WO2016199572A1 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
WO2016199572A1
WO2016199572A1 PCT/JP2016/065285 JP2016065285W WO2016199572A1 WO 2016199572 A1 WO2016199572 A1 WO 2016199572A1 JP 2016065285 W JP2016065285 W JP 2016065285W WO 2016199572 A1 WO2016199572 A1 WO 2016199572A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
battery
battery module
sheet
heat
Prior art date
Application number
PCT/JP2016/065285
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 前田
加藤 崇行
浩生 植田
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2016199572A1 publication Critical patent/WO2016199572A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • H01M10/652Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations characterised by gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One aspect of the present invention relates to a battery pack.
  • Patent Document 1 describes a battery pack.
  • This battery pack includes a case, a battery module, and a heat conducting member.
  • the battery module a plurality of battery cells are provided and restrained by using a pair of end plates and bolts.
  • the battery module including a plurality of battery cells constrained to each other has a side surface of the case at both ends in the stacking direction of the battery cells with a heat conducting member interposed between the battery module and the side surface of the case. It is fixed to.
  • the battery module as a whole may bend away from the side surface of the case as it goes from both ends of the battery module toward the center due to the reaction force from the heat conducting member.
  • the battery cell located at the center of the battery module may be separated from the heat conducting member and the side surface of the case, and heat dissipation may be impaired.
  • An aspect of the present invention has been made in view of such circumstances, and an object of the present invention is to provide a battery pack capable of ensuring heat dissipation by suppressing the bending of the battery module.
  • a battery pack includes a housing, a battery module housed in the housing and fixed to the inner surface of the housing, and disposed between the battery module and the inner surface.
  • the battery module includes a plurality of battery cells stacked in a first direction and a stack including a plurality of heat transfer plates provided in each of the battery cells; A restraining member that restrains the battery cell and the heat transfer plate along the direction of the first surface, and is fixed to the inner surface at both ends in the first direction.
  • the battery cell includes a first surface along the first direction, A second surface along a second direction that intersects the first direction, and the heat transfer plate is disposed on the second surface in a first direction from the main body portion.
  • the area of the heat dissipation sheet when viewed from a third direction that is interposed between the extending portion and the inner surface and intersects the first direction and the second direction includes both end portions of the laminate in the first direction. It is relatively larger than the region in the region including the central portion of the stacked body in the first direction.
  • a battery module having a stacked body including a plurality of battery cells and a heat transfer plate restrained along a first direction is fixed to the inner surface of the housing at both ends in the first direction. Yes.
  • a heat dissipation sheet is disposed between the battery module and the inner surface of the housing. Therefore, also in this battery pack, when the battery module is fixed to the housing, the reaction force from the heat dissipation sheet is applied to the battery module (particularly the laminate).
  • the area of the heat radiating sheet is relatively larger in the region including the central portion than in the region including both ends of the laminate. For this reason, it is suppressed that a big reaction force is added from the heat-radiation sheet in the both ends of a laminated body.
  • the reaction force from the heat dissipation sheet suppresses the battery module from being bent away from the inner surface of the housing as it goes from the both end portions to the center portion of the laminate. Therefore, it is suppressed that the battery cell located in the center part of a laminated body leaves
  • a relatively large area portion of the heat dissipating sheet is disposed with respect to the central portion of the laminate that is assumed to be relatively hot. For this reason, heat dissipation is ensured reliably.
  • the area of the heat dissipation sheet when viewed from the third direction may gradually increase from both ends toward the center.
  • the reaction force from the heat dissipation sheet to the laminated body can be gradually reduced from the central part of the laminated body toward both end parts.
  • the temperature gradually increases from both end portions to the central portion of the laminate it is possible to radiate heat suitably through this heat radiating sheet.
  • the area of the heat dissipation sheet when viewed from the third direction may be increased stepwise from both ends toward the center.
  • the reaction force from the heat dissipation sheet to the laminated body can be reduced stepwise from the center of the laminated body toward both ends.
  • the temperature is increased stepwise from both end portions to the center portion of the laminate, it is possible to radiate heat suitably through this heat radiating sheet.
  • the heat dissipation sheet may be disposed over the entire laminate in the first direction.
  • heat can be dissipated through the heat dissipating sheet over the whole of the plurality of battery cells constituting the laminate.
  • the heat dissipation sheet may be disposed in a part of the laminate in the first direction. In this case, the material of the heat dissipation sheet can be reduced.
  • a battery pack includes a housing, a battery module housed in the housing and fixed to the inner surface of the housing, and a heat dissipation sheet disposed between the battery module and the inner surface.
  • the battery module includes a stacked body including a plurality of battery cells stacked together along the first direction, and a restraining member that restrains the battery cells along the first direction.
  • the battery cell is fixed to the inner surface at both ends in the direction of 1, and the battery cell includes a first surface along the first direction and a second surface along the second direction intersecting the first direction.
  • the heat dissipating sheet is interposed between the first surface and the inner surface, and the area of the heat dissipating sheet as viewed from the third direction intersecting the first direction and the second direction is the lamination in the first direction. In the region including the central portion of the laminate in the first direction, rather than the region including both ends of the body. Relatively large Te.
  • a battery module having a stacked body including a plurality of battery cells constrained along the first direction is fixed to the inner surface of the casing at both ends in the first direction.
  • a heat dissipation sheet is disposed between the battery module and the inner surface of the housing. Therefore, also in this battery pack, when the battery module is fixed to the housing, the reaction force from the heat dissipation sheet is applied to the battery module (particularly the laminate).
  • the area of the heat dissipation sheet is relatively larger on the region including the central portion than on the region including both ends of the laminate. For this reason, it is suppressed that a big reaction force is added from the heat-radiation sheet in the both ends of a laminated body.
  • the reaction force from the heat dissipation sheet suppresses the battery module from being bent away from the inner surface of the housing as it goes from the both end portions to the center portion of the laminate. Therefore, it is suppressed that the battery cell located in the center part of a laminated body leaves
  • a relatively large area portion of the heat dissipating sheet is disposed with respect to the central portion of the laminate that is assumed to be relatively hot. For this reason, heat dissipation is ensured reliably.
  • a battery pack capable of ensuring heat dissipation by suppressing the bending of the battery module.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a partial exploded perspective view of the battery module shown in FIGS. It is a side view which shows the structure of the battery module shown by FIG. It is a figure which shows the modification of the thermal radiation sheet
  • FIG. 1 is a diagram showing a partial configuration of the battery pack according to the present embodiment.
  • FIG. 2 is a sectional view taken along line II-II in FIG. In each drawing, an orthogonal coordinate system S is shown.
  • the battery pack 100 includes a battery module 1, a housing 2, and a heat dissipation sheet 3.
  • the battery module 1 is accommodated in the housing 2.
  • the battery module 1 is fixed to the inner surface 2 s of the housing 2.
  • the heat dissipating sheet 3 is disposed between the battery module 1 and the inner surface 2 s of the housing 2.
  • the battery pack 100 can include, for example, a plurality of battery modules 1 arranged along the inner surface 2s, but only one battery module 1 is illustrated here.
  • the battery module 1 has a laminated body 30 including a plurality of battery cells 10 and a plurality of heat transfer plates 20.
  • the number of battery cells 10 is, for example, seven.
  • the battery cells 10 are individually held by the cell holder 40.
  • the heat transfer plate 20 is provided for each of the battery cells 10. Therefore, the number of heat transfer plates 20 is also seven as an example.
  • the battery cell 10 and the heat transfer plate 20 are alternately stacked along the first direction (x-axis direction) to form a stacked body 30.
  • FIG. 3 is a partial exploded perspective view of the battery module shown in FIGS.
  • the battery cell 10 is electrically connected to the electrode assembly 11, the case 12 that houses the electrode assembly 11, and the electrodes (each of the positive electrode and the negative electrode) of the electrode assembly 11, A pair of terminals 13 protruding from the case 12.
  • the electrode assembly 11 includes a plurality of positive electrodes (not shown) and a negative electrode (not shown), and a separator (not shown) disposed between the positive electrode and the negative electrode.
  • the positive electrode and the negative electrode are alternately stacked via separators.
  • the stacking direction of the positive electrode and the negative electrode substantially matches the stacking direction of the battery cells 10 (first direction: x-axis direction).
  • Case 12 has a rectangular parallelepiped shape.
  • Case 12 includes a pair of side surfaces (first surfaces) 12a and 12b facing each other, a pair of side surfaces (second surfaces) 12c and 12d facing each other, and an upper surface 12e and a bottom surface 12f facing each other.
  • the side surfaces 12a and 12b are surfaces along the first direction.
  • the side surfaces 12c and 12d are surfaces along a second direction (y-axis direction) intersecting the first direction, and are surfaces that connect the side surface 12a and the side surface 12b to each other.
  • the terminal 13 protrudes from the upper surface 12e.
  • the cell holder 40 includes a pair of side wall portions 40a and 40b facing each other, a back surface portion 40e, and a bottom wall portion 40f.
  • the side wall portions 40a and 40b have a rectangular plate shape.
  • the back surface portion 40e has a rectangular plate shape, and connects the side wall portion 40a and the side wall portion 40b to each other at one end portion in the longitudinal direction of the side wall portions 40a and 40b.
  • the bottom wall portion 40f has a rectangular plate shape, and connects the side wall portion 40a and the side wall portion 40b to each other at the other end portion in the longitudinal direction of the side wall portions 40a and 40b.
  • the side wall portions 40a, 40b, the back surface portion 40e, and the bottom wall portion 40f define a rectangular parallelepiped space where the battery cells 10 are fitted.
  • the side wall portions 40a and 40b are respectively disposed on the side surfaces 12a and 12b of the case 12 when the battery cell 10 is fitted in the space portion.
  • the back surface portion 40 e is disposed on the side surface 12 d in the vicinity of the top surface 12 e of the case 12.
  • the bottom wall portion 40 f is disposed on the bottom surface 12 f of the case 12.
  • a pair of projecting portions 41 are provided on the back surface portion 40e.
  • the protruding portion 41 has a rectangular parallelepiped shape.
  • the protruding portion 41 extends along the first direction.
  • the protruding portion 41 is disposed on the upper surface 12 e of the case 12 and between the pair of terminals 13 when the battery cell 10 is fitted into the space portion of the cell holder 40.
  • the projecting portion 41 is formed with a through hole 41h along the extending direction.
  • a bolt 52 of a restraining member 50 described later is inserted through the through hole 41h.
  • a pair of projecting portions 42 are provided at the connection portions of the bottom wall portion 40f with the side wall portions 40a and 40b.
  • the protruding portion 42 has a rectangular parallelepiped shape.
  • the protruding portion 42 extends along the first direction.
  • the protruding portion 42 is disposed at the end on the side surface 12a, 12b side of the bottom surface 12f of the case 12.
  • the protruding portion 42 is formed with a through hole 42h along the extending direction.
  • a bolt 52 of a restraining member 50 described later is inserted through the through hole 42h.
  • the heat transfer plate 20 includes a rectangular plate-shaped main body portion 21 and a rectangular plate-shaped extension portion 22.
  • the heat transfer plate 20 is formed in an L-shaped plate shape by the main body portion 21 and the extending portion 22.
  • the main body 21 is disposed on the side surface 12d of the battery cell 10 (case 12).
  • the extending portion 22 extends from the main body portion 21 along the first direction and is disposed on the side surface 12a of the battery cell 10 (case 12). In particular, the extending portion 22 is disposed on the side surface 12 a via the side wall portion 40 a of the cell holder 40.
  • the battery module 1 includes a restraining member 50, a middle plate 60, and an elastic body 70.
  • the restraining member 50 restrains the battery cell 10 and the heat transfer plate 20 along the stacking direction of the battery cells 10. More specifically, the restraining member 50 includes a pair of end plates 51, a plurality of bolts 52, and a plurality of nuts 53.
  • the end plate 51 is disposed on each of the one end 30a and the other end 30b of the stacked body 30 in the first direction.
