WO2017002364A1 - Ground-type satellite navigation reinforcement system and availability prediction method - Google Patents

Ground-type satellite navigation reinforcement system and availability prediction method Download PDF

Info

Publication number
WO2017002364A1
WO2017002364A1 PCT/JP2016/003122 JP2016003122W WO2017002364A1 WO 2017002364 A1 WO2017002364 A1 WO 2017002364A1 JP 2016003122 W JP2016003122 W JP 2016003122W WO 2017002364 A1 WO2017002364 A1 WO 2017002364A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
positioning
availability
usable
error
Prior art date
Application number
PCT/JP2016/003122
Other languages
French (fr)
Japanese (ja)
Inventor
和史 鈴木
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017526182A priority Critical patent/JP6741005B2/en
Publication of WO2017002364A1 publication Critical patent/WO2017002364A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/15Aircraft landing systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]

Definitions

  • the present invention relates to a terrestrial satellite navigation reinforcement system and an availability prediction method.
  • a technique for knowing the position of the receiving unit based on a GPS signal (positioning signal) from a GPS satellite (positioning satellite) received by the receiving unit is used in, for example, a car navigation system.
  • position obtained by such a method cannot be used for guidance or the like when the aircraft is landing because there is no guarantee of accuracy and safety necessary for navigation of the aircraft. Therefore, a ground-based satellite navigation reinforcement system (GBAS: Ground Based Augmentation System) that applies the principle of differential GPS has been developed to ensure the position accuracy and safety required for aircraft approach and landing. Has been started.
  • GAS Ground Based Augmentation System
  • a positioning signal from a positioning satellite is received by a ground system installed on the ground or an on-board system mounted on a flying object such as an airplane. Then, the ground system or the onboard system calculates the distance between the own system and the positioning satellite from the received positioning signal.
  • the distance at this time is called a pseudo distance, and is calculated by multiplying the time (propagation time) from when the positioning signal is transmitted until it is received by the propagation speed of the positioning signal (assuming that it is a predetermined speed). Is done.
  • the propagation time is the difference between the transmission time of the positioning signal from the positioning satellite and the reception time of the positioning signal in the ground system or on-board system.
  • the propagation speed of the positioning signal is a predetermined speed. That is, when the positioning signal passes through the ionosphere, the propagation speed is slowed by the influence of the ionosphere, and a delay occurs in the reception time. For this reason, an error is included in the pseudo distance calculated from the propagation time.
  • the ground system and the on-board system calculate the position of the own aircraft using pseudoranges between a plurality of positioning satellites. Therefore, if the pseudo distance includes an error, this error causes a decrease in the positioning position accuracy of the own device.
  • differential GPS In order to correct such an error, a technique called differential GPS has been proposed.
  • the ground system calculates the above-described pseudo distance and a geometric distance described later.
  • the geometric distance is a distance between the own aircraft and the positioning satellite calculated using the position information of the ground system and the position information of the positioning satellite.
  • the position information of the ground system is strictly investigated and stored in advance.
  • the position information of the positioning satellite is included in the satellite orbit information broadcast from the positioning satellite.
  • the ground system calculates the difference between the pseudo distance and the geometric distance. If there is no error in the measurement of the pseudo distance, the pseudo distance and the geometric distance should match. However, for example, when the propagation speed of the positioning signal is slow due to the influence of the ionosphere, a difference occurs.
  • the errors included in the pseudorange include errors due to the ionosphere, clock errors mounted on positioning satellites, satellite orbit information broadcasts from positioning satellites, and the like. Since it is not related to this, it will be omitted in the following discussion.
  • the ground system calculates the difference for each positioning satellite and sends it to the on-board system as a correction value.
  • the onboard system corrects the uniquely calculated pseudorange with the correction value provided by the ground system, thereby reducing the influence of the ionosphere contained in the pseudorange and calculating the positioning position of the aircraft with high accuracy. It can be so.
  • the ionospheric density is greatly changing in space (hereinafter, this case is referred to as an ionosphere abnormality)
  • the ionospheric delay is not common between the ground system and the onboard system.
  • Non-Patent Documents 1 and 2 propose a geometry screening process that prevents the onboard system from using geometries (satellite sets) that may increase the error to an extent that exceeds the allowable limit. ing.
  • the worst case positioning error is estimated for each satellite set (positioning satellite set) that the onboard system may use. If this worst case positioning error exceeds an allowable maximum error value, the ground system increases the integrity parameter provided to the onboard system. The onboard system uses this integrity parameter to calculate the protection level. The ground system increases the integrity parameter to a level where this protection level exceeds a threshold that generates an alert called an alert limit.
  • the ground system provides the integrity parameter that the onboard system uses to calculate the protection level, but if the worst case positioning error exceeds the allowable maximum error value, the protection level will exceed the alert limit. Provide integrity parameters.
  • the integrity parameter is a parameter defined in the international standard of Non-Patent Document 3, and is used when the onboard system calculates a reliability range of positioning error called a protection level.
  • the protection level is a value calculated by the onboard system using the integrity parameter provided by the ground system, and is a reliability limit value of positioning error when positioning is performed by applying differential correction.
  • the alert limit is an alarm limit value that is determined according to the distance from the onboard system to the airport where the onboard system is about to land, and the protection level calculated by the onboard system exceeds this alert limit.
  • the on-board system is a threshold value that determines that continuation of navigation using GBAS is impossible.
  • the geometry screening process is performed for all the satellite sets that may be used by the onboard system and increases the integrity parameter so that safety can be guaranteed for all satellite sets.
  • the protection level calculated using the satellite set that can continue the approach and landing safely without the worst case positioning error exceeding the allowable maximum value is increased.
  • the increased integrity parameter is also used in an on-board system using a satellite set in which the worst case positioning error does not exceed the maximum allowable value. Therefore, the protection level calculated using this integrity parameter may exceed the alert limit, thereby impairing availability.
  • the position of the aircraft is calculated based on the satellite set that can continue to approach and land safely Even so, the protection level calculated from the integrity parameter may exceed the alert limit, resulting in loss of availability.
  • a main object of the present invention is to provide a terrestrial satellite navigation reinforcement system and an availability prediction method that can predict the availability of each positioning satellite set and eliminate positioning satellites whose availability has been reduced according to the prediction. It is.
  • the invention relating to the terrestrial satellite navigation reinforcement system in which the ground system guides the on-board system using the positioning signal from the positioning satellite, the ionospheric delay amount of the positioning signal by the ionosphere experienced by the ground system, and The difference between the ionosphere and the ionosphere delay at the predetermined calculation target position when the ionosphere state parameters are comprehensively changed while taking into account the time variation of the relative position between the ionosphere and the onboard system is maximized
  • the worst case ionosphere delay amount difference calculation unit that calculates the worst case ionosphere delay amount difference table and the satellite position, pseudorange, and carrier phase distance of the positioning satellite are used to monitor the positioning satellite for abnormalities and are determined to be normal.
  • a differential correction value that creates usable satellite information including the satellite position of the positioning satellite as a usable positioning satellite Set the satellite set of the positioning satellite based on the output section and usable satellite information, calculate the worst case positioning error at the calculation target position using the worst case ionosphere delay difference table, and allow using the current integrity parameter If the maximum error is calculated and the worst-case positioning error exceeds the allowable maximum error, the satellite system used by the onboard system is repeated by repeating the process of increasing the integrity parameter until the protection level exceeds the protection level judgment threshold.
  • the geometry screening unit that ensures that the error experienced by the onboard system does not exceed the protection level, and whether the protection level when using all available satellites exceeds a preset alert limit.
  • the invention relating to the availability prediction method used for a terrestrial satellite navigation augmentation system in which positioning is performed using a positioning signal from a positioning satellite and the ground system guides the onboard system, the positioning signal of the ionosphere experienced by the ground system is obtained.
  • the difference between the ionospheric delay amount and the ionospheric delay amount at a predetermined calculation target position by the ionosphere when exhaustively changing the ionospheric state parameters while taking into account the temporal change in the relative position between the ionosphere and the onboard system Calculate the worst case ionosphere delay amount difference table with the largest error, monitor the positioning satellite for abnormality using the satellite position, pseudorange, and carrier phase distance of the positioning satellite, and use the positioning satellite determined to be normal As possible satellites, usable satellite information including the satellite position of the positioning satellite is created, and a satellite set of positioning satellites is created based on the usable satellite information.
  • the worst case ionosphere delay difference table is used to calculate the worst case positioning error at the calculation target position, the allowable maximum error is calculated using the current integrity parameter, and the worst case positioning error indicates the allowable maximum error. If so, by repeating the process of increasing the integrity parameter until the protection level exceeds the protection level threshold, the error experienced by the onboard system will exceed the protection level no matter what satellite set the onboard system uses.
  • the availability is determined whether the protection level when using all available satellites exceeds the preset alert limit. If the protection level exceeds the alert limit, the availability is lost.
  • the loss of availability information and receive the loss of availability information Then, using the worst case ionosphere delay amount difference table, a predetermined number of positioning satellites are excluded from the positioning satellites included in the usable satellite information, an excluded satellite index is calculated, and the positioning satellites to be excluded according to the excluded satellite index are calculated.
  • the integrity parameter is calculated as usable satellite update information, excluding the positioning satellite included in the usable satellite information.
  • the availability when all the positioning satellites are used is predicted, and when it is determined that the availability is lost by the prediction, it is possible to eliminate the satellites that can avoid the loss of availability. This improves system availability.
  • FIG. 1 is a conceptual diagram of a terrestrial satellite navigation reinforcement system 2 according to the present embodiment
  • FIG. 2 is a functional block diagram of the terrestrial system 3.
  • FIG. 3 is a figure explaining the ionosphere abnormality model etc. which are mentioned later.
  • the terrestrial satellite navigation reinforcement system 2 includes a ground system 3 whose position is known, a plurality of positioning satellites 4 that output positioning signals, and an on-board system 5 that is mounted on a flying object such as an aircraft to be guided.
  • the ground system 3 includes a worst case ionosphere delay amount difference calculation unit 11, a reception unit 12, a differential correction value calculation unit 13, an integrity parameter calculation unit 14, a transmission unit 15, and a storage unit 16.
  • the integrity parameter calculation unit 14 includes a geometry screening unit 14a, an availability prediction unit 14b, and an excluded satellite determination unit 14c.
  • the storage unit 16 stores the ionosphere abnormality model M and the calculation target position Q that are determined in advance, and also stores the worst case ionosphere delay amount difference table created by the worst case ionosphere delay amount difference calculation unit 11.
  • the worst case ionosphere delay amount difference calculation unit 11 performs worst case ionosphere delay amount difference calculation processing.
  • FIG. 4 is a flowchart showing the worst case ionosphere delay amount difference calculation process.
  • Step SA1 The worst case ionosphere delay amount difference calculation unit 11 reads the ionosphere abnormality model from the storage unit 16.
  • This ionospheric abnormality model is obtained by modeling the range of the ionospheric abnormality state with some state parameters.
  • FIG. 3 shows an example in which the ionospheric anomaly is modeled by three state parameters: the ionospheric delay amount slope (S), the ionospheric anomaly moving speed (V), and the ionospheric anomaly width (W).
  • S the ionospheric delay amount slope
  • V ionospheric anomaly moving speed
  • W ionospheric anomaly width
  • the ionospheric abnormality model is not limited to the model shown in FIG. 3, and any model that can represent the ionospheric abnormality by some state parameters may be used.
  • Steps SA2 and SA3 Next, the worst case ionosphere delay amount difference calculation unit 11 reads the calculation target position from the storage unit 16. This calculation target position is a position set in advance as a point through which the onboard system 5 should pass. For example, the point Q in FIG. 3 corresponds to this. Then, the worst case ionosphere delay amount difference calculation unit 11 calculates the worst case ionosphere delay amount difference at the calculation target position Q on the assumption that there is an ionosphere abnormality within the range represented by the ionosphere abnormality model.
  • the ionospheric delay amount is a propagation delay amount that occurs until the positioning signal from the positioning satellite passes through the ionosphere and reaches the receiving unit 12 and the calculation target position Q.
  • the positioning satellite and the receiving unit 12 and the calculation target This is an error factor of the measured value of the distance from the position Q.
  • the ionospheric delay amount difference is a difference between the ionospheric delay amount at the position where the receiving unit 12 is installed and the ionospheric delay amount at the calculation target position Q. Therefore, the worst case ionosphere delay amount difference simulates the ionosphere delay amount difference by comprehensively changing the ionospheric state parameters while taking into account the temporal change of the relative position between the ionosphere and the onboard system 5. This is the maximum value of the ionospheric delay amount difference that can be experienced when the onboard system 5 reaches the calculation target position Q.
  • Non-Patent Document 1 can be used to calculate the worst-case ionospheric delay amount difference. That is, the ionosphere delay time difference is simulated by comprehensively changing the ionospheric state parameters while taking into account the temporal change in the relative position between the ionosphere and the onboard system 5. Then, when the onboard system 5 reaches the calculation target position Q, the worst case ionosphere delay amount difference that the onboard system 5 can experience is set as the worst case ionosphere delay amount difference.
  • Step SA4 Next, the worst case ionosphere delay amount difference calculation unit 11 creates a worst case ionosphere delay amount difference table and stores it in the storage unit 16.
  • This worst case ionosphere delay amount difference table is a table of the worst case ionosphere delay amount difference at the calculation target position Q as a function of the state parameter of the ionosphere abnormality model. It is not a requirement to make a table, but a requirement is to summarize the worst case ionospheric delay amount difference at the calculation target position Q as a function of the state parameter of the ionosphere abnormality model.
