WO2016208566A1 - Conveyor device, transport device, and weight estimation method - Google Patents

Conveyor device, transport device, and weight estimation method Download PDF

Info

Publication number
WO2016208566A1
WO2016208566A1 PCT/JP2016/068357 JP2016068357W WO2016208566A1 WO 2016208566 A1 WO2016208566 A1 WO 2016208566A1 JP 2016068357 W JP2016068357 W JP 2016068357W WO 2016208566 A1 WO2016208566 A1 WO 2016208566A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
weight
rotational speed
conveyed product
current value
Prior art date
Application number
PCT/JP2016/068357
Other languages
French (fr)
Japanese (ja)
Inventor
伊東 一夫
橘 俊之
義幸 鬮橋
健司 稲谷
Original Assignee
伊東電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊東電機株式会社 filed Critical 伊東電機株式会社
Priority to JP2017524912A priority Critical patent/JP6725941B2/en
Publication of WO2016208566A1 publication Critical patent/WO2016208566A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G11/00Apparatus for weighing a continuous stream of material during flow; Conveyor belt weighers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G11/00Apparatus for weighing a continuous stream of material during flow; Conveyor belt weighers
    • G01G11/04Apparatus for weighing a continuous stream of material during flow; Conveyor belt weighers having electrical weight-sensitive devices

