化層を除去し、同時にアルミニウム合金板表面にCuを濃化させる方法が提案されている。また、特許文献2には、アルミニウム合金板の表面に濃化したMg量とOH吸収率とを特定の関係とする方法が提案されている。更に、特許文献3には、溶体化処理と温水処理を連続して行うことによって、アルミニウム材の酸化皮膜表面層中のMg濃度、Si濃度及びOH濃度を特定範囲とする方法が提案されている。 For example, Patent Document 1 proposes a method of removing the Mg concentrated layer on the surface of the aluminum alloy plate by pickling and simultaneously concentrating Cu on the surface of the aluminum alloy plate. Patent Document 2 proposes a method in which the amount of Mg concentrated on the surface of an aluminum alloy plate and the OH absorption rate have a specific relationship. Further, Patent Document 3 proposes a method in which the Mg concentration, Si concentration, and OH concentration in the oxide film surface layer of the aluminum material are set to specific ranges by continuously performing solution treatment and hot water treatment. .
 また、従来、変色や糸錆を防止する目的で、ケイ酸塩を含む水溶液で処理し、表面にケイ素含有皮膜を形成した自動車用アルミニウム及びアルミニウム合金材も提案されている(特許文献4参照)。更に、自動車車体用Mg含有アルミニウム合金板において、優れた成形性を維持しつつ、リン酸亜鉛皮膜の均一性を得る方法として、弱エッチングの具体例としてケイ酸塩を使用する表面処理方法が提案されている(特許文献5参照)。 Conventionally, for the purpose of preventing discoloration and thread rust, an aluminum for an automobile and an aluminum alloy material which are treated with an aqueous solution containing a silicate and have a silicon-containing film formed on the surface have also been proposed (see Patent Document 4). . Furthermore, a surface treatment method using silicate as a specific example of weak etching is proposed as a method for obtaining uniformity of the zinc phosphate film while maintaining excellent formability in Mg-containing aluminum alloy plates for automobile bodies. (See Patent Document 5).
日本国特開平6-256881号公報Japanese Unexamined Patent Publication No. 6-256881 日本国特開2006-200007号公報Japanese Unexamined Patent Publication No. 2006-200007 日本国特開2007-217750号公報Japanese Unexamined Patent Publication No. 2007-217750 日本国特開平8-144064号公報Japanese Patent Laid-Open No. 8-144064 日本国特開平7-188956号公報Japanese Laid-Open Patent Publication No. 7-188956
 しかしながら、前述した特許文献1~3に記載の技術は、水分、酸素及び塩化物イオンなどが浸透してくる高温湿潤環境に曝されると、界面の劣化が進み、界面剥離が発生し、接着強度が低下したり、Alの腐食が促進されたりするという問題がある。例えば、特許文献1に記載の技術は、Cuの濃化により接着剤との結合が強化されて接着性が向上すると記載されているが、この技術を適用したアルミニウム合金板は、湿潤環境において樹脂の分解が促進される虞があり、高い接着耐久性は期待できない。 However, when the techniques described in Patent Documents 1 to 3 described above are exposed to a high-temperature and humid environment in which moisture, oxygen, chloride ions, and the like permeate, the deterioration of the interface proceeds, and the interface peels off. There is a problem that the strength is lowered or the corrosion of Al is promoted. For example, the technique described in Patent Document 1 describes that the bonding with an adhesive is strengthened by concentration of Cu and the adhesiveness is improved. However, an aluminum alloy plate to which this technique is applied is a resin in a wet environment. Decomposition may be accelerated, and high durability cannot be expected.
 また、特許文献4や5に記載の技術でも、ケイ酸塩を用いた表面処理を行っているが、ケイ酸塩による表面処理のみで、さらに塗装に関する特許文献であり、接着耐久性に関するものでない。したがって、塗装に重要な耐食性は得られるかもしれないが、接着耐久性に必要な強度についての考慮がなされておらず、接着耐久性向上の効果は期待できない。 Further, even in the techniques described in Patent Documents 4 and 5, the surface treatment using silicate is performed, but only the surface treatment using silicate is a patent document relating to coating, and is not related to adhesion durability. . Therefore, although corrosion resistance important for coating may be obtained, the strength required for adhesion durability is not considered, and the effect of improving adhesion durability cannot be expected.
 そこで、本発明は、高温湿潤環境に曝されても、接着強度が低下し難く、接着耐久性に優れ、かつ生産性に優れたアルミニウム合金材を製造できるアルミニウム合金材の製造方法、アルミニウム合金材、及びアルミニウム合金材を用いた接合体を提供することを主目的とする。 Accordingly, the present invention provides an aluminum alloy material production method, an aluminum alloy material, which can produce an aluminum alloy material that is less likely to have a reduced adhesive strength even when exposed to a high-temperature and humid environment, has excellent adhesion durability, and excellent productivity. And a joined body using an aluminum alloy material.
 本発明者は、前述した課題を解決するために、鋭意実験検討を行った結果、以下に示す知見を得た。酸洗を行う方法は、アルミニウム合金板の素地と接着剤層が水素結合で結合されているため、高温湿潤の劣化環境に曝されると、界面は水和され結合力(水素結合)が低下する。 The present inventor has conducted extensive experiments to solve the above-described problems, and as a result, has obtained the following knowledge. In the method of pickling, since the base of the aluminum alloy plate and the adhesive layer are bonded by hydrogen bonds, the interface is hydrated and bonding strength (hydrogen bonding) decreases when exposed to a high temperature and wet environment. To do.
 陽極酸化を行う方法も、基本的にはアルミニウム合金板の素地と接着剤層は水素結合で結合されており、水分、酸素、塩化物イオンなどが浸透してくる高温湿潤環境に曝されると、界面が水和されて結合力が低下する。また、陽極酸化を行う方法は、装置が複雑となり設備コストがかかり、更に皮膜形成に長時間を要することから、生産効率が低下する。更に、温水処理を行う方法も、アルミニウム合金板の素地と接着剤層は水素結合で結合されているため、高温湿潤環境に曝されると界面の水和より、界面の劣化が進み、界面剥離が発生し、接着強度が低下する。 In the method of anodizing, the base of the aluminum alloy plate and the adhesive layer are basically bonded by hydrogen bonding, and when exposed to a high temperature and humidity environment where moisture, oxygen, chloride ions, etc. penetrate. , The interface is hydrated and the bond strength decreases. In addition, the method of performing anodization complicates the apparatus and costs equipment, and further requires a long time for film formation, resulting in a reduction in production efficiency. Furthermore, in the method of performing the hot water treatment, since the base of the aluminum alloy plate and the adhesive layer are bonded by hydrogen bonds, when exposed to a high temperature and humid environment, the interface deteriorates due to the hydration of the interface, and the interface peels off. Occurs and the adhesive strength decreases.
 そこで、本発明者らは、基材表面と接着樹脂層との結合状態について検討を行い、アルミニウム合金基材の表面に酸化皮膜からなる皮膜を形成した後、この酸化皮膜の少なくとも一部に、ケイ酸塩及び有機シラン化合物を含む特定の水溶液を塗布して表面処理皮膜を形成することにより、高温湿潤環境に曝されたときの接着強度低下を抑制できることを見出し、本発明に至った。 Therefore, the present inventors examined the bonding state between the substrate surface and the adhesive resin layer, and after forming a film made of an oxide film on the surface of the aluminum alloy substrate, at least a part of this oxide film, It has been found that by applying a specific aqueous solution containing a silicate and an organosilane compound to form a surface treatment film, it is possible to suppress a decrease in adhesive strength when exposed to a high-temperature and humid environment, and the present invention has been achieved.
 即ち、本発明に係るアルミニウム合金材の製造方法は、アルミニウム合金基材の表面の少なくとも一部に、Mgを0.1原子%以上30原子%未満含有し、Cuが0.6原子%未満に規制された酸化皮膜を形成する酸化皮膜形成工程と、前記酸化皮膜の少なくとも一部に、0.001質量%以上0.5質量%未満のケイ酸塩と、0.001質量%以上0.5質量%未満の有機シラン化合物とを含み、pHが7以上14以下である水溶液を塗布することを含む表面処理皮膜形成工程とを備えることを特徴とする。 That is, in the method for producing an aluminum alloy material according to the present invention, at least a part of the surface of the aluminum alloy substrate contains Mg at 0.1 atomic% or more and less than 30 atomic%, and Cu is less than 0.6 atomic%. An oxide film forming step for forming a regulated oxide film, and at least a part of the oxide film, 0.001% by mass or more and less than 0.5% by mass of silicate, and 0.001% by mass or more and 0.5% by mass And a surface treatment film forming step including applying an aqueous solution having an organic silane compound of less than mass% and a pH of 7 or more and 14 or less.
 ここで、前記皮膜中のMg量、及びCu量は、高周波グロー放電発光分光分析法(GD-OES:Glow Discharge-Optical Emission Spectroscopy)により測定した値である。 Here, the amount of Mg and the amount of Cu in the film are values measured by a high-frequency glow discharge emission spectroscopic analysis (GD-OES: Glow Discharge-Optical Emission Spectroscopy).
 また、本発明のアルミニウム合金材の製造方法においては、前記有機シラン化合物が分子内に加水分解可能なトリアルコキシシリル基を複数有するシラン化合物、その加水分解物またはその重合体を含んでいてもよい。 In the method for producing an aluminum alloy material of the present invention, the organosilane compound may include a silane compound having a plurality of hydrolyzable trialkoxysilyl groups in the molecule, a hydrolyzate thereof, or a polymer thereof. .
 また、本発明のアルミニウム合金材の製造方法においては、前記ケイ酸塩がmMO・nSiOで表されるケイ酸塩であって、Mは1価の陽イオンであり、かつMOのモル数であるmとSiOのモル数であるnとの比n/mが1.5以上であってもよい。 In the method for producing an aluminum alloy material of the present invention, the silicate is a silicate represented by mM 2 O · nSiO 2 , wherein M is a monovalent cation, and M 2 O The ratio n / m of m which is the number of moles of n and n which is the number of moles of SiO 2 may be 1.5 or more.
 また、本発明のアルミニウム合金材の製造方法においては、前記Mはナトリウムイオンであってもよい。 In the method for producing an aluminum alloy material of the present invention, M may be sodium ion.
 また、本発明のアルミニウム合金材の製造方法においては、前記酸化皮膜形成工程がエッチング処理段階を含み、前記エッチング処理段階におけるエッチング量が1.9g/m以下であってもよい。 Moreover, in the manufacturing method of the aluminum alloy material of this invention, the said oxide film formation process may include an etching process step, and the etching amount in the said etching process step may be 1.9 g / m < 2 > or less.
 前記アルミニウム合金基材は、例えば、Al-Mg系合金、Al-Cu-Mg系合金、Al-Mg-Si系合金又はAl-Zn-Mg系合金で形成することができる。 The aluminum alloy substrate can be formed of, for example, an Al—Mg alloy, an Al—Cu—Mg alloy, an Al—Mg—Si alloy, or an Al—Zn—Mg alloy.
 また、本発明は、前記アルミニウム合金材の製造方法により得られたアルミニウム合金材をも包含する。 The present invention also includes an aluminum alloy material obtained by the method for producing an aluminum alloy material.
 また、本発明の接合体は、前記アルミニウム合金材と他の部材とを接着樹脂を介して接合したものである。 Also, the joined body of the present invention is obtained by joining the aluminum alloy material and another member via an adhesive resin.
 本発明によれば、高温湿潤環境に曝されても、接着強度が低下し難く、接着耐久性に優れたアルミニウム合金材を実現することができる。また、本発明によれば、酸化皮膜を形成したアルミニウム合金基材に対して、ケイ酸塩及び有機シラン化合物を含む水溶液を用いて、ケイ酸塩処理及び有機シラン処理を同時に行うことで、簡略化された工程でアルミニウム合金材(表面処理アルミニウム合金材ともいう)の製造が可能となり、設備投資費や製造コストを低減することができる。 According to the present invention, it is possible to realize an aluminum alloy material that is hardly deteriorated in adhesive strength and is excellent in adhesion durability even when exposed to a high-temperature and humid environment. In addition, according to the present invention, an aluminum alloy substrate on which an oxide film is formed can be simplified by simultaneously performing silicate treatment and organosilane treatment using an aqueous solution containing a silicate and an organosilane compound. With this process, an aluminum alloy material (also referred to as a surface-treated aluminum alloy material) can be manufactured, and capital investment costs and manufacturing costs can be reduced.
図1は、本発明の第1の実施形態に係るアルミニウム合金材の製造方法を示すフローチャート図である。FIG. 1 is a flowchart showing a method for producing an aluminum alloy material according to the first embodiment of the present invention. 図2は、アルミニウム合金基材の表面に酸化皮膜が形成された状態の、表面処理工程前のアルミニウム合金材の構成を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the configuration of the aluminum alloy material before the surface treatment process in a state where an oxide film is formed on the surface of the aluminum alloy substrate. 図3は、本発明の第1の実施形態に係る接着樹脂層付きアルミニウム合金材の構成を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the configuration of the aluminum alloy material with an adhesive resin layer according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態の変形例に係る接着樹脂層付きアルミニウム合金材の構成を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a configuration of an aluminum alloy material with an adhesive resin layer according to a modification of the first embodiment of the present invention. 図5は、図4に示す接着樹脂層付きアルミニウム合金材の製造方法を示すフローチャート図である。FIG. 5 is a flowchart showing a method of manufacturing the aluminum alloy material with an adhesive resin layer shown in FIG. 図6は、本発明の第2の実施形態に係る接合体の構成例を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a configuration example of a joined body according to the second embodiment of the present invention. 図7Aは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。FIG. 7A is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention. 図7Bは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。FIG. 7B is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention. 図8は、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention. 図9Aは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。FIG. 9A is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention. 図9Bは、本発明の第2の実施形態に係る接合体の他の構成例を模式的に示す断面図である。FIG. 9B is a cross-sectional view schematically showing another configuration example of the joined body according to the second embodiment of the present invention. 図10Aは凝集破壊率の測定方法を模式的に示す側面図である。FIG. 10A is a side view schematically showing a method for measuring the cohesive failure rate. 図10Bは凝集破壊率の測定方法を模式的に示す平面図である。FIG. 10B is a plan view schematically showing a method for measuring the cohesive failure rate.
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below.
(第1の実施形態)
 まず、本実施形態のアルミニウム合金材の製造方法及び当該製造方法により得られるアルミニウム合金材について説明する。なお、本明細書においては、質量を基準とした百分率(質量%)は、重量を基準とした百分率(重量%)と同じである。
 本実施形態に係るアルミニウム合金材の製造方法は、アルミニウム合金基材の表面の少なくとも一部に、Mgを0.1原子%以上30原子%未満含有し、Cuが0.6原子%未満に規制された酸化皮膜を形成する酸化皮膜形成工程と、前記酸化皮膜の少なくとも一部に、0.001質量%以上0.5質量%未満のケイ酸塩と、0.001質量%以上0.5質量%未満の有機シラン化合物とを含み、pHが7以上14以下である水溶液を塗布することを含む表面処理皮膜形成工程とを備えるものである。
 図1は本実施形態のアルミニウム合金材10の製造方法を示すフローチャート図である。図1に示すように、本実施形態のアルミニウム合金材10を製造する際は、基材作製工程S1、酸化皮膜形成工程S2、及び表面処理皮膜形成工程S3を行う。以下、各工程について説明する。
(First embodiment)
First, the manufacturing method of the aluminum alloy material of this embodiment and the aluminum alloy material obtained by the manufacturing method will be described. In the present specification, the percentage based on mass (% by mass) is the same as the percentage based on weight (% by weight).
In the method for producing an aluminum alloy material according to the present embodiment, Mg is contained in at least a part of the surface of the aluminum alloy base material in an amount of 0.1 atomic percent or more and less than 30 atomic percent, and Cu is restricted to less than 0.6 atomic percent An oxide film forming step for forming the formed oxide film, and at least part of the oxide film, 0.001% by mass or more and less than 0.5% by mass of silicate, 0.001% by mass or more and 0.5% by mass And a surface treatment film forming step including applying an aqueous solution having a pH of 7 or more and 14 or less.
FIG. 1 is a flowchart showing a method for manufacturing an aluminum alloy material 10 of this embodiment. As shown in FIG. 1, when manufacturing the aluminum alloy material 10 of this embodiment, base material preparation process S1, oxide film formation process S2, and surface treatment film formation process S3 are performed. Hereinafter, each step will be described.
