WO2016208315A1 - Plant diagnosis device and plant diagnosis method - Google Patents

Plant diagnosis device and plant diagnosis method Download PDF

Info

Publication number
WO2016208315A1
WO2016208315A1 PCT/JP2016/065373 JP2016065373W WO2016208315A1 WO 2016208315 A1 WO2016208315 A1 WO 2016208315A1 JP 2016065373 W JP2016065373 W JP 2016065373W WO 2016208315 A1 WO2016208315 A1 WO 2016208315A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
diagnosis
diagnostic
abnormality
diagnostic apparatus
Prior art date
Application number
PCT/JP2016/065373
Other languages
French (fr)
Japanese (ja)
Inventor
孝朗 関合
林 喜治
達矢 前田
和貴 定江
正博 村上
深井 雅之
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201680036343.0A priority Critical patent/CN107710089B/en
Publication of WO2016208315A1 publication Critical patent/WO2016208315A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a plant diagnostic apparatus and a plant diagnostic method for diagnosing abnormal plant conditions.
  • the plant diagnostic device detects the occurrence of an abnormality or accident based on the measurement data from the plant when an abnormal transient or accident occurs in the plant.
  • Patent Document 1 discloses a diagnostic apparatus using adaptive resonance theory (ART), which is one of clustering technologies.
  • ART is a theory that classifies multidimensional data into categories according to their similarity.
  • normal measurement data is classified into a plurality of categories (normal categories) using ART.
  • the current measurement data is input to the ART and classified into categories.
  • a new category (new category) is generated.
  • the occurrence of a new category means that the state of the plant has changed. Therefore, the occurrence of an abnormality is determined based on the occurrence of a new category, and an abnormality is diagnosed when the occurrence rate of the new category exceeds a threshold value.
  • a parameter that determines the size of the cluster (the size of the category in ART). This parameter is called a resolution parameter.
  • a resolution parameter determines the size of the cluster.
  • the range of change in the data trend in which new categories occur differs depending on whether the resolution is coarse or fine.
  • the resolution is rough, the data tendency is greatly changed from that in the normal state, so the probability that the devices are different is high.
  • the resolution is fine, there is a possibility that a minute tendency change such as measurement noise is detected, so the probability of abnormality is low.
  • the setting values of the parameters that determine the size of the cluster are different, the probability that an abnormality has occurred at the time of detecting an abnormality differs.
  • the probability that an abnormality has occurred at the time of abnormality detection is different.
  • the present invention provides a plant diagnostic apparatus comprising a plurality of diagnostic means for diagnosing a plant state abnormality, based on measurement signal data relating to the plant state and facility management information data relating to a past state abnormality. And a comprehensive diagnosis unit that obtains an accuracy of detection of the state abnormality of each of the plurality of diagnosis units and evaluates an estimated loss amount based on the accuracy and a loss amount associated with the state abnormality.
  • ⁇ ⁇ Estimates the estimated amount of loss when an abnormality is detected, and can provide useful information for determining whether to handle the detected abnormality.
  • FIG. 1 is a block diagram for explaining a diagnostic apparatus according to a first embodiment of the present invention.
  • the diagnosis device 200 is connected to the plant 100, the screen display device 800, and the external input device 900, and monitors and diagnoses the plant 100.
  • the diagnostic device 200 is configured by connecting a communication unit that performs communication between devices or devices, a computer, a computer server (CPU: Central Processing Unit), a memory, various database DBs, and the like by wired or wireless connection.
  • the external input device 900 includes a keyboard switch, a pointing device such as a mouse, a touch panel, a voice instruction device, and the like, and the screen display device 800 includes a display.
  • the diagnostic device 200 includes a comprehensive diagnostic unit 400 and a diagnostic unit 500 as arithmetic units. A plurality of diagnosis means 500 are provided, and the number thereof can be arbitrarily set.
  • the diagnostic apparatus 200 includes a measurement signal database 300, an equipment management information database 310, and a diagnostic result database 320 as databases. In FIG. 1, the database is abbreviated as DB.
  • the computerized information is stored in the measurement signal database 300, the facility management information database 310, and the diagnosis result database 320, and the information is stored in a form generally called an electronic file (electronic data).
  • the diagnostic apparatus 200 includes an external input interface 210 and an external output interface 220 as interfaces with the outside.
  • the measurement signal 1 which measured various state quantities which are the operating states of the plant 100 via the external input interface 210, and the external input signal 2 created by operation of the keyboard 910 and the mouse 920 provided in the external input device 900 Is taken into the diagnostic apparatus 200. Further, the comprehensive diagnosis result signal 12 is output to the screen display device 800 via the external output interface 220.
  • the measurement signal 1 obtained by measuring various state quantities of the plant 100 is taken in via the external input interface 210.
  • the measurement signal 3 captured by the diagnostic device 200 is stored in the measurement signal database 300.
  • facility management information such as failure information and maintenance information generated in the plant 100 is taken into the diagnostic apparatus 200 by an external input signal 2 generated by operating the keyboard 910 and the mouse 920.
  • the facility management information signal 4 captured by the diagnostic device 200 is stored in the facility management information database 310.
  • Diagnostic device 200 has two processing modes, an evaluation mode and a diagnostic mode.
  • the flowchart of the evaluation mode and the diagnosis mode and the operations of the comprehensive diagnosis unit 400 and the diagnosis unit 500 will be described later with reference to FIGS.
  • the comprehensive diagnostic unit 400, the diagnostic unit 500, the measurement signal database 300, the equipment management information database 310, and the diagnostic result database 320 are provided in the diagnostic apparatus 200. May be arranged outside the diagnostic apparatus 200, and only data may be communicated between the apparatuses.
  • all the information stored in the database installed in the diagnostic device 200 can be displayed on the screen display device 100, and these information are the external input signal 1 generated by operating the external input device 900. It can be corrected.
  • the external input device 900 is composed of a keyboard and a mouse, but any device for inputting data such as a microphone or a touch panel for voice input may be used.
  • the present invention can also be implemented as an information providing service for providing information obtained by operating the diagnostic method and diagnostic apparatus 200.
  • FIG. 2 is a flowchart for explaining the operation of the comprehensive diagnosis means 400 in the evaluation mode and the diagnosis mode of the diagnosis apparatus 200.
  • FIG. 2 (a) is a flowchart of the evaluation mode.
  • the comprehensive diagnosis means 400 extracts the measurement signal 5 during a predetermined period stored in the measurement signal database 300.
  • step 2010 the comprehensive diagnosis unit 400 transmits the measurement signal 9 to the diagnosis unit 500.
  • the diagnosis unit 500 processes the measurement signal 9 to diagnose the state of the plant 100 and transmits the diagnosis result 10 to the comprehensive diagnosis unit 400.
  • the comprehensive diagnosis unit 400 collects the received diagnosis results 10 and transmits the diagnosis result database information 8 to the diagnosis result database 320 for storage.
  • step 2020 the comprehensive diagnosis unit 400 extracts the facility management information signal 6 stored in the facility management information database 310.
  • step 2030 the detection result of each diagnostic means in the diagnosis result database information 7 stored in the diagnosis result database 320 is compared with the facility management information signal 6 extracted in step 2020, and the accuracy and average lead time are calculated.
  • the accuracy is obtained by dividing the number of failures by the number of detections.
  • the average lead time is a time obtained by subtracting the time detected by the corresponding diagnostic means from the time detected by the threshold determination, and is a time indicating how early the time is detected.
  • the accuracy and average lead time of each diagnostic means obtained in step 2030 are stored in the diagnostic result database 320.
  • step 2040 the comprehensive diagnosis means 400 extracts the diagnosis result database information 7 stored in the diagnosis result database 320 and transmits it to the external output interface 220 as the comprehensive diagnosis result signal 11.
  • the comprehensive diagnosis result signal 12 is transmitted to the image display device 800 and displayed on the screen display device 800.
  • FIG. 2B is a flowchart for explaining the operation in the diagnosis mode.
  • step 2100 the comprehensive diagnosis means 400 extracts the operation data 5 for the period to be diagnosed that is stored in the measurement signal database.
  • the comprehensive diagnosis unit 400 transmits the measurement signal 9 to the diagnosis unit 500.
  • the diagnosis unit 500 processes the measurement signal 9 to diagnose the state of the plant 100 and transmits the diagnosis result 10 to the comprehensive diagnosis unit 400.
  • the comprehensive diagnosis unit 400 collects the received diagnosis results 10 and transmits the diagnosis result database information 8 to the diagnosis result database 320 for storage.
  • step 2120 the presence / absence of abnormality detection is evaluated. If there is a diagnostic means that has detected the abnormality, the process proceeds to step 2130, and if not, the process proceeds to step 2160.
  • step 2130 the comprehensive diagnosis unit 400 extracts the diagnosis result database information 7 stored in the diagnosis result database 320, and grasps the accuracy information regarding the diagnosis unit that detected the abnormality in step 2120.
  • step 2140 the comprehensive diagnosis unit 400 extracts the facility management information 6 stored in the facility management information database 310, and grasps the loss due to the failure.
  • the comprehensive diagnosis unit 400 calculates the estimated loss based on the accuracy extracted in step 2130 and the loss extracted in step 2140.
  • the expected loss amount may be obtained in a plurality of ways, such as by multiplying the accuracy and the loss amount, or by using a predetermined parameter.
  • Step 2160 the detection result of each diagnostic means and the estimated loss calculated in Step 2150 when there is a diagnostic means that has detected an abnormality are displayed on the screen display device 800.
  • the diagnostic apparatus 200 of the present invention when the abnormality is detected by the diagnostic unit 500, it is possible to provide useful information for determining whether or not to deal with the detected abnormality by displaying the estimated loss amount.
  • FIG. 3 is a diagram for explaining the timing for operating the evaluation mode and the diagnostic mode.
  • the evaluation mode is operated once and the diagnosis mode is operated at a certain period.
  • the evaluation mode is operated at regular intervals, the accuracy and the average lead time data stored in the diagnosis result database 320 are updated, and then the diagnosis mode is operated.
  • the evaluation mode is activated when an instruction is given from the user.
  • the evaluation mode is executed at an arbitrary timing, the accuracy and the average lead time are updated, and the diagnosis mode is operated.
  • the timing for operating the evaluation mode and the diagnostic mode can be arbitrarily set.
  • FIG. 4 is a diagram for explaining a mode of data stored in the measurement signal database 300 and the facility management information database 310.
  • the value of the measurement signal 1 (data items A, B, and C are shown in the figure) that is operation data measured for the plant 100 is sampled. Stored for each period (time on the vertical axis).
  • scroll boxes 302 and 303 that can move vertically and horizontally on the display screen 301, a wide range of data can be scroll-displayed.
  • the facility management information database 310 stores failure information such as failure contents, countermeasure costs, lead time required for failure avoidance, days of stoppage due to failure, and opportunity loss caused by plant shutdown. Is done.
  • maintenance information such as maintenance contents, cost required for maintenance, the number of days required for maintenance, an opportunity loss due to maintenance, and the like are stored in the facility management information database 310.
  • FIG. 5 is a diagram for explaining a mode of data stored in the diagnosis result database 320.
