WO2016199937A1 - Epsilon iron oxide and method for producing same, magnetic paint, and magnetic recording medium - Google Patents

Epsilon iron oxide and method for producing same, magnetic paint, and magnetic recording medium Download PDF

Info

Publication number
WO2016199937A1
WO2016199937A1 PCT/JP2016/067554 JP2016067554W WO2016199937A1 WO 2016199937 A1 WO2016199937 A1 WO 2016199937A1 JP 2016067554 W JP2016067554 W JP 2016067554W WO 2016199937 A1 WO2016199937 A1 WO 2016199937A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxide
epsilon
epsilon iron
value
hydroxide
Prior art date
Application number
PCT/JP2016/067554
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 大越
俊介 岡
飛鳥 生井
憲司 正田
Original Assignee
国立大学法人 東京大学
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, Dowaエレクトロニクス株式会社 filed Critical 国立大学法人 東京大学
Priority to EP16807640.4A priority Critical patent/EP3309128A4/en
Priority to CN201680030678.1A priority patent/CN107635924B/en
Priority to US15/735,410 priority patent/US10807880B2/en
Priority claimed from JP2016116784A external-priority patent/JP6821335B2/en
Publication of WO2016199937A1 publication Critical patent/WO2016199937A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles

Definitions

  • the present invention relates to an epsilon iron oxide applied to a high-density magnetic recording medium, a radio wave absorber, and the like, a manufacturing method thereof, a magnetic paint and a magnetic recording medium using the epsilon iron oxide.
  • the magnetic recording medium In order to achieve high recording density in magnetic recording media, it is necessary to reduce the recording unit. It is also necessary for the magnetic recording medium to be maintained in a ferromagnetic state under a normal environment where it is exposed during storage and use, for example, at room temperature.
  • the stability of magnetization with respect to heat is considered to be proportional to the magnetic anisotropy constant and the particle volume.
  • the magnetic anisotropy constant can be increased by increasing the coercive force of the magnetic recording medium. Therefore, in order to obtain particles having a small particle volume and high thermal stability, it is considered effective to use a substance having a high coercive force as a magnetic material.
  • the present inventors have found epsilon iron oxide as a material that develops a huge coercive force of 20 kOe under room temperature conditions even though it is nano-order particles, and published it as Non-Patent Document 1. Further, it has been found that the coercive force can be controlled by substituting a part of the iron element of the epsilon iron oxide with a metal element different from iron, and disclosed in Patent Documents 1 to 4.
  • Non-Patent Document 1 The epsilon iron oxide announced by the present inventors in Non-Patent Document 1 is a substance having a huge coercive force of 20 kOe level.
  • a magnetic head having a higher saturation magnetic flux density is used to generate a high magnetic field and write information. Necessary.
  • Patent Documents 1 to 3 the present inventors can reduce the coercive force to a desired value by using epsilon iron oxide in which a part of Fe site is replaced with a different trivalent metal. It was thought that. And as disclosed in Patent Document 4, it became possible to impart thermal stability while ensuring arbitrary adjustability of the coercivity of epsilon iron oxide.
  • the inventors have made the particle size of the epsilon iron oxide smaller to reduce the recording unit (for example, an applied magnetic field of 70 kOe). It was thought that it is important to set the coercive force to 14 kOe or less and to make the particle size of the epsilon iron oxide more uniform. Therefore, the technical problem to be solved by the present invention is epsilon iron oxide having an average particle diameter of 10 to 18 nm, a part of the iron element being substituted with a substitution element, and a coercive force of 14 kOe or less. It is to provide an epsilon iron oxide having a particle size variation coefficient of 40% or less, a method for producing the same, a magnetic paint using the epsilon iron oxide, and a magnetic recording medium.
  • the present inventors conducted research. Then, a metal compound as a substitution element is deposited on iron oxide hydroxide to obtain iron oxide hydroxide to which the metal compound is deposited, and iron oxide hydroxide to which the metal compound is deposited is converted into silicon oxide. And iron oxide hydroxide coated with silicon oxide, and heat treating the iron oxide hydroxide coated with silicon oxide in an oxidizing atmosphere. It is possible to obtain epsilon iron oxide in which a part of the element is replaced with epsilon iron oxide having an average particle diameter of 10 to 18 nm and a coefficient of variation of the particle diameter is 40% or less. As a result, the present invention was completed.
  • the first invention for solving the above-described problem is Applying a metal compound as a substitution element to iron oxide hydroxide to obtain iron oxide hydroxide to which the metal compound is applied; Coating iron oxide hydroxide coated with the metal compound with silicon oxide to obtain iron oxide hydroxide coated with the silicon oxide; Heat-treating the iron oxide hydroxide coated with the silicon oxide in an oxidizing atmosphere, A method for producing epsilon iron oxide, characterized in that epsilon iron oxide in which a part of iron element is substituted with the substitution element is produced.
  • the second invention is A method for producing epsilon iron oxide according to the first invention, comprising: The heat treated powder obtained in the heat treatment step is further treated with an alkaline aqueous solution to produce epsilon iron oxide, which is a method for producing epsilon iron oxide.
  • the third invention is The step of obtaining the iron oxide hydroxide to which the metal compound is deposited, Dissolving a metal salt of the substitution element in the iron oxide hydroxide suspension; Adding an alkaline aqueous solution to a suspension of iron oxide hydroxide in which the metal salt is dissolved to obtain iron oxide hydroxide to which the metal compound is deposited. It is a manufacturing method of the epsilon iron oxide as described in 2 invention.
  • the fourth invention is: The method for producing epsilon iron oxide according to any one of the first to third inventions, wherein the iron oxide hydroxide coated with the metal compound is coated with silicon oxide and then dried to form the silicon oxide.
  • a method for producing epsilon iron oxide characterized by obtaining iron oxide hydroxide coated with a product.
  • the fifth invention is: Epsilon iron oxide in which part of the iron element is substituted with a substitution element, Epsilon iron oxide having an average particle diameter of 10 to 18 nm and a coefficient of variation of the particle diameter of 40% or less.
  • the sixth invention is:
  • the value of the particle volume (1) is not less 500 nm 3 or more, epsilon iron oxide according to the fifth invention, wherein the value of the grain volume (2) is 10000 nm 3 or less.
  • the particle volume (1) is a value obtained by calculating the standard deviation of the particle size distribution of the epsilon iron oxide described in the fifth invention and subtracting the value of the standard deviation from the value of the average particle diameter of the epsilon iron oxide. Is the lower limit of the particle diameter of the epsilon iron oxide, and the volume is obtained by approximating the epsilon iron oxide particles to a spherical shape.
  • the particle volume (2) is obtained by calculating the standard deviation of the particle size distribution of the epsilon iron oxide described in the fifth invention, and adding the value of the standard deviation to the value of the average particle diameter of the epsilon iron oxide. It is a value obtained by considering the epsilon iron oxide particle diameter as an upper limit of the particle size of the epsilon iron oxide particle by approximating the epsilon iron oxide particle into a spherical shape.
  • the seventh invention The value obtained by subtracting the value of the particle volume (1) from the value of the particle volume (2) is 5000 nm 3 or less, and is the epsilon iron oxide according to the sixth invention.
  • the eighth invention A magnetic paint characterized by using the epsilon iron oxide according to any one of the fourth to seventh inventions.
  • the ninth invention A magnetic recording medium using the epsilon iron oxide according to any one of the fourth to seventh inventions.
  • the epsilon iron oxide according to the present invention can have a coercive force of 14 kOe or less, an average particle diameter of 10 to 18 nm, and a coefficient of variation of the particle diameter of 40% or less. Suitable as iron oxide.
  • the epsilon iron oxide according to the present invention is an epsilon iron oxide powder in which part of the iron element is substituted with a substitution element, has an average particle diameter of 10 to 18 nm, and a coefficient of variation of the particle diameter is 40% or less.
  • an epsilon iron oxide powder may be referred to as “epsilon iron oxide” in the present invention.
  • the epsilon iron oxide according to the present invention having the above-described configuration can be maintained (for example, at an applied magnetic field of 70 kOe) by using, for example, a predetermined amount of Ga, Al, Co, Ti or the like alone or as a mixture as the substitution element.
  • the magnetic force can be controlled to 14 kOe or less.
  • the epsilon iron oxide according to the present invention is optimal as an iron oxide for high density recording. Further, when the epsilon iron oxide according to the present invention is used for different applications such as a magnetic shielding film, it is possible to set the required coercive force by controlling the type and amount of the substitution element. .
  • substitution element As the substitution element, it is preferable to use a divalent metal, a tetravalent metal, or a trivalent metal in order to keep the crystal structure of epsilon iron oxide stable. Further, the divalent metal is selected from one or more metal elements selected from Co, Ni, Mn, and Zn, the tetravalent metal is selected from Ti, and the trivalent metal is selected from In, Ga, and Al. One or more metal elements can be cited as preferred examples.
  • the coercive force of the magnetic material can be controlled relatively easily by the amount of element added.
  • the magnetic material can be controlled to a level that can be used even by a known and public magnetic recording head.
  • the average particle diameter is preferably so fine that each particle has a single magnetic domain structure, and the average particle diameter observed with a transmission electron microscope is preferably 18 nm or less.
  • the average particle diameter is preferably 10 nm or more, more preferably 15 nm or more.
  • the substitution element is preferably at least one selected from In, Ga, Al, Co, and Ti.
  • epsilon iron oxide using these different metals as a substitution element tends to easily generate a particle group having a non-uniform particle size distribution as compared with epsilon iron oxide without substitution.
  • the standard deviation of the particle size distribution of the epsilon iron oxide according to the present invention is obtained, and the value obtained by subtracting the value of the standard deviation from the value of the average particle diameter of the epsilon iron oxide is a lower limit of the particle diameter of the epsilon iron oxide.
  • the epsilon iron oxide particles were approximated to a sphere, and the volume of the particles was obtained and defined as the particle volume (1).
  • the value obtained by adding the value of the standard deviation to the value of the average particle diameter of the epsilon iron oxide is considered as the upper limit of the particle diameter of the epsilon iron oxide, and the volume of the particles Was determined as the particle volume (2).
  • the value of the grain volume (1) is 500 nm 3 or more
  • the particle group value of the grain volume (2) satisfies 10000 nm 3 or less