Definitions

  • the present invention relates to a conveyor device, a transport device, and a weight estimation method for estimating the weight of a transported object being transported.
  • conveyor devices have been used to transport items such as cardboard.
  • the place of placement differs depending on the weight of the transported object, and the transported object may be classified by weight and transported to a desired position.
  • the conveyor device is provided with a function of automatically detecting the weight of the object being conveyed and conveying it to a desired conveyance place.
  • Patent Document 1 a method for measuring the weight of a conveyed product without using a sensor for weight measurement has been proposed (for example, Patent Document 1).
  • the conveyor apparatus described in Patent Document 1 includes two zone conveyors driven by a motor, and rotates the motors of the two zone conveyors at different rotational speeds at a constant speed. Then, the rotational speed of the motor generated when the transported object is transported between the two zone conveyors is measured, and the variation of the low frequency component of the rotational speed is extracted by performing Fourier transform or the like. The weight is detected based on the fluctuation of the extracted low frequency component of the rotational speed.
  • an object of the present invention is to provide a conveyor device, a transport device, and a weight estimation method that can estimate the weight of a transported object in a small space without using a sensor for weight measurement.
  • a conveyor apparatus that includes a conveyance path for conveying a conveyance object and conveys the conveyance object by a driving force of a motor, and the rotation speed or rotation speed of the motor.
  • Rotational speed measuring means for measuring information corresponding to the current and current measuring means for measuring the current of the motor, and information corresponding to the rotational speed or rotational speed of the motor when the conveyed product passes through the transport path.
  • a current estimation value of the motor to perform a weight estimation operation for estimating an estimated weight of the conveyed product.
  • “information corresponding to the rotational speed of the motor” is information corresponding to the rotational speed of the motor on a one-to-one basis. For example, when the motor and the roller rotate together, the rotation speed of the roller corresponds to “information corresponding to the rotation speed of the motor”. Further, when the roller connected to the motor is connected to another free roller, the rotation speed of the free roller also corresponds to “information corresponding to the rotation speed of the motor”.
  • the weight estimation operation for estimating the estimated weight of the conveyed object is performed based on the motor rotation speed or the information corresponding to the rotation speed when the conveyed object passes the conveyance path and the current value of the motor. Therefore, the weight of the conveyed product can be estimated without using a sensor for weight measurement.
  • the weight of the transported object is estimated based on the rotational speed of the single motor or the information corresponding to the rotational speed and the current value of the motor, only the transport area driven by the single motor is used. Thus, the weight estimation of the conveyed product can be completed, and the size can be reduced as compared with the conventional case.
  • a preferable aspect is that the transport path is inclined upward or downward in the transport direction of the transported object.
  • the gravity applied to the conveyed product can be separated into a vertical component and a horizontal component with respect to the inclination direction of the conveyance path
  • the horizontal component of the weight of the conveyed product is determined by the rotational speed or rotational speed of the motor. Reflected in the corresponding information and the current value of the motor, the weight of the conveyed product can be accurately estimated.
  • the weight estimation operation is performed by driving the motor from a state where the rotation of the motor is stopped.
  • the motor since the motor is driven from the state where the rotation of the motor is stopped, it is easy to measure the rotation speed of the motor or the information corresponding to the rotation speed and the change in the motor current value. Therefore, it is easy to extract a component due to the weight of the conveyed product, and it is easy to estimate the weight.
  • a preferable aspect is that in the weight estimation operation, the transported object is moved a predetermined distance, and the rotational speed of the motor or the average value of information corresponding to the rotational speed when moving the predetermined distance, And estimating the estimated weight of the transported object based on the integrated value of the current amount.
  • the weight of the conveyed product is estimated according to the rotational speed or the information corresponding to the rotational speed and the transition of the current amount to the motor, the weight of the conveyed product can be estimated more accurately.
  • a preferred aspect includes a pair of rollers and a belt member that suspends between the pair of rollers, and one of the pair of rollers is driven by the motor, and is disposed on the belt member.
  • the conveyor device of this aspect is a belt conveyor provided with a pair of rollers and a belt member that suspends the rollers, and the conveyed product is placed on the belt member, and the belt member moves by the driving force of the motor. Is conveyed. Therefore, compared with the case where the transported object is placed directly on the roller and transported, the transported object does not slip with respect to the roller, and the weight of the transported object corresponds to the rotational speed or the rotational speed of the motor and the motor current. It is easy to be reflected in the value. Therefore, the weight of the conveyed product can be estimated more accurately.
  • a preferable aspect is that the motor is transported by alternately decelerating and accelerating the motor a plurality of times, and the motor rotates every time the transported object is decelerated and then decelerated again. Measure the information corresponding to the speed or the rotational speed and the current value of the motor, respectively, calculate the expected weight of the transported object from the information corresponding to the rotational speed or the rotational speed of the motor and the current value of the motor, respectively. An average value of expected weights for each movement of the transported object from deceleration of the motor to deceleration again is calculated to estimate the estimated weight of the transported object.
  • the expected weight based on the motor rotation speed or the information corresponding to the rotation speed and the motor current value for each movement of the transported object from the deceleration of the motor to the deceleration again is calculated and calculated. Since the average value of the predicted weights is estimated as the estimated weight of the conveyed product, the weight of the conveyed product can be estimated with higher accuracy.
  • a preferred aspect is that the motor is transported by alternately decelerating and accelerating a plurality of times, and the average value of the expected weights calculated by any one of the following (A) to (D) is It is to estimate the estimated weight of the conveyed product.
  • (A) Measure the information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor for each movement of the conveyed object from the acceleration of the motor to the deceleration, and the rotational speed of the motor or Calculate the expected weight of the transported object from the information corresponding to the rotation speed and the current value of the motor, and calculate the average value of the expected weight for each movement of the transported object from acceleration to deceleration of the motor.
  • the expected weight of the conveyed product is calculated from the information corresponding to the rotation speed and the current value of the motor, respectively, and the average value of the expected weight for each movement of the conveyed product from the acceleration of the motor to the acceleration again. Is calculated.
  • D Each time the transported object is decelerated after decelerating the motor, information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor are measured, and the rotational speed of the motor is measured.
  • the expected weight of the conveyed product is calculated from the information corresponding to the rotational speed and the current value of the motor, respectively, and the average value of the estimated weight for each movement of the conveyed product from the deceleration of the motor to the deceleration again. Is calculated.
  • the weight of the conveyed product can be estimated more accurately.
  • a more preferable aspect is that the motor is transported by stopping and driving the motor a plurality of times, and the rotational speed of the motor or Measure the information corresponding to the rotational speed and the current value of the motor, respectively, calculate the expected weight of the conveyed product from the rotational speed or the information corresponding to the rotational speed of the motor and the current value of the motor, respectively, Calculating an average value of expected weights for each movement of the conveyed product from driving to stopping to estimate the estimated weight of the conveyed product.
  • the weight of the conveyed product can be estimated with higher accuracy.
  • the weight estimation operation is to calculate an estimated weight of the transported object using the following mathematical formula (1).
  • Mx is the expected weight
  • I is the current value
  • v is the rotational speed
  • c1, c2, and c3 are coefficients.
  • the estimated weight of the conveyed product is calculated using the mathematical expression (1), the estimated weight of the conveyed object can be calculated without using a complicated mathematical expression such as Fourier transform.
  • a preferable aspect is to drive the motor in a state where the transported object does not pass through the transport path, acquire information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor, and acquire the acquired
  • the estimated weight is corrected using the rotational speed of the motor or information corresponding to the rotational speed and the current value of the motor.
  • the estimated weight estimated by the weight estimation operation is corrected using the rotation speed or information corresponding to the rotation speed of the motor and the current value of the motor in a state where the conveyed product is not being conveyed. Yes. Therefore, a more accurate estimated weight can be calculated.
  • a preferred aspect is to correct the estimated weight by using the dimensions of the conveyed product.
  • the estimated weight estimated by the weight estimation operation is corrected using at least one of the vertical, horizontal, and height of the conveyed object. That is, according to this aspect, the estimated weight can be corrected in accordance with the size of the conveyed product, and a more accurate estimated weight can be calculated.
  • One aspect of the present invention is a transfer device that forms a transfer flow path for transferring a transfer object by connecting the transfer path of the conveyor device of the above-described aspect and the transfer path of another conveyor device in series.
  • the transported object since the weight of the transported object can be estimated in a part of the transport path of the transport channel, the transported object can be more easily sorted by weight.
  • One aspect of the present invention is a weight estimation method for estimating the weight of a transported object placed on a conveyor device, wherein the transport is inclined upward or downward in the transport direction of the transported object by driving a motor.
  • the transported object is passed through a path, and the estimated weight of the transported object is calculated based on information corresponding to the rotational speed or rotational speed of the motor when the transported object passes through the transporting path and the current value of the motor.
  • This is a weight estimation method for performing a weight estimation operation to be estimated.
  • the weight of the conveyed product can be estimated without using a sensor for weight measurement.
  • the weight of the transported object can be estimated in a small space without using a sensor for weight measurement, and the weight can be estimated at a lower cost than in the past.
  • FIG. 3 is an explanatory diagram showing a weight estimation operation of the first embodiment of the present invention, wherein (a) to (d) show the passage of time. It is explanatory drawing showing the weight estimation operation
  • the conveyance device 1 is a conveyance device for conveying a conveyance object 100 such as cardboard.
  • the transport device 1 constitutes a continuous transport channel 4 in which transport paths 3 a, 3 b, 3 c of a plurality of zone conveyors 2 a, 2 b, 2 c are connected.
  • the conveying apparatus 1 of this embodiment uses the one zone conveyor 2b (henceforth the measurement zone conveyor 2b) (conveyor apparatus) among several zone conveyors 2a, 2b, 2c, and the conveyed product 100 It is possible to carry out a weight estimation operation for estimating the weight of this, and this is one of the main features. Therefore, prior to the description of the weight estimation operation that is one of the features of the present invention, the basic configuration of the transport apparatus 1 will be described.
  • the transport device 1 includes a plurality of zone conveyors 2a, 2b, and 2c arranged in series, and a single transport channel 4 is formed by each of the zone conveyors 2a, 2b, and 2c. Further, as shown in FIG. 3, a weight estimation device 5 is connected to the measurement zone conveyor 2b used for the weight estimation operation.
  • each zone conveyor 2a, 2b, 2c will be described.
  • the measurement zone conveyor 2b which is a characteristic part of the present invention will be described.
  • the measurement zone conveyor 2b constitutes a part of the transport flow path 4 of the transport apparatus 1, and is specifically a belt conveyor. As can be seen from FIGS. 2 to 4, the measurement zone conveyor 2b mainly includes a driving roller 6, driven rollers 7, roller members 8a to 8e, a stretch belt 10 (belt member), and ingress sensors 11 and 12. And side frames 15 and 16, a tension adjusting mechanism 17, and a weight estimation device 5.
  • the driving roller 6 is a roller that rotates by the driving force of the driving motor 21.
  • the driving roller 6 is a motor built-in roller.
  • the drive roller 6 includes a drive motor 21 and a speed reducer 22 built in the roller body 20, and the roller body 20 rotates as the drive motor 21 rotates.
  • the drive motor 21 of the present embodiment is a brushless motor, and as shown in FIG. 6, a rotor 25 having a permanent magnet and three systems of stator coils (U, V, W) surrounding the rotor 25. have.
  • the drive motor 21 has three Hall elements P, G, and O (rotational speed measuring means) that detect the position of the rotor 25.
  • the driven roller 7 is a roller that is paired with the driving roller 6 and is a free roller that rotates following the rotation of the driving roller 6.
  • the roller members 8a to 8e are members that support the conveyed product 100.
  • the roller members 8a to 8e are composed of a shaft portion and a roller portion, and the roller portion is rotatable via the shaft portion.
  • the stretch belt 10 is a belt constituting the conveyance path 3b, is a belt that suspends between the rollers 6 and 7 and interlocks the rotation of the driving roller 6 with the driven roller 7.
  • the stretch belt 10 is an endless continuous belt that extends in a belt shape, and on which the conveyed product 100 is placed during conveyance.
  • Entry sensors 11 and 12 are sensors that detect whether the conveyed product 100 has entered a predetermined position. Moreover, the approach sensors 11 and 12 are also present sensors which judge whether the conveyed product 100 was mounted in the zone conveyor 2b for a measurement.
  • the ingress sensors 11 and 12 are specifically photoelectric sensors, and include light emitting elements such as light emitting diodes and infrared diodes. That is, when the transported object 100 is transported between the approach sensors 11 and 11 facing each other across the transport path 3b, the light from the light emitting element is blocked and an on (H level) signal is output. When the conveyed product 100 does not exist between 11, an off (L level) signal is output. Similarly, when the transported object 100 is transported between the approach sensors 12 and 12 facing each other across the transport path 3b, the light from the light emitting element is blocked and an on (H level) signal is output. , 12, an off (L level) signal is output when there is no conveyed product 100 between them. Thus, the ingress sensors 11 and 12 can detect that the photoelectric sensor is turned on / off and the conveyed product 100 is conveyed to a predetermined position.
  • light emitting elements such as light emitting diodes and infrared diodes.
  • the side frames 15 and 16 are a pair of frames that support the drive roller 6, the driven roller 7, and the roller members 8a to 8e in a rotatable manner.
  • a zone controller 26 is attached to one side frame 15 of the pair of side frames 15 and 16 as shown in FIG.
  • the zone controller 26 performs drive control of the drive motor 21 built in the drive roller 6 shown in FIG.
  • the zone controller 26 has a function of smoothly rotating the drive motor 21, a function of maintaining the rotation speed of the drive motor 21 at a constant level, and a function of starting and stopping the drive motor 21.
  • the zone controller 26 sequentially energizes the stator coils (U, V, W) in accordance with the position (rotational posture) of the rotor 25 shown in FIG.
  • the child 25 can be smoothly rotated. That is, the zone controller 26 has a function of smoothly rotating the drive motor 21.
  • the zone controller 26 has a function of feeding back the rotational speed of the driving motor 21 and a PWM control function, and can keep the rotational speed of the driving motor 21 constant. That is, the zone controller 26 monitors the rotational speed of the drive motor 21 by counting signals output from the Hall elements P, G, and O of the drive motor 21 shown in FIG. Therefore, in the zone controller 26, the rotational speed of the driving motor 21 is fed back by the hall elements P, G, and O. In the zone controller 26, the voltage input to the stator coils (U, V, W) is changed according to the difference between the control target rotation speed and the actual rotation speed of the drive motor 21.
  • the zone controller 26 includes a motor drive circuit unit 27 (current measuring unit), a hall element signal input unit 28, a sensor signal input unit 29, a signal input / output unit 30, and a control unit 31. ing.
  • the motor drive circuit unit 27 is a switching circuit for sequentially energizing the stator coils (U, V, W) of the drive motor 21.
  • the motor drive circuit unit 27 is provided with a voltmeter or ammeter (not shown) and can measure the amount of current supplied to the drive motor 21.
  • the hall element signal input unit 28 is a part to which signals from the hall elements P, G, and O of the driving motor 21 are input.
  • the sensor signal input unit 29 is a part to which signals from the ingress sensors 11 and 12 are input.
  • the signal input / output unit 30 is a circuit for communicating with the zone controllers 26a and 26c (see FIG. 3) of other adjacent zone conveyors 2a and 2c.
  • the control unit 31 mainly includes a CPU and a memory, and mainly performs PWM control of the drive motor 21 and rotation speed calculation.
  • the zone controller 26 has a built-in program corresponding to various transport modes, and starts and stops the drive motor 21 according to the transport mode. For example, when the conveyed product 100 exists in the upstream zone conveyor 2c and the conveyed product 100 does not exist in its own zone conveyor 2b, its own drive motor 21 is activated. Further, for example, the self-driving motor 21 is stopped on the condition that the conveyed product 100 is unloaded from the self-zone conveyor 2b. Although there are various types of transfer modes, detailed description is omitted.
  • the tension adjusting mechanism 17 automatically keeps the tension of the stretch belt 10 constant as can be seen from FIG.
  • the tension adjusting mechanism 17 includes a known take-up mechanism.
  • the weight estimation device 5 includes a Hall element signal input circuit 35, a pulse generation circuit 36, and a calculation device 37.
  • the hall element signal input circuit 35 is a circuit that receives signals from the hall elements P, G, and O of the drive motor 21.
  • the pulse generation circuit 36 is a circuit that generates a pulse signal from detection signals from the Hall elements P, G, and O.
  • the calculation device 37 includes a CPU, a memory, and a hard disk, and stores a rotation speed calculation program 38, a current calculation program 39, and a weight calculation program 40.
  • the rotation speed calculation program 38 calculates the rotation speed of the drive motor 21 based on the signals of the Hall elements P, G, and O input from the Hall element signal input circuit 35.
  • This rotational speed calculation program 38 is separate from the above-described rotational speed calculation method of the zone controller 26b, and the system is also different. That is, the rotation speed calculation program 38 detects the time interval of the position detection signals of the hall elements P, G, O, and calculates the rotation speed of the drive motor 21 based on the time interval.
  • the time interval of the position detection signal is the interval of the detection signal generated by the same pole of the rotor 25. In this embodiment, since the rotor 25 has four poles, the time interval for four detection signals is measured according to the number of poles.
  • the rotor 25 is a permanent magnet and includes two poles of N and S, respectively. Therefore, when the rotor 25 rotates once, the N pole and the S pole pass through the vicinity of each Hall element P, G, O twice. Therefore, when the rotor 25 rotates once, an electromotive force is generated twice from each Hall element P, G, O.
  • the weight estimation device 5 inputs this electromotive force into the Hall element signal input circuit 35 and converts it into a pulse signal by the pulse generation circuit 36.
  • the number of pulses per predetermined time is detected using the rise and fall times of the pulse signals derived from the signals of the hall elements P, G, and O as reference points, and the rotation of the drive motor 21 is detected. Calculate the number and average rotational speed. More specifically, as shown in FIG. 8, the synthesized signal is created by treating the pulse signals derived from the signals of the Hall elements P, G, and O as the reference and treating them equally. Then, the number of pulses per fixed time is counted, and the rotation number and average rotation speed of the drive motor 21 are calculated.
  • the current calculation program 39 is a program that monitors the fluctuation of the current value to the driving motor 21 and calculates the integration of the current value in the driving time from the fluctuation of the current value.
  • the weight calculation program 40 is a program for performing a weight calculation for calculating the estimated weight of the conveyed product 100 from the average rotation speed of the drive motor 21 and the integrated value of the current value to the drive motor 21.
  • a display device 34 is connected to the weight estimation device 5. Specifically, the display device 34 is a monitor and can display the estimated weight of the transported object 100 estimated by the program.
  • the zone conveyors 2a and 2c constitute a part of the transport flow path 4 of the transport apparatus 1, and are known roller conveyors. That is, as shown in FIG. 1, the zone conveyors 2 a and 2 c include a plurality of conveying rollers 45 that convey the conveyed product 100 between a pair of left and right side frames 15 and 16 arranged in parallel at predetermined intervals in the conveying direction. It was supported by Similar to the zone conveyor 2b, the transport roller 45 includes a drive roller 46 provided with a drive motor 21 and a driven roller 47 that freely rotates. In the zone conveyors 2 a and 2 c, the conveyance rollers 45 adjacent in the conveyance direction are wound around the transmission belt 48.
  • the rotational driving force of the driving roller 46 can be transmitted to all the driven rollers 47.
  • the zone conveyors 2a and 2c are provided with the approach sensors 11 and 12 and the zone controller 26 (26a and 26c) like the said zone conveyor 2b for a measurement so that FIG. 1, FIG. 3 can read.
  • the transport apparatus 1 forms a transport flow path 4 in which transport paths 3 a, 3 b, 3 c of a plurality of zone conveyors 2 a, 2 b, 2 c are aligned on a straight line.
  • a pair of side frames 15 and 16 are arranged in parallel with a predetermined interval across the conveyance path 3.
  • the side frames 15 and 16 support the driving roller 6, the driven roller 7, and the roller members 8a to 8e with a predetermined interval in the transport direction.
  • the stretch belt 10 is surrounded endlessly around the drive roller 6 and the driven roller 7, and a part of the stretch belt 10 is connected to the tension adjusting mechanism 17. .
  • the drive roller 6 and the driven roller 7 are connected by the stretch belt 10, and the driven roller 7 can also rotate in conjunction with the rotation of the drive roller 6.
  • the drive roller 6 is located downstream of the driven roller 7 in the flow direction of the conveyed product 100.
  • the driving roller 6 is located on the most downstream side in the flow direction of the conveyed product 100 among the rollers 6 and 7 and the roller members 8a to 8e.
  • the ingress sensors 11 and 12 are provided on the side frames 15 and 16 as shown in FIG.
  • the approach sensors 11 and 12 are separated in the transport direction of the transport object 100.
  • the position of one of the entry sensors 11 is provided in the vicinity of the upstream end of the side frames 15 and 16 in the conveyance direction of the conveyed product 100
  • the position of the other entry sensor 12 is the position of the side frame 15.
  • 16 is provided in the vicinity of the downstream end of the transported object 100 in the transport direction.
  • one approach sensor 11 is provided in the vicinity of the driven roller 7 in the transport direction of the transported object 100
  • the other approach sensor 12 is provided in the vicinity of the drive roller 6.
  • the transport surface 18a of the zone conveyor 2a located on the downstream side of the measurement zone conveyor 2b and the transport surface 18c of the zone conveyor 2c located on the upstream side are both horizontal as shown in FIG.
  • a height difference is formed between the conveyance surface 18a of the downstream zone conveyor 2a and the conveyance surface 18c of the zone conveyor 2c located on the upstream side.
  • the conveyance surface 18a of the downstream zone conveyor 2a is slightly higher than the conveyance surface 18c of the upstream zone conveyor 2c.
  • the “transport surface” here refers to a portion on which the transported object 100 is placed.
  • the measurement zone conveyor 2b it is a portion above the driving roller 6 and the driven roller 7 and a portion where the driving roller 6 and the driven roller 7 of the stretch belt 10 are suspended.
  • the zone conveyors 2a and 2c it means a virtual plane connecting the apexes of the adjacent transport rollers 45.
  • the conveyance surface 18b of the measurement zone conveyor 2b to which the weight estimation device 5 is connected is formed so as to connect the conveyance surfaces 18a and 18c of the zone conveyors 2a and 2c adjacent to the downstream side and the upstream side. It inclines with respect to the conveyance surfaces 18a and 18c of 2a and 2c. Specifically, the conveyance surface 18 b of the zone conveyor 2 b is inclined upward from the upstream side to the downstream side in the conveyance direction of the conveyed product 100.
  • the inclination angle ⁇ of the conveying surface 18b with respect to the horizontal plane shown in FIG. 9 is preferably 0 or more and 8 degrees or less, more preferably greater than 0 degrees and less than 5 degrees, and 0.5 degrees to 1.5 degrees. More preferably. If it is such a range, the weight estimation mentioned later can be performed correctly, suppressing the load to the driving roller 6.
  • the layout can be easily designed while preventing the conveyed object 100 from slipping.
  • the zone controllers 26a, 26b provided in the adjacent zone conveyors 2a, 2b are connected by signal lines as shown in FIG.
  • the zone controllers 26b and 26c provided in the adjacent zone conveyors 2b and 2c are also connected by a signal line. That is, the zone controller 26a of the zone conveyor 2a is connected to the zone controller 26c of the zone conveyor 2c via the zone controller 26b of the zone conveyor 2b, and can communicate with each other.
  • the zone controller 26b provided in the measurement zone conveyor 2b is connected to the weight estimation device 5 through a signal line as shown in FIG. Specifically, the weight estimation device 5 is connected to the driving roller 6 and the zone controller 26b (or an input signal line connected to the zone controller 26b) of the measurement zone conveyor 2b. It is possible to estimate the weight of the object 100 being conveyed from the information on the members.
  • the driving motor 21 of the zone conveyor 2b is driven to rotate the rollers 6 and 7, and the measurement zone conveyor 2b from the conveying surface 18c of the zone conveyor 2c.
  • the transported object 100 is drawn into the transport surface 18b.
  • a weight estimation operation is performed.
  • the measurement operation for calculating the expected weight Mx of the conveyed product 100 is performed a plurality of times while the conveyed product 100 is placed on the conveying surface 18b of the measurement zone conveyor 2b. Specifically, in this measurement operation, when the conveyed product 100 reaches the entrance sensor 11 of the measurement zone conveyor 2b as shown in FIG. 10A, the drive motor 21 is stopped and the measurement zone conveyor 2b is driven. The rotation of the roller 6 is stopped. That is, as shown in FIG. 10B, the rotation of the driving roller 6 is decelerated and the movement of the conveyed product 100 is stopped.
  • the driving motor 21 is driven again, and the driving roller 6 rotates so that the conveyed product 100 moves by a predetermined distance (area X1) as shown in FIG. Accelerate. More specifically, the driving motor 21 is rotated so as to rotate at a predetermined rotational speed by a predetermined rotational speed, and one measurement operation is completed. The actual rotation speed at this time and the current value used for the drive motor 21 are monitored, and the average rotation speed and the integrated value of the current value when the conveyed product 100 moves a predetermined distance (area X1) are calculated. . Then, the predicted weight M1 is calculated from the calculated average rotational speed and the integrated value of the current values using the following mathematical formula (1).
  • Mx is the expected weight
  • I is the current value
  • v is the rotational speed
  • c1, c2, and c3 are coefficients.
  • the next measurement operation is performed. That is, the drive motor 21 is stopped again, and the rotation of the drive roller 6 of the measurement zone conveyor 2b is stopped. In other words, the rotation of the driving roller 6 is decelerated and the movement of the conveyed product 100 is stopped.
  • the driving motor 21 is driven again, and the driving roller is moved so that the conveyed product 100 moves by a predetermined distance (area X2) as shown in FIG. 6 is rotated, and the drive motor 21 is rotated at a predetermined rotational speed so as to rotate at a predetermined rotational speed.
  • the conveyance object 100 is moved by accelerating the rotation of the driving roller 6.
  • the rotational speed at this time and the current value used for the rotation of the drive motor 21 are monitored, and the average rotational speed and the integrated value of the current value when the conveyed product 100 moves a predetermined distance (area X2) are calculated.
  • the predicted weight M2 is calculated from the calculated average rotation speed and the integrated value of the current values using the above mathematical formula (1).
  • n is preferably 1 to 10.
  • the conveyed product 100 is conveyed from the upstream measurement zone conveyor 2c, and when the upstream approach sensor 11 detects the passage of the conveyed product 100 (Yes in STEP.01). ), The drive of the drive motor 21 is stopped (STEP.02), and the counter is reset (STEP.03). Then, the drive motor 21 is driven again (STEP.04), and measurement of the current value and rotation speed of the drive motor 21 is started (STEP.05). Subsequently, it is confirmed whether or not the vehicle has passed the downstream entry sensor 12 (STEP.06). If the vehicle has not passed the entry sensor 12 (No in STEP.06), the pulse of the drive motor 21 becomes the set value.
  • the integrated value of the current value of the drive motor 21 and the average value of the rotation speed from when the drive motor 21 is driven until the pulse of the drive motor 21 reaches the set value are calculated (STEP. 10). .
  • the estimated weight Mx of the conveyed product 100 is calculated and stored from the calculated integrated value of the current value of the drive motor 21 and the average value of the rotational speed using the above formula (1) (STEP.11, STEP.12). 1 is added to the counter (STEP.13). Then, it is confirmed whether the counter has reached the predetermined number n (STEP. 14). If the counter number has not reached the predetermined number n (No in STEP. 14), STEP. Returning to 04, the drive motor 21 is driven again (STEP.04).
  • STEP. 14 when the number of counters reaches the predetermined number n (Yes in STEP.14), the average value Mav of the predicted weight Mx stored in the above operation is calculated to calculate the estimated weight (STEP.19), The counter number is reset (STEP 20).
  • STEP. In 06 when the approach sensor 12 detects the transported object 100 (Yes in STEP.06), the transported object 100 flows to the vicinity of the downstream end of the measurement zone conveyor 2b. The measurement of the current value and the rotation speed is finished (STEP. 15), and the latest STEP.
  • the integrated value of the current value of the driving motor 21 and the average value of the rotating speed from the start of the measurement of the current value and the rotating speed of the driving motor 21 to the end thereof are calculated (STEP.16).
  • the expected weight Mx of the conveyed product 100 is calculated from the integrated value of the calculated current value of the driving motor 21 and the average value of the rotational speed using the above formula (1) (STEP. 17), and the The expected weight Mx is stored (STEP.18). Move to 19.
  • the weight of the transport object 100 can be automatically estimated in accordance with the transport of the transport object 100.
  • the weight of the transported object 100 being transported is estimated by calculation processing, and therefore the approximate weight of the transported object 100 can be estimated without using an expensive sensor for weight measurement. .
  • the weight of the transported object 100 can be estimated by the measurement zone conveyor 2b of one section. Therefore, the weight of the conveyed product 100 can be estimated in a space-saving manner.
  • the weight of the transport object 100 can be estimated from the average rotational speed of the drive motor 21 and the amount of current accumulated in the drive motor 21 when transporting the transport object 100. Therefore, a complicated calculation formula such as Fourier transform is unnecessary, and the introduction cost of the program itself can be suppressed.
  • the measurement zone conveyor 2b includes the tension adjusting mechanism 17 that automatically adjusts the tension of the stretch belt 10, so that the stretch belt 10 is always transported with a constant tension. 100 can be transported. Therefore, the estimated weight of the conveyed product 100 can be made closer to the actually measured value.
  • the transport device 1 of the present embodiment since the measurement zone conveyor 2b is a belt conveyor, slip is less likely to occur between the transport surface 18b and the transported object 100 than in the case of a roller conveyor. Therefore, the weight of the conveyed product 100 can be estimated more accurately than when a roller conveyor is used.
  • the transport apparatus 1 of the present embodiment can also correct the estimated weight calculated by the weight estimation operation in order to make the estimated weight closer to the weight of the transported object 100.
  • the driving motor 21 of the measurement zone conveyor 2b is driven for a predetermined time in a state where the conveyed product 100 is not placed in advance, and the rotational speed and current value of the driving motor 21 during that time And the estimated weight can be corrected using the measured value. That is, the driving roller 6 is rotated in an unloaded state, the rotational speed and current value of the driving motor 21 during that time are measured, and the estimated weight can be corrected using the measured values.
  • the estimated weight can be corrected based on the size of the transported object 100 by transporting the transported object 100 whose dimensions are known in advance or installing a dimension measuring means on the upstream side of the measurement zone conveyor 2b. Specifically, the bottom area and the accumulation can be calculated from the dimensions of the conveyed product 100, and the estimated weight can be corrected according to the dimensions of the conveyed object 100.
  • the transport device according to the second embodiment of the present invention differs from the transport device 1 according to the first embodiment in weight estimation operation.
  • the rotational speed of the drive motor 21 is alternately accelerated and decelerated a plurality of times to estimate the weight of the conveyed product 100.
  • the drive of the drive motor 21 is stopped (STEP.52), and the counter is reset (STEP.53).
  • the drive motor 21 is driven again (STEP. 54), and measurement of the current value and the rotation speed of the drive motor 21 is started (STEP. 55). Subsequently, it is confirmed whether or not it has passed through the downstream approach sensor 12 (STEP. 56).
  • the pulse of the drive motor 21 becomes the set value. It is confirmed whether it has reached (STEP 57). When the pulse of the drive motor 21 reaches the set value (YES in STEP 57), the transported object 100 has moved a predetermined distance, so the drive motor 21 is decelerated (STEP 58), and the drive The measurement of the current value and rotation speed of the motor 21 is also completed (STEP 59). When the pulse of the drive motor 21 has not reached the set value (No in STEP 57), STEP. Return to 56.
  • the integrated value of the current value of the drive motor 21 and the average value of the rotation speed after the drive motor 21 is driven or accelerated until the pulse of the drive motor 21 reaches the set value are calculated (STEP. 60).
  • the predicted weight Mx of the conveyed product 100 is calculated and stored from the calculated integrated value of the current value of the drive motor 21 and the average value of the rotational speed using the above formula (1) (STEP 61, STEP 62). 1 is added to the counter (STEP 63). Then, it is confirmed whether the counter has reached the predetermined number n (STEP. 64). If the counter number has not reached the predetermined number n (NO in STEP. 64), the drive motor 21 is accelerated, and STEP. Returning to 55, the measurement of the current value and rotation speed of the drive motor 21 is started.
  • STEP. 64 when the number of counters reaches the predetermined number n (YES in STEP.64), the average value Mav of the predicted weight Mx stored in the above operation is calculated to calculate the estimated weight (STEP.70), The counter number is reset (STEP 71).
  • STEP. 56 when the approach sensor 12 detects the transported object 100 (Yes in STEP 56), the transported object 100 flows to the vicinity of the downstream end of the measurement zone conveyor 2b.
  • the measurement of the current value and the rotation speed is finished (STEP. 66), and the latest STEP. 55, the integrated value of the current value of the drive motor 21 and the average value of the rotation speed from the start of the measurement of the current value and the rotation speed of the drive motor 21 to the end thereof are calculated (STEP 67).
  • the predicted weight Mx of the conveyed product 100 is calculated from the calculated integrated value of the current value of the drive motor 21 and the average value of the rotation speed using the above formula (1) (STEP.68), and the predicted weight Mx is stored. (STEP.69), STEP.69. Move to 70.
  • the weight of the transport object 100 can be estimated without stopping the transport object 100 completely after the transport object 100 is first stopped in the vicinity of the ingress sensor 11. Therefore, smoother conveyance is possible.
  • the period from when the drive motor 21 is driven or accelerated until the pulse of the drive motor 21 reaches the set value and stops or decelerates is defined as one cycle, and the drive motor at the cycle is set.
  • the integrated value of the current value of 21 and the average value of the rotational speed are calculated, and the expected weight of the conveyed product 100 is calculated based on the integrated value of the current value of the driving motor 21 and the average value of the rotational speed, respectively.
  • the estimated weight was calculated using the average value of the expected weight, the present invention is not limited to this.
  • the period from when the drive motor 21 is stopped or decelerated to when it is driven or accelerated is defined as one cycle, and the integrated value of the current value of the drive motor 21 and the average value of the rotation speed in the cycle are calculated, and the drive
  • the estimated weight of the conveyed product 100 may be calculated based on the integrated value of the current value of the motor 21 and the average rotational speed, and the estimated weight may be calculated using the calculated average value of the predicted weight.
  • the period from driving or accelerating the driving motor 21 to driving or accelerating again is set as one cycle, and the integrated value of the current value of the driving motor 21 and the average value of the rotation speed in the cycle are calculated,
  • the estimated weight of the conveyed product 100 may be calculated based on the integrated value of the current value of the driving motor 21 and the average value of the rotation speed, and the estimated weight may be calculated using the calculated average value of the estimated weight.
  • the period from when the drive motor 21 is stopped or decelerated to when it is stopped or decelerated again is defined as one cycle, and the integrated value of the current value of the drive motor 21 and the average value of the rotation speed in the cycle are calculated.
  • the estimated weight of the conveyed product 100 may be calculated based on the integrated value of the current value of the driving motor 21 and the average value of the rotation speed, and the estimated weight may be calculated using the calculated average value of the estimated weight.
  • the integrated value of the current value of the drive motor 21 and the average value of the rotation speed in a plurality of cycles are calculated, and the expected weight of the conveyed product 100 based on the integrated value of the current value of the drive motor 21 and the average value of the rotation speed.
  • the estimated weight may be calculated using the average value of the calculated predicted weights.
  • the measurement operation is performed after the rotation of the driving roller 6 of the measurement zone conveyor 2b is first stopped. It is not limited to. The measurement operation may be performed without stopping the rotation of the drive roller 6 of the measurement zone conveyor 2b.
  • the measurement operation is performed a plurality of times, and the average value Mav of the expected weight Mx calculated from each measurement operation is used as the estimated weight.
  • the present invention is not limited to this.
  • the measurement operation may be performed once, and the estimated weight M1 calculated from the measurement operation may be used as the estimated weight.
  • the weight of the conveyed product 100 is estimated based on the average rotational speed of the driving motor 21 of the driving roller 6 and the integrated value of the current value.
  • the present invention is not limited to this, and the driving is performed. You may estimate the weight of the conveyed product 100 based on the information corresponding to the average rotational speed of the motor 21 for driving the roller 6.
  • the weight of the conveyed product 100 may be estimated using the rotational speed of the roller body 20 of the drive roller 6, or the weight of the conveyed product 100 may be estimated using the rotational speed of the driven roller 7.
  • the transport surface 18b of the measurement zone conveyor 2b is inclined upward from the upstream side in the transport direction of the transport object 100 toward the downstream side, but the present invention is not limited to this,
  • the conveyance surface 18b of the measurement zone conveyor 2b may be inclined downward from the upstream side in the conveyance direction of the conveyance object 100 toward the downstream side.
  • it is also possible to correct the estimated weight by using a back electromotive voltage generated while the conveyed product 100 is being conveyed.
  • a belt conveyor is used as the measurement zone conveyor 2b, but the present invention is not limited to this. It may be a roller conveyor in which the rollers directly convey the conveyed product. In this case, it is preferable to use the slip amount between the roller and the conveyed product for correcting the estimated weight of the conveyed product.
  • roller conveyors are used as the zone conveyors 2a and 2c, but the present invention is not limited to this.
  • the zone conveyors 2a and 2c may be belt conveyors.
  • the number of pulses per predetermined time is detected using the rising and falling times of the pulse signals derived from the signals of the Hall elements P, G, and O as the reference points, and the rotational speed of the driving motor 21 is detected.
  • the average rotational speed is calculated, the present invention is not limited to this.
  • the number of pulses per predetermined time is detected using the rising or falling time of the pulse signal derived from the signals of the hall elements P, G, and O as a reference point, and the rotation speed and average rotation speed of the drive motor 21 are detected. May be calculated.
  • the time interval of two pulses of the signals of each Hall element P, G, O is set with reference to the rising and / or falling time of the pulse signal derived from the signals of each Hall element P, G, O. It may be detected and the rotation speed and average rotation speed of the drive motor 21 may be calculated. More specifically, as shown in FIG. 14, the difference g between the rising time of the first pulse and the rising time of the third pulse is obtained. Similarly, the difference h between the rising time of the second pulse and the rising time of the fourth pulse is obtained.
  • the rotor 25 is a four-pole rotor of N pole, S pole, N pole, and S pole, the first pulse and the third pulse or the second pulse and the fourth pulse are , Derived from the same pole of the rotor 25. Therefore, the error due to the mounting position of the Hall elements P, G, O and the error due to the pole position of the rotor 25 are canceled out.
  • the time interval for two pulses is measured in accordance with the polarity of the rotor 25, and the rotation speed and average rotation speed of the drive motor 21 are calculated from the average value. May be calculated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Conveyors (AREA)
  • Sorting Of Articles (AREA)

