WO2016194042A1 - Input device - Google Patents

Input device Download PDF

Info

Publication number
WO2016194042A1
WO2016194042A1 PCT/JP2015/065550 JP2015065550W WO2016194042A1 WO 2016194042 A1 WO2016194042 A1 WO 2016194042A1 JP 2015065550 W JP2015065550 W JP 2015065550W WO 2016194042 A1 WO2016194042 A1 WO 2016194042A1
Authority
WO
WIPO (PCT)
Prior art keywords
input device
vibration
pointer
amplitude
unit
Prior art date
Application number
PCT/JP2015/065550
Other languages
French (fr)
Japanese (ja)
Inventor
宣俊 熊谷
洋平 杉浦
五月女 誠
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2015/065550 priority Critical patent/WO2016194042A1/en
Publication of WO2016194042A1 publication Critical patent/WO2016194042A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks

Definitions

  • the present invention relates to an input device.
  • a tactile feedback type mouse in which an actuator is arranged at the bottom of the casing to generate vibration in the casing.
  • the actuator is disposed on the wall portion at the bottom of the casing inside the casing.
  • the actuator is a linear electromagnetic actuator and has a fixed portion fixed to the housing, a movable portion, and an inertia weight attached to the upper end of the movable portion.
  • the actuator vibrates in the thickness direction (Z-axis direction) of the bottom of the housing (see, for example, Patent Document 1).
  • an object is to provide an input device that can provide a good tactile sensation.
  • An input device includes a plate having a contact surface in contact with the surface of an object, a mouse-type housing that exposes the contact surface to hold the plate, and is touched by a user with a hand, A movement detecting unit disposed on the plate or the housing and detecting a moving direction and a moving amount of the plate and the housing relative to the surface; a vibration element that generates vibration on the contact surface; and the contact surface A drive control unit that drives the vibration element with a drive signal that generates a natural vibration of an ultrasonic band, and the intensity of the natural vibration is based on the movement direction and the movement amount detected by the movement detection unit. A drive control unit that drives the vibration element to change.
  • An input device that can provide a good tactile sensation can be provided.
  • FIG. 1 is a perspective view of a computer system including an input device according to an embodiment. It is a block diagram explaining the structure of the principal part in the main-body part of a computer system. It is a figure which shows the internal structure of the main-body part of PC of embodiment. It is a figure which shows the structure of the input device of embodiment. It is a figure explaining the 1st operation example of the input device of an embodiment.
  • FIG. 9 shows a vibration pattern of a vibration element corresponding to the first operation example shown in FIG. 8. It is a figure which shows the data stored in memory. It is a flowchart which shows the process which an amplitude data output part performs. It is a figure explaining the 2nd operation example of the input device of an embodiment. The vibration pattern of the vibration element corresponding to the 2nd operation example shown in FIG. 12 is shown. It is a figure which shows the data stored in memory. It is a flowchart which shows the process which an amplitude data output part performs. It is a figure explaining the 3rd operation example of the input device of an embodiment. It is a figure explaining the 3rd operation example of the input device of an embodiment.
  • FIG. 1 is a side view showing an input device 100 according to the embodiment.
  • FIG. 2 is a cross-sectional view of the input device 100 shown in FIG. Below, it demonstrates using the XYZ coordinate system which is an orthogonal coordinate system shown in FIG.1 and FIG.2. 2 is a cross section parallel to the YZ plane passing through the center of the width in the X-axis direction of the input device 100 in FIG.
  • the input device 100 includes a housing 110, a wheel 111, a left button 112, a cancel button 113, a cable 114, an LED (Light Emitting Diode) 115, a sensor 116, a plate 120, a double-sided tape 130, a vibration element 140, and a control device 200. Including.
  • the input device 100 is a pointing device that is connected to an information processing device such as a PC (Personal Computer) and operates the position of a pointer displayed on a PC monitor.
  • an information processing device such as a PC (Personal Computer) and operates the position of a pointer displayed on a PC monitor.
  • the input device 100 is disposed on the surface 1A of the object 1 such as a desk or a table.
  • the surface 1A is a plane parallel to the XY plane in the XYZ coordinate system shown in FIGS.
  • the user operates the position of the pointer by moving the input device 100 with respect to the surface 1A.
  • the surface 1A may not be flat, and may not be a horizontal plane.
  • the housing 110 is a mouse-type housing, and has an opening 110A for disposing the plate 120 on the surface (bottom surface in FIGS. 1 and 2) on the Z-axis negative direction side.
  • the housing 110 holds a plate 120 disposed in the opening 110A, and the plate 120 is exposed on the surface of the housing 110 on the Z axis negative direction side.
  • a wheel 111 is provided on the surface on the Z-axis positive direction side of the housing 110, and a left button 112 and a cancel button 113 are provided on a side surface on the X-axis positive direction side. Further, an LED 115 and a sensor 116 are provided on the Y axis positive direction side of the plate 120 on the surface of the housing 110 on the Z axis negative direction side.
  • control device 200 is mounted on the wall portion 110B inside the housing 110.
  • the wall part 110B is located on the positive side of the Z axis of the opening part 110A and extends in a direction substantially parallel to the XY plane.
  • the drive control unit included in the control device 200 drives the vibration element 140 with a drive signal that causes the natural vibration of the ultrasonic band.
  • the drive control of the vibration element 140 by the drive control unit of the control device 200 will be described later with reference to FIGS.
  • the casing 110 has a shape that fits in the palm of the user except on the side where the opening 110A is formed.
  • the wheel 111 is an operation unit used when scrolling up and down an image displayed on a PC monitor, for example.
  • the left button 112 is a button that is pressed when performing selection or determination, for example.
  • the input device 100 may have a right button provided on the side surface on the X-axis negative direction side.
  • the right button is, for example, a button that is pressed when displaying a menu on the monitor.
  • the cancel button 113 is a button that is pressed when driving the vibration element 140 is stopped.
  • the input device 100 causes the vibration element 140 to vibrate with a drive signal that causes the natural vibration of the ultrasonic band.
  • the input device 100 switches the on / off of the vibration element 140 according to the position of the pointer displayed on the monitor and the temporal change in the position, but when the cancel button 113 is pressed, the vibration element 140 is forcibly turned off. To be.
  • the cable 114 is a cable for connecting the input device 100 to a PC, and has, for example, a USB (Universal Serial Bus) connector at the tip.
  • USB Universal Serial Bus
  • the LED 115 and the sensor 116 are an example of a movement detection unit that detects a movement direction and a movement amount of the input device 100.
  • the sensor 116 is, for example, an image sensor, and detects a moving direction and a moving amount of the input device 100 by reading a pattern on the surface of an object irradiated with laser light from the LED 115.
  • the plate 120 is bonded to the housing 110 with a double-sided tape 130 so as to be exposed to the surface on the Z-axis negative direction side from an opening 110A provided on the surface on the Z-axis negative direction side of the housing 110. Since the plate 120 is located on the bottom surface of the input device 100, it can be handled as a bottom plate or a bottom panel.
  • the plate 120 is a thin flat plate member that is rectangular in plan view, and is made of metal, resin, ceramic, or the like.
  • a surface 120 ⁇ / b> A (surface on the negative Z-axis direction side) 120 ⁇ / b> A of the plate 120 is a surface that contacts the surface 1 ⁇ / b> A of the object 1.
  • the vibration element 140 is bonded to the surface on the Z axis positive direction side, and four sides in the XY plan view are bonded to the casing 110 by the double-sided tape 130.
  • the double-sided tape 130 only needs to be able to bond the four sides of the plate 120 to the housing 110, and does not need to be rectangular in a plan view.
  • another panel or a protective film may be provided on the surface 120A of the plate 120.
  • the surface 120A of the plate 120 comes into contact with the surface 1A of the object 1 via another panel or a protective film.
  • the plate 120 vibrates when the vibration element 140 is driven in a state where the vibration element 140 is bonded to the surface on the positive side of the Z axis.
  • the plate 120 is vibrated at the natural vibration frequency of the plate 120 to generate a standing wave in the plate 120.
  • the vibration element 140 since the vibration element 140 is bonded to the plate 120, it is actually preferable to determine the natural vibration frequency in consideration of the weight of the vibration element 140 and the like.
  • the vibration element 140 is bonded along the short side extending in the X-axis direction on the Y-axis negative direction side of the surface of the plate 120 on the Z-axis positive direction side.
  • the vibration element 140 may be an element that can generate vibrations in an ultrasonic band.
  • an element including a piezoelectric element such as a piezoelectric element can be used.
  • a piezoelectric element is an element that vibrates in a three-dimensional direction.
  • the vibration element 140 is driven by a drive signal output from the drive control unit of the control device 200.
  • the amplitude (intensity) and frequency of vibration generated by the vibration element 140 are set by the drive signal. Further, on / off of the vibration element 140 is controlled by a drive signal.
  • an ultrasonic band means a frequency band about 20 kHz or more, for example.
  • the frequency at which the vibration element 140 vibrates is equal to the frequency of the plate 120, so that the vibration element 140 is driven by a drive signal so as to vibrate at the natural frequency of the plate 120. .
  • the drive control unit of the control device 200 drives the vibration element 140 to move the plate 120. Vibrate at ultrasonic frequency.
  • the frequency of this ultrasonic band is a resonance frequency of a resonance system including the plate 120 and the vibration element 140 and causes the plate 120 to generate a standing wave.
  • the input device 100 provides a tactile sensation to the user through the casing 110 by generating a standing wave in the ultrasonic band.
  • FIG. 3 is a diagram showing a wave front formed in parallel to the short side of the plate 120 among the standing waves generated in the plate 120 by the natural vibration of the ultrasonic band
  • FIG. B is a perspective view.
  • 3A and 3B XYZ coordinates similar to those in FIGS. 1 and 2 are defined.
  • the amplitude of the standing wave is exaggerated for easy understanding.
  • the vibration element 140 is omitted in FIGS.
  • the natural frequency (resonance) of the plate 120 is obtained.
  • the frequency f is expressed by the following equations (1) and (2). Since the standing wave has the same waveform in units of 1 ⁇ 2 period, the number of periods k takes values in increments of 0.5, which are 0.5, 1, 1.5, 2.
  • 3A and 3B are waveforms when the number of periods k is 5, as an example.
  • the period number k is 5.
  • the natural frequency f is 33.5 [kHz].
  • a drive signal having a frequency of 33.5 [kHz] may be used.
  • the plate 120 is a flat plate member.
  • the vibration element 140 see FIGS. 1 and 2
  • the plate 120 is shown in FIGS. In this way, a standing wave is generated on the surface.
  • one vibration element 140 is bonded along the short side extending in the X-axis direction on the Y-axis negative direction side on the surface of the plate 120 on the Z-axis positive direction side.
  • Two vibration elements 140 may be used.
  • another vibration element 140 is bonded to the surface on the Z-axis positive direction side of the plate 120 along the short side extending in the X-axis direction on the Y-axis positive direction side.
  • the two vibration elements 140 may be arranged so as to be axially symmetric with respect to a center line parallel to the two short sides of the plate 120.