  • the uniformity of the particle size distribution mentioned above is secured, a magnetic recording medium It was conceived that it is suitable as a magnetic particle for use in magnetic shielding films and the like. This means that if the value of the particle volume (1) is 500 nm 3 or more, it will not be affected by thermal fluctuation, and the possibility of becoming a superparamagnetic material will be reduced.
  • the value of the particle volume (2) is 10000 nm 3 or less, it is possible to avoid the situation that the particle volume is too large and causes noise when the magnetic medium is used, and the coercive force becomes excessively high. it is conceivable that.
  • the heteroelement-substituted epsilon oxide according to the present invention is suitable for use as a magnetic powder for the next generation magnetic recording medium because the particle volume distribution is uniform although the particle volume is small. Is. Moreover, since it can be adjusted to a desired coercive force value by adjusting the addition amount of different elements as required, it can also be used as a magnetic shielding film and a magnetic shielding material in a wide range of applications.
  • Iron oxide (III) hydroxide nanoparticles ( ⁇ -FeO (OH)) having an average particle size of 15 nm or less and pure water are mixed, and the iron (Fe) equivalent concentration is 0.01 mol / L or more, 1 mol / L
  • Iron oxide (III) hydroxide nanoparticles ( ⁇ -FeO (OH)) having an average particle size of 15 nm or less and pure water are mixed, and the iron (Fe) equivalent concentration is 0.01 mol / L or more, 1 mol / L
  • a predetermined amount of a water-soluble metal salt solution of a substitution element is added to the dispersion and stirred at 0 to 100 ° C., preferably 20 to 60 ° C.
  • a precipitating agent for example, ammonium sulfate.
  • the cooled dispersion is centrifuged (for example, 3500 rpm, 50 minutes), the supernatant is removed, and the precipitate is washed with pure water. Pure water is added to the precipitate and stirred to obtain a dispersion, which is centrifuged again to remove the supernatant. After the centrifugation and pure water washing are repeated three times or more, the precipitate is collected and dried at about 60 ° C. to obtain a dry powder.
  • the dried powder is heat-treated at 900 ° C. or higher and lower than 1200 ° C., preferably 950 ° C.
  • the obtained heat-treated powder is pulverized and then added to a sodium hydroxide (NaOH) aqueous solution having a liquid temperature of 60 ° C. or higher and 70 ° C. or lower and a concentration of about 5 M, and stirred for 15 hours or longer and 30 hours or shorter Silicon oxide is removed from the heat-treated powder to produce epsilon iron oxide powder partially substituted with iron element.
  • NaOH sodium hydroxide
  • the epsilon iron oxide partially substituted with the produced iron element is recovered by filtration or centrifugation, and the iron element is partially substituted and has an average particle diameter of 10 to 18 nm.
  • An epsilon iron oxide according to the present invention having a particle size variation coefficient of 40% or less could be obtained.
  • the iron oxide hydroxide fine particles described above are not necessarily ⁇ -FeO (OH) fine particles having an average particle diameter of 15 nm or less.
  • the epsilon iron oxide according to the present invention can be obtained.
  • Method of manufacturing magnetic paint In order to use the magnetic powder according to the present invention as a magnetic paint, for example, the following method can be employed. That is, 0.500 g of sample powder (the above-mentioned precipitated powder) is weighed, put in a pot (inner diameter 45 mm, depth 13 mm), and left for 10 minutes with the lid open. Next, vehicle [vinyl chloride resin MR-110 (22 mass%), cyclohexanone (38.7 mass%), acetylacetone (0.3 mass%), n-butyl stearate (0.3 mass%), methyl ethyl ketone (MEK; 38.7% by mass) is collected and added to the pot.
  • vehicle vinyl chloride resin MR-110 (22 mass%), cyclohexanone (38.7 mass%), acetylacetone (0.3 mass%), n-butyl stearate (0.3 mass%), methyl ethyl ketone (MEK; 38.7% by mass
  • Method of manufacturing magnetic recording medium As a method for producing a magnetic recording medium using the magnetic powder according to the present invention, for example, the following method can be employed. After the dispersion process is completed in the above (Magnetic paint manufacturing method), the pot lid is opened, the nylon balls are removed, the prepared paint is put together with the steel balls into an applicator (gap 55 ⁇ m), and applied to the support film. Do. After the coating, the magnetic recording medium using the magnetic powder according to the present invention can be obtained by quickly placing the film at the center of the coil of the aligner having a magnetic flux density of 0.55T, orienting the magnetic field, and then drying. .
  • the method of forming a single magnetic layer is exemplified, but if a known method is employed, a multilayer magnetic recording medium can be formed.
  • Example 1 Manufacture of epsilon iron oxide> A method for producing epsilon iron oxide according to Example 1 will be described with reference to FIGS. 1 and 3 which are flowcharts of the production method and FIG. 2 showing heat treatment conditions. As shown in FIG.
  • TEOS tetraethoxysilane
  • the pulverized powder was loaded into a furnace and heat treated under the heat treatment conditions shown in FIG. 2 in an air atmosphere to obtain heat treated powder.
  • the obtained heat-treated powder was charged into a 250 mL Erlenmeyer flask and stirred with 140 ml of 5 mol / L sodium hydroxide (NaOH) aqueous solution at a liquid temperature of 70 ° C. for 24 hours. Silicon oxide was removed. Next, the heat-treated powder from which the silicon oxide was removed was centrifuged (5000 rpm, 10 minutes), the supernatant was removed, and the precipitate was collected. The collected precipitate was washed with about 35 ml of pure water, centrifuged again (10000 rpm, 5 minutes), the supernatant was removed, and the precipitate was collected. The collected precipitate was washed with about 35 ml of pure water, centrifuged (14000 rpm, 60 minutes), and the process of removing the supernatant was repeated twice to obtain epsilon iron oxide according to Example 1.
  • NaOH sodium hydroxide
  • Table 1 shows the results of elemental analysis of the obtained epsilon iron oxide according to Example 1 using a high frequency induction plasma emission spectrometer ICP (Agilent 7700x) manufactured by Agilent Technologies. Moreover, when the epsilon iron oxide which concerns on Example 1 was observed with the transmission electron microscope (TEM) and the average particle diameter was calculated
  • TEM transmission electron microscope
  • the average particle diameter, standard deviation, coefficient of variation, average particle volume, particle volume (1), particle volume (2), particle volume [(2)-(1)] of the obtained epsilon iron oxide according to Example 1 Values are shown in Table 1. Furthermore, the magnetic properties (coercivity, saturation magnetization, residual magnetization) of the epsilon iron oxide according to Example 1 were measured. Specifically, using a SQUID (superconducting quantum interferometer) of MPMS7 manufactured by Quantum Design, measurement was performed at a maximum applied magnetic field of 70 kOe and a temperature of 300K. Table 1 shows values of the obtained coercive force, saturation magnetization, and residual magnetization.
  • Example 2 In a 1 L Erlenmeyer flask, 420 g of pure water and 7.2 g of a sol of iron oxide (III) nanoparticle ( ⁇ -FeO (OH)) having an average particle size of about 6 nm, Ga (NO 3 ) 3 .nH 2 O powder was carried out in the same manner as in Example 1, except that 200.74 mg of Co, (NO 3 ) 2 .6H 2 O powder, 72.93 mg, and 0.05 ml of TiCl 4 solution having a Ti equivalent concentration of 16 wt% were added. The epsilon iron oxide according to Example 2 was obtained.
  • Example 3 In 1L Erlenmeyer flask, sol 7.6g, Co (NO 3) 2 ⁇ 6H 2 O powder of pure water 420mL and average particle size of about 6nm oxide iron (III) hydroxide nanoparticles ( ⁇ -FeO (OH)) was obtained in the same manner as in Example 1 except that 0.05 ml of a TiCl 4 solution having a Ti equivalent concentration of 16 wt% was added to obtain epsilon iron oxide according to Example 3.
  • the average particle size, standard deviation, coefficient of variation, average particle volume, average particle volume, particle volume (1), particle volume Table 1 shows the values of (2), particle volume [(2)-(1)], coercive force, saturation magnetization, and residual magnetization.
  • Example 4 In a 1 L Erlenmeyer flask, 420 mL of pure water and sol of iron oxide (III) oxide nanoparticles ( ⁇ -FeO (OH)) having an average particle diameter of about 6 nm, 7.6 g, Ga (NO 3 ) 3 .nH 2 O powder The epsilon iron oxide according to Example 4 was obtained in the same manner as in Example 1 except that 201.21 mg was added.
  • iron oxide (III) oxide nanoparticles ⁇ -FeO (OH)
  • the average particle size, standard deviation, coefficient of variation, average particle volume, average particle volume, particle volume (1), particle volume Table 1 shows the values of (2), particle volume [(2)-(1)], coercive force, saturation magnetization, and residual magnetization.
  • Example 5 In a 1 L Erlenmeyer flask, 420 mL of pure water and sol of iron oxide (III) oxide nanoparticles ( ⁇ -FeO (OH)) having an average particle size of about 6 nm, 6.6 g, Ga (NO 3 ) 3 .nH 2 O powder The epsilon iron oxide according to Example 5 was obtained in the same manner as in Example 1 except that 701.05 mg was added.
  • iron oxide (III) oxide nanoparticles ⁇ -FeO (OH)
  • Example 6 In 1L Erlenmeyer flask, sol 6.6g of pure water 420mL and average particle size of about 6nm oxide iron (III) hydroxide nanoparticles ( ⁇ -FeO (OH)) , the Al (NO 3) 3 ⁇ 9H 2 O compound Epsilon iron oxide according to Example 6 was obtained in the same manner as in Example 1 except that 656.53 mg was added.
  • the average particle size, standard deviation, coefficient of variation, average particle volume, average particle volume, particle volume (1), particle volume Table 1 shows the values of (2), particle volume [(2)-(1)], coercive force, saturation magnetization, and residual magnetization.
  • Comparative Example 2 In the procedure 1, 24.3 mL of pure water is put into a Teflon (registered trademark) flask. There, iron nitrate (III) 9 hydrate, gallium nitrate (III) n hydrate, cobalt nitrate (II) hexahydrate, and titanium sulfate (IV) n hydrate are produced. A comparison was made by operating in the same manner as in Comparative Example 1 except that the composition of the epsilon iron oxide according to Comparative Example 2 was added so that the composition was Fe 1.79 Ga 0.10 Co 0.05 Ti 0.06 O 3. The epsilon iron oxide according to Example 2 was obtained.
  • a solution B is obtained by adding 2.0 mL of 25% aqueous ammonia to 22.3 mL of pure water and stirring.
  • the neutralizer solution B is added dropwise. After completion of the dropwise addition, the resulting mixture is continuously stirred for 30 minutes.
  • the mixed solution obtained in the procedure 2 0.49 mL of tetraethoxysilane is added to the mixed solution. And stirring is continued for about one day after the said addition.
  • the mixed solution obtained in the procedure 3 is filtered, and the precipitate is collected and washed with pure water.
  • Example 4 Example 1 except that 420 mL of pure water and only 8.0 g of a sol of iron oxide (III) oxide nanoparticles ( ⁇ -FeO (OH)) having an average particle diameter of about 6 nm were placed in a 1 L Erlenmeyer flask. The same operation was performed to obtain epsilon iron oxide according to Comparative Example 4. As a result of elemental analysis using ICP in the obtained epsilon iron oxide according to Comparative Example 4, the average particle size, standard deviation, coefficient of variation, average particle volume, average particle volume, average particle volume, particle volume (1 ), Particle volume (2), particle volume [(2)-(1)], coercive force, saturation magnetization, and residual magnetization are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Compounds Of Iron (AREA)