Abstract

The present invention provides: a conveyor device capable of estimating the weight of a transport object in a small space without using a weight measurement sensor; a transport device; and a weight estimation method. The present invention is provided with a transport path on which a transport object is transported, and transports the transport object using a drive force from a motor. The present invention is configured to perform a weight estimation operation for estimating an estimated weight of a transport object on the basis of: a rotation speed measuring means that measures the rotation speed of the motor or information corresponding to the rotation speed; a current measuring means that measures the motor current; and the motor current value and the motor rotation speed or the information corresponding to the rotation speed at a time when the transport object passes along the transport path.

Description

コンベヤ装置、搬送装置、及び重量推定方法Conveyor device, transport device, and weight estimation method
 本発明は、搬送中の搬送物の重量を推定するコンベヤ装置、搬送装置、及び重量推定方法に関するものである。 The present invention relates to a conveyor device, a transport device, and a weight estimation method for estimating the weight of a transported object being transported.
 従来から、工場や物流倉庫などの工業施設では、段ボール等の搬送物を搬送する際にコンベヤ装置が用いられている。この工業施設では、搬送物の重さ等によって置き場所が異なり、搬送物を重さで分類して所望の位置に搬送する場合がある。このような場合、コンベヤ装置に搬送中の搬送物の重量を自動で検知して所望の搬送場所に搬送できる機能が備わることが好ましい。 Conventionally, in industrial facilities such as factories and distribution warehouses, conveyor devices have been used to transport items such as cardboard. In this industrial facility, the place of placement differs depending on the weight of the transported object, and the transported object may be classified by weight and transported to a desired position. In such a case, it is preferable that the conveyor device is provided with a function of automatically detecting the weight of the object being conveyed and conveying it to a desired conveyance place.
 そこで、従来からコンベヤ装置による搬送中の搬送物の重量を自動で測定する方策として、コンベヤ装置の中途に重量測定用のセンサを設ける方策がある。
 しかしながら、この重量測定用のセンサは、センサそのものが高価であり、制御を行うためのシステムも必要となる。
Therefore, conventionally, as a measure for automatically measuring the weight of the object being conveyed by the conveyor device, there is a measure for providing a sensor for measuring the weight in the middle of the conveyor device.
However, the sensor for measuring the weight is expensive, and a system for performing control is also required.
 そこで、近年では、重量測定用のセンサを用いずに搬送中の搬送物の重量を測定する方法が提案されている(例えば、特許文献1)。
 特許文献1に記載のコンベヤ装置は、モータによって駆動される2つのゾーンコンベヤを備えており、当該2つのゾーンコンベヤのモータを異なる回転速度で定速回転させる。そして、搬送物を前記2つのゾーンコンベヤ間を搬送する際に生じるモータの回転速度を測定し、フーリエ変換等を行うことによって、回転速度の低周波成分の変動を抽出する。この抽出した回転速度の低周波成分の変動に基づいて重量を検知している。
Therefore, in recent years, a method for measuring the weight of a conveyed product without using a sensor for weight measurement has been proposed (for example, Patent Document 1).
The conveyor apparatus described in Patent Document 1 includes two zone conveyors driven by a motor, and rotates the motors of the two zone conveyors at different rotational speeds at a constant speed. Then, the rotational speed of the motor generated when the transported object is transported between the two zone conveyors is measured, and the variation of the low frequency component of the rotational speed is extracted by performing Fourier transform or the like. The weight is detected based on the fluctuation of the extracted low frequency component of the rotational speed.
国際公開第2013/191217号International Publication No. 2013/191217
 しかしながら、特許文献1に記載のコンベヤ装置では、搬送物の重量を検知するためにモータで駆動する2つ以上のゾーンコンベヤが必要となり、測定するために2つのモータを設けなければならない問題がある。そのため、搬送物の重量を検知するには、2つ以上のゾーンコンベヤが直列で並ぶスペースが必要となり、コンパクト化とコストの低減という観点から、さらなる改善の余地があった。 However, in the conveyor apparatus described in Patent Document 1, two or more zone conveyors driven by motors are necessary to detect the weight of a conveyed product, and there is a problem that two motors must be provided for measurement. . Therefore, in order to detect the weight of the conveyed product, a space in which two or more zone conveyors are arranged in series is required, and there is room for further improvement from the viewpoint of compactness and cost reduction.
 そこで、本発明は、重量測定用のセンサを用いずとも、少ないスペースで搬送物の重量を推定できるコンベヤ装置、搬送装置、及び重量推定方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a conveyor device, a transport device, and a weight estimation method that can estimate the weight of a transported object in a small space without using a sensor for weight measurement.
 上記課題を解決するための本発明の一つの様相は、搬送物を搬送する搬送路を備え、モータの駆動力によって前記搬送物を搬送するコンベヤ装置であって、前記モータの回転速度又は回転速度と対応する情報を測定する回転速度測定手段と、前記モータの電流を測定する電流測定手段を備え、前記搬送物が前記搬送路を通過する際の前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値とに基づいて、前記搬送物の推定重量を推定する重量推定動作を行うことを特徴とするコンベヤ装置である。 One aspect of the present invention for solving the above problems is a conveyor apparatus that includes a conveyance path for conveying a conveyance object and conveys the conveyance object by a driving force of a motor, and the rotation speed or rotation speed of the motor. Rotational speed measuring means for measuring information corresponding to the current and current measuring means for measuring the current of the motor, and information corresponding to the rotational speed or rotational speed of the motor when the conveyed product passes through the transport path. And a current estimation value of the motor to perform a weight estimation operation for estimating an estimated weight of the conveyed product.
 ここでいう「モータの回転速度と対応する情報」とは、モータの回転速度と1対1で対応する情報である。例えば、モータとローラが一体となって回転する場合には、ローラの回転速度が「モータの回転速度と対応する情報」に該当する。また、モータと接続されたローラが他のフリーローラと接続されている場合には、フリーローラの回転速度も「モータの回転速度と対応する情報」に該当する。 Here, “information corresponding to the rotational speed of the motor” is information corresponding to the rotational speed of the motor on a one-to-one basis. For example, when the motor and the roller rotate together, the rotation speed of the roller corresponds to “information corresponding to the rotation speed of the motor”. Further, when the roller connected to the motor is connected to another free roller, the rotation speed of the free roller also corresponds to “information corresponding to the rotation speed of the motor”.
 本様相によれば、搬送物が搬送路を通過する際のモータの回転速度又は回転速度と対応する情報とモータの電流値とに基づいて、搬送物の推定重量を推定する重量推定動作を行うため、重量測定用のセンサを用いなくても、搬送物の重量を推定することができる。
 また、本様相によれば、一つのモータの回転速度又は回転速度と対応する情報とモータの電流値とに基づいて、搬送物の重量の推定を行うため、一つのモータで駆動する搬送エリアのみで搬送物の重量推定が完結することができ、従来に比べてコンパクト化も可能である。
According to this aspect, the weight estimation operation for estimating the estimated weight of the conveyed object is performed based on the motor rotation speed or the information corresponding to the rotation speed when the conveyed object passes the conveyance path and the current value of the motor. Therefore, the weight of the conveyed product can be estimated without using a sensor for weight measurement.
In addition, according to this aspect, since the weight of the transported object is estimated based on the rotational speed of the single motor or the information corresponding to the rotational speed and the current value of the motor, only the transport area driven by the single motor is used. Thus, the weight estimation of the conveyed product can be completed, and the size can be reduced as compared with the conventional case.
 好ましい様相は、前記搬送路は、前記搬送物の搬送方向において、上り傾斜又は下り傾斜していることである。 A preferable aspect is that the transport path is inclined upward or downward in the transport direction of the transported object.
 本様相によれば、搬送物に加わる重力を搬送路の傾斜方向に対して垂直成分と水平成分に分離することができるため、搬送物の重量の水平方向成分がモータの回転速度又は回転速度と対応する情報やモータの電流値に反映され、搬送物の重量を正確に推定することができる。 According to this aspect, since the gravity applied to the conveyed product can be separated into a vertical component and a horizontal component with respect to the inclination direction of the conveyance path, the horizontal component of the weight of the conveyed product is determined by the rotational speed or rotational speed of the motor. Reflected in the corresponding information and the current value of the motor, the weight of the conveyed product can be accurately estimated.
 好ましい様相は、前記モータの回転が停止された状態から前記モータを駆動して前記重量推定動作を行うことである。 It is preferable that the weight estimation operation is performed by driving the motor from a state where the rotation of the motor is stopped.
 本様相によれば、モータの回転が停止された状態からモータを駆動するので、モータの回転速度又は回転速度と対応する情報とモータの電流値の変化を測定しやすい。そのため、搬送物の重量に起因する成分を抽出しやすく、重量の推定が容易である。 According to this aspect, since the motor is driven from the state where the rotation of the motor is stopped, it is easy to measure the rotation speed of the motor or the information corresponding to the rotation speed and the change in the motor current value. Therefore, it is easy to extract a component due to the weight of the conveyed product, and it is easy to estimate the weight.
 好ましい様相は、前記重量推定動作では、前記搬送物を所定の距離を移動させ、当該所定の距離を移動する際の前記モータの回転速度又は回転速度と対応する情報の平均値と、前記モータへの電流量の積算値とに基づいて、前記搬送物の推定重量を推定することである。 A preferable aspect is that in the weight estimation operation, the transported object is moved a predetermined distance, and the rotational speed of the motor or the average value of information corresponding to the rotational speed when moving the predetermined distance, And estimating the estimated weight of the transported object based on the integrated value of the current amount.
 本様相によれば、回転速度又は回転速度と対応する情報とモータへの電流量の推移に応じて搬送物の重量を推定するので、より正確に搬送物の重量を推定できる。 According to this aspect, since the weight of the conveyed product is estimated according to the rotational speed or the information corresponding to the rotational speed and the transition of the current amount to the motor, the weight of the conveyed product can be estimated more accurately.
 好ましい様相は、一対のローラと、前記一対のローラ間を懸架するベルト部材を有し、前記一対のローラのうち、一方のローラは、前記モータで駆動されるものであり、前記ベルト部材上に前記搬送物が載置され、前記モータが回転することによって前記一方のローラが回転し、前記ベルト部材とともに前記搬送物が移動することである。 A preferred aspect includes a pair of rollers and a belt member that suspends between the pair of rollers, and one of the pair of rollers is driven by the motor, and is disposed on the belt member. When the conveyed product is placed and the motor rotates, the one roller rotates, and the conveyed product moves together with the belt member.
 本様相のコンベヤ装置は、一対のローラと、これらを懸架するベルト部材を備えたベルトコンベヤであり、搬送物がベルト部材上に載置され、モータの駆動力によってベルト部材が移動し、搬送物が搬送されるものである。そのため、ローラに直接搬送物を載置して搬送する場合に比べて、ローラに対して搬送物がスリップせず、搬送物の重量がモータの回転速度又は回転速度と対応する情報とモータの電流値に反映されやすい。それ故に、より正確に搬送物の重量を推定することができる。 The conveyor device of this aspect is a belt conveyor provided with a pair of rollers and a belt member that suspends the rollers, and the conveyed product is placed on the belt member, and the belt member moves by the driving force of the motor. Is conveyed. Therefore, compared with the case where the transported object is placed directly on the roller and transported, the transported object does not slip with respect to the roller, and the weight of the transported object corresponds to the rotational speed or the rotational speed of the motor and the motor current. It is easy to be reflected in the value. Therefore, the weight of the conveyed product can be estimated more accurately.
 好ましい様相は、前記モータを減速と加速を交互に複数回行って前記搬送物を搬送するものであり、前記モータを減速してから再び減速するまでの前記搬送物の移動ごとに前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値をそれぞれ測定し、当該モータの回転速度又は回転速度と対応する情報と当該モータの電流値から前記搬送物の予想重量をそれぞれ算出し、さらに前記モータを減速してから再び減速するまでの前記搬送物の移動ごとの予想重量の平均値を算出して、前記搬送物の推定重量と推定することである。 A preferable aspect is that the motor is transported by alternately decelerating and accelerating the motor a plurality of times, and the motor rotates every time the transported object is decelerated and then decelerated again. Measure the information corresponding to the speed or the rotational speed and the current value of the motor, respectively, calculate the expected weight of the transported object from the information corresponding to the rotational speed or the rotational speed of the motor and the current value of the motor, respectively. An average value of expected weights for each movement of the transported object from deceleration of the motor to deceleration again is calculated to estimate the estimated weight of the transported object.
 本様相によれば、前記モータを減速してから再び減速するまでの搬送物の移動ごとのモータの回転速度又は回転速度と対応する情報とモータの電流値に基づいた予想重量を算出し、算出した予想重量の平均値を搬送物の推定重量と推定するので、より精度よく搬送物の重量を推定できる。 According to this aspect, the expected weight based on the motor rotation speed or the information corresponding to the rotation speed and the motor current value for each movement of the transported object from the deceleration of the motor to the deceleration again is calculated and calculated. Since the average value of the predicted weights is estimated as the estimated weight of the conveyed product, the weight of the conveyed product can be estimated with higher accuracy.
 好ましい様相は、前記モータを減速と加速を交互に複数回行って前記搬送物を搬送するものであり、以下の(A)~(D)のいずれかによって算出した予想重量の平均値を、前記搬送物の推定重量と推定することである。
(A)前記モータを加速してから減速するまでの前記搬送物の移動ごとに前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値をそれぞれ測定し、当該モータの回転速度又は回転速度と対応する情報と当該モータの電流値から前記搬送物の予想重量をそれぞれ算出し、さらに前記モータを加速してから減速するまでの前記搬送物の移動ごとの予想重量の平均値を算出する。
(B)前記モータを減速してから加速するまでの前記搬送物の移動ごとに前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値をそれぞれ測定し、当該モータの回転速度又は回転速度と対応する情報と当該モータの電流値から前記搬送物の予想重量をそれぞれ算出し、さらに前記モータを減速してから加速するまでの前記搬送物の移動ごとの予想重量の平均値を算出する。
(C)前記モータを加速してから再度加速するまでの前記搬送物の移動ごとに前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値をそれぞれ測定し、当該モータの回転速度又は回転速度と対応する情報と当該モータの電流値から前記搬送物の予想重量をそれぞれ算出し、さらに前記モータを加速してから再度加速するまでの前記搬送物の移動ごとの予想重量の平均値を算出する。
(D)前記モータを減速してから再度減速するまでの前記搬送物の移動ごとに前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値をそれぞれ測定し、当該モータの回転速度又は回転速度と対応する情報と当該モータの電流値から前記搬送物の予想重量をそれぞれ算出し、さらに前記モータを減速してから再度減速するまでの前記搬送物の移動ごとの予想重量の平均値を算出する。
A preferred aspect is that the motor is transported by alternately decelerating and accelerating a plurality of times, and the average value of the expected weights calculated by any one of the following (A) to (D) is It is to estimate the estimated weight of the conveyed product.
(A) Measure the information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor for each movement of the conveyed object from the acceleration of the motor to the deceleration, and the rotational speed of the motor or Calculate the expected weight of the transported object from the information corresponding to the rotation speed and the current value of the motor, and calculate the average value of the expected weight for each movement of the transported object from acceleration to deceleration of the motor. To do.
(B) Each time the transported object moves from the deceleration of the motor to the acceleration, information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor are measured, and the rotational speed of the motor or Calculate the expected weight of the transported object from the information corresponding to the rotation speed and the current value of the motor, and further calculate the average value of the expected weight for each movement of the transported object from the deceleration of the motor to the acceleration. To do.
(C) Measure the rotation speed or rotation speed information of the motor and the current value of the motor for each movement of the transported object from the acceleration of the motor to the acceleration again, and the rotation speed of the motor. Alternatively, the expected weight of the conveyed product is calculated from the information corresponding to the rotation speed and the current value of the motor, respectively, and the average value of the expected weight for each movement of the conveyed product from the acceleration of the motor to the acceleration again. Is calculated.
(D) Each time the transported object is decelerated after decelerating the motor, information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor are measured, and the rotational speed of the motor is measured. Alternatively, the expected weight of the conveyed product is calculated from the information corresponding to the rotational speed and the current value of the motor, respectively, and the average value of the estimated weight for each movement of the conveyed product from the deceleration of the motor to the deceleration again. Is calculated.
 本様相によれば、より精度よく搬送物の重量を推定できる。 According to this aspect, the weight of the conveyed product can be estimated more accurately.
 より好ましい様相は、前記モータの停止及び駆動を複数回行って前記搬送物を搬送するものであり、前記モータを駆動してから停止するまでの前記搬送物の移動ごとに前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値をそれぞれ測定し、当該モータの回転速度又は回転速度と対応する情報と当該モータの電流値から前記搬送物の予想重量をそれぞれ算出し、さらに前記モータを駆動してから停止するまでの前記搬送物の移動ごとの予想重量の平均値を算出して前記搬送物の推定重量を推定することである。 A more preferable aspect is that the motor is transported by stopping and driving the motor a plurality of times, and the rotational speed of the motor or Measure the information corresponding to the rotational speed and the current value of the motor, respectively, calculate the expected weight of the conveyed product from the rotational speed or the information corresponding to the rotational speed of the motor and the current value of the motor, respectively, Calculating an average value of expected weights for each movement of the conveyed product from driving to stopping to estimate the estimated weight of the conveyed product.
 本様相によれば、さらに精度よく搬送物の重量を推定できる。 According to this aspect, the weight of the conveyed product can be estimated with higher accuracy.
 好ましい様相は、前記重量推定動作は、下記の数式(1)を用いて前記搬送物の推定重量を算出することである。
Figure JPOXMLDOC01-appb-M000002
Mxは予想重量、Iは電流値、vは回転速度、c1,c2,c3は係数を表す。
In a preferred aspect, the weight estimation operation is to calculate an estimated weight of the transported object using the following mathematical formula (1).
Figure JPOXMLDOC01-appb-M000002
Mx is the expected weight, I is the current value, v is the rotational speed, and c1, c2, and c3 are coefficients.
 本様相によれば、数式(1)を用いて搬送物の推定重量を算出するので、フーリエ変換等の複雑な数式を用いなくても、搬送物の推定重量を算出できる。 According to this aspect, since the estimated weight of the conveyed product is calculated using the mathematical expression (1), the estimated weight of the conveyed object can be calculated without using a complicated mathematical expression such as Fourier transform.
 好ましい様相は、前記搬送物が前記搬送路を通過していない状態で前記モータを駆動させ、前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値を取得し、当該取得した前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値を用いて、前記推定重量を補正することである。 A preferable aspect is to drive the motor in a state where the transported object does not pass through the transport path, acquire information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor, and acquire the acquired The estimated weight is corrected using the rotational speed of the motor or information corresponding to the rotational speed and the current value of the motor.
 本様相によれば、搬送物が搬送されていない状態での前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値を用いて重量推定動作で推定された推定重量を補正している。そのため、より正確な推定重量を算出できる。 According to this aspect, the estimated weight estimated by the weight estimation operation is corrected using the rotation speed or information corresponding to the rotation speed of the motor and the current value of the motor in a state where the conveyed product is not being conveyed. Yes. Therefore, a more accurate estimated weight can be calculated.
 好ましい様相は、前記搬送物の寸法を用いて前記推定重量を補正することである。 A preferred aspect is to correct the estimated weight by using the dimensions of the conveyed product.
 本様相によれば、搬送物の縦、横、高さのいずれかを少なくとも用いて重量推定動作で推定された推定重量を補正している。すなわち、本様相によれば、搬送物の大きさに則して推定重量を補正することができ、より正確な推定重量を算出できる。 According to this aspect, the estimated weight estimated by the weight estimation operation is corrected using at least one of the vertical, horizontal, and height of the conveyed object. That is, according to this aspect, the estimated weight can be corrected in accordance with the size of the conveyed product, and a more accurate estimated weight can be calculated.
 本発明の一つの様相は、上記様相のコンベヤ装置の搬送路と、他のコンベヤ装置の搬送路を直列させて搬送物を搬送する搬送流路を形成している搬送装置である。 One aspect of the present invention is a transfer device that forms a transfer flow path for transferring a transfer object by connecting the transfer path of the conveyor device of the above-described aspect and the transfer path of another conveyor device in series.