  • diagnosis result database 320 detection results of the respective diagnosis means (diagnosis means A, B, and C are described in the figure) are stored for each sampling period (time on the vertical axis). Is done.
  • scroll boxes 312 and 313 that can be moved vertically and horizontally on the display screen 311, a wide range of data can be scroll-displayed.
  • diagnosis result database 320 the detection result of each diagnosis means is stored.
  • diagnosis result is replaced with digital information, such as 1 at the time of abnormality determination and 0 at the time of normal determination.
  • the accuracy and average lead time calculated in the evaluation mode are stored for each diagnosis means.
  • FIG. 6 describes a case where an adaptive resonance theory (ART) is applied as an example of the diagnostic means 500. It should be noted that other clustering methods such as vector quantization and support vector machine can be used.
  • ART adaptive resonance theory
  • the data classification function includes a data preprocessing device 610 and an ART module 620.
  • the data preprocessing device 610 converts the operation data into input data for the ART module 620.
  • the data pre-processing device 610 normalizes the data for each measurement item.
  • This input data Ii (n) is input to the ART module 620.
  • the measurement signal 10 or the operation signal 11 which is input data is classified into a plurality of categories.
  • the ART module 620 includes an F0 layer 621, an F1 layer 622, an F2 layer 623, a memory 624, and a selection subsystem 625, which are coupled to each other.
  • the F1 layer 622 and the F2 layer 623 are connected via a weighting factor.
  • the weighting coefficient represents a prototype (prototype) of a category into which input data is classified.
  • the prototype represents a representative value of the category.
  • Process 1 The input vector is normalized by the F0 layer 621, and noise is removed.
  • a suitable category candidate is selected by comparing the input data input to the F1 layer 622 with a weighting factor.
  • Process 3 The validity of the category selected by the selection subsystem 625 is evaluated by the ratio with the parameter ⁇ . If it is determined to be valid, the input data is classified into the category, and the process proceeds to process 4. On the other hand, if it is not determined to be valid, the category is reset, and an appropriate category candidate is selected from the other categories (repeat process 2). Increasing the value of parameter ⁇ makes the category classification finer. That is, the category size is reduced. Conversely, if the value of ⁇ is reduced, the classification becomes coarse. Category size increases. This parameter ⁇ is referred to as a vigilance parameter.
  • Process 4 When all the existing categories are reset in Process 2, it is determined that the input data belongs to the new category, and a new weighting factor representing the prototype of the new category is generated.
  • weight coefficient WJ (new) corresponding to category J uses past weight coefficient WJ (old) and input data p (or data derived from input data). Is updated by equation (1).
  • Kw is a learning rate parameter (0 ⁇ Kw ⁇ 1), and is a value that determines the degree to which the input vector is reflected in the new weighting factor.
  • Equations 1 and 2 to 12 described below are incorporated in the ART module 620.
  • the characteristic of the data classification algorithm of the ART module 620 is the above processing 4.
  • process 4 when input data different from the learned pattern is input, a new pattern can be recorded without changing the recorded pattern. Therefore, it is possible to record a new pattern while recording a pattern learned in the past.
  • the ART module 620 learns the given pattern. Therefore, when new input data is input to the learned ART module 620, it is possible to determine which pattern in the past is close by the above algorithm. If the pattern has never been experienced before, it is classified into a new category.
  • FIG. 6B is a block diagram showing the configuration of the F0 layer 621.
  • the input data I i is normalized again at each time, and a normalized input vector u i 0 to be input to the F1 layer 621 and the selection subsystem 625 is created.
  • W i 0 is calculated from the input data I i according to Equation 2.
  • a is a constant.
  • X i 0 obtained by normalizing W i 0 is calculated using Equation 3.
  • represents the norm of W 0 .
  • u i 0 is input to the F1 layer.
  • FIG. 6C is a block diagram showing the configuration of the F1 layer 622.
  • u i 0 obtained by Expression 5 is held as a short-term memory, and P i to be input to the F2 layer 722 is calculated.
  • Formulas for the F2 layer are collectively shown in Formulas 6 to 12.
  • a and b are constants
  • f (•) is a function expressed by Equation 4
  • T j is a fitness calculated by the F2 layer 623.
  • FIG. 7 is a diagram showing an example of the result of classifying measurement signals into categories.
  • FIG. 7A is a diagram illustrating an example of a classification result obtained by classifying the measurement signal 1 of the plant 100 into categories.
  • FIG. 7 (a) shows, as an example, two items of the measurement signal, which are represented by a two-dimensional graph.
  • the vertical axis and the horizontal axis indicate the measurement signals of the respective items normalized.
  • the measurement signal is divided into a plurality of categories 630 (circles shown in FIG. 4C) by the ART module 620 in FIG. One circle corresponds to one category.
  • measurement signals are classified into four categories.
  • Category number 1 is a group in which item A has a large value and item B has a small value
  • category number 2 is a group in which both items A and B have small values
  • category number 3 has a small value in item A
  • item B A group with a large value of
  • category number 4 is a group with a large value for both items A and B.
  • FIG. 7B is a diagram for explaining the result of classifying the measurement signal 1 acquired from the plant 100 into categories.
  • the horizontal axis represents time, and the vertical axis represents measurement signals and category numbers.
  • the data of the normal period before the start of diagnosis was classified into categories 1 to 3.
  • the first half of data after the start of monitoring is classified into category 2, which is the same category as the model data. In this case, since the data trends are the same, it is determined that the state has not changed.
  • the latter half of data after the start of monitoring is classified into category 4, and is classified into a category different from the model data. Since the data trends are different, it is determined that the state of the plant has changed.
  • diagnostic technology using clustering technology has the feature of detecting changes in data trends.
  • FIG. 8 is a diagram for explaining the relationship between the category size, detection timing, accuracy, and expected loss.
  • the accuracy increases as the category size increases. If the accuracy is high, the estimated loss amount is also high, so the category size and the estimated loss amount have an exponential relationship as shown in FIG.
  • step 2030 of FIG. 2 past data is analyzed by the comprehensive diagnosis means 400 to obtain the relationship of FIG. 8B and stored in the diagnosis result database 320.
  • step 2040 the relationship of FIG. You may make it display on the apparatus 800.
  • FIG. 9 is a diagram for explaining the change over time in the detection results of each diagnostic means and the estimated loss amount.
  • Diagnostic means A, B, C are composed of three types of ART with different category sizes. Diagnosis means A detects at time 2200, diagnosis means B detects at time 2210, and diagnosis means C detects at time 2220. In addition, the estimated loss amount is calculated by multiplying the maximum value of the accuracy of the detected diagnostic means by the amount of damage (10 million yen in this embodiment).
  • the change in the measured value is small, the time to reach the failure is long, the accuracy is low, and the expected loss is also low.
  • the change in the measured value increases with the passage of time, an abnormality is detected by a highly accurate diagnostic means, and the expected loss is also increased.
  • the diagnosis device 200 of the present invention can acquire information for determining whether to deal with an abnormality based on the estimated loss at each time.
  • FIG. 10 is a diagram for explaining an accuracy correction method.
  • FIG. 11 is a diagram for explaining an example of a screen displayed on the screen display device 800.
  • FIG. 11A is a diagram illustrating an example of a screen displayed on the screen display device 800 when the diagnosis mode is executed.
  • the diagnostic means that detected the abnormality and the estimated loss amount are displayed on the screen. In this way, by displaying the expected loss amount on the screen display device, it is possible to provide information for determining whether or not to deal with it.
  • FIG. 11B illustrates an example of a screen displayed on the screen display device 800 when the evaluation mode is executed. Assuming that a failure detected earlier than the lead time is a failure that can be prevented by introducing a diagnostic plan, the loss amount of these failures is added and displayed as a cost merit. It is possible to display the calculated cost merit and the service price of the diagnostic plan and determine whether or not to purchase this service.
  • FIG. 12 is a diagram for explaining an example of a screen displayed on the screen display device 800.
  • the system can be utilized as a system for proposing a diagnosis plan that minimizes the expected loss for the input of the maintenance cost target value.
  • FIG. 13 is a diagram for explaining model diagnosis.
  • a device model that simulates the characteristics of the devices constituting the plant 100 is used.
  • a method for constructing a model that simulates the plant 100 there are a physical model using a physical equation such as a mass conservation equation, a heat transfer equation, and a statistical model such as a neural network, and Japanese Patent Application Laid-Open No. 2006-57595 is known. .
  • a predicted value of the signal B with respect to the input of the signal A is output.
  • an abnormality is detected when an error between a model predicted value and an actual measurement value of the signal B exceeds a threshold value.
  • FIG. 14 is a diagram for explaining the effect of using clustering and model diagnosis together.
  • ART diagnosis for diagnosing device B
  • data B and data C are used as input data to the ART, and a change in the data trend is detected.
  • model diagnosis data B is input, a predicted value of data C is output, and an abnormality is detected when an error between the predicted value of data C and an actual measured value exceeds a threshold value.
  • the ART diagnosis since the change of the signal B is detected by the ART diagnosis, the ART diagnosis detects an abnormality at the timing of time 2300. On the other hand, since the device B is in a normal state, no abnormality is detected in the model diagnosis.
  • the model diagnosis is detected at the timing of time 2310 when trouble occurs in device B.
  • ART diagnosis detects an abnormality earlier than model diagnosis. Further, no trouble has occurred in the device B when detected by ART, and a trouble has occurred when detected by model diagnosis. That is, the probability of abnormality is higher when detected by model diagnosis, and the diagnosis device 200 of the present invention calculates the estimated loss amount in consideration of this accuracy.
  • FIG. 15 is a diagram showing a device configuration of a C / C plant which is an embodiment of the plant 1000.
  • the gas turbine 1080 includes a compressor 1010, an expander 1020, and a combustor 1030.
  • the compressor 1010 takes in air and compresses it, then the combustor 1030 takes in compressed air and fuel to generate combustion gas, and the expander 1020 takes in combustion gas to obtain power.
  • the output of the gas turbine 1080 is the difference between the power output from the expander 1020 and the power used by the compressor 1010.
  • the exhaust heat recovery boiler 1050 is provided with a heat exchanger 1060 and generates high temperature steam using the high temperature exhaust gas from the gas turbine 1080.
  • the high-temperature steam generated by the exhaust heat recovery boiler 1050 is taken in to obtain power.
  • the condenser 1090 the exhaust of the steam turbine 1070 is taken in and heat-exchanged with the cooling water to condense the steam into water.
  • the generator 1040 generates power using the outputs of the gas turbine 1080 and the steam turbine 1070.
  • the fuel flow rate is controlled so that the exhaust gas temperature becomes the target value.
  • An abnormal event that occurs in this plant is that the holes (blade surface cooling holes) for supplying cooling air for the blades in the expander 1020 become very large.
  • the amount of cooling air increases, the exhaust gas temperature decreases, and the fuel flow rate of the combustor 1030 increases.
  • the abnormality of the expander 1020 is spread to the combustor 1030.
  • Example 2 If an abnormal event spreads, as described in Example 2, is it possible to deal with the detected abnormality by calculating and displaying the estimated loss based on the diagnosis result using the diagnostic means with different detection timing and accuracy? It can provide information useful for determining whether or not.
  • the present invention is widely applicable as a plant diagnostic apparatus.