Abstract

Provided are: epsilon iron oxide which has an average particle size of 10 to 18 nm, in which a part of an iron element is substituted with a substitution element, and which has a coercive force of 14 kOe or less, the coefficient of variation of the particle size being 40% or less; and a method for producing the same. This method for producing the epsilon iron oxide includes: a step of applying metal which is the substitution element to iron oxide-hydroxide to obtain iron oxide-hydroxide to which the metal is applied; a step of coating the iron oxide-hydroxide to which the metal is applied with silicon oxide to obtain iron oxide-hydroxide coated with the silicon oxide; and a step of heat-treating the iron oxide-hydroxide coated with the silicon oxide under an oxidizing atmosphere. The method is characterized by producing an epsilon iron oxide in which a part of the iron element is substituted with the substitution element.

Description

イプシロン酸化鉄とその製造方法、磁性塗料および磁気記録媒体Epsilon iron oxide and method for producing the same, magnetic paint and magnetic recording medium
 本発明は、高密度磁気記録媒体、電波吸収体、等に適用されるイプシロン酸化鉄およびその製造方法、当該イプシロン酸化鉄を使用した磁性塗料および磁気記録媒体に関する。 The present invention relates to an epsilon iron oxide applied to a high-density magnetic recording medium, a radio wave absorber, and the like, a manufacturing method thereof, a magnetic paint and a magnetic recording medium using the epsilon iron oxide.
 磁気記録媒体において、記録の高密度化を達成するには、記録単位を小さくすることが必要である。また、当該磁気記録媒体が、保存および使用に際して曝されるような通常の環境下、例えば室温の条件下において、強磁性状態が維持されることも必要である。特に、熱に対する磁化の安定性は、磁気異方性定数と粒子体積とに比例すると考えられている。ここで磁気異方性定数は、当該磁気記録媒体の保磁力を高めることにより、高くすることができると考えられている。従って、粒子体積が小さく熱安定性の高い粒子を得るためには、保磁力の高い物質を磁性材料として用いることが有効であると考えられる。 In order to achieve high recording density in magnetic recording media, it is necessary to reduce the recording unit. It is also necessary for the magnetic recording medium to be maintained in a ferromagnetic state under a normal environment where it is exposed during storage and use, for example, at room temperature. In particular, the stability of magnetization with respect to heat is considered to be proportional to the magnetic anisotropy constant and the particle volume. Here, it is considered that the magnetic anisotropy constant can be increased by increasing the coercive force of the magnetic recording medium. Therefore, in order to obtain particles having a small particle volume and high thermal stability, it is considered effective to use a substance having a high coercive force as a magnetic material.
 上述の考察に基づき、本発明者らは、ナノオーダーの粒子でありながら、室温条件下で20kOeという巨大な保磁力を発現する材料としてイプシロン酸化鉄を見出し、非特許文献1として公表した。また、当該イプシロン酸化鉄の鉄元素の一部を、鉄とは異なる金属元素で置換することで、保磁力を制御できうることを見いだし、特許文献1~4として開示した。 Based on the above considerations, the present inventors have found epsilon iron oxide as a material that develops a huge coercive force of 20 kOe under room temperature conditions even though it is nano-order particles, and published it as Non-Patent Document 1. Further, it has been found that the coercive force can be controlled by substituting a part of the iron element of the epsilon iron oxide with a metal element different from iron, and disclosed in Patent Documents 1 to 4.
特願2006-096907号Japanese Patent Application No. 2006-096907 特願2006-224954号Japanese Patent Application No. 2006-224954 特願2006-234958号Japanese Patent Application No. 2006-234958 特願2009-517830号Japanese Patent Application No. 2009-517830
 本発明者らが非特許文献1にて公表したイプシロン酸化鉄は、20kOeレベルの巨大な保磁力を有する物質である。ただし、このような巨大な保磁力を有する磁性粒子を磁気記録用途に使用するためには、より高レベルの飽和磁束密度を有する磁気ヘッドを使用して高い磁場を発生させ、情報を書き込むことが必要となる。しかし、現状ヘッド材料として知られているもので、そのような要求を満たす材料は皆無であるため、かような磁性粒子を磁気記録媒体用として適用することは困難であると考えられる。 The epsilon iron oxide announced by the present inventors in Non-Patent Document 1 is a substance having a huge coercive force of 20 kOe level. However, in order to use such magnetic particles having a huge coercive force for magnetic recording, a magnetic head having a higher saturation magnetic flux density is used to generate a high magnetic field and write information. Necessary. However, since it is known as a head material at present and there is no material that satisfies such requirements, it is considered difficult to apply such magnetic particles for magnetic recording media.
 ここで、本発明者らが特許文献1~3に開示したように、Feサイトの一部を異種の3価の金属で置換したイプシロン酸化鉄を用いれば、所望値に保磁力を低減させうることが考えられた。そして特許文献4に開示したように、イプシロン酸化鉄の保磁力の任意調整性を担保しながら、熱安定性を付与することも可能となった。 Here, as disclosed in Patent Documents 1 to 3, the present inventors can reduce the coercive force to a desired value by using epsilon iron oxide in which a part of Fe site is replaced with a different trivalent metal. It was thought that. And as disclosed in Patent Document 4, it became possible to impart thermal stability while ensuring arbitrary adjustability of the coercivity of epsilon iron oxide.
 しかしながら本発明者らは、イプシロン酸化鉄を用いて記録の高密度化を達成するには、当該イプシロン酸化鉄の粒径を小さくして記録単位を小さくすることに加え、(例えば、印加磁場70kOeにおける)保磁力を14kOe以下とし、さらに、当該イプシロン酸化鉄の粒径をより均一にすることが肝要であることに想到した。
 そこで、本発明の解決すべき技術的課題とは、10~18nmの平均粒径を有し、鉄元素の一部が置換元素で置換され保磁力が14kOe以下のイプシロン酸化鉄であって、当該粒径の変動係数が40%以下であるイプシロン酸化鉄とその製造方法、当該イプシロン酸化鉄を使用した磁性塗料および磁気記録媒体を提供することである。
However, in order to achieve high recording density using epsilon iron oxide, the inventors have made the particle size of the epsilon iron oxide smaller to reduce the recording unit (for example, an applied magnetic field of 70 kOe). It was thought that it is important to set the coercive force to 14 kOe or less and to make the particle size of the epsilon iron oxide more uniform.
Therefore, the technical problem to be solved by the present invention is epsilon iron oxide having an average particle diameter of 10 to 18 nm, a part of the iron element being substituted with a substitution element, and a coercive force of 14 kOe or less. It is to provide an epsilon iron oxide having a particle size variation coefficient of 40% or less, a method for producing the same, a magnetic paint using the epsilon iron oxide, and a magnetic recording medium.
 上述の状況の下、本発明者らは研究を行った。そして、酸化水酸化鉄へ置換元素である金属化合物を被着させ、前記金属化合物が被着した酸化水酸化鉄を得る工程と、前記金属化合物が被着した酸化水酸化鉄を、シリコン酸化物でコーティングし、前記シリコン酸化物でコーティングされた酸化水酸化鉄を得る工程と、前記シリコン酸化物でコーティングされた酸化水酸化鉄を酸化性雰囲気下で熱処理する工程とを実施することにより、鉄元素の一部が置換元素で置換されたイプシロン酸化鉄であって、10~18nmの平均粒径を有し、当該粒径の変動係数が40%以下であるイプシロン酸化鉄を得ることが出来るとの知見を得て、本発明を完成した。 Under the circumstances described above, the present inventors conducted research. Then, a metal compound as a substitution element is deposited on iron oxide hydroxide to obtain iron oxide hydroxide to which the metal compound is deposited, and iron oxide hydroxide to which the metal compound is deposited is converted into silicon oxide. And iron oxide hydroxide coated with silicon oxide, and heat treating the iron oxide hydroxide coated with silicon oxide in an oxidizing atmosphere. It is possible to obtain epsilon iron oxide in which a part of the element is replaced with epsilon iron oxide having an average particle diameter of 10 to 18 nm and a coefficient of variation of the particle diameter is 40% or less. As a result, the present invention was completed.
 即ち、上述の課題を解決するための第1の発明は、
 酸化水酸化鉄へ置換元素である金属化合物を被着させ、前記金属化合物が被着した酸化水酸化鉄を得る工程と、
 前記金属化合物が被着した酸化水酸化鉄を、シリコン酸化物でコーティングし、前記シリコン酸化物でコーティングされた酸化水酸化鉄を得る工程と、
 前記シリコン酸化物でコーティングされた酸化水酸化鉄を酸化性雰囲気下で熱処理する工程とを有し、
 鉄元素の一部が前記置換元素で置換されたイプシロン酸化鉄を製造することを特徴とするイプシロン酸化鉄の製造方法である。
 第2の発明は、
 第1の発明に記載のイプシロン酸化鉄の製造方法であって、
 前記熱処理工程で得られた熱処理粉を、さらにアルカリ水溶液で処理して、イプシロン酸化鉄を製造することを特徴とするイプシロン酸化鉄の製造方法である。
 第3の発明は、
 前記金属化合物が被着した酸化水酸化鉄を得る工程が、
 前記酸化水酸化鉄の懸濁液へ、前記置換元素の金属塩を溶解させる工程と、
 前記金属塩を溶解させた酸化水酸化鉄の懸濁液へ、アルカリ水溶液を添加して前記金属化合物が被着した酸化水酸化鉄を得る工程とを、有することを特徴とする第1または第2の発明に記載のイプシロン酸化鉄の製造方法である。
 第4の発明は、
 第1から第3の発明のいずれかに記載のイプシロン酸化鉄の製造方法であって、前記金属化合物が被着した酸化水酸化鉄を、シリコン酸化物でコーティングした後、乾燥させて前記シリコン酸化物でコーティングされた酸化水酸化鉄を得ることを特徴とするイプシロン酸化鉄の製造方法である。
 第5の発明は、
 鉄元素の一部が置換元素で置換されたイプシロン酸化鉄であって、
10~18nmの平均粒径を有し、当該粒径の変動係数が40%以下であることを特徴とするイプシロン酸化鉄である。
 第6の発明は、
 粒子体積(1)の値が500nm以上であり、粒子体積(2)の値が10000nm以下であることを特徴とする第5の発明に記載のイプシロン酸化鉄である。
 但し、粒子体積(1)とは、第5の発明に記載のイプシロン酸化鉄の粒径分布の標準偏差を求め、当該イプシロン酸化鉄の平均粒子径の値から当該標準偏差の値を減じた値を当該イプシロン酸化鉄の粒子径の下限と考え、当該イプシロン酸化鉄粒子を球形近似して体積を求めた値である。粒子体積(2)とは、第5の発明に記載のイプシロン酸化鉄の粒径分布の標準偏差を求め、当該イプシロン酸化鉄の平均粒子径の値へ当該標準偏差の値を加えた値を当該イプシロン酸化鉄の粒子径の上限と考え、当該イプシロン酸化鉄粒子を球形近似して体積を求めた値である。
 第7の発明は、
 粒子体積(2)の値から粒子体積(1)の値を減じた値が、5000nm以下であることを特徴とする第6の発明に記載のイプシロン酸化鉄である。
 第8の発明は、
 第4から第7の発明のいずれかに記載のイプシロン酸化鉄を使用したことを特徴とする磁性塗料である。
 第9の発明は、
 第4から第7の発明のいずれかに記載のイプシロン酸化鉄を使用したことを特徴とする磁気記録媒体である。
That is, the first invention for solving the above-described problem is
Applying a metal compound as a substitution element to iron oxide hydroxide to obtain iron oxide hydroxide to which the metal compound is applied;
Coating iron oxide hydroxide coated with the metal compound with silicon oxide to obtain iron oxide hydroxide coated with the silicon oxide;
Heat-treating the iron oxide hydroxide coated with the silicon oxide in an oxidizing atmosphere,
A method for producing epsilon iron oxide, characterized in that epsilon iron oxide in which a part of iron element is substituted with the substitution element is produced.
The second invention is
A method for producing epsilon iron oxide according to the first invention, comprising:
The heat treated powder obtained in the heat treatment step is further treated with an alkaline aqueous solution to produce epsilon iron oxide, which is a method for producing epsilon iron oxide.
The third invention is
The step of obtaining the iron oxide hydroxide to which the metal compound is deposited,
Dissolving a metal salt of the substitution element in the iron oxide hydroxide suspension;
Adding an alkaline aqueous solution to a suspension of iron oxide hydroxide in which the metal salt is dissolved to obtain iron oxide hydroxide to which the metal compound is deposited. It is a manufacturing method of the epsilon iron oxide as described in 2 invention.
The fourth invention is:
The method for producing epsilon iron oxide according to any one of the first to third inventions, wherein the iron oxide hydroxide coated with the metal compound is coated with silicon oxide and then dried to form the silicon oxide. A method for producing epsilon iron oxide characterized by obtaining iron oxide hydroxide coated with a product.
The fifth invention is:
Epsilon iron oxide in which part of the iron element is substituted with a substitution element,
Epsilon iron oxide having an average particle diameter of 10 to 18 nm and a coefficient of variation of the particle diameter of 40% or less.
The sixth invention is:
The value of the particle volume (1) is not less 500 nm 3 or more, epsilon iron oxide according to the fifth invention, wherein the value of the grain volume (2) is 10000 nm 3 or less.
However, the particle volume (1) is a value obtained by calculating the standard deviation of the particle size distribution of the epsilon iron oxide described in the fifth invention and subtracting the value of the standard deviation from the value of the average particle diameter of the epsilon iron oxide. Is the lower limit of the particle diameter of the epsilon iron oxide, and the volume is obtained by approximating the epsilon iron oxide particles to a spherical shape. The particle volume (2) is obtained by calculating the standard deviation of the particle size distribution of the epsilon iron oxide described in the fifth invention, and adding the value of the standard deviation to the value of the average particle diameter of the epsilon iron oxide. It is a value obtained by considering the epsilon iron oxide particle diameter as an upper limit of the particle size of the epsilon iron oxide particle by approximating the epsilon iron oxide particle into a spherical shape.
The seventh invention
The value obtained by subtracting the value of the particle volume (1) from the value of the particle volume (2) is 5000 nm 3 or less, and is the epsilon iron oxide according to the sixth invention.
The eighth invention
A magnetic paint characterized by using the epsilon iron oxide according to any one of the fourth to seventh inventions.
The ninth invention
A magnetic recording medium using the epsilon iron oxide according to any one of the fourth to seventh inventions.
 本発明に係るイプシロン酸化鉄は、保磁力を14kOe以下とすることが出来、10~18nmの平均粒径を有し、当該粒径の変動係数が40%以下であることから、高密度記録用途の酸化鉄として適している。 The epsilon iron oxide according to the present invention can have a coercive force of 14 kOe or less, an average particle diameter of 10 to 18 nm, and a coefficient of variation of the particle diameter of 40% or less. Suitable as iron oxide.
実施例に係るイプシロン酸化鉄の製造フローの前半部(熱処理前)である。It is the first half part (before heat processing) of the manufacturing flow of the epsilon iron oxide which concerns on an Example. 実施例に係るイプシロン酸化鉄の製造における熱処理条件である。It is the heat processing conditions in manufacture of the epsilon iron oxide which concerns on an Example. 実施例に係るイプシロン酸化鉄の製造フローの後半部(熱処理後)である。It is the latter half part (after heat processing) of the manufacturing flow of the epsilon iron oxide which concerns on an Example.
 以下、本発明を実施するための形態について、イプシロン酸化鉄、置換元素、透過電子顕微鏡(TEM)観察、粒子体積分布、イプシロン酸化鉄の製造方法、磁性塗料の製造方法、磁気記録媒体の製造方法の順で説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments for carrying out the present invention will be described below. Epsilon iron oxide, substitution element, transmission electron microscope (TEM) observation, particle volume distribution, epsilon iron oxide manufacturing method, magnetic paint manufacturing method, magnetic recording medium manufacturing method This will be explained in the order.
(イプシロン酸化鉄)
 本発明に係るイプシロン酸化鉄は、鉄元素の一部が置換元素で置換されたイプシロン酸化鉄粉であって、10~18nmの平均粒径を有し、当該粒径の変動係数が40%以下であるイプシロン酸化鉄粉である(本発明において「イプシロン酸化鉄」と記載する場合がある。)。当該構成を有する本発明に係るイプシロン酸化鉄は、前記置換元素として、例えば所定量のGa、Al、Co、Ti等を単独、または、混合物として用いることで、(例えば、印加磁場70kOeにおける)保磁力を14kOe以下に制御可能である。この結果、本発明に係るイプシロン酸化鉄は、高密度記録用の酸化鉄として最適なものとなる。
 また、本発明に係るイプシロン酸化鉄を、磁気遮蔽膜等の異なる用途に用いる場合には、前記置換元素の種類・置換量を制御することで、求められる保磁力に設定することも可能である。
(Epsilon iron oxide)
The epsilon iron oxide according to the present invention is an epsilon iron oxide powder in which part of the iron element is substituted with a substitution element, has an average particle diameter of 10 to 18 nm, and a coefficient of variation of the particle diameter is 40% or less. Is an epsilon iron oxide powder (may be referred to as “epsilon iron oxide” in the present invention). The epsilon iron oxide according to the present invention having the above-described configuration can be maintained (for example, at an applied magnetic field of 70 kOe) by using, for example, a predetermined amount of Ga, Al, Co, Ti or the like alone or as a mixture as the substitution element. The magnetic force can be controlled to 14 kOe or less. As a result, the epsilon iron oxide according to the present invention is optimal as an iron oxide for high density recording.
Further, when the epsilon iron oxide according to the present invention is used for different applications such as a magnetic shielding film, it is possible to set the required coercive force by controlling the type and amount of the substitution element. .
(置換元素)
 前記置換元素としては、イプシロン酸化鉄の結晶構造を安定に保つため、2価の金属、4価の金属、3価の金属を用いることが好ましい。さらに、2価の金属としては、Co,Ni,Mn,Znから選択される1種以上の金属元素、4価の金属としてはTi、3価の金属としてはIn,Ga,Alから選択される1種以上の金属元素を、好ましい例として挙げることが出来る。
(Substitution element)
As the substitution element, it is preferable to use a divalent metal, a tetravalent metal, or a trivalent metal in order to keep the crystal structure of epsilon iron oxide stable. Further, the divalent metal is selected from one or more metal elements selected from Co, Ni, Mn, and Zn, the tetravalent metal is selected from Ti, and the trivalent metal is selected from In, Ga, and Al. One or more metal elements can be cited as preferred examples.
 本発明に係るイプシロン酸化鉄を、上述の構成を満たすよう金属元素で置換することにより、当該磁性材料の有する保磁力を、元素添加量によって比較的簡便に制御できるようになる。この結果、当該磁性材料を、磁気記録に適用するならば公知公用の磁気記録用ヘッドでも使用できる水準にまで制御することが出来るようになる。 By replacing the epsilon iron oxide according to the present invention with a metal element so as to satisfy the above-described configuration, the coercive force of the magnetic material can be controlled relatively easily by the amount of element added. As a result, if the magnetic material is applied to magnetic recording, the magnetic material can be controlled to a level that can be used even by a known and public magnetic recording head.
(透過電子顕微鏡(TEM)観察)
 透過型電子顕微鏡(日本電子株式会社、JEM2000EX)により、本発明に係るイプシロン酸化鉄試料粉末の100万倍の写真を撮影し、当該写真からイプシロン酸化鉄の各粒子における最も長い径と、最も短い径とを測定し、その平均値を算出することにより粒子径を求めた。独立したイプシロン酸化鉄の各粒子の少なくとも100個以上について求めた粒子径の平均値を、試料粉末の平均粒子径とした。そして、当該粒子径のデータを統計処理し、標準偏差と変動係数とを算出した。
(Transmission electron microscope (TEM) observation)
A transmission electron microscope (JEOL Ltd., JEM2000EX) was used to take a 1 million times photograph of the epsilon iron oxide sample powder according to the present invention. From the photograph, the longest diameter and the shortest diameter of each particle of epsilon iron oxide were taken. The particle diameter was determined by measuring the diameter and calculating the average value. The average value of the particle diameters obtained for at least 100 particles of independent epsilon iron oxide particles was taken as the average particle diameter of the sample powder. And the data of the said particle diameter were statistically processed, and the standard deviation and the variation coefficient were computed.
 ここで、算出される粒子径の標準偏差が40%以下である場合には、粒子径のばらつきが小さく、ひいては保磁力分布のばらつきが小さくなるので好ましい。さらに、平均粒子径は各粒子が単磁区構造となる程度に微細であることが好ましく、透過電子顕微鏡で観察される平均粒子径が18nm以下であることが好ましい。しかし、平均粒子径が小さくなり過ぎると、磁性粒子粉単位重量当たりの磁気特性が劣化することが懸念される。そこで、平均粒子径は10nm以上であることが好ましく、より好ましくは15nm以上である。 Here, when the standard deviation of the calculated particle diameter is 40% or less, it is preferable because the dispersion of the particle diameter is small and the dispersion of the coercive force distribution is small. Furthermore, the average particle diameter is preferably so fine that each particle has a single magnetic domain structure, and the average particle diameter observed with a transmission electron microscope is preferably 18 nm or less. However, if the average particle size becomes too small, there is a concern that the magnetic properties per unit weight of the magnetic particle powder deteriorate. Therefore, the average particle diameter is preferably 10 nm or more, more preferably 15 nm or more.
(粒子体積分布)
 上述したイプシロン酸化鉄の保磁力を適切な値に制御するという観点から、置換元素としてはIn、Ga、Al、Co、Tiから選択される1種以上であることが好ましい。
 しかしながら本発明者らの検討によると、これらの異種金属を置換元素としたイプシロン酸化鉄は、置換を行わないイプシロン酸化鉄と比較すると、粒度分布の不均一な粒子群が生成し易くなる。
(Particle volume distribution)
From the viewpoint of controlling the coercive force of the above-described epsilon iron oxide to an appropriate value, the substitution element is preferably at least one selected from In, Ga, Al, Co, and Ti.
However, according to the study by the present inventors, epsilon iron oxide using these different metals as a substitution element tends to easily generate a particle group having a non-uniform particle size distribution as compared with epsilon iron oxide without substitution.
 ここで、本発明に係るイプシロン酸化鉄の粒径分布の標準偏差を求め、当該イプシロン酸化鉄の平均粒子径の値から当該標準偏差の値を減じた値を当該イプシロン酸化鉄の粒子径の下限と考え、当該イプシロン酸化鉄粒子を球形近似して、粒子の体積を求め粒子体積(1)とした。同様に、当該イプシロン酸化鉄の平均粒子径の値へ当該標準偏差の値を加えた値を当該イプシロン酸化鉄の粒子径の上限と考え、当該イプシロン酸化鉄粒子を球形近似して、粒子の体積を求め粒子体積(2)とした。
 平均粒子体積=(4/3)×π×((平均粒径(nm)/2)
 粒子体積(1)=(4/3)×π×((平均粒径(nm)-粒径の標準偏差(nm))/2)
 粒子体積(2)=(4/3)×π×((平均粒径(nm)+粒径の標準偏差(nm))/2)
Here, the standard deviation of the particle size distribution of the epsilon iron oxide according to the present invention is obtained, and the value obtained by subtracting the value of the standard deviation from the value of the average particle diameter of the epsilon iron oxide is a lower limit of the particle diameter of the epsilon iron oxide. Thus, the epsilon iron oxide particles were approximated to a sphere, and the volume of the particles was obtained and defined as the particle volume (1). Similarly, the value obtained by adding the value of the standard deviation to the value of the average particle diameter of the epsilon iron oxide is considered as the upper limit of the particle diameter of the epsilon iron oxide, and the volume of the particles Was determined as the particle volume (2).