  • the receiving unit 12 receives the positioning signal received from the positioning satellite, and calculates the satellite position of the positioning satellite from the satellite orbit information included in the positioning signal. The calculated satellite position is output to the differential correction value calculation unit 13.
  • the receiving unit 12 calculates the pseudo distance from the positioning signal and the carrier phase distance from the carrier phase, and outputs it to the differential correction value calculating unit 13.
  • the pseudo distance is a distance calculated by multiplying the positioning signal propagation time between the positioning satellite 4 and the receiving unit 12 measured by the positioning signal by the speed of light.
  • the carrier phase distance is a distance calculated by continuously measuring the carrier phase angle of the positioning signal demodulated by the receiving unit 12.
  • the differential correction value calculation unit 13 monitors the positioning satellite for abnormality using the satellite position, pseudorange, carrier phase distance, etc. from the reception unit 12. Then, the positioning satellite determined to be normal is transmitted to the integrity parameter calculation unit 14 as usable satellite information together with the satellite position as a usable satellite.
  • satellite abnormality monitoring items include satellite clock anomalies, satellite orbit information anomalies sent from satellites, and modulation circuit anomalies that generate ranging signals. There are no particular limitations on the monitoring method for such satellite clock anomalies, satellite orbit information anomalies, and modulation circuit anomalies.
  • Non-Patent Document 4 a method of monitoring satellite clock anomalies from the rate of change of carrier phase distance, and from the validity of satellite orbit information using multiple generations of orbit information as in Non-Patent Document 5.
  • a method for monitoring abnormalities in satellite orbit information can be applied.
  • Non-Patent Document 6 it is possible to apply a method in which a plurality of correlators is provided in the receiving unit and abnormality of the modulation circuit is monitored from the validity of the correlation waveform.
  • Non-Patent Document 4 Gang Xie, "OPTIMAL ON-AIRPORT MONITORING OF THE INTEGRITY OF GPS-BASED LANDING SYSTEMS", Ph.D.Dissertation, Stanford University, March 2004.
  • Non-Patent Document 5 Boris Pervan, Livio Graton, "Orbit Ephemeris Monitor for Local Area Differential GPS", IEEE Transactions on AerosPuce and Electronic Systems, Vol. 41, No. 2, April 2005.
  • Non-Patent Document 6 Eric Phelts, "Multicorrelator Techniques for Robust Mitigation of Threats to GPS Signal Quality", Ph. D. Dissertation, Stanford University, June 2001.
  • differential correction value calculation unit 13 instructs the integrity parameter calculation unit 14 to execute the integrity parameter calculation process (parameter calculation command) at regular time intervals.
  • the integrity parameter calculation unit 14 uses the worst case ionosphere delay amount difference calculation unit 11 created by the worst case ionosphere delay amount difference calculation unit 11 and stored in the storage unit 16 and the usable satellite information received from the differential correction value calculation unit 13. The integrity parameter is calculated using the satellite position and the integrity parameter initial value included, and the calculated integrity parameter is transmitted to the transmission unit 15.
  • the integrity parameter is a parameter used when the onboard system 5 calculates a reliability range of the positioning error called a protection level, and is a GBAS message type in the GBAS message format defined in the international standard of Non-Patent Document 3. 1 ⁇ pr_gnd, Ephemeris Decoration Parameter, and GBAS message type 2 ⁇ vertical_iono_gradient.
  • FIG. 5 is a flowchart showing the integrity parameter calculation process.
  • steps SB3 to SB7 are performed after step SB2, and the process proceeds to step SB8.
  • Steps SB8 to SB10 are performed, the process proceeds to Step SB3, and Steps SB3 to SB7 are performed. Thereafter, step SB11 is performed.
  • Steps SB1, SB2 Upon receiving an instruction to execute an integrity parameter calculation process from the differential correction value calculation unit 13, the integrity parameter calculation unit 14 starts an integrity parameter calculation process.
  • the geometry screening unit 14a reads the worst case ionosphere delay amount difference table, the calculation target position Q, and the integrity parameter initial value from the storage unit 16.
  • Steps SB3 and SB4 The geometry screening unit 14a sets the satellites obtained by combining the positioning satellites to be screened from the positioning satellites included in the usable satellite information, the worst case ionosphere delay amount difference table, and the calculation target The worst case positioning error at the calculation target position Q is calculated using the position Q, the integrity parameter initial value, and the satellite position included in the usable satellite information.
  • the geometry screening unit 14a calculates the allowable maximum error at the calculation target position Q using the current integrity parameter (the integrity parameter initial value or the integrity parameter changed thereafter).
  • the worst case positioning error is the worst case error that the onboard system 5 can experience.
  • the allowable maximum error is a protection level calculated by the onboard system using the integrity parameter. Note that this allowable maximum error can be set to another value such as an alert limit.
  • Steps SB5 and SB6 Then, it is determined whether or not the worst case positioning error exceeds the allowable maximum error. If the worst case positioning error exceeds the allowable maximum error, the integrity parameter is increased until the protection level exceeds the protection level determination threshold.
  • the protection level determination threshold can be the worst case positioning error and alert limit. In the following description, the worst case positioning error will be described.
  • Step SB7 Such a geometry screening process is performed for all the satellite sets of positioning satellites included in the usable satellite information. Therefore, the integrity parameter after step SB7 is the maximum value. Therefore, no matter which satellite set the onboard system 5 uses, the worst case positioning error will not exceed the protection level.
  • the integrity parameter calculated in this way is output to the availability prediction unit 14b.
  • Non-Patent Documents 1 and 2 For the calculation method of the worst case positioning error at the calculation target position Q and the method of increasing the integrity parameter, the methods of Non-Patent Documents 1 and 2 can be used. Further, a method for calculating the protection level from the integrity parameter is defined in the international standard of Non-Patent Document 3.
  • Steps SB8 and SB9 The availability prediction unit 14b uses the integrity parameters from the geometry screening unit 14a to calculate the calculation target positions when all the positioning satellites included in the usable satellite information from the differential correction value calculation unit 13 are used.
  • the protection level at Q is calculated. Thus, the protection level when all positioning satellites are used is described as the protection level when all usable satellites are used.
  • the availability predicting unit 14b determines whether the protection level when using all the usable satellites exceeds the alert limit, and the protection level when using all the usable satellites exceeds the alert limit. Determines that the availability is lost, and outputs the availability loss information to the excluded satellite determination unit 14c.
  • the availability predicting unit 14b outputs the integrity parameter from the geometry screening unit 14a as it is.
  • Step SB10 Excluded satellite determination processing is performed when the protection level when using all usable satellites exceeds the alert limit.
  • the protection level decreases as the number of positioning satellites used for positioning increases. Therefore, if the protection level when using all available satellites exceeds the alert limit, the protection level calculated for a smaller number of positioning satellites is also more likely to exceed the alert limit ( Likely to be lost).
  • the positioning satellite which is likely to avoid the loss of availability by performing the exclusion satellite determination process to exclude the satellite is excluded from the usable satellites, and the integrity parameter is set. Calculate again. As a result, the integrity parameter can be increased moderately, and loss of availability can be suppressed.
  • the excluded satellite determining unit 14c calculates an index for determining a positioning satellite to be excluded (hereinafter referred to as an excluded satellite index). Then, the satellite to be excluded is determined based on the excluded satellite index, and the positioning satellite excluding the excluded satellite is set as a new usable satellite (hereinafter, usable satellite update information). The usable satellite update information is sent to the geometry screening unit 14a, and the integrity parameter is calculated.
  • the worst case vertical position error (MIEV) that can occur at the calculation target position Q when it is assumed that the worst case ionosphere delay amount difference occurs simultaneously in two positioning satellites among the usable satellites. Is used.
  • Step SB11 The integrity parameter calculated by the above processing is transmitted from the transmission unit 15 to the onboard system 5.
  • FIG. 6 is a flowchart for determining the satellite n to be excluded.
  • Steps SC1 and SC2 First, the excluded satellite determination unit 14c reads the worst case ionosphere delay amount difference table from the storage unit 16. Next, a satellite set A (n) formed by excluding one positioning satellite (shown by the symbol n) from the usable satellites is defined.
  • Svert (p) Sv (p) + Sx (p) ⁇ tan ( ⁇ GPA) This is calculated according to Equation 1 below.
  • IER (p1) and IER (p2) are the worst case ionospheric delay amount differences for the positioning satellites p1 and p2, respectively.
  • the worst case ionosphere delay amount difference is calculated by, for example, the method disclosed in Non-Patent Document 1, and includes the worst case ionosphere delay amount difference table read from the storage unit 16 and the positioning satellite p1 received from the differential correction value calculation unit 13. It is determined from the position of p2.
  • Sv (p) and Sx (p) are contribution terms defined in the international standard of Non-Patent Document 3, and Sv (p) is a contribution to the vertical positioning error of the delay amount difference due to the ionosphere with respect to the positioning satellite p.
  • Sx (p) is a contribution term to the runway direction positioning error of the delay amount difference due to the ionosphere with respect to the positioning satellite p.
  • ⁇ GPA is the angle of entry into the runway.
  • Steps SC5 to SC7 Next, the worst case which is the maximum value of IEV (p1, p2
  • p1, p2 ⁇ A (n)) calculated for the satellite pair (p1, p2) of each satellite set A (n) Vertical position error MIEV (n) is MIEV (n) max (IEV (p1, p2
  • nminMIEV indicates one positioning satellite excluded from all usable satellites when MIEV (n) is minimized.
  • the geometry screening unit 14a repeats the processing described in steps SB3 to SB7 using this usable satellite update information, and calculates a new integrity parameter.
  • the new integrity parameter is molded into a predetermined format by the transmission unit 15 to construct a GBAS message, which is included in the reinforcement information and sent to the onboard system 5.
  • the onboard system 5 When the onboard system 5 receives the reinforcement information including the integrity parameter sent from the ground system 3, the onboard system 5 calculates the protection level using the integrity parameter. If the protection level is smaller than the alert limit, the position of the aircraft is corrected using information from the transmission unit 15 and the approach and landing at the airport is continued. On the other hand, when the protection level is higher than the alert limit, the approach / landing is canceled or the approach / landing using other means is switched.
  • the positioning satellite is calculated by eliminating positioning satellites that significantly increase the integrity parameter, loss of availability can be suppressed.
  • FIG. 7 shows the use of GPS satellite orbit information of January 1, 2014, and operates the integrity parameter calculation unit 14 every 60 seconds to create usable satellite update information, which is included in this usable satellite update information. It is the figure which showed the protection level calculated using the integrity parameter to be obtained.
  • the ⁇ marks indicate the vertical protection levels calculated using the integrity parameters according to the present embodiment.
  • the vertical protection level calculated using the integrity parameter according to the conventional method is indicated by ⁇ .
  • the alert limit is set to 10 m defined by the international standard of Non-Patent Document 3 (straight line in FIG. 7).
  • the protection level calculated using all of the usable positioning satellites 4 exceeds the alert limit, a satellite to be excluded is determined by the exclusion satellite determination process, and a new usable positioning satellite is determined. Since the protection level is set to 4, the two protection levels coincide in a time zone in which the protection level does not exceed the alert limit. Even if the protection level (marked with ⁇ ) calculated by the conventional method exceeds the alert limit and there is a time zone when the system availability is lost, the method according to this embodiment often has the protection level (marked with ⁇ ). Availability is guaranteed because it is below the alert limit.
  • FIG. 8 is a table comparing the number of times that the protection level exceeds the alert limit and the availability in the conventional method and the method of the present invention. The figure shows that according to the present invention, the number of times that the protection level exceeds the alert limit can be reduced from 70 times to 11 times, and the availability can be improved from 95.14% to 99.24%. .
  • calculation target position Q is described as one. However, the calculation target position Q is not limited to this and may be plural.
  • the maximum position error allowable in the geometry screening unit 14a is set as the protection level, this may be used as the alert limit.
  • protection level determination threshold when increasing the integrity parameter in the geometry screening unit 14a is the worst case positioning error, this may be used as the alert limit at the calculation target position Q.
  • MIEV (n) shown in Formula 2 is used as the exclusion satellite index when determining the exclusion satellite, but this is used as another exclusion satellite index.
  • a (n))
  • the case where the protection level at the calculation target position Q exceeds the alert limit when all the usable positioning satellites 4 are used is used as a criterion for determining the loss of availability.
  • this can be used as another standard. For example, it is possible to add a case where the protection level calculated by removing one satellite from all the usable positioning satellites 4 exceeds the alert limit.
  • the availability prediction process performed by the availability prediction unit 14b and the excluded satellite determination process performed by the excluded satellite determination unit 14c have been described only once (when satellite exclusion is performed only once), this is performed multiple times. It is also possible to do. That is, the availability is lost even if the availability prediction process is performed using the integrity parameter determined by performing the geometry screening process again except the excluded satellite determined by the excluded satellite determination unit 14c by the excluded satellite determination process. In addition, it is possible to exclude positioning satellites that are likely to be able to avoid loss of availability by performing exclusion satellite determination processing to exclude the satellites.
  • the storage unit 16 is provided, and the worst case ionosphere delay amount difference calculation unit 11 calculated by the worst case ionosphere delay amount difference calculation unit 11, the calculation target position Q, and the ionosphere abnormality model M are stored therein. It is also possible to hard code this information in the worst case ionosphere delay amount difference calculation unit 11 and the integrity parameter calculation unit 14 without providing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

In order to improve the availability of a ground type satellite navigation reinforcement system, the present invention is provided with: a worst case ionospheric delay amount difference calculation unit which calculates a worst case ionospheric delay amount difference table for a ground system and an onboard system; a differential correction value calculation unit which creates usable satellite information; a geometric screening unit which guarantees that an error experienced by the onboard system will not exceed a protection level, regardless of which satellite set of positioning satellites is used by the onboard system; an availability prediction unit which creates availability loss information if the protection level when all usable satellites are used exceeds an alert limit; and an eliminated satellite determination unit which eliminates a prescribed number of positioning satellites from the positioning satellites included in the usable satellite information to calculate an eliminated satellite indicator, excludes from the positioning satellites included in the usable satellite information the positioning satellite which was eliminated when the eliminated satellite indicator was minimized, and using the result therefrom as usable satellite update information, causes the geometric screening unit to calculate an integrity parameter.