  • the end plate 51 is formed in an L-shaped plate shape by a rectangular plate-shaped main body portion 51a and a rectangular plate-shaped fixing portion 51b.
  • the main body 51 a is disposed on the side surfaces 12 c and 12 d of the battery cell 10.
  • the fixing portion 51b is provided so as to protrude from the main body portion 51a along the first direction.
  • the bolt 52 is inserted into the through holes 41 h and 42 h of the cell holder 40 holding the battery cell 10, the through hole provided in the end plate 51, and the through hole provided in the middle plate 60.
  • the nut 53 is screwed onto the end of the bolt 52 so that the end plates 51 are fastened to each other. Thereby, a binding load is applied to the battery cell 10 via the end plate 51.
  • the middle plate 60 is disposed between the one end 30 a of the stacked body 30 and the end plate 51.
  • the elastic body 70 is made of, for example, rubber or the like, and is disposed between the middle plate 60 and the end plate 51.
  • the battery module 1 configured as described above is fixed to the inner surface 2s of the housing 2 at both ends in the first direction. More specifically, the battery module 1 uses the bolt 51c inserted through the fixing portion 51b in a state where the fixing portion 51b of the end plate 51 is in contact with the inner surface 2s of the casing 2, and the inner surface 2s of the casing 2 is used. Fixed to.
  • FIG. 4 is a side view showing the configuration of the battery module shown in FIG.
  • the heat dissipation sheet 3 is formed in a parallelogram shape when viewed from a third direction (z-axis direction) intersecting the first direction and the second direction.
  • the heat dissipation sheet 3 is disposed over the entire laminate 30 in the first direction as viewed from the third direction.
  • the heat radiating sheet 3 has the first direction in the parallelogram so that the center of the heat radiating sheet 3 in the first direction substantially coincides with the center of the laminated body 30 as viewed from the third direction.
  • a pair of vertices facing each other are disposed so as to be positioned at one end 30a and the other end 30b of the laminate 30, respectively. Therefore, the heat radiating sheet 3 gradually increases from the one end 30a and the other end 30b (both ends) of the laminated body 30 toward the central portion 30c when viewed from the third direction.
  • the area of the heat dissipation sheet 3 when viewed from the third direction includes the central portion 30c rather than the region including the one end 30a and the other end 30b of the stacked body 30 in the first direction. It is relatively large in the area. More specifically, the area of the heat dissipation sheet 3 when viewed from the third direction gradually increases from the one end 30a and the other end 30b of the stacked body 30 toward the central portion 30c in the first direction.
  • the heat dissipation sheet 3 is made of, for example, silicon rubber, acrylic rubber, or the like.
  • the battery module 1 including the stacked body 30 including the plurality of battery cells 10 and the heat transfer plate 20 restrained along the first direction is It is fixed to the inner surface 2s of the housing 2 at both ends in the first direction.
  • a heat radiating sheet 3 is disposed between the battery module 1 and the inner surface 2 s of the housing 2. Therefore, also in this battery pack 100, when the battery module 1 is fixed to the housing 2, the reaction force from the heat dissipation sheet 3 is applied to the battery module 1 (particularly the laminate 30).
  • the area of the heat dissipation sheet 3 includes the central portion 30c rather than the region including the one end 30a and the other end 30b of the stacked body 30. Is relatively large. For this reason, it is suppressed that the big reaction force is added from the heat-radiation sheet 3 in the one end part 30a and the other end part 30b of the laminated body 30.
  • the battery module 1 may bend away from the inner surface 2 s of the housing 2 toward the central portion 30 c from the one end 30 a and the other end 30 b of the multilayer body 30. It is suppressed.
  • the battery cell 10 positioned in the central portion 30c of the stacked body 30 is prevented from being separated from the heat dissipation sheet 3 and the inner surface 2s of the housing 2, and heat dissipation is ensured.
  • a relatively large area portion of the heat-dissipating sheet 3 is disposed with respect to the central portion 30c of the laminate 30 that is assumed to be relatively hot. For this reason, heat dissipation is ensured reliably.
  • the area of the heat dissipation sheet 3 when viewed from the third direction gradually increases from the one end 30a and the other end 30b of the stacked body 30 toward the central portion 30c. Yes. For this reason, the reaction force from the heat dissipation sheet 3 to the laminate 30 can be gradually reduced from the central portion 30c of the laminate 30 toward the one end 30a and the other end 30b. Further, when the temperature gradually increases from the one end portion 30a and the other end portion 30b of the laminated body 30 toward the central portion 30c, heat can be suitably radiated through the heat radiating sheet 3.
  • the heat radiating sheet 3 is disposed over the entire laminate 30 in the first direction. For this reason, heat can be dissipated through the heat dissipating sheet 3 over the whole of the plurality of battery cells 10 constituting the laminate 30.
  • the heat dissipation sheet 3 is formed in a parallelogram shape.
  • the heat-radiating sheet 3 having such a shape is less likely to produce end materials during the production thereof, and the yield is improved.
  • the battery pack according to one aspect of the present invention is not limited to the battery pack 100 described above.
  • the battery pack 100 can be arbitrarily changed without changing the gist of each claim.
  • the shape of the heat dissipation sheet 3 can be changed.
  • the shape of the heat dissipation sheet 3 can be a shape as shown in FIG.
  • the heat-dissipating sheet 3 according to this modification is formed by cutting a pair of vertices facing each other in the second direction in the parallelogram as seen from the third direction by a pair of straight lines parallel to each other along the first direction. It has a shape that can be obtained.
  • the heat-dissipating sheet 3 includes a constant portion 3a having a constant area along the first direction and a pair of changing portions 3b whose area changes along the first direction.
  • the fixed portion 3a has a rectangular shape when viewed from the third direction.
  • the change portion 3b has a triangular shape as viewed from the third direction.
  • the changing portion 3b is connected to the fixed portion 3a so as to increase from the one end 30a and the other end 30b of the stacked body 30 toward the central portion 30c.
  • the area when viewed from the third direction is the center of the multilayer body 30 than the region including the one end portion 30a and the other end portion 30b of the multilayer body 30. It becomes relatively large in the region including the portion 30c. More specifically, in the heat radiating sheet 3 according to the present modification, the area when viewed from the third direction is changed from the one end 30a and the other end 30b of the stacked body 30 to the central portion 30c in the change portion 3b. While gradually increasing, the constant portion 3a is substantially constant. In this case as well, the heat dissipation sheet 3 is disposed over the entire laminate 30 in the first direction.
  • the heat dissipation sheet 3 may have a shape as shown in FIG.
  • the heat radiating sheet 3 according to the present modification has a shape obtained by cutting a pair of apexes facing each other in the first direction in the parallelogram by a pair of straight lines parallel to each other in the second direction.
  • the heat dissipation sheet 3 is disposed over the entire laminate 30.
  • the area of the heat dissipation sheet 3 when viewed from the third direction is a region including the central portion 30c rather than the region including the one end portion 30a of the stacked body 30 and the region including the other end portion 30b in the first direction. Is relatively large. More specifically, the area of the heat dissipation sheet 3 when viewed from the third direction gradually increases from the one end 30a and the other end 30b of the stacked body 30 toward the central portion 30c in the first direction.
  • the heat dissipation sheet 3 may have a shape as shown in FIG.
  • the heat radiating sheet 3 according to the present modification has a shape obtained by forming triangular notches 3c at both ends of the first direction in the rectangle as viewed from the third direction.
  • the heat radiating sheet 3 according to the present modification includes a constant portion 3a having a constant area along the first direction and a pair of changing portions 3b having an area changing along the first direction.
  • the fixed portion 3 a is disposed in the central portion 30 c of the stacked body 30.
  • the change portions 3b are respectively disposed on the one end 30a and the other end 30b side of the stacked body 30 with respect to the fixed portion 3a.
  • the change part 3b is connected to the fixed part 3a.
  • the fixed portion 3a has a rectangular shape when viewed from the third direction.
  • the notch 3c is formed so as to become smaller from the one end 30a and the other end 30b of the laminated body 30 toward the central portion 30c.
  • the area when viewed from the third direction of the stacked body 30 is larger than the area including the one end portion 30a and the other end portion 30b of the stacked body 30. It becomes relatively large on the region including the central portion 30c.
  • the heat radiating sheet 3 in the heat radiating sheet 3 according to the present modification, the area when viewed from the third direction is changed from the one end 30a and the other end 30b of the stacked body 30 to the central portion 30c in the change portion 3b. While gradually increasing, the constant portion 3a is substantially constant. In this case as well, the heat dissipation sheet 3 is disposed over the entire laminate 30 in the first direction. Further, as shown in FIG. 6B, the heat radiating sheet 3 may be divided into a plurality of (here, two) parts by extending the pair of notches 3c and connecting them to each other. Here, since the notch 3c is extended while maintaining a triangular shape, the entire heat radiation sheet 3 becomes the changed portion 3b.
  • the heat radiation sheet 3 can also have a shape as shown in FIG.
  • the heat dissipating sheet 3 according to this modification has a plurality of areas such that the area when viewed from the third direction increases stepwise from the one end 30a and the other end 30b of the laminate 30 toward the central portion 30c. It has a shape that can be obtained by connecting rectangular parts.
  • the heat radiating sheet 3 shown in FIG. 7A has a rectangular shape with a relatively large dimension in the second direction so that the area when viewed from the third direction changes in two stages, This is a shape obtained by connecting a pair of rectangles having relatively small dimensions in the direction of each other.
  • the heat radiating sheet 3 shown in FIG. 7B the area of the battery cell 10 is changed stepwise for each boundary between the battery cells 10 adjacent to each other when viewed from the third direction.
  • the shape is obtained by connecting a number of rectangles to each other. Note that in the modification shown in FIG. 7 as well, the heat dissipation sheet 3 is disposed over the entire laminate 30 in the first direction.
  • the area of the heat radiating sheet 3 when viewed from the third direction is stepped from the one end 30a and the other end 30b of the multilayer body 30 toward the central portion 30c. Is increasing. For this reason, the reaction force from the heat radiation sheet 3 to the laminated body 30 can be reduced stepwise from the central part 30c of the laminated body 30 toward the one end part 30a and the other end part 30b. Further, for example, when the temperature gradually increases from the one end 30 a and the other end 30 b of the laminated body 30 toward the central portion 30 c, it is possible to radiate heat suitably through the heat radiating sheet 3.
  • the heat dissipation sheet 3 is formed so that the area of the heat dissipation sheet 3 when viewed from the third direction increases stepwise from the one end 30a and the other end 30b of the laminate 30 toward the central portion 30c.
  • the number of steps where the area changes and the position where the area changes can be arbitrarily set.
  • the heat dissipation sheet 3 may be deformed as shown in FIG.
  • the heat dissipation sheet 3 according to this modification has an area when viewed from the third direction on a region including the central portion 30c rather than a region including the one end 30a and the other end 30b of the stacked body 30. It is provided in a part of the stacked body 30 in the first direction so as to be relatively large. That is, in the present modification, a region where the heat radiating sheet 3 is not provided is set in the one end portion 30a and the other end portion 30b of the stacked body 30.
  • the area where the heat dissipation sheet 3 is not provided is an area where the area of the heat dissipation sheet 3 is zero.
  • the specific shape of the heat radiating sheet 3 may be an arbitrary shape corresponding to the shape of each heat radiating sheet 3 described above, for example.
  • the heat-dissipating sheet 3 according to this modification may have a parallelogram shape as shown in FIG. 8 (a) or a rectangular shape as shown in FIG. 8 (b). May be. According to these shapes, end materials are less likely to be produced during the manufacture of the heat dissipation sheet 3, and the yield is improved.
  • the heat radiating sheet 3 can be variously modified in addition to the above modified examples.
  • the heat dissipation sheet 3 at least a part of the outer edge when viewed from the third direction may be curved.
  • the changed portion 3b can be formed in a semicircular shape.
  • the notch 3c may be semicircular.
  • the battery module 1 may not include the heat transfer plate 20.
  • the heat dissipation sheet 3 is interposed between the side surface 12 a of the battery cell 10 and the inner surface 2 s of the housing 2.
  • the battery cell 10 is not held by the cell holder 40 so that the heat radiation sheet 3 contacts the side surface 12a of the battery cell 10 when the battery module 1 is fixed to the housing 2.
  • the battery module 1 may not have the cell holder 40.
  • the cell holder 40 can be deformed so that at least the side surface 12 a of the battery cell 10 is exposed from the side wall portion 40 a of the cell holder 40.
  • a battery pack capable of ensuring heat dissipation by suppressing the bending of the battery module.
  • DESCRIPTION OF SYMBOLS 1 ... Battery module, 2 ... Housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