Abstract

When an abnormality is detected, a decision about whether or not the abnormality should be dealt with is made based onon the basis of experiences in operating a plant. However, it is preferable to make the decision on the basis ofbased on a risk (expected loss amount) that would occur when if the abnormality iswere to be left as is. In order to achieve this, the present invention is a plant diagnosis device equipped with multiple diagnosis means for diagnosing an abnormality state of the plant, and characterized by being equipped with a comprehensive diagnosis means that, upon determining degrees of accuracy in detecting the abnormal states with respect to each of the multiple diagnosis means on the basis of measurement signal data pertaining to plant states and facility management information data pertaining to past abnormal states, evaluates expected loss amounts on the basis of the degrees of accuracy and loss amounts associated with the abnormal states.

Description

プラント診断装置及びプラント診断方法Plant diagnostic device and plant diagnostic method
本発明はプラントの状態異常を診断するプラント診断装置及びプラント診断方法に関する。 The present invention relates to a plant diagnostic apparatus and a plant diagnostic method for diagnosing abnormal plant conditions.
 プラントの診断装置は、プラントに異常な過渡事象や事故等が生じた際に、プラントからの計測データを基にその異常や事故の発生を検知する。 The plant diagnostic device detects the occurrence of an abnormality or accident based on the measurement data from the plant when an abnormal transient or accident occurs in the plant.
 特許文献1には、クラスタリング技術の1つである適応共鳴理論(Adaptive Resonance Theory(ART))を用いた診断装置が開示されている。ここでARTとは、多次元のデータをその類似度に応じてカテゴリに分類する理論である。 Patent Document 1 discloses a diagnostic apparatus using adaptive resonance theory (ART), which is one of clustering technologies. Here, ART is a theory that classifies multidimensional data into categories according to their similarity.
 上記技術においては、まずARTを用いて正常時の計測データを複数のカテゴリ(正常カテゴリ)に分類する。次に、現在の計測データをARTに入力してカテゴリに分類する。この計測データが正常カテゴリに分類できない時は、新しいカテゴリ(新規カテゴリ)を生成する。新規カテゴリの発生は、プラントの状態が変化したことを意味する。そこで、異常の発生を新規カテゴリの発生で判断することとし、新規カテゴリの発生率が閾値を越えた場合に異常と診断する。 In the above technology, first, normal measurement data is classified into a plurality of categories (normal categories) using ART. Next, the current measurement data is input to the ART and classified into categories. When this measurement data cannot be classified into normal categories, a new category (new category) is generated. The occurrence of a new category means that the state of the plant has changed. Therefore, the occurrence of an abnormality is determined based on the occurrence of a new category, and an abnormality is diagnosed when the occurrence rate of the new category exceeds a threshold value.
特開2005-165375号公報JP 2005-165375 A
 クラスタリング技術では、クラスタの大きさ(ARTではカテゴリーの大きさ)を決定するパラメータがある。このパラメータを分解能パラメータと呼ぶ。一般に、あるデータをクラスタに分類する際に、分解能を粗く設定するとクラスタの数が少なくなり、分解能を細かく設定するとクラスタの数が多くなる。 In the clustering technology, there is a parameter that determines the size of the cluster (the size of the category in ART). This parameter is called a resolution parameter. Generally, when classifying certain data into clusters, if the resolution is set coarsely, the number of clusters decreases, and if the resolution is set finely, the number of clusters increases.
 異常診断にクラスタリングを用いる際、新規カテゴリが発生するデータ傾向の変化幅は、分解能が粗い場合と細かい場合で異なる。分解能が粗い場合に新規カテゴリが発生すると、データ傾向が正常時とは大きく変化しているため、機器が異である確度は高い。一方、分解能が細かい場合は計測ノイズのような微小な傾向の変化を検知している可能性があるため、異常である確度は低い。このように、クラスタの大きさを決定するパラメータの設定値が異なると、異常検知時に異常が発生している確度は異なる。 際 When using clustering for abnormality diagnosis, the range of change in the data trend in which new categories occur differs depending on whether the resolution is coarse or fine. When a new category is generated when the resolution is rough, the data tendency is greatly changed from that in the normal state, so the probability that the devices are different is high. On the other hand, when the resolution is fine, there is a possibility that a minute tendency change such as measurement noise is detected, so the probability of abnormality is low. Thus, when the setting values of the parameters that determine the size of the cluster are different, the probability that an abnormality has occurred at the time of detecting an abnormality differs.
 一般には診断手法が異なると、異常検知性能が異なるため、異常検知時に異常が発生している確度が異なる。 Generally, since the abnormality detection performance differs when the diagnostic method is different, the probability that an abnormality has occurred at the time of abnormality detection is different.
 また、異常検知した際にプラントを停止して保守・修理することが機器の故障回避には有効であるが、保守・修理のための費用、またプラントを停止した期間の機会損失が発生する。そのため、軽微な故障であれば定期検査まで運転を継続することもある。その一方、異常を放置した結果、機器が故障・破損してしまい、保守・修理した場合よりも損失が大きくなる可能性がある。 Also, it is effective to stop and maintain and repair the plant when an abnormality is detected to avoid equipment failure. However, costs for maintenance and repair, and opportunity loss during the period when the plant is stopped occur. Therefore, if there is a minor failure, the operation may be continued until a regular inspection. On the other hand, as a result of neglecting the abnormality, the device may break down or be damaged, and there is a possibility that the loss will be larger than when maintenance or repair is performed.
 現状は異常を検知した際、異常に対処すべきか否かはプラント運転の経験で判断しているが、異常を放置した場合のリスク(損失予想額)を基に判断することが望ましい。 <Currently, when an abnormality is detected, whether or not to deal with the abnormality is determined based on the experience of plant operation, but it is desirable to determine based on the risk (loss expected amount) when the abnormality is left unattended.
 上記課題を解決するために本発明は、プラントの状態異常を診断する複数の診断手段を備えたプラント診断装置において、前記プラントの状態に関する計測信号データ及び過去の状態異常に関する設備管理情報データに基づいて、前記複数の診断手段それぞれの前記状態異常の検知に係る確度を求め、前記確度及び状態異常に伴う損失額に基づいて損失予想額を評価する総合診断手段を備えることを特徴とする。 In order to solve the above-mentioned problems, the present invention provides a plant diagnostic apparatus comprising a plurality of diagnostic means for diagnosing a plant state abnormality, based on measurement signal data relating to the plant state and facility management information data relating to a past state abnormality. And a comprehensive diagnosis unit that obtains an accuracy of detection of the state abnormality of each of the plurality of diagnosis units and evaluates an estimated loss amount based on the accuracy and a loss amount associated with the state abnormality.
 異常検知時に損失予想額を求め、検知した異常に対処するか否かの判断に有用な情報を提供できる。  求 め Estimates the estimated amount of loss when an abnormality is detected, and can provide useful information for determining whether to handle the detected abnormality.
本発明の第1の実施例である診断装置を説明するブロック図である。It is a block diagram explaining the diagnostic apparatus which is 1st Example of this invention. 診断装置の評価モードと診断モードにおける総合診断手段の動作を説明するフローチャート図である。It is a flowchart figure explaining operation | movement of the comprehensive diagnostic means in evaluation mode and diagnostic mode of a diagnostic apparatus. 評価モードおよび診断モードを動作させるタイミングを説明する図である。It is a figure explaining the timing which operates evaluation mode and diagnostic mode. 計測信号データベースと設備管理情報データベースに保存されるデータの態様を説明する図である。It is a figure explaining the aspect of the data preserve | saved at a measurement signal database and an equipment management information database. 診断結果データベースに保存されるデータの態様を説明する図である。It is a figure explaining the aspect of the data preserve | saved at a diagnostic result database. 適応共鳴理論の説明図である。It is explanatory drawing of an adaptive resonance theory. 計測信号を、カテゴリに分類した結果例を示す図である。It is a figure which shows the example of a result which classified the measurement signal into the category. カテゴリのサイズと検知タイミング、確度、損失予想額の関係を説明する図である。It is a figure explaining the relationship between the size of a category, detection timing, accuracy, and an estimated loss amount. 各診断手段の検知結果と損失予想額の経時変化を説明する図である。It is a figure explaining the time-dependent change of the detection result of each diagnostic means, and an estimated loss amount. 確度の補正方法を説明する図である。It is a figure explaining the correction method of accuracy. 画面表示装置に表示する画面の実施例を説明する図である。It is a figure explaining the Example of the screen displayed on a screen display apparatus. 画面表示装置に表示する画面の実施例を説明する図である。It is a figure explaining the Example of the screen displayed on a screen display apparatus. モデル診断を説明する図である。It is a figure explaining model diagnosis. クラスタリング診断、モデル診断を併用することによる効果を説明する図である。It is a figure explaining the effect by using clustering diagnosis and model diagnosis together. 本発明の診断装置を火力プラントに適用した際の実施例を説明する図である。It is a figure explaining the Example at the time of applying the diagnostic apparatus of this invention to a thermal power plant.
 本発明の実施に好適な診断装置について、図面を参照して以下に説明する。尚、下記はあくまでも実施の例に過ぎず、下記具体的内容に発明自体が限定されることを意図する趣旨ではない。 A diagnostic apparatus suitable for implementing the present invention will be described below with reference to the drawings. It should be noted that the following is merely an example of implementation and is not intended to limit the invention itself to the following specific contents.
 図1は本発明の第1の実施例である診断装置を説明するブロック図である。診断装置200は、プラント100、画面表示装置800、外部入力装置900と接続しており、プラント100を監視・診断する。また、診断装置200は、各機器又は装置間で通信を実行する通信部、コンピュータや計算機サーバ(CPU:Central Processing Unit)、メモリ、各種データベースDBなどが有線又は無線接続されて構成される。また、外部入力装置900は、キーボードスイッチ、マウス等のポインティング装置、タッチパネル、音声指示装置等で構成され、画面表示装置800は、ディスプレイ等で構成される。 FIG. 1 is a block diagram for explaining a diagnostic apparatus according to a first embodiment of the present invention. The diagnosis device 200 is connected to the plant 100, the screen display device 800, and the external input device 900, and monitors and diagnoses the plant 100. In addition, the diagnostic device 200 is configured by connecting a communication unit that performs communication between devices or devices, a computer, a computer server (CPU: Central Processing Unit), a memory, various database DBs, and the like by wired or wireless connection. The external input device 900 includes a keyboard switch, a pointing device such as a mouse, a touch panel, a voice instruction device, and the like, and the screen display device 800 includes a display.
 診断装置200は、演算装置として総合診断手段400、診断手段500を備えている。診断手段500は複数備えられており、その数は任意に設定可能である。また、診断装置200はデータベースとして計測信号データベース300、設備管理情報データベース310、診断結果データベース320を備える。尚、図1ではデータベースをDBと略記している。 The diagnostic device 200 includes a comprehensive diagnostic unit 400 and a diagnostic unit 500 as arithmetic units. A plurality of diagnosis means 500 are provided, and the number thereof can be arbitrarily set. The diagnostic apparatus 200 includes a measurement signal database 300, an equipment management information database 310, and a diagnostic result database 320 as databases. In FIG. 1, the database is abbreviated as DB.
 計測信号データベース300、設備管理情報データベース310、診断結果データベース320には、電子化された情報が保存されており、通常電子ファイル(電子データ)と呼ばれる形態で情報が保存される。 The computerized information is stored in the measurement signal database 300, the facility management information database 310, and the diagnosis result database 320, and the information is stored in a form generally called an electronic file (electronic data).
 また、診断装置200は、外部とのインターフェイスとして外部入力インターフェイス210及び外部出力インターフェイス220を備えている。 Moreover, the diagnostic apparatus 200 includes an external input interface 210 and an external output interface 220 as interfaces with the outside.
 そして、外部入力インターフェイス210を介してプラント100の運転状態である各種状態量を計測した計測信号1と、外部入力装置900に備えられているキーボード910及びマウス920の操作で作成する外部入力信号2が診断装置200に取り込まれる。また、外部出力インターフェイス220を介して、総合診断結果信号12を画面表示装置800に出力する。 And the measurement signal 1 which measured various state quantities which are the operating states of the plant 100 via the external input interface 210, and the external input signal 2 created by operation of the keyboard 910 and the mouse 920 provided in the external input device 900 Is taken into the diagnostic apparatus 200. Further, the comprehensive diagnosis result signal 12 is output to the screen display device 800 via the external output interface 220.
 図1に示した診断装置200において、プラント100の各種状態量を計測した計測信号1は外部入力インターフェイス210を介して取り込まれる。診断装置200に取り込まれた計測信号3は、計測信号データベース300に保存する。また、プラント100で発生した故障情報、保守情報などの設備管理情報は、キーボード910及びマウス920の操作によって生成した外部入力信号2によって診断装置200に取り込まれる。診断装置200に取り込まれた設備管理情報信号4は、設備管理情報データベース310に保存する。 In the diagnostic apparatus 200 shown in FIG. 1, the measurement signal 1 obtained by measuring various state quantities of the plant 100 is taken in via the external input interface 210. The measurement signal 3 captured by the diagnostic device 200 is stored in the measurement signal database 300. Also, facility management information such as failure information and maintenance information generated in the plant 100 is taken into the diagnostic apparatus 200 by an external input signal 2 generated by operating the keyboard 910 and the mouse 920. The facility management information signal 4 captured by the diagnostic device 200 is stored in the facility management information database 310.