  • the two vibration elements 140 when the two vibration elements 140 are driven, they may be driven with the same phase when the number of periods k is an integer, and with opposite phases when the number of periods k is a decimal (a number including an integer part and a decimal part). It can be driven by.
  • FIG. 4 is a perspective view of a computer system including the input device 100 according to the embodiment.
  • a computer system 10 shown in FIG. 4 includes a main body 11, a display panel 12, a keyboard 13, an input device 100, and a modem 15.
  • the main body 11, the display panel 12, and the keyboard 13 are handled as a PC.
  • the main unit 11 includes a CPU (Central Processing Unit), an HDD (Hard Disk Drive), a disk drive, and the like.
  • the display panel 12 displays various images and the like according to instructions from the main body unit 11.
  • the display panel 12 may be a liquid crystal monitor, for example.
  • the keyboard 13 is an input unit for inputting various information to the computer system 10.
  • the input device 100 is an input unit that designates an arbitrary position such as a pointer displayed on the display panel 12.
  • the modem 15 accesses an external database or the like and downloads a program or the like stored in another computer system.
  • An application program for using the input device 100 is stored in a portable recording medium such as a disk 17 or downloaded from a recording medium 16 of another computer system using a communication device such as a modem 15. To be compiled.
  • the application program for using the input device 100 may be stored in a computer-readable recording medium such as the disk 17.
  • the computer-readable recording medium is limited to a portable recording medium such as a disk 17, an IC card memory, a magnetic disk such as a floppy (registered trademark) disk, a magneto-optical disk, a CD-ROM, or a USB (Universal Serial Bus) memory. It is not something.
  • the computer-readable recording medium includes various recording media accessible by a computer system connected via a communication device such as a modem 15 or a LAN.
  • FIG. 5 is a block diagram illustrating a configuration of a main part in the main body 11 of the computer system 10.
  • the main body 11 includes a CPU 21 connected by a bus 20, a memory unit 22 including a RAM or a ROM, a disk drive 23 for the disk 17, and a hard disk drive (HDD) 24.
  • the display panel 12, the keyboard 13, and the input device 100 are connected to the CPU 21 via the bus 20, but they may be directly connected to the CPU 21.
  • the display panel 12 may be connected to the CPU 21 via a known graphic interface (not shown) that processes input / output image data.
  • computer system 10 is not limited to the configuration shown in FIGS. 4 and 5, and various well-known elements may be added or alternatively used.
  • FIG. 6 is a diagram illustrating an internal configuration of the main body 11 of the PC according to the embodiment.
  • the main body unit 11 includes a control unit 510, an application processor 520, a communication unit 530, an amplitude data output unit 540, and a memory 550. Further, a display panel 12 and a driver IC 12B are connected to the main body 11.
  • the control unit 510, the application processor 520, and the amplitude data output unit 540 represent functional blocks realized by a CPU (Central Processing Unit) chip included in the main body unit 11.
  • CPU Central Processing Unit
  • the display panel 12, the input device 100, and the modem 15 are omitted.
  • the driver IC 12B, the control unit 510, the application processor 520, the communication unit 530, the amplitude data output unit 540, and the memory 550 will be described.
  • the driver IC 12B is connected to the display panel 12, inputs the drawing data output from the application processor 520 to the display panel 12, and causes the display panel 12 to display an image based on the drawing data. As a result, a GUI operation unit or an image based on the drawing data is displayed on the display panel 12.
  • the control unit 510 is a control unit that controls all processes executed by the main body unit 11. Here, in particular, a method of obtaining the position of the pointer displayed on the display panel 12 among the functions of the control unit 510 will be described.
  • the control unit 510 obtains the position of the pointer displayed on the display panel 12 based on the data representing the movement amount and movement direction of the input device 100 input from the input device 100 via the communication unit 530.
  • Control unit 510 is an example of a pointer control unit.
  • the position of the symbol in the text displayed on the display panel 12 is specified by, for example, an OS (Operating System) installed in the PC.
  • OS Operating System
  • the symbol is a generic name including characters, numbers, pictograms, emoticons, and other symbols.
  • the characters are characters used for writing hiragana, katakana, kanji, alphabets, and other languages.
  • the position of the symbol for which the hyperlink is set is specified by the OS installed in the PC.
  • a symbol for which a hyperlink is set is an example of a predetermined symbol.
  • the OS determines whether the pointer is touching a symbol for which a hyperlink is set. When the pointer touches a symbol for which a hyperlink is set, the OS outputs a signal indicating that the pointer is touched.
  • Application processor 520 performs processing for executing various applications of main unit 11.
  • the communication unit 530 is an interface connected to the cable 114 when the main body unit 11 and the input device 100 are connected by the cable 114. Further, when the main body unit 11 and the input device 100 are connected by wireless communication, the communication unit 530 is a communication unit for short-range communication such as Bluetooth (registered trademark), for example.
  • the amplitude data output unit 540 generates amplitude data representing the amplitude value of the drive signal used for driving the vibration element 140.
  • the amplitude value is set according to the degree of temporal change in the position of the input device 100.
  • the drive control device 300 vibrates the plate 120 in order to change the dynamic friction force applied to the plate 120 when the input device 100 moves along the surface 1A of the object 1. Since the dynamic friction force is generated when the plate 120 is moving, the amplitude data output unit 540 is for causing the vibration element 140 to vibrate when the moving speed of the input device 100 exceeds a predetermined threshold speed. Outputs amplitude data.
  • the amplitude value represented by the amplitude data output from the amplitude data output unit 540 is zero when the moving speed is less than the predetermined threshold speed, and is predetermined according to the moving speed when the moving speed is equal to or higher than the predetermined threshold speed. Is set to the amplitude value.
  • the amplitude data output unit 540 outputs amplitude data when the control unit 510 touches a predetermined symbol that should generate vibration or is within a predetermined area.
  • the amplitude data output unit 540 outputs the amplitude data of the vibration pattern assigned to the hyperlink. Output.
  • the amplitude data output unit 540 outputs amplitude data of the vibration pattern assigned to the GUI operation unit or the like when the pointer is inside the display area such as the GUI operation unit or the like.
  • the position on the display panel 12 such as a GUI operation unit to be displayed on the display panel 12 and an area for displaying other images is specified by area data representing the area.
  • the area data exists for areas representing all GUI operation units and the like displayed on the display panel 12 in all applications.
  • the amplitude data output unit 540 determines whether or not the position of the pointer input from the control unit 510 is within a predetermined region where vibration is to be generated, using the region data.
  • Data that associates data representing the type of application, area data representing a GUI operation unit or the like on which an operation input is performed, and pattern data representing a vibration pattern is stored in the memory 550.
  • the amplitude data output unit 540 outputs the amplitude data generated as described above to the input device 100 via the communication unit 530. As a result, in the input device 100, the vibration element 140 is driven by a drive signal based on the amplitude data.
  • the memory 550 stores data and programs necessary for the application processor 520 to execute the application, data and programs necessary for the communication processing by the communication unit 530, and the like.
  • FIG. 7 is a diagram illustrating a configuration of the input device 100 according to the embodiment.
  • the input device 100 includes a vibration element 140, an amplifier 141, a cancel button 113, and a control device 200.
  • the control device 200 includes a control unit 210, a movement detection unit 220, a communication unit 230, a drive control unit 240, a sine wave generator 310, and an amplitude modulator 320. In FIG. 7, the components of the input device 100 other than these are omitted.
  • control unit 210, the movement detection unit 220, and the drive control unit 240 are realized by, for example, an IC chip. Note that the control unit 210, the movement detection unit 220, and the drive control unit 240 may be configured with one IC chip, or may be configured with different IC chips.
  • the amplifier 141 is disposed between the amplitude modulator 320 and the vibration element 140 and drives the vibration element 140 by amplifying the drive signal output from the amplitude modulator 320.
  • the control unit 210 transmits data representing the operation amount of the wheel 111 to the main body unit 11 through the communication unit 230. Further, the control unit 210 controls the lighting of the LED 115.
  • the movement detection unit 220 detects the movement direction and movement amount of the input device 100 based on data input from the sensor 116.
  • the movement detection unit 220 analyzes an image input from the sensor 116 and detects a movement direction and a movement amount of the input device 100.
  • the interface is connected to the cable 114.
  • the communication unit 230 is a communication unit for near field communication such as Bluetooth, for example.
  • the communication unit 230 transmits data representing the operation amount of the wheel 111 output from the control unit 210 to the main body unit 11.
  • the communication unit 230 transmits data representing the movement direction and the movement amount detected by the movement detection unit 220 to the main body unit 11.
  • the communication unit 230 transmits the drive signal transmitted from the main body unit 11 to the drive control unit 240.
  • the drive control unit 240 drives the vibration element 140 using the drive signal transmitted from the main body unit 11.
  • the drive signal is data in which amplitude data for modulating the amplitude of the sine wave signal of the ultrasonic band input from the sine wave generator 310 is arranged in time series.
  • the amplitude data is data in which data representing the amplitude of the modulated drive signal is arranged in time series.
  • the cancel button 113 is an operation unit that forcibly turns off the driving of the vibration element 140 by the drive control unit 240.
  • the amplitude data output from the drive control unit 240 is set to zero. Further, instead of setting the amplitude data output by the drive control unit 240 to zero, the drive control unit 240 may not output the amplitude data.
  • the sine wave generator 310 generates a sine wave necessary for generating a drive signal for vibrating the plate 120 at the natural frequency. For example, when the plate 120 is vibrated at a natural frequency f of 33.5 [kHz], the frequency of the sine wave is 33.5 [kHz].
  • the sine wave generator 310 inputs an ultrasonic band sine wave signal to the amplitude modulator 320.
  • the amplitude modulator 320 modulates the amplitude of the sine wave signal input from the sine wave generator 310 using the amplitude data input from the drive control unit 240 to generate a drive signal.
  • the amplitude modulator 320 modulates only the amplitude of the sine wave signal in the ultrasonic band input from the sine wave generator 310, and generates the drive signal without modulating the frequency and phase.
  • the drive signal output by the amplitude modulator 320 is an ultrasonic band sine wave signal obtained by modulating only the amplitude of the ultrasonic band sine wave signal input from the sine wave generator 310. Note that when the amplitude data is zero, the amplitude of the drive signal is zero. This is equivalent to the amplitude modulator 320 not outputting a drive signal.
  • FIG. 8 is a diagram illustrating a first operation example of the input device 100 according to the embodiment.
  • FIG. 9 shows a vibration pattern of the vibration element 140 corresponding to the first operation example shown in FIG.
  • FIG. 8 shows text displayed on the display panel 12. A hyperlink is set in a part of the text.
  • the text shown in FIG. 8 is quoted from the English version of Wikipedia (Olympic Games (May 26, 2015, 2:10 UTC) Wikipedia: The Free Encyclopedia. Retrieved from http://en.wikipedia.org/wiki / Olympic_Games).
  • FIG. 8 a word for which no hyperlink is set is shown in black, and a word for which a hyperlink is set is shown in gray.
  • the pointer 12A moves in the image displayed on the display panel 12 when the user moves the input device 100 on the surface 1A of the object 1 (see FIGS. 1 and 2).