Description

地上型衛星航法補強システム、及び、可用性予測方法Terrestrial satellite navigation reinforcement system and availability prediction method
 本発明は、地上型衛星航法補強システム、及び、可用性予測方法に関する。 The present invention relates to a terrestrial satellite navigation reinforcement system and an availability prediction method.
 受信部で受信されたGPS衛星(測位衛星)からのGPS信号(測位信号)に基づき、当該受信部の位置を知る技術は、例えばカーナビ等において用いられている。しかし、かかる方法で取得された位置は、航空機の航法に必要な精度や安全性の保証がないので、航空機が着陸する際の誘導等に利用することができない。そこで、航空機の進入着陸に必要な位置精度や安全性が保証できるように、ディファレンシャルGPSの原理を応用した地上型衛星航法補強システム(GBAS:Ground Based Augmentation System)が開発され、一部で運用が開始されている。 A technique for knowing the position of the receiving unit based on a GPS signal (positioning signal) from a GPS satellite (positioning satellite) received by the receiving unit is used in, for example, a car navigation system. However, the position obtained by such a method cannot be used for guidance or the like when the aircraft is landing because there is no guarantee of accuracy and safety necessary for navigation of the aircraft. Therefore, a ground-based satellite navigation reinforcement system (GBAS: Ground Based Augmentation System) that applies the principle of differential GPS has been developed to ensure the position accuracy and safety required for aircraft approach and landing. Has been started.
 この地上型衛星航法補強システムでは、地上に設置された地上システムや飛行機等の飛翔体に搭載された機上システムで測位衛星からの測位信号が受信される。そして、地上システムや機上システムは、受信した測位信号から、自機と測位衛星との距離を算出する。このときの距離は、擬似距離と称されて、測位信号が送信されてから受信されるまでの時間(伝搬時間)に測位信号の伝搬速度(所定速度であると仮定)を乗算することで算出される。なお、伝搬時間は、測位信号の測位衛星からの送信時刻と、当該測位信号の地上システムや機上システムでの受信時刻との差である。
 しかし、測位衛星から送信された測位信号が電離層を通過して地上システムや機上システムで受信される場合には、当該測位信号の伝搬速度が所定速度であるとの仮定が成り立たなくなる。
 即ち、測位信号が電離層を通過すると、当該電離層の影響を受けて伝搬速度が遅くなり、受信時刻に遅延が生じる。このため、伝搬時間から計算される擬似距離に誤差が含まれるようになる。
 地上システムや機上システムは、複数の測位衛星との間の擬似距離を用いて自機の位置を算出している。従って、擬似距離が誤差を含んでいると、この誤差は自機の測位位置精度を低下させる要因となる。
In this terrestrial satellite navigation reinforcement system, a positioning signal from a positioning satellite is received by a ground system installed on the ground or an on-board system mounted on a flying object such as an airplane. Then, the ground system or the onboard system calculates the distance between the own system and the positioning satellite from the received positioning signal. The distance at this time is called a pseudo distance, and is calculated by multiplying the time (propagation time) from when the positioning signal is transmitted until it is received by the propagation speed of the positioning signal (assuming that it is a predetermined speed). Is done. The propagation time is the difference between the transmission time of the positioning signal from the positioning satellite and the reception time of the positioning signal in the ground system or on-board system.
However, when the positioning signal transmitted from the positioning satellite passes through the ionosphere and is received by the ground system or the onboard system, it is no longer assumed that the propagation speed of the positioning signal is a predetermined speed.
That is, when the positioning signal passes through the ionosphere, the propagation speed is slowed by the influence of the ionosphere, and a delay occurs in the reception time. For this reason, an error is included in the pseudo distance calculated from the propagation time.
The ground system and the on-board system calculate the position of the own aircraft using pseudoranges between a plurality of positioning satellites. Therefore, if the pseudo distance includes an error, this error causes a decrease in the positioning position accuracy of the own device.
 このような誤差を補正するために、ディファレンシャルGPSと称される技術が提案されている。このディファレンシャルGPSでは、地上システムは、上述した擬似距離を算出すると共に、後述する幾何学距離を算出する。 幾何学距離は、地上システムの位置情報と測位衛星の位置情報とを用いて算出された自機と測位衛星との間の距離である。ここで、地上システムの位置情報は、予め厳密に調査されて記憶されている。また、測位衛星の位置情報は、当該測位衛星から放送される衛星軌道情報に含まれている。 In order to correct such an error, a technique called differential GPS has been proposed. In the differential GPS, the ground system calculates the above-described pseudo distance and a geometric distance described later. The geometric distance is a distance between the own aircraft and the positioning satellite calculated using the position information of the ground system and the position information of the positioning satellite. Here, the position information of the ground system is strictly investigated and stored in advance. The position information of the positioning satellite is included in the satellite orbit information broadcast from the positioning satellite.
 そして、地上システムは、擬似距離と幾何学距離との差分を算出する。疑似距離の測定に誤差が無ければ、擬似距離と幾何学距離とは一致するはずであるが、例えば測位信号の伝搬速度が電離層の影響を受けて遅くなっている場合には、差分が生じる。 And the ground system calculates the difference between the pseudo distance and the geometric distance. If there is no error in the measurement of the pseudo distance, the pseudo distance and the geometric distance should match. However, for example, when the propagation speed of the positioning signal is slow due to the influence of the ionosphere, a difference occurs.
 擬似距離に含まれる誤差には、電離層に起因する誤差の他、測位衛星に搭載されている時計の誤差や、測位衛星から放送される衛星軌道情報の誤差等も存在するが、これらは本発明と関係が無いので以降の議論では割愛する。 地上システムは、測位衛星毎に上記差分を算出し、これを補正値として機上システムに送る。機上システムは、独自に算出した擬似距離を地上システムから提供された補正値により補正することで、当該擬似距離に含まれる電離層の影響を軽減して、自機の測位位置を高精度に算出できるようにする。 The errors included in the pseudorange include errors due to the ionosphere, clock errors mounted on positioning satellites, satellite orbit information broadcasts from positioning satellites, and the like. Since it is not related to this, it will be omitted in the following discussion. The ground system calculates the difference for each positioning satellite and sends it to the on-board system as a correction value. The onboard system corrects the uniquely calculated pseudorange with the correction value provided by the ground system, thereby reducing the influence of the ionosphere contained in the pseudorange and calculating the positioning position of the aircraft with high accuracy. It can be so.
 このようなディファレンシャルGPSによる補正は、電離層活動が平穏で、地上システムと機上システムとで電離層遅延が共通である場合に有効となる。 Such correction by differential GPS is effective when ionospheric activity is calm and the ionospheric delay is common between the ground system and the onboard system.
 しかし、電離層密度が大きく空間変化している場合(以下、このような場合を電離層異常と記載する)、電離層遅延が地上システムと機上システムとで共通でなくなる。 However, when the ionospheric density is greatly changing in space (hereinafter, this case is referred to as an ionosphere abnormality), the ionospheric delay is not common between the ground system and the onboard system.
 このような電離層異常が発生している場合に、機上システムが独自に算出した擬似距離を地上システムから提供された補正値により補正すると誤差が増大して、その保証範囲である保護レベルを超えることがある。そこで、非特許文献1,2においては、誤差が許容限界値を超える程度に増大してしまう可能性のあるジオメトリ(衛星セット)を、機上システムが使用できないようにするジオメトリスクリーニング処理を提案している。 When such an ionospheric anomaly has occurred, if the pseudorange calculated by the onboard system is corrected using the correction value provided by the ground system, the error increases and exceeds the guaranteed protection level. Sometimes. Therefore, Non-Patent Documents 1 and 2 propose a geometry screening process that prevents the onboard system from using geometries (satellite sets) that may increase the error to an extent that exceeds the allowable limit. ing.
 ジオメトリスクリーニング処理では、機上システムが使用する可能性のある衛星セット(測位衛星のセット)毎に最悪ケースの測位誤差を推定する。そして、この最悪ケース測位誤差が許容可能な最大誤差値を超える場合には、地上システムは機上システムに提供するインテグリティパラメータを増大させる。機上システムは、このインテグリティパラメータを使用して保護レベルを算出する。地上システムは、この保護レベルがアラートリミットと呼ばれるアラートを発生させる閾値を超えるレベルにまでインテグリティパラメータを増大させる。 In the geometry screening process, the worst case positioning error is estimated for each satellite set (positioning satellite set) that the onboard system may use. If this worst case positioning error exceeds an allowable maximum error value, the ground system increases the integrity parameter provided to the onboard system. The onboard system uses this integrity parameter to calculate the protection level. The ground system increases the integrity parameter to a level where this protection level exceeds a threshold that generates an alert called an alert limit.
 即ち、地上システムは、機上システムが保護レベルの算出に用いるインテグリティパラメータを提供するが、最悪ケース測位誤差が許容可能な最大誤差値を超える場合には保護レベルがアラートリミットを超えるような値のインテグリティパラメータを提供する。 That is, the ground system provides the integrity parameter that the onboard system uses to calculate the protection level, but if the worst case positioning error exceeds the allowable maximum error value, the protection level will exceed the alert limit. Provide integrity parameters.
 これにより機上システムが許容可能な最大誤差を超えた状態で進入着陸を継続してしまうことが回避されて、安全性が保証される。 ∙ This prevents the onboard system from continuing to approach and land in a state where the maximum allowable error is exceeded, thus ensuring safety.
 なお、インテグリティパラメータとは、非特許文献3の国際標準に規定されているパラメータで、機上システムが保護レベルと呼ばれる測位誤差の信頼範囲を算出する際に使用するパラメータである。 The integrity parameter is a parameter defined in the international standard of Non-Patent Document 3, and is used when the onboard system calculates a reliability range of positioning error called a protection level.
 また、保護レベルとは、地上システムが提供するインテグリティパラメータを用いて、機上システムが算出する値で、ディファレンシャル補正を適用して測位した際の測位誤差の信頼限界値である。 Also, the protection level is a value calculated by the onboard system using the integrity parameter provided by the ground system, and is a reliability limit value of positioning error when positioning is performed by applying differential correction.
 さらに、アラートリミットとは、機上システムから機上システムが着陸しようとしている空港までの距離に応じて決定される警報限界値で、機上システムで算出した保護レベルが、このアラートリミットを超える場合、機上システムはGBASを使用した航行の継続が不可能であると判断する閾値である。 Furthermore, the alert limit is an alarm limit value that is determined according to the distance from the onboard system to the airport where the onboard system is about to land, and the protection level calculated by the onboard system exceeds this alert limit. The on-board system is a threshold value that determines that continuation of navigation using GBAS is impossible.
 しかしながら、ジオメトリスクリーニング処理は、機上システムが使用する可能性のある衛星セットの全てについて行われて、全ての衛星セットに対して安全性が保証できるようにインテグリティパラメータを増大させる。この結果、最悪ケース測位誤差が許容可能な最大値を超えず、安全に進入着陸を継続できる衛星セットを使用して算出した保護レベルも増大してしまう問題がある。 However, the geometry screening process is performed for all the satellite sets that may be used by the onboard system and increases the integrity parameter so that safety can be guaranteed for all satellite sets. As a result, there is a problem that the protection level calculated using the satellite set that can continue the approach and landing safely without the worst case positioning error exceeding the allowable maximum value is increased.
 そして、このような場合には、最悪ケースの測位誤差が許容可能な最大値を超えない衛星セットを使用している機上システムにおいても、増大されたインテグリティパラメータが使用される。従って、このインテグリティパラメータを用いて算出した保護レベルがアラートリミットを超えてしまい、可用性を損なうことがある。即ち、最悪ケース測位誤差が許容可能な最大誤差値を超える衛星セットに対応して、地上システムがインテグリティパラメータを増大させた結果、安全に進入着陸を継続できる衛星セットに基づき自機の位置を算出していても、このインテグリティパラメータから算出された保護レベルがアラートリミットを超えてしまい可用性が失われてしまうことが起きる。 And in such a case, the increased integrity parameter is also used in an on-board system using a satellite set in which the worst case positioning error does not exceed the maximum allowable value. Therefore, the protection level calculated using this integrity parameter may exceed the alert limit, thereby impairing availability. In other words, as a result of the ground system increasing the integrity parameter corresponding to the satellite set whose worst case positioning error exceeds the allowable maximum error value, the position of the aircraft is calculated based on the satellite set that can continue to approach and land safely Even so, the protection level calculated from the integrity parameter may exceed the alert limit, resulting in loss of availability.
 そこで、本発明主目的は、測位衛星セット毎の可用性を予測し、該予測に従い可用性を落としている測位衛星を排除できるようにした地上型衛星航法補強システム、及び、可用性予測方法を提供することである。 Accordingly, a main object of the present invention is to provide a terrestrial satellite navigation reinforcement system and an availability prediction method that can predict the availability of each positioning satellite set and eliminate positioning satellites whose availability has been reduced according to the prediction. It is.
 上記課題を解決するため、測位衛星からの測位信号を用いて地上システムが機上システムを誘導する地上型衛星航法補強システムにかかる発明は、地上システムが経験する電離層による測位信号の電離層遅延量と、電離層と機上システムとの相対的位置の時間変化を考慮しながら電離層の状態パラメータを網羅的に変化させたときの当該電離層による所定の計算対象位置における電離層遅延量との差分が最大となる最悪ケース電離層遅延量差分テーブルを算出する最悪ケース電離層遅延量差分算出部と、測位衛星の衛星位置、擬似距離、及び、搬送波位相距離を用いて当該測位衛星の異常監視を行い、正常と判断された測位衛星を使用可能衛星として、当該測位衛星の衛星位置を含む使用可能衛星情報を作成するディファレンシャル補正値算出部と、使用可能衛星情報に基づき測位衛星の衛星セットを設定し、最悪ケース電離層遅延量差分テーブルを用いて計算対象位置における最悪ケース測位誤差を算出すると共に、現在のインテグリティパラメータを用いて許容最大誤差を算出して、最悪ケース測位誤差が許容最大誤差を超える場合、保護レベルが保護レベル判定閾値を超えるまでインテグリティパラメータを増大させる処理を繰り返すことにより、機上システムがどの衛星セットを使用したとしても、当該機上システムが経験する誤差が保護レベルを超えないことを保証するジオメトリスクリーニング部と、全使用可能衛星を使用したときの保護レベルが予め設定されたアラートリミットを超えるか否かの可用性判断を行い、当該保護レベルが該アラートリミットを超える場合は、可用性が喪失していると判断して、可用性喪失情報を作成する可用性予測部と、可用性喪失情報を受信すると、最悪ケース電離層遅延量差分テーブルを用いて使用可能衛星情報に含まれる測位衛星から所定数の測位衛星を排除して排除衛星指標を算出し、該排除衛星指標に従い排除する前記測位衛星を、使用可能衛星情報に含まれる測位衛星から除いて、これを使用可能衛星更新情報としてジオメトリスクリーニング部にインテグリティパラメータを算出させる排除衛星決定部と、を備えることを特徴とする。 In order to solve the above problems, the invention relating to the terrestrial satellite navigation reinforcement system in which the ground system guides the on-board system using the positioning signal from the positioning satellite, the ionospheric delay amount of the positioning signal by the ionosphere experienced by the ground system, and The difference between the ionosphere and the ionosphere delay at the predetermined calculation target position when the ionosphere state parameters are comprehensively changed while taking into account the time variation of the relative position between the ionosphere and the onboard system is maximized The worst case ionosphere delay amount difference calculation unit that calculates the worst case ionosphere delay amount difference table and the satellite position, pseudorange, and carrier phase distance of the positioning satellite are used to monitor the positioning satellite for abnormalities and are determined to be normal. A differential correction value that creates usable satellite information including the satellite position of the positioning satellite as a usable positioning satellite Set the satellite set of the positioning satellite based on the output section and usable satellite information, calculate the worst case positioning error at the calculation target position using the worst case ionosphere delay difference table, and allow using the current integrity parameter If the maximum error is calculated and the worst-case positioning error exceeds the allowable maximum error, the satellite system used by the onboard system is repeated by repeating the process of increasing the integrity parameter until the protection level exceeds the protection level judgment threshold. However, the geometry screening unit that ensures that the error experienced by the onboard system does not exceed the protection level, and whether the protection level when using all available satellites exceeds a preset alert limit. Make an availability decision and the protection level exceeds the alert limit In this case, it is determined that the availability is lost, and the availability prediction unit that creates the availability loss information, and when the availability loss information is received, the positioning included in the usable satellite information using the worst case ionosphere delay amount difference table An excluded satellite index is calculated by excluding a predetermined number of positioning satellites from the satellite, and the positioning satellite to be excluded according to the excluded satellite index is excluded from the positioning satellites included in the usable satellite information, and this is used satellite update information And an excluded satellite determination unit that causes the geometry screening unit to calculate an integrity parameter.