 診断装置200は、評価モードと診断モードの二つの処理モードを持つ。評価モードと診断モードのフローチャートと総合診断手段400、診断手段500の動作については、図1、2を引用しながら後述する。 Diagnostic device 200 has two processing modes, an evaluation mode and a diagnostic mode. The flowchart of the evaluation mode and the diagnosis mode and the operations of the comprehensive diagnosis unit 400 and the diagnosis unit 500 will be described later with reference to FIGS.
 なお、本実施例の診断装置200においては、総合診断手段400、診断手段500、計測信号データベース300、設備管理情報データベース310、診断結果データベース320が診断装置200の内部に備えられているが、これらの一部の装置を診断装置200の外部に配置し、データのみを装置間で通信するようにしてもよい。 In the diagnostic apparatus 200 of the present embodiment, the comprehensive diagnostic unit 400, the diagnostic unit 500, the measurement signal database 300, the equipment management information database 310, and the diagnostic result database 320 are provided in the diagnostic apparatus 200. May be arranged outside the diagnostic apparatus 200, and only data may be communicated between the apparatuses.
 また、診断装置200に設置されたデータベースに保存されている情報は、その全ての情報を画面表示装置100に表示でき、これらの情報は外部入力装置900を操作して生成する外部入力信号1で修正することができる。 Further, all the information stored in the database installed in the diagnostic device 200 can be displayed on the screen display device 100, and these information are the external input signal 1 generated by operating the external input device 900. It can be corrected.
 本実施例では、外部入力装置900をキーボードとマウスで構成しているが、音声入力のためのマイク、タッチパネルなど、データを入力するための装置であれば良い。 In this embodiment, the external input device 900 is composed of a keyboard and a mouse, but any device for inputting data such as a microphone or a touch panel for voice input may be used.
 また、本発明の実施形態として、診断方法、診断装置200を動作させて得られた情報を提供する情報提供サービスとしても実施可能であることは言うまでもない。 Further, it goes without saying that as an embodiment of the present invention, the present invention can also be implemented as an information providing service for providing information obtained by operating the diagnostic method and diagnostic apparatus 200.
 図2は、診断装置200の評価モードと診断モードにおける総合診断手段400の動作を説明するフローチャート図である。 FIG. 2 is a flowchart for explaining the operation of the comprehensive diagnosis means 400 in the evaluation mode and the diagnosis mode of the diagnosis apparatus 200.
 図2(a)は、評価モードのフローチャート図である。 FIG. 2 (a) is a flowchart of the evaluation mode.
 まずステップ2000では、総合診断手段400は計測信号データベース300に保存されている所定期間中の計測信号5を抽出する。 First, in step 2000, the comprehensive diagnosis means 400 extracts the measurement signal 5 during a predetermined period stored in the measurement signal database 300.
 ステップ2010では、総合診断手段400は計測信号9を診断手段500に送信する。診断手段500は計測信号9を処理してプラント100の状態を診断し、診断結果10を総合診断手段400に送信する。総合診断手段400では、受信した診断結果10をまとめ、診断結果データベース情報8を診断結果データベース320に送信し、保存する。 In step 2010, the comprehensive diagnosis unit 400 transmits the measurement signal 9 to the diagnosis unit 500. The diagnosis unit 500 processes the measurement signal 9 to diagnose the state of the plant 100 and transmits the diagnosis result 10 to the comprehensive diagnosis unit 400. The comprehensive diagnosis unit 400 collects the received diagnosis results 10 and transmits the diagnosis result database information 8 to the diagnosis result database 320 for storage.
 ステップ2020では、総合診断手段400では設備管理情報データベース310に保存されている設備管理情報信号6を抽出する。 In step 2020, the comprehensive diagnosis unit 400 extracts the facility management information signal 6 stored in the facility management information database 310.
 ステップ2030では、診断結果データベース320に保存されている診断結果データベース情報7の各診断手段の検知結果と、ステップ2020で抽出した設備管理情報信号6を比較し、確度と平均リードタイムを計算する。ここで、確度は故障回数と検知回数で除算することで求める。また、平均リードタイムは、閾値判定で検知した時刻から該当する診断手段で検知した時刻を引くことで求める時間であり、どのくらい早期に検知したかを示す時間である。ステップ2030で求めた各診断手段の確度、平均リードタイムは診断結果データベース320に保存する。 In step 2030, the detection result of each diagnostic means in the diagnosis result database information 7 stored in the diagnosis result database 320 is compared with the facility management information signal 6 extracted in step 2020, and the accuracy and average lead time are calculated. Here, the accuracy is obtained by dividing the number of failures by the number of detections. The average lead time is a time obtained by subtracting the time detected by the corresponding diagnostic means from the time detected by the threshold determination, and is a time indicating how early the time is detected. The accuracy and average lead time of each diagnostic means obtained in step 2030 are stored in the diagnostic result database 320.
 ステップ2040では、総合診断手段400は診断結果データベース320に保存されている診断結果データベース情報7を抽出し、総合診断結果信号11として外部出力インターフェイス220に送信する。総合診断結果信号12は画像表示装置800に送信され、画面表示装置800に表示する。 In step 2040, the comprehensive diagnosis means 400 extracts the diagnosis result database information 7 stored in the diagnosis result database 320 and transmits it to the external output interface 220 as the comprehensive diagnosis result signal 11. The comprehensive diagnosis result signal 12 is transmitted to the image display device 800 and displayed on the screen display device 800.
 図2(b)は、診断モードの動作を説明するフローチャート図である。 FIG. 2B is a flowchart for explaining the operation in the diagnosis mode.
 ステップ2100では、総合診断手段400は計測信号データベースに保存されている診断する期間の運転データ5を抽出する。 In step 2100, the comprehensive diagnosis means 400 extracts the operation data 5 for the period to be diagnosed that is stored in the measurement signal database.
 ステップ2110では、総合診断手段400は計測信号9を診断手段500に送信する。診断手段500は計測信号9を処理してプラント100の状態を診断し、診断結果10を総合診断手段400に送信する。総合診断手段400では、受信した診断結果10をまとめ、診断結果データベース情報8を診断結果データベース320に送信し、保存する。 In step 2110, the comprehensive diagnosis unit 400 transmits the measurement signal 9 to the diagnosis unit 500. The diagnosis unit 500 processes the measurement signal 9 to diagnose the state of the plant 100 and transmits the diagnosis result 10 to the comprehensive diagnosis unit 400. The comprehensive diagnosis unit 400 collects the received diagnosis results 10 and transmits the diagnosis result database information 8 to the diagnosis result database 320 for storage.
 ステップ2120では、異常検知の有無を評価し、異常を検知した診断手段が有りの場合はステップ2130に進み、無しの場合はステップ2160に進む。 In step 2120, the presence / absence of abnormality detection is evaluated. If there is a diagnostic means that has detected the abnormality, the process proceeds to step 2130, and if not, the process proceeds to step 2160.
 ステップ2130では、総合診断手段400は診断結果データベース320に保存されている診断結果データベース情報7を抽出し、ステップ2120で異常を検知した診断手段に関する確度の情報を把握する。 In step 2130, the comprehensive diagnosis unit 400 extracts the diagnosis result database information 7 stored in the diagnosis result database 320, and grasps the accuracy information regarding the diagnosis unit that detected the abnormality in step 2120.
 ステップ2140では、総合診断手段400は設備管理情報データベース310に保存されている設備管理情報6を抽出し、故障による損失額を把握する。 In step 2140, the comprehensive diagnosis unit 400 extracts the facility management information 6 stored in the facility management information database 310, and grasps the loss due to the failure.
 ステップ2150では、総合診断手段400はステップ2130で抽出した確度とステップ2140で抽出した損失額に基づいて損失予想額を計算する。損失予想額は、確度と損失額を掛け合わせたり、所定のバラメータを用いて評価するなど複数の求め方があることはいうまでもない。 In step 2150, the comprehensive diagnosis unit 400 calculates the estimated loss based on the accuracy extracted in step 2130 and the loss extracted in step 2140. Needless to say, the expected loss amount may be obtained in a plurality of ways, such as by multiplying the accuracy and the loss amount, or by using a predetermined parameter.
 ステップ2160では、各診断手段の検知結果と、異常検知した診断手段が有りの場合はステップ2150で計算した損失予想額を画面表示装置800に表示する。 In Step 2160, the detection result of each diagnostic means and the estimated loss calculated in Step 2150 when there is a diagnostic means that has detected an abnormality are displayed on the screen display device 800.
 このように、本発明の診断装置200では、診断手段500で異常を検知した時に、損失予想額を表示することで、検知した異常に対処するか否かの判断に有用な情報を提供できる。 Thus, in the diagnostic apparatus 200 of the present invention, when the abnormality is detected by the diagnostic unit 500, it is possible to provide useful information for determining whether or not to deal with the detected abnormality by displaying the estimated loss amount.
 図3は、評価モードおよび診断モードを動作させるタイミングを説明する図である。 FIG. 3 is a diagram for explaining the timing for operating the evaluation mode and the diagnostic mode.
 図3(a)に示す方法では、一定期間運転データを蓄積した後、評価モードを1回動作させて、診断モードを一定周期で動作する。 3A, after accumulating operation data for a certain period, the evaluation mode is operated once and the diagnosis mode is operated at a certain period.
 図3(b)に示す方法では、評価モードを一定間隔で動作させ、診断結果データベース320に保存する確度、平均リードタイムのデータをアップデートさせた上で、診断モードを動作させる。 In the method shown in FIG. 3B, the evaluation mode is operated at regular intervals, the accuracy and the average lead time data stored in the diagnosis result database 320 are updated, and then the diagnosis mode is operated.
 図3(c)に示す方法では、ユーザーからの指示があったときに、評価モードを動作させる。任意のタイミングで評価モードを実行し、確度、平均リードタイムをアップデートし、診断モードを動作させる。 In the method shown in FIG. 3 (c), the evaluation mode is activated when an instruction is given from the user. The evaluation mode is executed at an arbitrary timing, the accuracy and the average lead time are updated, and the diagnosis mode is operated.
 尚、本実施例で述べたタイミング以外にも、評価モードと診断モードを動作させるタイミングは任意に設定することが可能である。 In addition to the timing described in the present embodiment, the timing for operating the evaluation mode and the diagnostic mode can be arbitrarily set.
 図4は計測信号データベース300と設備管理情報データベース310に保存されるデータの態様を説明する図である。 FIG. 4 is a diagram for explaining a mode of data stored in the measurement signal database 300 and the facility management information database 310.
 図4(a)に示すように、計測信号データベース300には、プラント100に対して計測した運転データである計測信号1(図では、データ項目A、B、Cを記載)の値が、サンプリング周期(縦軸の時刻)毎に保存される。 As shown in FIG. 4A, in the measurement signal database 300, the value of the measurement signal 1 (data items A, B, and C are shown in the figure) that is operation data measured for the plant 100 is sampled. Stored for each period (time on the vertical axis).
 表示画面301において縦横に移動可能なスクロールボックス302及び303を用いることにより、広範囲のデータをスクロール表示することができる。 By using scroll boxes 302 and 303 that can move vertically and horizontally on the display screen 301, a wide range of data can be scroll-displayed.
 図4(b)に示すように、設備管理情報データベース310には故障内容、対策費用、故障回避に必要なリードタイム、故障による停止日数、プラント停止によって発生した機会損失額などの故障情報が保存される。 As shown in FIG. 4B, the facility management information database 310 stores failure information such as failure contents, countermeasure costs, lead time required for failure avoidance, days of stoppage due to failure, and opportunity loss caused by plant shutdown. Is done.
 また、図4(c)に示すように、設備管理情報データベース310には保守内容、保守に要する費用、保守に要する日数、保守による機会損失額などの保守情報が保存される。 Further, as shown in FIG. 4C, maintenance information such as maintenance contents, cost required for maintenance, the number of days required for maintenance, an opportunity loss due to maintenance, and the like are stored in the facility management information database 310.
 図5は診断結果データベース320に保存されるデータの態様を説明する図である。 FIG. 5 is a diagram for explaining a mode of data stored in the diagnosis result database 320.
 図5(a)に示すように、診断結果データベース320には、各診断手段の検知結果(図では、診断手段A、B、Cを記載)が、サンプリング周期(縦軸の時刻)毎に保存される。 As shown in FIG. 5A, in the diagnosis result database 320, detection results of the respective diagnosis means (diagnosis means A, B, and C are described in the figure) are stored for each sampling period (time on the vertical axis). Is done.
 表示画面311において縦横に移動可能なスクロールボックス312及び313を用いることにより、広範囲のデータをスクロール表示することができる。 By using scroll boxes 312 and 313 that can be moved vertically and horizontally on the display screen 311, a wide range of data can be scroll-displayed.
 診断結果データベース320には、各診断手段での検知結果が保存され、例えば異常判定時には1、正常判定時は0のように診断結果をデジタル情報に置き換えて保存する。 In the diagnosis result database 320, the detection result of each diagnosis means is stored. For example, the diagnosis result is replaced with digital information, such as 1 at the time of abnormality determination and 0 at the time of normal determination.
 図5(b)に示すように、診断結果データベースでは評価モードで計算した確度と平均リードタイムが診断手段毎に保存される。 As shown in FIG. 5 (b), in the diagnosis result database, the accuracy and average lead time calculated in the evaluation mode are stored for each diagnosis means.
 図6は、診断手段500の実施例として、適応共鳴理論(Adaptive Resonance Theory(ART))を適用した場合について述べる。尚、ベクトル量子化、サポートベクターマシン等、他のクラスタリング手法を用いることもできる。 FIG. 6 describes a case where an adaptive resonance theory (ART) is applied as an example of the diagnostic means 500. It should be noted that other clustering methods such as vector quantization and support vector machine can be used.