  • the pointer 12A touches “Ancient” of the word “Ancient Olympic Games” for which a hyperlink is set. More specifically, as indicated by an upward arrow, the pointer 12A approaches from the lower side of “Ancient” and starts to touch at time t11.
  • the vibration pattern of the drive signal for driving the vibration element 140 changes from zero to A1 at time t11 as shown in FIG. 9, and a very short time has elapsed.
  • This is a vibration pattern in which the amplitude becomes zero at time t12.
  • the vibration pattern shown in FIG. 9 is represented by, for example, data in which data representing amplitudes are arranged in time series. That is, the vibration pattern shown in FIG. 9 is given by envelopes of a plurality of amplitude data representing amplitudes arranged in time series.
  • the vibration element 140 When the vibration element 140 is driven with the vibration pattern as shown in FIG. 9, the natural vibration of the ultrasonic band is generated on the plate 120 at the time t11, and the natural vibration of the ultrasonic band is not generated at the time t12.
  • the user who operates the input device 100 has a feeling that the input device 100 becomes slippery with respect to the surface 1A due to the decrease in the dynamic friction force at time t11, and the input device 100 is exposed to the surface due to the increase in the dynamic friction force at time t12. Get a feel that is less slippery than 1A.
  • the input device 100 becomes slippery with respect to the surface 1A, and vibration does not occur at time t12 immediately after time t11. Then, due to the increase of the dynamic friction force, the input device 100 is less likely to slip with respect to the surface 1A.
  • the input device 100 easily slides on the surface 1A for a moment, and immediately thereafter (time t12), the input device 100 slips on the surface 1A.
  • the user's hand is provided with a tactile sensation as if the input device 100 hit the projection. Thereby, the user can perceive with tactile sensation that the pointer 12A has reached the word for which the hyperlink is set.
  • the amplitude data output unit 540 of the main body 11 (see FIG. 4) of the computer system 10 transmits the amplitude data stored in the memory 550 to the input device 100. Then, the drive control unit 240 of the input device 100 outputs amplitude data to the amplitude modulator 320, and the amplitude modulator 320 amplitude-modulates the sine wave signal of the ultrasonic band output from the sine wave generator 310 with the amplitude data. Thus, a drive signal is generated, and the vibration element 140 is driven by the drive signal.
  • time t12 represents the timing at which the driving of the vibrating element 140 is turned off after the vibrating element 140 is driven at time t11. That is, the vibration element 140 is turned on during a period from time t11 to time t12.
  • the period during which the vibration element 140 is turned on may be set as appropriate according to the application. For this reason, the timing of the time t12 with respect to the time t11 is determined by the period during which the vibration element 140 is turned on.
  • FIG. 10 is a diagram showing data stored in the memory 550.
  • the data stored in the memory 550 is data in which data representing the type of application is associated with pattern data representing a vibration pattern.
  • Shows application ID (Identification) as data indicating the type of application.
  • P1 to P5 are shown as pattern data representing the vibration pattern.
  • the pattern data representing the vibration pattern includes data representing the amplitude, and represents, for example, the vibration pattern shown in FIG.
  • the application represented by the application ID includes any application that can be used on a smartphone terminal or a tablet computer.
  • FIG. 11 is a flowchart showing processing executed by the amplitude data output unit 540.
  • the processing shown in FIG. 11 can be executed by installing an application program for using the input device 100 in the computer system 10 main body 11 (see FIG. 6).
  • the OS (Operating System) of the main body 11 executes control for driving the main body 11 at every predetermined control cycle. For this reason, the amplitude data output unit 540 performs calculation every predetermined control period.
  • the OS of the main body 11 determines whether or not the pointer 12A touches a word for which a hyperlink is set.
  • the OS outputs a signal (hyperlink contact signal) indicating that the pointer is touched.
  • Such processing is executed by the control unit 510 of the main body unit 11.
  • Control unit 510 inputs a hyperlink contact signal to amplitude data output unit 540.
  • the amplitude data output unit 540 starts the process when the main unit 11 is turned on.
  • the amplitude data output unit 540 determines whether a hyperlink contact signal is input (step S1).
  • the amplitude data output unit 540 determines that the hyperlink contact signal is input in step S1 (S1: YES)
  • the amplitude data output unit 540 reads the amplitude data from the memory 550 and sets the amplitude value (step S2A).
  • the amplitude data output unit 540 outputs the amplitude data in which the amplitude value is set in step S2A (step S3).
  • amplitude data is transmitted from the amplitude data output unit 540 to the input device 100, and the amplitude modulator 320 modulates the amplitude of the sine wave output from the sine wave generator 310 to generate a drive signal, and the vibration element 140 is driven.
  • step S1 determines whether hyperlink contact signal is input (S1: NO)
  • the amplitude data output unit 540 sets the amplitude value to zero (step S2B).
  • the amplitude data output unit 540 outputs amplitude data having an amplitude value of zero, and the amplitude modulator 320 generates a drive signal in which the amplitude of the sine wave output from the sine wave generator 310 is modulated to zero. . For this reason, in this case, the vibration element 140 is not driven.
  • the pointer 12A touches a word for which a hyperlink is set
  • the user's hand is provided with a tactile sensation as if the input device 100 hit the protrusion.
  • the user can perceive with tactile sensation that the pointer 12A has reached the word for which the hyperlink is set.
  • the pointer 12A can be set to any word other than the word for which the hyperlink is set.
  • the vibration element 140 may be driven when the angle reaches.
  • FIG. 12 is a diagram illustrating a second operation example of the input device 100 according to the embodiment.
  • FIG. 13 shows a vibration pattern of the vibration element 140 corresponding to the second operation example shown in FIG.
  • FIG. 12 shows icons displayed on the display panel 12.
  • the pointer 12A passes through the icon 12C. More specifically, as indicated by a right-pointing arrow, it is assumed that the pointer 12A starts approaching and touching from the left side of the icon 12C at time t21 and finishes touching the icon 12C at time t22.
  • the vibration pattern of the drive signal for driving the vibration element 140 changes from zero to B1 at time t21 and zero at time t12, as shown in FIG.
  • the vibration pattern becomes
  • the vibration element 140 When the vibration element 140 is driven in this way, the natural vibration of the ultrasonic band is generated on the plate 120 at the time t21, and the natural vibration of the ultrasonic band is not generated at the time t22.
  • the input device 100 becomes slippery with respect to the surface 1A, and when the pointer 12 goes out of the display area of the icon 12C at time t22. Due to the increase of the dynamic friction force, the input device 100 is less likely to slip with respect to the surface 1A.
  • the input device 100 becomes slippery with respect to the surface 1A, and a tactile sensation that makes the input device 100 slippery is provided to the user's hand. .
  • the user can perceive the tactile sensation that the pointer 12 has entered the display area of the icon 12C.
  • the input device 100 becomes slippery with respect to the surface 1A, and a tactile sensation that makes the input device 100 slippery is provided to the user's hand. . Thereby, the user can perceive by touch that the pointer 12 is in the display area of the icon 12C.
  • the input device 100 is difficult to slip with respect to the surface 1A, so that the input device 100 hits the protrusion on the user's hand.
  • a tactile sensation is provided.
  • the user can perceive the tactile sensation that the pointer 12 has left the display area of the icon 12C.
  • the amplitude data output unit 540 of the main body 11 (see FIG. 4) of the computer system 10 transmits the amplitude data stored in the memory 550 to the input device 100. Then, the drive control unit 240 of the input device 100 inputs the amplitude data to the amplitude modulator 320, and the amplitude modulator 320 generates a drive signal by amplitude-modulating the sine wave signal of the ultrasonic band with the amplitude data. The vibration element 140 is driven by this drive signal. As described above, drive control of the vibration element 140 is realized.
  • FIG. 14 is a diagram showing data stored in the memory 550.
  • the data stored in the memory 550 is data in which data representing the type of application, area data representing the display area of the icon 12C, and pattern data representing the vibration pattern are associated with each other.
  • the area data exists for all GUI operation units displayed on the display panel 12, an area for displaying an image, or an area representing the entire page.
  • Shows the application ID as data indicating the type of application.
  • equations f1 to f5 representing the coordinate values of the area in which the GUI operation unit or the like where the operation input is performed are displayed are shown.
  • Q1 to Q5 are shown as pattern data representing the vibration pattern.
  • the pattern data representing the vibration pattern includes data representing the amplitude, and represents, for example, the vibration pattern shown in FIG.
  • the application represented by the application ID includes any application that can be used on a smartphone terminal or a tablet computer.
  • FIG. 15 is a flowchart showing processing executed by the amplitude data output unit 540.
  • the OS (Operating System) of the main body 11 executes control for driving the main body 11 at every predetermined control cycle. For this reason, the amplitude data output unit 540 performs calculation every predetermined control period.
  • the OS of the main body 11 determines whether the pointer 12A is touching the display area of the icon 12C. When the pointer 12A touches the display area of the icon 12C, the OS outputs a signal indicating that the pointer 12A is touching (icon contact signal). Such processing is executed by the control unit 510 of the main body unit 11. Control unit 510 inputs an icon contact signal to amplitude data output unit 540.
  • the amplitude data output unit 540 starts the process when the main unit 11 is turned on.
  • the amplitude data output unit 540 acquires position data indicating the current position of the pointer 12A and area data associated with the current application type (step S21).
  • the amplitude data output unit 540 determines whether or not the current position of the pointer 12A is within the region represented by any region data (step S22).
  • the amplitude data output unit 540 determines in step S22 that the current position of the pointer 12A is within the region represented by any of the region data (S22: YES), the amplitude data output unit 540 reads the amplitude data from the memory 550 and determines the amplitude. A value is set (step S23A).
  • the amplitude data included in the vibration pattern associated with the area data of the icon 12C is read and the amplitude value is set. .
  • the amplitude data output unit 540 outputs the amplitude data set with the amplitude value in step S23A (step S24).
  • the amplitude data is transmitted from the amplitude data output unit 540 to the input device 100, and the amplitude modulator 320 modulates the amplitude of the sine wave output from the sine wave generator 310 to generate a drive signal, and the drive signal Thus, the vibration element 140 is driven.
  • step S22 if it is determined in step S22 that the current position of the pointer 12A is not within the region represented by any of the region data (S22: NO), the amplitude data output unit 540 sets the amplitude value to zero. (Step S23B).
  • the amplitude data output unit 540 outputs amplitude data whose amplitude value is zero in step S24, and the amplitude modulator 320 is a drive signal obtained by modulating the amplitude of the sine wave output from the sine wave generator 310 to zero. Is generated. In this case, the vibration element 140 is not driven.
  • the pointer 12 when the pointer 12 enters the icon 12C display area, the user's hand is provided with a tactile sensation that makes the input device 100 slippery, and the user moves the pointer 12 into the icon 12C display area. You can perceive that you have entered.
  • the pointer 12 goes out of the display area of the icon 12C, the user's hand is provided with a tactile sensation as if the input device 100 hit the protrusion. It can be perceived by touch that the user has left the display area.
  • the vibration element 140 may be driven according to the positional relationship with the pointer 12A.