 また、測位衛星からの測位信号を用いて測位して、地上システムが機上システムを誘導する地上型衛星航法補強システムに用いる可用性予測方法にかかる発明は、地上システムが経験する電離層による測位信号の電離層遅延量と、電離層と機上システムとの相対的位置の時間変化を考慮しながら電離層の状態パラメータを網羅的に変化させたときの当該電離層による所定の計算対象位置における電離層遅延量との差分が最大となる最悪ケース電離層遅延量差分テーブルを算出し、測位衛星の衛星位置、擬似距離、及び、搬送波位相距離を用いて当該測位衛星の異常監視を行い、正常と判断された測位衛星を使用可能衛星として、当該測位衛星の衛星位置を含む使用可能衛星情報を作成し、使用可能衛星情報に基づき測位衛星の衛星セットを設定し、最悪ケース電離層遅延量差分テーブルを用いて計算対象位置における最悪ケース測位誤差を算出すると共に、現在のインテグリティパラメータを用いて許容最大誤差を算出して、最悪ケース測位誤差が許容最大誤差を超える場合、保護レベルが保護レベル判定閾値を超えるまでインテグリティパラメータを増大させる処理を繰り返すことにより、機上システムがどの衛星セットを使用したとしても、当該機上システムが経験する誤差が保護レベルを超えないことを保証させ、全使用可能衛星を使用したときの保護レベルが予め設定されたアラートリミットを超えるか否かの可用性判断を行い、当該保護レベルが該アラートリミットを超える場合は、可用性が喪失していると判断して、可用性喪失情報を作成し、可用性喪失情報を受信すると、最悪ケース電離層遅延量差分テーブルを用いて使用可能衛星情報に含まれる測位衛星から所定数の測位衛星を排除して排除衛星指標を算出し、該排除衛星指標に従い排除する前記測位衛星を、使用可能衛星情報に含まれる測位衛星から除いて、これを使用可能衛星更新情報としてインテグリティパラメータを算出させる、ことを特徴とする。 In addition, the invention relating to the availability prediction method used for a terrestrial satellite navigation augmentation system in which positioning is performed using a positioning signal from a positioning satellite and the ground system guides the onboard system, the positioning signal of the ionosphere experienced by the ground system is obtained. The difference between the ionospheric delay amount and the ionospheric delay amount at a predetermined calculation target position by the ionosphere when exhaustively changing the ionospheric state parameters while taking into account the temporal change in the relative position between the ionosphere and the onboard system Calculate the worst case ionosphere delay amount difference table with the largest error, monitor the positioning satellite for abnormality using the satellite position, pseudorange, and carrier phase distance of the positioning satellite, and use the positioning satellite determined to be normal As possible satellites, usable satellite information including the satellite position of the positioning satellite is created, and a satellite set of positioning satellites is created based on the usable satellite information. The worst case ionosphere delay difference table is used to calculate the worst case positioning error at the calculation target position, the allowable maximum error is calculated using the current integrity parameter, and the worst case positioning error indicates the allowable maximum error. If so, by repeating the process of increasing the integrity parameter until the protection level exceeds the protection level threshold, the error experienced by the onboard system will exceed the protection level no matter what satellite set the onboard system uses. The availability is determined whether the protection level when using all available satellites exceeds the preset alert limit. If the protection level exceeds the alert limit, the availability is lost. The loss of availability information and receive the loss of availability information Then, using the worst case ionosphere delay amount difference table, a predetermined number of positioning satellites are excluded from the positioning satellites included in the usable satellite information, an excluded satellite index is calculated, and the positioning satellites to be excluded according to the excluded satellite index are calculated. The integrity parameter is calculated as usable satellite update information, excluding the positioning satellite included in the usable satellite information.
 本発明によれば、全ての測位衛星を使用したときの可用性を予測し、当該予測により可用性喪失していると判断した場合には、可用性喪失が回避できる衛星の排除がきるようにした。これにより、システムの可用性が向上する。 According to the present invention, the availability when all the positioning satellites are used is predicted, and when it is determined that the availability is lost by the prediction, it is possible to eliminate the satellites that can avoid the loss of availability. This improves system availability.
地上型衛星航法補強システムの概念図である。It is a conceptual diagram of a ground type satellite navigation reinforcement system. 地上システムの機能ブロック図である。It is a functional block diagram of a ground system. 電離層異常モデル等を説明する図である。It is a figure explaining an ionosphere abnormality model etc. 最悪ケース電離層遅延量差分算出処理を示すフローチャートである。It is a flowchart which shows the worst case ionosphere delay amount difference calculation process. インテグリティパラメータ算出処理を示すフローチャートである。It is a flowchart which shows an integrity parameter calculation process. 排除する衛星nを決定するフローチャートである。It is a flowchart which determines the satellite n to exclude. インテグリティパラメータを用いて算出した保護レベルを示した図である。It is the figure which showed the protection level calculated using the integrity parameter. 保護レベルが10m以上となった回数、及び、可用性を従来方式と本発明の方式とで比較した表である。It is the table | surface which compared the frequency | count that the protection level became 10 m or more, and availability by the system of the conventional system and the system of this invention.
 本発明の実施形態を説明する。図1は、本実施形態にかかる地上型衛星航法補強システム2の概念図であり、図2は、地上システム3の機能ブロック図である。また、図3は、後述する電離層異常モデル等を説明する図である。 Embodiments of the present invention will be described. FIG. 1 is a conceptual diagram of a terrestrial satellite navigation reinforcement system 2 according to the present embodiment, and FIG. 2 is a functional block diagram of the terrestrial system 3. Moreover, FIG. 3 is a figure explaining the ionosphere abnormality model etc. which are mentioned later.
 地上型衛星航法補強システム2は、位置が既知の地上システム3、測位信号を出力する複数の測位衛星4、誘導する航空機等の飛翔体に搭載された機上システム5により構成されている。 The terrestrial satellite navigation reinforcement system 2 includes a ground system 3 whose position is known, a plurality of positioning satellites 4 that output positioning signals, and an on-board system 5 that is mounted on a flying object such as an aircraft to be guided.
 図2に示すように、地上システム3は、最悪ケース電離層遅延量差分算出部11、受信部12、ディファレンシャル補正値算出部13、インテグリティパラメータ算出ユニット14、送信部15、記憶部16を備える。 As shown in FIG. 2, the ground system 3 includes a worst case ionosphere delay amount difference calculation unit 11, a reception unit 12, a differential correction value calculation unit 13, an integrity parameter calculation unit 14, a transmission unit 15, and a storage unit 16.
 また、インテグリティパラメータ算出ユニット14は、ジオメトリスクリーニング部14a、可用性予測部14b、排除衛星決定部14cを備える。 The integrity parameter calculation unit 14 includes a geometry screening unit 14a, an availability prediction unit 14b, and an excluded satellite determination unit 14c.
 記憶部16は、予め決定された電離層異常モデルMや計算対象位置Qを記憶すると共に、最悪ケース電離層遅延量差分算出部11が作成した最悪ケース電離層遅延量差分テーブルを記憶する。 The storage unit 16 stores the ionosphere abnormality model M and the calculation target position Q that are determined in advance, and also stores the worst case ionosphere delay amount difference table created by the worst case ionosphere delay amount difference calculation unit 11.
 最悪ケース電離層遅延量差分算出部11は、最悪ケース電離層遅延量差分算出処理を行う。図4は、最悪ケース電離層遅延量差分算出処理を示すフローチャートである。 The worst case ionosphere delay amount difference calculation unit 11 performs worst case ionosphere delay amount difference calculation processing. FIG. 4 is a flowchart showing the worst case ionosphere delay amount difference calculation process.
 ステップSA1: 最悪ケース電離層遅延量差分算出部11は、記憶部16から電離層異常モデルの読込を行う。この電離層異常モデルは、電離層異常状態の範囲をいくつかの状態パラメータによりモデル化したものである。図3においては、電離層異常を電離層遅延量の傾き(S)、電離層異常の移動速度(V)、および電離層異常の幅(W)の3つの状態パラメータによりモデル化した場合を例示している。なお、電離層異常モデルは、図3に示すモデルに限定するものではなく、幾つかの状態パラメータにより電離層異常を表すことができるモデルであればよい。 Step SA1: The worst case ionosphere delay amount difference calculation unit 11 reads the ionosphere abnormality model from the storage unit 16. This ionospheric abnormality model is obtained by modeling the range of the ionospheric abnormality state with some state parameters. FIG. 3 shows an example in which the ionospheric anomaly is modeled by three state parameters: the ionospheric delay amount slope (S), the ionospheric anomaly moving speed (V), and the ionospheric anomaly width (W). The ionospheric abnormality model is not limited to the model shown in FIG. 3, and any model that can represent the ionospheric abnormality by some state parameters may be used.
 ステップSA2,SA3: 次に、最悪ケース電離層遅延量差分算出部11は、記憶部16から計算対象位置を読込む。この計算対象位置は、機上システム5が通過するべき地点として予め設定された位置である。例えば、図3の点Qがこれに相当する。そして、最悪ケース電離層遅延量差分算出部11は、電離層異常モデルで表される範囲内の電離層異常が存在することを前提として、計算対象位置Qにおける最悪ケース電離層遅延量差分を算出する。 Steps SA2 and SA3: Next, the worst case ionosphere delay amount difference calculation unit 11 reads the calculation target position from the storage unit 16. This calculation target position is a position set in advance as a point through which the onboard system 5 should pass. For example, the point Q in FIG. 3 corresponds to this. Then, the worst case ionosphere delay amount difference calculation unit 11 calculates the worst case ionosphere delay amount difference at the calculation target position Q on the assumption that there is an ionosphere abnormality within the range represented by the ionosphere abnormality model.
 なお、電離層遅延量とは、測位衛星からの測位信号が、電離層を通過して受信部12や計算対象位置Qに到達するまでに生じた伝搬遅延量で、測位衛星と受信部12や計算対象位置Qとの距離の測定値の誤差要素となるものである。 The ionospheric delay amount is a propagation delay amount that occurs until the positioning signal from the positioning satellite passes through the ionosphere and reaches the receiving unit 12 and the calculation target position Q. The positioning satellite and the receiving unit 12 and the calculation target This is an error factor of the measured value of the distance from the position Q.
 また、電離層遅延量差分とは、受信部12が設置された位置での電離層遅延量と、計算対象位置Qでの電離層遅延量との差分である。従って、最悪ケースの電離層遅延量差分とは、電離層と機上システム5との相対的位置の時間変化を考慮しながら電離層の状態パラメータを網羅的に変化させて、電離層遅延量差分をシミュレートすることにより、機上システム5が計算対象位置Qに達したときに経験し得る電離層遅延量差分の最大値である。 Further, the ionospheric delay amount difference is a difference between the ionospheric delay amount at the position where the receiving unit 12 is installed and the ionospheric delay amount at the calculation target position Q. Therefore, the worst case ionosphere delay amount difference simulates the ionosphere delay amount difference by comprehensively changing the ionospheric state parameters while taking into account the temporal change of the relative position between the ionosphere and the onboard system 5. This is the maximum value of the ionospheric delay amount difference that can be experienced when the onboard system 5 reaches the calculation target position Q.
 最悪ケースの電離層遅延量差分の算出は、例えば非特許文献1に記載されている方法が利用できる。即ち、電離層と機上システム5との相対的位置の時間変化を考慮しながら電離層の状態パラメータを網羅的に変化させ、電離層遅延量差分をシミュレートする。そして、機上システム5が計算対象位置Qに達したときに、当該機上システム5が経験し得る電離層遅延量差分の最悪値を最悪ケース電離層遅延量差分とする。 For example, the method described in Non-Patent Document 1 can be used to calculate the worst-case ionospheric delay amount difference. That is, the ionosphere delay time difference is simulated by comprehensively changing the ionospheric state parameters while taking into account the temporal change in the relative position between the ionosphere and the onboard system 5. Then, when the onboard system 5 reaches the calculation target position Q, the worst case ionosphere delay amount difference that the onboard system 5 can experience is set as the worst case ionosphere delay amount difference.
 ステップSA4: 次に、最悪ケース電離層遅延量差分算出部11は、最悪ケース電離層遅延量差分テーブルを作成し、記憶部16に保存する。この最悪ケース電離層遅延量差分テーブルは、計算対象位置Qにおける最悪ケース電離層遅延量差分を電離層異常モデルの状態パラメータの関数としてテーブル化したものである。なお、テーブル化することが要件ではなく、計算対象位置Qにおける最悪ケース電離層遅延量差分を電離層異常モデルの状態パラメータの関数として纏めることが要件である。 Step SA4: Next, the worst case ionosphere delay amount difference calculation unit 11 creates a worst case ionosphere delay amount difference table and stores it in the storage unit 16. This worst case ionosphere delay amount difference table is a table of the worst case ionosphere delay amount difference at the calculation target position Q as a function of the state parameter of the ionosphere abnormality model. It is not a requirement to make a table, but a requirement is to summarize the worst case ionospheric delay amount difference at the calculation target position Q as a function of the state parameter of the ionosphere abnormality model.