A battery pack which is provided with: a case; a battery module which is contained in the case and is affixed to the inner surface of the case; and a heat dissipation sheet which is arranged between the battery module and the inner surface. This battery pack is configured such that: the battery module comprises a laminate having a plurality of cells laminated one upon another in a first direction and a plurality of heat transfer plates provided on the respective cells, and is affixed to the inner surface at the both ends in the first direction; each of the cells has a first surface in the first direction and a second surface in a second direction; each of the heat transfer plates has a main body part that is arranged on the second surface and an extending part that is arranged on the first surface; the heat dissipation sheet is interposed between the extending part and the inner surface; and the area of the heat dissipation sheet when viewed from a third direction is relatively larger in a region including the central part of the laminate in the first direction than in regions including the both end portions of the laminate in the first direction.

Description

電池パックBattery pack
 本発明の一側面は、電池パックに関する。 One aspect of the present invention relates to a battery pack.
 特許文献1には、電池パックが記載されている。この電池パックは、ケースと、電池モジュールと、熱伝導部材と、を備えている。電池モジュールにおいては、複数の電池セルが併設されて一対のエンドプレートとボルト等とを用いて拘束されている。そして、この電池パックにおいては、互いに拘束された複数の電池セルを含む電池モジュールが、ケースの側面との間に熱伝導部材を介在させた状態で、電池セルの積層方向の両端においてケースの側面に固定されている。 Patent Document 1 describes a battery pack. This battery pack includes a case, a battery module, and a heat conducting member. In the battery module, a plurality of battery cells are provided and restrained by using a pair of end plates and bolts. In this battery pack, the battery module including a plurality of battery cells constrained to each other has a side surface of the case at both ends in the stacking direction of the battery cells with a heat conducting member interposed between the battery module and the side surface of the case. It is fixed to.
特開2014-192120号公報JP 2014-192120 A
 ところで、上述したような電池パックにおいては、電池モジュールをケースの側壁に固定したときに、熱伝導部材から電池モジュールに反力が付加される場合がある。この反力は、ケースの側面への固定に用いられる電池モジュールの両端において相対的に大きくなる傾向がある。一方、電池モジュールの両端部に位置する電池セルは、電池モジュールのケースの側面への固定部分に近いため、当該反力により位置ズレしにくい。他方、電池モジュールの中央部に位置する電池セルは、電池モジュールのケースの側面への固定部分から遠いため、当該反力によりケースの側面から離れるように位置ズレしやすい。 By the way, in the battery pack as described above, when the battery module is fixed to the side wall of the case, a reaction force may be applied from the heat conducting member to the battery module. This reaction force tends to be relatively large at both ends of the battery module used for fixing to the side surface of the case. On the other hand, since the battery cells located at both ends of the battery module are close to the fixed part to the side surface of the case of the battery module, it is difficult to be displaced due to the reaction force. On the other hand, since the battery cell located in the center part of the battery module is far from the fixing part to the side surface of the case of the battery module, the battery cell is easily displaced from the side surface of the case by the reaction force.
 つまり、電池モジュールの全体としては、熱伝導部材からの反力によって、電池モジュールの両端部から中央部に向かうにつれてケースの側面から離れるように撓むおそれがある。そのような撓みが生じた場合には、電池モジュールの中央部に位置する電池セルが熱伝導部材及びケースの側面から離間し、放熱性が損なわれるおそれがある。 That is, the battery module as a whole may bend away from the side surface of the case as it goes from both ends of the battery module toward the center due to the reaction force from the heat conducting member. When such bending occurs, the battery cell located at the center of the battery module may be separated from the heat conducting member and the side surface of the case, and heat dissipation may be impaired.
 本発明の一側面は、そのような事情に鑑みてなされたものであり、電池モジュールの撓みを抑制して放熱性を確保可能な電池パックを提供することを課題とする。 An aspect of the present invention has been made in view of such circumstances, and an object of the present invention is to provide a battery pack capable of ensuring heat dissipation by suppressing the bending of the battery module.
 上記課題を解決するために、本発明の一側面に係る電池パックは、筐体と、筐体に収容され、筐体の内面に固定された電池モジュールと、電池モジュールと内面との間に配置された放熱シートと、を備え、電池モジュールは、第1の方向に沿って互いに積層された複数の電池セル及び電池セルのそれぞれに設けられた複数の伝熱プレートを含む積層体と、第1の方向に沿って電池セル及び伝熱プレートを拘束する拘束部材と、を有し、第1の方向の両端において内面に固定され、電池セルは、第1の方向に沿った第1の面と、第1の方向に交差する第2の方向に沿った第2の面と、を含み、伝熱プレートは、第2の面上に配置される本体部と、本体部から第1の方向に沿って延びて第1の面上に配置される延在部と、を含み、放熱シートは、延在部と内面との間に介在され、第1の方向及び第2の方向に交差する第3の方向からみたときの放熱シートの面積は、第1の方向における積層体の両端部を含む領域よりも、第1の方向における積層体の中央部を含む領域において相対的に大きい。 In order to solve the above problems, a battery pack according to an aspect of the present invention includes a housing, a battery module housed in the housing and fixed to the inner surface of the housing, and disposed between the battery module and the inner surface. The battery module includes a plurality of battery cells stacked in a first direction and a stack including a plurality of heat transfer plates provided in each of the battery cells; A restraining member that restrains the battery cell and the heat transfer plate along the direction of the first surface, and is fixed to the inner surface at both ends in the first direction. The battery cell includes a first surface along the first direction, A second surface along a second direction that intersects the first direction, and the heat transfer plate is disposed on the second surface in a first direction from the main body portion. An extending portion that extends along the first surface and is disposed on the first surface. The area of the heat dissipation sheet when viewed from a third direction that is interposed between the extending portion and the inner surface and intersects the first direction and the second direction includes both end portions of the laminate in the first direction. It is relatively larger than the region in the region including the central portion of the stacked body in the first direction.
 この電池パックにおいては、第1の方向に沿って拘束された複数の電池セル及び伝熱プレートを含む積層体を有する電池モジュールが、当該第1の方向の両端において筐体の内面に固定されている。そして、電池モジュールと筐体の内面との間には、放熱シートが配置されている。したがって、この電池パックにおいても、電池モジュールを筐体に固定したときに、放熱シートからの反力が電池モジュール(特に積層体)に付加される。 In this battery pack, a battery module having a stacked body including a plurality of battery cells and a heat transfer plate restrained along a first direction is fixed to the inner surface of the housing at both ends in the first direction. Yes. A heat dissipation sheet is disposed between the battery module and the inner surface of the housing. Therefore, also in this battery pack, when the battery module is fixed to the housing, the reaction force from the heat dissipation sheet is applied to the battery module (particularly the laminate).
 ここで、この電池パックにおいては、放熱シートの面積が、積層体の両端部を含む領域よりも中央部を含む領域において相対的に大きくされている。このため、積層体の両端部において放熱シートから大きな反力が付加されることが抑制される。その結果、放熱シートからの反力によって、積層体の両端部から中央部に向かうにつれて筐体の内面から離れるように電池モジュールに撓みが生じることが抑制される。よって、積層体の中央部に位置する電池セルが、放熱シート及び筐体の内面から離間することが抑制され、放熱性が確保される。特に、比較的高温になりやすいと想定される積層体の中央部に対して、放熱シートの相対的に大きな面積の部分が配置される。このため、放熱性が確実に確保される。 Here, in this battery pack, the area of the heat radiating sheet is relatively larger in the region including the central portion than in the region including both ends of the laminate. For this reason, it is suppressed that a big reaction force is added from the heat-radiation sheet in the both ends of a laminated body. As a result, the reaction force from the heat dissipation sheet suppresses the battery module from being bent away from the inner surface of the housing as it goes from the both end portions to the center portion of the laminate. Therefore, it is suppressed that the battery cell located in the center part of a laminated body leaves | separates from the inner surface of a thermal radiation sheet and a housing | casing, and heat dissipation is ensured. In particular, a relatively large area portion of the heat dissipating sheet is disposed with respect to the central portion of the laminate that is assumed to be relatively hot. For this reason, heat dissipation is ensured reliably.
 本発明の一側面に係る電池パックにおいては、第3の方向からみたときの放熱シートの面積は、両端部から中央部に向けて漸増していてもよい。この場合、放熱シートから積層体への反力を、積層体の中央部から両端部に向けて漸減させることができる。また、積層体の両端部から中央部にむけて温度が漸増するような場合に、この放熱シートを介して好適に放熱することができる。 In the battery pack according to one aspect of the present invention, the area of the heat dissipation sheet when viewed from the third direction may gradually increase from both ends toward the center. In this case, the reaction force from the heat dissipation sheet to the laminated body can be gradually reduced from the central part of the laminated body toward both end parts. Further, when the temperature gradually increases from both end portions to the central portion of the laminate, it is possible to radiate heat suitably through this heat radiating sheet.
 本発明の一側面に係る電池パックにおいては、第3の方向からみたときの放熱シートの面積は、両端部から中央部に向けて段階的に増加していてもよい。この場合、放熱シートから積層体への反力を、積層体の中央部から両端部に向けて段階的に減少させることができる。また、例えば、積層体の両端部から中央部にむけて温度が段階的に高くなる場合に、この放熱シートを介して好適に放熱することができる。 In the battery pack according to one aspect of the present invention, the area of the heat dissipation sheet when viewed from the third direction may be increased stepwise from both ends toward the center. In this case, the reaction force from the heat dissipation sheet to the laminated body can be reduced stepwise from the center of the laminated body toward both ends. In addition, for example, when the temperature is increased stepwise from both end portions to the center portion of the laminate, it is possible to radiate heat suitably through this heat radiating sheet.
 本発明の一側面に係る電池パックにおいては、放熱シートは、第1の方向について、積層体の全体にわたって配置されていてもよい。この場合、積層体を構成する複数の電池セルの全体にわたって、放熱シートを介した放熱を行うことができる。 In the battery pack according to one aspect of the present invention, the heat dissipation sheet may be disposed over the entire laminate in the first direction. In this case, heat can be dissipated through the heat dissipating sheet over the whole of the plurality of battery cells constituting the laminate.
 本発明の一側面に係る電池パックにおいては、放熱シートは、第1の方向について、積層体の一部に配置されていてもよい。この場合、放熱シートの材料を削減することができる。 In the battery pack according to one aspect of the present invention, the heat dissipation sheet may be disposed in a part of the laminate in the first direction. In this case, the material of the heat dissipation sheet can be reduced.
 ここで、本発明の一側面に係る電池パックは、筐体と、筐体に収容され、筐体の内面に固定された電池モジュールと、電池モジュールと内面との間に配置された放熱シートと、を備え、電池モジュールは、第1の方向に沿って互いに積層された複数の電池セルを含む積層体と、第1の方向に沿って電池セルを拘束する拘束部材と、を有し、第1の方向の両端において内面に固定され、電池セルは、第1の方向に沿った第1の面と、第1の方向に交差する第2の方向に沿った第2の面と、を含み、放熱シートは、第1の面と内面との間に介在され、第1の方向及び第2の方向に交差する第3の方向からみたときの放熱シートの面積は、第1の方向における積層体の両端部を含む領域よりも、第1の方向における積層体の中央部を含む領域において相対的に大きい。 Here, a battery pack according to one aspect of the present invention includes a housing, a battery module housed in the housing and fixed to the inner surface of the housing, and a heat dissipation sheet disposed between the battery module and the inner surface. The battery module includes a stacked body including a plurality of battery cells stacked together along the first direction, and a restraining member that restrains the battery cells along the first direction. The battery cell is fixed to the inner surface at both ends in the direction of 1, and the battery cell includes a first surface along the first direction and a second surface along the second direction intersecting the first direction. The heat dissipating sheet is interposed between the first surface and the inner surface, and the area of the heat dissipating sheet as viewed from the third direction intersecting the first direction and the second direction is the lamination in the first direction. In the region including the central portion of the laminate in the first direction, rather than the region including both ends of the body. Relatively large Te.