<ステップS1:基材作製工程>
 基材の形状は特に限定されるものではなく、アルミニウム合金材を用いて作製する部材の形状等に応じて、板状の他、鋳造材、鍛造材、押し出し材(例えば、中空棒状等)等としてとりうる任意の形状であってもよい。基材作製工程S1では、例として板状の基材(基板)を作製する場合には、例えば下記の手順で、基板を作製する。先ず、所定の組成を有するアルミニウム合金を、連続鋳造により溶解し、鋳造して鋳塊を作製する(溶解鋳造工程)。次に、作製した鋳塊に均質化熱処理を施す(均質化熱処理工程)。その後、均質化熱処理された鋳塊に、熱間圧延を施して熱延板を作製する(熱間圧延工程)。そして、この熱延板に300~580℃で荒焼鈍又は中間焼鈍を行い、最終冷間圧延率5%以上の冷間圧延を少なくとも1回施して、所定の板厚の冷延板(基板)を得る(冷間圧延工程)。
<Step S1: Base material production process>
The shape of the substrate is not particularly limited, and depending on the shape of a member produced using an aluminum alloy material, in addition to a plate shape, a cast material, a forged material, an extruded material (for example, a hollow bar shape), etc. Any shape that can be taken as In the base material manufacturing step S1, when a plate-shaped base material (substrate) is manufactured as an example, the substrate is manufactured by the following procedure, for example. First, an aluminum alloy having a predetermined composition is melted by continuous casting and cast to produce an ingot (melting casting process). Next, the produced ingot is subjected to homogenization heat treatment (homogenization heat treatment step). Thereafter, the ingot subjected to homogenization heat treatment is hot-rolled to produce a hot-rolled sheet (hot-rolling step). Then, the hot-rolled sheet is subjected to rough annealing or intermediate annealing at 300 to 580 ° C., and cold rolling with a final cold rolling rate of 5% or more is performed at least once, so that a cold-rolled sheet (substrate) having a predetermined thickness is obtained. (Cold rolling process).
 冷間圧延工程では、荒焼鈍又は中間焼鈍の温度を300℃以上とすることが好ましく、これにより、成形性向上の効果がより発揮される。また、荒焼鈍又は中間焼鈍の温度は、580℃以下とすることが好ましく、これにより、バーニングの発生による成形性の低下を抑制しやすくなる。一方、最終冷間圧延率は、5%以上とすることが好ましく、これにより、成形性向上の効果がより発揮される。なお、均質化熱処理及び熱間圧延の条件は、特に限定されるものではなく、熱延板を通常得る場合の条件で行うことができる。また、中間焼鈍は行わなくてもよい。 In the cold rolling process, it is preferable to set the temperature of rough annealing or intermediate annealing to 300 ° C. or higher, and thereby the effect of improving formability is more exhibited. Moreover, it is preferable that the temperature of rough annealing or intermediate annealing shall be 580 degrees C or less, and this becomes easy to suppress the fall of the moldability by generation | occurrence | production of burning. On the other hand, the final cold rolling rate is preferably 5% or more, and thereby, the effect of improving the formability is more exhibited. In addition, the conditions of homogenization heat processing and hot rolling are not specifically limited, It can carry out on the conditions in the case of obtaining a hot rolled sheet normally. Further, intermediate annealing may not be performed.
[基材]
 基材(アルミニウム合金基材)は、アルミニウム合金からなる。基材を形成するアルミニウム合金の種類は、特に限定されるものではなく、加工される部材の用途に応じて、JISに規定される又はJISに近似する種々の非熱処理型若しくは熱処理型のアルミニウム合金から適宜選択して使用することができる。ここで、非熱処理型アルミニウム合金としては、純アルミニウム(1000系)、Al-Mn系合金(3000系)、Al-Si系合金(4000系)及びAl-Mg系合金(5000系)がある。また、熱処理型アルミニウム合金としては、Al-Cu-Mg系合金(2000系)、Al-Mg-Si系合金(6000系)及びAl-Zn-Mg系合金(7000系)がある。
[Base material]
The base material (aluminum alloy base material) is made of an aluminum alloy. The type of aluminum alloy that forms the base material is not particularly limited, and various non-heat treatment type or heat treatment type aluminum alloys that are prescribed in JIS or approximate to JIS, depending on the application of the member to be processed. Can be appropriately selected and used. Here, as the non-heat treatment type aluminum alloy, there are pure aluminum (1000 series), Al—Mn series alloy (3000 series), Al—Si series alloy (4000 series), and Al—Mg series alloy (5000 series). Further, as the heat-treatable aluminum alloy, there are an Al—Cu—Mg alloy (2000 series), an Al—Mg—Si alloy (6000 series), and an Al—Zn—Mg alloy (7000 series).
 例えば、本実施形態のアルミニウム合金材を自動車用部材に用いる場合は、強度の観点から、基材は0.2%耐力が100MPa以上であることが好ましい。このような特性を満足する基材を形成可能なアルミニウム合金としては、2000系、5000系、6000系及び7000系などのように、マグネシウムを比較的多く含有するものがあり、これらの合金は必要に応じて調質してもよい。また、各種アルミニウム合金の中でも、時効硬化能に優れ、合金元素量が比較的少なくスクラップのリサイクル性や成形性にも優れていることから、6000系アルミニウム合金を用いることが好ましい。 For example, when the aluminum alloy material of the present embodiment is used for an automobile member, the base material preferably has a 0.2% proof stress of 100 MPa or more from the viewpoint of strength. Aluminum alloys that can form a base material that satisfies such characteristics include those containing relatively large amounts of magnesium, such as 2000 series, 5000 series, 6000 series, and 7000 series, and these alloys are necessary. Depending on the condition, it may be tempered. Among various aluminum alloys, it is preferable to use a 6000 series aluminum alloy because it has excellent age-hardening ability, has a relatively small amount of alloy elements, and is excellent in scrap recyclability and formability.
<ステップS2:酸化皮膜形成工程>
 酸化皮膜形成工程(ステップS2)では、ステップS1の基材作製工程で作製された基材の表面の少なくとも一部(すなわち、一部又は全部)に、Mgを0.1原子%以上30原子%未満含有し、Cuが0.6原子%未満に規制された酸化皮膜を形成する。本実施形態において、酸化皮膜形成工程(ステップS2)は、具体的には、例えば、基材3を加熱処理して酸化皮膜1を形成する加熱処理段階と、当該加熱処理段階後のエッチング処理段階とを備える。
<Step S2: oxide film forming step>
In the oxide film forming step (step S2), Mg is 0.1 atomic% or more and 30 atomic% in at least a part (that is, part or all) of the surface of the base material manufactured in the base material manufacturing step in step S1. It forms less than, and forms the oxide film by which Cu was controlled to less than 0.6 atomic%. In the present embodiment, the oxide film forming step (step S2) specifically includes, for example, a heat treatment stage in which the base material 3 is heat-treated to form the oxide film 1, and an etching treatment stage after the heat treatment stage. With.
 図2に、基材3の表面に酸化皮膜1が形成された、表面処理皮膜形成工程前のアルミニウム合金材を示す。なお、図2に示される表面処理皮膜形成工程前のアルミニウム合金材では、基材3の一方の表面の全部に酸化皮膜1が形成されているが、本実施形態はこれに限定されるものではない。例えば、基材3の表面の一部のみに酸化皮膜1が形成されていてもよい。また、基材3の両面に酸化皮膜1が形成されていてもよい。 FIG. 2 shows the aluminum alloy material before the surface treatment film forming step in which the oxide film 1 is formed on the surface of the base material 3. In addition, in the aluminum alloy material before the surface treatment film formation process shown in FIG. 2, the oxide film 1 is formed on the entire one surface of the base material 3, but this embodiment is not limited to this. Absent. For example, the oxide film 1 may be formed only on a part of the surface of the substrate 3. Moreover, the oxide film 1 may be formed on both surfaces of the base material 3.
 加熱処理段階における加熱処理としては、基材3を、例えば400~580℃の温度に加熱して、基材3の表面に酸化皮膜1を形成する。また、加熱処理は、アルミニウム合金材10の強度を調整する効果もある。なお、ここで行う加熱処理は、基材3が熱処理型アルミニウム合金で形成されている場合には溶体化処理であり、基材3が非熱処理型アルミニウム合金で形成されている場合には、焼鈍(最終焼鈍)における加熱処理である。 As the heat treatment in the heat treatment stage, the base material 3 is heated to a temperature of, for example, 400 to 580 ° C. to form the oxide film 1 on the surface of the base material 3. Further, the heat treatment also has an effect of adjusting the strength of the aluminum alloy material 10. The heat treatment performed here is a solution treatment when the substrate 3 is formed of a heat-treatable aluminum alloy, and is annealed when the substrate 3 is formed of a non-heat-treatable aluminum alloy. It is heat processing in (final annealing).
 この加熱処理は、強度向上の観点から、加熱速度100℃/分以上の急速加熱とすることが好ましい。また、加熱温度を400℃以上に設定して急速加熱することで、アルミニウム合金材10の強度や、そのアルミニウム合金材10の塗装後加熱(ベーキング)した後の強度を、より高めることができる。一方、加熱温度を580℃以下に設定して急速加熱することにより、バーニングの発生による成形性の低下を抑制することができる。更に、強度を向上させる観点からは、加熱処理における保持時間は3~30秒とすることが好ましい。このように基材3を、加熱温度400~580℃で加熱すると、基材3の表面に、例えば、膜厚が1~30nmの酸化皮膜1が形成される。なお、加熱処理の前には、必要に応じてアルカリ脱脂等を行ってもよい。 This heat treatment is preferably rapid heating at a heating rate of 100 ° C./min or more from the viewpoint of improving the strength. Moreover, the strength of the aluminum alloy material 10 and the strength after heating (baking) of the aluminum alloy material 10 can be further increased by setting the heating temperature to 400 ° C. or higher and performing rapid heating. On the other hand, by setting the heating temperature to 580 ° C. or less and performing rapid heating, it is possible to suppress a decrease in formability due to the occurrence of burning. Furthermore, from the viewpoint of improving strength, the holding time in the heat treatment is preferably 3 to 30 seconds. When the substrate 3 is heated at a heating temperature of 400 to 580 ° C. in this way, an oxide film 1 having a film thickness of 1 to 30 nm, for example, is formed on the surface of the substrate 3. In addition, you may perform alkali degreasing | defatting etc. as needed before heat processing.
 加熱処理後のエッチング処理段階においては、基材3の表面の一部又は全部に対して、酸性溶液による処理(酸洗)及びアルカリ溶液による処理(アルカリ洗浄、アルカリ脱脂)のうちの少なくとも1つを行う。酸洗の際に用いる薬液(酸洗剤)は、特に限定されるものではないが、例えば、硫酸、硝酸及びフッ酸から選ばれる群からなる1種以上を含む溶液を用いることができる。また、酸洗剤には、脱脂性を高めるために界面活性剤を含有させてもよい。また、酸洗の条件は、基材3の合金組成や酸化皮膜1の厚み等を考慮して適宜設定することができ、特に限定されないが、たとえば、pHが4以下(好ましくはpH2以下)、処理温度10~80℃、処理時間1~120秒の条件を適用することができる。 In the etching treatment stage after the heat treatment, at least one of treatment with an acidic solution (pickling) and treatment with an alkaline solution (alkali washing, alkaline degreasing) is performed on part or all of the surface of the substrate 3. I do. Although the chemical solution (acid detergent) used in the pickling is not particularly limited, for example, a solution containing one or more selected from the group selected from sulfuric acid, nitric acid and hydrofluoric acid can be used. The acid detergent may contain a surfactant in order to improve the degreasing property. The pickling conditions can be appropriately set in consideration of the alloy composition of the base material 3, the thickness of the oxide film 1 and the like, and are not particularly limited. For example, the pH is 4 or less (preferably pH 2 or less), Conditions of a processing temperature of 10 to 80 ° C. and a processing time of 1 to 120 seconds can be applied.
 また、アルカリ洗浄(アルカリ脱脂)の際に用いる薬液も、特に限定されるものではないが、例えば、水酸化ナトリウム及び水酸化カリウムから選ばれる群からなる1種以上を含む溶液を用いることができる。また、アルカリ溶液による処理の条件は、基材3の合金組成や酸化皮膜1の厚み等を考慮して適宜設定することができ、特に限定されないが、例えば、pHが10以上、処理温度10~80℃、処理時間1~120秒の条件を適用することができる。 Also, the chemical solution used for alkali cleaning (alkali degreasing) is not particularly limited, and for example, a solution containing at least one selected from the group selected from sodium hydroxide and potassium hydroxide can be used. . Further, the conditions for the treatment with the alkaline solution can be appropriately set in consideration of the alloy composition of the base material 3, the thickness of the oxide film 1, etc., and are not particularly limited. Conditions of 80 ° C. and processing time of 1 to 120 seconds can be applied.
 なお、アルカリ洗浄を行う場合においては、アルカリ洗浄よりも後に、酸洗を行うことが好ましい。また、アルカリ洗浄なしで、酸洗だけを行ってもよい。すなわち、エッチング処理段階においては、最後の段階が酸洗であることが好ましい。この理由は以下のとおりである。すなわち、アルカリ洗浄では、基材表面のMgを除去することが難しく、基材表面のMgの存在によりエッチング量を増やす必要がある。しかしながら、エッチング量が増えるとCuの濃化の原因となることから、酸洗でMgを除去する必要があるためである。 In addition, when performing alkali cleaning, it is preferable to perform pickling after alkali cleaning. Further, only the pickling may be performed without alkali cleaning. That is, in the etching treatment stage, it is preferable that the last stage is pickling. The reason for this is as follows. That is, with alkali cleaning, it is difficult to remove Mg on the substrate surface, and the amount of etching needs to be increased due to the presence of Mg on the substrate surface. However, increasing the etching amount causes the concentration of Cu, so it is necessary to remove Mg by pickling.
 また、各薬液での洗浄後にはリンスを行うことが好ましい。リンスの方法は特に限定されないが、例えば、スプレー、浸漬等が挙げられる。また、リンスに用いられる洗浄液としては、例えば、工業水、純水、イオン交換水等が挙げられる。 In addition, it is preferable to perform rinsing after washing with each chemical solution. The rinsing method is not particularly limited, and examples thereof include spraying and dipping. Examples of the cleaning liquid used for rinsing include industrial water, pure water, and ion exchange water.
 以上のようなエッチング処理段階を実施することにより、酸化皮膜1中のMg量を0.1原子%以上30原子%未満に調整し、かつ、Cu量を0.6原子%未満に規制する。ここで、酸化皮膜中のMg量及びCu量は、酸洗やアルカリ洗浄における各種条件(処理時間、処理温度、及び、薬液の濃度及びpH等)を適宜制御することによって調整ないし規制することができる。 By carrying out the etching process steps as described above, the Mg content in the oxide film 1 is adjusted to 0.1 atomic% or more and less than 30 atomic%, and the Cu content is regulated to less than 0.6 atomic%. Here, the amount of Mg and the amount of Cu in the oxide film can be adjusted or regulated by appropriately controlling various conditions (treatment time, treatment temperature, concentration of chemical solution, pH, etc.) in pickling and alkali washing. it can.
 また、エッチング処理段階におけるエッチング量は、1.9g/m以下であることが好ましい。エッチング量が1.9g/mを超えると、基材3の表面において銅の濃化が生じ、劣化環境である高温湿潤環境において、接着樹脂の劣化の原因となるおそれがある。また、当該エッチング量は、より好ましくは1.5g/m以下であり、さらに好ましくは1.3g/m以下である。なお、当該エッチング量の下限は、特に限定されるものではないが、好ましくは0.005g/mである。 Moreover, it is preferable that the etching amount in an etching process step is 1.9 g / m < 2 > or less. When the etching amount exceeds 1.9 g / m 2 , copper concentration occurs on the surface of the base material 3, which may cause deterioration of the adhesive resin in a high temperature wet environment which is a deterioration environment. Further, the etching amount is more preferably 1.5 g / m 2 or less, and further preferably 1.3 g / m 2 or less. Note that the lower limit of the etching amount is not particularly limited, but is preferably 0.005 g / m 2 .