 受信部12は、測位衛星から受信した測位信号を受信して、当該測位信号に含まれる衛星軌道情報から測位衛星の衛星位置を算出する。算出された衛星位置は、ディファレンシャル補正値算出部13に出力される。 The receiving unit 12 receives the positioning signal received from the positioning satellite, and calculates the satellite position of the positioning satellite from the satellite orbit information included in the positioning signal. The calculated satellite position is output to the differential correction value calculation unit 13.
 また、受信部12は、測位信号から疑似距離、搬送波位相から搬送波位相距離を算出し、ディファレンシャル補正値算出部13に出力する。 Also, the receiving unit 12 calculates the pseudo distance from the positioning signal and the carrier phase distance from the carrier phase, and outputs it to the differential correction value calculating unit 13.
 なお、擬似距離は、測位信号により測定された測位衛星4と受信部12と間の測位信号伝搬時間に光速を掛けて算出された距離である。また、搬送波位相距離は、受信部12で復調した測位信号の搬送波位相角を連続的に測定することにより算出された距離である。 The pseudo distance is a distance calculated by multiplying the positioning signal propagation time between the positioning satellite 4 and the receiving unit 12 measured by the positioning signal by the speed of light. The carrier phase distance is a distance calculated by continuously measuring the carrier phase angle of the positioning signal demodulated by the receiving unit 12.
 ディファレンシャル補正値算出部13は、受信部12からの衛星位置、疑似距離、搬送波位相距離等を用いて測位衛星の異常監視を行う。そして、正常と判断した測位衛星を使用可能衛星として、その衛星位置とともに、使用可能衛星情報としてインテグリティパラメータ算出ユニット14に伝送する。 The differential correction value calculation unit 13 monitors the positioning satellite for abnormality using the satellite position, pseudorange, carrier phase distance, etc. from the reception unit 12. Then, the positioning satellite determined to be normal is transmitted to the integrity parameter calculation unit 14 as usable satellite information together with the satellite position as a usable satellite.
 衛星異常の監視項目は、衛星時計の異常、衛星から送られてくる衛星軌道情報の異常、測距用の信号を生成する変調回路の異常等が例示できる。これら衛星時計の異常、衛星軌道情報の異常、変調回路の異常等の監視方法については特に限定しない。 Examples of satellite abnormality monitoring items include satellite clock anomalies, satellite orbit information anomalies sent from satellites, and modulation circuit anomalies that generate ranging signals. There are no particular limitations on the monitoring method for such satellite clock anomalies, satellite orbit information anomalies, and modulation circuit anomalies.
 例えば、非特許文献4におけるような、搬送波位相距離の変化率から衛星時計の異常を監視する方法、非特許文献5におけるような、複数世代の軌道情報を使用して衛星軌道情報の妥当性から衛星軌道情報の異常を監視する方法が適用できる。また、非特許文献6におけるような、受信部に複数の相関器を設けて、相関波形の妥当性から変調回路の異常を監視する方法が適用できる。 For example, as in Non-Patent Document 4, a method of monitoring satellite clock anomalies from the rate of change of carrier phase distance, and from the validity of satellite orbit information using multiple generations of orbit information as in Non-Patent Document 5. A method for monitoring abnormalities in satellite orbit information can be applied. In addition, as in Non-Patent Document 6, it is possible to apply a method in which a plurality of correlators is provided in the receiving unit and abnormality of the modulation circuit is monitored from the validity of the correlation waveform.
 (非特許文献4) Gang Xie, "OPTIMAL ON-AIRPORT MONITORING OF THE INTEGRITY OF GPS-BASED LANDING SYSTEMS", Ph.D. Dissertation, Stanford University, March 2004.
 (非特許文献5) Boris Pervan, Livio Graton, "Orbit Ephemeris Monitor for Local Area Differential GPS", IEEE Transactions on AerosPuce and Electronic Systems, Vol. 41, No.2, April 2005.
 (非特許文献6) Eric Phelts, "Multicorrelator Techniques for Robust Mitigation of Threats to GPS Signal Quality", Ph. D. Dissertation, Stanford University, June 2001.
(Non-Patent Document 4) Gang Xie, "OPTIMAL ON-AIRPORT MONITORING OF THE INTEGRITY OF GPS-BASED LANDING SYSTEMS", Ph.D.Dissertation, Stanford University, March 2004.
(Non-Patent Document 5) Boris Pervan, Livio Graton, "Orbit Ephemeris Monitor for Local Area Differential GPS", IEEE Transactions on AerosPuce and Electronic Systems, Vol. 41, No. 2, April 2005.
(Non-Patent Document 6) Eric Phelts, "Multicorrelator Techniques for Robust Mitigation of Threats to GPS Signal Quality", Ph. D. Dissertation, Stanford University, June 2001.
 また、ディファレンシャル補正値算出部13は、一定の時間間隔毎に、インテグリティパラメータ算出ユニット14に対して、インテグリティパラメータ算出処理の実行を指示(パラメータ算出指令)する。 Further, the differential correction value calculation unit 13 instructs the integrity parameter calculation unit 14 to execute the integrity parameter calculation process (parameter calculation command) at regular time intervals.
 インテグリティパラメータ算出ユニット14は、最悪ケース電離層遅延量差分算出部11が作成して記憶部16に記憶されている最悪ケース電離層遅延量差分テーブル、ディファレンシャル補正値算出部13から受信した使用可能衛星情報に含まれる衛星位置、インテグリティパラメータ初期値を用いて、インテグリティパラメータを算出し、算出したインテグリティパラメータを送信部15へ伝送する。 The integrity parameter calculation unit 14 uses the worst case ionosphere delay amount difference calculation unit 11 created by the worst case ionosphere delay amount difference calculation unit 11 and stored in the storage unit 16 and the usable satellite information received from the differential correction value calculation unit 13. The integrity parameter is calculated using the satellite position and the integrity parameter initial value included, and the calculated integrity parameter is transmitted to the transmission unit 15.
 ここでインテグリティパラメータとは、機上システム5が保護レベルと呼ばれる測位誤差の信頼範囲を算出する際に使用するパラメータで、非特許文献3の国際標準で定められているGBASメッセージフォーマットにおけるGBASメッセージタイプ1のσpr_gnd、Ephemeris Decorrelation Parameter、及び、GBASメッセージタイプ2のσvertical_iono_gradientが該当する。 Here, the integrity parameter is a parameter used when the onboard system 5 calculates a reliability range of the positioning error called a protection level, and is a GBAS message type in the GBAS message format defined in the international standard of Non-Patent Document 3. 1 σpr_gnd, Ephemeris Decoration Parameter, and GBAS message type 2 σvertical_iono_gradient.
 図5は、インテグリティパラメータ算出処理を示すフローチャートである。なお、図5に示す手順は、ステップSB2の後にステップSB3~SB7が行われてステップSB8に進む。そして、ステップSB8~SB10が行われてステップSB3に進み、ステップSB3~SB7が行われる。その後に、ステップSB11が行われる。 FIG. 5 is a flowchart showing the integrity parameter calculation process. In the procedure shown in FIG. 5, steps SB3 to SB7 are performed after step SB2, and the process proceeds to step SB8. Then, Steps SB8 to SB10 are performed, the process proceeds to Step SB3, and Steps SB3 to SB7 are performed. Thereafter, step SB11 is performed.
 ステップSB1,SB2: ディファレンシャル補正値算出部13からインテグリティパラメータ算出処理実行指示を受けると、インテグリティパラメータ算出ユニット14はインテグリティパラメータ算出処理を開始する。そして、ジオメトリスクリーニング部14aは、記憶部16から最悪ケース電離層遅延量差分テーブル、計算対象位置Q、インテグリティパラメータ初期値の読込を行う。 Steps SB1, SB2: Upon receiving an instruction to execute an integrity parameter calculation process from the differential correction value calculation unit 13, the integrity parameter calculation unit 14 starts an integrity parameter calculation process. The geometry screening unit 14a reads the worst case ionosphere delay amount difference table, the calculation target position Q, and the integrity parameter initial value from the storage unit 16.
 ステップSB3,SB4: ジオメトリスクリーニング部14aは、使用可能衛星情報に含まれる測位衛星からスクリーニング処理の対象となる測位衛星を組み合わせて得られる衛星をセットして、最悪ケース電離層遅延量差分テーブル、計算対象位置Q、インテグリティパラメータ初期値、及び、使用可能衛星情報に含まれる衛星位置を用いて、計算対象位置Qにおける最悪ケース測位誤差を算出する。 Steps SB3 and SB4: The geometry screening unit 14a sets the satellites obtained by combining the positioning satellites to be screened from the positioning satellites included in the usable satellite information, the worst case ionosphere delay amount difference table, and the calculation target The worst case positioning error at the calculation target position Q is calculated using the position Q, the integrity parameter initial value, and the satellite position included in the usable satellite information.
 また、ジオメトリスクリーニング部14aは、現在のインテグリティパラメータ(インテグリティパラメータ初期値又はその後に変更された値のインテグリティパラメータ)を用いて計算対象位置Qにおける許容最大誤差を算出する。 Further, the geometry screening unit 14a calculates the allowable maximum error at the calculation target position Q using the current integrity parameter (the integrity parameter initial value or the integrity parameter changed thereafter).
 なお、最悪ケース測位誤差は、機上システム5が経験し得る最悪ケースの誤差である。また、許容最大誤差は、インテグリティパラメータを用いて機上システムで算出される保護レベルである。なお、この許容最大誤差をアラートリミット等別の値とすることも可能である。 The worst case positioning error is the worst case error that the onboard system 5 can experience. The allowable maximum error is a protection level calculated by the onboard system using the integrity parameter. Note that this allowable maximum error can be set to another value such as an alert limit.
 ステップSB5,SB6: そして、最悪ケース測位誤差が許容最大誤差を超えるか否かを判断する。最悪ケース測位誤差が許容最大誤差を超える場合には、保護レベルが保護レベル判定閾値を超えるまでインテグリティパラメータを増大させる。なお、保護レベル判定閾値は、最悪ケース測位誤差、及び、アラートリミットとすることができる。以下の説明では、最悪ケース測位誤差として説明する。 Steps SB5 and SB6: Then, it is determined whether or not the worst case positioning error exceeds the allowable maximum error. If the worst case positioning error exceeds the allowable maximum error, the integrity parameter is increased until the protection level exceeds the protection level determination threshold. Note that the protection level determination threshold can be the worst case positioning error and alert limit. In the following description, the worst case positioning error will be described.
 ステップSB7: このようなジオメトリスクリーニング処理を使用可能衛星情報に含まれる測位衛星の全ての衛星セットに対して行う。従って、ステップSB7後のインテグリティパラメータは、最大値となる。従って、機上システム5がどの衛星セットを用いても、最悪ケース測位誤差が保護レベルを超えることはなくなる。 Step SB7: Such a geometry screening process is performed for all the satellite sets of positioning satellites included in the usable satellite information. Therefore, the integrity parameter after step SB7 is the maximum value. Therefore, no matter which satellite set the onboard system 5 uses, the worst case positioning error will not exceed the protection level.
 このようにして算出されたインテグリティパラメータは、可用性予測部14bに出力される。 The integrity parameter calculated in this way is output to the availability prediction unit 14b.
 計算対象位置Qにおける最悪ケース測位誤差の算出方法やインテグリティパラメータを増大させる方法は、非特許文献1,2の方法を利用することが可能である。また、インテグリティパラメータから保護レベルを算出する方法については非特許文献3の国際標準に定められている。 For the calculation method of the worst case positioning error at the calculation target position Q and the method of increasing the integrity parameter, the methods of Non-Patent Documents 1 and 2 can be used. Further, a method for calculating the protection level from the integrity parameter is defined in the international standard of Non-Patent Document 3.
 ステップSB8,SB9: 可用性予測部14bは、ジオメトリスクリーニング部14aからのインテグリティパラメータを用いて、ディファレンシャル補正値算出部13からの使用可能衛星情報に含まれる全ての測位衛星を使用した場合の計算対象位置Qにおける保護レベルを算出する。このように全ての測位衛星を使用した場合の保護レベルを、全使用可能衛星を使用したときの保護レベルと記載する。 Steps SB8 and SB9: The availability prediction unit 14b uses the integrity parameters from the geometry screening unit 14a to calculate the calculation target positions when all the positioning satellites included in the usable satellite information from the differential correction value calculation unit 13 are used. The protection level at Q is calculated. Thus, the protection level when all positioning satellites are used is described as the protection level when all usable satellites are used.
 そして、可用性予測部14bは、全使用可能衛星を使用したときの保護レベルがアラートリミットを超えるか否かの可用性判断を行い、全使用可能衛星を使用したときの保護レベルがアラートリミットを超える場合は、可用性が喪失していると判断して、可用性喪失情報を排除衛星決定部14cに出力する。 Then, the availability predicting unit 14b determines whether the protection level when using all the usable satellites exceeds the alert limit, and the protection level when using all the usable satellites exceeds the alert limit. Determines that the availability is lost, and outputs the availability loss information to the excluded satellite determination unit 14c.
 一方、全使用可能衛星を使用したときの保護レベルがアラートリミットを超えない場合は、可用性予測部14bはジオメトリスクリーニング部14aからのインテグリティパラメータをそのまま出力する。 On the other hand, if the protection level when using all usable satellites does not exceed the alert limit, the availability predicting unit 14b outputs the integrity parameter from the geometry screening unit 14a as it is.
 ステップSB10: 全使用可能衛星を使用したときの保護レベルがアラートリミットを超えた場合に排除衛星決定処理が行われる。一般に測位に用いる測位衛星の数が多くなるほど保護レベルは小さくなる。従って、全使用可能衛星を使用したときの保護レベルがアラートリミットを超えている場合には、これよりも少ない数の測位衛星で算出した保護レベルもアラートリミットを超える可能性が高くなる(可用性が喪失する可能性が高い)。 Step SB10: Excluded satellite determination processing is performed when the protection level when using all usable satellites exceeds the alert limit. Generally, the protection level decreases as the number of positioning satellites used for positioning increases. Therefore, if the protection level when using all available satellites exceeds the alert limit, the protection level calculated for a smaller number of positioning satellites is also more likely to exceed the alert limit ( Likely to be lost).
 可用性が喪失する可能性が高い場合には、排除衛星決定処理を行って当該衛星を排除することにより可用性の喪失を回避できる可能性の高い測位衛星を使用可能衛星から排除して、インテグリティパラメータを再度算出する。これにより、インテグリティパラメータは適度に増大させることができて、可用性の喪失を抑制することが可能になる。 If there is a high possibility that the availability will be lost, the positioning satellite which is likely to avoid the loss of availability by performing the exclusion satellite determination process to exclude the satellite is excluded from the usable satellites, and the integrity parameter is set. Calculate again. As a result, the integrity parameter can be increased moderately, and loss of availability can be suppressed.
 そこで、排除衛星決定部14cは、可用性予測部14bから可用性喪失情報を受け取ると、排除する測位衛星を決定する指標(以下、排除衛星指標と記載する)を算出する。そして、この排除衛星指標に基づき排除する衛星を決定して、排除衛星を除く測位衛星を新たな使用可能衛星(以下、使用可能衛星更新情報)とする。使用可能衛星更新情報は、ジオメトリスクリーニング部14aに送られて、インテグリティパラメータの算出が行われる。 Therefore, when the excluded satellite determining unit 14c receives the availability loss information from the availability predicting unit 14b, the excluded satellite determining unit 14c calculates an index for determining a positioning satellite to be excluded (hereinafter referred to as an excluded satellite index). Then, the satellite to be excluded is determined based on the excluded satellite index, and the positioning satellite excluding the excluded satellite is set as a new usable satellite (hereinafter, usable satellite update information). The usable satellite update information is sent to the geometry screening unit 14a, and the integrity parameter is calculated.