 この電池パックにおいては、第1の方向に沿って拘束された複数の電池セルを含む積層体を有する電池モジュールが、当該第1の方向の両端において筐体の内面に固定されている。そして、電池モジュールと筐体の内面との間には、放熱シートが配置されている。したがって、この電池パックにおいても、電池モジュールを筐体に固定したときに、放熱シートからの反力が電池モジュール(特に積層体)に付加される。 In this battery pack, a battery module having a stacked body including a plurality of battery cells constrained along the first direction is fixed to the inner surface of the casing at both ends in the first direction. A heat dissipation sheet is disposed between the battery module and the inner surface of the housing. Therefore, also in this battery pack, when the battery module is fixed to the housing, the reaction force from the heat dissipation sheet is applied to the battery module (particularly the laminate).
 ここで、この電池パックにおいては、放熱シートの面積は、積層体の両端部を含む領域上よりも中央部を含む領域上において相対的に大きい。このため、積層体の両端部において放熱シートから大きな反力が付加されることが抑制される。その結果、放熱シートからの反力によって、積層体の両端部から中央部に向かうにつれて筐体の内面から離れるように電池モジュールに撓みが生じることが抑制される。よって、積層体の中央部に位置する電池セルが、放熱シート及び筐体の内面から離間することが抑制され、放熱性が確保される。特に、比較的高温になりやすいと想定される積層体の中央部に対して、放熱シートの相対的に大きな面積の部分が配置される。このため、放熱性が確実に確保される。 Here, in this battery pack, the area of the heat dissipation sheet is relatively larger on the region including the central portion than on the region including both ends of the laminate. For this reason, it is suppressed that a big reaction force is added from the heat-radiation sheet in the both ends of a laminated body. As a result, the reaction force from the heat dissipation sheet suppresses the battery module from being bent away from the inner surface of the housing as it goes from the both end portions to the center portion of the laminate. Therefore, it is suppressed that the battery cell located in the center part of a laminated body leaves | separates from the inner surface of a thermal radiation sheet and a housing | casing, and heat dissipation is ensured. In particular, a relatively large area portion of the heat dissipating sheet is disposed with respect to the central portion of the laminate that is assumed to be relatively hot. For this reason, heat dissipation is ensured reliably.
 本発明の一側面によれば、電池モジュールの撓みを抑制して放熱性を確保可能な電池パックを提供することができる。 According to one aspect of the present invention, it is possible to provide a battery pack capable of ensuring heat dissipation by suppressing the bending of the battery module.
本実施形態に係る電池パックの部分的な構成を示す図である。It is a figure which shows the partial structure of the battery pack which concerns on this embodiment. 図1のII-II線に沿っての断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 図1,2に示された電池モジュールの部分的な分解斜視図である。FIG. 3 is a partial exploded perspective view of the battery module shown in FIGS. 図1に示された電池モジュールの構成を示す側面図である。It is a side view which shows the structure of the battery module shown by FIG. 図4に示された放熱シートの変形例を示す図である。It is a figure which shows the modification of the thermal radiation sheet | seat shown by FIG. 図4に示された放熱シートの変形例を示す図である。It is a figure which shows the modification of the thermal radiation sheet | seat shown by FIG. 図4に示された放熱シートの変形例を示す図である。It is a figure which shows the modification of the thermal radiation sheet | seat shown by FIG. 図4に示された放熱シートの変形例を示す図である。It is a figure which shows the modification of the thermal radiation sheet | seat shown by FIG.
 以下、本発明の一側面の一実施形態について、図面を参照して詳細に説明する。図面の説明において、同一の要素同士、或いは相当する要素同士には互いに同一の符号を付し、重複する説明を省略する場合がある。 Hereinafter, an embodiment of one aspect of the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements or corresponding elements may be assigned the same reference numerals, and overlapping descriptions may be omitted.
 図1は、本実施形態に係る電池パックの部分的な構成を示す図である。図2は、図1のII-II線に沿っての断面図である。各図面には、直交座標系Sを示している。図1,2に示されるように、電池パック100は、電池モジュール1と、筐体2と、放熱シート3と、を備えている。電池モジュール1は、筐体2に収容されている。電池モジュール1は、筐体2の内面2sに固定されている。放熱シート3は、電池モジュール1と筐体2の内面2sとの間に配置されている。なお、電池パック100は、例えば、内面2sに沿って配列された複数の電池モジュール1を備えることができるが、ここでは、1つの電池モジュール1のみを図示する。 FIG. 1 is a diagram showing a partial configuration of the battery pack according to the present embodiment. FIG. 2 is a sectional view taken along line II-II in FIG. In each drawing, an orthogonal coordinate system S is shown. As shown in FIGS. 1 and 2, the battery pack 100 includes a battery module 1, a housing 2, and a heat dissipation sheet 3. The battery module 1 is accommodated in the housing 2. The battery module 1 is fixed to the inner surface 2 s of the housing 2. The heat dissipating sheet 3 is disposed between the battery module 1 and the inner surface 2 s of the housing 2. The battery pack 100 can include, for example, a plurality of battery modules 1 arranged along the inner surface 2s, but only one battery module 1 is illustrated here.
 電池モジュール1は、複数の電池セル10及び複数の伝熱プレート20を含む積層体30を有している。電池セル10の個数は、例えば7個である。電池セル10は、それぞれ、個別にセルホルダ40に保持されている。伝熱プレート20は、電池セル10のそれぞれに対して設けられている。したがって、伝熱プレート20の個数も、一例として7個である。電池セル10及び伝熱プレート20は、第1の方向(x軸方向)に沿って交互に積層されて積層体30を構成している。 The battery module 1 has a laminated body 30 including a plurality of battery cells 10 and a plurality of heat transfer plates 20. The number of battery cells 10 is, for example, seven. The battery cells 10 are individually held by the cell holder 40. The heat transfer plate 20 is provided for each of the battery cells 10. Therefore, the number of heat transfer plates 20 is also seven as an example. The battery cell 10 and the heat transfer plate 20 are alternately stacked along the first direction (x-axis direction) to form a stacked body 30.
 図3は、図1,2に示された電池モジュールの部分的な分解斜視図である。図3に示されるように、電池セル10は、電極組立体11と、電極組立体11を収容するケース12と、電極組立体11の電極(正極及び負極のそれぞれ)に電気的に接続され、ケース12から突出する一対の端子13と、を有している。電極組立体11は、複数の正極(不図示)及び負極(不図示)と、正極と負極との間に配置されたセパレータ(不図示)と、を含む。正極及び負極は、セパレータを介して交互に積層されている。正極及び負極の積層方向は、電池セル10の積層方向(第1の方向:x軸方向)と実質的に一致している。 FIG. 3 is a partial exploded perspective view of the battery module shown in FIGS. As shown in FIG. 3, the battery cell 10 is electrically connected to the electrode assembly 11, the case 12 that houses the electrode assembly 11, and the electrodes (each of the positive electrode and the negative electrode) of the electrode assembly 11, A pair of terminals 13 protruding from the case 12. The electrode assembly 11 includes a plurality of positive electrodes (not shown) and a negative electrode (not shown), and a separator (not shown) disposed between the positive electrode and the negative electrode. The positive electrode and the negative electrode are alternately stacked via separators. The stacking direction of the positive electrode and the negative electrode substantially matches the stacking direction of the battery cells 10 (first direction: x-axis direction).
 ケース12は、直方体状を呈している。ケース12は、互いに対向する一対の側面(第1の面)12a,12bと、互いに対向する一対の側面(第2の面)12c,12dと、互いに対向する上面12e及び底面12fと、を含む。側面12a,12bは、第1の方向に沿った面である。側面12c,12dは、第1の方向に交差する第2の方向(y軸方向)に沿った面であり、側面12aと側面12bとを互いに接続する面である。端子13は、上面12eから突出している。 Case 12 has a rectangular parallelepiped shape. Case 12 includes a pair of side surfaces (first surfaces) 12a and 12b facing each other, a pair of side surfaces (second surfaces) 12c and 12d facing each other, and an upper surface 12e and a bottom surface 12f facing each other. . The side surfaces 12a and 12b are surfaces along the first direction. The side surfaces 12c and 12d are surfaces along a second direction (y-axis direction) intersecting the first direction, and are surfaces that connect the side surface 12a and the side surface 12b to each other. The terminal 13 protrudes from the upper surface 12e.
 セルホルダ40は、互いに対向する一対の側壁部40a,40bと、背面部40e及び底壁部40fと、を含む。側壁部40a,40bは、長方形板状を呈している。背面部40eは、長方形板状を呈しており、側壁部40a,40bの長手方向の一端部において側壁部40aと側壁部40bとを互いに接続している。底壁部40fは、長方形板状を呈しており、側壁部40a,40bの長手方向の他端部において側壁部40aと側壁部40bとを互いに接続している。 The cell holder 40 includes a pair of side wall portions 40a and 40b facing each other, a back surface portion 40e, and a bottom wall portion 40f. The side wall portions 40a and 40b have a rectangular plate shape. The back surface portion 40e has a rectangular plate shape, and connects the side wall portion 40a and the side wall portion 40b to each other at one end portion in the longitudinal direction of the side wall portions 40a and 40b. The bottom wall portion 40f has a rectangular plate shape, and connects the side wall portion 40a and the side wall portion 40b to each other at the other end portion in the longitudinal direction of the side wall portions 40a and 40b.
 セルホルダ40においては、側壁部40a,40bと背面部40e及び底壁部40fとによって、電池セル10が嵌め合される直方体状の空間部が画成されている。側壁部40a,40bは、それぞれ、当該空間部に電池セル10が嵌め合されたときにケース12の側面12a,12b上に配置される。同様に、背面部40eは、ケース12の上面12e近傍において、側面12d上に配置される。さらに、底壁部40fは、ケース12の底面12f上に配置される。 In the cell holder 40, the side wall portions 40a, 40b, the back surface portion 40e, and the bottom wall portion 40f define a rectangular parallelepiped space where the battery cells 10 are fitted. The side wall portions 40a and 40b are respectively disposed on the side surfaces 12a and 12b of the case 12 when the battery cell 10 is fitted in the space portion. Similarly, the back surface portion 40 e is disposed on the side surface 12 d in the vicinity of the top surface 12 e of the case 12. Further, the bottom wall portion 40 f is disposed on the bottom surface 12 f of the case 12.
 背面部40eには、一対の突設部41が設けられている。突設部41は、直方体状を呈している。突設部41は、第1の方向に沿って延在している。突設部41は、セルホルダ40の上記空間部に電池セル10が嵌め合されたときに、ケース12の上面12e上であって、一対の端子13の間の位置に配置される。突設部41には、その延在方向に沿った貫通孔41hが形成されている。この貫通孔41hには、後述する拘束部材50のボルト52が挿通される。 A pair of projecting portions 41 are provided on the back surface portion 40e. The protruding portion 41 has a rectangular parallelepiped shape. The protruding portion 41 extends along the first direction. The protruding portion 41 is disposed on the upper surface 12 e of the case 12 and between the pair of terminals 13 when the battery cell 10 is fitted into the space portion of the cell holder 40. The projecting portion 41 is formed with a through hole 41h along the extending direction. A bolt 52 of a restraining member 50 described later is inserted through the through hole 41h.
 また、底壁部40fにおける側壁部40a,40bとの接続部分には、一対の突設部42が設けられている。突設部42は、直方体状を呈している。突設部42は、第1の方向に沿って延在している。突設部42は、セルホルダ40の上記空間部に電池セル10が嵌め合されたときに、ケース12の底面12fにおける側面12a,12b側の端部に配置される。突設部42には、その延在方向に沿った貫通孔42hが形成されている。この貫通孔42hには、後述する拘束部材50のボルト52が挿通される。 Further, a pair of projecting portions 42 are provided at the connection portions of the bottom wall portion 40f with the side wall portions 40a and 40b. The protruding portion 42 has a rectangular parallelepiped shape. The protruding portion 42 extends along the first direction. When the battery cell 10 is fitted into the space portion of the cell holder 40, the protruding portion 42 is disposed at the end on the side surface 12a, 12b side of the bottom surface 12f of the case 12. The protruding portion 42 is formed with a through hole 42h along the extending direction. A bolt 52 of a restraining member 50 described later is inserted through the through hole 42h.
 伝熱プレート20は、矩形板状の本体部21と、矩形板状の延在部22と、を含む。伝熱プレート20は、本体部21と延在部22とによってL字板状に形成されている。本体部21は、電池セル10(ケース12)の側面12d上に配置される。延在部22は、本体部21から第1の方向に沿って延び、電池セル10(ケース12)の側面12a上に配置される。特に、延在部22は、セルホルダ40の側壁部40aを介して側面12a上に配置される。 The heat transfer plate 20 includes a rectangular plate-shaped main body portion 21 and a rectangular plate-shaped extension portion 22. The heat transfer plate 20 is formed in an L-shaped plate shape by the main body portion 21 and the extending portion 22. The main body 21 is disposed on the side surface 12d of the battery cell 10 (case 12). The extending portion 22 extends from the main body portion 21 along the first direction and is disposed on the side surface 12a of the battery cell 10 (case 12). In particular, the extending portion 22 is disposed on the side surface 12 a via the side wall portion 40 a of the cell holder 40.
 再び図1,2を参照して電池モジュール1の各部の説明を続ける。電池モジュール1は、拘束部材50と、ミドルプレート60と、弾性体70と、を有する。拘束部材50は、電池セル10の積層方向に沿って電池セル10及び伝熱プレート20を拘束する。より具体的には、拘束部材50は、一対のエンドプレート51と、複数のボルト52と、複数のナット53と、を含む。 The description of each part of the battery module 1 will be continued with reference to FIGS. The battery module 1 includes a restraining member 50, a middle plate 60, and an elastic body 70. The restraining member 50 restrains the battery cell 10 and the heat transfer plate 20 along the stacking direction of the battery cells 10. More specifically, the restraining member 50 includes a pair of end plates 51, a plurality of bolts 52, and a plurality of nuts 53.