 図6(a)に示すように、データ分類機能はデータ前処理装置610とARTモジュール620で構成する。データ前処理装置610は、運転データをARTモジュール620の入力データに変換する。 As shown in FIG. 6A, the data classification function includes a data preprocessing device 610 and an ART module 620. The data preprocessing device 610 converts the operation data into input data for the ART module 620.
 以下に、前記データ前処理装置610及びARTモジュール620によるそれらの手順について説明する。 Hereinafter, those procedures performed by the data preprocessing device 610 and the ART module 620 will be described.
 まず、データ前処理装置610において、計測項目毎にデータを正規化する。計測信号を正規化したデータNxi(n)及び正規化したデータの補数CNxi(n)(=1-Nxi(n))を含むデータを入力データIi(n)とする。この入力データIi(n)が、ARTモジュール620に入力される。 First, the data pre-processing device 610 normalizes the data for each measurement item. Data including the data Nxi (n) obtained by normalizing the measurement signal and the complement CNxi (n) (= 1−Nxi (n)) of the normalized data is defined as input data Ii (n). This input data Ii (n) is input to the ART module 620.
 ARTモジュール620においては、入力データである計測信号10、もしくは操作信号11を複数のカテゴリに分類する。 In the ART module 620, the measurement signal 10 or the operation signal 11 which is input data is classified into a plurality of categories.
 ARTモジュール620は、F0レイヤー621、F1レイヤー622、F2レイヤー623、メモリ624及び選択サブシステム625を備え、これらは相互に結合している。F1レイヤー622及びF2レイヤー623は、重み係数を介して結合している。重み係数は、入力データが分類されるカテゴリのプロトタイプ(原型)を表している。ここで、プロトタイプとは、カテゴリの代表値を表すものである。 The ART module 620 includes an F0 layer 621, an F1 layer 622, an F2 layer 623, a memory 624, and a selection subsystem 625, which are coupled to each other. The F1 layer 622 and the F2 layer 623 are connected via a weighting factor. The weighting coefficient represents a prototype (prototype) of a category into which input data is classified. Here, the prototype represents a representative value of the category.
 次に、ARTモジュール620のアルゴリズムについて説明する。 Next, the algorithm of the ART module 620 will be described.
 ARTモジュール620に入力データが入力された場合のアルゴリズムの概要は、下記の処理1~処理5のようになる。 The outline of the algorithm when input data is input to the ART module 620 is as shown in Process 1 to Process 5 below.
 処理1:F0レイヤー621により入力ベクトルを正規化し、ノイズを除去する。 Process 1: The input vector is normalized by the F0 layer 621, and noise is removed.
 処理2:F1レイヤー622に入力された入力データと重み係数との比較により、ふさわしいカテゴリの候補を選択する。 Process 2: A suitable category candidate is selected by comparing the input data input to the F1 layer 622 with a weighting factor.
 処理3:選択サブシステム625で選択したカテゴリの妥当性がパラメータρとの比により評価される。妥当と判断されれば、入力データはそのカテゴリに分類され、処理4に進む。一方、妥当と判断されなければ、そのカテゴリはリセットされ、他のカテゴリからふさわしいカテゴリの候補を選択する(処理2を繰り返す)。パラメータρの値を大きくするとカテゴリの分類が細かくなる。すなわち、カテゴリサイズが小さくなる。逆に、ρの値を小さくすると分類が粗くなる。カテゴリサイズが大きくなる。このパラメータρをビジランス(vigilance)パラメータと呼ぶ。 Process 3: The validity of the category selected by the selection subsystem 625 is evaluated by the ratio with the parameter ρ. If it is determined to be valid, the input data is classified into the category, and the process proceeds to process 4. On the other hand, if it is not determined to be valid, the category is reset, and an appropriate category candidate is selected from the other categories (repeat process 2). Increasing the value of parameter ρ makes the category classification finer. That is, the category size is reduced. Conversely, if the value of ρ is reduced, the classification becomes coarse. Category size increases. This parameter ρ is referred to as a vigilance parameter.
 処理4:処理2において全ての既存のカテゴリがリセットされると、入力データが新規カテゴリに属すると判断され、新規カテゴリのプロトタイプを表す新しい重み係数を生成する。 Process 4: When all the existing categories are reset in Process 2, it is determined that the input data belongs to the new category, and a new weighting factor representing the prototype of the new category is generated.
 処理5:入力データがカテゴリJに分類されると、カテゴリJに対応する重み係数WJ(new)は、過去の重み係数WJ(old)及び入力データp(又は入力データから派生したデータ)を用いて数1により更新される。 Process 5: When input data is classified into category J, weight coefficient WJ (new) corresponding to category J uses past weight coefficient WJ (old) and input data p (or data derived from input data). Is updated by equation (1).
(数1)
  WJ(new)=Kw・p+(1-Kw)・WJ(old)
(Equation 1)
WJ (new) = Kw · p + (1-Kw) · WJ (old)
 ここで、Kwは、学習率パラメータ(0<Kw<1)であり、入力ベクトルを新しい重み係数に反映させる度合いを決定する値である。 Here, Kw is a learning rate parameter (0 <Kw <1), and is a value that determines the degree to which the input vector is reflected in the new weighting factor.
 尚、数1及び後述する数2乃至数12の各演算式は前記ARTモジュール620に組み込まれている。 It should be noted that Equations 1 and 2 to 12 described below are incorporated in the ART module 620.
 ARTモジュール620のデータ分類アルゴリズムの特徴は、上記の処理4にある。 The characteristic of the data classification algorithm of the ART module 620 is the above processing 4.
 処理4においては、学習した時のパターンと異なる入力データが入力された場合、記録されているパターンを変更せずに新しいパターンを記録することができる。このため、過去に学習したパターンを記録しながら、新たなパターンを記録することが可能となる。 In process 4, when input data different from the learned pattern is input, a new pattern can be recorded without changing the recorded pattern. Therefore, it is possible to record a new pattern while recording a pattern learned in the past.
 このように、入力データとして予め与えた運転データを与えると、ARTモジュール620は与えられたパターンを学習する。したがって、学習済みのARTモジュール620に新たな入力データが入力されると、上記アルゴリズムにより、過去におけるどのパターンに近いかを判定することができる。また、過去に経験したことのないパターンであれば、新規カテゴリに分類される。 Thus, when the operation data given in advance is given as input data, the ART module 620 learns the given pattern. Therefore, when new input data is input to the learned ART module 620, it is possible to determine which pattern in the past is close by the above algorithm. If the pattern has never been experienced before, it is classified into a new category.
 図6(b)は、F0レイヤー621の構成を示すブロック図である。F0レイヤー621では、入力データIiを各時刻で再度正規化し、F1レイヤー621、及び選択サブシステム625に入力する正規化入力ベクトルui 0作成する。 FIG. 6B is a block diagram showing the configuration of the F0 layer 621. In the F0 layer 621, the input data I i is normalized again at each time, and a normalized input vector u i 0 to be input to the F1 layer 621 and the selection subsystem 625 is created.
 始めに、入力データIから、数2に従ってWi 0を計算する。ここでaは定数である。 First, W i 0 is calculated from the input data I i according to Equation 2. Here, a is a constant.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 次に、Wi 0を正規化したXi 0を、数3を用いて計算する。ここで、||W||は、Wのノルムを表す。 Next, X i 0 obtained by normalizing W i 0 is calculated using Equation 3. Here, || W 0 || represents the norm of W 0 .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そして、数4を用いて、Xi 0からノイズを除去したVi 0を計算する。ただし、θはノイズを除去するための定数である。数4の計算により、微小な値は0となるため、入力データのノイズが除去される。 Then, using equation 4, to calculate the V i 0 obtained by removing noise from the X i 0. However, θ is a constant for removing noise. Since the minute value becomes 0 by the calculation of Equation 4, noise of the input data is removed.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 最後に、数5を用いて正規化入力ベクトルui 0を求める。ui 0はF1レイヤーの入力となる。 Finally, a normalized input vector u i 0 is obtained using Equation 5. u i 0 is input to the F1 layer.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図6(c)は、F1レイヤー622の構成を示すブロック図である。F1レイヤー622では、数5で求めたui 0を短期記憶として保持し、F2レイヤー722に入力するPiを計算する。F2レイヤーの計算式をまとめて数6乃至数12に示す。ただし、a、bは定数、f(・)は数4で示した関数、TjはF2レイヤー623で計算する適合度である。 FIG. 6C is a block diagram showing the configuration of the F1 layer 622. As shown in FIG. In the F1 layer 622, u i 0 obtained by Expression 5 is held as a short-term memory, and P i to be input to the F2 layer 722 is calculated. Formulas for the F2 layer are collectively shown in Formulas 6 to 12. However, a and b are constants, f (•) is a function expressed by Equation 4, and T j is a fitness calculated by the F2 layer 623.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 但し、 However,
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 図7は計測信号を、カテゴリに分類した結果例を示す図である。 FIG. 7 is a diagram showing an example of the result of classifying measurement signals into categories.
 図7(a)は、プラント100の計測信号1を、カテゴリに分類した分類結果の一例を示す図である。 FIG. 7A is a diagram illustrating an example of a classification result obtained by classifying the measurement signal 1 of the plant 100 into categories.
 図7(a)は、一例として、計測信号のうちの2項目を表示したものであり、2次元のグラフで表記した。また、縦軸及び横軸は、それぞれの項目の計測信号を規格化して示した。 FIG. 7 (a) shows, as an example, two items of the measurement signal, which are represented by a two-dimensional graph. In addition, the vertical axis and the horizontal axis indicate the measurement signals of the respective items normalized.
 計測信号は、図3(a)のARTモジュール620によって複数のカテゴリー630(図4(c)に示す円)に分割される。1つの円が、1つのカテゴリに相当する。 The measurement signal is divided into a plurality of categories 630 (circles shown in FIG. 4C) by the ART module 620 in FIG. One circle corresponds to one category.
 本実施例では、計測信号は4つのカテゴリに分類されている。カテゴリ番号1は、項目Aの値が大きく、項目Bの値が小さいグループ、カテゴリ番号2は、項目A、項目Bの値が共に小さいグループ、カテゴリ番号3は項目Aの値が小さく、項目Bの値が大きいグループ、カテゴリ番号4は項目A、項目Bの値が共に大きいグループである。 In this embodiment, measurement signals are classified into four categories. Category number 1 is a group in which item A has a large value and item B has a small value, category number 2 is a group in which both items A and B have small values, category number 3 has a small value in item A, and item B A group with a large value of, category number 4 is a group with a large value for both items A and B.
 図7(b)は、プラント100から取得した計測信号1を、カテゴリに分類した結果を説明する図である。横軸は、時間、縦軸は計測信号、カテゴリ番号である。 FIG. 7B is a diagram for explaining the result of classifying the measurement signal 1 acquired from the plant 100 into categories. The horizontal axis represents time, and the vertical axis represents measurement signals and category numbers.
 図7(b)に示すように、診断開始前の正常期間のデータは、カテゴリ1~3に分類された。監視開始後の前半のデータはカテゴリ2に分類されており、モデルデータと同じカテゴリである。この場合、データの傾向が同じであることから、状態は変化していないと判断する。一方、監視開始後の後半のデータはカテゴリ4に分類されており、モデルデータと異なるカテゴリに分類されている。データの傾向が異なることから、プラントの状態が変化したと判断する。 As shown in FIG. 7 (b), the data of the normal period before the start of diagnosis was classified into categories 1 to 3. The first half of data after the start of monitoring is classified into category 2, which is the same category as the model data. In this case, since the data trends are the same, it is determined that the state has not changed. On the other hand, the latter half of data after the start of monitoring is classified into category 4, and is classified into a category different from the model data. Since the data trends are different, it is determined that the state of the plant has changed.
 このように、クラスタリング技術を用いた診断技術では、データ傾向の変化を検知する特徴がある。 Thus, diagnostic technology using clustering technology has the feature of detecting changes in data trends.
 図8は、カテゴリのサイズと検知タイミング、確度、損失予想額の関係を説明する図である。 FIG. 8 is a diagram for explaining the relationship between the category size, detection timing, accuracy, and expected loss.
 図8(a)に示すように、分解能を決定するパラメータρを大きく設定し、カテゴリサイズを小さくすると、微小な変化でも検知する。早期検知できる。その反面、計測ノイズなどの微小な変化を検知するため、確度が低くなる。 As shown in FIG. 8A, if the parameter ρ for determining the resolution is set large and the category size is reduced, even a small change is detected. Early detection is possible. On the other hand, accuracy is lowered because minute changes such as measurement noise are detected.
 一方、パラメータρを小さく設定し、カテゴリサイズを大きくすると、正常状態との乖離が大きい時に新規カテゴリが発生する。 On the other hand, if the parameter ρ is set small and the category size is increased, a new category is generated when the deviation from the normal state is large.
 正常状態から大きく離れており、異常である確度は高くなる。その一方、検知するタイミングは遅くなる。 大 き く It is far from the normal state, and the probability of abnormality is high. On the other hand, the detection timing is delayed.
 このように、カテゴリサイズが大きくなると、確度が高くなる。確度が高いと損失予想額も高くなるため、カテゴリサイズと損失予想額は図8(b)に示すように指数関数的な関係となる。 Thus, the accuracy increases as the category size increases. If the accuracy is high, the estimated loss amount is also high, so the category size and the estimated loss amount have an exponential relationship as shown in FIG.
 図2のステップ2030において、総合診断手段400で過去のデータを分析して図8(b)の関係を求めて診断結果データベース320に保存し、ステップ2040で図8(b)の関係を画像表示装置800に表示するようにしてもよい。 In step 2030 of FIG. 2, past data is analyzed by the comprehensive diagnosis means 400 to obtain the relationship of FIG. 8B and stored in the diagnosis result database 320. In step 2040, the relationship of FIG. You may make it display on the apparatus 800. FIG.
 図9は、各診断手段の検知結果と損失予想額の経時変化を説明する図である。 FIG. 9 is a diagram for explaining the change over time in the detection results of each diagnostic means and the estimated loss amount.
 診断手段A、B、Cはカテゴリサイズの異なる3種類のARTで構成している。時刻2200で診断手段Aが検知、時刻2210で診断手段Bが検知、時刻2220で診断手段Cが検知している。また、検知した診断手段の確度の最大値に損害額(本実施例では1000万円)を乗じて、損失予想額を計算している。 Diagnostic means A, B, C are composed of three types of ART with different category sizes. Diagnosis means A detects at time 2200, diagnosis means B detects at time 2210, and diagnosis means C detects at time 2220. In addition, the estimated loss amount is calculated by multiplying the maximum value of the accuracy of the detected diagnostic means by the amount of damage (10 million yen in this embodiment).