 さて、排除衛星指標としては、種々の指標が考えられる。そこで、本実施形態においては、使用可能な衛星のうち2つの測位衛星に同時に最悪ケース電離層遅延量差分が生じているとした場合に、計算対象位置Qで生じ得る最悪ケース垂直位置誤差(MIEV)を用いる。 Now, various indicators can be considered as exclusion satellite indicators. Therefore, in the present embodiment, the worst case vertical position error (MIEV) that can occur at the calculation target position Q when it is assumed that the worst case ionosphere delay amount difference occurs simultaneously in two positioning satellites among the usable satellites. Is used.
 ステップSB11: 以上の処理により算出されたインテグリティパラメータは、送信部15から機上システム5に送信される。 Step SB11: The integrity parameter calculated by the above processing is transmitted from the transmission unit 15 to the onboard system 5.
 図6は、排除する衛星nを決定するフローチャートである。 FIG. 6 is a flowchart for determining the satellite n to be excluded.
 ステップSC1,SC2: まず、排除衛星決定部14cは、記憶部16から最悪ケース電離層遅延量差分テーブルを読込む。次に、使用可能衛星の中から1つの測位衛星(この衛星を符号nで示す)を排除して形成される衛星セットA(n)を定義する。 Steps SC1 and SC2: First, the excluded satellite determination unit 14c reads the worst case ionosphere delay amount difference table from the storage unit 16. Next, a satellite set A (n) formed by excluding one positioning satellite (shown by the symbol n) from the usable satellites is defined.
 ステップSC3,SC4: そして、衛星セットA(n)に含まれる衛星ペア(p1、p2)の全ての組み合わせに対して、位置誤差IEV(p1、p2)を
 IEV(p1,p2)=|Svert(p1)・IER(p1)|+|Svert(p2)・IER(p2)|…(1)
 Svert(p)=Sv(p)+Sx(p)・tan(θGPA)
の式1に従い算出する。
Steps SC3 and SC4: Then, for all combinations of the satellite pairs (p1, p2) included in the satellite set A (n), the position error IEV (p1, p2) is set to IEV (p1, p2) = | Svert ( p1) · IER (p1) | + | Svert (p2) · IER (p2) | ... (1)
Svert (p) = Sv (p) + Sx (p) · tan (θGPA)
This is calculated according to Equation 1 below.
 ここで、IER(p1)及びIER(p2)は、それぞれ測位衛星p1,p2に対する最悪ケース電離層遅延量差分である。この最悪ケース電離層遅延量差分は、例えば非特許文献1に開示されている方法により、記憶部16から読み込んだ最悪ケース電離層遅延量差分テーブルと、ディファレンシャル補正値算出部13から受信した測位衛星p1、p2の位置とから決定する。 Here, IER (p1) and IER (p2) are the worst case ionospheric delay amount differences for the positioning satellites p1 and p2, respectively. The worst case ionosphere delay amount difference is calculated by, for example, the method disclosed in Non-Patent Document 1, and includes the worst case ionosphere delay amount difference table read from the storage unit 16 and the positioning satellite p1 received from the differential correction value calculation unit 13. It is determined from the position of p2.
 また、Sv(p)、Sx(p)は、非特許文献3の国際標準で定義された寄与項で、Sv(p)は測位衛星pに対する電離層による遅延量差分の垂直方向測位誤差への寄与項、Sx(p)は測位衛星pに対する電離層による遅延量差分の滑走路方向測位誤差への寄与項である。さらに、θGPAは、滑走路への侵入角である。 Sv (p) and Sx (p) are contribution terms defined in the international standard of Non-Patent Document 3, and Sv (p) is a contribution to the vertical positioning error of the delay amount difference due to the ionosphere with respect to the positioning satellite p. The term Sx (p) is a contribution term to the runway direction positioning error of the delay amount difference due to the ionosphere with respect to the positioning satellite p. Furthermore, θGPA is the angle of entry into the runway.
 ステップSC5~SC7: 次に、各衛星セットA(n)の衛星ペア(p1、p2)に対して算出したIEV(p1,p2|p1,p2∈A(n))の最大値である最悪ケース垂直位置誤差MIEV(n)を、
MIEV(n)=max(IEV(p1,p2|p1,p2∈A(n)))…(2)
の式2で求める。
Steps SC5 to SC7: Next, the worst case which is the maximum value of IEV (p1, p2 | p1, p2εA (n)) calculated for the satellite pair (p1, p2) of each satellite set A (n) Vertical position error MIEV (n) is
MIEV (n) = max (IEV (p1, p2 | p1, p2∈A (n))) ... (2)
It calculates | requires by Formula 2 of.
 そして、最悪ケース垂直位置誤差MIEV(n)のうち、最も小さな値の最悪ケース垂直位置誤差MIEV(n)となった衛星セットA(nminMIEV)を新たな使用可能衛星とし、これを使用可能衛星更新情報として出力する。ここで、nminMIEVは、MIEV(n)が最小となった時に、全ての使用可能衛星から排除した1つの測位衛星を示している。 Then, among the worst case vertical position error MIEV (n), the satellite set A (nminMIEV) that has the worst value of the worst case vertical position error MIEV (n) is set as a new usable satellite, and this is updated. Output as information. Here, nminMIEV indicates one positioning satellite excluded from all usable satellites when MIEV (n) is minimized.
 このようにして排除衛星が決定されると新たに使用可能衛星(使用可能衛星更新情報)が決まる。そこで、ジオメトリスクリーニング部14aは、この使用可能衛星更新情報を用いて、ステップSB3~SB7で説明した処理を繰り返して、新たなインテグリティパラメータを算出する。 When the excluded satellite is determined in this way, a new usable satellite (usable satellite update information) is determined. Therefore, the geometry screening unit 14a repeats the processing described in steps SB3 to SB7 using this usable satellite update information, and calculates a new integrity parameter.
 新たなインテグリティパラメータは、送信部15で所定のフォーマットに成型されてGBASメッセージが構築され、これを補強情報に含めて機上システム5に送られる。 The new integrity parameter is molded into a predetermined format by the transmission unit 15 to construct a GBAS message, which is included in the reinforcement information and sent to the onboard system 5.
 機上システム5は、地上システム3から送られてきたインテグリティパラメータを含む補強情報を受信すると、当該インテグリティパラメータを用いて保護レベルの算出を行う。そして、保護レベルがアラートリミットよりも小さい場合は送信部15からの情報を用いて自機の位置を補正し、空港への進入着陸を継続する。一方、保護レベルがアラートリミットよりも大きい場合は、進入着陸を取りやめ、又は、他手段を使用した進入着陸に切り替える。 When the onboard system 5 receives the reinforcement information including the integrity parameter sent from the ground system 3, the onboard system 5 calculates the protection level using the integrity parameter. If the protection level is smaller than the alert limit, the position of the aircraft is corrected using information from the transmission unit 15 and the approach and landing at the airport is continued. On the other hand, when the protection level is higher than the alert limit, the approach / landing is canceled or the approach / landing using other means is switched.
 従って、ジオメトリスクリーニング処理を行って、インテグリティパラメータを増大させることにより航空の安全性を保証する従来の方法では、保護レベルがアラートリミットを超えてしまい可用性が喪失する場合でも、本実施形態によれば、インテグリティパラメータを著しく増大させる測位衛星を排除して当該インテグリティパラメータを算出するので、可用性の喪失を抑えることができるようになる。 Therefore, according to the present embodiment, even when the protection level exceeds the alert limit and the availability is lost in the conventional method of ensuring the safety of aviation by performing the geometry screening process and increasing the integrity parameter, according to this embodiment. Since the positioning satellite is calculated by eliminating positioning satellites that significantly increase the integrity parameter, loss of availability can be suppressed.
 図7は、2014年1月1日のGPS衛星の軌道情報を用いて、60秒毎にインテグリティパラメータ算出ユニット14を動作させて使用可能衛星更新情報を作成し、この使用可能衛星更新情報に含まれるインテグリティパラメータを用いて算出した保護レベルを示した図である。図7において、■印は、本実施形態によるインテグリティパラメータを用いて算出した垂直保護レベルを示している。なお、比較例として、従来の方法によるインテグリティパラメータを用いて算出した垂直保護レベルを▲印で示している。 FIG. 7 shows the use of GPS satellite orbit information of January 1, 2014, and operates the integrity parameter calculation unit 14 every 60 seconds to create usable satellite update information, which is included in this usable satellite update information. It is the figure which showed the protection level calculated using the integrity parameter to be obtained. In FIG. 7, the ▪ marks indicate the vertical protection levels calculated using the integrity parameters according to the present embodiment. As a comparative example, the vertical protection level calculated using the integrity parameter according to the conventional method is indicated by ▲.
 なお、保護レベルの算出には、使用可能な全ての測位衛星4が用いられている。また、アラートリミットは、非特許文献3の国際標準で規定された10mとしている(図7における直線)。 It should be noted that all available positioning satellites 4 are used for calculating the protection level. Further, the alert limit is set to 10 m defined by the international standard of Non-Patent Document 3 (straight line in FIG. 7).
 図7から解るように、使用可能な測位衛星4の全てを用いて算出した保護レベルがアラートリミットを超える場合に、排除衛星決定処理で排除する衛星を決定して、新たな使用可能な測位衛星4とするため、保護レベルがアラートリミットを超えない時間帯では、2つの保護レベルは一致している。そして、従来方式で算出した保護レベル(▲印)がアラートリミットを超えてシステムの可用性が失われる時間帯が発生しても、本実施形態による方法では多くの場合、保護レベル(■印)がアラートリミット未満となって可用性が担保されている。 As can be seen from FIG. 7, when the protection level calculated using all of the usable positioning satellites 4 exceeds the alert limit, a satellite to be excluded is determined by the exclusion satellite determination process, and a new usable positioning satellite is determined. Since the protection level is set to 4, the two protection levels coincide in a time zone in which the protection level does not exceed the alert limit. Even if the protection level (marked with ▲) calculated by the conventional method exceeds the alert limit and there is a time zone when the system availability is lost, the method according to this embodiment often has the protection level (marked with ■). Availability is guaranteed because it is below the alert limit.
 図8は、保護レベルがアラートリミット以上となった回数、及び、可用性を従来方式と本発明の方式とで比較した表である。同図から、本発明によれば保護レベルがアラートリミット以上となる回数が70回から11回に削減でき、また可用性は95.14%から99.24%に向上させることができることが示された。 FIG. 8 is a table comparing the number of times that the protection level exceeds the alert limit and the availability in the conventional method and the method of the present invention. The figure shows that according to the present invention, the number of times that the protection level exceeds the alert limit can be reduced from 70 times to 11 times, and the availability can be improved from 95.14% to 99.24%. .
 なお、上記説明では、計算対象位置Qは1つとして説明したが、これに限定するものではなく複数であってもよい。 In the above description, the calculation target position Q is described as one. However, the calculation target position Q is not limited to this and may be plural.
 また、ジオメトリスクリーニング部14aで許容可能な最大位置誤差を保護レベルとしているが、これをアラートリミットとしてもよい。 Further, although the maximum position error allowable in the geometry screening unit 14a is set as the protection level, this may be used as the alert limit.
 また、ジオメトリスクリーニング部14aでインテグリティパラメータを増大させる際の保護レベル判定閾値を最悪ケース測位誤差としているが、これを計算対象位置Qにおけるアラートリミットとしてもよい。 Further, although the protection level determination threshold when increasing the integrity parameter in the geometry screening unit 14a is the worst case positioning error, this may be used as the alert limit at the calculation target position Q.
 また、インテグリティパラメータ算出ユニット14が行う排除衛星決定処理において、排除衛星を決定する際の排除衛星指標として数式2に示したMIEV(n)を使用したが、これを他の排除衛星指標とすることも可能である。
例えば、
 IEV1(p|A(n))=|Svert(p)・IER(p)|…(3)
の式3に示すIEV1を最大にする衛星とすることも可能である。
Further, in the exclusion satellite determination process performed by the integrity parameter calculation unit 14, MIEV (n) shown in Formula 2 is used as the exclusion satellite index when determining the exclusion satellite, but this is used as another exclusion satellite index. Is also possible.
For example,
IEV1 (p | A (n)) = | Svert (p) ・ IER (p) |… (3)
It is also possible to use a satellite that maximizes IEV1 shown in Equation 3 below.
 また、可用性予測部14bが行う可用性予測処理において、可用性喪失と判断する基準として、使用可能な測位衛星4の全てを使用した場合の計算対象位置Qにおける保護レベルがアラートリミットを超える場合を用いたが、これを他の基準とすることも可能である。例えば、全ての使用可能な測位衛星4から1衛星を除いて算出した保護レベルがアラートリミットを超える場合を基準に加えることも可能である。 In addition, in the availability prediction process performed by the availability prediction unit 14b, the case where the protection level at the calculation target position Q exceeds the alert limit when all the usable positioning satellites 4 are used is used as a criterion for determining the loss of availability. However, this can be used as another standard. For example, it is possible to add a case where the protection level calculated by removing one satellite from all the usable positioning satellites 4 exceeds the alert limit.
 また、可用性予測部14bが行う可用性予測処理、及び、排除衛星決定部14cが行う排除衛星決定処理は一度だけ行う場合(衛星排除を1度だけ行う場合)について説明したが、これを複数回にすることも可能である。即ち、排除衛星決定部14cが排除衛星決定処理により決定した排除衛星を除いて、再度ジオメトリスクリーニング処理を行って決定したインテグリティパラメータを用いて可用性予測処理を行っても、可用性が喪失するような場合には、更に排除衛星決定処理を行って当該衛星を排除することにより可用性の喪失を回避できる可能性の高い測位衛星を排除することが可能である。 Moreover, although the availability prediction process performed by the availability prediction unit 14b and the excluded satellite determination process performed by the excluded satellite determination unit 14c have been described only once (when satellite exclusion is performed only once), this is performed multiple times. It is also possible to do. That is, the availability is lost even if the availability prediction process is performed using the integrity parameter determined by performing the geometry screening process again except the excluded satellite determined by the excluded satellite determination unit 14c by the excluded satellite determination process. In addition, it is possible to exclude positioning satellites that are likely to be able to avoid loss of availability by performing exclusion satellite determination processing to exclude the satellites.
 さらに、記憶部16を設け、そこに最悪ケース電離層遅延量差分算出部11が算出した最悪ケース電離層遅延量差分テーブル、計算対象位置Q、電離層異常モデルMを記憶させているが、記憶部16を設けず、これらの情報を最悪ケース電離層遅延量差分算出部11、及び、インテグリティパラメータ算出ユニット14にハードコーディングしておくことも可能である。 Furthermore, the storage unit 16 is provided, and the worst case ionosphere delay amount difference calculation unit 11 calculated by the worst case ionosphere delay amount difference calculation unit 11, the calculation target position Q, and the ionosphere abnormality model M are stored therein. It is also possible to hard code this information in the worst case ionosphere delay amount difference calculation unit 11 and the integrity parameter calculation unit 14 without providing them.
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the embodiments (and examples), the present invention is not limited to the above embodiments (and examples). Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2015年7月1日に出願された日本出願特願2015-132792を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-132792 filed on July 1, 2015, the entire disclosure of which is incorporated herein.
 2  地上型衛星航法補強システム
 3  地上システム
 4  測位衛星
 5  機上システム
 11  最悪ケース電離層遅延量差分算出部
 12  受信部
 13  ディファレンシャル補正値算出部
 14  インテグリティパラメータ算出ユニット
 14a  ジオメトリスクリーニング部
 14b  可用性予測部
 14c  排除衛星決定部
 15  送信部
 16  記憶部
2 Ground-based satellite navigation augmentation system 3 Ground system 4 Positioning satellite 5 Onboard system 11 Worst case ionosphere delay amount difference calculation unit 12 Reception unit 13 Differential correction value calculation unit 14 Integrity parameter calculation unit 14a Geometry screening unit 14b Availability prediction unit 14c Exclusion Satellite determination unit 15 transmission unit 16 storage unit