Average particle volume = (4/3) × π × ((average particle size (nm) / 2) 3
Particle volume (1) = (4/3) × π × ((average particle diameter (nm) −standard deviation of particle diameter (nm)) / 2) 3
Particle volume (2) = (4/3) × π × ((average particle diameter (nm) + standard deviation of particle diameter (nm)) / 2) 3
 このとき、粒子体積(1)の値が500nm以上であり、粒子体積(2)の値が10000nm以下を満たす粒子群であれば、上述した粒度分布の均一性が担保され、磁気記録媒体や磁気遮蔽膜などに用いられる磁性粒子として好適であることに想到した。
 これは、粒子体積(1)の値が500nm以上であれば、熱揺らぎの影響を受けることが無くなり、超常磁性体になる可能性が減じること。一方、粒子体積(2)の値が10000nm以下であれば、粒子体積が大き過ぎて磁気媒体とした場合のノイズの原因になることや、保磁力が過剰に高くなるといった事態を回避出来る為と考えられる。
At this time, when the value of the grain volume (1) is 500 nm 3 or more, if the particle group value of the grain volume (2) satisfies 10000 nm 3 or less, the uniformity of the particle size distribution mentioned above is secured, a magnetic recording medium It was conceived that it is suitable as a magnetic particle for use in magnetic shielding films and the like.
This means that if the value of the particle volume (1) is 500 nm 3 or more, it will not be affected by thermal fluctuation, and the possibility of becoming a superparamagnetic material will be reduced. On the other hand, if the value of the particle volume (2) is 10000 nm 3 or less, it is possible to avoid the situation that the particle volume is too large and causes noise when the magnetic medium is used, and the coercive force becomes excessively high. it is conceivable that.
 さらに本発明者らの検討によると、異種金属を置換元素としたイプシロン酸化鉄において、粒子体積(2)の値から粒子体積(1)の値を減じた、粒子体積[(2)-(1)]の値が5000nm以下であることが、さらに好ましいことが判明した。当該値が5000nm以下であることは、粒子体積の分布が均整であることを示し、保磁力分布のばらつきが抑制されていると考えることが出来る。 Further, according to the study by the present inventors, in epsilon iron oxide using a different metal as a substitution element, the particle volume [(2) − (1) obtained by subtracting the value of the particle volume (1) from the value of the particle volume (2). It has been found that the value of)] is more preferably 5000 nm 3 or less. That the value is 5000 nm 3 or less indicates that the particle volume distribution is uniform, and it can be considered that variation in the coercive force distribution is suppressed.
 以上説明したように、本発明に係る異種元素置換型イプシロン酸化物は、粒子体積が小さいながらも粒子体積分布が均整である為、次世代の磁気記録媒体用磁性粉として利用するのに適したものである。また、必要に応じ異種元素の添加量を調整することによって、所望の保磁力値に調整することが可能である為、広範囲な用途において磁気遮蔽膜、磁気遮蔽材料として使用することもできる。 As described above, the heteroelement-substituted epsilon oxide according to the present invention is suitable for use as a magnetic powder for the next generation magnetic recording medium because the particle volume distribution is uniform although the particle volume is small. Is. Moreover, since it can be adjusted to a desired coercive force value by adjusting the addition amount of different elements as required, it can also be used as a magnetic shielding film and a magnetic shielding material in a wide range of applications.
(イプシロン酸化鉄の製造方法)
 本発明に係るイプシロン酸化鉄の製造方法の一例について説明する。
 平均粒径15nm以下の酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))と純水とを混合して、鉄(Fe)換算濃度が0.01モル/L以上、1モル/L以下の分散液を調製する。
 当該分散液へ、置換元素の水溶性金属塩溶液を所定量加え、0~100℃、好ましくは20~60℃で撹拌する。
 当該分散液へ、前記酸化水酸化鉄(III)1モルあたり3~30モルのアンモニアを、アンモニア水溶液の滴下により添加して、0~100℃、好ましくは20~60℃で30分間以上撹拌する。当該撹拌により、置換元素である金属元素が被着された酸化水酸化鉄が生成する。
 ここで、当該アンモニアを添加した分散液へ、前記酸化水酸化鉄(III)1モルあたり0.5~15モルのテトラエトキシシラン(TEOS)を滴下し、15時間以上、30時間以下で撹拌した後、室温まで放冷する。尚、放冷が完了したら、所定量の沈殿剤(例えば、硫酸アンモニウム、等。)を加えることが好ましい。
 当該放冷した分散液を遠心分離(例えば、3500rpm、50分間)し、上澄みを除去して、沈殿物を純水洗浄する。沈殿物へ純水を添加して撹拌して分散液とし、再び、遠心分離を行い、上澄みを除去する。当該遠心分離と純水洗浄とを3回以上繰り返した後、沈殿物を回収し、60℃程度で乾燥させて乾燥粉とする。
 当該乾燥粉を酸化性雰囲気下、900℃以上、1200℃未満、好ましくは950℃以上、1150℃以下で、0.5~10時間、好ましくは2~5時間の熱処理を施し、熱処理粉を得る。尚、上記酸化性雰囲気として大気を用いることは、コスト、作業性の観点から好ましい。
 得られた熱処理粉を、解粒処理したのち、液温60℃以上70℃以下、濃度5M程度の水酸化ナトリウム(NaOH)水溶液に添加し、15時間以上、30時間以下攪拌することにより、当該熱処理粉からシリコン酸化物を除去し、鉄元素が一部置換されたイプシロン酸化鉄粉を生成させる。
 次いで、生成した鉄元素が一部置換されたイプシロン酸化鉄へ、濾過処理や遠心分離等をおこなうことで回収し、鉄元素が一部置換され、10~18nmの平均粒径を有し、当該粒径の変動係数が40%以下である、本発明に係るイプシロン酸化鉄を得ることが出来た。
(Method for producing epsilon iron oxide)
An example of the method for producing epsilon iron oxide according to the present invention will be described.
Iron oxide (III) hydroxide nanoparticles (β-FeO (OH)) having an average particle size of 15 nm or less and pure water are mixed, and the iron (Fe) equivalent concentration is 0.01 mol / L or more, 1 mol / L Prepare a dispersion of L or less.
A predetermined amount of a water-soluble metal salt solution of a substitution element is added to the dispersion and stirred at 0 to 100 ° C., preferably 20 to 60 ° C.
3 to 30 mol of ammonia per 1 mol of the iron (III) oxide hydroxide is added dropwise to the dispersion, and the mixture is stirred at 0 to 100 ° C., preferably 20 to 60 ° C. for 30 minutes or more. . By this stirring, iron oxide hydroxide to which a metal element as a substitution element is deposited is generated.
Here, 0.5 to 15 moles of tetraethoxysilane (TEOS) per 1 mole of the iron oxide hydroxide (III) was dropped into the dispersion to which the ammonia was added, and the mixture was stirred for 15 hours to 30 hours. Then, it is allowed to cool to room temperature. When the cooling is completed, it is preferable to add a predetermined amount of a precipitating agent (for example, ammonium sulfate).
The cooled dispersion is centrifuged (for example, 3500 rpm, 50 minutes), the supernatant is removed, and the precipitate is washed with pure water. Pure water is added to the precipitate and stirred to obtain a dispersion, which is centrifuged again to remove the supernatant. After the centrifugation and pure water washing are repeated three times or more, the precipitate is collected and dried at about 60 ° C. to obtain a dry powder.
The dried powder is heat-treated at 900 ° C. or higher and lower than 1200 ° C., preferably 950 ° C. or higher and 1150 ° C. or lower for 0.5 to 10 hours, preferably 2 to 5 hours in an oxidizing atmosphere to obtain heat-treated powder. . The use of air as the oxidizing atmosphere is preferable from the viewpoints of cost and workability.
The obtained heat-treated powder is pulverized and then added to a sodium hydroxide (NaOH) aqueous solution having a liquid temperature of 60 ° C. or higher and 70 ° C. or lower and a concentration of about 5 M, and stirred for 15 hours or longer and 30 hours or shorter Silicon oxide is removed from the heat-treated powder to produce epsilon iron oxide powder partially substituted with iron element.
Next, the epsilon iron oxide partially substituted with the produced iron element is recovered by filtration or centrifugation, and the iron element is partially substituted and has an average particle diameter of 10 to 18 nm. An epsilon iron oxide according to the present invention having a particle size variation coefficient of 40% or less could be obtained.
 以上、イプシロン酸化鉄の製造方法の一例を説明したが、上述した酸化水酸化鉄の微粒子は、かならずしも平均粒径15nm以下のβ-FeO(OH)微粒子である必要はない。例えば、酸化水酸化鉄(III)粒子を含み、かつ当該粒子の分散性が優れたスラリーを使用すれば、本発明に係るイプシロン酸化鉄を得ることができる。 Although an example of a method for producing epsilon iron oxide has been described above, the iron oxide hydroxide fine particles described above are not necessarily β-FeO (OH) fine particles having an average particle diameter of 15 nm or less. For example, if a slurry containing iron (III) oxide hydroxide particles and excellent in dispersibility of the particles is used, the epsilon iron oxide according to the present invention can be obtained.
(磁性塗料の製造方法)
 本発明に係る磁性粉末を磁性塗料とするには、例えば以下の方法が採用できる。
 すなわち、試料粉末(上述の沈殿粉)0.500gを秤量し、これをポット(内径45mm、深さ13mm)に入れ、蓋を開けた状態で10分間放置する。次にビヒクル〔塩ビ系樹脂MR-110(22質量%)、シクロヘキサノン(38.7質量%)、アセチルアセトン(0.3質量%)、ステアリン酸nブチル(0.3質量%)、メチルエチルケトン(MEK;38.7質量%)の混合液〕を0.700mL採取し、これを前記のポットに添加する。
 その後、直ちにスチールボール(2mm径)30g、ナイロンボール(8mm径)10個をポットに加え、蓋を閉じ10分間静置する。その後、このポットを遠心式ボールミルにセットし、ゆっくりと回転数を上げ、600rpmに合わせ、60分間分散処理を行う。遠心式ボールミルが停止した後、ポットを取り出し、あらかじめ、MEKとトルエンを1:1で混合しておいた調整液を1.800mL添加する。再度遠心式ボールミルにこのポットをセットし、600rpmで5分間分散処理することにより、磁性塗料を調製することができる。
(Method of manufacturing magnetic paint)
In order to use the magnetic powder according to the present invention as a magnetic paint, for example, the following method can be employed.
That is, 0.500 g of sample powder (the above-mentioned precipitated powder) is weighed, put in a pot (inner diameter 45 mm, depth 13 mm), and left for 10 minutes with the lid open. Next, vehicle [vinyl chloride resin MR-110 (22 mass%), cyclohexanone (38.7 mass%), acetylacetone (0.3 mass%), n-butyl stearate (0.3 mass%), methyl ethyl ketone (MEK; 38.7% by mass) is collected and added to the pot.
Immediately thereafter, 30 g of steel balls (2 mm diameter) and 10 nylon balls (8 mm diameter) are added to the pot, and the lid is closed and allowed to stand for 10 minutes. Thereafter, the pot is set on a centrifugal ball mill, and the number of revolutions is slowly increased, and the dispersion process is performed for 60 minutes at 600 rpm. After the centrifugal ball mill is stopped, the pot is taken out and 1.800 mL of a preliminarily mixed solution in which MEK and toluene are mixed at a ratio of 1: 1 is added. A magnetic coating material can be prepared by setting this pot again in a centrifugal ball mill and dispersing it at 600 rpm for 5 minutes.
(磁気記録媒体の製造方法)
 本発明に係る磁性粉末を用いた磁気記録媒体の製造方法として、例えば以下の方法が採用できる。
 上述した(磁性塗料の製造方法)において分散処理が終了した後に、ポットの蓋を開け、ナイロンボールを取り除き、調製された塗料をスチールボールごとアプリケーター(隙間55μm)に入れ、支持フィルムへの塗布を行う。当該塗布後、当該フィルムを素早く磁束密度0.55Tの配向器のコイルの中心に置き、磁場配向させ、その後乾燥させることで、本発明に係る磁性粉末を用いた磁気記録媒体を得ることが出来る。ここでは単層の磁性層を形成させる方法について例示したが、公知の方法を採用すれば、重層磁気記録媒体を形成させることができる。
(Method of manufacturing magnetic recording medium)
As a method for producing a magnetic recording medium using the magnetic powder according to the present invention, for example, the following method can be employed.