 ここで、本明細書中におけるエッチング量(単位:g/m)は、酸化皮膜形成工程前後の基材の重量の減少量(単位:g)を測定し、これを基材の表面積(単位:m)で割ることにより算出される値である。 Here, the amount of etching (unit: g / m 2 ) in the present specification is the amount of decrease in the weight of the base material before and after the oxide film forming step (unit: g), and this is the surface area (unit) of the base material. : A value calculated by dividing by m 2 ).
[酸化皮膜1]
 本酸化皮膜形成工程によれば、基材3の表面の少なくとも一部に、Mgを0.1原子%以上30原子%未満含有し、Cuが0.6原子%未満に規制された酸化皮膜1が形成される。以下、酸化皮膜1に含まれる各成分量の好適な範囲について説明する。
[Oxide film 1]
According to the present oxide film forming step, at least a part of the surface of the base material 3 contains Mg in an amount of 0.1 atomic% to less than 30 atomic%, and Cu is regulated to less than 0.6 atomic%. Is formed. Hereinafter, the suitable range of each component amount contained in the oxide film 1 will be described.
<Mg含有量>
 アルミニウム合金材の基材を構成するアルミニウム合金には、通常、合金成分としてマグネシウムが含まれており、このような基材3の表面にアルミニウムとマグネシウムの複合酸化物である酸化皮膜1を形成すると、表面にマグネシウム酸化皮膜が濃化した状態で存在することとなる。よって、この状態では、後述する次のステップS3である表面処理皮膜形成工程を経ようとも、マグネシウム酸化皮膜層が厚すぎることから、後述する表面処理皮膜2に多くのマグネシウムが含まれることとなり、このように形成した表面処理皮膜2では、皮膜自体の強度が得られず、初期の接着性が低下する。
<Mg content>
The aluminum alloy constituting the base material of the aluminum alloy material usually contains magnesium as an alloy component. When the oxide film 1 which is a composite oxide of aluminum and magnesium is formed on the surface of the base material 3, The magnesium oxide film is present on the surface in a concentrated state. Therefore, in this state, since the magnesium oxide film layer is too thick even if it passes through the surface treatment film forming step that is the next step S3 described later, the surface treatment film 2 described later contains a large amount of magnesium, In the surface treatment film 2 thus formed, the strength of the film itself cannot be obtained, and the initial adhesiveness is lowered.
 また、水分、酸素及び塩化物イオンなどが浸透してくる高温湿潤環境においては、接着樹脂層との界面の水和や基材の腐食の原因となり、アルミニウム合金材の接着耐久性を低下させる。具体的には、後述する表面処理皮膜形成前の酸化皮膜1中のMg含有量が30原子%以上になると、表面処理皮膜形成後のアルミニウム合金材の初期の接着性や接着耐久性が低下する傾向がある。そこで、本実施形態のアルミニウム合金材10の製造方法では、表面処理皮膜形成前の酸化皮膜1におけるMg含有量を30原子%未満に規制する。これにより、初期の接着性や接着耐久性を向上することができる。表面処理皮膜形成前の酸化皮膜1のMg含有量は、初期の接着性や接着耐久性の向上の観点から、25原子%未満が好ましく、20原子%未満がより好ましく、さらに好ましくは10原子%未満である。 Also, in a high-temperature and humid environment where moisture, oxygen, chloride ions, etc. penetrate, it causes hydration at the interface with the adhesive resin layer and corrosion of the base material, thereby reducing the adhesion durability of the aluminum alloy material. Specifically, when the Mg content in the oxide film 1 before the surface treatment film formation described later is 30 atomic% or more, the initial adhesiveness and adhesion durability of the aluminum alloy material after the surface treatment film formation is lowered. Tend. Therefore, in the manufacturing method of the aluminum alloy material 10 of the present embodiment, the Mg content in the oxide film 1 before the formation of the surface treatment film is restricted to less than 30 atomic%. Thereby, initial adhesiveness and adhesion durability can be improved. The Mg content of the oxide film 1 before forming the surface treatment film is preferably less than 25 atomic%, more preferably less than 20 atomic%, and even more preferably 10 atomic% from the viewpoint of improving the initial adhesiveness and adhesion durability. Is less than.
 一方、本実施形態のアルミニウム合金材10の製造方法では、表面処理皮膜形成前の酸化皮膜1のMg含有量の下限値は、経済性の観点から0.1原子%以上とする。なお、ここでいう表面処理皮膜形成前の酸化皮膜1中のMg含有量は、高周波グロー放電発光分光分析法(GD-OES)により測定することができる。 On the other hand, in the manufacturing method of the aluminum alloy material 10 of the present embodiment, the lower limit value of the Mg content of the oxide film 1 before the formation of the surface treatment film is 0.1 atomic% or more from the viewpoint of economy. Here, the Mg content in the oxide film 1 before the formation of the surface treatment film can be measured by high-frequency glow discharge emission spectroscopy (GD-OES).
<Cu含有量>
 酸化皮膜1を形成する際に基材3に対して脱脂工程や酸洗工程などにより過剰なエッチングを行うと、基材3に含まれるCuが表面に濃化し、酸化皮膜1のCu含有量が増加する。酸化皮膜1の表面にCuが存在すると、後述する次のステップS3である表面処理皮膜形成工程において形成される表面処理皮膜2にCuが過剰に含まれることとなり、接着耐久性の低下原因となる。
<Cu content>
When excessive etching is performed on the base material 3 by a degreasing process or a pickling process when forming the oxide film 1, Cu contained in the base material 3 is concentrated on the surface, and the Cu content of the oxide film 1 is increased. To increase. If Cu is present on the surface of the oxide film 1, Cu is excessively contained in the surface treatment film 2 formed in the surface treatment film formation step, which is the next step S3 described later, which causes a decrease in adhesion durability. .
 そこで、本実施形態のアルミニウム合金材10の製造方法では、表面処理皮膜形成前の酸化皮膜1中のCu含有量を0.6原子%未満に規制する。なお、表面処理皮膜形成前の酸化皮膜1におけるCu含有量は、0.5原子%未満であることがより好ましい。 Therefore, in the manufacturing method of the aluminum alloy material 10 of the present embodiment, the Cu content in the oxide film 1 before the formation of the surface treatment film is restricted to less than 0.6 atomic%. In addition, as for Cu content in the oxide film 1 before surface treatment film formation, it is more preferable that it is less than 0.5 atomic%.
<膜厚>
 表面処理皮膜形成前の酸化皮膜1の膜厚は、1~30nmであることが好ましい。表面処理皮膜形成前の酸化皮膜1の膜厚が1nm未満の場合、表面処理皮膜形成工程で使用される表面処理液が反応する酸化皮膜1が薄く、表面処理液が過剰となり、未反応の表面処理液が基材上に残り、これが接着耐久性の低下の原因となるおそれがある。また、表面処理液が過剰でない場合でも、表面処理皮膜形成前の酸化皮膜1の膜厚を1nm未満に制御するには、過度の酸洗浄などが必要となるため、生産性が劣り、実用性が低下しやすい。また、アルカリ脱脂や酸による過剰なエッチングは基材3に含有されるCuが表面濃化する原因となり、接着耐久性の低下の原因となるため、エッチング量は1.9g/m以下にすることが好ましい。
<Film thickness>
The thickness of the oxide film 1 before the formation of the surface treatment film is preferably 1 to 30 nm. When the film thickness of the oxide film 1 before forming the surface treatment film is less than 1 nm, the oxide film 1 to which the surface treatment liquid used in the surface treatment film formation process reacts is thin, the surface treatment liquid becomes excessive, and the unreacted surface The treatment liquid remains on the substrate, which may cause a decrease in adhesion durability. Even when the surface treatment liquid is not excessive, in order to control the film thickness of the oxide film 1 before forming the surface treatment film to less than 1 nm, excessive acid cleaning is required, so that productivity is inferior and practicality is low. Is prone to decline. Further, excessive etching with alkali degreasing or acid causes the Cu contained in the base material 3 to be concentrated on the surface and causes a decrease in adhesion durability. Therefore, the etching amount is 1.9 g / m 2 or less. It is preferable.
 一方、表面処理皮膜形成前の酸化皮膜1の膜厚が30nmを超えると、表面処理皮膜形成工程で使用される表面処理液が反応する酸化皮膜1に対して不足し、酸化皮膜1との反応が不十分となり、これが接着耐久性の低下の原因となるおそれがある。また、膜厚が30nmを超える酸化皮膜1には多くのマグネシウムが含まれており、皮膜自体の強度が低下し、初期の接着性が悪くなるおそれがある。なお、表面処理皮膜形成前の酸化皮膜1の膜厚は、化成性及び生産性などの観点から、2nm以上20nm未満であることがより好ましい。 On the other hand, when the film thickness of the oxide film 1 before the surface treatment film formation exceeds 30 nm, the surface treatment liquid used in the surface treatment film formation step is insufficient with respect to the oxide film 1 that reacts and reacts with the oxide film 1. Becomes insufficient, and this may cause a decrease in adhesion durability. Further, the oxide film 1 having a film thickness exceeding 30 nm contains a large amount of magnesium, so that the strength of the film itself is lowered and the initial adhesiveness may be deteriorated. In addition, as for the film thickness of the oxide film 1 before surface treatment film formation, it is more preferable that they are 2 nm or more and less than 20 nm from viewpoints, such as a chemical conversion property and productivity.
<ステップS3:表面処理皮膜形成工程>
 表面処理皮膜形成工程(ステップS3)は、ステップ2で形成された酸化皮膜1の少なくとも一部に、0.001質量%以上0.5質量%未満のケイ酸塩と、0.001質量%以上0.5質量%未満の有機シラン化合物とを含み、pHが7以上14以下である水溶液(表面処理液)を塗布することを含む。前記酸化皮膜形成工程(ステップS2)で形成された酸化皮膜1に当該表面処理液を塗布して表面処理することにより、酸化皮膜1と表面処理液が反応し、少なくともアルミニウム(Al)、ケイ素(Si)、酸素(O)、及び、有機シラン化合物を含む表面処理皮膜2が基材3の表面上に形成される。ただし、酸化皮膜1が均一な表面処理皮膜2になるわけではなく、酸化皮膜1はAlとOを主として含み、かつSiを含む(Al-O-Si結合を含む)皮膜に改質され、その上に、SiとO(シロキサン結合)を主として含み、かつAlを含む(Al-O-Si結合を含む)皮膜が形成されて、最表面側から基材側に向けてSi濃度が低下し、また、Al濃度が増加する構造を有する皮膜となる。すなわち、Al-O-Si結合のAlとSiの比が断面方向で異なっており、表面処理皮膜2と基材3との結合はAlリッチなAl-O-Si結合であり、アルミニウム合金基材とこの皮膜との間の強度は酸化皮膜1と同様の強度を保つことができ、また、表面処理材(表面処理後のアルミニウム合金材)の表面はSiリッチなAl-O-Si結合を有することで、耐食性を向上させることができる。また、有機シラン化合物と接着樹脂の化学結合を形成することも可能であり、これによってより良好な耐食性となり、接着樹脂との結合も強化される。また、この表面処理皮膜2自体は非常に薄く、ケイ酸塩と有機シラン化合物の皮膜厚み方向の分布状態は異なるが、少なくとも混じった構造となっており、更に極薄であり、表面処理皮膜2自体の強度も高い。この様に、ケイ酸塩及び有機シラン化合物のいずれをも含む表面処理液を用いて表面処理を行うことで、上記の表面処理皮膜2が形成され、有機シラン化合物のみを用いて表面処理するよりも接着耐久性が向上した合金材を得ることができる。
<Step S3: Surface treatment film forming step>
In the surface treatment film formation step (step S3), at least a part of the oxide film 1 formed in step 2 has a silicate of 0.001 mass% or more and less than 0.5 mass%, and 0.001 mass% or more. Application of an aqueous solution (surface treatment liquid) having an organic silane compound of less than 0.5% by mass and a pH of 7 or more and 14 or less. By applying the surface treatment liquid to the oxide film 1 formed in the oxide film formation step (step S2) and performing surface treatment, the oxide film 1 reacts with the surface treatment liquid, and at least aluminum (Al), silicon ( A surface treatment film 2 containing Si), oxygen (O), and an organosilane compound is formed on the surface of the substrate 3. However, the oxide film 1 does not become a uniform surface-treated film 2, and the oxide film 1 is modified to a film containing mainly Al and O and containing Si (including Al—O—Si bond). On top, a film mainly containing Si and O (siloxane bond) and containing Al (including Al—O—Si bond) is formed, and the Si concentration decreases from the outermost surface side to the substrate side, Moreover, it becomes a film | membrane which has a structure where Al concentration increases. That is, the Al—Si ratio of the Al—O—Si bond is different in the cross-sectional direction, and the bond between the surface treatment film 2 and the substrate 3 is an Al-rich Al—O—Si bond, and the aluminum alloy substrate And the surface of the surface treatment material (aluminum alloy material after the surface treatment) have Si-rich Al—O—Si bonds. Thereby, corrosion resistance can be improved. It is also possible to form a chemical bond between the organosilane compound and the adhesive resin, which results in better corrosion resistance and strengthens the bond with the adhesive resin. Further, the surface treatment film 2 itself is very thin, and the distribution state in the film thickness direction of the silicate and the organosilane compound is different, but at least a mixed structure is formed, and the surface treatment film 2 is extremely thin. Its strength is also high. In this way, the surface treatment film 2 is formed by performing the surface treatment using the surface treatment liquid containing both the silicate and the organosilane compound, and the surface treatment is performed using only the organosilane compound. In addition, an alloy material with improved adhesion durability can be obtained.
 図3に、基材3の表面上に表面処理皮膜2が形成された本実施形態のアルミニウム合金材を示す。なお、図3に示されるアルミニウム合金材では、基材3の一方の表面の全部に表面処理皮膜2が形成されているが、本実施形態はこれに限定されるものではない。例えば、基材3の表面の一部のみに表面処理皮膜2が形成されていてもよい。また、基材3の両面に表面処理皮膜2が形成されていてもよい。 FIG. 3 shows the aluminum alloy material of the present embodiment in which the surface treatment film 2 is formed on the surface of the substrate 3. In the aluminum alloy material shown in FIG. 3, the surface treatment film 2 is formed on the entire one surface of the substrate 3, but the present embodiment is not limited to this. For example, the surface treatment film 2 may be formed on only a part of the surface of the substrate 3. Further, the surface treatment film 2 may be formed on both surfaces of the substrate 3.
 以下、表面処理皮膜を形成するために用いる表面処理液について説明する。
 当該表面処理液のpHは7以上14以下である。表面処理液のpHが14よりも高いと大部分の有機シラン化合物が重合して沈殿するため、溶液自体が不安定な溶液となる。また、アルミニウム合金基材表面上の酸化皮膜に重合した有機シラン化合物が結合すると、生成する有機シラン処理層が厚くなるため、応力がかかった際に有機シラン処理層の内部で破壊が生じてしまう。一方、表面処理液のpHが7よりも低いとケイ酸塩が沈殿するため、アルミニウムとケイ素が反応することができなくなる。したがって、表面処理液のpHは7以上14以下の範囲とする必要がある。表面処理液のpHは、好ましくは8以上、更に好ましくはpH9以上である。なお、表面処理液のpHは、例えば水酸化ナトリウムや炭酸ナトリウム、アンモニアなどの塩基、あるいは酢酸などの酸を添加すること等により適宜調整することができる。
Hereinafter, the surface treatment liquid used for forming the surface treatment film will be described.
The surface treatment solution has a pH of 7 or more and 14 or less. When the pH of the surface treatment liquid is higher than 14, most of the organosilane compound is polymerized and precipitated, so that the solution itself becomes an unstable solution. In addition, when the polymerized organic silane compound is bonded to the oxide film on the surface of the aluminum alloy substrate, the resulting organic silane treatment layer becomes thick, and therefore, when stress is applied, the organic silane treatment layer is destroyed inside. . On the other hand, when the pH of the surface treatment solution is lower than 7, silicate precipitates, so that aluminum and silicon cannot react. Therefore, the pH of the surface treatment liquid needs to be in the range of 7 or more and 14 or less. The pH of the surface treatment solution is preferably 8 or more, more preferably 9 or more. The pH of the surface treatment solution can be appropriately adjusted by adding a base such as sodium hydroxide, sodium carbonate, or ammonia, or an acid such as acetic acid.