Claims (4)

  1.  測位衛星からの測位信号を用いて地上システムが機上システムを誘導する地上型衛星航法補強システムであって、
     前記地上システムが経験する電離層による前記測位信号の電離層遅延量と、前記電離層と前記機上システムとの相対的位置の時間変化を考慮しながら前記電離層の状態パラメータを網羅的に変化させたときの当該電離層による所定の計算対象位置における電離層遅延量との差分が最大となる最悪ケース電離層遅延量差分テーブルを算出する最悪ケース電離層遅延量差分算出手段と、
     前記測位衛星の衛星位置、擬似距離、及び、搬送波位相距離を用いて当該測位衛星の異常監視を行い、正常と判断された測位衛星を使用可能衛星として、当該測位衛星の衛星位置を含む使用可能衛星情報を作成するディファレンシャル補正値算出手段と、
     前記使用可能衛星情報に基づき前記測位衛星の衛星セットを設定し、前記最悪ケース電離層遅延量差分テーブルを用いて前記計算対象位置における最悪ケース測位誤差を算出すると共に、現在のインテグリティパラメータを用いて許容最大誤差を算出して、前記最悪ケース測位誤差が前記許容最大誤差を超える場合、保護レベルが保護レベル判定閾値を超えるまでインテグリティパラメータを増大させる処理を繰り返すことにより、前記機上システムがどの衛星セットを使用したとしても、当該機上システムが経験する誤差が前記保護レベルを超えないことを保証するジオメトリスクリーニング手段と、
     全使用可能衛星を使用したときの前記保護レベルが予め設定されたアラートリミットを超えるか否かの可用性判断を行い、当該保護レベルが該アラートリミットを超える場合は、可用性が喪失していると判断して、可用性喪失情報を作成する可用性予測手段と、
     前記可用性喪失情報を受信すると、前記最悪ケース電離層遅延量差分テーブルを用いて前記使用可能衛星情報に含まれる前記測位衛星から所定数の測位衛星を排除して排除衛星指標を算出し、該排除衛星指標に従い排除する前記測位衛星を、前記使用可能衛星情報に含まれる前記測位衛星から除いて、これを使用可能衛星更新情報として前記ジオメトリスクリーニング手段に前記インテグリティパラメータを算出させる排除衛星決定手段と、
     を備えることを特徴とする地上型衛星航法補強システム。
    A terrestrial satellite navigation reinforcement system in which the ground system guides the onboard system using positioning signals from positioning satellites,
    When the ionospheric state parameters are comprehensively changed while considering the ionospheric delay amount of the positioning signal due to the ionosphere experienced by the ground system and the temporal change of the relative position of the ionosphere and the onboard system. A worst case ionosphere delay amount difference calculating means for calculating a worst case ionosphere delay amount difference table in which the difference between the ionosphere and the ionosphere delay amount at a predetermined calculation target position is maximized;
    Abnormality monitoring of the positioning satellite is performed using the positioning satellite's satellite position, pseudorange, and carrier phase distance, and the positioning satellite determined to be normal can be used as a usable satellite, including the satellite position of the positioning satellite. Differential correction value calculating means for creating satellite information;
    A satellite set of the positioning satellite is set based on the usable satellite information, the worst case positioning error at the calculation target position is calculated using the worst case ionosphere delay amount difference table, and allowed using the current integrity parameter. When the maximum error is calculated and the worst-case positioning error exceeds the allowable maximum error, the on-board system repeats the process of increasing the integrity parameter until the protection level exceeds the protection level determination threshold, so that the onboard system determines which satellite set Geometry screening means to ensure that the error experienced by the on-board system does not exceed the protection level, even if
    An availability determination is made as to whether or not the protection level when using all available satellites exceeds a preset alert limit. If the protection level exceeds the alert limit, it is determined that the availability is lost. An availability prediction means for creating loss of availability information,
    When the loss of availability information is received, an excluded satellite index is calculated by eliminating a predetermined number of positioning satellites from the positioning satellites included in the usable satellite information using the worst case ionosphere delay amount difference table, Excluded satellite determination means that excludes the positioning satellites excluded according to the index from the positioning satellites included in the usable satellite information, and causes the geometry screening means to calculate the integrity parameter as usable satellite update information;
    A terrestrial satellite navigation reinforcement system characterized by comprising:
  2.  請求項1に記載の地上型衛星航法補強システムであって、
     前記排除衛星決定手段は、
     使用可能な全ての測位衛星から1つの前記測位衛星が排除されてなる複数の前記測位衛星の中から、任意の前記測位衛星を組み合わせてなる衛星セットを決定する第1の手段と、
     前記衛星セットで、最悪ケース垂直位置誤差を計算する第2の手段と、
     前記第1の手段と第2の手段による処理を繰り返して、前記衛星セット毎に得た最悪ケース垂直位置誤差に従い前記衛星セットを探索する手段と、
     前記最悪ケース測位誤差に従う前記衛星セットを決めたときに排除した衛星を排除衛星とする手段と、
     を備えることを特徴とする地上型衛星航法補強システム。
    A terrestrial satellite navigation reinforcement system according to claim 1,
    The excluded satellite determining means includes
    A first means for determining a satellite set formed by combining any of the positioning satellites from a plurality of the positioning satellites in which one positioning satellite is excluded from all usable positioning satellites;
    A second means for calculating a worst-case vertical position error in the satellite set;
    Means for searching the satellite set according to the worst case vertical position error obtained for each satellite set by repeating the processing by the first means and the second means;
    Means for eliminating the satellite excluded when determining the satellite set according to the worst case positioning error;
    A terrestrial satellite navigation reinforcement system characterized by comprising:
  3.  測位衛星からの測位信号を用いて測位して、地上システムが機上システムを誘導する地上型衛星航法補強システムに用いる可用性予測方法であって、
     前記地上システムが経験する電離層による前記測位信号の電離層遅延量と、前記電離層と前記機上システムとの相対的位置の時間変化を考慮しながら前記電離層の状態パラメータを網羅的に変化させたときの当該電離層による所定の計算対象位置における電離層遅延量との差分が最大となる最悪ケース電離層遅延量差分テーブルを算出し、
     前記測位衛星の衛星位置、擬似距離、及び、搬送波位相距離を用いて当該測位衛星の異常監視を行い、正常と判断された測位衛星を使用可能衛星として、当該測位衛星の衛星位置を含む使用可能衛星情報を作成し、
     前記使用可能衛星情報に基づき前記測位衛星の衛星セットを設定し、前記最悪ケース電離層遅延量差分テーブルを用いて前記計算対象位置における最悪ケース測位誤差を算出すると共に、現在のインテグリティパラメータを用いて許容最大誤差を算出して、前記最悪ケース測位誤差が前記許容最大誤差を超える場合、保護レベルが保護レベル判定閾値を超えるまでインテグリティパラメータを増大させる処理を繰り返すことにより、前記機上システムがどの衛星セットを使用したとしても、当該機上システムが経験する誤差が前記保護レベルを超えないことを保証させ、
     全使用可能衛星を使用したときの前記保護レベルが予め設定されたアラートリミットを超えるか否かの可用性判断を行い、当該保護レベルが該アラートリミットを超える場合は、可用性が喪失していると判断して、可用性喪失情報を作成し、
     前記可用性喪失情報を受信すると、前記最悪ケース電離層遅延量差分テーブルを用いて前記使用可能衛星情報に含まれる前記測位衛星から所定数の測位衛星を排除して排除衛星指標を算出し、該排除衛星指標に従い排除する前記測位衛星を、前記使用可能衛星情報に含まれる前記測位衛星から除いて、これを使用可能衛星更新情報として前記インテグリティパラメータを算出させる、
     ことを特徴とする地上型衛星航法補強システムに用いる可用性予測方法。
    An availability prediction method used for a terrestrial satellite navigation augmentation system in which positioning is performed using a positioning signal from a positioning satellite and the ground system guides the onboard system,
    When the ionospheric state parameters are comprehensively changed while considering the ionospheric delay amount of the positioning signal due to the ionosphere experienced by the ground system and the temporal change of the relative position of the ionosphere and the onboard system. Calculate the worst case ionosphere delay amount difference table that maximizes the difference with the ionosphere delay amount at a predetermined calculation target position by the ionosphere,
    Abnormality monitoring of the positioning satellite is performed using the positioning satellite's satellite position, pseudorange, and carrier phase distance, and the positioning satellite determined to be normal can be used as a usable satellite, including the satellite position of the positioning satellite. Create satellite information
    A satellite set of the positioning satellite is set based on the usable satellite information, the worst case positioning error at the calculation target position is calculated using the worst case ionosphere delay amount difference table, and allowed using the current integrity parameter. When the maximum error is calculated and the worst-case positioning error exceeds the allowable maximum error, the on-board system repeats the process of increasing the integrity parameter until the protection level exceeds the protection level determination threshold, so that the onboard system determines which satellite set To ensure that the error experienced by the onboard system does not exceed the protection level,
    An availability determination is made as to whether or not the protection level when using all available satellites exceeds a preset alert limit. If the protection level exceeds the alert limit, it is determined that the availability is lost. Create loss of availability information,
    When the loss of availability information is received, an excluded satellite index is calculated by eliminating a predetermined number of positioning satellites from the positioning satellites included in the usable satellite information using the worst case ionosphere delay amount difference table, Removing the positioning satellites excluded according to the index from the positioning satellites included in the usable satellite information, and calculating the integrity parameter as usable satellite update information;
    An availability prediction method used for a terrestrial satellite navigation augmentation system.
  4.  請求項3に記載の地上型衛星航法補強システムに用いる可用性予測方法であって、
     使用可能な全ての測位衛星から1つの前記測位衛星が排除されてなる複数の前記測位衛星の中から、任意の前記測位衛星を組み合わせてなる衛星セットを決定する第1の手順と、
     前記衛星セットで、最悪ケース垂直位置誤差を計算する第2の手順と、
     前記第1の手順と第2の手順による処理を繰り返して、前記衛星セット毎に得た最悪ケース垂直誤差に従い前記衛星セットを探索し、
     前記最悪ケース測位誤差に従う前記衛星セットを決めたときに排除した衛星を排除衛星とする
     ことを特徴とする地上型衛星航法補強システムに用いる可用性予測方法。
    An availability prediction method used for the terrestrial satellite navigation reinforcement system according to claim 3,
    A first procedure for determining a satellite set formed by combining arbitrary positioning satellites from a plurality of the positioning satellites in which one positioning satellite is excluded from all available positioning satellites;
    A second procedure for calculating a worst-case vertical position error in the satellite set;
    Repeat the process according to the first procedure and the second procedure to search for the satellite set according to the worst case vertical error obtained for each satellite set;
    An availability prediction method used for a terrestrial satellite navigation reinforcement system, wherein a satellite excluded when the satellite set according to the worst-case positioning error is determined is an excluded satellite.
PCT/JP2016/003122 2015-07-01 2016-06-29 Ground-type satellite navigation reinforcement system and availability prediction method WO2017002364A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017526182A JP6741005B2 (en) 2015-07-01 2016-06-29 Terrestrial satellite navigation reinforcement system and availability prediction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015132792 2015-07-01
JP2015-132792 2015-07-01