 本様相によれば、搬送流路の一部の搬送路で搬送物の重量を推定できるため、より簡単に重量による搬送物の仕分けが可能である。 According to this aspect, since the weight of the transported object can be estimated in a part of the transport path of the transport channel, the transported object can be more easily sorted by weight.
 本発明の一つの様相は、コンベヤ装置に載置された搬送物の重量を推定する重量推定方法であって、モータを駆動することで、前記搬送物の搬送方向に上り傾斜又は下り傾斜した搬送路に前記搬送物を通過させ、前記搬送物が前記搬送路を通過する際の前記モータの回転速度又は回転速度と対応する情報と、前記モータの電流値に基づいて前記搬送物の推定重量を推定する重量推定動作を行う重量推定方法である。 One aspect of the present invention is a weight estimation method for estimating the weight of a transported object placed on a conveyor device, wherein the transport is inclined upward or downward in the transport direction of the transported object by driving a motor. The transported object is passed through a path, and the estimated weight of the transported object is calculated based on information corresponding to the rotational speed or rotational speed of the motor when the transported object passes through the transporting path and the current value of the motor. This is a weight estimation method for performing a weight estimation operation to be estimated.
 本様相によれば、重量測定用のセンサを用いなくても、搬送物の重量を推定することができる。 According to this aspect, the weight of the conveyed product can be estimated without using a sensor for weight measurement.
 本発明によれば、重量測定用のセンサを用いずとも、少ないスペースで搬送物の重量を推定でき、従来に比べて低コストで重量を推定できる。 According to the present invention, the weight of the transported object can be estimated in a small space without using a sensor for weight measurement, and the weight can be estimated at a lower cost than in the past.
本発明の第一実施形態の搬送装置を模式的に示した斜視図である。It is the perspective view which showed typically the conveying apparatus of 1st embodiment of this invention. 図1のゾーンコンベヤの斜視図である。It is a perspective view of the zone conveyor of FIG. 図1の搬送装置の接続関係を表す概念図である。It is a conceptual diagram showing the connection relation of the conveying apparatus of FIG. 図2のゾーンコンベヤの断面斜視図である。It is a cross-sectional perspective view of the zone conveyor of FIG. 図2の駆動ローラの断面図である。It is sectional drawing of the drive roller of FIG. 図2のゾーンコントローラ、駆動用モータ、及び進入センサの関係を示す概念図である。It is a conceptual diagram which shows the relationship between the zone controller of FIG. 2, a drive motor, and an approach sensor. 図1の重量検知装置を示す概念図である。It is a conceptual diagram which shows the weight detection apparatus of FIG. 図7の重量検知装置の回転速度演算プログラムの動作を示す説明図である。It is explanatory drawing which shows operation | movement of the rotational speed calculation program of the weight detection apparatus of FIG. 図1の各ゾーンコンベヤの位置関係を表す説明図である。It is explanatory drawing showing the positional relationship of each zone conveyor of FIG. 本発明の第1実施形態の重量推定動作を表す説明図であり、(a)~(d)は各経時経過を示す。FIG. 3 is an explanatory diagram showing a weight estimation operation of the first embodiment of the present invention, wherein (a) to (d) show the passage of time. 本発明の第1実施形態の重量推定動作を表す説明図であり、(a),(b)は各経時経過を示す。It is explanatory drawing showing the weight estimation operation | movement of 1st Embodiment of this invention, (a), (b) shows each time passage. 本発明の第1実施形態の重量推定動作を表すフローチャートである。It is a flowchart showing the weight estimation operation | movement of 1st Embodiment of this invention. 本発明の第2実施形態の重量推定動作を表すフローチャートである。It is a flowchart showing the weight estimation operation | movement of 2nd Embodiment of this invention. 本発明の他の実施形態の回転速度演算プログラムの動作を示す説明図である。It is explanatory drawing which shows operation | movement of the rotational speed calculation program of other embodiment of this invention.
 以下、本発明の第1実施形態の搬送装置1について説明する。 Hereinafter, the transport apparatus 1 according to the first embodiment of the present invention will be described.
 本発明の第1実施形態の搬送装置1は、段ボール等の搬送物100を搬送するための搬送装置である。搬送装置1は、図1に示されるように、複数のゾーンコンベヤ2a,2b,2cの搬送路3a,3b,3cが連なって連続した搬送流路4を構成するものである。
 そして、本実施形態の搬送装置1は、複数のゾーンコンベヤ2a,2b,2cのうち、一のゾーンコンベヤ2b(以下、測定用ゾーンコンベヤ2bともいう)(コンベヤ装置)を用いて、搬送物100の重量を推定する重量推定動作を行うことが可能であり、この点が主な特徴の一つである。
 そこで、本発明の特徴の一つである重量推定動作の説明に先立って、搬送装置1の基本構成について説明する。
The conveyance device 1 according to the first embodiment of the present invention is a conveyance device for conveying a conveyance object 100 such as cardboard. As shown in FIG. 1, the transport device 1 constitutes a continuous transport channel 4 in which transport paths 3 a, 3 b, 3 c of a plurality of zone conveyors 2 a, 2 b, 2 c are connected.
And the conveying apparatus 1 of this embodiment uses the one zone conveyor 2b (henceforth the measurement zone conveyor 2b) (conveyor apparatus) among several zone conveyors 2a, 2b, 2c, and the conveyed product 100 It is possible to carry out a weight estimation operation for estimating the weight of this, and this is one of the main features.
Therefore, prior to the description of the weight estimation operation that is one of the features of the present invention, the basic configuration of the transport apparatus 1 will be described.
 搬送装置1は、図1に示されるように、複数のゾーンコンベヤ2a,2b,2cが直列に並んでおり、各ゾーンコンベヤ2a,2b,2cによって一つの搬送流路4が形成されている。また、重量推定動作に使用する測定用ゾーンコンベヤ2bには、図3に示されるように、重量推定装置5が接続されている。 As shown in FIG. 1, the transport device 1 includes a plurality of zone conveyors 2a, 2b, and 2c arranged in series, and a single transport channel 4 is formed by each of the zone conveyors 2a, 2b, and 2c. Further, as shown in FIG. 3, a weight estimation device 5 is connected to the measurement zone conveyor 2b used for the weight estimation operation.
 以下、各ゾーンコンベヤ2a,2b,2cの構造について説明する。まず、本発明の特徴部位たる測定用ゾーンコンベヤ2bについて説明する。 Hereinafter, the structure of each zone conveyor 2a, 2b, 2c will be described. First, the measurement zone conveyor 2b which is a characteristic part of the present invention will be described.
 測定用ゾーンコンベヤ2bは、搬送装置1の搬送流路4の一部を構成するものであり、具体的にはベルトコンベヤである。
 測定用ゾーンコンベヤ2bは、図2~図4から読み取れるように、主に駆動ローラ6と、従動ローラ7と、コロ部材8a~8eと、ストレッチベルト10(ベルト部材)と、進入センサ11,12と、サイドフレーム15,16と、張力調整機構17と、重量推定装置5から構成されている。
The measurement zone conveyor 2b constitutes a part of the transport flow path 4 of the transport apparatus 1, and is specifically a belt conveyor.
As can be seen from FIGS. 2 to 4, the measurement zone conveyor 2b mainly includes a driving roller 6, driven rollers 7, roller members 8a to 8e, a stretch belt 10 (belt member), and ingress sensors 11 and 12. And side frames 15 and 16, a tension adjusting mechanism 17, and a weight estimation device 5.
 駆動ローラ6は、駆動用モータ21の駆動力によって自転するローラであり、具体的にはモータ内蔵ローラである。
 駆動ローラ6は、図5に示されるように、ローラ本体20内に、駆動用モータ21と減速機22が内蔵されるものであり、駆動用モータ21が回転することによって、ローラ本体20が回転するものである。
 本実施形態の駆動用モータ21は、ブラシレスモータであり、図6に示されるように、永久磁石を有する回転子25と、その周囲を取り巻く3系統の固定子用コイル(U,V,W)を有している。また駆動用モータ21は、回転子25の位置を検知する3個のホール素子P,G,O(回転速度測定手段)を有している。
The driving roller 6 is a roller that rotates by the driving force of the driving motor 21. Specifically, the driving roller 6 is a motor built-in roller.
As shown in FIG. 5, the drive roller 6 includes a drive motor 21 and a speed reducer 22 built in the roller body 20, and the roller body 20 rotates as the drive motor 21 rotates. To do.
The drive motor 21 of the present embodiment is a brushless motor, and as shown in FIG. 6, a rotor 25 having a permanent magnet and three systems of stator coils (U, V, W) surrounding the rotor 25. have. The drive motor 21 has three Hall elements P, G, and O (rotational speed measuring means) that detect the position of the rotor 25.
 従動ローラ7は、駆動ローラ6と対をなすローラであり、駆動ローラ6の回転に従動して回転するフリーローラである。 The driven roller 7 is a roller that is paired with the driving roller 6 and is a free roller that rotates following the rotation of the driving roller 6.
 コロ部材8a~8eは、搬送物100を支持する部材である。コロ部材8a~8eは、軸部とコロ部から構成されており、コロ部が軸部を介して回転自在となっている。 The roller members 8a to 8e are members that support the conveyed product 100. The roller members 8a to 8e are composed of a shaft portion and a roller portion, and the roller portion is rotatable via the shaft portion.
 ストレッチベルト10は、搬送路3bを構成するベルトであり、ローラ6,7間を懸架し、駆動ローラ6の回転を従動ローラ7に連動させるベルトである。ストレッチベルト10は、無端状に連続し、帯状に延びたベルトであり、搬送時に搬送物100が載置されるものである。 The stretch belt 10 is a belt constituting the conveyance path 3b, is a belt that suspends between the rollers 6 and 7 and interlocks the rotation of the driving roller 6 with the driven roller 7. The stretch belt 10 is an endless continuous belt that extends in a belt shape, and on which the conveyed product 100 is placed during conveyance.
 進入センサ11,12は、所定の位置に搬送物100が進入したかを検知するセンサである。また、進入センサ11,12は、測定用ゾーンコンベヤ2bに搬送物100が載置されたかどうかを判断する在荷センサでもある。 Entry sensors 11 and 12 are sensors that detect whether the conveyed product 100 has entered a predetermined position. Moreover, the approach sensors 11 and 12 are also present sensors which judge whether the conveyed product 100 was mounted in the zone conveyor 2b for a measurement.
 進入センサ11,12は、具体的には光電センサであり、発光ダイオードや赤外線ダイオード等の発光素子を備えている。
 すなわち、搬送路3bを挟んで対向する進入センサ11,11間に搬送物100が搬送されてくると、発光素子からの光が遮られてオン(Hレベル)信号を出力し、進入センサ11,11間に搬送物100が存在しない場合にはオフ(Lレベル)信号を出力する。
 同様に、搬送路3bを挟んで対向する進入センサ12,12間に搬送物100が搬送されてくると、発光素子からの光が遮られてオン(Hレベル)信号を出力し、進入センサ12,12間に搬送物100が存在しない場合にはオフ(Lレベル)信号を出力する。
 このように進入センサ11,12は、光電センサがオン/オフされ、搬送物100が所定位置まで搬送されたことを検知可能となっている。
The ingress sensors 11 and 12 are specifically photoelectric sensors, and include light emitting elements such as light emitting diodes and infrared diodes.
That is, when the transported object 100 is transported between the approach sensors 11 and 11 facing each other across the transport path 3b, the light from the light emitting element is blocked and an on (H level) signal is output. When the conveyed product 100 does not exist between 11, an off (L level) signal is output.
Similarly, when the transported object 100 is transported between the approach sensors 12 and 12 facing each other across the transport path 3b, the light from the light emitting element is blocked and an on (H level) signal is output. , 12, an off (L level) signal is output when there is no conveyed product 100 between them.
Thus, the ingress sensors 11 and 12 can detect that the photoelectric sensor is turned on / off and the conveyed product 100 is conveyed to a predetermined position.
 サイドフレーム15,16は、互いに対をなすフレームであって、駆動ローラ6、従動ローラ7、及びコロ部材8a~8eをそれぞれ回転可能に支持するフレームである。
 一対のサイドフレーム15,16のうち、一方のサイドフレーム15には、図2で示されるように、ゾーンコントローラ26が取り付けられている。
The side frames 15 and 16 are a pair of frames that support the drive roller 6, the driven roller 7, and the roller members 8a to 8e in a rotatable manner.
A zone controller 26 is attached to one side frame 15 of the pair of side frames 15 and 16 as shown in FIG.
 ゾーンコントローラ26は、図5に示される駆動ローラ6内に内蔵された駆動用モータ21の駆動制御を行うものである。
 ゾーンコントローラ26は、駆動用モータ21を円滑に回転させる機能と、駆動用モータ21の回転速度を一定に維持する機能と、駆動用モータ21を起動・停止させる機能を有している。
 具体的には、ゾーンコントローラ26は、図6に示される回転子25の位置(回転姿勢)に応じて固定子用コイル(U,V,W)に順次通電して回転磁界を発生させ、回転子25を円滑に回転させることができる。つまり、ゾーンコントローラ26は、駆動用モータ21を円滑に回転させる機能を備えている。
The zone controller 26 performs drive control of the drive motor 21 built in the drive roller 6 shown in FIG.
The zone controller 26 has a function of smoothly rotating the drive motor 21, a function of maintaining the rotation speed of the drive motor 21 at a constant level, and a function of starting and stopping the drive motor 21.
Specifically, the zone controller 26 sequentially energizes the stator coils (U, V, W) in accordance with the position (rotational posture) of the rotor 25 shown in FIG. The child 25 can be smoothly rotated. That is, the zone controller 26 has a function of smoothly rotating the drive motor 21.
 また、ゾーンコントローラ26は、駆動用モータ21の回転速度をフィードバックさせる機能と、PWM制御機能を有し、駆動用モータ21の回転速度を一定に維持することができる。すなわち、ゾーンコントローラ26は、図6に示される駆動用モータ21のホール素子P,G,Oから出力される信号をカウントすることにより、駆動用モータ21の回転速度を監視している。そのため、ゾーンコントローラ26では、ホール素子P,G,Oによって駆動用モータ21の回転速度がフィードバックされる。そして、ゾーンコントローラ26では、制御目標回転速度と、実際の駆動用モータ21の回転速度との差異に応じて固定子用コイル(U,V,W)に入力される電圧が変更される。 Further, the zone controller 26 has a function of feeding back the rotational speed of the driving motor 21 and a PWM control function, and can keep the rotational speed of the driving motor 21 constant. That is, the zone controller 26 monitors the rotational speed of the drive motor 21 by counting signals output from the Hall elements P, G, and O of the drive motor 21 shown in FIG. Therefore, in the zone controller 26, the rotational speed of the driving motor 21 is fed back by the hall elements P, G, and O. In the zone controller 26, the voltage input to the stator coils (U, V, W) is changed according to the difference between the control target rotation speed and the actual rotation speed of the drive motor 21.
 ゾーンコントローラ26は、図6に示されるように、モータ駆動回路部27(電流測定手段)、ホール素子信号入力部28、センサ信号入力部29、信号入出力部30、及び制御部31を有している。
 モータ駆動回路部27は、駆動用モータ21の固定子用コイル(U,V,W)に順次通電するためのスイッチング回路である。モータ駆動回路部27は、図示しない電圧計又は電流計が設けられており、駆動用モータ21に供給される電流量を測定可能となっている。
 ホール素子信号入力部28は、駆動用モータ21のホール素子P,G,Oからの信号が入力される部位である。
 センサ信号入力部29は、進入センサ11,12からの信号が入力される部位である。
 信号入出力部30は、隣接する他のゾーンコンベヤ2a,2cのゾーンコントローラ26a,26c(図3参照)と通信を行うための回路である。
 制御部31は、主にCPU及びメモリを備え、主に駆動用モータ21のPWM制御と、回転速度算出を行うものである。
As shown in FIG. 6, the zone controller 26 includes a motor drive circuit unit 27 (current measuring unit), a hall element signal input unit 28, a sensor signal input unit 29, a signal input / output unit 30, and a control unit 31. ing.
The motor drive circuit unit 27 is a switching circuit for sequentially energizing the stator coils (U, V, W) of the drive motor 21. The motor drive circuit unit 27 is provided with a voltmeter or ammeter (not shown) and can measure the amount of current supplied to the drive motor 21.
The hall element signal input unit 28 is a part to which signals from the hall elements P, G, and O of the driving motor 21 are input.
The sensor signal input unit 29 is a part to which signals from the ingress sensors 11 and 12 are input.
The signal input / output unit 30 is a circuit for communicating with the zone controllers 26a and 26c (see FIG. 3) of other adjacent zone conveyors 2a and 2c.
The control unit 31 mainly includes a CPU and a memory, and mainly performs PWM control of the drive motor 21 and rotation speed calculation.
 またゾーンコントローラ26は、各種の搬送モードに応じたプログラムを内蔵しており、搬送モードに応じて駆動用モータ21を起動・停止させる。
 例えば、上流側のゾーンコンベヤ2cに搬送物100が存在し、自己のゾーンコンベヤ2bに搬送物100が存在しないという場合には、自己の駆動用モータ21を起動する。また、例えば、自己のゾーンコンベヤ2bから搬送物100が搬出されたことを条件として自己の駆動用モータ21を停止する。なお、搬送モードには各種あるが、詳細な説明は省略する。
In addition, the zone controller 26 has a built-in program corresponding to various transport modes, and starts and stops the drive motor 21 according to the transport mode.
For example, when the conveyed product 100 exists in the upstream zone conveyor 2c and the conveyed product 100 does not exist in its own zone conveyor 2b, its own drive motor 21 is activated. Further, for example, the self-driving motor 21 is stopped on the condition that the conveyed product 100 is unloaded from the self-zone conveyor 2b. Although there are various types of transfer modes, detailed description is omitted.
 張力調整機構17は、図4から読み取れるように、ストレッチベルト10の張力を自動で一定に保つものである。張力調整機構17は、公知のテークアップ機構を備えている。 The tension adjusting mechanism 17 automatically keeps the tension of the stretch belt 10 constant as can be seen from FIG. The tension adjusting mechanism 17 includes a known take-up mechanism.
 重量推定装置5は、図7に示されるように、ホール素子信号入力回路35と、パルス生成回路36と、計算装置37を備えている。
 ホール素子信号入力回路35は、駆動用モータ21のホール素子P,G,Oからの信号を受ける回路である。
 パルス生成回路36は、ホール素子P,G,Oからの検知信号からパルス信号を生成する回路である。
 計算装置37は、CPU、メモリ、及びハードディスクを内蔵するものであり、回転速度演算プログラム38と、電流演算プログラム39と、重量演算プログラム40が記憶されている。
As shown in FIG. 7, the weight estimation device 5 includes a Hall element signal input circuit 35, a pulse generation circuit 36, and a calculation device 37.
The hall element signal input circuit 35 is a circuit that receives signals from the hall elements P, G, and O of the drive motor 21.
The pulse generation circuit 36 is a circuit that generates a pulse signal from detection signals from the Hall elements P, G, and O.
The calculation device 37 includes a CPU, a memory, and a hard disk, and stores a rotation speed calculation program 38, a current calculation program 39, and a weight calculation program 40.
 回転速度演算プログラム38は、ホール素子信号入力回路35から入力されたホール素子P,G,Oの信号に基づいて駆動用モータ21の回転数を演算するものである。
 この回転速度演算プログラム38は、前記したゾーンコントローラ26bの回転速度算出方法とは別個であり、方式も異なる。すなわち、回転速度演算プログラム38は、各ホール素子P,G,Oの位置検知信号の時間間隔を検知し、当該時間間隔に基づいて駆動用モータ21の回転速度を演算するものである。
 具体的には、位置検知信号の時間間隔は、回転子25の同一の極によって発生する検知信号の間隔である。そして、本実施形態では、回転子25が4極であるから、極数に合わせて、検知信号4個分の時間間隔を測定する。
The rotation speed calculation program 38 calculates the rotation speed of the drive motor 21 based on the signals of the Hall elements P, G, and O input from the Hall element signal input circuit 35.
This rotational speed calculation program 38 is separate from the above-described rotational speed calculation method of the zone controller 26b, and the system is also different. That is, the rotation speed calculation program 38 detects the time interval of the position detection signals of the hall elements P, G, O, and calculates the rotation speed of the drive motor 21 based on the time interval.
Specifically, the time interval of the position detection signal is the interval of the detection signal generated by the same pole of the rotor 25. In this embodiment, since the rotor 25 has four poles, the time interval for four detection signals is measured according to the number of poles.
 より詳細に説明すると、本実施形態の駆動用モータ21は、上記したように、回転子25は永久磁石であり、N,Sをそれぞれ二極ずつ備えている。そのため、回転子25が一回転すると、各ホール素子P,G,Oの近傍をN極とS極が二回ずつ通過する。したがって、回転子25が一回転すると、各ホール素子P,G,Oからそれぞれ2回、起電力が生じる。
 そして、重量推定装置5は、この起電力をホール素子信号入力回路35に入力し、パルス生成回路36でパルス信号に変換する。
More specifically, in the driving motor 21 of the present embodiment, as described above, the rotor 25 is a permanent magnet and includes two poles of N and S, respectively. Therefore, when the rotor 25 rotates once, the N pole and the S pole pass through the vicinity of each Hall element P, G, O twice. Therefore, when the rotor 25 rotates once, an electromotive force is generated twice from each Hall element P, G, O.
The weight estimation device 5 inputs this electromotive force into the Hall element signal input circuit 35 and converts it into a pulse signal by the pulse generation circuit 36.
 回転速度演算プログラム38では、各ホール素子P,G,Oの信号に由来するパルス信号の立ち上がり時及び立ち下がり時を基準点とし、所定時間当たりのパルス数を検知し、駆動用モータ21の回転数及び平均回転速度を演算する。
 より具体的には、図8のようにホール素子P,G,Oの信号に由来するパルス信号の立ち上がり時及び立ち下がり時を基準とし、これらを均等に扱って合成信号を作成する。そして、一定時間当たりのパルス数を計数し、駆動用モータ21の回転数及び平均回転速度を演算する。
In the rotational speed calculation program 38, the number of pulses per predetermined time is detected using the rise and fall times of the pulse signals derived from the signals of the hall elements P, G, and O as reference points, and the rotation of the drive motor 21 is detected. Calculate the number and average rotational speed.
More specifically, as shown in FIG. 8, the synthesized signal is created by treating the pulse signals derived from the signals of the Hall elements P, G, and O as the reference and treating them equally. Then, the number of pulses per fixed time is counted, and the rotation number and average rotation speed of the drive motor 21 are calculated.
 電流演算プログラム39は、駆動用モータ21への電流値の変動をモニターし、この電流値の変動から駆動時間における電流値の積算を演算するプログラムである。 The current calculation program 39 is a program that monitors the fluctuation of the current value to the driving motor 21 and calculates the integration of the current value in the driving time from the fluctuation of the current value.
 重量演算プログラム40は、駆動用モータ21の平均回転速度と、駆動用モータ21への電流値の積算値から搬送物100の推定重量を演算する重量演算を行うプログラムである。 The weight calculation program 40 is a program for performing a weight calculation for calculating the estimated weight of the conveyed product 100 from the average rotation speed of the drive motor 21 and the integrated value of the current value to the drive motor 21.
 重量推定装置5には、図7に示されるように、表示装置34が接続されている。
 表示装置34は、具体的には、モニターであり、上記のプログラムによって推定された搬送物100の推定重量を表示可能となっている。
As shown in FIG. 7, a display device 34 is connected to the weight estimation device 5.
Specifically, the display device 34 is a monitor and can display the estimated weight of the transported object 100 estimated by the program.
 ゾーンコンベヤ2a,2cは、搬送装置1の搬送流路4の一部を構成するものであり、公知のローラコンベヤである。すなわち、ゾーンコンベヤ2a,2cは、図1で示されるように、平行に配置された左右の一対のサイドフレーム15,16間に搬送物100を搬送する複数の搬送ローラ45が搬送方向に所定間隔で軸支されたものである。