 表面処理液中のケイ酸塩の濃度は、0.001質量%以上0.5質量%未満である。表面処理液中のケイ酸塩の濃度が0.5質量%以上であると、生成する皮膜が厚くなり、強度が低下する。一方、表面処理液中のケイ酸塩の濃度が0.001質量%未満であると、ケイ酸塩の濃度が低すぎるため、アルミニウムとケイ素が十分に反応することができなくなり、十分な接着耐久性が得られなくなる。表面処理液中のケイ酸塩の濃度は、好ましくは0.01質量%以上であり、より好ましくは0.015質量%以上である。また、表面処理液中のケイ酸塩の濃度は、好ましくは0.3質量%未満であり、より好ましくは0.2質量%未満である。 The concentration of silicate in the surface treatment liquid is 0.001% by mass or more and less than 0.5% by mass. When the concentration of the silicate in the surface treatment liquid is 0.5% by mass or more, the formed film becomes thick and the strength decreases. On the other hand, if the concentration of silicate in the surface treatment liquid is less than 0.001% by mass, the concentration of silicate is too low, so that aluminum and silicon cannot sufficiently react, and sufficient adhesion durability is achieved. Sex cannot be obtained. The concentration of the silicate in the surface treatment liquid is preferably 0.01% by mass or more, and more preferably 0.015% by mass or more. Further, the concentration of silicate in the surface treatment liquid is preferably less than 0.3% by mass, and more preferably less than 0.2% by mass.
 また、表面処理液中の有機シラン化合物の濃度は、0.001質量%以上0.5質量%未満である。表面処理液中の有機シラン化合物の濃度が0.5質量%以上であると、生成する表面処理皮膜が厚くなり、強度が低下してしまう。一方、表面処理液中の有機シラン化合物の濃度が0.001質量%未満であると、有機シラン化合物の濃度が低すぎるため、有機シラン化合物を含む表面処理皮膜を十分に形成することができなくなり、十分な接着耐久性が得られなくなる。表面処理液中の有機シラン化合物の濃度は、好ましくは0.005質量%以上であり、より好ましくは0.01質量%以上である。また、表面処理液中の有機シラン化合物の濃度は、好ましくは0.4質量%未満であり、より好ましくは0.3質量%未満である。 Further, the concentration of the organosilane compound in the surface treatment liquid is 0.001% by mass or more and less than 0.5% by mass. When the concentration of the organosilane compound in the surface treatment liquid is 0.5% by mass or more, the generated surface treatment film becomes thick and the strength is lowered. On the other hand, when the concentration of the organic silane compound in the surface treatment liquid is less than 0.001% by mass, the concentration of the organic silane compound is too low, so that a surface treatment film containing the organic silane compound cannot be sufficiently formed. Thus, sufficient adhesion durability cannot be obtained. The concentration of the organosilane compound in the surface treatment liquid is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more. Moreover, the concentration of the organosilane compound in the surface treatment liquid is preferably less than 0.4% by mass, more preferably less than 0.3% by mass.
 本発明において、表面処理液に含まれるケイ酸塩の種類は特に限定されないが、水溶性の観点から、例えば、塩基性のケイ酸塩としては、リチウム、ナトリウム、カリウム等のアルカリ金属のケイ酸塩や、アンモニウムケイ酸塩などの、1価の陽イオン(M)を含むケイ酸塩(mMO・nSiOと表記でき、以下においてMOのモル数であるmとSiOのモル数であるnとの比n/m比で表す)が好ましい。ここで、1価の陽イオンであるMとしては、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属イオンが好ましく、更に経済性の観点から、ナトリウムイオンが特に好ましい。
 mMO・nSiOで表されるケイ酸塩としては、例えば、結晶質のオルト珪酸ナトリウム(mNaO・nSiO:n/m=約0.5前後)、メタ珪酸ナトリウム(mNaO・nSiO:n/m=約1前後)や層状結晶の珪酸ナトリウム(mNaO・nSiO:n/m=約1.5~3程度の範囲)、または非晶質の珪酸ナトリウム、または液体の水ガラス(JISの1号、2号、3号、mNaO・nSiO:n/m=1.5~4程度の範囲)等である。
 なかでも、良好な接着耐久性が得られることから、n/mが1.5以上のケイ酸塩が好ましい。n/m比が1.5未満では、ケイ酸塩と有機シラン化合物を含む水溶液とアルミ酸化皮膜との反応で形成される皮膜の耐食性が若干低下する傾向にあり、接着耐久性が低下するおそれがある。また、n/m比の上限は定めるものではないが、ケイ酸塩の生産上の問題からは4以下が好ましい。具体的には、層状結晶の珪酸ナトリウムや水ガラスなどが挙げられる。特に、層状結晶のケイ酸塩は、高いイオン交換能によりミネラルとの反応生成物の生成量が少なく、装置や容器への付着が少なくなり、操業の安定化の観点から、特に好ましい。
 ここで、ケイ酸塩としては、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the present invention, the type of silicate contained in the surface treatment liquid is not particularly limited, but from the viewpoint of water solubility, for example, basic silicates include silicates of alkali metals such as lithium, sodium, and potassium. Silicates containing monovalent cations (M), such as salts and ammonium silicates (mM 2 O · nSiO 2, and in the following, the number of moles of M 2 O and the moles of SiO 2 And a ratio n / m to n which is a number) is preferable. Here, as M which is a monovalent cation, alkali metal ions such as lithium ion, sodium ion and potassium ion are preferable, and sodium ion is particularly preferable from the viewpoint of economy.
Examples of the silicate represented by mM 2 O · nSiO 2 include crystalline sodium orthosilicate (mNa 2 O · nSiO 2 : n / m = about 0.5), sodium metasilicate (mNa 2 O NSiO 2 : n / m = about 1 or so on, layered sodium silicate (mNa 2 O.nSiO 2 : n / m = about 1.5 to 3), or amorphous sodium silicate, or Liquid water glass (JIS No. 1, No. 2, No. 3, mNa 2 O.nSiO 2 : n / m = range of about 1.5 to 4) and the like.
Of these, a silicate having an n / m of 1.5 or more is preferable because good adhesion durability is obtained. If the n / m ratio is less than 1.5, the corrosion resistance of the film formed by the reaction between the aqueous solution containing the silicate and the organosilane compound and the aluminum oxide film tends to be slightly lowered, and the adhesion durability may be lowered. There is. Moreover, although the upper limit of n / m ratio is not defined, 4 or less is preferable from the problem on the production of silicate. Specific examples include layered crystal sodium silicate and water glass. In particular, a layered crystal silicate is particularly preferable from the viewpoint of stabilization of operation because a high amount of reaction products with minerals is reduced due to high ion exchange capacity and adhesion to an apparatus or a container is reduced.
Here, as a silicate, only 1 type may be used independently and may be used in combination of 2 or more type.
 本発明において、表面処理液に含まれる有機シラン化合物の種類は特に限定されないが、有機シラン化合物は加水分解可能なトリアルコキシシリル基を分子内に複数有するシラン化合物、その加水分解物またはその重合体を含んでもよい。分子内に加水分解可能なトリアルコキシシリル基を複数有するシラン化合物は、緻密なシロキサン結合を形成するだけでなく、金属酸化物との反応性が高く、化学的に安定な皮膜を形成するため、皮膜の湿潤耐久性を更に高めることができる。また、有機シラン処理皮膜は加工油、プレス油等の機械油や接着剤のような有機化合物との相互溶解性が高く、皮膜に加工油、プレス油等の機械油が付着していてもその影響を緩和できるため、塗油による接着耐久性の低下を防ぐ役割も担う。上記シラン化合物の種類は特に限定されないが、経済性の観点からは、加水分解可能なトリアルコキシシリル基を分子内に2つ有するシラン化合物(ビスシラン化合物)が好ましく、例えば、ビストリアルコキシシリルエタン、ビストリアルコキシシリルベンゼン、ビストリアルコキシシリルヘキサン、ビストリアルコキシシリルプロピルアミン、ビストリアルコキシシリルプロピルテトラスルフィドなどを用いることができる。とりわけ、汎用性、経済性の観点から、ビストリエトキシシリルエタン(BTSE)が好ましい。ここで、有機シラン化合物としては、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In the present invention, the type of the organic silane compound contained in the surface treatment liquid is not particularly limited, but the organic silane compound is a silane compound having a plurality of hydrolyzable trialkoxysilyl groups in the molecule, a hydrolyzate thereof, or a polymer thereof. May be included. A silane compound having a plurality of hydrolyzable trialkoxysilyl groups in the molecule not only forms a dense siloxane bond, but also has a high reactivity with a metal oxide and forms a chemically stable film. The wet durability of the film can be further increased. In addition, organosilane-treated films have high mutual solubility with machine oils such as processing oil and press oil and organic compounds such as adhesives, and even if machine oil such as process oil and press oil adheres to the film Since the influence can be mitigated, it also plays a role in preventing a decrease in adhesion durability due to oiling. Although the kind of the silane compound is not particularly limited, from the viewpoint of economy, a silane compound (bissilane compound) having two hydrolyzable trialkoxysilyl groups in the molecule is preferable, and examples thereof include bistrialkoxysilylethane and bistrimethyl. Alkoxysilylbenzene, bistrialkoxysilylpropylamine, bistrialkoxysilylpropylamine, bistrialkoxysilylpropyltetrasulfide, and the like can be used. In particular, bistriethoxysilylethane (BTSE) is preferable from the viewpoint of versatility and economy. Here, as an organosilane compound, only 1 type may be used independently and it may be used in combination of 2 or more type.
 また、有機シラン化合物は、有機樹脂成分と化学結合しうる反応性官能基を有するシランカップリング剤、その加水分解物またはその重合体を含んでもよい。例えば、アミノ基、エポキシ基、メタクリル基、ビニル基及びメルカプト基などの反応性官能基をもつシランカップリング剤を単独で使用、もしくは上記シラン化合物と併用することで、皮膜と樹脂との間に化学結合を形成させ、接着耐久性を更に高めることができる。なおシランカップリング剤の官能基は、前述したものに限定されるものではなく、各種官能基を有するシランカップリング剤を、使用する接着樹脂に応じて適宜選択して使用することができる。シランカップリング剤の好適な具体例としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(N-アミノエチル)-アミノプロピルトリメトキシシラン、3-(N-アミノエチル)-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等が挙げられる。ここで、シランカップリング剤としては、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In addition, the organic silane compound may include a silane coupling agent having a reactive functional group that can chemically bond with the organic resin component, a hydrolyzate thereof, or a polymer thereof. For example, by using a silane coupling agent having a reactive functional group such as amino group, epoxy group, methacryl group, vinyl group and mercapto group alone or in combination with the above silane compound, between the film and the resin A chemical bond can be formed to further enhance the adhesion durability. In addition, the functional group of a silane coupling agent is not limited to what was mentioned above, The silane coupling agent which has various functional groups can be selected suitably according to the adhesive resin to be used. Specific examples of suitable silane coupling agents include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (N-aminoethyl) -aminopropyltrimethoxysilane, 3- (N— Aminoethyl) -aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-methacryloxy Examples thereof include propyltrimethoxysilane and 3-methacryloxypropyltriethoxysilane. Here, as a silane coupling agent, only 1 type may be used independently and it may be used in combination of 2 or more type.
 なお、表面処理液は、上記ケイ酸塩及び有機シラン化合物以外にも、所望により、安定剤、補助剤等の1つ以上をさらに含んでいてもよい。例えば、安定剤として、ギ酸、酢酸等の炭素数1~4のカルボン酸や、メタノール、エタノール等の炭素数1~4のアルコール等の有機化合物等を含んでいてもよい。 In addition, the surface treatment liquid may further contain one or more of a stabilizer, an auxiliary agent and the like, if desired, in addition to the silicate and the organosilane compound. For example, the stabilizer may include organic compounds such as carboxylic acids having 1 to 4 carbon atoms such as formic acid and acetic acid, and alcohols having 1 to 4 carbon atoms such as methanol and ethanol.
 表面処理液の塗布方法としては、浸漬処理、スプレー、ロールコート、バーコート、静電塗布等が挙げられる。また、表面処理後にはリンスは無い方が良いが、場合によっては純水等で行ってもよい。 Examples of the method for applying the surface treatment liquid include immersion treatment, spraying, roll coating, bar coating, electrostatic coating, and the like. Moreover, it is better that there is no rinsing after the surface treatment, but in some cases, it may be performed with pure water or the like.
 上記表面処理液の塗布後には、必要に応じて、加熱により表面処理液を乾燥させる。加熱温度は、好ましくは70℃以上、より好ましくは80℃以上、更に好ましくは90℃以上である。また、加熱温度が高すぎると、アルミニウム合金の特性に影響を及ぼすため、当該加熱温度は、好ましくは220℃以下、より好ましくは200℃以下、更に好ましくは190℃以下である。また、乾燥時間は、加熱温度にもよるが、好ましくは2秒以上であり、より好ましくは5秒以上であり、さらに好ましくは10秒以上である。また、当該乾燥時間は、好ましくは20分以下、より好ましくは5分以下、さらに好ましくは2分以下である。 After the surface treatment liquid is applied, the surface treatment liquid is dried by heating as necessary. The heating temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and still more preferably 90 ° C. or higher. Further, if the heating temperature is too high, the characteristics of the aluminum alloy are affected. Therefore, the heating temperature is preferably 220 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 190 ° C. or lower. The drying time is preferably 2 seconds or more, more preferably 5 seconds or more, and further preferably 10 seconds or more, although it depends on the heating temperature. Moreover, the said drying time becomes like this. Preferably it is 20 minutes or less, More preferably, it is 5 minutes or less, More preferably, it is 2 minutes or less.
 表面処理液の塗布量は、十分な接着耐久性の向上効果を得る観点から、乾燥後の皮膜量が0.001mg/m以上30mg/m以下となるように調整することが好ましい。また、より好ましくは、乾燥後の皮膜量が0.01mg/m以上20mg/m以下となるように調整する。表面処理液の塗布量が少なすぎると、ケイ酸塩又は有機シラン化合物の量が少なくなりすぎ、良好な接着耐久性を得られない場合がある。また、表面処理液の塗布量が多くなりすぎると、形成される表面処理皮膜が厚くなりすぎて表面処理皮膜内で剥離がおこり、接着耐久性が損なわれる場合がある。また、例えば自動車の組み立て工程後の塗装のための脱脂エッチング工程で表面処理皮膜が除去されず、塗装密着性に悪影響を与える場合や塗装のり性に違いを与える場合がある。 The coating amount of the surface treatment liquid is preferably adjusted so that the coating amount after drying is 0.001 mg / m 2 or more and 30 mg / m 2 or less from the viewpoint of obtaining a sufficient effect of improving the adhesion durability. More preferably, the coating amount after drying is adjusted to be 0.01 mg / m 2 or more and 20 mg / m 2 or less. If the coating amount of the surface treatment solution is too small, the amount of silicate or organosilane compound may be too small to obtain good adhesion durability. Moreover, when the coating amount of the surface treatment liquid is too large, the surface treatment film to be formed becomes too thick, peeling may occur in the surface treatment film, and adhesion durability may be impaired. In addition, for example, the surface treatment film is not removed in a degreasing etching process for painting after an automobile assembly process, which may adversely affect paint adhesion or may give a difference in paint paste.
<その他の工程>
 本実施形態のアルミニウム合金材10の製造方法では、前述した各工程に悪影響を与えない範囲において、各工程の間又は前後に、他の工程を含めてもよい。例えば、表面処理皮膜形成工程S3後に、予備時効処理を施す予備時効処理工程を設けてもよい。この予備時効処理は、72時間以内に40~120℃で、8~36時間の低温加熱することにより行うことが好ましい。この条件で予備時効処理することにより、成形性及びベーキング後の強度向上を図ることができる。その他に、例えばアルミニウム合金材10の表面の異物を除去する異物除去工程や、各工程で発生した不良品を除去する不良品除去工程などを行ってもよい。
<Other processes>
In the manufacturing method of the aluminum alloy material 10 of the present embodiment, other steps may be included between or before and after each step within a range that does not adversely affect each step described above. For example, after the surface treatment film forming step S3, a preliminary aging treatment step for performing a preliminary aging treatment may be provided. This preliminary aging treatment is preferably performed by heating at 40 to 120 ° C. within 72 hours at a low temperature of 8 to 36 hours. By performing pre-aging treatment under these conditions, it is possible to improve moldability and strength after baking. In addition, for example, a foreign matter removing step for removing foreign matter on the surface of the aluminum alloy material 10 or a defective product removing step for removing defective products generated in each step may be performed.