 このように、時刻2200-2210の間は、計測値の変化が小さく、故障に至るための時間が長い状態であり、確度が低く損失予想額も低い。時間の経過と共に計測値の変化が大きくなり、確度の高い診断手段で異常を検知するようになり、損失予想額も高くなる。 Thus, during the time 2200-2210, the change in the measured value is small, the time to reach the failure is long, the accuracy is low, and the expected loss is also low. The change in the measured value increases with the passage of time, an abnormality is detected by a highly accurate diagnostic means, and the expected loss is also increased.
 このように、本発明の診断装置200により、各時刻での損失予想額を基に、異常に対処するか否かの判断する情報を取得できる。 As described above, the diagnosis device 200 of the present invention can acquire information for determining whether to deal with an abnormality based on the estimated loss at each time.
 図10は、確度の補正方法を説明する図である。 FIG. 10 is a diagram for explaining an accuracy correction method.
 故障の程度、内容によって、損害の発生する可能性は変化する。 The possibility of damage varies depending on the degree and content of the failure.
 例えば、機器破損、トリップに繋がる故障は、確度を高くして損失予想額を高く補正し、定期検査の時まで気が付かなかった軽微な故障は、確度を低くして損失予想額を低補正する。 For example, for failures that lead to equipment damage or trips, increase the accuracy to correct the expected loss, and for minor failures that were not noticed until the regular inspection, reduce the accuracy and reduce the expected loss to a lower level.
 このようにして確度を故障内容の影響度に応じて補正することで、損失予想額をより正確に見積もることが可能となる。 In this way, it is possible to estimate the estimated loss more accurately by correcting the accuracy according to the degree of influence of the failure content.
 図11は、画面表示装置800に表示する画面の実施例を説明する図である。 FIG. 11 is a diagram for explaining an example of a screen displayed on the screen display device 800.
 図11(a)は、診断モード実行時に画面表示装置800に表示する画面の実施例を説明する図である。異常を検知した診断手段と損失予想額を画面に表示する。このように、損失予想額を画面表示装置に表示することで、対処するか否かを判断する情報を提供できる。 FIG. 11A is a diagram illustrating an example of a screen displayed on the screen display device 800 when the diagnosis mode is executed. The diagnostic means that detected the abnormality and the estimated loss amount are displayed on the screen. In this way, by displaying the expected loss amount on the screen display device, it is possible to provide information for determining whether or not to deal with it.
 図11(b)は、評価モード実行時に画面表示装置800に表示する画面の実施例を説明する図である。リードタイムよりも早期に検知していた故障は、診断プランを導入することで防げる可能性のある故障であると仮定して、これら故障の損失額を加算してコストメリットとして表示する。計算したコストメリットと診断プランのサービス価格を表示し、本サービスを購入するか否かを判断することが可能となる。 FIG. 11B illustrates an example of a screen displayed on the screen display device 800 when the evaluation mode is executed. Assuming that a failure detected earlier than the lead time is a failure that can be prevented by introducing a diagnostic plan, the loss amount of these failures is added and displayed as a cost merit. It is possible to display the calculated cost merit and the service price of the diagnostic plan and determine whether or not to purchase this service.
 図12は、画面表示装置800に表示する画面の実施例を説明する図である。 FIG. 12 is a diagram for explaining an example of a screen displayed on the screen display device 800.
 検知した時に保守を実施する、ということを想定し、保守コストの目標値に対して損失予想額が最小となる診断プランを提案する。 検知確度が低い診断の検知結果で保守を実施すると、損失予想額(リスク)は低くできるが、 保守回数が多くなり、保守コストは高くなる。  Assuming that maintenance is performed when detected, a diagnosis plan that minimizes the expected loss for the maintenance cost target value is proposed. If maintenance is performed with a detection result of a diagnosis with low wrinkle detection accuracy, the expected loss (risk) can be reduced, but the number of wrinkle maintenance increases and the maintenance cost increases.
 保守コストの目標値(年間に使うメンテナンスコストの目標値)を入力に対して、適する診断プランを出力する。このように、保守コストの目標値の入力に対して、損失予想額が最小となる診断プランを提案するシステムとしても活用可能である。 Suppose that the target value of maintenance cost (target value of annual maintenance cost) is input, and a suitable diagnosis plan is output. In this way, the system can be utilized as a system for proposing a diagnosis plan that minimizes the expected loss for the input of the maintenance cost target value.
 本発明における実施例2では、診断技術500として、モデル診断とクラスタリングを用いた場合を説明する。クラスタリングについては実施例1にて述べた技術を用いる。  In the second embodiment of the present invention, a case where model diagnosis and clustering are used as the diagnosis technique 500 will be described. For the clustering, the technique described in the first embodiment is used. *
 図13は、モデル診断を説明する図である。モデル診断では、プラント100を構成する機器の特性を模擬した機器モデルを用いる。プラント100を模擬するモデルの構築方法として質量保存の式、伝熱の式などの物理式を用いた物理モデル、ニューラルネットワークなどの統計モデルがあり、公知技術として特開2006-57595号公報がある。 FIG. 13 is a diagram for explaining model diagnosis. In the model diagnosis, a device model that simulates the characteristics of the devices constituting the plant 100 is used. As a method for constructing a model that simulates the plant 100, there are a physical model using a physical equation such as a mass conservation equation, a heat transfer equation, and a statistical model such as a neural network, and Japanese Patent Application Laid-Open No. 2006-57595 is known. .
 プラント100を構成する機器の入出力情報をそれぞれ信号A、信号Bとして計測する。機器モデルでは、信号Aの入力に対する信号Bの予測値を出力する。モデル診断技術では、信号Bのモデル予測値と実測値の誤差が閾値を越えた場合に、異常を検知する。 Measure input / output information of devices constituting the plant 100 as signal A and signal B, respectively. In the device model, a predicted value of the signal B with respect to the input of the signal A is output. In the model diagnosis technique, an abnormality is detected when an error between a model predicted value and an actual measurement value of the signal B exceeds a threshold value.
 図14は、クラスタリング、モデル診断を併用することによる効果を説明する図である。 FIG. 14 is a diagram for explaining the effect of using clustering and model diagnosis together.
 プラントは機器Aと機器Bが接続されている。機器Bを診断するクラスタリング(ART)診断では、データBとデータCをARTへの入力データとし、データ傾向が変化することを検知する。モデル診断では、データBを入力に対して、データCの予測値を出力し、データCの予想値と実測値の誤差が閾値を越えた場合に異常を検知する。 In the plant, equipment A and equipment B are connected. In clustering (ART) diagnosis for diagnosing device B, data B and data C are used as input data to the ART, and a change in the data trend is detected. In model diagnosis, data B is input, a predicted value of data C is output, and an abnormality is detected when an error between the predicted value of data C and an actual measured value exceeds a threshold value.
 本事例では、時刻2300にて、機器Aでプラント停止には至らないトラブルが発生した。機器Aでトラブルが発生した影響で機器Aから機器Bに流れる流量、圧力、温度が変化し、信号Bが変化する。時刻2300と時刻2310の間では、機器Bは正常に動作している。時刻2310にて機器Bに流れる流体の流量、圧力、温度が変化したことが原因で、機器Bにトラブルが発生した。 In this case, at time 2300, a trouble that equipment A did not stop the plant occurred. The flow rate, pressure, and temperature flowing from the device A to the device B change due to the trouble that has occurred in the device A, and the signal B changes. Between time 2300 and time 2310, device B is operating normally. Trouble occurred in device B due to changes in the flow rate, pressure, and temperature of the fluid flowing to device B at time 2310.
 この場合、信号Bの変化をART診断では検知するため、時刻2300のタイミングでART診断は異常を検知する。一方、機器Bは正常状態であるため、モデル診断では異常を検知しない。 In this case, since the change of the signal B is detected by the ART diagnosis, the ART diagnosis detects an abnormality at the timing of time 2300. On the other hand, since the device B is in a normal state, no abnormality is detected in the model diagnosis.
 機器Bにトラブルが発生して時刻2310のタイミングでモデル診断は検知する。 The model diagnosis is detected at the timing of time 2310 when trouble occurs in device B.
 このように、ART診断ではモデル診断よりも早期に異常を検知する。また、ARTで検知した時には機器Bではトラブルが発生しておらず、モデル診断で検知した時にはトラブルが発生している。すなわち、モデル診断で検知した時の方が異常である確度が高く、本発明の診断装置200ではこの確度を考慮して損失予想額を高く計算する。 In this way, ART diagnosis detects an abnormality earlier than model diagnosis. Further, no trouble has occurred in the device B when detected by ART, and a trouble has occurred when detected by model diagnosis. That is, the probability of abnormality is higher when detected by model diagnosis, and the diagnosis device 200 of the present invention calculates the estimated loss amount in consideration of this accuracy.
 クラスタリング、モデル診断のように検知タイミング、確度の異なる診断手段を用いた診断結果に基づいて損失予想額を計算して表示することで、検知した異常に対処するか否かの判断に有用な情報を提供できる。 Information useful for determining whether or not to handle detected abnormalities by calculating and displaying the expected loss based on the diagnosis results using diagnostic means with different detection timing and accuracy, such as clustering and model diagnosis Can provide.
 本発明の診断装置200をC/Cプラントに適用した時の効果を説明する。 The effect when the diagnostic apparatus 200 of the present invention is applied to a C / C plant will be described.
 図15は、プラント1000の実施例であるC/Cプラントの機器構成を示す図である。ガスタービン1080は、圧縮機1010、膨張機1020、燃焼器1030で構成する。ガスタービン1080では、圧縮機1010が空気を取り込んで圧縮し、次いで、燃焼器1030が圧縮空気と燃料を取り込んで燃焼ガスを生成し、膨張機1020が燃焼ガスを取り込んで動力を得る。ガスタービン1080の出力は、膨張機1020が出力した動力と、圧縮機1010が使用した動力の差分である。排熱回収ボイラ1050には熱交換器1060が備えられており、ガスタービン1080からの高温排ガスを用いて高温蒸気を生成する。蒸気タービン1070では、排熱回収ボイラ1050が生成した高温蒸気を取り込み動力を得る。復水器1090では、蒸気タービン1070の排気を取り込んで、冷却水と熱交換させることにより、蒸気を水に凝縮させる。発電機1040では、ガスタービン1080と蒸気タービン1070の出力を用いて発電する。 FIG. 15 is a diagram showing a device configuration of a C / C plant which is an embodiment of the plant 1000. As shown in FIG. The gas turbine 1080 includes a compressor 1010, an expander 1020, and a combustor 1030. In the gas turbine 1080, the compressor 1010 takes in air and compresses it, then the combustor 1030 takes in compressed air and fuel to generate combustion gas, and the expander 1020 takes in combustion gas to obtain power. The output of the gas turbine 1080 is the difference between the power output from the expander 1020 and the power used by the compressor 1010. The exhaust heat recovery boiler 1050 is provided with a heat exchanger 1060 and generates high temperature steam using the high temperature exhaust gas from the gas turbine 1080. In the steam turbine 1070, the high-temperature steam generated by the exhaust heat recovery boiler 1050 is taken in to obtain power. In the condenser 1090, the exhaust of the steam turbine 1070 is taken in and heat-exchanged with the cooling water to condense the steam into water. The generator 1040 generates power using the outputs of the gas turbine 1080 and the steam turbine 1070.
 本プラントでは、排ガス温度が目標値となるように、燃料流量を制御している。 In this plant, the fuel flow rate is controlled so that the exhaust gas temperature becomes the target value.
 本プラントで発生する異常事象として、膨張機1020における翼の冷却空気を流すための穴(翼面冷却穴)が 大きくなることが挙げられる。この異常が発生すると冷却空気が多くなり、排ガス温度が低下し、燃焼器1030の燃料流量が増加する。燃料流量増加の影響で燃焼温度が上昇し、燃焼器1030が破損する。 このように、膨張機1020の異常が、燃焼器1030に波及する。  An abnormal event that occurs in this plant is that the holes (blade surface cooling holes) for supplying cooling air for the blades in the expander 1020 become very large. When this abnormality occurs, the amount of cooling air increases, the exhaust gas temperature decreases, and the fuel flow rate of the combustor 1030 increases. The combustion temperature rises due to the increase in the fuel flow rate, and the combustor 1030 is damaged.異常 Thus, the abnormality of the expander 1020 is spread to the combustor 1030.
 異常事象が波及する場合、実施例2で述べた通り、検知タイミング、確度の異なる診断手段を用いた診断結果に基づいて損失予想額を計算して表示することで、検知した異常に対処するか否かの判断に有用な情報を提供できる。 If an abnormal event spreads, as described in Example 2, is it possible to deal with the detected abnormality by calculating and displaying the estimated loss based on the diagnosis result using the diagnostic means with different detection timing and accuracy? It can provide information useful for determining whether or not.
 本発明は、プラントの診断装置として、幅広く適用可能である。 The present invention is widely applicable as a plant diagnostic apparatus.
1 計測信号
2 外部入力信号
3 計測信号
4 設備管理情報信号
5 計測信号
6 設備管理情報信号
7 診断結果データベース情報
8 診断結果データベース情報
9 計測信号
10 診断結果
11 総合診断結果信号
12 総合診断結果信号
100 プラント
200 診断装置
210 データ入力インターフェイス
220 データ出力インターフェイス
300 計測信号データベース
310 設備管理情報データベース
320 診断結果データベース
400 総合診断手段
500 診断手段
800 面表示装置
900 外部入力装置
910 キーボード
920 マウス
DESCRIPTION OF SYMBOLS 1 Measurement signal 2 External input signal 3 Measurement signal 4 Equipment management information signal 5 Measurement signal 6 Equipment management information signal 7 Diagnosis result database information 8 Diagnosis result database information 9 Measurement signal 10 Diagnosis result 11 Comprehensive diagnosis result signal 12 Comprehensive diagnosis result signal 100 Plant 200 Diagnostic device 210 Data input interface 220 Data output interface 300 Measurement signal database 310 Facility management information database 320 Diagnosis result database 400 Overall diagnosis means 500 Diagnosis means 800 Surface display device 900 External input device 910 Keyboard 920 Mouse