After the dispersion process is completed in the above (Magnetic paint manufacturing method), the pot lid is opened, the nylon balls are removed, the prepared paint is put together with the steel balls into an applicator (gap 55 μm), and applied to the support film. Do. After the coating, the magnetic recording medium using the magnetic powder according to the present invention can be obtained by quickly placing the film at the center of the coil of the aligner having a magnetic flux density of 0.55T, orienting the magnetic field, and then drying. . Here, the method of forming a single magnetic layer is exemplified, but if a known method is employed, a multilayer magnetic recording medium can be formed.
 以下、実施例を参照しながら本発明をより具体的に説明する。尚、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples.
 (実施例1)
 〈イプシロン酸化鉄の製造〉
 実施例1に係るイプシロン酸化鉄の製造方法について、製造方法のフロー図である図1、3、熱処理条件を示す図2を参照しながら説明する。
 図1に示すように、1L三角フラスコに、純水420mLと平均粒径約6nmの酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))のゾル6.2g、Ga(NO・nHOの粉末を700.72mg、Co(NO・6HOの粉末を72.86mg、Ti換算濃度16wt%のTiCl溶液を0.05ml入れ、50℃に加温して、均一分散液となるまで撹拌した。
 ここに、25%アンモニア水溶液19.2mLを滴下し、50℃で30分間攪拌した。さらにこの分散液に、テトラエトキシシラン(TEOS)24mLを滴下し、50℃で20時間攪拌した後、室温まで放冷した。当該分散液が室温まで放冷した。放冷後に硫酸アンモニウムを20g加えることにより沈殿物を析出させた。
 当該析出した沈殿物を遠心分離処理(3500rpm、50分間)し、上澄みを除去して沈殿物を採集した。採集した沈殿物を純水で洗浄し、再度、遠心分離処理を実施した。
 当該遠心分離処理と純水洗浄とを3回実施した後、沈殿物をシャーレに移して60℃乾燥機中で乾燥させ、乾燥粉とした。
(Example 1)
<Manufacture of epsilon iron oxide>
A method for producing epsilon iron oxide according to Example 1 will be described with reference to FIGS. 1 and 3 which are flowcharts of the production method and FIG. 2 showing heat treatment conditions.
As shown in FIG. 1, in a 1 L Erlenmeyer flask, 420 g of pure water and 6.2 g of a sol of iron oxide (III) oxide nanoparticles (β-FeO (OH)) having an average particle diameter of about 6 nm, Ga (NO 3 ) Put 700.72 mg of 3 · nH 2 O powder, 72.86 mg of Co (NO 3 ) 2 · 6H 2 O powder, 0.05 ml of TiCl 4 solution with a Ti equivalent concentration of 16 wt%, and heat to 50 ° C. And stirred until a uniform dispersion was obtained.
To this, 19.2 mL of a 25% aqueous ammonia solution was added dropwise and stirred at 50 ° C. for 30 minutes. Furthermore, 24 mL of tetraethoxysilane (TEOS) was added dropwise to this dispersion, and the mixture was stirred at 50 ° C. for 20 hours, and then allowed to cool to room temperature. The dispersion was allowed to cool to room temperature. After allowing to cool, 20 g of ammonium sulfate was added to precipitate a precipitate.
The deposited precipitate was centrifuged (3500 rpm, 50 minutes), the supernatant was removed, and the precipitate was collected. The collected precipitate was washed with pure water and centrifuged again.
After carrying out the centrifugal separation treatment and pure water washing three times, the precipitate was transferred to a petri dish and dried in a 60 ° C. drier to obtain a dry powder.
 当該粉砕粉を炉内に装填し、大気雰囲気下において、図2に示す熱処理条件にて熱処理を施し熱処理粉を得た。 The pulverized powder was loaded into a furnace and heat treated under the heat treatment conditions shown in FIG. 2 in an air atmosphere to obtain heat treated powder.
 図3に示すように、得られた熱処理粉を250mL三角フラスコに装填し、5モル/Lの水酸化ナトリウム(NaOH)水溶液140mlで、液温70℃、24時間攪拌することにより、熱処理粉からシリコン酸化物を除去した。
 次いで、シリコン酸化物を除去した熱処理粉を遠心分離処理(5000rpm、10分間)し、上澄みを除去して沈殿物を採集した。採集した沈殿物を約35mlの純水で洗浄し、再度、遠心分離処理(10000rpm、5分間)し、上澄みを除去して沈殿物を採集した。採集した沈殿物を約35mlの純水で洗浄し、遠心分離処理(14000rpm、60分間)し、上澄みを除去する工程を2回繰り返して、実施例1に係るイプシロン酸化鉄を得た。
As shown in FIG. 3, the obtained heat-treated powder was charged into a 250 mL Erlenmeyer flask and stirred with 140 ml of 5 mol / L sodium hydroxide (NaOH) aqueous solution at a liquid temperature of 70 ° C. for 24 hours. Silicon oxide was removed.
Next, the heat-treated powder from which the silicon oxide was removed was centrifuged (5000 rpm, 10 minutes), the supernatant was removed, and the precipitate was collected. The collected precipitate was washed with about 35 ml of pure water, centrifuged again (10000 rpm, 5 minutes), the supernatant was removed, and the precipitate was collected. The collected precipitate was washed with about 35 ml of pure water, centrifuged (14000 rpm, 60 minutes), and the process of removing the supernatant was repeated twice to obtain epsilon iron oxide according to Example 1.
 〈イプシロン酸化鉄の分析・測定結果〉
 得られた実施例1に係るイプシロン酸化鉄を、アジレント・テクノロジー株式会社製高周波誘導プラズマ発光分析装置ICP(Agilent 7700x)を用いて元素分析した結果を表1に示す。
 また、実施例1に係るイプシロン酸化鉄を、透過型電子顕微鏡(TEM)にて観察して平均粒径を求めたところ、16.4nmであった。
<Analysis and measurement results of epsilon iron oxide>
Table 1 shows the results of elemental analysis of the obtained epsilon iron oxide according to Example 1 using a high frequency induction plasma emission spectrometer ICP (Agilent 7700x) manufactured by Agilent Technologies.
Moreover, when the epsilon iron oxide which concerns on Example 1 was observed with the transmission electron microscope (TEM) and the average particle diameter was calculated | required, it was 16.4 nm.
 得られた実施例1に係るイプシロン酸化鉄の平均粒径、標準偏差、変動係数、平均粒子体積、粒子体積(1)、粒子体積(2)、粒子体積[(2)-(1)]の値を表1に示す。
 さらに、実施例1に係るイプシロン酸化鉄の磁気特性(保磁力、飽和磁化、残留磁化)を測定した。具体的には、カンタムデザイン社製MPMS7のSQUID(超伝導量子干渉計)を用い、最大印加磁場70kOe、温度300Kで測定した。
 得られた保磁力、飽和磁化、残留磁化の値を、表1に示す。
The average particle diameter, standard deviation, coefficient of variation, average particle volume, particle volume (1), particle volume (2), particle volume [(2)-(1)] of the obtained epsilon iron oxide according to Example 1 Values are shown in Table 1.
Furthermore, the magnetic properties (coercivity, saturation magnetization, residual magnetization) of the epsilon iron oxide according to Example 1 were measured. Specifically, using a SQUID (superconducting quantum interferometer) of MPMS7 manufactured by Quantum Design, measurement was performed at a maximum applied magnetic field of 70 kOe and a temperature of 300K.
Table 1 shows values of the obtained coercive force, saturation magnetization, and residual magnetization.
 (実施例2)
 1L三角フラスコに、純水420mLと平均粒径約6nmの酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))のゾル7.2g、Ga(NO・nHOの粉末を200.74mg、Co(NO・6HOの粉末を72.93mg、Ti換算濃度16wt%のTiCl溶液を0.05ml入れた以外は実施例1と同様に操作して、実施例2に係るイプシロン酸化鉄を得た。
 得られた実施例2に係るイプシロン酸化鉄における、ICPを用いて元素分析した結果、平均粒径、標準偏差、変動係数の値、平均粒子体積、粒子体積(1)、粒子体積(2)、粒子体積[(2)-(1)]、保磁力、飽和磁化、残留磁化の値を、表1に示す。
(Example 2)
In a 1 L Erlenmeyer flask, 420 g of pure water and 7.2 g of a sol of iron oxide (III) nanoparticle (β-FeO (OH)) having an average particle size of about 6 nm, Ga (NO 3 ) 3 .nH 2 O powder Was carried out in the same manner as in Example 1, except that 200.74 mg of Co, (NO 3 ) 2 .6H 2 O powder, 72.93 mg, and 0.05 ml of TiCl 4 solution having a Ti equivalent concentration of 16 wt% were added. The epsilon iron oxide according to Example 2 was obtained.
As a result of elemental analysis using ICP in the obtained epsilon iron oxide according to Example 2, the average particle size, standard deviation, value of coefficient of variation, average particle volume, particle volume (1), particle volume (2), Table 1 shows the values of the particle volume [(2)-(1)], coercive force, saturation magnetization, and residual magnetization.
 (実施例3)
 1L三角フラスコに、純水420mLと平均粒径約6nmの酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))のゾル7.6g、Co(NO・6HOの粉末を72.87mg、Ti換算濃度16wt%のTiCl溶液を0.05ml入れた以外は実施例1と同様に操作して、実施例3に係るイプシロン酸化鉄を得た。
 得られた実施例3に係るイプシロン酸化鉄における、ICPを用いて元素分析した結果、平均粒径、標準偏差、変動係数の値、平均粒子体積、平均粒子体積、粒子体積(1)、粒子体積(2)、粒子体積[(2)-(1)]、保磁力、飽和磁化、残留磁化の値を、表1に示す。
(Example 3)
In 1L Erlenmeyer flask, sol 7.6g, Co (NO 3) 2 · 6H 2 O powder of pure water 420mL and average particle size of about 6nm oxide iron (III) hydroxide nanoparticles (β-FeO (OH)) Was obtained in the same manner as in Example 1 except that 0.05 ml of a TiCl 4 solution having a Ti equivalent concentration of 16 wt% was added to obtain epsilon iron oxide according to Example 3.
As a result of elemental analysis using ICP in the obtained epsilon iron oxide according to Example 3, the average particle size, standard deviation, coefficient of variation, average particle volume, average particle volume, particle volume (1), particle volume Table 1 shows the values of (2), particle volume [(2)-(1)], coercive force, saturation magnetization, and residual magnetization.
 (実施例4)
 1L三角フラスコに、純水420mLと平均粒径約6nmの酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))のゾル7.6g、Ga(NO・nHOの粉末を201.21mg入れた以外は実施例1と同様に操作して、実施例4に係るイプシロン酸化鉄を得た。
 得られた実施例4に係るイプシロン酸化鉄における、ICPを用いて元素分析した結果、平均粒径、標準偏差、変動係数の値、平均粒子体積、平均粒子体積、粒子体積(1)、粒子体積(2)、粒子体積[(2)-(1)]、保磁力、飽和磁化、残留磁化の値を、表1に示す。
Example 4
In a 1 L Erlenmeyer flask, 420 mL of pure water and sol of iron oxide (III) oxide nanoparticles (β-FeO (OH)) having an average particle diameter of about 6 nm, 7.6 g, Ga (NO 3 ) 3 .nH 2 O powder The epsilon iron oxide according to Example 4 was obtained in the same manner as in Example 1 except that 201.21 mg was added.
As a result of elemental analysis using ICP in the obtained epsilon iron oxide according to Example 4, the average particle size, standard deviation, coefficient of variation, average particle volume, average particle volume, particle volume (1), particle volume Table 1 shows the values of (2), particle volume [(2)-(1)], coercive force, saturation magnetization, and residual magnetization.
 (実施例5)
 1L三角フラスコに、純水420mLと平均粒径約6nmの酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))のゾル6.6g、Ga(NO・nHOの粉末を701.05mg入れた以外は実施例1と同様に操作して、実施例5に係るイプシロン酸化鉄を得た。
 得られた実施例5に係るイプシロン酸化鉄における、ICPを用いて元素分析した結果、平均粒径、標準偏差、変動係数の値、平均粒子体積、平均粒子体積、粒子体積(1)、粒子体積(2)粒子体積[(2)-(1)]、保磁力、飽和磁化、残留磁化の値を、表1に示す。
(Example 5)
In a 1 L Erlenmeyer flask, 420 mL of pure water and sol of iron oxide (III) oxide nanoparticles (β-FeO (OH)) having an average particle size of about 6 nm, 6.6 g, Ga (NO 3 ) 3 .nH 2 O powder The epsilon iron oxide according to Example 5 was obtained in the same manner as in Example 1 except that 701.05 mg was added.
As a result of elemental analysis using ICP in the obtained epsilon iron oxide according to Example 5, average particle size, standard deviation, coefficient of variation, average particle volume, average particle volume, particle volume (1), particle volume (2) Particle volume [(2)-(1)], coercive force, saturation magnetization, and residual magnetization values are shown in Table 1.