 そして、製造されたアルミニウム合金材10は、接合体の作製前又は自動車用部材への加工前に、その表面にプレス油等の機械油が塗布される。プレス油は、エステル成分を含有するものが主に使用される。アルミニウム合金材10にプレス油を塗布する方法や条件は、特に限定されるものではなく、通常のプレス油を塗布する方法や条件が広く適用でき、例えば、エステル成分としてオレイン酸エチルを含有するプレス油に、アルミニウム合金材10を浸漬すればよい。なお、エステル成分もオレイン酸エチルに限定されるものではなく、ステアリン酸ブチルやソルビタンモノステアレートなど、様々なものを利用することができる。 Then, the manufactured aluminum alloy material 10 is coated with machine oil such as press oil on the surface thereof before manufacturing the joined body or before processing into a member for an automobile. As the press oil, one containing an ester component is mainly used. The method and conditions for applying the press oil to the aluminum alloy material 10 are not particularly limited, and methods and conditions for applying the normal press oil can be widely applied. For example, a press containing ethyl oleate as an ester component What is necessary is just to immerse the aluminum alloy material 10 in oil. The ester component is not limited to ethyl oleate, and various materials such as butyl stearate and sorbitan monostearate can be used.
 ここで、本実施形態のアルミニウム合金材10は、最表面に機械油の溶解性に富む表面処理皮膜2を備えているため、機械油が塗布された後でも、その上に接着樹脂を良好に接合することができる。 Here, since the aluminum alloy material 10 of this embodiment is provided with the surface treatment film 2 rich in the solubility of machine oil on the outermost surface, the adhesive resin is satisfactorily formed thereon even after the machine oil is applied. Can be joined.
 以上詳述したように、本実施形態のアルミニウム合金材10の製造方法によれば、酸化皮膜を形成したアルミニウム合金基材に対して、ケイ酸塩及び有機シラン化合物を含む水溶液を用いて、ケイ酸塩処理及び有機シラン処理を同時に行うことで、簡略化された工程でアルミニウム合金材の製造が可能となり、設備投資費や製造コストを低減することができる。また、本実施形態のアルミニウム合金材10は、表面処理皮膜形成工程前の酸化皮膜1中のMg量を特定範囲に調整しているため、基材3の溶出を抑制でき、またそれに伴う基材3の表面のマグネシウム酸化物による脆弱性を抑制して、接着樹脂の劣化を抑制できる。さらに、表面処理皮膜形成工程前の酸化皮膜1中のCu量を特定量未満に規制しているため、酸化皮膜1に表面処理を施すことにより形成される表面処理皮膜2と接着樹脂の接着耐久性が向上する。その結果、本実施形態のアルミニウム合金材10は、高温湿潤環境に曝されても、界面剥離が抑制され、長期間に亘って接着強度の低下を抑制できる。また、有機シラン化合物のみを用いて表面処理するよりも接着耐久性を向上させることができる。 As described above in detail, according to the method for manufacturing the aluminum alloy material 10 of the present embodiment, an aqueous solution containing a silicate and an organosilane compound is used for an aluminum alloy base material on which an oxide film is formed. By performing the acid salt treatment and the organic silane treatment at the same time, it is possible to produce an aluminum alloy material in a simplified process, and it is possible to reduce capital investment costs and production costs. Moreover, since the aluminum alloy material 10 of this embodiment has adjusted Mg amount in the oxide film 1 before a surface treatment film formation process to the specific range, it can suppress the elution of the base material 3 and the base material accompanying it 3 can suppress the brittleness caused by the magnesium oxide on the surface of the resin 3 and suppress the deterioration of the adhesive resin. Furthermore, since the amount of Cu in the oxide film 1 before the surface treatment film forming step is regulated to be less than a specific amount, the adhesion durability between the surface treatment film 2 formed by subjecting the oxide film 1 to the surface treatment and the adhesive resin. Improves. As a result, even when the aluminum alloy material 10 of the present embodiment is exposed to a high-temperature and humid environment, the interfacial peeling is suppressed, and a decrease in adhesive strength can be suppressed over a long period of time. Further, the adhesion durability can be improved as compared with the surface treatment using only the organosilane compound.
(第1の実施形態の変形例)
 次に、本発明の第1の実施形態の変形例に係る接着樹脂層付きアルミニウム合金材について説明する。図4は本変形例の接着樹脂層付きアルミニウム合金材の構成を模式的に示す断面図である。なお、図4においては、図3に示すアルミニウム合金材10の構成要素と同じものには同じ符号を付し、その詳細な説明は省略する。図4に示すように、本変形例の接着樹脂層付きアルミニウム合金材11は、前述した第1の実施形態のアルミニウム合金材における表面処理皮膜2を覆うように、接着樹脂からなる接着樹脂層4が形成されている。
(Modification of the first embodiment)
Next, an aluminum alloy material with an adhesive resin layer according to a modification of the first embodiment of the present invention will be described. FIG. 4 is a cross-sectional view schematically showing a configuration of an aluminum alloy material with an adhesive resin layer according to this modification. In FIG. 4, the same components as those of the aluminum alloy material 10 shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 4, the aluminum alloy material 11 with an adhesive resin layer of the present modification is an adhesive resin layer 4 made of an adhesive resin so as to cover the surface treatment film 2 in the aluminum alloy material of the first embodiment described above. Is formed.
[接着樹脂層4]
 接着樹脂層4は、接着樹脂などからなり、本変形例の接着樹脂層付きアルミニウム合金材11は、この接着樹脂層4を介して他の部材と接合される。なお、他の部材には、接着樹脂層付きアルミニウム合金材11と同様に表面処理皮膜が形成されている別のアルミニウム合金材、酸化皮膜及び表面処理皮膜が形成されていないアルミニウム合金材、樹脂成形体等が包含される。
[Adhesive resin layer 4]
The adhesive resin layer 4 is made of an adhesive resin or the like, and the aluminum alloy material 11 with the adhesive resin layer of this modification is joined to another member via the adhesive resin layer 4. In addition, as for the other members, as with the aluminum alloy material 11 with the adhesive resin layer, another aluminum alloy material on which a surface treatment film is formed, an aluminum alloy material on which an oxide film and a surface treatment film are not formed, resin molding Body and the like are included.
 接着樹脂層4を構成する接着樹脂は、特に限定されるものではなく、エポキシ系樹脂、ウレタン系樹脂、ニトリル系樹脂、ナイロン系樹脂、アクリル系樹脂など、従来からアルミニウム合金材を接合する際に用いられてきた接着樹脂を用いることができる。 The adhesive resin that constitutes the adhesive resin layer 4 is not particularly limited. When an aluminum alloy material such as an epoxy resin, a urethane resin, a nitrile resin, a nylon resin, or an acrylic resin is conventionally joined. The adhesive resin that has been used can be used.
 接着樹脂層4の厚さも、特に限定されるものではないが、10~500μmが好ましく、50~400μmがより好ましい。接着樹脂層4の厚さが10μm未満の場合には、接着樹脂層付きアルミニウム合金材11と、他の接着樹脂層を備えていないアルミニウム合金材とを接着樹脂層4を介して接合する場合に、高い接着耐久性が得られないことがある。一方、接着樹脂層4の厚さが500μmを超える場合には、接着強度が小さくなる場合がある。 The thickness of the adhesive resin layer 4 is not particularly limited, but is preferably 10 to 500 μm, and more preferably 50 to 400 μm. When the thickness of the adhesive resin layer 4 is less than 10 μm, the aluminum alloy material 11 with the adhesive resin layer and the aluminum alloy material not provided with another adhesive resin layer are joined via the adhesive resin layer 4. , High adhesion durability may not be obtained. On the other hand, when the thickness of the adhesive resin layer 4 exceeds 500 μm, the adhesive strength may be reduced.
[製造方法]
 次に、本変形例の接着樹脂層付きアルミニウム合金材11の製造方法について説明する。図5は本変形例の接着樹脂層付きアルミニウム合金材11の製造方法を示すフローチャート図である。図5に示すように、本変形例の接着樹脂層付きアルミニウム合金材11を製造する際は、前述したステップS1~S3に加えて、接着樹脂層形成工程S4を行う。
[Production method]
Next, the manufacturing method of the aluminum alloy material 11 with the adhesive resin layer of this modification is demonstrated. FIG. 5 is a flowchart showing a method for manufacturing the aluminum alloy material 11 with an adhesive resin layer according to this modification. As shown in FIG. 5, when manufacturing the aluminum alloy material 11 with the adhesive resin layer of this modification, an adhesive resin layer forming step S4 is performed in addition to the above-described steps S1 to S3.
[ステップS4:接着樹脂層形成工程]
 接着樹脂層形成工程S4では、表面処理皮膜2を覆うように、接着剤などからなる接着樹脂層4を形成する。接着樹脂層4の形成方法は、特に限定されるものではないが、例えば、接着樹脂が固体である場合には、熱を加えて圧着したり、これを溶剤に溶解させて溶液とした後に、また、接着樹脂が液状である場合にはそのまま、表面処理皮膜2の表面に噴霧したり塗布する方法が挙げられる。
[Step S4: Adhesive resin layer forming step]
In the adhesive resin layer forming step S4, the adhesive resin layer 4 made of an adhesive or the like is formed so as to cover the surface treatment film 2. The method for forming the adhesive resin layer 4 is not particularly limited. For example, when the adhesive resin is a solid, it is heated and pressure-bonded, or dissolved in a solvent to obtain a solution. Further, when the adhesive resin is in a liquid state, a method of spraying or coating the surface of the surface treatment film 2 as it is can be mentioned.
 また、本変形例の接着樹脂層付きアルミニウム合金材11においても、前述した第1の実施形態と同様に、酸化皮膜形成工程S2、表面処理皮膜形成工程S3及び/又は接着樹脂層形成工程S4の後に、予備時効処理を施す予備時効処理工程を設けてもよい。 Moreover, also in the aluminum alloy material 11 with the adhesive resin layer of this modification, the oxide film forming step S2, the surface treatment film forming step S3, and / or the adhesive resin layer forming step S4 are performed as in the first embodiment. A preliminary aging treatment step for performing preliminary aging treatment may be provided later.
 本変形例の接着樹脂層付きアルミニウム合金材においては、接着樹脂層をあらかじめ備えるため、接合体や自動車用部材を作製する際に、アルミニウム合金材の表面に接着樹脂を塗布するなどの作業を省略することができる。なお、本変形例の接着樹脂層付きアルミニウム合金材における上記以外の構成及び効果は、前述した第1の実施形態と同様である。 In the aluminum alloy material with an adhesive resin layer of this modification, since the adhesive resin layer is provided in advance, the work such as applying the adhesive resin to the surface of the aluminum alloy material is omitted when producing a joined body or an automobile member. can do. The configuration and effects other than those described above in the aluminum alloy material with an adhesive resin layer of the present modification are the same as those in the first embodiment described above.
(第2の実施形態)
 次に、本発明の第2の実施形態に係る接合体について説明する。本実施形態の接合体は、前述した第1の実施形態のアルミニウム合金材又はその変形例の接着樹脂層付きアルミニウム合金材を用いたものである。図6~9Bは本実施形態の接合体の構成例を模式的に示す断面図である。なお、図6~9Bにおいては、図3及び4に示すアルミニウム合金材10、接着樹脂層付きアルミニウム合金材11の構成要素と同じものには同じ符号を付し、その詳細な説明は省略する。
(Second Embodiment)
Next, the joined body according to the second embodiment of the present invention will be described. The joined body of this embodiment uses the aluminum alloy material of the first embodiment described above or an aluminum alloy material with an adhesive resin layer of a modification thereof. 6 to 9B are cross-sectional views schematically showing a configuration example of the joined body of this embodiment. 6 to 9B, the same components as those of the aluminum alloy material 10 and the aluminum alloy material 11 with the adhesive resin layer 11 shown in FIGS. 3 and 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
[接合体の構成]
 本実施形態の接合体は、例えば、図6に示す接合体20のように、図3に示す2枚のアルミニウム合金材10を、表面処理皮膜2が形成されている面同士が対向するように配置し、接着樹脂5を介して接合した構成とすることができる。即ち、接合体20では、接着樹脂5は、一面が一方のアルミニウム合金材10の表面処理皮膜2側に接合され、その他面が他方のアルミニウム合金材10の表面処理皮膜2側に接合されている。
[Composition structure]
In the joined body of this embodiment, for example, as in the joined body 20 shown in FIG. 6, the two aluminum alloy materials 10 shown in FIG. 3 are arranged so that the surfaces on which the surface treatment film 2 is formed face each other. It can be set as the structure arrange | positioned and joined via the adhesive resin 5. FIG. That is, in the bonded body 20, one surface of the adhesive resin 5 is bonded to the surface treatment film 2 side of one aluminum alloy material 10, and the other surface is bonded to the surface treatment film 2 side of the other aluminum alloy material 10. .
 ここで、本実施形態の接合体における接着樹脂5は、前述した接着樹脂層4を構成する接着樹脂と同様のものを使用することができる。具体的には、接着樹脂5は、エポキシ系樹脂、ウレタン系樹脂、ニトリル系樹脂、ナイロン系樹脂、アクリル系樹脂などを使用することができる。また、接着樹脂5の厚さは、特に限定されるものではないが、接着強度向上の観点から、10~500μmが好ましく、より好ましくは50~400μmである。 Here, as the adhesive resin 5 in the joined body of the present embodiment, the same adhesive resin as the adhesive resin layer 4 described above can be used. Specifically, an epoxy resin, a urethane resin, a nitrile resin, a nylon resin, an acrylic resin, or the like can be used as the adhesive resin 5. The thickness of the adhesive resin 5 is not particularly limited, but is preferably 10 to 500 μm, more preferably 50 to 400 μm from the viewpoint of improving the adhesive strength.
 接合体20では、前述したように、接着樹脂5の両面が、第1の実施形態のアルミニウム合金材10の表面処理皮膜2であるため、自動車用部材に用いた際、高温湿潤環境に曝されても、接着樹脂5と表面処理皮膜2との界面の接着強度が低下しにくく、接着耐久性が向上する。また、本実施形態の接合体20では、接着樹脂5の種類に影響されず、従来からアルミニウム合金材の接合に用いられている接着樹脂全般において界面での接着耐久性が向上する。 In the joined body 20, as described above, both surfaces of the adhesive resin 5 are the surface treatment film 2 of the aluminum alloy material 10 of the first embodiment. However, the adhesive strength at the interface between the adhesive resin 5 and the surface treatment film 2 is hardly lowered, and the adhesion durability is improved. Moreover, in the joined body 20 of this embodiment, the adhesive durability at the interface is improved in all adhesive resins conventionally used for joining aluminum alloy materials without being affected by the type of the adhesive resin 5.
 また、図7Aに示す接合体21a又は図7Bに示す接合体21bのように、図3に示すアルミニウム合金材10の表面処理皮膜2が形成されている面に、接着樹脂5を介して、酸化皮膜及び表面処理皮膜が形成されていない他のアルミニウム合金材6又は樹脂成形体7を接合した構成とすることもできる。 Further, like the bonded body 21a shown in FIG. 7A or the bonded body 21b shown in FIG. 7B, the surface where the surface treatment film 2 of the aluminum alloy material 10 shown in FIG. It can also be set as the structure which joined the other aluminum alloy material 6 or the resin molding 7 in which the membrane | film | coat and the surface treatment membrane | film | coat are not formed.
 ここで、酸化皮膜及び表面処理皮膜が形成されていない他のアルミニウム合金材6には、前述した基材3と同様のものを使用することができ、具体的には、JISに規定される又はJISに近似する種々の非熱処理型若しくは熱処理型アルミニウム合金からなるものを使用することができる。 Here, as the other aluminum alloy material 6 on which the oxide film and the surface treatment film are not formed, the same material as the base material 3 described above can be used, and specifically, as defined in JIS or Those made of various non-heat treatment type or heat treatment type aluminum alloys similar to JIS can be used.