 この搬送ローラ45は、ゾーンコンベヤ2bと同様、駆動用モータ21を備えた駆動ローラ46と、自由回転する従動ローラ47から構成されている。
 また、ゾーンコンベヤ2a,2cでは、搬送方向に隣接する搬送ローラ45同士が伝動ベルト48で巻回されている。そのため、駆動ローラ46の回転駆動力を全ての従動ローラ47に伝動することができる。
 また、ゾーンコンベヤ2a,2cは、図1,図3から読み取れるように、上記の測定用ゾーンコンベヤ2bと同様、進入センサ11,12及びゾーンコントローラ26(26a,26c)を備えている。
The zone conveyors 2a and 2c constitute a part of the transport flow path 4 of the transport apparatus 1, and are known roller conveyors. That is, as shown in FIG. 1, the zone conveyors 2 a and 2 c include a plurality of conveying rollers 45 that convey the conveyed product 100 between a pair of left and right side frames 15 and 16 arranged in parallel at predetermined intervals in the conveying direction. It was supported by
Similar to the zone conveyor 2b, the transport roller 45 includes a drive roller 46 provided with a drive motor 21 and a driven roller 47 that freely rotates.
In the zone conveyors 2 a and 2 c, the conveyance rollers 45 adjacent in the conveyance direction are wound around the transmission belt 48. Therefore, the rotational driving force of the driving roller 46 can be transmitted to all the driven rollers 47.
Moreover, the zone conveyors 2a and 2c are provided with the approach sensors 11 and 12 and the zone controller 26 (26a and 26c) like the said zone conveyor 2b for a measurement so that FIG. 1, FIG. 3 can read.
 続いて、搬送装置1の各部材の位置関係について説明する。 Subsequently, the positional relationship of each member of the transport apparatus 1 will be described.
 搬送装置1は、図1に示されるように、複数のゾーンコンベヤ2a,2b,2cの搬送路3a,3b,3cが直線上に並んで搬送流路4を形成している。
 各ゾーンコンベヤ2a,2b,2c,・・・は、一対のサイドフレーム15,16が搬送路3を挟んで所定の間隔を空けて平行に配されている。サイドフレーム15,16は、駆動ローラ6、従動ローラ7、及びコロ部材8a~8eを搬送方向において所定の間隔を空けて支持している。
 また、これら駆動ローラ6及び従動ローラ7の周囲には、図4に示されるように、ストレッチベルト10が無端状に囲んでおり、そのストレッチベルト10の一部が張力調整機構17に繋がっている。すなわち、駆動ローラ6及び従動ローラ7は、ストレッチベルト10によって繋がれており、駆動ローラ6の回転に連動して従動ローラ7も回転することが可能となっている。
 駆動ローラ6は、従動ローラ7よりも搬送物100の流れ方向の下流側に位置している。本実施形態では、駆動ローラ6は、ローラ6,7及びコロ部材8a~8eのうち、搬送物100の流れ方向の最下流に位置している。
As shown in FIG. 1, the transport apparatus 1 forms a transport flow path 4 in which transport paths 3 a, 3 b, 3 c of a plurality of zone conveyors 2 a, 2 b, 2 c are aligned on a straight line.
In each of the zone conveyors 2a, 2b, 2c,..., A pair of side frames 15 and 16 are arranged in parallel with a predetermined interval across the conveyance path 3. The side frames 15 and 16 support the driving roller 6, the driven roller 7, and the roller members 8a to 8e with a predetermined interval in the transport direction.
Further, as shown in FIG. 4, the stretch belt 10 is surrounded endlessly around the drive roller 6 and the driven roller 7, and a part of the stretch belt 10 is connected to the tension adjusting mechanism 17. . That is, the drive roller 6 and the driven roller 7 are connected by the stretch belt 10, and the driven roller 7 can also rotate in conjunction with the rotation of the drive roller 6.
The drive roller 6 is located downstream of the driven roller 7 in the flow direction of the conveyed product 100. In the present embodiment, the driving roller 6 is located on the most downstream side in the flow direction of the conveyed product 100 among the rollers 6 and 7 and the roller members 8a to 8e.
 進入センサ11,12は、図1に示されるように、サイドフレーム15,16上に設けられている。進入センサ11,12は、搬送物100の搬送方向に離反している。具体的には、一方の進入センサ11の位置は、サイドフレーム15,16の搬送物100の搬送方向上流側端部の近傍に設けられており、他方の進入センサ12の位置は、サイドフレーム15,16の搬送物100の搬送方向下流側端部の近傍に設けられている。より詳細には、一方の進入センサ11は、搬送物100の搬送方向において、従動ローラ7の近傍に設けられており、他方の進入センサ12は、駆動ローラ6の近傍に設けられている。 The ingress sensors 11 and 12 are provided on the side frames 15 and 16 as shown in FIG. The approach sensors 11 and 12 are separated in the transport direction of the transport object 100. Specifically, the position of one of the entry sensors 11 is provided in the vicinity of the upstream end of the side frames 15 and 16 in the conveyance direction of the conveyed product 100, and the position of the other entry sensor 12 is the position of the side frame 15. , 16 is provided in the vicinity of the downstream end of the transported object 100 in the transport direction. More specifically, one approach sensor 11 is provided in the vicinity of the driven roller 7 in the transport direction of the transported object 100, and the other approach sensor 12 is provided in the vicinity of the drive roller 6.
 測定用ゾーンコンベヤ2bよりも下流側に位置するゾーンコンベヤ2aの搬送面18aと、上流側に位置するゾーンコンベヤ2cの搬送面18cは、図9に示されるようにともに水平となっている。下流側のゾーンコンベヤ2aの搬送面18aと、上流側に位置するゾーンコンベヤ2cの搬送面18cの間には高低差が形成されている。
 具体的には、下流側のゾーンコンベヤ2aの搬送面18aは、上流側のゾーンコンベヤ2cの搬送面18cよりも若干高い。
 ここでいう「搬送面」とは、搬送物100が載置される部分をいう。例えば、測定用ゾーンコンベヤ2bの場合、駆動ローラ6と従動ローラ7の上側の部分であって、ストレッチベルト10の駆動ローラ6と従動ローラ7を懸架する部分をいう。また例えば、ゾーンコンベヤ2a,2cの場合、隣接する搬送ローラ45の頂点を結ぶ仮想面をいう。
The transport surface 18a of the zone conveyor 2a located on the downstream side of the measurement zone conveyor 2b and the transport surface 18c of the zone conveyor 2c located on the upstream side are both horizontal as shown in FIG. A height difference is formed between the conveyance surface 18a of the downstream zone conveyor 2a and the conveyance surface 18c of the zone conveyor 2c located on the upstream side.
Specifically, the conveyance surface 18a of the downstream zone conveyor 2a is slightly higher than the conveyance surface 18c of the upstream zone conveyor 2c.
The “transport surface” here refers to a portion on which the transported object 100 is placed. For example, in the case of the measurement zone conveyor 2b, it is a portion above the driving roller 6 and the driven roller 7 and a portion where the driving roller 6 and the driven roller 7 of the stretch belt 10 are suspended. Further, for example, in the case of the zone conveyors 2a and 2c, it means a virtual plane connecting the apexes of the adjacent transport rollers 45.
 重量推定装置5が接続された測定用ゾーンコンベヤ2bの搬送面18bは、下流側及び上流側に隣接するゾーンコンベヤ2a,2cの搬送面18a,18c間を繋ぐように形成されており、ゾーンコンベヤ2a,2cの搬送面18a,18cに対して傾斜している。
 具体的には、ゾーンコンベヤ2bの搬送面18bは、搬送物100の搬送方向の上流側から下流側にかけて上り傾斜している。図9に示される水平面に対する搬送面18bの傾斜角度θは、0以上8度以下であることが好ましく、0度より大きく5度未満であることがより好ましく、0.5度~1.5度であることがさらに好ましい。このような範囲であれば、駆動ローラ6への負荷を抑えつつ、後述する重量推定を正確に行うことができる。また、搬送物100の滑りを防止しつつ、レイアウトの設計が容易である。
The conveyance surface 18b of the measurement zone conveyor 2b to which the weight estimation device 5 is connected is formed so as to connect the conveyance surfaces 18a and 18c of the zone conveyors 2a and 2c adjacent to the downstream side and the upstream side. It inclines with respect to the conveyance surfaces 18a and 18c of 2a and 2c.
Specifically, the conveyance surface 18 b of the zone conveyor 2 b is inclined upward from the upstream side to the downstream side in the conveyance direction of the conveyed product 100. The inclination angle θ of the conveying surface 18b with respect to the horizontal plane shown in FIG. 9 is preferably 0 or more and 8 degrees or less, more preferably greater than 0 degrees and less than 5 degrees, and 0.5 degrees to 1.5 degrees. More preferably. If it is such a range, the weight estimation mentioned later can be performed correctly, suppressing the load to the driving roller 6. In addition, the layout can be easily designed while preventing the conveyed object 100 from slipping.
 隣接するゾーンコンベヤ2a,2bに設けられたゾーンコントローラ26a,26b同士は、図3に示されるように、信号線で接続されている。隣接するゾーンコンベヤ2b,2cに設けられたゾーンコントローラ26b,26c同士も、信号線で接続されている。すなわち、ゾーンコンベヤ2aのゾーンコントローラ26aは、ゾーンコンベヤ2bのゾーンコントローラ26bを介してゾーンコンベヤ2cのゾーンコントローラ26cと接続されており、相互に通信が可能となっている。 The zone controllers 26a, 26b provided in the adjacent zone conveyors 2a, 2b are connected by signal lines as shown in FIG. The zone controllers 26b and 26c provided in the adjacent zone conveyors 2b and 2c are also connected by a signal line. That is, the zone controller 26a of the zone conveyor 2a is connected to the zone controller 26c of the zone conveyor 2c via the zone controller 26b of the zone conveyor 2b, and can communicate with each other.
 また、測定用ゾーンコンベヤ2bに設けられたゾーンコントローラ26bは、図3に示されるように、重量推定装置5と信号線で接続されている。
 具体的には、重量推定装置5は、測定用ゾーンコンベヤ2bの駆動ローラ6及びゾーンコントローラ26b(又はゾーンコントローラ26bに繋がる入力用の信号線)に接続されており、測定用ゾーンコンベヤ2bの各部材の情報から搬送中の搬送物100の重量を推定することが可能となっている。
Further, the zone controller 26b provided in the measurement zone conveyor 2b is connected to the weight estimation device 5 through a signal line as shown in FIG.
Specifically, the weight estimation device 5 is connected to the driving roller 6 and the zone controller 26b (or an input signal line connected to the zone controller 26b) of the measurement zone conveyor 2b. It is possible to estimate the weight of the object 100 being conveyed from the information on the members.
 続いて、本実施形態の搬送装置1における重量推定動作(重量推定方法)について説明する。 Subsequently, a weight estimation operation (weight estimation method) in the transport device 1 of the present embodiment will be described.
 まず、重量推定動作を実施する際の搬送物100の移動動作について説明する。なお、前記重量推定動作は、測定用ゾーンコンベヤ2bを用いて行うので、搬送物100が上流側のゾーンコンベヤ2cの搬送面18cに載った状態から説明する。 First, the movement operation of the conveyed product 100 when performing the weight estimation operation will be described. In addition, since the said weight estimation operation | movement is performed using the zone conveyor 2b for a measurement, it demonstrates from the state in which the conveyed product 100 was mounted on the conveyance surface 18c of the zone conveyor 2c of an upstream.
 搬送物100がゾーンコンベヤ2cの進入センサ12に至ると、ゾーンコンベヤ2bの駆動用モータ21が駆動されて、各ローラ6,7が回転し、ゾーンコンベヤ2cの搬送面18cから測定用ゾーンコンベヤ2bの搬送面18bに搬送物100が引き込まれる。そして、測定用ゾーンコンベヤ2bの進入センサ11に搬送物100が至ると、重量推定動作が実施される。 When the conveyed product 100 reaches the ingress sensor 12 of the zone conveyor 2c, the driving motor 21 of the zone conveyor 2b is driven to rotate the rollers 6 and 7, and the measurement zone conveyor 2b from the conveying surface 18c of the zone conveyor 2c. The transported object 100 is drawn into the transport surface 18b. When the conveyed product 100 reaches the ingress sensor 11 of the measurement zone conveyor 2b, a weight estimation operation is performed.
 本実施形態の重量推定動作では、測定用ゾーンコンベヤ2bの搬送面18b上に搬送物100が載置された状態で複数回、搬送物100の予想重量Mxを算出する測定動作を実施する。
 具体的には、この測定動作では、図10(a)のように測定用ゾーンコンベヤ2bの進入センサ11に搬送物100が至ると、駆動用モータ21を停止し、測定用ゾーンコンベヤ2bの駆動ローラ6の回転を停止する。すなわち、図10(b)のように、駆動ローラ6の回転を減速させ、搬送物100の移動を停止する。
 搬送物100の移動が停止されると、再度駆動用モータ21を駆動して、図10(c)のように所定の距離(エリアX1)だけ搬送物100が移動するように駆動ローラ6の回転を加速させる。より詳細には、駆動用モータ21を所定の回転速度で所定の回転数だけ回転するように回転させて一つの測定動作を終了する。
 このときの実際の回転速度と、駆動用モータ21に用いた電流値を監視し、搬送物100が所定の距離(エリアX1)を移動した際の平均回転速度及び電流値の積算値を算出する。そして、算出した平均回転速度及び電流値の積算値から下記の数式(1)を用いて予想重量M1を算出する。
In the weight estimation operation of the present embodiment, the measurement operation for calculating the expected weight Mx of the conveyed product 100 is performed a plurality of times while the conveyed product 100 is placed on the conveying surface 18b of the measurement zone conveyor 2b.
Specifically, in this measurement operation, when the conveyed product 100 reaches the entrance sensor 11 of the measurement zone conveyor 2b as shown in FIG. 10A, the drive motor 21 is stopped and the measurement zone conveyor 2b is driven. The rotation of the roller 6 is stopped. That is, as shown in FIG. 10B, the rotation of the driving roller 6 is decelerated and the movement of the conveyed product 100 is stopped.
When the movement of the conveyed product 100 is stopped, the driving motor 21 is driven again, and the driving roller 6 rotates so that the conveyed product 100 moves by a predetermined distance (area X1) as shown in FIG. Accelerate. More specifically, the driving motor 21 is rotated so as to rotate at a predetermined rotational speed by a predetermined rotational speed, and one measurement operation is completed.
The actual rotation speed at this time and the current value used for the drive motor 21 are monitored, and the average rotation speed and the integrated value of the current value when the conveyed product 100 moves a predetermined distance (area X1) are calculated. . Then, the predicted weight M1 is calculated from the calculated average rotational speed and the integrated value of the current values using the following mathematical formula (1).
Figure JPOXMLDOC01-appb-M000003
Mxは予想重量、Iは電流値、vは回転速度、c1,c2,c3は係数を表す。
Figure JPOXMLDOC01-appb-M000003
Mx is the expected weight, I is the current value, v is the rotational speed, and c1, c2, and c3 are coefficients.
 図10(d)のように搬送物100が所定の距離(エリアX1)を移動して測定動作が終了すると、次の測定動作を行う。すなわち、再び駆動用モータ21を停止し、測定用ゾーンコンベヤ2bの駆動ローラ6の回転を停止する。言い換えると、駆動ローラ6の回転を減速させて搬送物100の移動を停止する。
 上記と同様、搬送物100の移動が停止されると、再度駆動用モータ21を駆動し、図11(a)のように所定の距離(エリアX2)だけ搬送物100が移動するように駆動ローラ6を回転させ、駆動用モータ21を所定の回転速度で所定の回転数だけ回転するように回転させる。すなわち、駆動ローラ6の回転を加速させて搬送物100を移動させる。
 このときの回転速度と、駆動用モータ21の回転に用いた電流値を監視し、搬送物100が所定の距離(エリアX2)を移動した際の平均回転速度及び電流値の積算値を算出する。そして、算出した平均回転速度及び電流値の積算値から上記の数式(1)を用いて予想重量M2を算出する。
 図11(b)のように搬送物100が所定の距離(エリアX2)を移動して測定動作が終了すると、次の測定動作を行う。
When the transported object 100 moves a predetermined distance (area X1) as shown in FIG. 10D and the measurement operation is completed, the next measurement operation is performed. That is, the drive motor 21 is stopped again, and the rotation of the drive roller 6 of the measurement zone conveyor 2b is stopped. In other words, the rotation of the driving roller 6 is decelerated and the movement of the conveyed product 100 is stopped.
Similarly to the above, when the movement of the conveyed product 100 is stopped, the driving motor 21 is driven again, and the driving roller is moved so that the conveyed product 100 moves by a predetermined distance (area X2) as shown in FIG. 6 is rotated, and the drive motor 21 is rotated at a predetermined rotational speed so as to rotate at a predetermined rotational speed. That is, the conveyance object 100 is moved by accelerating the rotation of the driving roller 6.
The rotational speed at this time and the current value used for the rotation of the drive motor 21 are monitored, and the average rotational speed and the integrated value of the current value when the conveyed product 100 moves a predetermined distance (area X2) are calculated. . Then, the predicted weight M2 is calculated from the calculated average rotation speed and the integrated value of the current values using the above mathematical formula (1).
When the transported object 100 moves a predetermined distance (area X2) as shown in FIG. 11B and the measurement operation ends, the next measurement operation is performed.
 このように、上記の測定動作を繰り返して行い、所定の回数nに至ると、駆動用モータ21を駆動させて駆動ローラ6を回転させ、搬送物100を下流側のゾーンコンベヤ2aに送り出す。
 このとき、各エリアX1,X2,・・・,Xnの測定動作で算出した予想重量M1,M2,・・・,Mnを用いて、予想重量M1,M2,・・・,Mnの平均値Mavを算出し、これを推定重量とする。
 なお、nは1~10であることが好ましい。
In this way, the above measurement operation is repeated, and when the predetermined number of times n is reached, the drive motor 21 is driven to rotate the drive roller 6 and the conveyed product 100 is sent to the zone conveyor 2a on the downstream side.
At this time, the average value Mav of the predicted weights M1, M2,..., Mn using the predicted weights M1, M2,. Is calculated as the estimated weight.
Note that n is preferably 1 to 10.
 続いて、上記した一連の流れを図12のフローチャートに則してさらに具体的に説明する。 Subsequently, the above-described series of flows will be described more specifically with reference to the flowchart of FIG.
 本実施形態の重量推定動作では、上記したように搬送物100が上流側の測定用ゾーンコンベヤ2cから搬送され、上流側の進入センサ11が搬送物100の通過を検知すると(STEP.01でYes)、駆動用モータ21の駆動を停止し(STEP.02)、カウンターをリセットする(STEP.03)。そして、再度駆動用モータ21を駆動し(STEP.04)、駆動用モータ21の電流値及び回転速度の測定を開始する(STEP.05)。
 続いて、下流側の進入センサ12を通過したか確認し(STEP.06)、進入センサ12を通過していない場合には(STEP.06でNo)、駆動用モータ21のパルスが設定値に到達したか確認する(STEP.07)。
 駆動用モータ21のパルスが設定値(例えば、50~200パルス)に到達した場合には(STEP.07でYes)、搬送物100が所定の距離を移動したので、駆動用モータ21を停止し(STEP.08)、駆動用モータ21の電流値及び回転速度の測定も終了する(STEP.09)。
 なお、駆動用モータ21のパルスが設定値に到達していない場合には(STEP.07でNo)、STEP.06に戻る。
In the weight estimation operation of the present embodiment, as described above, the conveyed product 100 is conveyed from the upstream measurement zone conveyor 2c, and when the upstream approach sensor 11 detects the passage of the conveyed product 100 (Yes in STEP.01). ), The drive of the drive motor 21 is stopped (STEP.02), and the counter is reset (STEP.03). Then, the drive motor 21 is driven again (STEP.04), and measurement of the current value and rotation speed of the drive motor 21 is started (STEP.05).
Subsequently, it is confirmed whether or not the vehicle has passed the downstream entry sensor 12 (STEP.06). If the vehicle has not passed the entry sensor 12 (No in STEP.06), the pulse of the drive motor 21 becomes the set value. It is confirmed whether it has reached (STEP.07).
When the pulse of the driving motor 21 reaches a set value (for example, 50 to 200 pulses) (Yes in STEP.07), the transported object 100 has moved a predetermined distance, so the driving motor 21 is stopped. (STEP.08), measurement of the current value and rotation speed of the drive motor 21 is also completed (STEP.09).
When the pulse of the drive motor 21 has not reached the set value (No in STEP.07), STEP. Return to 06.
 駆動用モータ21を駆動してから、駆動用モータ21のパルスが設定値に到達するまでの間の駆動用モータ21の電流値の積算値及び回転速度の平均値を算出する(STEP.10)。算出した駆動用モータ21の電流値の積算値及び回転速度の平均値から上記の数式(1)を用いて搬送物100の予想重量Mxを算出して記憶し(STEP.11,STEP.12)、カウンターを1追加する(STEP.13)。そして、カウンターが所定数nに到達したか確認し(STEP.14)、カウンター数が所定数nに至っていない場合には(STEP.14でNo)、STEP.04に戻り、再度、駆動用モータ21を駆動する(STEP.04)。 The integrated value of the current value of the drive motor 21 and the average value of the rotation speed from when the drive motor 21 is driven until the pulse of the drive motor 21 reaches the set value are calculated (STEP. 10). . The estimated weight Mx of the conveyed product 100 is calculated and stored from the calculated integrated value of the current value of the drive motor 21 and the average value of the rotational speed using the above formula (1) (STEP.11, STEP.12). 1 is added to the counter (STEP.13). Then, it is confirmed whether the counter has reached the predetermined number n (STEP. 14). If the counter number has not reached the predetermined number n (No in STEP. 14), STEP. Returning to 04, the drive motor 21 is driven again (STEP.04).
 一方、STEP.14でカウンター数が所定数nに至っている場合には(STEP.14でYes)、上記した動作で記憶した予想重量Mxの平均値Mavを算出して推定重量を算出し(STEP.19)、カウンター数をリセットする(STEP.20)。 On the other hand, STEP. 14, when the number of counters reaches the predetermined number n (Yes in STEP.14), the average value Mav of the predicted weight Mx stored in the above operation is calculated to calculate the estimated weight (STEP.19), The counter number is reset (STEP 20).
 また、STEP.06において、進入センサ12が搬送物100を検知した場合(STEP.06でYes)には、搬送物100が測定用ゾーンコンベヤ2bの下流側端部近傍まで流れているので、駆動用モータ21の電流値及び回転速度の測定を終了し(STEP.15)、直近のSTEP.05で駆動用モータ21の電流値及び回転速度の測定を開始してから当該終了までの駆動用モータ21の電流値の積算値及び回転速度の平均値を算出する(STEP.16)。算出した駆動用モータ21の電流値の積算値及び回転速度の平均値から上記の数式(1)を用いて搬送物100の予想重量Mxを算出して(STEP.17)、当該搬送物100の予想重量Mxを記憶し(STEP.18)、STEP.19に移る。 Also, STEP. In 06, when the approach sensor 12 detects the transported object 100 (Yes in STEP.06), the transported object 100 flows to the vicinity of the downstream end of the measurement zone conveyor 2b. The measurement of the current value and the rotation speed is finished (STEP. 15), and the latest STEP. In 05, the integrated value of the current value of the driving motor 21 and the average value of the rotating speed from the start of the measurement of the current value and the rotating speed of the driving motor 21 to the end thereof are calculated (STEP.16). The expected weight Mx of the conveyed product 100 is calculated from the integrated value of the calculated current value of the driving motor 21 and the average value of the rotational speed using the above formula (1) (STEP. 17), and the The expected weight Mx is stored (STEP.18). Move to 19.
 以上のように、本実施形態の搬送装置1によれば、搬送物100の搬送に合わせて自動で搬送物100の重量を推定できる。 As described above, according to the transport device 1 of the present embodiment, the weight of the transport object 100 can be automatically estimated in accordance with the transport of the transport object 100.
 本実施形態の搬送装置1によれば、計算処理によって搬送中の搬送物100の重量を推定するため、高価な重量測定用のセンサを用いなくても、およその搬送物100の重量を推定できる。 According to the transport device 1 of the present embodiment, the weight of the transported object 100 being transported is estimated by calculation processing, and therefore the approximate weight of the transported object 100 can be estimated without using an expensive sensor for weight measurement. .