 (実施例6)
 1L三角フラスコに、純水420mLと平均粒径約6nmの酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))のゾル6.6g、Al(NO・9HO化合物を656.53mg入れた以外は実施例1と同様に操作して、実施例6に係るイプシロン酸化鉄を得た。
 得られた実施例6に係るイプシロン酸化鉄における、ICPを用いて元素分析した結果、平均粒径、標準偏差、変動係数の値、平均粒子体積、平均粒子体積、粒子体積(1)、粒子体積(2)、粒子体積[(2)-(1)]、保磁力、飽和磁化、残留磁化の値を、表1に示す。
(Example 6)
In 1L Erlenmeyer flask, sol 6.6g of pure water 420mL and average particle size of about 6nm oxide iron (III) hydroxide nanoparticles (β-FeO (OH)) , the Al (NO 3) 3 · 9H 2 O compound Epsilon iron oxide according to Example 6 was obtained in the same manner as in Example 1 except that 656.53 mg was added.
As a result of elemental analysis using ICP in the obtained epsilon iron oxide according to Example 6, the average particle size, standard deviation, coefficient of variation, average particle volume, average particle volume, particle volume (1), particle volume Table 1 shows the values of (2), particle volume [(2)-(1)], coercive force, saturation magnetization, and residual magnetization.
 (比較例1)
〔手順1〕
 原料溶液と中和剤溶液との2種類の溶液を調製する。
(原料溶液の調製)
 テフロン(登録商標)製のフラスコに純水24.3mLを入れる。そこに、硝酸鉄(III)9水和物と、硝酸ガリウム(III)n水和物と、硝酸コバルト(II)6水和物と、硫酸チタン(IV)n水和物を、製造される比較例1に係るイプシロン酸化鉄の組成がFe1.60Ga0.27Co0.05Ti0.06となるようにそれぞれ投入し、室温でよく撹拌しながら溶解させ、原料溶液とする。
(中和剤溶液の調製)
 25%アンモニア水2.0mLを純水22.3mLに投入して撹拌し、中和剤溶液とする。
〔手順2〕
 原料溶液を1500rpmでよく撹拌しながら、当該原料溶液中に中和剤溶液を滴下して両液を撹拌混合し、中和反応を進行させる。中和剤溶液を全量滴下した後、混合液を30分間撹拌し続ける。
〔手順3〕
 手順2で得られた混合液を撹拌しながら、当該混合液にテトラエトキシシラン0.495mLを滴下し、約1日、撹拌を続ける。
〔手順4〕
 手順3で得られた混合液を濾過し、沈殿物を採取して純水で洗浄する。
〔手順5〕
 手順4で得られた沈殿物を乾燥した後、大気雰囲気の炉内にて1100℃で4時間の熱処理を施し、熱処理粉を得る。
〔手順6〕
 手順5で得られた熱処理粉を、濃度2mol/LのNaOH水溶液へ投入し、24時間撹拌し、熱処理粉の粒子表面に存在するシリカの除去処理を行う。当該シリカの除去処理に次いで、ろ過・水洗し、乾燥し、比較例1に係るイプシロン酸化鉄を得た。
 得られた比較例1に係るイプシロン酸化鉄における、ICPを用いて元素分析した結果、平均粒径、標準偏差、変動係数の値、平均粒子体積、平均粒子体積、粒子体積(1)、粒子体積(2)、粒子体積[(2)-(1)]の値を、表1に示す。
 尚、変動係数の値が40%を超えていたことから、磁気特性の測定は省略した。
(Comparative Example 1)
[Procedure 1]
Two types of solutions are prepared: a raw material solution and a neutralizer solution.
(Preparation of raw material solution)
Put 24.3 mL of pure water into a Teflon (registered trademark) flask. There, iron nitrate (III) 9 hydrate, gallium nitrate (III) n hydrate, cobalt nitrate (II) hexahydrate, and titanium sulfate (IV) n hydrate are produced. The composition of the epsilon iron oxide according to Comparative Example 1 was added so that the composition was Fe 1.60 Ga 0.27 Co 0.05 Ti 0.06 O 3, and dissolved while stirring well at room temperature to obtain a raw material solution. .
(Preparation of neutralizer solution)
Add 2.0 mL of 25% ammonia water to 22.3 mL of pure water and stir to obtain a neutralizer solution.
[Procedure 2]
While thoroughly stirring the raw material solution at 1500 rpm, the neutralizing agent solution is dropped into the raw material solution, both solutions are stirred and mixed, and the neutralization reaction proceeds. After the whole amount of the neutralizing agent solution has been dropped, the mixture is kept stirred for 30 minutes.
[Procedure 3]
While stirring the mixed solution obtained in Procedure 2, 0.495 mL of tetraethoxysilane is added dropwise to the mixed solution, and stirring is continued for about 1 day.
[Procedure 4]
The mixed solution obtained in the procedure 3 is filtered, and the precipitate is collected and washed with pure water.
[Procedure 5]
After drying the precipitate obtained in the procedure 4, heat treatment is performed at 1100 ° C. for 4 hours in an air atmosphere furnace to obtain heat treated powder.
[Procedure 6]
The heat-treated powder obtained in the procedure 5 is put into a 2 mol / L NaOH aqueous solution and stirred for 24 hours to remove the silica present on the surface of the heat-treated powder particles. Following the silica removal treatment, filtration, washing with water and drying were performed to obtain epsilon iron oxide according to Comparative Example 1.
As a result of elemental analysis using ICP in the obtained epsilon iron oxide according to Comparative Example 1, the average particle size, standard deviation, coefficient of variation, average particle volume, average particle volume, particle volume (1), particle volume The values of (2) and particle volume [(2)-(1)] are shown in Table 1.
Since the coefficient of variation exceeded 40%, the measurement of magnetic characteristics was omitted.
 (比較例2)
 手順1において、テフロン(登録商標)製のフラスコに純水24.3mLを入れる。そこに、硝酸鉄(III)9水和物と、硝酸ガリウム(III)n水和物と、硝酸コバルト(II)6水和物と、硫酸チタン(IV)n水和物を、製造される比較例2に係るイプシロン酸化鉄の組成がFe1.79Ga0.10Co0.05Ti0.06となるようにそれぞれ投入した以外は、比較例1と同様に操作して、比較例2に係るイプシロン酸化鉄を得た。
 得られた比較例2に係るイプシロン酸化鉄における、ICPを用いて元素分析した結果、平均粒径、標準偏差、変動係数の値、平均粒子体積、平均粒子体積、平均粒子体積、粒子体積(1)、粒子体積(2)、粒子体積[(2)-(1)]の値を表1に示す。
 尚、変動係数の値が40%を超えていたことから、磁気特性の測定は省略した。
(Comparative Example 2)
In the procedure 1, 24.3 mL of pure water is put into a Teflon (registered trademark) flask. There, iron nitrate (III) 9 hydrate, gallium nitrate (III) n hydrate, cobalt nitrate (II) hexahydrate, and titanium sulfate (IV) n hydrate are produced. A comparison was made by operating in the same manner as in Comparative Example 1 except that the composition of the epsilon iron oxide according to Comparative Example 2 was added so that the composition was Fe 1.79 Ga 0.10 Co 0.05 Ti 0.06 O 3. The epsilon iron oxide according to Example 2 was obtained.
As a result of elemental analysis using ICP in the obtained epsilon iron oxide according to Comparative Example 2, the average particle size, standard deviation, coefficient of variation, average particle volume, average particle volume, average particle volume, particle volume (1 ), Particle volume (2), and particle volume [(2)-(1)] are shown in Table 1.
Since the coefficient of variation exceeded 40%, the measurement of magnetic characteristics was omitted.
 (比較例3)
〔手順1〕
 以下の説明する溶液Aと中和剤溶液Bとの、二種類の溶液を調製する。
(溶液Aの調製)
 純水24.3mLをテフロン(登録商標)製のフラスコに入れ、そこに、硝酸鉄(III)9水和物と、硝酸コバルト(II)6水和物と、硫酸チタン(IV)n水和物を、製造される比較例3に係るイプシロン酸化鉄の組成がFe1.79Co0.10Ti0.11となるようにそれぞれ添加する。添加が完了したら、これらを撹拌して溶解させ、溶液Aを得る。
 (中和剤溶液Bの調製)
 濃度25%アンモニア水2.0mLを純水22.3mLに投入して撹拌し、溶液Bを得る。
〔手順2〕
 溶液Aへ、中和剤溶液Bを滴下する。当該滴下終了後、得られた混合液を30分間撹拌し続ける。
〔手順3〕
 手順2で得られた混合液を撹拌しながら、当該混合液にテトラエトキシシラン0.49mLを添加する。そして、当該添加後、約1日間、撹拌を継続する。
〔手順4〕
 手順3で得られた混合液を濾過し、沈殿物を採取して純水で洗浄する。
〔手順5〕
 手順4で得られた沈殿物を乾燥した後、大気雰囲気の炉内にて1100℃で4時間の熱処理を施し、熱処理粉を得る。
〔手順6〕
 手順5で得られた熱処理粉を、濃度2mol/LのNaOH水溶液へ投入し、24時間撹拌し、熱処理粉の粒子表面に存在するシリカの除去処理を行う。当該シリカの除去処理に次いで、ろ過・水洗し、乾燥し、比較例3に係るイプシロン酸化鉄を得た。
 得られた比較例3に係るイプシロン酸化鉄における、ICPを用いて元素分析した結果、平均粒径、標準偏差、変動係数の値を、平均粒子体積、平均粒子体積、平均粒子体積、粒子体積(1)、粒子体積(2)、粒子体積[(2)-(1)]の値を、表1に示す。
 尚、変動係数の値が40%を超えていたことから、磁気特性の測定は省略した。
(Comparative Example 3)
[Procedure 1]
Two types of solutions, a solution A and a neutralizer solution B described below, are prepared.
(Preparation of solution A)
24.3 mL of pure water was put into a Teflon (registered trademark) flask, and iron (III) nitrate nonahydrate, cobalt nitrate (II) hexahydrate, and titanium sulfate (IV) n hydrated there. The product is added so that the composition of the epsilon iron oxide according to Comparative Example 3 to be manufactured becomes Fe 1.79 Co 0.10 Ti 0.11 O 3 . When the addition is complete, they are stirred to dissolve to obtain solution A.
(Preparation of neutralizer solution B)
A solution B is obtained by adding 2.0 mL of 25% aqueous ammonia to 22.3 mL of pure water and stirring.
[Procedure 2]
To the solution A, the neutralizer solution B is added dropwise. After completion of the dropwise addition, the resulting mixture is continuously stirred for 30 minutes.
[Procedure 3]
While stirring the mixed solution obtained in the procedure 2, 0.49 mL of tetraethoxysilane is added to the mixed solution. And stirring is continued for about one day after the said addition.
[Procedure 4]
The mixed solution obtained in the procedure 3 is filtered, and the precipitate is collected and washed with pure water.
[Procedure 5]
After drying the precipitate obtained in the procedure 4, heat treatment is performed at 1100 ° C. for 4 hours in an air atmosphere furnace to obtain heat treated powder.
[Procedure 6]
The heat-treated powder obtained in the procedure 5 is put into a 2 mol / L NaOH aqueous solution and stirred for 24 hours to remove the silica present on the surface of the heat-treated powder particles. Subsequent to the silica removal treatment, filtration, washing with water and drying were performed to obtain epsilon iron oxide according to Comparative Example 3.
As a result of elemental analysis using ICP in the obtained epsilon iron oxide according to Comparative Example 3, the average particle size, standard deviation, and coefficient of variation were calculated as average particle volume, average particle volume, average particle volume, particle volume ( Table 1 shows the values of 1), particle volume (2), and particle volume [(2)-(1)].
Since the coefficient of variation exceeded 40%, the measurement of magnetic characteristics was omitted.
 (比較例4)
 1L三角フラスコに、純水420mLと、平均粒径約6nmの酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))のゾル8.0gのみとを入れた以外は、実施例1と同様に操作して、比較例4に係るイプシロン酸化鉄を得た。
 得られた比較例4に係るイプシロン酸化鉄における、ICPを用いて元素分析した結果、平均粒径、標準偏差、変動係数の値、平均粒子体積、平均粒子体積、平均粒子体積、粒子体積(1)、粒子体積(2)、粒子体積[(2)-(1)]、保磁力、飽和磁化、残留磁化の値を、表1に示す。
(Comparative Example 4)
Example 1 except that 420 mL of pure water and only 8.0 g of a sol of iron oxide (III) oxide nanoparticles (β-FeO (OH)) having an average particle diameter of about 6 nm were placed in a 1 L Erlenmeyer flask. The same operation was performed to obtain epsilon iron oxide according to Comparative Example 4.
As a result of elemental analysis using ICP in the obtained epsilon iron oxide according to Comparative Example 4, the average particle size, standard deviation, coefficient of variation, average particle volume, average particle volume, average particle volume, particle volume (1 ), Particle volume (2), particle volume [(2)-(1)], coercive force, saturation magnetization, and residual magnetization are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000001
 