 また、樹脂成形体7としては、例えば、ガラス繊維強化プラスチック(GFRP)、炭素繊維強化プラスチック(CFRP)、ボロン繊維強化プラスチック(BFRP)、アラミド繊維強化プラスチック(AFRP,KFRP)、ポリエチレン繊維強化プラスチック(DFRP)及びザイロン強化プラスチック(ZFRP)などの各種繊維強化プラスチックにより形成した繊維強化プラスチック成形体を用いることができる。これらの繊維強化プラスチック成形体を用いることにより、一定の強度を維持しつつ、接合体を軽量化することが可能となる。 Examples of the resin molded body 7 include glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), boron fiber reinforced plastic (BFRP), aramid fiber reinforced plastic (AFRP, KFRP), polyethylene fiber reinforced plastic ( A fiber reinforced plastic molded body formed of various fiber reinforced plastics such as DFRP) and Zylon reinforced plastic (ZFRP) can be used. By using these fiber-reinforced plastic molded bodies, it is possible to reduce the weight of the joined body while maintaining a certain strength.
 なお、樹脂成形体7は、前述した繊維強化プラスチック以外に、ポリプロピレン(PP)、アクリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリウレタン(PU)、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ナイロン6、ナイロン6,6、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)、ポリブチレンテレフタレート(PBT)、ポリフタルアミド(PPA)などの繊維強化されていない樹脂を使用することもできる。 In addition to the above-mentioned fiber reinforced plastic, the resin molded body 7 is made of polypropylene (PP), acrylic-butadiene-styrene copolymer (ABS) resin, polyurethane (PU), polyethylene (PE), polyvinyl chloride (PVC). , Nylon 6, nylon 6,6, polystyrene (PS), polyethylene terephthalate (PET), polyamide (PA), polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyphthalamide (PPA), etc. No resin can be used.
 図7A及び図7Bに示す接合体21a,21bでは、接着樹脂5の片面が表面処理皮膜2側に接合されているため、前述した接合体20と同様に、自動車用部材に用いた際、高温湿潤環境に曝されても、接着樹脂の種類に影響されず、界面での接着耐久性が向上する。また、図7Bに示す接合体21bは、アルミニウム合金材10と樹脂成形体7とを接合しているため、アルミニウム合金材同士の接合体に比べて軽量であり、この接合体21bを用いることにより自動車の更なる軽量化を実現することができる。なお、図7A及び図7Bに示す接合体21a,21bにおける上記以外の構成及び効果は、図6に示す接合体20と同様である。 In the joined bodies 21a and 21b shown in FIGS. 7A and 7B, since one surface of the adhesive resin 5 is joined to the surface treatment film 2 side, when used for a member for an automobile as in the above-described joined body 20, the temperature is high. Even when exposed to a wet environment, the adhesion durability at the interface is improved without being affected by the type of the adhesive resin. Moreover, since the joined body 21b shown to FIG. 7B has joined the aluminum alloy material 10 and the resin molding 7, it is lightweight compared with the joined body of aluminum alloy materials, By using this joined body 21b, Further weight reduction of the automobile can be realized. The other configurations and effects of the joined bodies 21a and 21b shown in FIGS. 7A and 7B are the same as those of the joined body 20 shown in FIG.
 更に、図8に示す接合体22のように、図4に示す接着樹脂層4を備えた接着樹脂層付きアルミニウム合金材11と、図3に示す接着樹脂層4を備えていないアルミニウム合金材10とを接合した構成とすることもできる。具体的には、接着樹脂層付きアルミニウム合金材11の接着樹脂層4側に、アルミニウム合金材10の表面処理皮膜2が接合されたものである。その結果、アルミニウム合金材10の皮膜2と接着樹脂層付きアルミニウム合金材11の皮膜2は、それぞれ接着樹脂層付きアルミニウム合金材11の接着樹脂層4を介して、互いに対向するように配置された構成となっている。 Furthermore, like the joined body 22 shown in FIG. 8, the aluminum alloy material 11 with the adhesive resin layer provided with the adhesive resin layer 4 shown in FIG. 4 and the aluminum alloy material 10 not provided with the adhesive resin layer 4 shown in FIG. It can also be set as the structure which joined. Specifically, the surface treatment film 2 of the aluminum alloy material 10 is bonded to the adhesive resin layer 4 side of the aluminum alloy material 11 with the adhesive resin layer. As a result, the film 2 of the aluminum alloy material 10 and the film 2 of the aluminum alloy material 11 with the adhesive resin layer were arranged to face each other via the adhesive resin layer 4 of the aluminum alloy material 11 with the adhesive resin layer. It has a configuration.
 接合体22では、接着樹脂層4の両面が表面処理皮膜2側に接合されているため、前述した接合体20と同様に、接合体22を自動車用部材に用いた際に、高温湿潤環境に曝されても、接着樹脂の種類に影響されず、界面での接着耐久性が向上する。なお、図8に示す接合体22における上記以外の構成及び効果は、図6に示す接合体20と同様である。 In the joined body 22, since both surfaces of the adhesive resin layer 4 are joined to the surface treatment film 2 side, as in the joined body 20 described above, when the joined body 22 is used as a member for an automobile, a high temperature and humid environment is created. Even if exposed, the adhesion durability at the interface is improved without being influenced by the type of the adhesive resin. The configuration and effects of the joined body 22 shown in FIG. 8 other than those described above are the same as those of the joined body 20 shown in FIG.
 更に、図9Aに示す接合体23a又は図9Bに示す接合体23bのように、図4に示す接着樹脂層4を備えた接着樹脂層付きアルミニウム合金材11の接着樹脂層4側に、表面処理皮膜が形成されていない他のアルミニウム合金材6又は繊維強化プラスチック成形体などの樹脂成形体7を接合した構成とすることもできる。これら接合体23a,23bでは、接着樹脂層4の片面が表面処理皮膜2側に接合されているため、前述した接合体20と同様に、接合体23を自動車用部材に用いる際、高温湿潤環境に曝されても、接着樹脂の種類に影響されず、界面での接着耐久性が向上する。 Further, as in the bonded body 23a shown in FIG. 9A or the bonded body 23b shown in FIG. 9B, the surface treatment is performed on the adhesive resin layer 4 side of the aluminum alloy material 11 with the adhesive resin layer provided with the adhesive resin layer 4 shown in FIG. Another aluminum alloy material 6 on which a film is not formed or a resin molded body 7 such as a fiber reinforced plastic molded body may be joined. In these joined bodies 23a and 23b, since one surface of the adhesive resin layer 4 is joined to the surface treatment film 2 side, when the joined body 23 is used as a member for an automobile as in the above-described joined body 20, a high-temperature wet environment is used. Even if it is exposed to, the durability of adhesion at the interface is improved without being affected by the type of adhesive resin.
 また、図9Bに示す接合体23bは、接着樹脂層付きアルミニウム合金材11と樹脂成形体7とを接合しているため、アルミニウム合金材同士の接合体に比べて軽量であり、軽量化が求められている自動車や車両の部材に好適である。なお、図9A及び図9Bに示す接合体23a,23bにおける上記以外の構成及び効果は、図6に示す接合体20と同様である。 Moreover, since the joined body 23b shown to FIG. 9B has joined the aluminum alloy material 11 with an adhesive resin layer, and the resin molding 7, it is lightweight compared with the joined body of aluminum alloy materials, and weight reduction is calculated | required. It is suitable for the members of automobiles and vehicles. In addition, the structure and effect other than the above in the joined bodies 23a and 23b shown in FIGS. 9A and 9B are the same as those of the joined body 20 shown in FIG.
[接合体の製造方法]
 前述した接合体20~23の製造方法、特に接合方法は、従来公知の接合方法を用いることができる。そして、接着樹脂5をアルミニウム合金材に形成する方法は、特に限定されるものではないが、例えば、予め接着樹脂5によって作製した接着シートを用いてもよいし、接着樹脂5を表面処理皮膜2の表面に噴霧または塗布することによって形成してもよい。なお、接合体20~23は、アルミニウム合金材10や接着樹脂層付きアルミニウム合金材11と同様に、自動車用部材への加工前に、その表面にプレス油等の機械油を塗布してもよい。
[Method of manufacturing joined body]
As a manufacturing method of the joined bodies 20 to 23, particularly a joining method, a conventionally known joining method can be used. The method for forming the adhesive resin 5 on the aluminum alloy material is not particularly limited. For example, an adhesive sheet prepared in advance using the adhesive resin 5 may be used, or the adhesive resin 5 may be used as the surface treatment film 2. You may form by spraying or apply | coating to the surface of this. The joined bodies 20 to 23 may be coated with a machine oil such as press oil on the surface thereof before being processed into a member for an automobile, like the aluminum alloy material 10 and the aluminum alloy material 11 with an adhesive resin layer. .
 また、図示しないが、本実施形態の接合体に、両面に表面処理皮膜2が形成されたアルミニウム合金材を用いた場合、接着樹脂5又は接着樹脂層4を介して、これらのアルミニウム合金材又は皮膜2が形成されていない他のアルミニウム合金材6又は樹脂成形体7を、さらに接合することが可能となる。 Although not shown, when the aluminum alloy material having the surface treatment film 2 formed on both sides is used for the joined body of the present embodiment, these aluminum alloy materials or the adhesive resin 5 or the adhesive resin layer 4 are used. It becomes possible to further join another aluminum alloy material 6 or resin molded body 7 on which the film 2 is not formed.
(第3の実施形態)
 次に、本発明の第3の実施形態に係る自動車用部材について説明する。本実施形態の自動車用部材は、前述した第2の実施形態の接合体を用いたものであり、例えば、自動車用パネルなどである。
(Third embodiment)
Next, the automotive member according to the third embodiment of the present invention will be described. The member for motor vehicles of this embodiment uses the joined object of a 2nd embodiment mentioned above, for example, is a panel for motor vehicles.
 また、本実施形態の自動車用部材の製造方法は、特に限定されるものではないが、従来公知の製造方法を適用することができる。例えば、図6~9Bに示す接合体20~23bに切断加工やプレス加工などを施して所定形状の自動車用部材を製造する。 Further, the manufacturing method of the automobile member of the present embodiment is not particularly limited, but a conventionally known manufacturing method can be applied. For example, the joined members 20 to 23b shown in FIGS. 6 to 9B are cut or pressed to produce a predetermined-shaped automobile member.
 本実施形態の自動車用部材は、前述した第2の実施形態の接合体から製造されるため、高温湿潤環境に曝されても、接着樹脂又は接着樹脂層と、酸化皮膜の水和の影響をほとんど受けることなく、アルミニウム合金基材の溶出も抑制できる。その結果、本実施形態の自動車用部材では、高温湿潤環境に曝された場合の界面剥離を抑制し、接着強度の低下を抑制することが可能となる。 Since the automobile member according to the present embodiment is manufactured from the joined body according to the second embodiment described above, even if it is exposed to a high temperature and wet environment, the influence of the hydration of the adhesive resin or the adhesive resin layer and the oxide film is affected. Almost no elution of the aluminum alloy base material can be suppressed with little. As a result, in the automotive member of this embodiment, it is possible to suppress interfacial peeling when exposed to a high-temperature and humid environment, and to suppress a decrease in adhesive strength.
 以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、以下に示す方法及び条件で、アルミニウム合金材を作製し、その接着耐久性などを評価した。 Hereinafter, the effects of the present invention will be described in detail with reference to examples and comparative examples of the present invention. In this example, an aluminum alloy material was produced by the following method and conditions, and its adhesion durability and the like were evaluated.
(基材作製工程及び酸化皮膜形成工程)
 基材の作製及び酸化皮膜の形成は以下のようにして行った。
(Base material production process and oxide film formation process)
The production of the base material and the formation of the oxide film were performed as follows.
<実施例1~2>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、前述した方法により板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基材とし、実体到達温度550℃まで加熱処理し、冷却した。
 続いて、基材に、pH13に調整した水酸化カリウムを含む溶液を用いて、温度50℃、処理時間1~120秒の条件で処理を行い、その後水洗を行った。
 その後、pH1に調整した硝酸を含む溶液を用いて、温度40℃、処理時間1~120秒の条件で硝酸溶液処理を行い、その後水洗して、表1に記載のエッチング量とし、また、表1に記載のようにMg量及びCu量を制御した酸化皮膜を形成した。
<Examples 1 and 2>
Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut | disconnected to length 100mm and width 25mm, it was set as the base material, and it heat-processed to the substance ultimate temperature 550 degreeC, and cooled.
Subsequently, the substrate was treated with a solution containing potassium hydroxide adjusted to pH 13 at a temperature of 50 ° C. for a treatment time of 1 to 120 seconds, and then washed with water.
Thereafter, using a solution containing nitric acid adjusted to pH 1, the nitric acid solution treatment was performed under the conditions of a temperature of 40 ° C. and a treatment time of 1 to 120 seconds, and then washed with water to obtain the etching amounts shown in Table 1. As described in 1, an oxide film in which the amount of Mg and the amount of Cu were controlled was formed.
<実施例3~5>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、前述した方法により板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基材とし、実体到達温度550℃まで加熱処理し、冷却した。
 続いて、基材に、pH13に調整した水酸化カリウムを含む溶液を用いて、温度50℃、処理時間1~120秒の条件で処理を行い、その後水洗を行った。
 その後、pH1となるように調整した硫酸とフッ酸を含む溶液を用いて、温度50℃、処理時間1~120秒の条件で硫酸・フッ酸溶液処理を行い、その後水洗して、表1に記載のエッチング量とし、また、表1に記載のようにMg量及びCu量を制御した酸化皮膜を形成した。
<Examples 3 to 5>
Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut | disconnected to length 100mm and width 25mm, it was set as the base material, and it heat-processed to the substance ultimate temperature 550 degreeC, and cooled.
Subsequently, the substrate was treated with a solution containing potassium hydroxide adjusted to pH 13 at a temperature of 50 ° C. for a treatment time of 1 to 120 seconds, and then washed with water.
Thereafter, using a solution containing sulfuric acid and hydrofluoric acid adjusted to pH 1, the sulfuric acid / hydrofluoric acid solution treatment was performed under the conditions of a temperature of 50 ° C. and a treatment time of 1 to 120 seconds, and then washed with water. An oxide film was formed in which the etching amount was as described and the Mg amount and Cu amount were controlled as shown in Table 1.
<実施例6~7>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、前述した方法により板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基材とし、実体到達温度550℃まで加熱処理し、冷却した。
 続いて、基材に、pH1に調整した硫酸を含む溶液を用いて、温度60℃、処理時間1~120秒の条件で硫酸溶液処理を行い、その後水洗して、表1に記載のエッチング量とし、また、表1に記載のようにMg量及びCu量を制御した酸化皮膜を形成した。
<Examples 6 to 7>
Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut | disconnected to length 100mm and width 25mm, it was set as the base material, and it heat-processed to the substance ultimate temperature 550 degreeC, and cooled.
Subsequently, the substrate was treated with a sulfuric acid solution under conditions of a temperature of 60 ° C. and a treatment time of 1 to 120 seconds using a solution containing sulfuric acid adjusted to pH 1, and then washed with water to obtain the etching amount shown in Table 1 In addition, as shown in Table 1, an oxide film in which the amount of Mg and the amount of Cu were controlled was formed.
<実施例8~9>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、前述した方法により板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基材とし、実体到達温度550℃まで加熱処理し、冷却した。
 続いて、基材に、pH3に調整した硝酸を含む溶液を用いて、温度50℃、処理時間1~60秒の条件で硝酸溶液処理を行い、その後水洗して、表1に記載のエッチング量とし、また、表1に記載のようにMg量及びCu量を制御した酸化皮膜を形成した。
<Examples 8 to 9>
Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut | disconnected to length 100mm and width 25mm, it was set as the base material, and it heat-processed to the substance ultimate temperature 550 degreeC, and cooled.
Subsequently, using a solution containing nitric acid adjusted to pH 3 on the substrate, the nitric acid solution treatment was performed under the conditions of a temperature of 50 ° C. and a treatment time of 1 to 60 seconds, and then washed with water. In addition, as shown in Table 1, an oxide film in which the amount of Mg and the amount of Cu were controlled was formed.
<比較例1>
 水酸化カリウム溶液の処理時間を150秒、硫酸とフッ酸を含む溶液による処理時間を150秒にした以外は、実施例3~5と同様の条件で処理して、表1に記載のエッチング量とし、また、表1に記載のようにMg量及びCu量を制御した酸化皮膜を形成した。
<Comparative Example 1>
Etching amount shown in Table 1 except that the treatment time of the potassium hydroxide solution was 150 seconds and the treatment time of the solution containing sulfuric acid and hydrofluoric acid was 150 seconds, under the same conditions as in Examples 3-5. In addition, as shown in Table 1, an oxide film in which the amount of Mg and the amount of Cu were controlled was formed.