Publications (1)

Publication Number Publication Date
WO2017002364A1 true WO2017002364A1 (en) 2017-01-05

Family

ID=57608013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003122 WO2017002364A1 (en) 2015-07-01 2016-06-29 Ground-type satellite navigation reinforcement system and availability prediction method

Country Status (2)

Country Link
JP (1) JP6741005B2 (en)
WO (1) WO2017002364A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101970239B1 (en) * 2017-12-18 2019-08-27 한국과학기술원 Method and System of Optimal Protection Level for Local-Area Differential GNSS to Support UAV Navigation
KR102077253B1 (en) * 2018-08-28 2020-02-13 국방과학연구소 Method of detecting small-scale ionospheric disturbances and apparatus thereof
WO2021044865A1 (en) * 2019-09-05 2021-03-11 Necソリューションイノベータ株式会社 Positioning assistance device, positioning assistance method, and computer-readable recording medium
CN112731471A (en) * 2020-12-06 2021-04-30 中国电子科技集团公司第二十研究所 Method for screening Beidou satellite-based enhanced single-frequency positioning satellite
US11073620B2 (en) * 2019-02-06 2021-07-27 Honeywell International Inc. Alternate uncertainty limits in the presence of a detected satellite fault
WO2023132036A1 (en) * 2022-01-06 2023-07-13 三菱電機株式会社 Protective level calculating device, protective level calculating system, positioning system, and protective level calculating method
JP7471618B1 (en) 2023-07-28 2024-04-22 イエローテイル・ナビゲーション株式会社 Comparative test method for causes of positioning errors in satellite navigation systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182150A (en) * 2013-03-20 2014-09-29 Honeywell Internatl Inc System and method for real-time subset geometry screening for varying satellite constellations
US20150145722A1 (en) * 2013-11-27 2015-05-28 Honeywell International Inc. Using sbas ionospheric delay measurements to mitigate ionospheric error

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826476B2 (en) * 2002-11-01 2004-11-30 Honeywell International Inc. Apparatus for improved integrity of wide area differential satellite navigation systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182150A (en) * 2013-03-20 2014-09-29 Honeywell Internatl Inc System and method for real-time subset geometry screening for varying satellite constellations
US20150145722A1 (en) * 2013-11-27 2015-05-28 Honeywell International Inc. Using sbas ionospheric delay measurements to mitigate ionospheric error

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAYUKI YOSHIHARA ET AL.: "A Study on Monitoring Method of Ground-based Augmentation System (GBAS) for Ionospheric Condition in Japan", ELECTRONIC NAVIGATION RESEARCH INSTITUTE KENKYU HAPPYOKAI KOEN GAIYO, vol. 9 th, 11 June 2009 (2009-06-11), pages 83 - 86, ISSN: 1344-1191 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101970239B1 (en) * 2017-12-18 2019-08-27 한국과학기술원 Method and System of Optimal Protection Level for Local-Area Differential GNSS to Support UAV Navigation
KR102077253B1 (en) * 2018-08-28 2020-02-13 국방과학연구소 Method of detecting small-scale ionospheric disturbances and apparatus thereof
US11073620B2 (en) * 2019-02-06 2021-07-27 Honeywell International Inc. Alternate uncertainty limits in the presence of a detected satellite fault
WO2021044865A1 (en) * 2019-09-05 2021-03-11 Necソリューションイノベータ株式会社 Positioning assistance device, positioning assistance method, and computer-readable recording medium
JPWO2021044865A1 (en) * 2019-09-05 2021-03-11
CN112731471A (en) * 2020-12-06 2021-04-30 中国电子科技集团公司第二十研究所 Method for screening Beidou satellite-based enhanced single-frequency positioning satellite
WO2023132036A1 (en) * 2022-01-06 2023-07-13 三菱電機株式会社 Protective level calculating device, protective level calculating system, positioning system, and protective level calculating method
JP7471618B1 (en) 2023-07-28 2024-04-22 イエローテイル・ナビゲーション株式会社 Comparative test method for causes of positioning errors in satellite navigation systems

Also Published As

Publication number Publication date
JP6741005B2 (en) 2020-08-19
JPWO2017002364A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2017002364A1 (en) Ground-type satellite navigation reinforcement system and availability prediction method
Walter et al. Worldwide vertical guidance of aircraft based on modernized GPS and new integrity augmentations
US9599716B2 (en) Ground-based system and method to extend the detection of excessive delay gradients using dual processing
EP3073288B1 (en) Systems and methods using multi frequency satellite measurements to mitigate spatial decorrelation errors caused by ionosphere delays
US8976064B2 (en) Systems and methods for solution separation for ground-augmented multi-constellation terminal area navigation and precision approach guidance
JP3548577B2 (en) Fail-safe operation differential GPS ground station system
JP5305416B2 (en) A method and apparatus for detecting ionospheric anomalies in a satellite navigation system.
RU2621827C2 (en) Board system for assisting piloting aircraft, based on system of gnss, having excess and dissimilar architecture for advanced reliability
EP3109672B1 (en) Gnss receiver with a capability to resolve ambiguities using an uncombined formulation
Lee A position domain relative RAIM method
AU2003277078B2 (en) Methods and apparatus for evaluating operational integrity of a data processing system using moment bounding
JP6649751B2 (en) Method of mitigating ionospheric errors for ground-based augmentation systems (GBAS) using geosynchronous satellite augmentation system (SBAS) grid point ionospheric vertical delay error (GIVE) information
EP3086138B1 (en) Using code minus carrier measurements to mitigate spatial decorrelation errors caused by ionosphere delays
US20150145722A1 (en) Using sbas ionospheric delay measurements to mitigate ionospheric error
Walter Satellite based augmentation systems
Dautermann Civil air navigation using GNSS enhanced by wide area satellite based augmentation systems
JPWO2015129243A1 (en) Radio interference detection mechanism for satellite positioning, radio interference detection method for satellite positioning, and reinforcement information transmission system provided with radio interference detection mechanism for satellite positioning
EP3206048A1 (en) Use of wide area reference receiver network data to mitigate local area error sources
KR101699437B1 (en) Apparatus for monitoring irregularity of ionospheric delay in network rtk and monitoring method thereof
Rippl et al. ARAIM operational performance tested in flight
EP2995973A1 (en) Method and system for dynamic-to-dynamic precise relative positioning using global navigation satellite systems
JP6769545B2 (en) Ground-based satellite navigation reinforcement system and geometry screening method
US9952326B2 (en) Systems and methods for maintaining minimum operational requirements of a ground-based augmentation system
Krasuski et al. Application of the DGPS method for the precise positioning of an aircraft in air transport
RU2498335C2 (en) Method of increasing noise immunity of integrated orientation and navigation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817474

Country of ref document: EP

Kind code of ref document: A1