Claims (10)

  1.  プラントの状態異常を診断する複数の診断手段を備えたプラント診断装置において、
     前記プラントの状態に関する計測信号データ及び過去の状態異常に関する設備管理情報データに基づいて、前記複数の診断手段それぞれの前記状態異常の検知に係る確度を求め、前記確度及び状態異常に伴う損失額に基づいて損失予想額を評価する総合診断手段を備えることを特徴とするプラント診断装置。
    In a plant diagnostic apparatus comprising a plurality of diagnostic means for diagnosing abnormal plant conditions,
    Based on the measurement signal data relating to the state of the plant and the facility management information data relating to the past state abnormality, the accuracy relating to the detection of the state abnormality of each of the plurality of diagnostic means is obtained, and the loss associated with the accuracy and the state abnormality is obtained. A plant diagnostic apparatus comprising comprehensive diagnostic means for evaluating an estimated loss amount based on the total diagnostic means.
  2.  請求項1に記載のプラント診断装置は、
     前記診断手段の検知結果と、前記損失予想額とを表示する表示手段を更に備えることを特徴とするプラント診断装置。
    The plant diagnostic apparatus according to claim 1 is:
    A plant diagnosis apparatus, further comprising display means for displaying the detection result of the diagnosis means and the estimated loss amount.
  3.  請求項1に記載のプラント診断装置において、
     前記総合診断手段は、所定の期間における状態異常の回数を前記診断手段による状態異常の検知回数で除することで前記確度を求めることを特徴とするプラント診断装置。
    The plant diagnostic apparatus according to claim 1,
    The plant diagnosis apparatus characterized in that the comprehensive diagnosis unit obtains the accuracy by dividing the number of state abnormalities in a predetermined period by the number of state abnormality detections by the diagnostic unit.
  4.  請求項1に記載のプラント診断装置において、
     前記設備管理情報データには、故障内容、対策費用、故障発生の防止に必要なリードタイム、故障した場合のプラント停止の日数、及び前記プラント停止によって発生した機会損失額で構成する故障情報を含むことを特徴とするプラント診断装置。
    The plant diagnostic apparatus according to claim 1,
    The facility management information data includes failure information composed of failure contents, countermeasure costs, lead time necessary for preventing failure occurrence, the number of days of plant shutdown in the event of failure, and the opportunity loss amount caused by the plant shutdown A plant diagnostic apparatus characterized by that.
  5.  請求項1に記載のプラント診断装置において、
     前記総合診断手段は、前記計測信号データが前記設備管理情報データに基づいて設定した状態異常と診断される所定の閾値を逸脱したときの時間から前記診断手段によって状態異常が発生していると検知した時間を減算した平均リードタイムを求めることを特徴とするプラント診断装置。
    The plant diagnostic apparatus according to claim 1,
    The comprehensive diagnosis means detects that a state abnormality has occurred by the diagnosis means from a time when the measurement signal data deviates from a predetermined threshold value that is diagnosed as a state abnormality set based on the facility management information data. A plant diagnostic apparatus characterized in that an average lead time obtained by subtracting the measured time is obtained.
  6.  請求項1に記載のプラント診断装置において、
     前記診断手段には、プラントを構成する機器の特性を模擬した機器モデルを用いたモデル診断、又は適応共鳴理論を用いたクラスタリング診断の内少なくとも1つの診断を用いることを特徴とするプラント診断装置。
    The plant diagnostic apparatus according to claim 1,
    The plant diagnosis apparatus characterized in that the diagnosis means uses at least one diagnosis of a model diagnosis using an equipment model that simulates characteristics of equipment constituting the plant or a clustering diagnosis using an adaptive resonance theory.
  7.  請求項1に記載のプラント診断装置において、
     前記複数の診断手段は、前記計測信号データを類似度に応じて複数のカテゴリに分類することを特徴とするプラント診断装置。
    The plant diagnostic apparatus according to claim 1,
    The plurality of diagnosis means classifies the measurement signal data into a plurality of categories according to the degree of similarity.
  8.  請求項1に記載のプラント診断装置において、
     前記総合診断手段は、前記状態異常の影響度に応じて前記確度を補正することを特徴とするプラント診断装置。
    The plant diagnostic apparatus according to claim 1,
    The plant diagnosis apparatus, wherein the comprehensive diagnosis unit corrects the accuracy according to an influence degree of the state abnormality.
  9.  請求項2に記載のプラント診断装置において、
     前記表示手段は、前記状態異常を保守するコストの目標値に対して前記損失予想額が最小となる診断手段による検知結果を表示することを特徴とするプラント診断装置。
    The plant diagnostic apparatus according to claim 2,
    The plant diagnosis apparatus, wherein the display means displays a detection result by a diagnosis means that minimizes the expected loss for a target value of a cost for maintaining the state abnormality.
  10.  プラントの状態異常を複数の方法で診断するプラント診断方法において、
     前記プラントの状態に関する計測信号データ及び過去の状態異常に関する設備管理情報データに基づいて、前記複数の方法それぞれの前記状態異常の検知に係る確度を求め、前記確度及び状態異常に伴う損失額に基づいて損失予想額を評価することを特徴とするプラント診断方法。
    In a plant diagnosis method for diagnosing abnormal plant conditions by multiple methods,
    Based on the measurement signal data relating to the state of the plant and the facility management information data relating to the past state abnormality, the accuracy relating to the detection of the state abnormality of each of the plurality of methods is obtained, and based on the accuracy and the loss amount associated with the state abnormality. A plant diagnosis method characterized by evaluating an estimated loss amount.
PCT/JP2016/065373 2015-06-22 2016-05-25 Plant diagnosis device and plant diagnosis method WO2016208315A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680036343.0A CN107710089B (en) 2015-06-22 2016-05-25 Plant equipment diagnosis device and plant equipment diagnosis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-124353 2015-06-22
JP2015124353A JP6523815B2 (en) 2015-06-22 2015-06-22 Plant diagnostic device and plant diagnostic method