 

Claims (9)

  1.  酸化水酸化鉄へ置換元素である金属化合物を被着させ、前記金属化合物が被着した酸化水酸化鉄を得る工程と、
     前記金属化合物が被着した酸化水酸化鉄を、シリコン酸化物でコーティングし、前記シリコン酸化物でコーティングされた酸化水酸化鉄を得る工程と、
     前記シリコン酸化物でコーティングされた酸化水酸化鉄を酸化性雰囲気下で熱処理する工程とを有し、
     鉄元素の一部が前記置換元素で置換されたイプシロン酸化鉄を製造することを特徴とするイプシロン酸化鉄の製造方法。
    Applying a metal compound as a substitution element to iron oxide hydroxide to obtain iron oxide hydroxide to which the metal compound is applied;
    Coating iron oxide hydroxide coated with the metal compound with silicon oxide to obtain iron oxide hydroxide coated with the silicon oxide;
    Heat-treating the iron oxide hydroxide coated with the silicon oxide in an oxidizing atmosphere,
    A method for producing epsilon iron oxide, comprising producing epsilon iron oxide in which a part of an iron element is substituted with the substitution element.
  2.  請求項1に記載のイプシロン酸化鉄の製造方法であって、
     前記熱処理工程で得られた熱処理粉を、さらにアルカリ水溶液で処理して、イプシロン酸化鉄を製造することを特徴とするイプシロン酸化鉄の製造方法。
    A method for producing epsilon iron oxide according to claim 1,
    A method for producing epsilon iron oxide, wherein the heat treated powder obtained in the heat treatment step is further treated with an alkaline aqueous solution to produce epsilon iron oxide.
  3.  前記金属化合物が被着した酸化水酸化鉄を得る工程が、
     前記酸化水酸化鉄の懸濁液へ、前記置換元素の金属塩を溶解させる工程と、
     前記金属塩を溶解させた酸化水酸化鉄の懸濁液へ、アルカリ水溶液を添加して前記金属化合物が被着した酸化水酸化鉄を得る工程とを、有することを特徴とする請求項1または2に記載のイプシロン酸化鉄の製造方法。
    The step of obtaining the iron oxide hydroxide to which the metal compound is deposited,
    Dissolving a metal salt of the substitution element in the iron oxide hydroxide suspension;
    A step of adding an aqueous alkaline solution to a suspension of iron oxide hydroxide in which the metal salt is dissolved to obtain iron oxide hydroxide to which the metal compound is deposited is provided. 2. The method for producing epsilon iron oxide according to 2.
  4.  請求項1から3のいずれかに記載のイプシロン酸化鉄の製造方法であって、前記金属化合物が被着した酸化水酸化鉄を、シリコン酸化物でコーティングした後、乾燥させて前記シリコン酸化物でコーティングされた酸化水酸化鉄を得ることを特徴とするイプシロン酸化鉄の製造方法。 4. The method of producing epsilon iron oxide according to claim 1, wherein the iron oxide hydroxide to which the metal compound is deposited is coated with silicon oxide and then dried to form the silicon oxide. A process for producing epsilon iron oxide, characterized in that a coated iron oxide hydroxide is obtained.
  5.  鉄元素の一部が置換元素で置換されたイプシロン酸化鉄であって、
    10~18nmの平均粒径を有し、当該粒径の変動係数が40%以下であることを特徴とするイプシロン酸化鉄。
    Epsilon iron oxide in which part of the iron element is substituted with a substitution element,
    Epsilon iron oxide having an average particle diameter of 10 to 18 nm and a coefficient of variation of the particle diameter of 40% or less.
  6.  粒子体積(1)の値が500nm以上であり、粒子体積(2)の値が10000nm以下であることを特徴とする請求項5に記載のイプシロン酸化鉄。
     但し、粒子体積(1)とは、請求項5に記載のイプシロン酸化鉄の粒径分布の標準偏差を求め、当該イプシロン酸化鉄の平均粒子径の値から当該標準偏差の値を減じた値を当該イプシロン酸化鉄の粒子径の下限と考え、当該イプシロン酸化鉄粒子を球形近似して体積を求めた値である。粒子体積(2)とは、請求項5に記載のイプシロン酸化鉄の粒径分布の標準偏差を求め、当該イプシロン酸化鉄の平均粒子径の値へ当該標準偏差の値を加えた値を当該イプシロン酸化鉄の粒子径の上限と考え、当該イプシロン酸化鉄粒子を球形近似して体積を求めた値である。
    The value of the particle volume (1) is not less 500 nm 3 or more, epsilon iron oxide according to claim 5, the value of the grain volume (2), characterized in that at 10000 nm 3 or less.
    However, the particle volume (1) is obtained by calculating the standard deviation of the particle size distribution of the epsilon iron oxide according to claim 5 and subtracting the value of the standard deviation from the value of the average particle diameter of the epsilon iron oxide. This is a value obtained by considering the epsilon iron oxide particles as a lower limit of the particle diameter and approximating the epsilon iron oxide particles to a spherical shape. The particle volume (2) is a value obtained by calculating a standard deviation of the particle size distribution of the epsilon iron oxide according to claim 5 and adding the value of the standard deviation to the value of the average particle diameter of the epsilon iron oxide. This is a value obtained by considering the epsilon iron oxide particles as a sphere and considering the upper limit of the particle diameter of the iron oxide.
  7.  粒子体積(2)の値から粒子体積(1)の値を減じた値が、5000nm以下であることを特徴とする請求項6に記載のイプシロン酸化鉄。 The value obtained by subtracting the value of the grain volume from the value of the grain volume (2) (1), epsilon iron oxide according to claim 6, characterized in that at 5000 nm 3 or less.
  8.  請求項4から7のいずれかに記載のイプシロン酸化鉄を使用したことを特徴とする磁性塗料。 A magnetic paint using the epsilon iron oxide according to any one of claims 4 to 7.
  9.  請求項4から7のいずれかに記載のイプシロン酸化鉄を使用したことを特徴とする磁気記録媒体。
     
    A magnetic recording medium using the epsilon iron oxide according to any one of claims 4 to 7.
PCT/JP2016/067554 2015-06-12 2016-06-13 Epsilon iron oxide and method for producing same, magnetic paint, and magnetic recording medium WO2016199937A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16807640.4A EP3309128A4 (en) 2015-06-12 2016-06-13 Epsilon iron oxide and method for producing same, magnetic paint, and magnetic recording medium
CN201680030678.1A CN107635924B (en) 2015-06-12 2016-06-13 ε iron oxide and its manufacturing method, magnetic coating and magnetic recording media
US15/735,410 US10807880B2 (en) 2015-06-12 2016-06-13 Epsilon iron oxide and method for producing the same, magnetic coating material and magnetic recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015119680 2015-06-12
JP2015-119680 2015-06-12
JP2016116784A JP6821335B2 (en) 2015-06-12 2016-06-13 Epsilon iron oxide and its manufacturing method, magnetic paint and magnetic recording medium
JP2016-116784 2016-06-13

Publications (1)

Publication Number Publication Date
WO2016199937A1 true WO2016199937A1 (en) 2016-12-15

Family

ID=57504126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067554 WO2016199937A1 (en) 2015-06-12 2016-06-13 Epsilon iron oxide and method for producing same, magnetic paint, and magnetic recording medium

Country Status (1)

Country Link
WO (1) WO2016199937A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108919A (en) * 2017-01-05 2018-07-12 富士フイルム株式会社 ε-IRON OXIDE TYPE FERROMAGNETIC POWDER
US11401170B2 (en) * 2018-03-29 2022-08-02 Dowa Electronics Materials Co., Ltd. Iron based oxide magnetic powder and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174405A (en) * 2007-01-16 2008-07-31 Univ Of Tokyo METHOD FOR PRODUCING epsilon-Fe2O3 CRYSTAL
WO2008149785A1 (en) * 2007-05-31 2008-12-11 The University Of Tokyo Magnetic iron oxide particle, magnetic material, and radio wave absorber
JP2009224414A (en) * 2008-02-20 2009-10-01 Univ Of Tokyo Radio wave absorption material, radio wave absorber using the same, and electromagnetic wave absorption rate measurement method
JP2014216034A (en) * 2013-04-23 2014-11-17 富士フイルム株式会社 Magnetic particle for magnetic recording, and method for producing the same
JP2014224027A (en) * 2013-04-26 2014-12-04 国立大学法人 東京大学 Iron oxide nano magnetic particle powder, method for producing the same, iron oxide nano magnetic particle thin film comprising the iron oxide nano magnetic particle powder, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174405A (en) * 2007-01-16 2008-07-31 Univ Of Tokyo METHOD FOR PRODUCING epsilon-Fe2O3 CRYSTAL
WO2008149785A1 (en) * 2007-05-31 2008-12-11 The University Of Tokyo Magnetic iron oxide particle, magnetic material, and radio wave absorber
JP2009224414A (en) * 2008-02-20 2009-10-01 Univ Of Tokyo Radio wave absorption material, radio wave absorber using the same, and electromagnetic wave absorption rate measurement method
JP2014216034A (en) * 2013-04-23 2014-11-17 富士フイルム株式会社 Magnetic particle for magnetic recording, and method for producing the same
JP2014224027A (en) * 2013-04-26 2014-12-04 国立大学法人 東京大学 Iron oxide nano magnetic particle powder, method for producing the same, iron oxide nano magnetic particle thin film comprising the iron oxide nano magnetic particle powder, and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309128A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108919A (en) * 2017-01-05 2018-07-12 富士フイルム株式会社 ε-IRON OXIDE TYPE FERROMAGNETIC POWDER
US11401170B2 (en) * 2018-03-29 2022-08-02 Dowa Electronics Materials Co., Ltd. Iron based oxide magnetic powder and method for producing same

Similar Documents

Publication Publication Date Title
JP6821335B2 (en) Epsilon iron oxide and its manufacturing method, magnetic paint and magnetic recording medium
Lai et al. Iron oxide nanoparticles decorated oleic acid for high colloidal stability
JP6133749B2 (en) Iron oxide nanomagnetic particle powder and method for producing the same, iron oxide nanomagnetic particle thin film containing the iron oxide nanomagnetic particle powder and method for producing the same
JP6676493B2 (en) Method for producing iron-based oxide magnetic particle powder
JP5124825B2 (en) ε Iron oxide based magnetic material
JP7033071B2 (en) Epsilon type iron oxide magnetic particles and their manufacturing method, magnetic powder composed of magnetic particles, magnetic paint and magnetic recording medium
JP5130534B2 (en) Ε iron oxide powder with improved magnetic properties
Yuan et al. Fabrication of superparamagnetic Fe3O4 hollow microspheres with a high saturation magnetization
JP2017201672A (en) Method for producing magnetic powder
WO2016199937A1 (en) Epsilon iron oxide and method for producing same, magnetic paint, and magnetic recording medium
JP6427061B2 (en) Method of preparing core-shell-shell FeCo / SiO2 / MnBi nanoparticles, and core-shell-shell FeCo / SiO2 / MnBi nanoparticles
Dalavi et al. Observation of high coercive fields in chemically synthesized coated Fe-Pt nanostructures
JP7207399B2 (en) Method for manufacturing magnetic powder and method for manufacturing magnetic recording medium
US9431159B2 (en) Iron cobalt ternary alloy nanoparticles with silica shells and metal silicate interface
WO2011125914A1 (en) Metallic magnetic powder, process for producing same, magnetic coating composition, and magnetic recording medium
Okada et al. Synthesis of submicron-sized acicular goethite and platelet-like hematite particles and dependence of magnetic properties of α-Fe particles on their shape and size
JP6406752B2 (en) Method for producing iron nitride powder
Zeynali et al. Size control of FePt nanoparticles produced by seed mediated growth process
JP2019102777A (en) Method of manufacturing composite magnetic body, composite magnetic body, and magnetic paint and magnetic component using the same
Puspitarum et al. The influence of PEG-4000 and silica on crystal structure and magnetic properties of magnesium ferrite (MgFe2O4) nanoparticles
JP2015224167A (en) Tabular hematite fine particle, tabular hematite composite, tabular iron fine particle, and tabular iron oxide fine particle
Li et al. Ionic ferrofluids comprising γ-Fe2O3 nanoparticles prepared by chemically induced transition: synthesis and magnetization behavior
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP5082045B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2008204524A (en) Magnetic recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15735410

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016807640

Country of ref document: EP