 本実施形態の搬送装置1によれば、1区間の測定用ゾーンコンベヤ2bによって搬送物100の重量を推定できる。そのため、省スペースで搬送物100の重量を推定することができる。 According to the transport device 1 of the present embodiment, the weight of the transported object 100 can be estimated by the measurement zone conveyor 2b of one section. Therefore, the weight of the conveyed product 100 can be estimated in a space-saving manner.
 本実施形態の搬送装置1によれば、搬送物100を搬送する際の駆動用モータ21の平均回転速度及び駆動用モータ21への積算電流量によって、搬送物100の重量を推定できる。そのため、フーリエ変換等の複雑な計算式が不要であり、プログラム自体の導入コストを抑制することができる。 According to the transport device 1 of the present embodiment, the weight of the transport object 100 can be estimated from the average rotational speed of the drive motor 21 and the amount of current accumulated in the drive motor 21 when transporting the transport object 100. Therefore, a complicated calculation formula such as Fourier transform is unnecessary, and the introduction cost of the program itself can be suppressed.
 本実施形態の搬送装置1によれば、測定用ゾーンコンベヤ2bがストレッチベルト10の張力を自動で調整する張力調整機構17を備えるので、ストレッチベルト10を常に一定の張力を持った状態で搬送物100を搬送できる。そのため、搬送物100の推定重量をより実測値に近づけることができる。 According to the transport apparatus 1 of the present embodiment, the measurement zone conveyor 2b includes the tension adjusting mechanism 17 that automatically adjusts the tension of the stretch belt 10, so that the stretch belt 10 is always transported with a constant tension. 100 can be transported. Therefore, the estimated weight of the conveyed product 100 can be made closer to the actually measured value.
 本実施形態の搬送装置1によれば、測定用ゾーンコンベヤ2bがベルトコンベヤであるので、ローラコンベヤの場合に比べて、搬送面18bと搬送物100間でスリップが生じにくい。そのため、ローラコンベヤを用いる場合に比べて、より正確な搬送物100の重量の推定が可能である。 According to the transport device 1 of the present embodiment, since the measurement zone conveyor 2b is a belt conveyor, slip is less likely to occur between the transport surface 18b and the transported object 100 than in the case of a roller conveyor. Therefore, the weight of the conveyed product 100 can be estimated more accurately than when a roller conveyor is used.
 本実施形態の搬送装置1は、推定重量をより搬送物100の重量に近づけるために、重量推定動作で算出した推定重量を補正することもできる。
 例えば、重量推定動作を実施する前に、あらかじめ搬送物100が載っていない状態で測定用ゾーンコンベヤ2bの駆動用モータ21を所定時間駆動させて、その間の駆動用モータ21の回転速度及び電流値を測定し、その測定値を用いて推定重量を補正することができる。すなわち、駆動ローラ6を無負荷の状態で回転させて、その間の駆動用モータ21の回転速度及び電流値を測定し、その測定値を用いて推定重量を補正することができる。
 また、例えば、あらかじめ寸法が既知の搬送物100を搬送する又は測定用ゾーンコンベヤ2bの上流側に寸法計測手段を設置することによって、搬送物100の寸法によって推定重量を補正することができる。具体的には、搬送物100の寸法から底面積や堆積を算出し、搬送物100の寸法に応じて推定重量を補正することができる。
The transport apparatus 1 of the present embodiment can also correct the estimated weight calculated by the weight estimation operation in order to make the estimated weight closer to the weight of the transported object 100.
For example, before carrying out the weight estimation operation, the driving motor 21 of the measurement zone conveyor 2b is driven for a predetermined time in a state where the conveyed product 100 is not placed in advance, and the rotational speed and current value of the driving motor 21 during that time And the estimated weight can be corrected using the measured value. That is, the driving roller 6 is rotated in an unloaded state, the rotational speed and current value of the driving motor 21 during that time are measured, and the estimated weight can be corrected using the measured values.
Further, for example, the estimated weight can be corrected based on the size of the transported object 100 by transporting the transported object 100 whose dimensions are known in advance or installing a dimension measuring means on the upstream side of the measurement zone conveyor 2b. Specifically, the bottom area and the accumulation can be calculated from the dimensions of the conveyed product 100, and the estimated weight can be corrected according to the dimensions of the conveyed object 100.
 続いて、本発明の第2実施形態の搬送装置について説明する。なお、第1実施形態の搬送装置1と同様の構成については、同一の符番を付して説明を省略する。 Subsequently, a transport apparatus according to a second embodiment of the present invention will be described. In addition, about the structure similar to the conveying apparatus 1 of 1st Embodiment, the same number is attached | subjected and description is abbreviate | omitted.
 本発明の第2実施形態の搬送装置は、第1実施形態の搬送装置1と重量推定動作が異なる。 The transport device according to the second embodiment of the present invention differs from the transport device 1 according to the first embodiment in weight estimation operation.
 第2実施形態の重量推定動作では、駆動用モータ21の回転速度を加速及び減速を交互に複数回行って搬送物100の重量を推定する。
 具体的には、図13に示されるように、搬送物100が上流側のゾーンコンベヤ2cから搬送され、上流側の進入センサ11が搬送物100の通過を検知すると(STEP.51でYes)、駆動用モータ21の駆動を停止し(STEP.52)、カウンターをリセットする(STEP.53)。そして、再度駆動用モータ21を駆動し(STEP.54)、駆動用モータ21の電流値及び回転速度の測定を開始する(STEP.55)。
 続いて、下流側の進入センサ12を通過したか確認し(STEP.56)、進入センサ12を通過していない場合には(STEP.56でNo)、駆動用モータ21のパルスが設定値に到達したか確認する(STEP.57)。
 駆動用モータ21のパルスが設定値に到達した場合には(STEP.57でYes)、搬送物100が所定の距離を移動したので、駆動用モータ21を減速し(STEP.58)、駆動用モータ21の電流値及び回転速度の測定も終了する(STEP.59)。
 なお、駆動用モータ21のパルスが設定値に到達していない場合には(STEP.57でNo)、STEP.56に戻る。
In the weight estimation operation of the second embodiment, the rotational speed of the drive motor 21 is alternately accelerated and decelerated a plurality of times to estimate the weight of the conveyed product 100.
Specifically, as shown in FIG. 13, when the conveyed product 100 is conveyed from the upstream zone conveyor 2c and the upstream approach sensor 11 detects the passage of the conveyed product 100 (Yes in STEP 51), The drive of the drive motor 21 is stopped (STEP.52), and the counter is reset (STEP.53). Then, the drive motor 21 is driven again (STEP. 54), and measurement of the current value and the rotation speed of the drive motor 21 is started (STEP. 55).
Subsequently, it is confirmed whether or not it has passed through the downstream approach sensor 12 (STEP. 56). If it has not passed through the approach sensor 12 (No in STEP. 56), the pulse of the drive motor 21 becomes the set value. It is confirmed whether it has reached (STEP 57).
When the pulse of the drive motor 21 reaches the set value (YES in STEP 57), the transported object 100 has moved a predetermined distance, so the drive motor 21 is decelerated (STEP 58), and the drive The measurement of the current value and rotation speed of the motor 21 is also completed (STEP 59).
When the pulse of the drive motor 21 has not reached the set value (No in STEP 57), STEP. Return to 56.
 駆動用モータ21を駆動又は加速してから、駆動用モータ21のパルスが設定値に到達するまでの間の駆動用モータ21の電流値の積算値及び回転速度の平均値を算出する(STEP.60)。算出した駆動用モータ21の電流値の積算値及び回転速度の平均値から上記の数式(1)を用いて搬送物100の予想重量Mxを算出して記憶し(STEP.61,STEP.62)、カウンターを1追加する(STEP.63)。そして、カウンターが所定数nに到達したか確認し(STEP.64)、カウンター数が所定数nに至っていない場合には(STEP.64でNo)、駆動用モータ21を加速し、STEP.55に戻り、駆動用モータ21の電流値及び回転速度の測定を開始する。 The integrated value of the current value of the drive motor 21 and the average value of the rotation speed after the drive motor 21 is driven or accelerated until the pulse of the drive motor 21 reaches the set value are calculated (STEP. 60). The predicted weight Mx of the conveyed product 100 is calculated and stored from the calculated integrated value of the current value of the drive motor 21 and the average value of the rotational speed using the above formula (1) (STEP 61, STEP 62). 1 is added to the counter (STEP 63). Then, it is confirmed whether the counter has reached the predetermined number n (STEP. 64). If the counter number has not reached the predetermined number n (NO in STEP. 64), the drive motor 21 is accelerated, and STEP. Returning to 55, the measurement of the current value and rotation speed of the drive motor 21 is started.
 一方、STEP.64でカウンター数が所定数nに至っている場合には(STEP.64でYes)、上記した動作で記憶した予想重量Mxの平均値Mavを算出して推定重量を算出し(STEP.70)、カウンター数をリセットする(STEP.71)。 On the other hand, STEP. 64, when the number of counters reaches the predetermined number n (YES in STEP.64), the average value Mav of the predicted weight Mx stored in the above operation is calculated to calculate the estimated weight (STEP.70), The counter number is reset (STEP 71).
 また、STEP.56において、進入センサ12が搬送物100を検知した場合(STEP.56でYes)には、搬送物100が測定用ゾーンコンベヤ2bの下流側端部近傍まで流れているので、駆動用モータ21の電流値及び回転速度の測定を終了し(STEP.66)、直近のSTEP.55で駆動用モータ21の電流値及び回転速度の測定を開始してから当該終了までの駆動用モータ21の電流値の積算値及び回転速度の平均値を算出する(STEP.67)。算出した駆動用モータ21の電流値の積算値及び回転速度の平均値から上記の数式(1)を用いて搬送物100の予想重量Mxを算出し(STEP.68)、当該予想重量Mxを記憶し(STEP.69)、STEP.70に移る。 Also, STEP. 56, when the approach sensor 12 detects the transported object 100 (Yes in STEP 56), the transported object 100 flows to the vicinity of the downstream end of the measurement zone conveyor 2b. The measurement of the current value and the rotation speed is finished (STEP. 66), and the latest STEP. 55, the integrated value of the current value of the drive motor 21 and the average value of the rotation speed from the start of the measurement of the current value and the rotation speed of the drive motor 21 to the end thereof are calculated (STEP 67). The predicted weight Mx of the conveyed product 100 is calculated from the calculated integrated value of the current value of the drive motor 21 and the average value of the rotation speed using the above formula (1) (STEP.68), and the predicted weight Mx is stored. (STEP.69), STEP.69. Move to 70.
 第2実施形態の搬送装置によれば、搬送物100を進入センサ11近傍で最初に停止させてから搬送物100を完全に停止させずに搬送物100の重量を推定できる。そのため、よりスムーズな搬送が可能である。 According to the transport device of the second embodiment, the weight of the transport object 100 can be estimated without stopping the transport object 100 completely after the transport object 100 is first stopped in the vicinity of the ingress sensor 11. Therefore, smoother conveyance is possible.
 上記した実施形態では、駆動用モータ21を駆動又は加速してから駆動用モータ21のパルスが設定値に到達して停止又は減速するまでの間を一つの周期とし、当該周期での駆動用モータ21の電流値の積算値及び回転速度の平均値を算出し、当該駆動用モータ21の電流値の積算値及び回転速度の平均値に基づいて搬送物100の予想重量をそれぞれ算出し、算出した予想重量の平均値を用いて推定重量を算出したが、本発明はこれに限定されるものではない。
 駆動用モータ21を停止又は減速してから駆動又は加速するまでの間を一つの周期とし、当該周期での駆動用モータ21の電流値の積算値及び回転速度の平均値を算出し、当該駆動用モータ21の電流値の積算値及び回転速度の平均値に基づいて搬送物100の予想重量をそれぞれ算出し、算出した予想重量の平均値を用いて推定重量を算出してもよい。
 駆動用モータ21を駆動又は加速してから再度駆動又は再度加速するまでの間を一つの周期とし、当該周期での駆動用モータ21の電流値の積算値及び回転速度の平均値を算出し、当該駆動用モータ21の電流値の積算値及び回転速度の平均値に基づいて搬送物100の予想重量をそれぞれ算出し、算出した予想重量の平均値を用いて推定重量を算出してもよい。
 駆動用モータ21を停止又は減速してから再度停止又は再度減速するまでの間を一つの周期とし、当該周期での駆動用モータ21の電流値の積算値及び回転速度の平均値を算出し、当該駆動用モータ21の電流値の積算値及び回転速度の平均値に基づいて搬送物100の予想重量をそれぞれ算出し、算出した予想重量の平均値を用いて推定重量を算出してもよい。
 複数周期での駆動用モータ21の電流値の積算値及び回転速度の平均値を算出し、当該駆動用モータ21の電流値の積算値及び回転速度の平均値に基づいて搬送物100の予想重量をそれぞれ算出し、算出した予想重量の平均値を用いて推定重量を算出してもよい。
In the above-described embodiment, the period from when the drive motor 21 is driven or accelerated until the pulse of the drive motor 21 reaches the set value and stops or decelerates is defined as one cycle, and the drive motor at the cycle is set. The integrated value of the current value of 21 and the average value of the rotational speed are calculated, and the expected weight of the conveyed product 100 is calculated based on the integrated value of the current value of the driving motor 21 and the average value of the rotational speed, respectively. Although the estimated weight was calculated using the average value of the expected weight, the present invention is not limited to this.
The period from when the drive motor 21 is stopped or decelerated to when it is driven or accelerated is defined as one cycle, and the integrated value of the current value of the drive motor 21 and the average value of the rotation speed in the cycle are calculated, and the drive The estimated weight of the conveyed product 100 may be calculated based on the integrated value of the current value of the motor 21 and the average rotational speed, and the estimated weight may be calculated using the calculated average value of the predicted weight.
The period from driving or accelerating the driving motor 21 to driving or accelerating again is set as one cycle, and the integrated value of the current value of the driving motor 21 and the average value of the rotation speed in the cycle are calculated, The estimated weight of the conveyed product 100 may be calculated based on the integrated value of the current value of the driving motor 21 and the average value of the rotation speed, and the estimated weight may be calculated using the calculated average value of the estimated weight.
The period from when the drive motor 21 is stopped or decelerated to when it is stopped or decelerated again is defined as one cycle, and the integrated value of the current value of the drive motor 21 and the average value of the rotation speed in the cycle are calculated. The estimated weight of the conveyed product 100 may be calculated based on the integrated value of the current value of the driving motor 21 and the average value of the rotation speed, and the estimated weight may be calculated using the calculated average value of the estimated weight.
The integrated value of the current value of the drive motor 21 and the average value of the rotation speed in a plurality of cycles are calculated, and the expected weight of the conveyed product 100 based on the integrated value of the current value of the drive motor 21 and the average value of the rotation speed. And the estimated weight may be calculated using the average value of the calculated predicted weights.
 上記した実施形態では、搬送物100が進入センサ11近傍に到着したときに、最初に一度測定用ゾーンコンベヤ2bの駆動ローラ6の回転を停止させてから測定動作を行ったが、本発明はこれに限定されるものではない。測定用ゾーンコンベヤ2bの駆動ローラ6の回転を停止させずに、測定動作を行ってもよい。 In the embodiment described above, when the conveyed product 100 arrives in the vicinity of the ingress sensor 11, the measurement operation is performed after the rotation of the driving roller 6 of the measurement zone conveyor 2b is first stopped. It is not limited to. The measurement operation may be performed without stopping the rotation of the drive roller 6 of the measurement zone conveyor 2b.
 上記した実施形態では、複数回の測定動作を実施し、各測定動作から算出される予想重量Mxの平均値Mavを推定重量としたが、本発明はこれに限定されるものではない。測定動作を1回実施し、当該測定動作から算出される予想重量M1を推定重量としてもよい。 In the above-described embodiment, the measurement operation is performed a plurality of times, and the average value Mav of the expected weight Mx calculated from each measurement operation is used as the estimated weight. However, the present invention is not limited to this. The measurement operation may be performed once, and the estimated weight M1 calculated from the measurement operation may be used as the estimated weight.
 上記した実施形態では、駆動ローラ6の駆動用モータ21の平均回転速度と、電流値の積算値によって、搬送物100の重量を推定したが、本発明はこれに限定されるものではなく、駆動ローラ6の駆動用モータ21の平均回転速度に対応する情報を元に搬送物100の重量を推定してもよい。
 例えば、駆動ローラ6のローラ本体20の回転速度を用いて搬送物100の重量を推定してもよいし、従動ローラ7の回転速度を用いて搬送物100の重量を推定してもよい。
In the above-described embodiment, the weight of the conveyed product 100 is estimated based on the average rotational speed of the driving motor 21 of the driving roller 6 and the integrated value of the current value. However, the present invention is not limited to this, and the driving is performed. You may estimate the weight of the conveyed product 100 based on the information corresponding to the average rotational speed of the motor 21 for driving the roller 6.
For example, the weight of the conveyed product 100 may be estimated using the rotational speed of the roller body 20 of the drive roller 6, or the weight of the conveyed product 100 may be estimated using the rotational speed of the driven roller 7.
 上記した実施形態では、測定用ゾーンコンベヤ2bの搬送面18bは、搬送物100の搬送方向上流側から下流側に向かって上り傾斜していたが、本発明はこれに限定されるものではなく、測定用ゾーンコンベヤ2bの搬送面18bは、搬送物100の搬送方向上流側から下流側に向かって下り傾斜していてもよい。
 この場合、搬送物100を搬送中に発生する逆起電圧を用いて、推定重量を補正することもできる。
In the above-described embodiment, the transport surface 18b of the measurement zone conveyor 2b is inclined upward from the upstream side in the transport direction of the transport object 100 toward the downstream side, but the present invention is not limited to this, The conveyance surface 18b of the measurement zone conveyor 2b may be inclined downward from the upstream side in the conveyance direction of the conveyance object 100 toward the downstream side.
In this case, it is also possible to correct the estimated weight by using a back electromotive voltage generated while the conveyed product 100 is being conveyed.
 上記した実施形態では、測定用ゾーンコンベヤ2bとしてベルトコンベヤを使用したが、本発明はこれに限定されるものではない。ローラが直接搬送物を搬送するローラコンベヤであってもよい。この場合、ローラと搬送物との間のスリップ量を搬送物の推定重量の補正に使用することが好ましい。 In the above-described embodiment, a belt conveyor is used as the measurement zone conveyor 2b, but the present invention is not limited to this. It may be a roller conveyor in which the rollers directly convey the conveyed product. In this case, it is preferable to use the slip amount between the roller and the conveyed product for correcting the estimated weight of the conveyed product.
 また上記した実施形態では、ゾーンコンベヤ2a,2cとしてローラコンベヤを使用したが、本発明はこれに限定されるものではない。ゾーンコンベヤ2a,2cもゾーンコンベヤ2bと同様ベルトコンベヤであってもよい。 In the above embodiment, roller conveyors are used as the zone conveyors 2a and 2c, but the present invention is not limited to this. Similarly to the zone conveyor 2b, the zone conveyors 2a and 2c may be belt conveyors.
 上記した実施形態では、各ホール素子P,G,Oの信号に由来するパルス信号の立ち上がり時及び立ち下がり時を基準点とし、所定時間当たりのパルス数を検知し、駆動用モータ21の回転数及び平均回転速度を演算したが、本発明はこれに限定されるものではない。
 例えば、各ホール素子P,G,Oの信号に由来するパルス信号の立ち上がり時又は立ち下がり時を基準点とし、所定時間当たりのパルス数を検知し、駆動用モータ21の回転数及び平均回転速度を演算してもよい。
 また例えば、各ホール素子P,G,Oの信号に由来するパルス信号の立ち上がり時及び/又は立ち下がり時を基準点とし、各ホール素子P,G,Oの信号の2パルス分の時間間隔を検知して、駆動用モータ21の回転数及び平均回転速度を演算してもよい。
 より具体的には、図14のように、第1パルスの立ち上がり時刻と、第3パルスの立ち上がり時刻との差gを求める。また同様に、第2パルスの立ち上がり時刻と、第4パルスの立ち上がり時刻との差hを求める。
 ここで、回転子25は、上記したように、N極,S極,N極,S極の4極の回転子であるから、第1パルスと第3パルスあるいは第2パルスと第4パルスは、回転子25の同一の極に由来するものである。そのためホール素子P,G,Oの取り付け位置による誤差や、回転子25の極の位置による誤差が相殺される。
 このように、各ホール素子P,G,Oごとに、回転子25の極性に合わせて、パルス2個分の時間間隔を測定し、この平均値から駆動用モータ21の回転数及び平均回転速度を演算してもよい。
In the embodiment described above, the number of pulses per predetermined time is detected using the rising and falling times of the pulse signals derived from the signals of the Hall elements P, G, and O as the reference points, and the rotational speed of the driving motor 21 is detected. Although the average rotational speed is calculated, the present invention is not limited to this.
For example, the number of pulses per predetermined time is detected using the rising or falling time of the pulse signal derived from the signals of the hall elements P, G, and O as a reference point, and the rotation speed and average rotation speed of the drive motor 21 are detected. May be calculated.
Also, for example, the time interval of two pulses of the signals of each Hall element P, G, O is set with reference to the rising and / or falling time of the pulse signal derived from the signals of each Hall element P, G, O. It may be detected and the rotation speed and average rotation speed of the drive motor 21 may be calculated.
More specifically, as shown in FIG. 14, the difference g between the rising time of the first pulse and the rising time of the third pulse is obtained. Similarly, the difference h between the rising time of the second pulse and the rising time of the fourth pulse is obtained.
Here, as described above, since the rotor 25 is a four-pole rotor of N pole, S pole, N pole, and S pole, the first pulse and the third pulse or the second pulse and the fourth pulse are , Derived from the same pole of the rotor 25. Therefore, the error due to the mounting position of the Hall elements P, G, O and the error due to the pole position of the rotor 25 are canceled out.
Thus, for each Hall element P, G, O, the time interval for two pulses is measured in accordance with the polarity of the rotor 25, and the rotation speed and average rotation speed of the drive motor 21 are calculated from the average value. May be calculated.
  1 搬送装置
  2b 測定用ゾーンコンベヤ(コンベヤ装置)
  3a~3c 搬送路
  4 搬送流路
  5 重量推定装置
  6 駆動ローラ(一方のローラ)
  7 従動ローラ
 10 ストレッチベルト(ベルト部材)
 18 搬送面
 21 駆動用モータ(モータ)
 27 モータ駆動回路部(電流測定手段)
100 搬送物
  P,G,O ホール素子(回転速度測定手段)
1 Conveyor 2b Zone conveyor for measurement (conveyor)
3a to 3c Conveyance path 4 Conveyance path 5 Weight estimation device 6 Drive roller (one roller)
7 Followed roller 10 Stretch belt (belt member)
18 Transport surface 21 Drive motor (motor)
27 Motor drive circuit (current measuring means)
100 Conveyed object P, G, O Hall element (rotational speed measuring means)