 エンドプレート51は、第1の方向における積層体30の一端部30a及び他端部30bのそれぞれに配置されている。エンドプレート51は、一例として、矩形板状の本体部51aと、矩形板状の固定部51bと、によってL字板状に形成されている。本体部51aは、電池セル10の側面12c,12d上に配置される。固定部51bは、本体部51aから第1の方向に沿って突設されている。 The end plate 51 is disposed on each of the one end 30a and the other end 30b of the stacked body 30 in the first direction. As an example, the end plate 51 is formed in an L-shaped plate shape by a rectangular plate-shaped main body portion 51a and a rectangular plate-shaped fixing portion 51b. The main body 51 a is disposed on the side surfaces 12 c and 12 d of the battery cell 10. The fixing portion 51b is provided so as to protrude from the main body portion 51a along the first direction.
 ボルト52は、電池セル10を保持したセルホルダ40の貫通孔41h,42h、エンドプレート51に設けられた貫通孔、及び、ミドルプレート60に設けられた貫通孔に挿通される。ナット53は、エンドプレート51同士を互いに締め付けるようにボルト52の端部に螺合される。これにより、エンドプレート51を介して、電池セル10に拘束荷重が付加される。なお、ミドルプレート60は、積層体30の一端部30aとエンドプレート51との間に配置されている。弾性体70は、例えばゴム等により構成されており、ミドルプレート60とエンドプレート51との間に配置されている。 The bolt 52 is inserted into the through holes 41 h and 42 h of the cell holder 40 holding the battery cell 10, the through hole provided in the end plate 51, and the through hole provided in the middle plate 60. The nut 53 is screwed onto the end of the bolt 52 so that the end plates 51 are fastened to each other. Thereby, a binding load is applied to the battery cell 10 via the end plate 51. The middle plate 60 is disposed between the one end 30 a of the stacked body 30 and the end plate 51. The elastic body 70 is made of, for example, rubber or the like, and is disposed between the middle plate 60 and the end plate 51.
 以上のように構成される電池モジュール1は、第1の方向の両端において、筐体2の内面2sに固定されている。より具体的には、電池モジュール1は、エンドプレート51の固定部51bを筐体2の内面2sに接触させた状態において、固定部51bに挿通されたボルト51cを用いて筐体2の内面2sに固定される。 The battery module 1 configured as described above is fixed to the inner surface 2s of the housing 2 at both ends in the first direction. More specifically, the battery module 1 uses the bolt 51c inserted through the fixing portion 51b in a state where the fixing portion 51b of the end plate 51 is in contact with the inner surface 2s of the casing 2, and the inner surface 2s of the casing 2 is used. Fixed to.
 ここで、放熱シート3は、伝熱プレート20の延在部22と筐体2の内面2sとの間に介在される(図2参照)。放熱シート3は、ここでは、延在部22における電池セル10と反対側の表面と、筐体2の内面2sと、に接触する。これにより、放熱シート3は、電池セル10から伝熱プレート20を介して筐体2に至る放熱経路を形成する。図4は、図1に示された電池モジュールの構成を示す側面図である。図4において示されるように、放熱シート3は、一例として、第1の方向及び第2の方向に交差する第3の方向(z軸方向)からみて、平行四辺形状に形成されている。また、ここでは、放熱シート3は、第3の方向からみて、第1の方向について積層体30の全体にわたって配置されている。 Here, the heat radiating sheet 3 is interposed between the extending portion 22 of the heat transfer plate 20 and the inner surface 2s of the housing 2 (see FIG. 2). Here, the heat radiating sheet 3 is in contact with the surface of the extending portion 22 opposite to the battery cell 10 and the inner surface 2 s of the housing 2. Thereby, the heat dissipation sheet 3 forms a heat dissipation path from the battery cell 10 to the housing 2 via the heat transfer plate 20. FIG. 4 is a side view showing the configuration of the battery module shown in FIG. As shown in FIG. 4, as an example, the heat dissipation sheet 3 is formed in a parallelogram shape when viewed from a third direction (z-axis direction) intersecting the first direction and the second direction. Here, the heat dissipation sheet 3 is disposed over the entire laminate 30 in the first direction as viewed from the third direction.
 特に、ここでは、放熱シート3は、第3の方向からみて、第1の方向における放熱シート3の中心が積層体30の中心に略一致するように、且つ、平行四辺形における第1の方向に互いに対向する一対の頂点が積層体30の一端部30a及び他端部30bのそれぞれに位置するように配置されている。したがって、放熱シート3は、第3の方向からみて、積層体30の一端部30a及び他端部30b(両端部)から中央部30cに向けて徐々に大きくなる。 In particular, here, the heat radiating sheet 3 has the first direction in the parallelogram so that the center of the heat radiating sheet 3 in the first direction substantially coincides with the center of the laminated body 30 as viewed from the third direction. A pair of vertices facing each other are disposed so as to be positioned at one end 30a and the other end 30b of the laminate 30, respectively. Therefore, the heat radiating sheet 3 gradually increases from the one end 30a and the other end 30b (both ends) of the laminated body 30 toward the central portion 30c when viewed from the third direction.
 換言すれば、第3の方向からみたときの放熱シート3の面積は、第1の方向における積層体30の一端部30aを含む領域及び他端部30bを含む領域よりも、中央部30cを含む領域において相対的に大きい。より具体的には、第3の方向からみたときの放熱シート3の面積は、第1の方向における積層体30の一端部30a及び他端部30bから中央部30cに向けて漸増している。なお、放熱シート3は、例えば、シリコンゴム、アクリルゴム等から構成される。 In other words, the area of the heat dissipation sheet 3 when viewed from the third direction includes the central portion 30c rather than the region including the one end 30a and the other end 30b of the stacked body 30 in the first direction. It is relatively large in the area. More specifically, the area of the heat dissipation sheet 3 when viewed from the third direction gradually increases from the one end 30a and the other end 30b of the stacked body 30 toward the central portion 30c in the first direction. The heat dissipation sheet 3 is made of, for example, silicon rubber, acrylic rubber, or the like.
 以上説明したように、本実施形態に係る電池パック100においては、第1の方向に沿って拘束された複数の電池セル10及び伝熱プレート20を含む積層体30を有する電池モジュール1が、当該第1の方向の両端において筐体2の内面2sに固定されている。そして、電池モジュール1と筐体2の内面2sとの間には、放熱シート3が配置されている。したがって、この電池パック100においても、電池モジュール1を筐体2に固定したときに、放熱シート3からの反力が電池モジュール1(特に積層体30)に付加される。 As described above, in the battery pack 100 according to the present embodiment, the battery module 1 including the stacked body 30 including the plurality of battery cells 10 and the heat transfer plate 20 restrained along the first direction is It is fixed to the inner surface 2s of the housing 2 at both ends in the first direction. A heat radiating sheet 3 is disposed between the battery module 1 and the inner surface 2 s of the housing 2. Therefore, also in this battery pack 100, when the battery module 1 is fixed to the housing 2, the reaction force from the heat dissipation sheet 3 is applied to the battery module 1 (particularly the laminate 30).
 これに対して、本実施形態に係る電池パック100においては、放熱シート3の面積が、積層体30の一端部30aを含む領域及び他端部30bを含む領域よりも、中央部30cを含む領域において相対的に大きい。このため、積層体30の一端部30a及び他端部30bにおいて放熱シート3から大きな反力が付加されることが抑制される。その結果、放熱シート3からの反力によって、積層体30の一端部30a及び他端部30bから中央部30cに向かうにつれて筐体2の内面2sから離れるように電池モジュール1に撓みが生じることが抑制される。 On the other hand, in the battery pack 100 according to the present embodiment, the area of the heat dissipation sheet 3 includes the central portion 30c rather than the region including the one end 30a and the other end 30b of the stacked body 30. Is relatively large. For this reason, it is suppressed that the big reaction force is added from the heat-radiation sheet 3 in the one end part 30a and the other end part 30b of the laminated body 30. FIG. As a result, due to the reaction force from the heat radiating sheet 3, the battery module 1 may bend away from the inner surface 2 s of the housing 2 toward the central portion 30 c from the one end 30 a and the other end 30 b of the multilayer body 30. It is suppressed.
 よって、積層体30の中央部30cに位置する電池セル10が、放熱シート3及び筐体2の内面2sから離間することが抑制され、放熱性が確保される。特に、比較的高温になりやすいと想定される積層体30の中央部30cに対して、放熱シート3の相対的に大きな面積の部分が配置される。このため、放熱性が確実に確保される。 Therefore, the battery cell 10 positioned in the central portion 30c of the stacked body 30 is prevented from being separated from the heat dissipation sheet 3 and the inner surface 2s of the housing 2, and heat dissipation is ensured. In particular, a relatively large area portion of the heat-dissipating sheet 3 is disposed with respect to the central portion 30c of the laminate 30 that is assumed to be relatively hot. For this reason, heat dissipation is ensured reliably.
 また、本実施形態に係る電池パック100においては、第3の方向からみたときの放熱シート3の面積が、積層体30の一端部30a及び他端部30bから中央部30cに向けて漸増している。このため、放熱シート3から積層体30への反力を、積層体30の中央部30cから一端部30a及び他端部30bに向けて漸減させることができる。また、積層体30の一端部30a及び他端部30bから中央部30cにむけて温度が漸増するような場合に、この放熱シート3を介して好適に放熱することができる。 Further, in the battery pack 100 according to the present embodiment, the area of the heat dissipation sheet 3 when viewed from the third direction gradually increases from the one end 30a and the other end 30b of the stacked body 30 toward the central portion 30c. Yes. For this reason, the reaction force from the heat dissipation sheet 3 to the laminate 30 can be gradually reduced from the central portion 30c of the laminate 30 toward the one end 30a and the other end 30b. Further, when the temperature gradually increases from the one end portion 30a and the other end portion 30b of the laminated body 30 toward the central portion 30c, heat can be suitably radiated through the heat radiating sheet 3.
 さらに、本実施形態に係る電池パック100においては、放熱シート3が、第1の方向について、積層体30の全体にわたって配置されている。このため、積層体30を構成する複数の電池セル10の全体にわたって、放熱シート3を介した放熱を行うことができる。 Furthermore, in the battery pack 100 according to the present embodiment, the heat radiating sheet 3 is disposed over the entire laminate 30 in the first direction. For this reason, heat can be dissipated through the heat dissipating sheet 3 over the whole of the plurality of battery cells 10 constituting the laminate 30.
 なお、本実施形態に係る電池パック100においては、放熱シート3が平行四辺形状に形成されている。このような形状の放熱シート3は、その製造時に端材が生じにくく、歩留まりが向上する。 In addition, in the battery pack 100 according to the present embodiment, the heat dissipation sheet 3 is formed in a parallelogram shape. The heat-radiating sheet 3 having such a shape is less likely to produce end materials during the production thereof, and the yield is improved.
 以上の実施形態は、本発明の一側面に係る電池パックの一実施形態を説明したものである。したがって、本発明の一側面に係る電池パックは、上述した電池パック100に限定されない。本発明の一側面に係る電池パックは、各請求項の要旨を変更しない範囲において、電池パック100を任意に変更したものとすることができる。 The above embodiment describes one embodiment of the battery pack according to one aspect of the present invention. Therefore, the battery pack according to one aspect of the present invention is not limited to the battery pack 100 described above. In the battery pack according to one aspect of the present invention, the battery pack 100 can be arbitrarily changed without changing the gist of each claim.
 例えば、電池パック100においては、放熱シート3の形状を変更することができる。例えば、放熱シート3の形状は、図5の(a)に示されるような形状とすることができる。本変形例に係る放熱シート3は、第3の方向からみて、平行四辺形における第2の方向に互いに対向する一対の頂点を、第1の方向に沿った互いに平行な一対の直線により切断して得られるような形状を呈している。 For example, in the battery pack 100, the shape of the heat dissipation sheet 3 can be changed. For example, the shape of the heat dissipation sheet 3 can be a shape as shown in FIG. The heat-dissipating sheet 3 according to this modification is formed by cutting a pair of vertices facing each other in the second direction in the parallelogram as seen from the third direction by a pair of straight lines parallel to each other along the first direction. It has a shape that can be obtained.
 このため、本変形例に係る放熱シート3は、第1の方向に沿って面積が一定の一定部分3aと、第1の方向に沿って面積が変化する一対の変化部分3bと、からなる。一定部分3aは、第3の方向からみて長方形状を呈している。変化部分3bは、第3の方向からみて三角形状を呈している。変化部分3bは、積層体30の一端部30a及び他端部30bから中央部30cに向けて大きくなるように、一定部分3aに接続されている。 For this reason, the heat-dissipating sheet 3 according to this modification includes a constant portion 3a having a constant area along the first direction and a pair of changing portions 3b whose area changes along the first direction. The fixed portion 3a has a rectangular shape when viewed from the third direction. The change portion 3b has a triangular shape as viewed from the third direction. The changing portion 3b is connected to the fixed portion 3a so as to increase from the one end 30a and the other end 30b of the stacked body 30 toward the central portion 30c.
 したがって、本変形例に係る放熱シート3においても、第3の方向からみたときの面積が、積層体30の一端部30aを含む領域及び他端部30bを含む領域よりも、積層体30の中央部30cを含む領域において相対的に大きくなる。より具体的には、本変形例に係る放熱シート3においては、第3の方向からみたときの面積が、変化部分3bにおいて、積層体30の一端部30a及び他端部30bから中央部30cに向けて漸増すると共に、一定部分3aにおいて略一定となっている。なお、ここでも、放熱シート3は、第1の方向について積層体30の全体にわたって配置されている。 Therefore, also in the heat radiating sheet 3 according to the present modification, the area when viewed from the third direction is the center of the multilayer body 30 than the region including the one end portion 30a and the other end portion 30b of the multilayer body 30. It becomes relatively large in the region including the portion 30c. More specifically, in the heat radiating sheet 3 according to the present modification, the area when viewed from the third direction is changed from the one end 30a and the other end 30b of the stacked body 30 to the central portion 30c in the change portion 3b. While gradually increasing, the constant portion 3a is substantially constant. In this case as well, the heat dissipation sheet 3 is disposed over the entire laminate 30 in the first direction.