  • FIG. 16 and 17 are diagrams illustrating a third operation example of the input device 100 according to the embodiment.
  • FIG. 18 is a diagram illustrating a vibration pattern of the vibration element 140 corresponding to the third operation example illustrated in FIG. 16.
  • FIG. 16 illustrates a case where the image on the display panel 12 is scrolled.
  • the image on the display panel 12 can be scrolled by moving the scroll bar 12D shown in FIG. 16 up and down.
  • input is made to draw a circle.
  • the input device 100 When the input device 100 is operated to draw a circle as shown in FIG. 17 while pressing the Ctrl key, the image on the display panel 12 can be scrolled.
  • the input device 100 when the input device 100 is operated so that the pointer 12A draws a circle clockwise as shown in FIG. 17 while pressing the Ctrl key, the image on the display panel 12 can be scrolled upward.
  • the pointer 12A starts to move in a clockwise circle at time t31 while the Ctrl key is pressed, and stops at time t32.
  • the vibration pattern of the drive signal that drives the vibration element 140 is as shown in FIG.
  • the amplitude changes from zero to C1, and immediately after that, the amplitude becomes zero.
  • the vibration element 140 is driven with the amplitude C2 ( ⁇ C1).
  • the vibration element 140 When the vibration element 140 is driven in this way, the plate 120 is subjected to a natural vibration of the ultrasonic band at the time t31 when the scroll operation is started, and reaches a predetermined operation amount until the scroll operation is finished at the time t32. Each time it reaches, the vibration element 140 is driven with the amplitude C2 ( ⁇ C1).
  • the input device 100 becomes slippery from the slippery state with respect to the surface 1A.
  • the user's hand is provided with a tactile sensation as if the input device 100 hit the projection.
  • the user can perceive that the scrolling has started by tactile sensation.
  • the vibration element 140 is driven with the amplitude C2 every time the operation amount reaches a predetermined amount. Since the amplitude C2 is smaller than the amplitude C1, every time the operation amount reaches a predetermined amount, the user's hand is provided with a tactile sensation as if the input device 100 hit a small protrusion. Thereby, the user can perceive with tactile sensation that the operation amount of the scroll operation has reached a predetermined amount.
  • FIG. 17 illustrates the case where the image on the display panel 12 can be scrolled upward by moving the pointer 12A clockwise, but the pointer 12A draws a circle counterclockwise while pressing the Ctrl key.
  • the input device 100 is operated as described above, the image on the display panel 12 can be scrolled downward.
  • the amplitude data output unit 540 of the main body 11 (see FIG. 4) of the computer system 10 transmits the amplitude data stored in the memory 550 to the input device 100. Then, the drive control unit 240 of the input device 100 outputs the amplitude data to the amplitude modulator 320, and the amplitude modulator 320 generates a drive signal using the amplitude data, whereby drive control of the vibration element 140 is realized. .
  • FIG. 19 is a diagram showing data stored in the memory 550.
  • the data stored in the memory 550 is data in which data representing the type of application, operation amount data representing a predetermined operation amount, and pattern data representing a vibration pattern are associated with each other.
  • the manipulated variable data is data representing a predetermined manipulated variable that generates a vibration having an amplitude C2 shown in FIG.
  • Shows the application ID as data indicating the type of application.
  • equations S1 to S5 representing a predetermined operation amount for generating the vibration with the amplitude C2 are shown.
  • R1 to R5 are shown as pattern data representing the vibration pattern.
  • the pattern data representing the vibration pattern includes data representing the amplitude, and represents, for example, the vibration pattern having the amplitudes C1 and C2 illustrated in FIG.
  • FIG. 20 is a flowchart showing processing executed by the amplitude data output unit 540.
  • the OS (Operating System) of the main body 11 executes control for driving the main body 11 at every predetermined control cycle. For this reason, the amplitude data output unit 540 performs calculation every predetermined control period.
  • the amplitude data output unit 540 starts the process when the main unit 11 is turned on.
  • the amplitude data output unit 540 determines whether or not the Ctrl key is pressed (step S31). This is because if the input device 100 is operated so that the pointer 12A draws a circle while the Ctrl key is pressed, the image on the display panel 12 can be scrolled upward or downward. Note that the process of step S31 is repeatedly executed until it is determined that the Ctrl key is pressed.
  • step S32 determines whether scrolling has started. Whether or not scrolling has started can be determined based on whether or not the position of the pointer 12A has moved. Note that the process of step S32 is repeatedly executed until it is determined that scrolling has started.
  • the amplitude data output unit 540 sets the amplitude value at the start of scrolling (step S33). For example, the amplitude C1 shown in FIG. 18 is set.
  • the amplitude data output unit 540 outputs the amplitude data set with the amplitude value in step S33 (step S34).
  • amplitude data is transmitted from the amplitude data output unit 540 to the input device 100, and the amplitude modulator 320 modulates the amplitude of the sine wave output from the sine wave generator 310 to generate a drive signal, and the vibration element 140 is driven.
  • the vibration element 140 is driven with the amplitude C1 shown in FIG.
  • the amplitude data output unit 540 determines whether or not the operation amount of the scroll operation has reached a predetermined operation amount (step S35).
  • the predetermined operation amount is determined in advance by operation amount data shown in FIG.
  • the amplitude data output unit 540 reads the amplitude data from the memory 550 and sets the amplitude value (step S36A).
  • the amplitude data included in the vibration pattern associated with the application ID is read and the amplitude value is Is set.
  • the amplitude data output unit 540 outputs the amplitude data for which the amplitude value is set in step S36A (step S37).
  • amplitude data is transmitted from the amplitude data output unit 540 to the input device 100, and the amplitude modulator 320 modulates the amplitude of the sine wave output from the sine wave generator 310 to generate a drive signal, and the vibration element 140 is driven.
  • step S35 determines whether the predetermined operation amount has been reached (S35: NO). If it is determined in step S35 that the predetermined operation amount has not been reached (S35: NO), the amplitude data output unit 540 sets the amplitude value to zero (step S36B).
  • the amplitude data output unit 540 outputs amplitude data having an amplitude value of zero, and the amplitude modulator 320 generates a drive signal in which the amplitude of the sine wave output from the sine wave generator 310 is modulated to zero. . For this reason, in this case, the vibration element 140 is not driven.
  • step S38 the amplitude data output unit 540 determines whether or not the scroll operation is completed. The scrolling operation ends when the position of the pointer 12A has not moved.
  • step S38 If the amplitude data output unit 540 determines that the scroll operation has not ended (S38: NO), the flow returns to step S35.
  • the vibration element 140 is driven with a large amplitude, and immediately after that, the vibration element 140 is turned off.
  • the user's hand is provided with a tactile sensation as if the input device 100 hit a relatively large protrusion.
  • the user can perceive that the scrolling has started by tactile sensation.
  • the vibration element 140 is driven with a small amplitude every time the operation amount reaches the predetermined amount. Therefore, every time the operation amount reaches the predetermined amount, the user's hand holds the input device. A tactile sensation such that 100 hits a relatively small protrusion is provided. Thereby, the user can perceive with tactile sensation that the operation amount of the scroll operation has reached a predetermined amount.
  • the amplitude C1 and the amplitude C2 are not limited to the case where the amplitude C1 is larger than the amplitude C2, as described above, and the amplitude C1 and the amplitude C2 may be equal, or the amplitude C2 may be larger than the amplitude C1. .
  • the scroll operation when the scroll operation is performed by operating the input device 100 so as to draw a circle with the Ctrl key pressed, the scroll operation is started and a predetermined operation is performed.
  • the mode in which the vibration element 140 is driven when the amount is reached has been described.
  • the vibration element 140 may be driven to provide a tactile sensation every time the amount of movement of the scroll bar 12D reaches a predetermined amount.
  • the mode in which the vibration element 140 is turned on / off when the scroll operation is performed using the input device 100 has been described.
  • the vibration element 140 is turned on / off during an operation other than the scroll operation. You may do it.
  • the input device 100 since the input device 100 according to the embodiment generates the natural vibration of the ultrasonic band on the plate 120 according to the position of the pointer 12A and the degree of movement of the position, it is favorable for the user by using the squeeze effect. A tactile sensation can be provided.
  • the input device 100 that can provide a good tactile sensation.
  • amplitude data is generated on the main body 11 side using the data stored in the memory 550, the amplitude data is transmitted to the input device 100, and the input device 100 generates a drive signal using the amplitude data.
  • the mode of driving the vibration element 140 has been described.
  • the vibration element 140 may be driven based on the movement direction and the movement amount detected by the movement detection unit 220 by the input device 100.
  • the main body 11 does not have to be involved in the drive control of the vibration element 140.
  • the vibration element 140 may be driven in a predetermined pattern, or when the input device 100 moves by a specific movement amount, the vibration element 140 may be driven in a predetermined pattern. It may be driven by.
  • FIG. 21 is a diagram illustrating a configuration of an input device 100A according to a first modification of the embodiment.
  • the input device 100A includes a vibration element 140, an amplifier 141, a cancel button 113, and a control device 200A.
  • the control device 200A includes a control unit 210, a movement detection unit 220, a communication unit 230, a drive control unit 240, a memory 250, a sine wave generator 310, and an amplitude modulator 320.
  • the input device 100A includes a control device 200A instead of the control device 200 of the input device 100 shown in FIG.
  • the control device 200A is obtained by adding a memory 250 to the control device 200 shown in FIG.
  • the input device 100A of the first modified example stores data similar to the table format data shown in FIGS. 10, 14, and 19 in the memory 250, and generates amplitude data on the input device 100A side. Is.
  • FIG. 8 is used for explanation.
  • an identifier is assigned to a word for which a hyperlink is set.
  • an identifier assigned by the OS can be used.
  • FIG. 22 is a diagram showing data stored in the memory 250.
  • the data stored in the memory 250 is data in which data representing the type of application, link ID, and pattern data representing a vibration pattern are associated with each other.
  • the link ID is an identifier assigned to a word for which a hyperlink is set.
  • the link ID is output by the control unit 510 as an example of an identifier output unit.
  • the amplitude data output unit 540 of the main body unit 11 transmits the link ID of the hyperlink touched by the pointer 12A to the input device 100A, and the drive control unit 240 refers to the data (FIG. 22) stored in the memory 250, and the application ID The vibration pattern corresponding to the link ID is read out. Then, the amplitude data included in the vibration pattern is output to the amplitude modulator 320. As a result, the vibration element 140 is driven by the drive signal output from the amplitude modulator 320.
  • table format data including vibration patterns may be stored in the memory 250 of the input device 100A.
  • the driving method of the vibration element 140 is the same as the first operation example described above, according to the first modification, it is possible to provide the input device 100A that can provide a good tactile sensation.
  • FIG. 23 is a diagram showing a main body 11A of a second modification of the embodiment.
  • the main body 11A has a configuration in which the amplitude data output unit 540 is removed from the main body 11 shown in FIG.
  • the main body 11A is used in combination with the input device 100A of the first modification.