Claims (12)

  1.  搬送物を搬送する搬送路を備え、モータの駆動力によって前記搬送物を搬送するコンベヤ装置であって、
     前記モータの回転速度又は回転速度と対応する情報を測定する回転速度測定手段と、
     前記モータの電流を測定する電流測定手段を備え、
     前記搬送物が前記搬送路を通過する際の前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値とに基づいて、前記搬送物の推定重量を推定する重量推定動作を行うことを特徴とするコンベヤ装置。
    A conveyor device that includes a conveyance path for conveying a conveyance object, and conveys the conveyance object by a driving force of a motor,
    A rotational speed measuring means for measuring rotational speed or information corresponding to the rotational speed of the motor;
    Comprising current measuring means for measuring the current of the motor;
    Performing a weight estimation operation for estimating an estimated weight of the transported object based on a rotation speed of the motor when the transported object passes through the transport path or information corresponding to the rotation speed and a current value of the motor. Conveyor device characterized by
  2.  前記搬送路は、前記搬送物の搬送方向において、上り傾斜又は下り傾斜していることを特徴とする請求項1に記載のコンベヤ装置。 The conveyor apparatus according to claim 1, wherein the conveyance path is inclined up or down in the conveyance direction of the conveyed product.
  3.  前記モータの回転が停止された状態から前記モータを駆動して前記重量推定動作を行うことを特徴とする請求項1又は2に記載のコンベヤ装置。 The conveyor apparatus according to claim 1 or 2, wherein the weight estimation operation is performed by driving the motor from a state in which the rotation of the motor is stopped.
  4.  前記重量推定動作では、前記搬送物を所定の距離を移動させ、当該所定の距離を移動する際の前記モータの回転速度又は回転速度と対応する情報の平均値と、前記モータへの電流量の積算値とに基づいて、前記搬送物の推定重量を推定することを特徴とする請求項1~3のいずれかに記載のコンベヤ装置。 In the weight estimation operation, the transported object is moved by a predetermined distance, the rotation speed of the motor when moving the predetermined distance, or an average value of information corresponding to the rotation speed, and an amount of current to the motor. The conveyor device according to any one of claims 1 to 3, wherein an estimated weight of the conveyed product is estimated based on the integrated value.
  5.  一対のローラと、前記一対のローラ間を懸架するベルト部材を有し、
     前記一対のローラのうち、一方のローラは、前記モータで駆動されるものであり、
     前記ベルト部材上に前記搬送物が載置され、前記モータが回転することによって前記一方のローラが回転し、前記ベルト部材とともに前記搬送物が移動することを特徴とする請求項1~4のいずれかに記載のコンベヤ装置。
    A pair of rollers and a belt member that suspends between the pair of rollers;
    One of the pair of rollers is driven by the motor,
    5. The conveyed product is placed on the belt member, the one roller is rotated by rotating the motor, and the conveyed product is moved together with the belt member. Crab conveyor device.
  6.  前記モータを減速と加速を交互に複数回行って前記搬送物を搬送するものであり、
     以下の(A)~(D)のいずれかによって算出した予想重量の平均値を、前記搬送物の推定重量と推定することを特徴とする請求項1~5のいずれかに記載のコンベヤ装置。
    (A)前記モータを加速してから減速するまでの前記搬送物の移動ごとに前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値をそれぞれ測定し、当該モータの回転速度又は回転速度と対応する情報と当該モータの電流値から前記搬送物の予想重量をそれぞれ算出し、さらに前記モータを加速してから減速するまでの前記搬送物の移動ごとの予想重量の平均値を算出する。
    (B)前記モータを減速してから加速するまでの前記搬送物の移動ごとに前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値をそれぞれ測定し、当該モータの回転速度又は回転速度と対応する情報と当該モータの電流値から前記搬送物の予想重量をそれぞれ算出し、さらに前記モータを減速してから加速するまでの前記搬送物の移動ごとの予想重量の平均値を算出する。
    (C)前記モータを加速してから再度加速するまでの前記搬送物の移動ごとに前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値をそれぞれ測定し、当該モータの回転速度又は回転速度と対応する情報と当該モータの電流値から前記搬送物の予想重量をそれぞれ算出し、さらに前記モータを加速してから再度加速するまでの前記搬送物の移動ごとの予想重量の平均値を算出する。
    (D)前記モータを減速してから再度減速するまでの前記搬送物の移動ごとに前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値をそれぞれ測定し、当該モータの回転速度又は回転速度と対応する情報と当該モータの電流値から前記搬送物の予想重量をそれぞれ算出し、さらに前記モータを減速してから再度減速するまでの前記搬送物の移動ごとの予想重量の平均値を算出する。
    The motor is decelerated and accelerated alternately several times to convey the conveyed object,
    6. The conveyor apparatus according to claim 1, wherein an average value of predicted weights calculated by any one of the following (A) to (D) is estimated as an estimated weight of the conveyed product.
    (A) Measure the information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor for each movement of the conveyed object from the acceleration of the motor to the deceleration, and the rotational speed of the motor or Calculate the expected weight of the transported object from the information corresponding to the rotation speed and the current value of the motor, and calculate the average value of the expected weight for each movement of the transported object from acceleration to deceleration of the motor. To do.
    (B) Each time the transported object moves from the deceleration of the motor to the acceleration, information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor are measured, and the rotational speed of the motor or Calculate the expected weight of the transported object from the information corresponding to the rotation speed and the current value of the motor, and further calculate the average value of the expected weight for each movement of the transported object from the deceleration of the motor to the acceleration. To do.
    (C) Measure the rotation speed or rotation speed information of the motor and the current value of the motor for each movement of the transported object from the acceleration of the motor to the acceleration again, and the rotation speed of the motor. Alternatively, the expected weight of the conveyed product is calculated from the information corresponding to the rotation speed and the current value of the motor, respectively, and the average value of the expected weight for each movement of the conveyed product from the acceleration of the motor to the acceleration again. Is calculated.
    (D) Each time the transported object is decelerated after decelerating the motor, information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor are measured, and the rotational speed of the motor is measured. Alternatively, the expected weight of the conveyed product is calculated from the information corresponding to the rotational speed and the current value of the motor, respectively, and the average value of the estimated weight for each movement of the conveyed product from the deceleration of the motor to the deceleration again. Is calculated.
  7.  前記モータの停止及び駆動を複数回行って前記搬送物を搬送するものであり、
     前記モータを駆動してから停止するまでの前記搬送物の移動ごとに前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値をそれぞれ測定し、当該モータの回転速度又は回転速度と対応する情報と当該モータの電流値から前記搬送物の予想重量をそれぞれ算出し、さらに前記モータを駆動してから停止するまでの前記搬送物の移動ごとの予想重量の平均値を算出して前記搬送物の推定重量を推定することを特徴とする請求項1~5のいずれかに記載のコンベヤ装置。
    The motor is stopped and driven a plurality of times to convey the conveyed product,
    Information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor are measured for each movement of the transported object from when the motor is driven to when it is stopped, and the rotational speed or rotational speed of the motor is measured. Calculate the expected weight of the conveyed product from the corresponding information and the current value of the motor, respectively, and further calculate the average value of the expected weight for each movement of the conveyed product from driving the motor to stopping it. The conveyor device according to any one of claims 1 to 5, wherein an estimated weight of a conveyed product is estimated.
  8.  前記重量推定動作は、下記の数式(1)を用いて前記搬送物の推定重量を算出することを特徴とする請求項1~7のいずれかに記載のコンベヤ装置。
    Figure JPOXMLDOC01-appb-M000001
    Mxは予想重量、Iは電流値、vは回転速度、c1,c2,c3は係数を表す。
    The conveyor apparatus according to any one of claims 1 to 7, wherein the weight estimation operation calculates an estimated weight of the conveyed object using the following mathematical formula (1).
    Figure JPOXMLDOC01-appb-M000001
    Mx is the expected weight, I is the current value, v is the rotational speed, and c1, c2, and c3 are coefficients.
  9.  前記搬送物が前記搬送路を通過していない状態で前記モータを駆動させ、前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値を取得し、当該取得した前記モータの回転速度又は回転速度と対応する情報と前記モータの電流値を用いて、前記推定重量を補正することを特徴とする請求項1~8のいずれかに記載のコンベヤ装置。 The motor is driven in a state where the transported object does not pass through the transport path, information corresponding to the rotational speed or rotational speed of the motor and the current value of the motor are acquired, and the acquired rotational speed of the motor 9. The conveyor apparatus according to claim 1, wherein the estimated weight is corrected using information corresponding to a rotational speed and a current value of the motor.
  10.  前記搬送物の寸法を用いて前記推定重量を補正することを特徴とする請求項1~9のいずれかに記載のコンベヤ装置。 The conveyor apparatus according to any one of claims 1 to 9, wherein the estimated weight is corrected using a dimension of the conveyed product.
  11.  請求項1~10のいずれかに記載のコンベヤ装置の搬送路と、他のコンベヤ装置の搬送路を直列させて前記搬送物を搬送する搬送流路を形成していることを特徴とする搬送装置。 11. A conveying apparatus characterized in that a conveying flow path for conveying the conveyed object is formed by connecting the conveying path of the conveyor apparatus according to claim 1 and the conveying path of another conveyor apparatus in series. .
  12.  コンベヤ装置に載置された搬送物の重量を推定する重量推定方法であって、
     モータを駆動することで、前記搬送物の搬送方向に上り傾斜又は下り傾斜した搬送路に前記搬送物を通過させ、
     前記搬送物が前記搬送路を通過する際の前記モータの回転速度又は回転速度と対応する情報と、前記モータの電流値に基づいて前記搬送物の推定重量を推定する重量推定動作を行うことを特徴とする重量推定方法。
    A weight estimation method for estimating the weight of a transported object placed on a conveyor device,
    By driving the motor, the transported object is passed through a transport path inclined upward or downward in the transport direction of the transported object,
    Performing a weight estimation operation for estimating an estimated weight of the transported object based on the rotation speed or the rotation speed of the motor when the transported object passes through the transport path and the current value of the motor. Characteristic weight estimation method.
PCT/JP2016/068357 2015-06-22 2016-06-21 Conveyor device, transport device, and weight estimation method WO2016208566A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017524912A JP6725941B2 (en) 2015-06-22 2016-06-21 Conveyor device, transfer device, and weight estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015124697 2015-06-22
JP2015-124697 2015-06-22