 また、放熱シート3は、図5の(b)に示されるような形状としてもよい。本変形例に係る放熱シート3は、平行四辺形における第1の方向に互いに対向する一対の頂点を、第2の方向に沿った互いに平行な一対の直線により切断して得られるような形状を呈している。ここでも、放熱シート3は、積層体30の全体にわたって配置されている。また、第3の方向からみたときの放熱シート3の面積は、第1の方向における積層体30の一端部30aを含む領域上及び他端部30bを含む領域よりも、中央部30cを含む領域において相対的に大きい。より具体的には、第3の方向からみたときの放熱シート3の面積は、第1の方向における積層体30の一端部30a及び他端部30bから中央部30cに向けて漸増している。 Further, the heat dissipation sheet 3 may have a shape as shown in FIG. The heat radiating sheet 3 according to the present modification has a shape obtained by cutting a pair of apexes facing each other in the first direction in the parallelogram by a pair of straight lines parallel to each other in the second direction. Presented. Again, the heat dissipation sheet 3 is disposed over the entire laminate 30. Moreover, the area of the heat dissipation sheet 3 when viewed from the third direction is a region including the central portion 30c rather than the region including the one end portion 30a of the stacked body 30 and the region including the other end portion 30b in the first direction. Is relatively large. More specifically, the area of the heat dissipation sheet 3 when viewed from the third direction gradually increases from the one end 30a and the other end 30b of the stacked body 30 toward the central portion 30c in the first direction.
 また、放熱シート3は、図6の(a)に示されるような形状としてもよい。本変形例に係る放熱シート3は、第3の方向からみて、長方形における第1の方向の両端部に対して三角形状の切欠き3cを形成して得られるような形状を呈している。このため、本変形例に係る放熱シート3は、第1の方向に沿って面積が一定の一定部分3aと、第1の方向に沿って面積が変化する一対の変化部分3bと、からなる。一定部分3aは、積層体30の中央部30cに配置される。変化部分3bは、それぞれ、一定部分3aよりも積層体30の一端部30a及び他端部30b側に配置される。変化部分3bは、一定部分3aに接続されている。 Further, the heat dissipation sheet 3 may have a shape as shown in FIG. The heat radiating sheet 3 according to the present modification has a shape obtained by forming triangular notches 3c at both ends of the first direction in the rectangle as viewed from the third direction. For this reason, the heat radiating sheet 3 according to the present modification includes a constant portion 3a having a constant area along the first direction and a pair of changing portions 3b having an area changing along the first direction. The fixed portion 3 a is disposed in the central portion 30 c of the stacked body 30. The change portions 3b are respectively disposed on the one end 30a and the other end 30b side of the stacked body 30 with respect to the fixed portion 3a. The change part 3b is connected to the fixed part 3a.
 一定部分3aは、第3の方向からみて長方形状を呈している。切欠き3cは、積層体30の一端部30a及び他端部30bから中央部30cに向けて小さくなるように形成されている。このため、本変形例に係る放熱シート3においても、第3の方向からみたときの面積が、積層体30の一端部30aを含む領域及び他端部30bを含む領域よりも、積層体30の中央部30cを含む領域上において相対的に大きくなる。 The fixed portion 3a has a rectangular shape when viewed from the third direction. The notch 3c is formed so as to become smaller from the one end 30a and the other end 30b of the laminated body 30 toward the central portion 30c. For this reason, also in the heat radiating sheet 3 according to this modification, the area when viewed from the third direction of the stacked body 30 is larger than the area including the one end portion 30a and the other end portion 30b of the stacked body 30. It becomes relatively large on the region including the central portion 30c.
 より具体的には、本変形例に係る放熱シート3においては、第3の方向からみたときの面積が、変化部分3bにおいて、積層体30の一端部30a及び他端部30bから中央部30cに向けて漸増すると共に、一定部分3aにおいて略一定となっている。なお、ここでも、放熱シート3は、第1の方向について積層体30の全体にわたって配置されている。また、図6の(b)に示されるように、一対の切欠き3cを延長して互いに接続することにより、放熱シート3を複数(ここでは2つ)の部分に分割してもよい。ここでは、切欠き3cが三角形状を維持しつつ延長されるので、放熱シート3の全体が変化部分3bとなる。 More specifically, in the heat radiating sheet 3 according to the present modification, the area when viewed from the third direction is changed from the one end 30a and the other end 30b of the stacked body 30 to the central portion 30c in the change portion 3b. While gradually increasing, the constant portion 3a is substantially constant. In this case as well, the heat dissipation sheet 3 is disposed over the entire laminate 30 in the first direction. Further, as shown in FIG. 6B, the heat radiating sheet 3 may be divided into a plurality of (here, two) parts by extending the pair of notches 3c and connecting them to each other. Here, since the notch 3c is extended while maintaining a triangular shape, the entire heat radiation sheet 3 becomes the changed portion 3b.
 また、放熱シート3は、図7に示されるような形状とすることもできる。本変形例に係る放熱シート3は、第3の方向からみたときの面積が、積層体30の一端部30a及び他端部30bから中央部30cに向けて段階的に増加するように、複数の長方形状の部分を接続して得られるような形状を呈している。例えば、図7の(a)に示される放熱シート3は、第3の方向からみたときの面積が2段階に変化するように、第2の方向における寸法が相対的に大きな長方形と、第2の方向における寸法が相対的に小さい一対の長方形とを互いに接続して得られる形状となっている。 Moreover, the heat radiation sheet 3 can also have a shape as shown in FIG. The heat dissipating sheet 3 according to this modification has a plurality of areas such that the area when viewed from the third direction increases stepwise from the one end 30a and the other end 30b of the laminate 30 toward the central portion 30c. It has a shape that can be obtained by connecting rectangular parts. For example, the heat radiating sheet 3 shown in FIG. 7A has a rectangular shape with a relatively large dimension in the second direction so that the area when viewed from the third direction changes in two stages, This is a shape obtained by connecting a pair of rectangles having relatively small dimensions in the direction of each other.
 一方、図7の(b)に示される放熱シート3においては、第3の方向からみたときの面積が、互いに隣接する電池セル10の境界ごとに段階的に変化するように、電池セル10の個数分の長方形を互いに接続して得られる形状となっている。なお、図7に示される変形例においても、放熱シート3は、第1の方向について積層体30の全体にわたって配置されている。 On the other hand, in the heat radiating sheet 3 shown in FIG. 7B, the area of the battery cell 10 is changed stepwise for each boundary between the battery cells 10 adjacent to each other when viewed from the third direction. The shape is obtained by connecting a number of rectangles to each other. Note that in the modification shown in FIG. 7 as well, the heat dissipation sheet 3 is disposed over the entire laminate 30 in the first direction.
 このように、図7に示される放熱シート3においては、第3の方向からみたときの放熱シート3の面積が、積層体30の一端部30a及び他端部30bから中央部30cに向けて段階的に増加している。このため、放熱シート3から積層体30への反力を、積層体30の中央部30cから一端部30a及び他端部30bに向けて段階的に減少させることができる。また、例えば、積層体30の一端部30a,他端部30bから中央部30cにむけて温度が段階的に高くなる場合に、この放熱シート3を介して好適に放熱することができる。なお、第3の方向からみたときの放熱シート3の面積が、積層体30の一端部30a及び他端部30bから中央部30cに向けて段階的に増加するように放熱シート3を形成する場合、その面積が変化する段数及び面積が変化する位置を任意に設定することができる。 Thus, in the heat radiating sheet 3 shown in FIG. 7, the area of the heat radiating sheet 3 when viewed from the third direction is stepped from the one end 30a and the other end 30b of the multilayer body 30 toward the central portion 30c. Is increasing. For this reason, the reaction force from the heat radiation sheet 3 to the laminated body 30 can be reduced stepwise from the central part 30c of the laminated body 30 toward the one end part 30a and the other end part 30b. Further, for example, when the temperature gradually increases from the one end 30 a and the other end 30 b of the laminated body 30 toward the central portion 30 c, it is possible to radiate heat suitably through the heat radiating sheet 3. In the case where the heat dissipation sheet 3 is formed so that the area of the heat dissipation sheet 3 when viewed from the third direction increases stepwise from the one end 30a and the other end 30b of the laminate 30 toward the central portion 30c. The number of steps where the area changes and the position where the area changes can be arbitrarily set.
 さらに、放熱シート3は、図8に示されるように変形してもよい。本変形例に係る放熱シート3は、第3の方向からみたときの面積が、積層体30の一端部30aを含む領域及び他端部30bを含む領域よりも、中央部30cを含む領域上において相対的に大きくなるように、第1の方向について積層体30の一部に設けられる。つまり、本変形例においては、積層体30の一端部30a及び他端部30bにおいて放熱シート3が設けられていない領域が設定される。放熱シート3が設けられていない領域は、放熱シート3の面積が0となる領域である。 Furthermore, the heat dissipation sheet 3 may be deformed as shown in FIG. The heat dissipation sheet 3 according to this modification has an area when viewed from the third direction on a region including the central portion 30c rather than a region including the one end 30a and the other end 30b of the stacked body 30. It is provided in a part of the stacked body 30 in the first direction so as to be relatively large. That is, in the present modification, a region where the heat radiating sheet 3 is not provided is set in the one end portion 30a and the other end portion 30b of the stacked body 30. The area where the heat dissipation sheet 3 is not provided is an area where the area of the heat dissipation sheet 3 is zero.
 この場合の放熱シート3の具体的な形状は、例えば上述した各放熱シート3の形状に対応する任意の形状とすることができる。一例として、本変形例に係る放熱シート3は、図8の(a)に示されるように、平行四辺形状であってもよいし、図8の(b)に示されるように長方形状であってもよい。これらの形状によれば、放熱シート3の製造時に端材が生じにくく、歩留まりが向上する。 In this case, the specific shape of the heat radiating sheet 3 may be an arbitrary shape corresponding to the shape of each heat radiating sheet 3 described above, for example. As an example, the heat-dissipating sheet 3 according to this modification may have a parallelogram shape as shown in FIG. 8 (a) or a rectangular shape as shown in FIG. 8 (b). May be. According to these shapes, end materials are less likely to be produced during the manufacture of the heat dissipation sheet 3, and the yield is improved.
 なお、放熱シート3は、以上の変形例以外にも、種々の変形を行うことができる。例えば、上記実施形態及び変形例では、第3の方向からみたときの外縁が直線状である放熱シート3について例示した。しかしながら、放熱シート3においては、第3の方向からみたときの外縁の少なくとも一部を曲線状としてもよい。例えば、図5の(a)に示された放熱シート3において、変化部分3bを半円形状とすることができる。或いは、図6の(a)に示された放熱シート3において、切欠き3cを半円形状としてもよい。 In addition, the heat radiating sheet 3 can be variously modified in addition to the above modified examples. For example, in the said embodiment and modification, it illustrated about the thermal radiation sheet 3 whose outer edge when it sees from a 3rd direction is linear form. However, in the heat dissipation sheet 3, at least a part of the outer edge when viewed from the third direction may be curved. For example, in the heat radiating sheet 3 shown in FIG. 5A, the changed portion 3b can be formed in a semicircular shape. Alternatively, in the heat dissipating sheet 3 shown in FIG. 6A, the notch 3c may be semicircular.
 ここで、電池パック100においては、電池モジュール1が、伝熱プレート20を備えていなくてもよい。その場合、放熱シート3は、電池セル10の側面12aと筐体2の内面2sとの間に介在される。特に、この場合には、電池モジュール1を筐体2に固定したときに電池セル10の側面12aに放熱シート3が接触するように、電池セル10がセルホルダ40に保持されていない形態とすることができる。すなわち、この場合には、電池モジュール1がセルホルダ40を有していなくてもよい。或いは、電池モジュール1がセルホルダ40を備える場合には、少なくとも電池セル10の側面12aがセルホルダ40の側壁部40aから露出するように、セルホルダ40を変形することができる。 Here, in the battery pack 100, the battery module 1 may not include the heat transfer plate 20. In that case, the heat dissipation sheet 3 is interposed between the side surface 12 a of the battery cell 10 and the inner surface 2 s of the housing 2. In particular, in this case, the battery cell 10 is not held by the cell holder 40 so that the heat radiation sheet 3 contacts the side surface 12a of the battery cell 10 when the battery module 1 is fixed to the housing 2. Can do. That is, in this case, the battery module 1 may not have the cell holder 40. Alternatively, when the battery module 1 includes the cell holder 40, the cell holder 40 can be deformed so that at least the side surface 12 a of the battery cell 10 is exposed from the side wall portion 40 a of the cell holder 40.
 本発明の一側面によれば、電池モジュールの撓みを抑制して放熱性を確保可能な電池パックを提供することができる。 According to one aspect of the present invention, it is possible to provide a battery pack capable of ensuring heat dissipation by suppressing the bending of the battery module.
 1…電池モジュール、2…筐体、2s…内面、3…放熱シート、10…電池セル、12a…側面(第1の面)、12d…側面(第2の面)、20…伝熱プレート、21…本体部、22…延在部、30…積層体、30a…一端部、30b…他端部、30c…中央部、50…拘束部材、100…電池パック。 DESCRIPTION OF SYMBOLS 1 ... Battery module, 2 ... Housing | casing, 2s ... Inner surface, 3 ... Radiation sheet, 10 ... Battery cell, 12a ... Side surface (1st surface), 12d ... Side surface (2nd surface), 20 ... Heat-transfer plate, DESCRIPTION OF SYMBOLS 21 ... Main-body part, 22 ... Extension part, 30 ... Laminated body, 30a ... One end part, 30b ... Other end part, 30c ... Central part, 50 ... Restraining member, 100 ... Battery pack.