Publications (1)

Publication Number Publication Date
WO2016208315A1 true WO2016208315A1 (en) 2016-12-29

Family

ID=57585493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065373 WO2016208315A1 (en) 2015-06-22 2016-05-25 Plant diagnosis device and plant diagnosis method

Country Status (3)

Country Link
JP (1) JP6523815B2 (en)
CN (1) CN107710089B (en)
WO (1) WO2016208315A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200210144A1 (en) * 2018-12-27 2020-07-02 Mitsubishi Hitachi Power Systems, Ltd. Data sorting device and method, and monitoring and diagnosis device
EP3702861A4 (en) * 2017-10-25 2021-07-14 Hitachi, Ltd. Plant operation assistance device and operation assistance method
WO2021140742A1 (en) * 2020-01-08 2021-07-15 株式会社日立製作所 Operation management support device and operation management support method
US11657121B2 (en) 2018-06-14 2023-05-23 Mitsubishi Electric Corporation Abnormality detection device, abnormality detection method and computer readable medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930195B2 (en) * 2017-04-17 2021-09-01 富士通株式会社 Model identification device, prediction device, monitoring system, model identification method and prediction method
JP6772963B2 (en) * 2017-06-05 2020-10-21 トヨタ自動車株式会社 Abnormality diagnosis device and abnormality diagnosis method
US11361218B2 (en) 2019-05-31 2022-06-14 International Business Machines Corporation Noise and signal management for RPU array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277185A (en) * 2005-03-29 2006-10-12 Osaka Gas Co Ltd Failure predictive diagnosis support system
JP2007293489A (en) * 2006-04-24 2007-11-08 Mitsubishi Electric Corp Failure diagnostic device for facility equipment and failure diagnostic method for facility equipment
JP2011060088A (en) * 2009-09-11 2011-03-24 Toshiba Corp Apparatus and method for preparing maintenance plan

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566092A (en) * 1993-12-30 1996-10-15 Caterpillar Inc. Machine fault diagnostics system and method
JP2003295937A (en) * 2002-03-29 2003-10-17 Hitachi Ltd Plant monitoring device and plant monitoring method
JP4034195B2 (en) * 2003-01-23 2008-01-16 株式会社日立製作所 Plant operating method and operating apparatus thereof
JP5105218B2 (en) * 2005-06-06 2012-12-26 トヨタ自動車株式会社 Abnormality judgment device
US7827006B2 (en) * 2007-01-31 2010-11-02 Fisher-Rosemount Systems, Inc. Heat exchanger fouling detection
EP2128592A4 (en) * 2007-03-22 2012-11-28 Nec Corp Diagnostic device
CN101675195B (en) * 2007-08-09 2012-02-15 日立建机株式会社 Operating machine instrument diagnostic apparatus and instrument diagnostic system
CN102713777B (en) * 2010-01-22 2015-07-01 株式会社日立制作所 Diagnostic apparatus and diagnostic method
CN201714747U (en) * 2010-06-13 2011-01-19 宝山钢铁股份有限公司 Alarm device for hydraulic flow
CN102036287B (en) * 2011-01-11 2013-09-25 大唐移动通信设备有限公司 Method and equipment for detecting abnormal state of terminal equipment
CN103617110B (en) * 2013-11-11 2016-09-07 国家电网公司 Server device condition maintenance system
CN105278526B (en) * 2015-11-19 2017-12-01 东北大学 A kind of industrial process fault separating method based on regularization framework

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277185A (en) * 2005-03-29 2006-10-12 Osaka Gas Co Ltd Failure predictive diagnosis support system
JP2007293489A (en) * 2006-04-24 2007-11-08 Mitsubishi Electric Corp Failure diagnostic device for facility equipment and failure diagnostic method for facility equipment
JP2011060088A (en) * 2009-09-11 2011-03-24 Toshiba Corp Apparatus and method for preparing maintenance plan

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3702861A4 (en) * 2017-10-25 2021-07-14 Hitachi, Ltd. Plant operation assistance device and operation assistance method
US11657121B2 (en) 2018-06-14 2023-05-23 Mitsubishi Electric Corporation Abnormality detection device, abnormality detection method and computer readable medium
US20200210144A1 (en) * 2018-12-27 2020-07-02 Mitsubishi Hitachi Power Systems, Ltd. Data sorting device and method, and monitoring and diagnosis device
US11886831B2 (en) * 2018-12-27 2024-01-30 Mitsubishi Heavy Industries, Ltd. Data sorting device and method, and monitoring and diagnosis device
WO2021140742A1 (en) * 2020-01-08 2021-07-15 株式会社日立製作所 Operation management support device and operation management support method
JP2021111057A (en) * 2020-01-08 2021-08-02 株式会社日立製作所 Operation management assisting device and operation management assisting method
JP7473343B2 (en) 2020-01-08 2024-04-23 株式会社日立製作所 Operation management support device and operation management support method

Also Published As

Publication number Publication date
JP6523815B2 (en) 2019-06-05
CN107710089B (en) 2020-07-10
CN107710089A (en) 2018-02-16
JP2017010232A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2016208315A1 (en) Plant diagnosis device and plant diagnosis method
KR101955305B1 (en) Gas turbine sensor failure detection utilizing a sparse coding methodology
EP2905665B1 (en) Information processing apparatus, diagnosis method, and program
JP6116466B2 (en) Plant diagnostic apparatus and diagnostic method
US9483049B2 (en) Anomaly detection and diagnosis/prognosis method, anomaly detection and diagnosis/prognosis system, and anomaly detection and diagnosis/prognosis program
US8682616B2 (en) Identifying failures in an aeroengine
JP6856443B2 (en) Equipment abnormality diagnosis system
US7933754B2 (en) System and method for damage propagation estimation
JP5292477B2 (en) Diagnostic device and diagnostic method
WO2014208227A1 (en) Boiler tube leak detecting device, boiler tube leak detecting method, and data monitoring center, information providing service, and boiler plant using same
CN104756029B (en) A kind of system of the parts group of monitoring device
JPWO2014091952A1 (en) SENSOR MONITORING DEVICE, SENSOR MONITORING METHOD, AND SENSOR MONITORING PROGRAM
KR102073537B1 (en) Risk Assessment Apparatus, Risk Assessment System, Risk Assessment Method and Risk Assessment Program
JP6674033B2 (en) Plant abnormality diagnosis device and plant abnormality diagnosis system
WO2023072724A1 (en) System, apparatus and method for monitoring condition of an asset in technical installation
WO2019003703A1 (en) Diagnostic device and diagnostic method
KR20200009081A (en) Risk Assessment Apparatus, Risk Assessment System, Risk Assessment Method, Risk Assessment Program and Data Structure
JP6685124B2 (en) Diagnostic device and diagnostic method
TW202100863A (en) Abnormality diagnosis device and method
US11339763B2 (en) Method for windmill farm monitoring
WO2018003028A1 (en) Boiler failure determining device, failure determining method, and service method
WO2021241579A1 (en) Abnormal modulation cause identifying device, abnormal modulation cause identifying method, and abnormal modulation cause identifying program
CN117663353A (en) Fault detection and diagnosis method for nuclear power ventilation air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814086

Country of ref document: EP

Kind code of ref document: A1