Publications (1)

Publication Number Publication Date
WO2016208566A1 true WO2016208566A1 (en) 2016-12-29

Family

ID=57585788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068357 WO2016208566A1 (en) 2015-06-22 2016-06-21 Conveyor device, transport device, and weight estimation method

Country Status (2)

Country Link
JP (1) JP6725941B2 (en)
WO (1) WO2016208566A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025329A1 (en) * 2018-07-30 2020-02-06 Interroll Holding Ag Transverse-belt sorter having a control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378483A (en) * 1989-08-18 1991-04-03 Yaskawa Electric Mfg Co Ltd Load torque detecting method for carrying machine
JPH06309552A (en) * 1993-02-25 1994-11-04 Fuji Electric Co Ltd Powdery material supply device for automatic vending machine
JPH0741143A (en) * 1993-06-18 1995-02-10 Kawasaki Heavy Ind Ltd Method and apparatus for measuring caried in flow by vertical and steeply inclined conveyer
US5685772A (en) * 1994-11-09 1997-11-11 Lockheed Martin Corporation Acoustic volume and torque weight sensor
JP2014025831A (en) * 2012-07-27 2014-02-06 Anritsu Sanki System Co Ltd Weighing apparatus
US20140327383A1 (en) * 2013-05-06 2014-11-06 Raf Technology, Inc. Parcel and mass flow scale
JP2014212791A (en) * 2013-04-22 2014-11-17 日立アプライアンス株式会社 Drum type washing machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191217A1 (en) * 2012-06-21 2013-12-27 伊東電機株式会社 Conveyor device and weight detection method using conveyor device
JP2016159250A (en) * 2015-03-03 2016-09-05 株式会社東芝 Article assortment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378483A (en) * 1989-08-18 1991-04-03 Yaskawa Electric Mfg Co Ltd Load torque detecting method for carrying machine
JPH06309552A (en) * 1993-02-25 1994-11-04 Fuji Electric Co Ltd Powdery material supply device for automatic vending machine
JPH0741143A (en) * 1993-06-18 1995-02-10 Kawasaki Heavy Ind Ltd Method and apparatus for measuring caried in flow by vertical and steeply inclined conveyer
US5685772A (en) * 1994-11-09 1997-11-11 Lockheed Martin Corporation Acoustic volume and torque weight sensor
JP2014025831A (en) * 2012-07-27 2014-02-06 Anritsu Sanki System Co Ltd Weighing apparatus
JP2014212791A (en) * 2013-04-22 2014-11-17 日立アプライアンス株式会社 Drum type washing machine
US20140327383A1 (en) * 2013-05-06 2014-11-06 Raf Technology, Inc. Parcel and mass flow scale

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025329A1 (en) * 2018-07-30 2020-02-06 Interroll Holding Ag Transverse-belt sorter having a control device
US11919721B2 (en) 2018-07-30 2024-03-05 Interroll Holding Ag Transverse-belt sorter having a control device

Also Published As

Publication number Publication date
JP6725941B2 (en) 2020-07-22
JPWO2016208566A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6212487B2 (en) Conveyor device and weight detection method using conveyor device
US11643279B1 (en) Conveyor system for autonomous robot
EP1361182B1 (en) Conveying apparatus
US9926140B2 (en) Roller conveyor device, controller, and mechanical device abnormality detection method
US10745203B2 (en) Transport system, control method, processing system, and manufacturing method of article
AU2016287069B2 (en) Method and apparatus for determining a specific energy consumption of belt conveyors
US20080023302A1 (en) Conveyor system with dynamic gapping and method of slug building
JP2007022282A (en) Estimation method of wheel wear amount of automated guided vehicle, determination method of wheel exchange time and traveling control method of automated guided vehicle and its device
JP2013193139A (en) Workpiece hanging control device and method in hanger line
CN107954031B (en) Wrapping machine with self-calibration
WO2016208566A1 (en) Conveyor device, transport device, and weight estimation method
JP5040779B2 (en) Method for sorting articles in sorting equipment
CN107810393B (en) LIM driven roller type weight detecting device
KR101774419B1 (en) Transfer control device and roller table having the same
EP2610677A3 (en) Document conveying device for conveying document and image forming apparatus including the document conveying device
US11693397B2 (en) Method and conveying apparatus for the improved determination of the position of an object transported on the conveying apparatus
JP3845659B2 (en) Transport device
JP6878695B2 (en) Tire conveyor for transportation
JP6269517B2 (en) Round bar number counting device and number counting method
CN110370278A (en) A kind of route adjustment system and method based on industrial robot jitter analysis
JP2012184094A (en) Conveyor equipment
JP4721158B2 (en) Roller conveyor braking device
JP6417187B2 (en) Transport device
JP2010202403A (en) Conveyor system and weight measuring method with conveyor system
JP2009190800A (en) Roller conveyor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814336

Country of ref document: EP

Kind code of ref document: A1