Claims (6)

  1.  筐体と、
     前記筐体に収容され、前記筐体の内面に固定された電池モジュールと、
     前記電池モジュールと前記内面との間に配置された放熱シートと、
     を備え、
     前記電池モジュールは、第1の方向に沿って互いに積層された複数の電池セル及び前記電池セルのそれぞれに設けられた複数の伝熱プレートを含む積層体と、前記第1の方向に沿って前記電池セル及び前記伝熱プレートを拘束する拘束部材と、を有し、前記第1の方向の両端において前記内面に固定され、
     前記電池セルは、前記第1の方向に沿った第1の面と、前記第1の方向に交差する第2の方向に沿った第2の面と、を含み、
     前記伝熱プレートは、前記第2の面上に配置される本体部と、前記本体部から前記第1の方向に沿って延びて前記第1の面上に配置される延在部と、を含み、
     前記放熱シートは、前記延在部と前記内面との間に介在され、
     前記第1の方向及び前記第2の方向に交差する第3の方向からみたときの前記放熱シートの面積は、前記第1の方向における前記積層体の両端部を含む領域よりも、前記第1の方向における前記積層体の中央部を含む領域において相対的に大きい、
     電池パック。
    A housing,
    A battery module housed in the housing and fixed to the inner surface of the housing;
    A heat dissipating sheet disposed between the battery module and the inner surface;
    With
    The battery module includes a stacked body including a plurality of battery cells stacked on each other along a first direction and a plurality of heat transfer plates provided on each of the battery cells, and the battery module along the first direction. A restraining member that restrains the battery cell and the heat transfer plate, and is fixed to the inner surface at both ends in the first direction,
    The battery cell includes a first surface along the first direction and a second surface along a second direction intersecting the first direction,
    The heat transfer plate includes a main body portion disposed on the second surface, and an extending portion disposed along the first direction from the main body portion and disposed on the first surface. Including
    The heat dissipation sheet is interposed between the extending portion and the inner surface,
    The area of the heat dissipation sheet when viewed from a third direction intersecting the first direction and the second direction is more than the first region than the region including both end portions of the laminate in the first direction. Relatively large in the region including the central portion of the laminate in the direction of
    Battery pack.
  2.  前記第3の方向からみたときの前記放熱シートの面積は、前記両端部から前記中央部に向けて漸増している、
     請求項1に記載の電池パック。
    The area of the heat dissipation sheet when viewed from the third direction gradually increases from the both end portions toward the central portion,
    The battery pack according to claim 1.
  3.  前記第3の方向からみたときの前記放熱シートの面積は、前記両端部から前記中央部に向けて段階的に増加している、
     請求項1に記載の電池パック。
    The area of the heat dissipation sheet when viewed from the third direction is gradually increased from the both end portions toward the central portion.
    The battery pack according to claim 1.
  4.  前記放熱シートは、前記第1の方向について、前記積層体の全体にわたって配置されている、
     請求項1~3のいずれか一項に記載の電池パック。
    The heat dissipation sheet is disposed over the entire laminate in the first direction.
    The battery pack according to any one of claims 1 to 3.
  5.  前記放熱シートは、前記第1の方向について、前記積層体の一部に配置されている、
     請求項1~3のいずれか一項に記載の電池パック。
    The heat dissipation sheet is disposed in a part of the laminate in the first direction.
    The battery pack according to any one of claims 1 to 3.
  6.  筐体と、
     前記筐体に収容され、前記筐体の内面に固定された電池モジュールと、
     前記電池モジュールと前記内面との間に配置された放熱シートと、
     を備え、
     前記電池モジュールは、第1の方向に沿って互いに積層された複数の電池セルを含む積層体と、前記第1の方向に沿って前記電池セルを拘束する拘束部材と、を有し、前記第1の方向の両端において前記内面に固定され、
     前記電池セルは、前記第1の方向に沿った第1の面と、前記第1の方向に交差する第2の方向に沿った第2の面と、を含み、
     前記放熱シートは、前記第1の面と前記内面との間に介在され、
     前記第1の方向及び前記第2の方向に交差する第3の方向からみたときの前記放熱シートの面積は、前記第1の方向における前記積層体の両端部を含む領域上よりも、前記第1の方向における前記積層体の中央部を含む領域上において相対的に大きい、
     電池パック。
    A housing,
    A battery module housed in the housing and fixed to the inner surface of the housing;
    A heat dissipating sheet disposed between the battery module and the inner surface;
    With
    The battery module includes: a stacked body including a plurality of battery cells stacked together along a first direction; and a restraining member that restrains the battery cells along the first direction. Fixed to the inner surface at both ends in the direction of 1,
    The battery cell includes a first surface along the first direction and a second surface along a second direction intersecting the first direction,
    The heat dissipation sheet is interposed between the first surface and the inner surface,
    The area of the heat dissipation sheet when viewed from a third direction intersecting the first direction and the second direction is greater than that on the region including both end portions of the stacked body in the first direction. Relatively large on the region including the central portion of the laminate in the direction of 1,
    Battery pack.
PCT/JP2016/065285 2015-06-08 2016-05-24 Battery pack WO2016199572A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-115858 2015-06-08
JP2015115858A JP6627265B2 (en) 2015-06-08 2015-06-08 Battery pack