<比較例2>
 JIS6016(Mg:0.54質量%、Si:1.11質量%、Cu:0.14質量%)の6000系アルミニウム合金を用いて、前述した方法により板厚1mmのアルミニウム合金冷延板を作製した。そして、この冷延板を長さ100mm、幅25mmに切断して基材とし、実体到達温度550℃まで加熱処理し、冷却した。ここで、比較例2においては、得られた基材について、アルカリ脱脂や酸洗を行わなかった。
<Comparative Example 2>
Using a 6000 series aluminum alloy of JIS 6016 (Mg: 0.54 mass%, Si: 1.11 mass%, Cu: 0.14 mass%), an aluminum alloy cold-rolled sheet having a thickness of 1 mm is produced by the method described above. did. And this cold-rolled board was cut | disconnected to length 100mm and width 25mm, it was set as the base material, and it heat-processed to the substance ultimate temperature 550 degreeC, and cooled. Here, in Comparative Example 2, the obtained base material was not subjected to alkali degreasing or pickling.
(表面処理皮膜形成工程)
 次に、実施例1~9及び比較例1~2において得られた、酸化皮膜が形成されたアルミニウム合金基材表面上の酸化皮膜に、0.1質量%の結晶性層状珪酸ナトリウム(SiOとNaOのモル比が2程度)(トクヤマシルテック製プリフィード)と、0.09質量%のビストリエトキシシリルエタン(BTSE)とを含み、pHが11.2に調整された水溶液(表面処理液)を、ディップまたはバーコータにより塗布して表面処理皮膜を形成し、各実施例及び比較例のアルミニウム合金材を作製した。水溶液(表面処理溶液)の作製過程でBTSEの溶解やpH調整にエタノールと酢酸を使用したが、フッ素系の薬剤は使用しなかった。また溶液全体に占めるエタノールの量は2%程度であった。なお、表面処理液の塗布後の乾燥は、105℃で、1分間行った。乾燥後の塗布量は、蛍光X線で、塗布前後の測定から、4mg/m程度であることを確認した。
(Surface treatment film formation process)
Next, 0.1% by mass of crystalline layered sodium silicate (SiO 2) was added to the oxide film on the surface of the aluminum alloy substrate on which the oxide film was formed, obtained in Examples 1 to 9 and Comparative Examples 1 and 2. and Na 2 O molar ratio of about 2) (and Tokuyama Siltech made pre feed), and a 0.09% by weight of bis triethoxysilyl ethane (BTSE), an aqueous solution having a pH adjusted to 11.2 (the surface Treatment liquid) was applied by a dip or bar coater to form a surface treatment film, and aluminum alloy materials of the examples and comparative examples were produced. Ethanol and acetic acid were used for dissolution of BTSE and pH adjustment in the preparation process of the aqueous solution (surface treatment solution), but no fluorine-based drug was used. The amount of ethanol in the entire solution was about 2%. In addition, drying after application | coating of a surface treatment liquid was performed for 1 minute at 105 degreeC. The coating amount after drying was confirmed to be about 4 mg / m 2 by measurement with before and after coating with fluorescent X-rays.
<実施例10>
 実施例1において得られた、酸化皮膜が形成されたアルミニウム合金基材表面上の酸化皮膜に、0.1質量%のメタ珪酸ナトリウム(SiOとNaOのモル比が1程度)と、0.09質量%のビストリエトキシシリルエタン(BTSE)とを含み、pHが11.2に調整された水溶液(表面処理液)を、バーコータにより塗布して表面処理皮膜を形成し、実施例10のアルミニウム合金材を作製した。水溶液(表面処理溶液)の作製過程でBTSEの溶解やpH調整にエタノールと酢酸を使用したが、フッ素系の薬剤は使用しなかった。また溶液全体に占めるエタノールの量は2%程度であった。なお、表面処理液の塗布後の乾燥は、105℃で、1分間行った。乾燥後の塗布量は、蛍光X線で、塗布前後の測定から、3.8mg/mであることを確認した。
<Example 10>
To the oxide film on the surface of the aluminum alloy substrate on which the oxide film was formed, obtained in Example 1, 0.1% by mass of sodium metasilicate (a molar ratio of SiO 2 and Na 2 O of about 1), An aqueous solution (surface treatment solution) containing 0.09% by mass of bistriethoxysilylethane (BTSE) and having a pH adjusted to 11.2 was applied by a bar coater to form a surface treatment film. An aluminum alloy material was produced. Ethanol and acetic acid were used for dissolution of BTSE and pH adjustment in the preparation process of the aqueous solution (surface treatment solution), but no fluorine-based drug was used. The amount of ethanol in the entire solution was about 2%. In addition, drying after application | coating of a surface treatment liquid was performed for 1 minute at 105 degreeC. The coating amount after drying was confirmed to be 3.8 mg / m 2 by measurement with before and after coating with fluorescent X-rays.
<実施例11>
 実施例1において得られた、酸化皮膜が形成されたアルミニウム合金基材表面上の酸化皮膜に、0.1質量%の水ガラス(SiOとNaOのモル比が3~3.4)と、0.09質量%のビストリエトキシシリルエタン(BTSE)とを含み、pHが11.2に調整された水溶液(表面処理液)を、バーコータにより塗布して表面処理皮膜を形成し、実施例11のアルミニウム合金材を作製した。水溶液(表面処理溶液)の作製過程でBTSEの溶解やpH調整にエタノールと酢酸を使用したが、フッ素系の薬剤は使用しなかった。また溶液全体に占めるエタノールの量は2%程度であった。なお、表面処理液の塗布後の乾燥は、105℃で、1分間行った。乾燥後の塗布量は、蛍光X線で、塗布前後の測定から、4.2mg/mであることを確認した。
<Example 11>
0.1% by mass of water glass (SiO 2 to Na 2 O molar ratio of 3 to 3.4) was added to the oxide film on the surface of the aluminum alloy substrate on which the oxide film was formed, obtained in Example 1. And an aqueous solution (surface treatment liquid) containing 0.09% by mass of bistriethoxysilylethane (BTSE) and having a pH adjusted to 11.2 is applied by a bar coater to form a surface treatment film. 11 aluminum alloy materials were produced. Ethanol and acetic acid were used for dissolution of BTSE and pH adjustment in the preparation process of the aqueous solution (surface treatment solution), but no fluorine-based drug was used. The amount of ethanol in the entire solution was about 2%. In addition, drying after application | coating of a surface treatment liquid was performed for 1 minute at 105 degreeC. The coating amount after drying was confirmed to be 4.2 mg / m 2 by fluorescence X-ray and measurement before and after coating.
<比較例3>
 実施例1において得られた、酸化皮膜が形成されたアルミニウム合金基材表面上の酸化皮膜に、0.55質量%の結晶性層状珪酸ナトリウム(SiOとNaOのモル比が2程度)(トクヤマシルテック製プリフィード)と、0.05質量%のビストリエトキシシリルエタン(BTSE)とを含み、pHが12.1に調整された水溶液(表面処理液)を、バーコータにより塗布して表面処理皮膜を形成し、比較例3のアルミニウム合金材を作製した。水溶液(表面処理溶液)の作製過程でBTSEの溶解やpH調整にエタノールと酢酸を使用したが、フッ素系の薬剤は使用しなかった。また溶液全体に占めるエタノールの量は2%程度であった。なお、表面処理液の塗布後の乾燥は、105℃で、1分間行った。乾燥後の塗布量は、蛍光X線で、塗布前後の測定から、35mg/mであることを確認した。
<Comparative Example 3>
In the oxide film on the surface of the aluminum alloy substrate on which the oxide film was formed, obtained in Example 1, 0.55% by mass of crystalline layered sodium silicate (SiO 2: Na 2 O molar ratio is about 2) (Pre-feed made by Tokuyama Siltec) and 0.05% by mass of bistriethoxysilylethane (BTSE), and an aqueous solution (surface treatment liquid) adjusted to pH 12.1 was applied by a bar coater. A treatment film was formed, and an aluminum alloy material of Comparative Example 3 was produced. Ethanol and acetic acid were used for dissolution of BTSE and pH adjustment in the preparation process of the aqueous solution (surface treatment solution), but no fluorine-based drug was used. The amount of ethanol in the entire solution was about 2%. In addition, drying after application | coating of a surface treatment liquid was performed for 1 minute at 105 degreeC. The coating amount after drying was confirmed to be 35 mg / m 2 by fluorescence X-rays and measured before and after coating.
<比較例4>
 実施例1において得られた、酸化皮膜が形成されたアルミニウム合金基材表面上の酸化皮膜に、0.061質量%の結晶性層状珪酸ナトリウム(SiOとNaOのモル比が2程度)(トクヤマシルテック製プリフィード)と、0.8質量%のビストリエトキシシリルエタン(BTSE)とを含み、pHが11.0に調整された水溶液(表面処理液)を、バーコータにより塗布して表面処理皮膜を形成し、比較例4のアルミニウム合金材を作製した。水溶液(表面処理溶液)の作製過程でBTSEの溶解やpH調整にエタノールと酢酸を使用したが、フッ素系の薬剤は使用しなかった。また溶液全体に占めるエタノールの量は2%程度であった。なお、表面処理液の塗布後の乾燥は、105℃で、1分間行った。乾燥後の塗布量は、蛍光X線で、塗布前後の測定から、36mg/mであることを確認した。
<Comparative Example 4>
0.061 mass% crystalline layered sodium silicate (Molar ratio of SiO 2 to Na 2 O is about 2) on the oxide film on the surface of the aluminum alloy substrate on which the oxide film was formed, obtained in Example 1 (Pre-feed made by Tokuyama Siltec) and 0.8% by mass of bistriethoxysilylethane (BTSE), and an aqueous solution (surface treatment solution) adjusted to pH 11.0 was applied with a bar coater. A treatment film was formed, and an aluminum alloy material of Comparative Example 4 was produced. Ethanol and acetic acid were used for dissolution of BTSE and pH adjustment in the preparation process of the aqueous solution (surface treatment solution), but no fluorine-based drug was used. The amount of ethanol in the entire solution was about 2%. In addition, drying after application | coating of a surface treatment liquid was performed for 1 minute at 105 degreeC. The coating amount after drying was confirmed to be 36 mg / m 2 by fluorescence X-rays and measured before and after coating.
 この様に作製した各実施例及び比較例に係るアルミニウム合金材の第2皮膜側の表面に、トルエンで希釈したプレス油を、乾燥後の塗布量が1g/mとなるように塗布した。 The press oil diluted with toluene was applied to the surface of the aluminum alloy material according to each of Examples and Comparative Examples produced in this way so that the coating amount after drying was 1 g / m 2 .
<酸化皮膜成分の測定>
 酸化皮膜を形成後、表面処理皮膜を形成する前の各実施例及び比較例に係るアルミニウム合金基材の酸化皮膜について、高周波グロー放電発光分光分析法(GD-OES:ホリバ・ジョバンイボン社製型式JY-5000RF)により膜厚方向にスパッタしながら測定し、アルミニウム(Al)、マグネシウム(Mg)、銅(Cu)、鉄(Fe)及びチタン(Ti)等の金属元素、及び酸素(O)、窒素(N)、炭素(C)、ケイ素(Si)及び硫黄(S)等の元素について、各成分量の測定を行った。マグネシウム(Mg)、銅(Cu)及びケイ素(Si)については、酸化皮膜中のマグネシウム(Mg)、銅(Cu)及びケイ素(Si)の最大濃度を、その皮膜中の皮膜濃度とした。ここで、これら各元素の濃度の算出において、特に酸素(O)及び炭素(C)は最表面やその近傍でコンタミの影響を受けやすい。以上のことから、各元素の濃度計算では、酸素(O)及び炭素(C)を除いて、濃度を算出した。なお、酸素(O)は、最表面及びその近傍ではコンタミの影響を受ける可能性が高く、正確な濃度を測定することは難しいが、すべてのサンプルの酸化皮膜には酸素(O)が含まれていることは明確であった。
<Measurement of oxide film components>
After forming the oxide film and before forming the surface treatment film, the oxide film of the aluminum alloy base material according to each of Examples and Comparative Examples was subjected to high-frequency glow discharge emission spectroscopy (GD-OES: model manufactured by Horiba Joban Yvon) JY-5000RF) while sputtering in the film thickness direction, metal elements such as aluminum (Al), magnesium (Mg), copper (Cu), iron (Fe), and titanium (Ti), and oxygen (O), The amount of each component was measured for elements such as nitrogen (N), carbon (C), silicon (Si) and sulfur (S). For magnesium (Mg), copper (Cu) and silicon (Si), the maximum concentration of magnesium (Mg), copper (Cu) and silicon (Si) in the oxide film was defined as the film concentration in the film. Here, in the calculation of the concentrations of these elements, oxygen (O) and carbon (C) are particularly susceptible to contamination on the outermost surface and in the vicinity thereof. From the above, in the concentration calculation of each element, the concentration was calculated excluding oxygen (O) and carbon (C). Note that oxygen (O) is likely to be affected by contamination at the outermost surface and in the vicinity thereof, and it is difficult to measure the exact concentration. However, the oxide film of all samples contains oxygen (O). It was clear that
<エッチング量>
 エッチング量(単位:g/cm)は、酸化皮膜形成工程前後の基材の重量の減少量(単位:g)を測定し、これを基材の表面積(単位:m)で割ることにより算出した。
<Etching amount>
The etching amount (unit: g / cm 2 ) is obtained by measuring the amount of decrease in the weight of the base material before and after the oxide film formation step (unit: g) and dividing this by the surface area of the base material (unit: m 2 ). Calculated.
<凝集破壊率(接着耐久性)>
 図10A及び図10Bは凝集破壊率の測定方法を模式的に示す図であり、図10Aは側面図であり、図10Bは平面図である。図10A及び図10Bに示すように、構成が同じ2枚の供試材31a,31b(25mm幅)の端部を、熱硬化型エポキシ樹脂系接着樹脂によりラップ長10mm(接着面積:25mm×10mm)となるように重ね合わせ貼り付けた。
 ここで用いた接着樹脂35は熱硬化型エポキシ樹脂系接着樹脂(ビスフェノールA型エポキシ樹脂量40~50質量%)である。また、接着樹脂35の厚さが250μmになるように微量のガラスビーズ(粒径250μm)を接着樹脂35に添加して調節した。
 重ね合わせてから30分間、室温で乾燥させて、その後、170℃で20分間加熱し、熱硬化処理を実施した。その後、室温で24時間静置して接着試験体を作製した。
<Cohesive failure rate (adhesion durability)>
10A and 10B are diagrams schematically showing a method for measuring the cohesive failure rate, FIG. 10A is a side view, and FIG. 10B is a plan view. As shown in FIG. 10A and FIG. 10B, the end portions of two specimens 31a and 31b (25 mm width) having the same configuration are wrapped with a thermosetting epoxy resin adhesive resin with a wrap length of 10 mm (adhesion area: 25 mm × 10 mm). ).
The adhesive resin 35 used here is a thermosetting epoxy resin-based adhesive resin (bisphenol A type epoxy resin amount 40 to 50 mass%). In addition, a small amount of glass beads (particle size 250 μm) was added to the adhesive resin 35 so that the thickness of the adhesive resin 35 was 250 μm.
After superposition, they were dried at room temperature for 30 minutes, and then heated at 170 ° C. for 20 minutes to carry out a thermosetting treatment. Then, it left still at room temperature for 24 hours, and produced the adhesion test body.
 作製した接着試験体を、50℃、相対湿度95%の高温湿潤環境に30日間保持後、引張試験機にて50mm/分の速度で引張り、接着部分の接着樹脂の凝集破壊率を評価した。凝集破壊率は下記数式1に基づいて算出した。なお、下記数式1においては、接着試験体の引張後の片側を試験片a、もう片方を試験片bとした。 The prepared adhesion test specimen was held in a high temperature and humidity environment of 50 ° C. and a relative humidity of 95% for 30 days, and then pulled at a rate of 50 mm / min with a tensile tester to evaluate the cohesive failure rate of the adhesive resin at the adhesion portion. The cohesive failure rate was calculated based on Equation 1 below. In addition, in the following numerical formula 1, the test specimen a was used as one side after the tension of the adhesion test specimen, and the test specimen b was used as the other side.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 各試験条件とも3本ずつ作製し、凝集破壊率は3本の平均値とした。また、評価基準は、凝集破壊率が60%未満を不良(×)、60%以上70%未満をやや良好(△)、70%以上90%未満を良好(○)、90%以上を特に良好(◎)とし、60%以上を合格とした。 Three samples were prepared for each test condition, and the cohesive failure rate was the average value of the three samples. Further, the evaluation criteria are that the cohesive failure rate is less than 60% as bad (x), 60% or more and less than 70% is slightly good (Δ), 70% or more and less than 90% is good (◯), and 90% or more is particularly good. (◎) and 60% or more was accepted.