  • the main body 11A transmits the hyperlink contact signal and the coordinates of the pointer 12A to the input device 100A. Then, the input device 100A drives the vibration element 140 by executing the process shown in FIG. 11 based on the hyperlink contact signal. Further, the input device 100A executes the process shown in FIG. 15 using the coordinates of the pointer 12A. Also, the input device 100A executes the process shown in FIG. 20 using the coordinates of the pointer 12A.
  • the driving method of the vibration element 140 is the same as that of the first modification described above, according to the second modification, it is possible to provide the input device 100A that can provide a good tactile sensation.
  • Input device 110 Case 111 Wheel 112 Left button 113 Cancel button 114 Cable 115 LED DESCRIPTION OF SYMBOLS 116 Sensor 120 Plate 130 Double-sided tape 140 Vibration element 200
  • Control apparatus 210 Control part 220 Movement detection part 230 Communication part 240 Drive control part 310 Sine wave generator 320 Amplitude modulator 10 Computer system 11 Main body part 12 Display panel 13 Keyboard 15 Modem 510 Control unit 520 Application processor 530 Communication unit 540 Amplitude data output unit 550 Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Position Input By Displaying (AREA)

Abstract

The present invention provides an input device with which it is possible to provide an excellent sense of touch. The input device includes: a plate having a contact surface that comes in contact with the surface of an object; a mouse-type enclosure for holding the plate with the contact surface exposed to the outside, the enclosure being touchable by the hand of a user; a movement detection part, disposed in the plate or the enclosure, for detecting the direction of movement and the amount of movement of the plate and the enclosure with respect to the surface; a vibration element for generating vibration on the contact surface; and a drive control part for driving the vibration element using a drive signal for causing natural vibration of an ultrasonic band to be generated on the contact face, the drive control part driving the vibration element on the basis of the direction of movement and the amount of movement detected by the movement detection part so as to cause the strength of the natural vibration to change.

Description

入力装置Input device
 本発明は、入力装置に関する。 The present invention relates to an input device.
 従来より、筐体の底部にアクチュエータを配置し、筐体に振動を発生させる、触感フィードバック型のマウスがある。アクチュエータは、筐体の内部で、筐体の底部の壁部に配置されている。アクチュエータは、リニア電磁アクチュエータであり、筐体に固定される固定部と、可動部と、可動部の上端に取り付けられる慣性おもりとを有する。アクチュエータは、筐体の底部の厚さ方向(Z軸方向)に振動する(例えば、特許文献1参照)。 Conventionally, there is a tactile feedback type mouse in which an actuator is arranged at the bottom of the casing to generate vibration in the casing. The actuator is disposed on the wall portion at the bottom of the casing inside the casing. The actuator is a linear electromagnetic actuator and has a fixed portion fixed to the housing, a movable portion, and an inertia weight attached to the upper end of the movable portion. The actuator vibrates in the thickness direction (Z-axis direction) of the bottom of the housing (see, for example, Patent Document 1).
米国特許第6,211,861号明細書U.S. Patent No. 6,211,861
 ところで、従来のマウスは、上述のようなリニア電磁アクチュエータで筐体の全体を振動させているため、触感が良好ではない。 By the way, since the conventional mouse vibrates the whole case with the linear electromagnetic actuator as described above, the tactile sensation is not good.
 そこで、良好な触感を提供できる入力装置を提供することを目的とする。 Therefore, an object is to provide an input device that can provide a good tactile sensation.
 本発明の実施の形態の入力装置は、物体の表面に接する接触面を有するプレートと、前記接触面を表出させて前記プレートを保持し、利用者が手で触れるマウス型の筐体と、前記プレート又は前記筐体に配設され、前記表面に対する前記プレート及び前記筐体の移動方向及び移動量を検出する移動検出部と、前記接触面に振動を発生させる振動素子と、前記接触面に超音波帯の固有振動を発生させる駆動信号で前記振動素子を駆動する駆動制御部であって、前記移動検出部によって検出される前記移動方向及び前記移動量に基づいて、前記固有振動の強度が変化するように前記振動素子を駆動する駆動制御部とを含む。 An input device according to an embodiment of the present invention includes a plate having a contact surface in contact with the surface of an object, a mouse-type housing that exposes the contact surface to hold the plate, and is touched by a user with a hand, A movement detecting unit disposed on the plate or the housing and detecting a moving direction and a moving amount of the plate and the housing relative to the surface; a vibration element that generates vibration on the contact surface; and the contact surface A drive control unit that drives the vibration element with a drive signal that generates a natural vibration of an ultrasonic band, and the intensity of the natural vibration is based on the movement direction and the movement amount detected by the movement detection unit. A drive control unit that drives the vibration element to change.
 良好な触感を提供できる入力装置を提供することができる。 An input device that can provide a good tactile sensation can be provided.
実施の形態の入力装置を示す側面図である。It is a side view which shows the input device of embodiment. 図1に示す入力装置の断面図である。It is sectional drawing of the input device shown in FIG. 超音波帯の固有振動によってプレートに生じる定在波のうち、プレートの短辺に平行に形成される波頭を示す図である。It is a figure which shows the wave front formed in parallel with the short side of a plate among the standing waves which arise in a plate by the natural vibration of an ultrasonic band. 実施の形態の入力装置を含むコンピュータシステムの斜視図である。1 is a perspective view of a computer system including an input device according to an embodiment. コンピュータシステムの本体部内の要部の構成を説明するブロック図である。It is a block diagram explaining the structure of the principal part in the main-body part of a computer system. 実施の形態のPCの本体部の内部構成を示す図である。It is a figure which shows the internal structure of the main-body part of PC of embodiment. 実施の形態の入力装置の構成を示す図である。It is a figure which shows the structure of the input device of embodiment. 実施の形態の入力装置の第1の動作例を説明する図である。It is a figure explaining the 1st operation example of the input device of an embodiment. 図8に示す第1の動作例に対応する振動素子の振動パターンを示す。9 shows a vibration pattern of a vibration element corresponding to the first operation example shown in FIG. 8. メモリに格納されるデータを示す図である。It is a figure which shows the data stored in memory. 振幅データ出力部が実行する処理を示すフローチャートである。It is a flowchart which shows the process which an amplitude data output part performs. 実施の形態の入力装置の第2の動作例を説明する図である。It is a figure explaining the 2nd operation example of the input device of an embodiment. 図12に示す第2の動作例に対応する振動素子の振動パターンを示す。The vibration pattern of the vibration element corresponding to the 2nd operation example shown in FIG. 12 is shown. メモリに格納されるデータを示す図である。It is a figure which shows the data stored in memory. 振幅データ出力部が実行する処理を示すフローチャートである。It is a flowchart which shows the process which an amplitude data output part performs. 実施の形態の入力装置の第3の動作例を説明する図である。It is a figure explaining the 3rd operation example of the input device of an embodiment. 実施の形態の入力装置の第3の動作例を説明する図である。It is a figure explaining the 3rd operation example of the input device of an embodiment. 図16に示す第3の動作例に対応する振動素子の振動パターンを示す図である。It is a figure which shows the vibration pattern of the vibration element corresponding to the 3rd operation example shown in FIG. メモリに格納されるデータを示す図である。It is a figure which shows the data stored in memory. 振幅データ出力部が実行する処理を示すフローチャートである。It is a flowchart which shows the process which an amplitude data output part performs. 実施の形態の第1変形例の入力装置の構成を示す図である。It is a figure which shows the structure of the input device of the 1st modification of embodiment. メモリに格納されるデータを示す図である。It is a figure which shows the data stored in memory. 実施の形態の第2変形例の本体部を示す図である。It is a figure which shows the main-body part of the 2nd modification of embodiment.
 以下、本発明の入力装置を適用した実施の形態について説明する。 Hereinafter, embodiments to which the input device of the present invention is applied will be described.
 <実施の形態>
 図1は、実施の形態の入力装置100を示す側面図である。図2は、図1に示す入力装置100の断面図である。以下では、図1及び図2に示す直交座標系であるXYZ座標系を用いて説明する。図2は、図1における入力装置100のX軸方向の幅の中心を通るYZ平面に平行な断面である。
<Embodiment>
FIG. 1 is a side view showing an input device 100 according to the embodiment. FIG. 2 is a cross-sectional view of the input device 100 shown in FIG. Below, it demonstrates using the XYZ coordinate system which is an orthogonal coordinate system shown in FIG.1 and FIG.2. 2 is a cross section parallel to the YZ plane passing through the center of the width in the X-axis direction of the input device 100 in FIG.
 入力装置100は、筐体110、ホイール111、左ボタン112、キャンセルボタン113、ケーブル114、LED(Light Emitting Diode)115、センサ116、プレート120、両面テープ130、振動素子140、及び制御装置200を含む。 The input device 100 includes a housing 110, a wheel 111, a left button 112, a cancel button 113, a cable 114, an LED (Light Emitting Diode) 115, a sensor 116, a plate 120, a double-sided tape 130, a vibration element 140, and a control device 200. Including.
 入力装置100は、PC(Personal Computer)のような情報処理装置に接続され、PCのモニタに表示されるポインタの位置を操作するポインティングデバイスである。 The input device 100 is a pointing device that is connected to an information processing device such as a PC (Personal Computer) and operates the position of a pointer displayed on a PC monitor.
 入力装置100は、デスク又はテーブル等の物体1の表面1Aに配置される。表面1Aは、図1及び図2に示すXYZ座標系におけるXY平面に平行な面である。利用者は、表面1Aに対して入力装置100を移動することにより、ポインタの位置を操作する。なお、表面1Aは平坦ではなくてもよく、また、水平面ではなくてもよい。 The input device 100 is disposed on the surface 1A of the object 1 such as a desk or a table. The surface 1A is a plane parallel to the XY plane in the XYZ coordinate system shown in FIGS. The user operates the position of the pointer by moving the input device 100 with respect to the surface 1A. Note that the surface 1A may not be flat, and may not be a horizontal plane.
 筐体110は、マウス型の筐体であり、Z軸負方向側の面(図1及び図2における底面)側に、プレート120を配設する開口部110Aを有する。筐体110は、開口部110Aに配設されるプレート120を保持し、プレート120は筐体110のZ軸負方向側の面に表出している。 The housing 110 is a mouse-type housing, and has an opening 110A for disposing the plate 120 on the surface (bottom surface in FIGS. 1 and 2) on the Z-axis negative direction side. The housing 110 holds a plate 120 disposed in the opening 110A, and the plate 120 is exposed on the surface of the housing 110 on the Z axis negative direction side.
 筐体110のZ軸正方向側の面には、ホイール111が設けられており、X軸正方向側の側面には、左ボタン112とキャンセルボタン113が設けられている。また、筐体110のZ軸負方向側の面のプレート120のY軸正方向側には、LED115とセンサ116が設けられている。 A wheel 111 is provided on the surface on the Z-axis positive direction side of the housing 110, and a left button 112 and a cancel button 113 are provided on a side surface on the X-axis positive direction side. Further, an LED 115 and a sensor 116 are provided on the Y axis positive direction side of the plate 120 on the surface of the housing 110 on the Z axis negative direction side.