Publications (1)

Publication Number Publication Date
WO2016199572A1 true WO2016199572A1 (en) 2016-12-15

Family

ID=57503180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065285 WO2016199572A1 (en) 2015-06-08 2016-05-24 Battery pack

Country Status (2)

Country Link
JP (1) JP6627265B2 (en)
WO (1) WO2016199572A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034253A (en) * 2018-01-12 2019-07-19 丰田自动车株式会社 Battery pack and its manufacturing method and disassembling method
CN111033791A (en) * 2017-08-29 2020-04-17 松下知识产权经营株式会社 Battery pack
EP3754743A4 (en) * 2018-02-16 2021-11-10 Hitachi, Ltd. Battery module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690452B2 (en) * 2016-07-26 2020-04-28 株式会社豊田自動織機 Battery module
JP6844360B2 (en) * 2017-03-22 2021-03-17 株式会社豊田自動織機 Battery module
JP6844359B2 (en) * 2017-03-22 2021-03-17 株式会社豊田自動織機 Battery module
JP6844361B2 (en) * 2017-03-22 2021-03-17 株式会社豊田自動織機 Battery module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213962A (en) * 1998-01-30 1999-08-06 Yuasa Corp Storage battery
JP2010277863A (en) * 2009-05-28 2010-12-09 Sanyo Electric Co Ltd Vehicular battery system and vehicle loading the same
WO2013084938A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Battery cooling structure
JP2014049726A (en) * 2012-09-04 2014-03-17 Toshiba Corp Semiconductor device
JP2015056355A (en) * 2013-09-13 2015-03-23 株式会社豊田自動織機 Battery pack

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010112386A2 (en) * 2009-03-30 2010-10-07 Behr Gmbh & Co. Kg Device for thermal connection of an energy store
CN107112607B (en) * 2015-01-16 2020-08-11 株式会社村田制作所 Power storage module, power storage system, electronic device, electric vehicle, and power system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213962A (en) * 1998-01-30 1999-08-06 Yuasa Corp Storage battery
JP2010277863A (en) * 2009-05-28 2010-12-09 Sanyo Electric Co Ltd Vehicular battery system and vehicle loading the same
WO2013084938A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Battery cooling structure
JP2014049726A (en) * 2012-09-04 2014-03-17 Toshiba Corp Semiconductor device
JP2015056355A (en) * 2013-09-13 2015-03-23 株式会社豊田自動織機 Battery pack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033791A (en) * 2017-08-29 2020-04-17 松下知识产权经营株式会社 Battery pack
CN110034253A (en) * 2018-01-12 2019-07-19 丰田自动车株式会社 Battery pack and its manufacturing method and disassembling method
CN110034253B (en) * 2018-01-12 2022-02-08 丰田自动车株式会社 Battery pack, method of manufacturing the same, and method of disassembling the same
EP3754743A4 (en) * 2018-02-16 2021-11-10 Hitachi, Ltd. Battery module

Also Published As

Publication number Publication date
JP2017004689A (en) 2017-01-05
JP6627265B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2016199572A1 (en) Battery pack
CN109328406B (en) Thermally conductive sheet and secondary battery pack using same
JP5795648B2 (en) Battery cooling structure
TWI474446B (en) Heat conductor
JP6237479B2 (en) Battery module and battery pack
JP6357439B2 (en) Power storage module
JP6176085B2 (en) Battery module
JP6608653B2 (en) Battery module
JPWO2013084937A1 (en) Battery fixing structure
JP6380704B2 (en) Power storage device pack
JP6171925B2 (en) Battery module manufacturing method
JP6926630B2 (en) Battery module
JP6690452B2 (en) Battery module
JP2017228364A (en) Battery pack
US11233267B2 (en) Separator, battery module and battery module production method
JP6504014B2 (en) Storage pack
JP2017103158A (en) Battery pack
JP2017041311A (en) Battery module unit and battery pack
JP6737577B2 (en) Battery pack
JP5154706B1 (en) Battery pack and battery module
JP6855789B2 (en) Battery module
JP6759571B2 (en) Battery pack
JP2018026244A (en) Battery module
JP2018041582A (en) Battery module and battery pack
JP2018006158A (en) Battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807279

Country of ref document: EP

Kind code of ref document: A1