 以上の結果を、表1にまとめて示す。 The above results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1に示すように、酸化皮膜中のCuの濃度が本発明規定の範囲から外れている比較例1のアルミニウム合金材は、凝集破壊率が60%未満と不良であり、高温湿潤環境での接着耐久性に劣るものであった。
 また、酸洗やアルカリ洗浄を経ずに作製された比較例2のアルミニウム合金材は、酸化皮膜中のMgの濃度が本発明規定の範囲から外れており、凝集破壊率が60%未満と不良であり、高温湿潤環境での接着耐久性に劣るものであった。
 また、表面処理液中のケイ酸塩の濃度が本発明規定の範囲から外れている比較例3のアルミニウム合金材は、凝集破壊率が60%未満と不良であり、高温湿潤環境での接着耐久性に劣るものであった。
 また、表面処理液中の有機シラン化合物の濃度が本発明規定の範囲から外れている比較例4のアルミニウム合金材は、凝集破壊率が60%未満と不良であり、高温湿潤環境での接着耐久性に劣るものであった。
As shown in Table 1 above, the aluminum alloy material of Comparative Example 1 in which the concentration of Cu in the oxide film is out of the range specified in the present invention has a poor cohesive failure rate of less than 60%, and is in a high temperature humid environment. The adhesion durability was inferior.
Further, the aluminum alloy material of Comparative Example 2 manufactured without pickling or alkali cleaning has a Mg concentration in the oxide film that is out of the scope of the present invention, and the cohesive failure rate is less than 60%. It was inferior in adhesion durability in a high-temperature and humid environment.
Further, the aluminum alloy material of Comparative Example 3 in which the concentration of silicate in the surface treatment liquid is out of the range defined in the present invention has a poor cohesive failure rate of less than 60%, and the adhesion durability in a high-temperature and humid environment. It was inferior in nature.
In addition, the aluminum alloy material of Comparative Example 4 in which the concentration of the organosilane compound in the surface treatment liquid is out of the range defined in the present invention has a poor cohesive failure rate of less than 60%, and the adhesion durability in a high-temperature and humid environment. It was inferior in nature.
 これに対して、本発明の製造方法により得られた実施例1~11のアルミニウム合金材は、いずれも凝集破壊率が60%以上であり、高温湿潤環境での接着耐久性が良好であった。
 なお、実施例10は、実施例1で用いた結晶性層状珪酸ナトリウム(SiOとNaOのモル比が2程度)(トクヤマシルテック製プリフィード)の代わりに、メタ珪酸ナトリウム(SiOとNaOのモル比が1程度)を用いた例であり、ケイ酸ナトリウム種を変更した以外は、実施例1と概ね同条件で作製した例である。SiOとNaOのモル比が1.5未満(1程度)のメタ珪酸ナトリウムを用いた実施例10では、凝集破壊率は合格レベルの70%以上90%未満であったが、SiOとNaOのモル比が2程度である結晶性層状珪酸ナトリウムを用いた実施例1に比較して、凝集破壊率は若干劣る結果となった。
 また、実施例11は、実施例1で用いた結晶性層状珪酸ナトリウム(SiOとNaOのモル比が2程度)(トクヤマシルテック製プリフィード)の代わりに、水ガラス(SiOとNaOのモル比が3~3.4)を用いた例であり、ケイ酸ナトリウム種を変更した以外は、実施例1と概ね同条件で作製した例である。SiOとNaOのモル比が1.5以上(3~3.4程度)の水ガラスを用いた実施例11では、SiOとNaOのモル比が2程度である結晶性層状珪酸ナトリウムを用いた実施例1と同等の凝集破壊率が得られた。
In contrast, all of the aluminum alloy materials of Examples 1 to 11 obtained by the production method of the present invention had a cohesive failure rate of 60% or more, and had good adhesion durability in a high-temperature and humid environment. .
In Examples 10, instead of the crystalline layered sodium silicate as used in Example 1 (molar ratio of SiO 2 and Na 2 O of about 2) (Tokuyama Siltech made pre feed), sodium metasilicate (SiO 2 And the Na 2 O molar ratio is about 1), and is an example produced under substantially the same conditions as in Example 1 except that the sodium silicate species was changed. In Example 10 the molar ratio of SiO 2 and Na 2 O was used sodium metasilicate less than 1.5 (about 1), although the cohesive failure rate was less than 90% to 70% pass level, SiO 2 The cohesive failure rate was slightly inferior to Example 1 using crystalline layered sodium silicate in which the molar ratio of Na 2 O was about 2.
Further, in Example 11, instead of the crystalline layered sodium silicate (a molar ratio of SiO 2 and Na 2 O of about 2) used in Example 1 (pre-feed made by Tokuyama Siltec), water glass (SiO 2 and This is an example in which the molar ratio of Na 2 O is 3 to 3.4), and is an example prepared under substantially the same conditions as in Example 1 except that the sodium silicate species is changed. In Example 11 using a water glass having a molar ratio of SiO 2 to Na 2 O of 1.5 or more (about 3 to 3.4), a crystalline layered structure having a molar ratio of SiO 2 to Na 2 O of about 2 A cohesive failure rate equivalent to that in Example 1 using sodium silicate was obtained.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2015年7月9日付けで出願された日本特許出願(特願2015-138049)、2016年5月10日付けで出願された日本特許出願(特願2016-094922)、及び2016年6月7日付けで出願された日本特許出願(特願2016-113753)に基づいており、その全体が引用により援用される。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
The present application includes a Japanese patent application filed on July 9, 2015 (Japanese Patent Application No. 2015-138049), a Japanese patent application filed on May 10, 2016 (Japanese Patent Application No. 2016-094922), Based on a Japanese patent application filed on June 7, 2016 (Japanese Patent Application No. 2016-113753), which is incorporated by reference in its entirety.
 1 酸化皮膜
 2 表面処理皮膜
 3 基材
 4 接着樹脂層
 5、35 接着樹脂
 6、10 アルミニウム合金材
 11 接着樹脂層付きアルミニウム合金材
 7 樹脂成形体
 20、21a、21b、22、23a、23b 接合体
 31a、31b 供試材
DESCRIPTION OF SYMBOLS 1 Oxide film 2 Surface treatment film 3 Base material 4 Adhesive resin layer 5, 35 Adhesive resin 6, 10 Aluminum alloy material 11 Aluminum alloy material with an adhesive resin layer 7 Resin molding 20, 21, 21a, 21b, 22, 23a, 23b Joined body 31a, 31b Specimen

Claims (8)

  1.  アルミニウム合金基材の表面の少なくとも一部に、Mgを0.1原子%以上30原子%未満含有し、Cuが0.6原子%未満に規制された酸化皮膜を形成する酸化皮膜形成工程と、
     前記酸化皮膜の少なくとも一部に、0.001質量%以上0.5質量%未満のケイ酸塩と、0.001質量%以上0.5質量%未満の有機シラン化合物とを含み、pHが7以上14以下である水溶液を塗布することを含む表面処理皮膜形成工程と
     を備えるアルミニウム合金材の製造方法。
    An oxide film forming step of forming an oxide film containing Mg in an amount of 0.1 atomic% or more and less than 30 atomic% and Cu regulated to less than 0.6 atomic% on at least a part of the surface of the aluminum alloy substrate;
    At least part of the oxide film contains 0.001% by mass or more and less than 0.5% by mass of silicate and 0.001% by mass or more and less than 0.5% by mass of an organosilane compound, and has a pH of 7 A method for producing an aluminum alloy material, comprising: a surface treatment film forming step including applying an aqueous solution of 14 or less.
  2.  前記有機シラン化合物が分子内に加水分解可能なトリアルコキシシリル基を複数有するシラン化合物、その加水分解物またはその重合体を含む請求項1に記載のアルミニウム合金材の製造方法。 The method for producing an aluminum alloy material according to claim 1, wherein the organosilane compound includes a silane compound having a plurality of hydrolyzable trialkoxysilyl groups in the molecule, a hydrolyzate thereof, or a polymer thereof.
  3.  前記ケイ酸塩がmMO・nSiOで表されるケイ酸塩であって、Mは1価の陽イオンであり、かつMOのモル数であるmとSiOのモル数であるnとの比n/mが1.5以上である請求項1に記載のアルミニウム合金材の製造方法。 The silicate is a silicate represented by mM 2 O · nSiO 2 , wherein M is a monovalent cation, and m is the number of moles of M 2 O and the number of moles of SiO 2. The method for producing an aluminum alloy material according to claim 1, wherein a ratio n / m to n is 1.5 or more.
  4.  Mがナトリウムイオンである請求項3に記載のアルミニウム合金材の製造方法。 The method for producing an aluminum alloy material according to claim 3, wherein M is sodium ion.
  5.  前記酸化皮膜形成工程がエッチング処理段階を含み、前記エッチング処理段階におけるエッチング量が1.9g/m以下である請求項1に記載のアルミニウム合金材の製造方法。 The method for producing an aluminum alloy material according to claim 1, wherein the oxide film forming step includes an etching treatment step, and an etching amount in the etching treatment step is 1.9 g / m 2 or less.
  6.  前記アルミニウム合金基材は、Al-Mg系合金、Al-Cu-Mg系合金、Al-Mg-Si系合金又はAl-Zn-Mg系合金からなる請求項1に記載のアルミニウム合金材の製造方法。 2. The method for producing an aluminum alloy material according to claim 1, wherein the aluminum alloy substrate is made of an Al—Mg alloy, an Al—Cu—Mg alloy, an Al—Mg—Si alloy, or an Al—Zn—Mg alloy. .
  7.  請求項1~6のいずれか1項に記載のアルミニウム合金材の製造方法により得られたアルミニウム合金材。 An aluminum alloy material obtained by the method for producing an aluminum alloy material according to any one of claims 1 to 6.
  8.  請求項7に記載のアルミニウム合金材と他の部材とを接着樹脂を介して接合した接合体。 A joined body obtained by joining the aluminum alloy material according to claim 7 and another member via an adhesive resin.
PCT/JP2016/069090 2015-07-09 2016-06-28 Aluminum alloy manufacturing method, aluminum alloy, and conjugate WO2017006804A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/741,594 US20180216236A1 (en) 2015-07-09 2016-06-28 Aluminum alloy material production method, aluminum alloy material, and bonded article
CN201680040156.XA CN107835869A (en) 2015-07-09 2016-06-28 Manufacture method, aluminium alloy material and the conjugant of aluminium alloy material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-138049 2015-07-09
JP2015138049 2015-07-09
JP2016-094922 2016-05-10
JP2016094922 2016-05-10
JP2016-113753 2016-06-07
JP2016113753A JP2017203209A (en) 2015-07-09 2016-06-07 Method for producing aluminum alloy material, aluminum alloy material and joined body

Publications (1)

Publication Number Publication Date
WO2017006804A1 true WO2017006804A1 (en) 2017-01-12

Family

ID=57685164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069090 WO2017006804A1 (en) 2015-07-09 2016-06-28 Aluminum alloy manufacturing method, aluminum alloy, and conjugate

Country Status (1)

Country Link
WO (1) WO2017006804A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195802A1 (en) * 2016-05-10 2017-11-16 株式会社神戸製鋼所 Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, production method for aluminum alloy material, and production method for aluminum alloy material provided with adhesive resin layer
WO2017195811A1 (en) * 2016-05-10 2017-11-16 株式会社神戸製鋼所 Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, production method for aluminum alloy material, and production method for aluminum alloy material provided with adhesive resin layer
WO2019017026A1 (en) * 2017-07-19 2019-01-24 昭和電工株式会社 Method for treating surface of aluminum article
WO2021188610A1 (en) * 2020-03-18 2021-09-23 Novelis Inc. Aluminum alloy articles exhibiting improved bond durability and methods of making the same
WO2023153192A1 (en) * 2022-02-08 2023-08-17 東洋アルミニウム株式会社 Aluminum foil and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299356A (en) * 2005-04-21 2006-11-02 Chubu Kiresuto Kk Composition for rust-preventive agent, aqueous rust-preventive lubricant and working method using the same
JP2015003514A (en) * 2013-05-23 2015-01-08 株式会社神戸製鋼所 Aluminum alloy plate, joint and member for automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299356A (en) * 2005-04-21 2006-11-02 Chubu Kiresuto Kk Composition for rust-preventive agent, aqueous rust-preventive lubricant and working method using the same
JP2015003514A (en) * 2013-05-23 2015-01-08 株式会社神戸製鋼所 Aluminum alloy plate, joint and member for automobile

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195802A1 (en) * 2016-05-10 2017-11-16 株式会社神戸製鋼所 Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, production method for aluminum alloy material, and production method for aluminum alloy material provided with adhesive resin layer
WO2017195811A1 (en) * 2016-05-10 2017-11-16 株式会社神戸製鋼所 Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, production method for aluminum alloy material, and production method for aluminum alloy material provided with adhesive resin layer
WO2019017026A1 (en) * 2017-07-19 2019-01-24 昭和電工株式会社 Method for treating surface of aluminum article
JPWO2019017026A1 (en) * 2017-07-19 2020-05-28 昭和電工株式会社 Aluminum article surface treatment method
JP6994508B2 (en) 2017-07-19 2022-01-14 昭和電工株式会社 How to treat the surface of aluminum articles
WO2021188610A1 (en) * 2020-03-18 2021-09-23 Novelis Inc. Aluminum alloy articles exhibiting improved bond durability and methods of making the same
WO2023153192A1 (en) * 2022-02-08 2023-08-17 東洋アルミニウム株式会社 Aluminum foil and method for producing same

Similar Documents

Publication Publication Date Title
WO2017006804A1 (en) Aluminum alloy manufacturing method, aluminum alloy, and conjugate
WO2016076344A1 (en) Aluminum alloy material, bonded body, member for automobiles, and method for producing aluminum alloy material
JP6283240B2 (en) Aluminum alloy plate, joined body and automotive member
WO2015125897A1 (en) Aluminum alloy plate, joined body, and automotive member
JP6426135B2 (en) Method of manufacturing a metal sheet having a Zn-Al-Mg coating, comprising the application of an acidic solution and an adhesive, and the corresponding metal sheet and assembly
JP2017203209A (en) Method for producing aluminum alloy material, aluminum alloy material and joined body
KR102604335B1 (en) Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve compatibility with an adhesive
WO2017195806A1 (en) Aluminum alloy material production method, aluminum alloy material, and bonded object
WO2017195803A1 (en) Aqueous solution for metal surface treatment, treatment method for metal surface, and joined body
WO2017195811A1 (en) Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, production method for aluminum alloy material, and production method for aluminum alloy material provided with adhesive resin layer
CN107849697B (en) Aqueous solution for metal surface treatment, method for treating metal surface, and joined body
JP5968956B2 (en) Aluminum alloy plate, joined body and automobile member using the same
WO2017006805A1 (en) Aqueous metal surface treatment solution, metal surface treatment method, and conjugate
JP2017203213A (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, joined body and method for producing aluminum alloy material
JP2017203212A (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, method for producing aluminum alloy material and method for producing aluminum alloy material with adhesive resin layer
WO2017195808A1 (en) Aluminum alloy material, aluminum alloy material provided with adhesive resin layer, joined body, and production method for aluminum alloy material
JP6721406B2 (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, method for producing aluminum alloy material, and method for producing aluminum alloy material with adhesive resin layer
JP2017048456A (en) Aluminum alloy material, joint body, automotive member, method of manufacturing aluminum alloy material, and method of manufacturing joint body
JP2014173123A (en) Surface-treated aluminum alloy sheet and method of manufacturing the same
JP6705694B2 (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, bonded body, and method for manufacturing aluminum alloy material
JP6278882B2 (en) Surface-treated aluminum alloy plate and manufacturing method thereof
WO2017038573A1 (en) Aluminum alloy material, bonded body, automotive member, method for producing aluminum alloy material, and method for producing bonded body
JP2019085610A (en) Aqueous solution for metal surface treatment, treatment method of metal surface and conjugate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15741594

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821273

Country of ref document: EP

Kind code of ref document: A1