 また、筐体110の内部の壁部110Bには、制御装置200が実装されている。壁部110Bは、開口部110AのZ軸正方向側に位置し、XY平面に略平行な方向に延在している。 Further, the control device 200 is mounted on the wall portion 110B inside the housing 110. The wall part 110B is located on the positive side of the Z axis of the opening part 110A and extends in a direction substantially parallel to the XY plane.
 制御装置200に含まれる駆動制御部は、振動素子140を超音波帯の固有振動が生じる駆動信号で駆動する。制御装置200の駆動制御部による振動素子140の駆動制御については、図9乃至図20を用いて後述する。 The drive control unit included in the control device 200 drives the vibration element 140 with a drive signal that causes the natural vibration of the ultrasonic band. The drive control of the vibration element 140 by the drive control unit of the control device 200 will be described later with reference to FIGS.
 筐体110は、開口部110Aが形成される側以外では、利用者の手のひらに収まるような形状を有する。 The casing 110 has a shape that fits in the palm of the user except on the side where the opening 110A is formed.
 ホイール111は、入力装置100がPCに接続される場合は、例えば、PCのモニタに表示される画像等を上下にスクロールする際に用いる操作部である。 When the input device 100 is connected to a PC, the wheel 111 is an operation unit used when scrolling up and down an image displayed on a PC monitor, for example.
 左ボタン112は、例えば、選択又は決定を行う際に押すボタンである。なお、図1及び図2には示さないが、入力装置100は、X軸負方向側の側面に設けられる右ボタンを有していてもよい。右ボタンは、例えば、モニタにメニューを表示させる際に押すボタンである。 The left button 112 is a button that is pressed when performing selection or determination, for example. Although not shown in FIGS. 1 and 2, the input device 100 may have a right button provided on the side surface on the X-axis negative direction side. The right button is, for example, a button that is pressed when displaying a menu on the monitor.
 キャンセルボタン113は、振動素子140の駆動を停止させる際に押すボタンである。入力装置100は、振動素子140を超音波帯の固有振動が生じる駆動信号で振動させる。入力装置100は、モニタに表示されるポインタの位置と位置の時間的変化度合に応じて、振動素子140のオン/オフを切り替えるが、キャンセルボタン113を押すと、振動素子140は強制的にオフにされる。 The cancel button 113 is a button that is pressed when driving the vibration element 140 is stopped. The input device 100 causes the vibration element 140 to vibrate with a drive signal that causes the natural vibration of the ultrasonic band. The input device 100 switches the on / off of the vibration element 140 according to the position of the pointer displayed on the monitor and the temporal change in the position, but when the cancel button 113 is pressed, the vibration element 140 is forcibly turned off. To be.
 ケーブル114は、入力装置100をPCに接続するケーブルであり、先端には、例えば、USB(Universal Serial Bus)コネクタを有する。 The cable 114 is a cable for connecting the input device 100 to a PC, and has, for example, a USB (Universal Serial Bus) connector at the tip.
 LED115とセンサ116は、入力装置100の移動方向と移動量を検出する移動検出部の一例である。センサ116は、例えば、イメージセンサであり、LED115からレーザ光が照射される物体の表面の模様等を読み取ることにより、入力装置100の移動方向と移動量を検出する。 The LED 115 and the sensor 116 are an example of a movement detection unit that detects a movement direction and a movement amount of the input device 100. The sensor 116 is, for example, an image sensor, and detects a moving direction and a moving amount of the input device 100 by reading a pattern on the surface of an object irradiated with laser light from the LED 115.
 プレート120は、筐体110のZ軸負方向側の面に設けられる開口部110AからZ軸負方向側の面に表出するように、両面テープ130によって筐体110に接着されている。プレート120は、入力装置100の底面に位置するため、ボトムプレート又はボトムパネルとして取り扱うこともできる。 The plate 120 is bonded to the housing 110 with a double-sided tape 130 so as to be exposed to the surface on the Z-axis negative direction side from an opening 110A provided on the surface on the Z-axis negative direction side of the housing 110. Since the plate 120 is located on the bottom surface of the input device 100, it can be handled as a bottom plate or a bottom panel.
 プレート120は、平面視で長方形の薄い平板状の部材であり、金属、樹脂、又はセラミック等で作製される。プレート120の表面(Z軸負方向側の面)120Aは、物体1の表面1Aに当接する面である。 The plate 120 is a thin flat plate member that is rectangular in plan view, and is made of metal, resin, ceramic, or the like. A surface 120 </ b> A (surface on the negative Z-axis direction side) 120 </ b> A of the plate 120 is a surface that contacts the surface 1 </ b> A of the object 1.
 プレート120は、Z軸正方向側の面に振動素子140が接着され、XY平面視における四辺が両面テープ130によって筐体110に接着されている。なお、両面テープ130は、プレート120の四辺を筐体110に接着できればよく、平面視で矩形環状である必要はない。 In the plate 120, the vibration element 140 is bonded to the surface on the Z axis positive direction side, and four sides in the XY plan view are bonded to the casing 110 by the double-sided tape 130. The double-sided tape 130 only needs to be able to bond the four sides of the plate 120 to the housing 110, and does not need to be rectangular in a plan view.
 なお、プレート120の表面120Aに、さらに別なパネル又は保護膜等が設けられていてもよい。このような場合には、プレート120の表面120Aは、さらに別なパネル又は保護膜等を介して物体1の表面1Aに接触することになる。 In addition, another panel or a protective film may be provided on the surface 120A of the plate 120. In such a case, the surface 120A of the plate 120 comes into contact with the surface 1A of the object 1 via another panel or a protective film.
 プレート120は、Z軸正方向側の面に振動素子140が接着された状態で、振動素子140が駆動されることによって振動する。実施の形態では、プレート120の固有振動周波数でプレート120を振動させて、プレート120に定在波を生じさせる。ただし、プレート120には振動素子140が接着されているため、実際には、振動素子140の重さ等を考慮した上で、固有振動周波数を決めることが好ましい。 The plate 120 vibrates when the vibration element 140 is driven in a state where the vibration element 140 is bonded to the surface on the positive side of the Z axis. In the embodiment, the plate 120 is vibrated at the natural vibration frequency of the plate 120 to generate a standing wave in the plate 120. However, since the vibration element 140 is bonded to the plate 120, it is actually preferable to determine the natural vibration frequency in consideration of the weight of the vibration element 140 and the like.
 振動素子140は、プレート120のZ軸正方向側の面において、Y軸負方向側において、X軸方向に伸延する短辺に沿って接着されている。振動素子140は、超音波帯の振動を発生できる素子であればよく、例えば、ピエゾ素子のような圧電素子を含むものを用いることができる。圧電素子は、3次元方向に振動する素子である。 The vibration element 140 is bonded along the short side extending in the X-axis direction on the Y-axis negative direction side of the surface of the plate 120 on the Z-axis positive direction side. The vibration element 140 may be an element that can generate vibrations in an ultrasonic band. For example, an element including a piezoelectric element such as a piezoelectric element can be used. A piezoelectric element is an element that vibrates in a three-dimensional direction.
 振動素子140は、制御装置200の駆動制御部から出力される駆動信号によって駆動される。振動素子140が発生する振動の振幅(強度)及び周波数は駆動信号によって設定される。また、振動素子140のオン/オフは駆動信号によって制御される。 The vibration element 140 is driven by a drive signal output from the drive control unit of the control device 200. The amplitude (intensity) and frequency of vibration generated by the vibration element 140 are set by the drive signal. Further, on / off of the vibration element 140 is controlled by a drive signal.
 なお、超音波帯とは、例えば、約20kHz以上の周波数帯をいう。実施の形態の入力装置100では、振動素子140が振動する周波数は、プレート120の振動数と等しくなるため、振動素子140は、プレート120の固有振動数で振動するように駆動信号によって駆動される。 In addition, an ultrasonic band means a frequency band about 20 kHz or more, for example. In the input device 100 according to the embodiment, the frequency at which the vibration element 140 vibrates is equal to the frequency of the plate 120, so that the vibration element 140 is driven by a drive signal so as to vibrate at the natural frequency of the plate 120. .
 以上のような構成の入力装置100は、ポインタがモニタに表示される所定の記号又は所定のGUI操作部等に触れると、制御装置200の駆動制御部が振動素子140を駆動し、プレート120を超音波帯の周波数で振動させる。この超音波帯の周波数は、プレート120と振動素子140とを含む共振系の共振周波数であり、プレート120に定在波を発生させる。 In the input device 100 configured as described above, when the pointer touches a predetermined symbol displayed on the monitor or a predetermined GUI operation unit or the like, the drive control unit of the control device 200 drives the vibration element 140 to move the plate 120. Vibrate at ultrasonic frequency. The frequency of this ultrasonic band is a resonance frequency of a resonance system including the plate 120 and the vibration element 140 and causes the plate 120 to generate a standing wave.
 入力装置100は、超音波帯の定在波を発生させることにより、筐体110を通じて利用者に触感を提供する。 The input device 100 provides a tactile sensation to the user through the casing 110 by generating a standing wave in the ultrasonic band.
 次に、図3を用いて、プレート120に発生させる定在波について説明する。 Next, the standing wave generated in the plate 120 will be described with reference to FIG.
 図3は、超音波帯の固有振動によってプレート120に生じる定在波のうち、プレート120の短辺に平行に形成される波頭を示す図であり、図3の(A)は側面図、(B)は斜視図である。図3の(A)、(B)では、図1及び図2と同様のXYZ座標を定義する。なお、図3の(A)、(B)では、理解しやすさのために、定在波の振幅を誇張して示す。また、図3の(A)、(B)では振動素子140を省略する。 FIG. 3 is a diagram showing a wave front formed in parallel to the short side of the plate 120 among the standing waves generated in the plate 120 by the natural vibration of the ultrasonic band, and FIG. B) is a perspective view. 3A and 3B, XYZ coordinates similar to those in FIGS. 1 and 2 are defined. In FIGS. 3A and 3B, the amplitude of the standing wave is exaggerated for easy understanding. Further, the vibration element 140 is omitted in FIGS.
 プレート120のヤング率E、密度ρ、ポアソン比δ、長辺寸法l、厚さtと、長辺方向に存在する定在波の周期数kとを用いると、プレート120の固有振動数(共振周波数)fは次式(1)、(2)で表される。定在波は1/2周期単位で同じ波形を有するため、周期数kは、0.5刻みの値を取り、0.5、1、1.5、2・・・となる。 Using the Young's modulus E, density ρ, Poisson's ratio δ, long side dimension l, thickness t of the plate 120 and the standing wave period k existing in the long side direction, the natural frequency (resonance) of the plate 120 is obtained. The frequency f is expressed by the following equations (1) and (2). Since the standing wave has the same waveform in units of ½ period, the number of periods k takes values in increments of 0.5, which are 0.5, 1, 1.5, 2.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 なお、式(2)の係数αは、式(1)におけるk以外の係数をまとめて表したものである。
Figure JPOXMLDOC01-appb-M000002
Note that the coefficient α in Expression (2) collectively represents coefficients other than k 2 in Expression (1).
 図3の(A)、(B)に示す定在波は、一例として、周期数kが5の場合の波形である。例えば、プレート120として、長辺の長さlが70mm、短辺の長さが40mm、厚さtが0.7mmのGorilla(登録商標)ガラスを用いる場合には、周期数kが5の場合に、固有振動数fは33.5[kHz]となる。この場合は、周波数が33.5[kHz]の駆動信号を用いればよい。 3A and 3B are waveforms when the number of periods k is 5, as an example. For example, when Gorilla (registered trademark) glass having a long side length l of 70 mm, a short side length of 40 mm, and a thickness t of 0.7 mm is used as the plate 120, the period number k is 5. In addition, the natural frequency f is 33.5 [kHz]. In this case, a drive signal having a frequency of 33.5 [kHz] may be used.
 プレート120は、平板状の部材であるが、振動素子140(図1及び図2参照)を駆動して超音波帯の固有振動を発生させると、図3の(A)、(B)に示すように撓むことにより、表面に定在波が生じる。 The plate 120 is a flat plate member. When the vibration element 140 (see FIGS. 1 and 2) is driven to generate the natural vibration of the ultrasonic band, the plate 120 is shown in FIGS. In this way, a standing wave is generated on the surface.
 なお、ここでは、1つの振動素子140がプレート120のZ軸正方向側の面において、Y軸負方向側において、X軸方向に伸延する短辺に沿って接着される形態について説明するが、振動素子140を2つ用いてもよい。2つの振動素子140を用いる場合は、もう1つの振動素子140をプレート120のZ軸正方向側の面において、Y軸正方向側において、X軸方向に伸延する短辺に沿って接着すればよい。この場合に、2つの振動素子140は、プレート120の2つの短辺に平行な中心線を対称軸として、軸対称になるように配設すればよい。 Here, a description will be given of a form in which one vibration element 140 is bonded along the short side extending in the X-axis direction on the Y-axis negative direction side on the surface of the plate 120 on the Z-axis positive direction side. Two vibration elements 140 may be used. When two vibration elements 140 are used, another vibration element 140 is bonded to the surface on the Z-axis positive direction side of the plate 120 along the short side extending in the X-axis direction on the Y-axis positive direction side. Good. In this case, the two vibration elements 140 may be arranged so as to be axially symmetric with respect to a center line parallel to the two short sides of the plate 120.
 また、2つの振動素子140を駆動する場合は、周期数kが整数の場合は同一位相で駆動すればよく、周期数kが小数(整数部と小数部とを含む数)の場合は逆位相で駆動すればよい。 In addition, when the two vibration elements 140 are driven, they may be driven with the same phase when the number of periods k is an integer, and with opposite phases when the number of periods k is a decimal (a number including an integer part and a decimal part). It can be driven by.
 図4は、実施の形態の入力装置100を含むコンピュータシステムの斜視図である。図4に示すコンピュータシステム10は、本体部11、ディスプレイパネル12、キーボード13、入力装置100、及びモデム15を含む。ここでは、本体部11、ディスプレイパネル12、及びキーボード13をPCとして取り扱う。 FIG. 4 is a perspective view of a computer system including the input device 100 according to the embodiment. A computer system 10 shown in FIG. 4 includes a main body 11, a display panel 12, a keyboard 13, an input device 100, and a modem 15. Here, the main body 11, the display panel 12, and the keyboard 13 are handled as a PC.
 本体部11は、CPU(Central Processing Unit:中央演算装置)、HDD(Hard Disk Drive:ハードディスクドライブ)、及びディスクドライブ等を内蔵する。ディスプレイパネル12は、本体部11からの指示により様々な画像等を表示する。ディスプレイパネル12は、例えば、液晶モニタであればよい。キーボード13は、コンピュータシステム10に種々の情報を入力するための入力部である。入力装置100は、ディスプレイパネル12に表示されるポインタ等の任意の位置を指定する入力部である。モデム15は、外部のデータベース等にアクセスして他のコンピュータシステムに記憶されているプログラム等をダウンロードする。 The main unit 11 includes a CPU (Central Processing Unit), an HDD (Hard Disk Drive), a disk drive, and the like. The display panel 12 displays various images and the like according to instructions from the main body unit 11. The display panel 12 may be a liquid crystal monitor, for example. The keyboard 13 is an input unit for inputting various information to the computer system 10. The input device 100 is an input unit that designates an arbitrary position such as a pointer displayed on the display panel 12. The modem 15 accesses an external database or the like and downloads a program or the like stored in another computer system.
 入力装置100を利用するためのアプリケーションプログラムは、ディスク17等の可搬型記録媒体に格納されるか、モデム15等の通信装置を使って他のコンピュータシステムの記録媒体16からダウンロードされ、コンピュータシステム10に入力されてコンパイルされる。 An application program for using the input device 100 is stored in a portable recording medium such as a disk 17 or downloaded from a recording medium 16 of another computer system using a communication device such as a modem 15. To be compiled.
 入力装置100を利用するためのアプリケーションプログラムは、例えばディスク17等のコンピュータ読み取り可能な記録媒体に格納されていてもよい。コンピュータ読み取り可能な記録媒体は、ディスク17、ICカードメモリ、フロッピー(登録商標)ディスク等の磁気ディスク、光磁気ディスク、CD-ROM、USB(Universal Serial Bus)メモリ等の可搬型記録媒体に限定されるものではない。コンピュータ読み取り可能な記録媒体は、モデム15又はLAN等の通信装置を介して接続されるコンピュータシステムでアクセス可能な各種記録媒体を含む。 The application program for using the input device 100 may be stored in a computer-readable recording medium such as the disk 17. The computer-readable recording medium is limited to a portable recording medium such as a disk 17, an IC card memory, a magnetic disk such as a floppy (registered trademark) disk, a magneto-optical disk, a CD-ROM, or a USB (Universal Serial Bus) memory. It is not something. The computer-readable recording medium includes various recording media accessible by a computer system connected via a communication device such as a modem 15 or a LAN.
 図5は、コンピュータシステム10の本体部11内の要部の構成を説明するブロック図である。本体部11は、バス20によって接続されたCPU21、RAM又はROM等を含むメモリ部22、ディスク17用のディスクドライブ23、及びハードディスクドライブ(HDD)24を含む。実施の形態では、ディスプレイパネル12、キーボード13、及び入力装置100は、バス20を介してCPU21に接続されているが、これらはCPU21に直接的に接続されていてもよい。また、ディスプレイパネル12は、入出力画像データの処理を行う周知のグラフィックインタフェース(図示せず)を介してCPU21に接続されていてもよい。 FIG. 5 is a block diagram illustrating a configuration of a main part in the main body 11 of the computer system 10. The main body 11 includes a CPU 21 connected by a bus 20, a memory unit 22 including a RAM or a ROM, a disk drive 23 for the disk 17, and a hard disk drive (HDD) 24. In the embodiment, the display panel 12, the keyboard 13, and the input device 100 are connected to the CPU 21 via the bus 20, but they may be directly connected to the CPU 21. The display panel 12 may be connected to the CPU 21 via a known graphic interface (not shown) that processes input / output image data.
 なお、コンピュータシステム10は、図4及び図5に示す構成のものに限定されず、各種周知の要素を付加してもよく、又は代替的に用いてもよい。 Note that the computer system 10 is not limited to the configuration shown in FIGS. 4 and 5, and various well-known elements may be added or alternatively used.
 図6は、実施の形態のPCの本体部11の内部構成を示す図である。 FIG. 6 is a diagram illustrating an internal configuration of the main body 11 of the PC according to the embodiment.
 本体部11は、制御部510、アプリケーションプロセッサ520、通信部530、振幅データ出力部540、及びメモリ550を含む。また、本体部11には、ディスプレイパネル12及びドライバIC12Bが接続されている。制御部510、アプリケーションプロセッサ520、及び振幅データ出力部540は、本体部11に含まれるCPU(Central Processing Unit)チップによって実現される機能ブロックを表したものである。 The main body unit 11 includes a control unit 510, an application processor 520, a communication unit 530, an amplitude data output unit 540, and a memory 550. Further, a display panel 12 and a driver IC 12B are connected to the main body 11. The control unit 510, the application processor 520, and the amplitude data output unit 540 represent functional blocks realized by a CPU (Central Processing Unit) chip included in the main body unit 11.
 図6では、ディスプレイパネル12、入力装置100、及びモデム15(図4参照)を省略する。また、ここでは、ドライバIC12B、制御部510、アプリケーションプロセッサ520、通信部530、振幅データ出力部540、及びメモリ550について説明する。 In FIG. 6, the display panel 12, the input device 100, and the modem 15 (see FIG. 4) are omitted. Here, the driver IC 12B, the control unit 510, the application processor 520, the communication unit 530, the amplitude data output unit 540, and the memory 550 will be described.
 ドライバIC12Bは、ディスプレイパネル12に接続されており、アプリケーションプロセッサ520から出力される描画データをディスプレイパネル12に入力し、描画データに基づく画像をディスプレイパネル12に表示させる。これにより、ディスプレイパネル12には、描画データに基づくGUI操作部又は画像等が表示される。 The driver IC 12B is connected to the display panel 12, inputs the drawing data output from the application processor 520 to the display panel 12, and causes the display panel 12 to display an image based on the drawing data. As a result, a GUI operation unit or an image based on the drawing data is displayed on the display panel 12.
 制御部510は、本体部11が実行するすべての処理を統括する制御部である。ここでは、特に、制御部510の機能のうち、ディスプレイパネル12に表示するポインタの位置の求め方について説明する。 The control unit 510 is a control unit that controls all processes executed by the main body unit 11. Here, in particular, a method of obtaining the position of the pointer displayed on the display panel 12 among the functions of the control unit 510 will be described.
 制御部510は、通信部530を介して入力装置100から入力される入力装置100の移動量と移動方向を表すデータに基づき、ディスプレイパネル12に表示されるポインタの位置を求める。制御部510は、ポインタ制御部の一例である。 The control unit 510 obtains the position of the pointer displayed on the display panel 12 based on the data representing the movement amount and movement direction of the input device 100 input from the input device 100 via the communication unit 530. Control unit 510 is an example of a pointer control unit.
 ここで、ディスプレイパネル12に表示されるテキストの中の記号の位置は、例えば、PCにインストールされているOS(Operating System)によって特定される。ここで、記号とは、記号とは、文字、数字、絵文字、顔文字、その他の記号を含む総称である。また、文字は、平仮名、カタカナ、漢字、アルファベット、及びその他の言語の表記に用いる文字である。 Here, the position of the symbol in the text displayed on the display panel 12 is specified by, for example, an OS (Operating System) installed in the PC. Here, the symbol is a generic name including characters, numbers, pictograms, emoticons, and other symbols. The characters are characters used for writing hiragana, katakana, kanji, alphabets, and other languages.
 また、ディスプレイパネル12に表示されるテキストの中の記号のうち、ハイパーリンクが設定されている記号の位置は、PCにインストールされているOSによって特定される。ハイパーリンクが設定されている記号は、所定の記号の一例である。 In addition, among the symbols in the text displayed on the display panel 12, the position of the symbol for which the hyperlink is set is specified by the OS installed in the PC. A symbol for which a hyperlink is set is an example of a predetermined symbol.
 また、OSは、ポインタが、ハイパーリンクが設定されている記号に触れているかどうかを判定する。OSは、ポインタが、ハイパーリンクが設定されている記号に触れている場合には、触れていることを表す信号を出力する。 Also, the OS determines whether the pointer is touching a symbol for which a hyperlink is set. When the pointer touches a symbol for which a hyperlink is set, the OS outputs a signal indicating that the pointer is touched.
 このようなOSは、本体部11にインストールされており、制御部510が実行するものとする。 It is assumed that such an OS is installed in the main body unit 11 and executed by the control unit 510.
 アプリケーションプロセッサ520は、本体部11の種々のアプリケーションを実行する処理を行う。 Application processor 520 performs processing for executing various applications of main unit 11.
 通信部530は、本体部11と入力装置100とがケーブル114で接続される場合には、ケーブル114に接続されるインターフェイスである。また、本体部11と入力装置100とが無線通信によって接続される場合には、通信部530は、例えば、Bluetooth(登録商標)等の近距離通信用の通信部である。 The communication unit 530 is an interface connected to the cable 114 when the main body unit 11 and the input device 100 are connected by the cable 114. Further, when the main body unit 11 and the input device 100 are connected by wireless communication, the communication unit 530 is a communication unit for short-range communication such as Bluetooth (registered trademark), for example.
 振幅データ出力部540は、振動素子140の駆動に用いる駆動信号の振幅値を表す振幅データを生成する。振幅値は、入力装置100の位置の時間的変化度合に応じて設定される。 The amplitude data output unit 540 generates amplitude data representing the amplitude value of the drive signal used for driving the vibration element 140. The amplitude value is set according to the degree of temporal change in the position of the input device 100.
 また、実施の形態の駆動制御装置300は、入力装置100が物体1の表面1Aに沿って移動したときに、プレート120に掛かる動摩擦力を変化させるためにプレート120を振動させる。動摩擦力は、プレート120が移動しているときに発生するため、振幅データ出力部540は、入力装置100の移動速度が所定の閾値速度以上になったときに、振動素子140を振動させるための振幅データを出力する。 Further, the drive control device 300 according to the embodiment vibrates the plate 120 in order to change the dynamic friction force applied to the plate 120 when the input device 100 moves along the surface 1A of the object 1. Since the dynamic friction force is generated when the plate 120 is moving, the amplitude data output unit 540 is for causing the vibration element 140 to vibrate when the moving speed of the input device 100 exceeds a predetermined threshold speed. Outputs amplitude data.
 従って、振幅データ出力部540が出力する振幅データが表す振幅値は、移動速度が所定の閾値速度未満のときはゼロであり、移動速度が所定の閾値速度以上になると、移動速度に応じて所定の振幅値に設定される。 Therefore, the amplitude value represented by the amplitude data output from the amplitude data output unit 540 is zero when the moving speed is less than the predetermined threshold speed, and is predetermined according to the moving speed when the moving speed is equal to or higher than the predetermined threshold speed. Is set to the amplitude value.
 また、振幅データ出力部540は、制御部510によって、ポインタが、振動を発生させるべき所定の記号に触れたとき、又は、所定の領域内にあるときに、振幅データを出力する。 Also, the amplitude data output unit 540 outputs amplitude data when the control unit 510 touches a predetermined symbol that should generate vibration or is within a predetermined area.
 振幅データ出力部540は、制御部510からハイパーリンクが設定されている記号にポインタが触れていることを表す信号が出力されると、ハイパーリンクに対して割り当てられている振動パターンの振幅データを出力する。 When the control unit 510 outputs a signal indicating that the pointer is touching the symbol for which the hyperlink is set, the amplitude data output unit 540 outputs the amplitude data of the vibration pattern assigned to the hyperlink. Output.
 また、振幅データ出力部540は、ポインタがGUI操作部等の表示領域の内部にあるときには、GUI操作部等に対して割り当てられている振動パターンの振幅データを出力する。 Also, the amplitude data output unit 540 outputs amplitude data of the vibration pattern assigned to the GUI operation unit or the like when the pointer is inside the display area such as the GUI operation unit or the like.
 ここで、ディスプレイパネル12に表示するGUI操作部及びその他の画像を表示する領域等のディスプレイパネル12上における位置は、当該領域を表す領域データによって特定される。領域データは、すべてのアプリケーションにおいて、ディスプレイパネル12に表示されるすべてのGUI操作部等を表す領域について存在する。 Here, the position on the display panel 12 such as a GUI operation unit to be displayed on the display panel 12 and an area for displaying other images is specified by area data representing the area. The area data exists for areas representing all GUI operation units and the like displayed on the display panel 12 in all applications.
 振幅データ出力部540は、領域データを用いて、制御部510から入力されるポインタの位置が、振動を発生させるべき所定の領域の内部にあるか否かを判定する。 The amplitude data output unit 540 determines whether or not the position of the pointer input from the control unit 510 is within a predetermined region where vibration is to be generated, using the region data.
 アプリケーションの種類を表すデータと、操作入力が行われるGUI操作部等を表す領域データと、振動パターンを表すパターンデータとを関連付けたデータは、メモリ550に格納されている。 Data that associates data representing the type of application, area data representing a GUI operation unit or the like on which an operation input is performed, and pattern data representing a vibration pattern is stored in the memory 550.
 振幅データ出力部540は、上述のようにして生成する振幅データを通信部530を介して、入力装置100に出力する。この結果、入力装置100では、振幅データに基づく駆動信号によって振動素子140が駆動される。 The amplitude data output unit 540 outputs the amplitude data generated as described above to the input device 100 via the communication unit 530. As a result, in the input device 100, the vibration element 140 is driven by a drive signal based on the amplitude data.
 また、メモリ550は、アプリケーションプロセッサ520がアプリケーションの実行に必要とするデータ及びプログラム、及び、通信部530が通信処理に必要とするデータ及びプログラム等を格納する。 Further, the memory 550 stores data and programs necessary for the application processor 520 to execute the application, data and programs necessary for the communication processing by the communication unit 530, and the like.
 図7は、実施の形態の入力装置100の構成を示す図である。 FIG. 7 is a diagram illustrating a configuration of the input device 100 according to the embodiment.
 入力装置100は、振動素子140、アンプ141、キャンセルボタン113、及び制御装置200を含む。制御装置200は、制御部210、移動検出部220、通信部230、駆動制御部240、正弦波発生器310、及び振幅変調器320を有する。図7では、これら以外の入力装置100の構成要素については省略する。 The input device 100 includes a vibration element 140, an amplifier 141, a cancel button 113, and a control device 200. The control device 200 includes a control unit 210, a movement detection unit 220, a communication unit 230, a drive control unit 240, a sine wave generator 310, and an amplitude modulator 320. In FIG. 7, the components of the input device 100 other than these are omitted.
 制御部210、移動検出部220、駆動制御部240は、例えば、ICチップで実現される。なお、制御部210、移動検出部220、駆動制御部240は、1つのICチップで構築されていてもよいし、それぞれが別のICチップで構築されていてもよい。 The control unit 210, the movement detection unit 220, and the drive control unit 240 are realized by, for example, an IC chip. Note that the control unit 210, the movement detection unit 220, and the drive control unit 240 may be configured with one IC chip, or may be configured with different IC chips.
 アンプ141は、振幅変調器320と振動素子140との間に配設されており、振幅変調器320から出力される駆動信号を増幅して振動素子140を駆動する。 The amplifier 141 is disposed between the amplitude modulator 320 and the vibration element 140 and drives the vibration element 140 by amplifying the drive signal output from the amplitude modulator 320.
 制御部210は、ホイール111の操作量を表すデータを通信部230を介して本体部11に伝送する。また、制御部210は、LED115の点灯を制御する。 The control unit 210 transmits data representing the operation amount of the wheel 111 to the main body unit 11 through the communication unit 230. Further, the control unit 210 controls the lighting of the LED 115.
 移動検出部220は、センサ116から入力されるデータに基づき、入力装置100の移動方向及び移動量を検出する。センサ116としてイメージセンサを用いる場合には、移動検出部220は、センサ116から入力される画像を解析し、入力装置100の移動方向及び移動量を検出する
 通信部230は、本体部11と入力装置100とがケーブル114で接続される場合には、ケーブル114に接続されるインターフェイスである。また、本体部11と入力装置100とが無線通信によって接続される場合には、通信部230は、例えば、Bluetooth等の近距離通信用の通信部である。
The movement detection unit 220 detects the movement direction and movement amount of the input device 100 based on data input from the sensor 116. When an image sensor is used as the sensor 116, the movement detection unit 220 analyzes an image input from the sensor 116 and detects a movement direction and a movement amount of the input device 100. When the apparatus 100 is connected with the cable 114, the interface is connected to the cable 114. In addition, when the main body unit 11 and the input device 100 are connected by wireless communication, the communication unit 230 is a communication unit for near field communication such as Bluetooth, for example.
 通信部230は、制御部210が出力するホイール111の操作量を表すデータを本体部11に伝送する。通信部230は、移動検出部220によって検出される移動方向及び移動量を表すデータを本体部11に伝送する。また、通信部230は、本体部11から伝送される駆動信号を駆動制御部240に伝送する。 The communication unit 230 transmits data representing the operation amount of the wheel 111 output from the control unit 210 to the main body unit 11. The communication unit 230 transmits data representing the movement direction and the movement amount detected by the movement detection unit 220 to the main body unit 11. The communication unit 230 transmits the drive signal transmitted from the main body unit 11 to the drive control unit 240.
 駆動制御部240は、本体部11から伝送される駆動信号を用いて振動素子140を駆動する。駆動信号は、正弦波発生器310から入力される超音波帯の正弦波信号の振幅を変調する振幅データが時系列的に並べられたデータである。振幅データは、変調後の駆動信号の振幅を表すデータを時系列的に並べたデータである。 The drive control unit 240 drives the vibration element 140 using the drive signal transmitted from the main body unit 11. The drive signal is data in which amplitude data for modulating the amplitude of the sine wave signal of the ultrasonic band input from the sine wave generator 310 is arranged in time series. The amplitude data is data in which data representing the amplitude of the modulated drive signal is arranged in time series.
 キャンセルボタン113は、駆動制御部240による振動素子140の駆動を強制的にオフする操作部である。キャンセルボタン113が利用者によって押されると、駆動制御部240が出力する振幅データはゼロにされる。また、駆動制御部240が出力する振幅データをゼロにする代わりに、駆動制御部240が振幅データを出力しないようにしてもよい。 The cancel button 113 is an operation unit that forcibly turns off the driving of the vibration element 140 by the drive control unit 240. When the cancel button 113 is pressed by the user, the amplitude data output from the drive control unit 240 is set to zero. Further, instead of setting the amplitude data output by the drive control unit 240 to zero, the drive control unit 240 may not output the amplitude data.
 正弦波発生器310は、プレート120を固有振動数で振動させるための駆動信号を生成するのに必要な正弦波を発生させる。例えば、プレート120を33.5[kHz]の固有振動数fで振動させる場合は、正弦波の周波数は、33.5[kHz]となる。正弦波発生器310は、超音波帯の正弦波信号を振幅変調器320に入力する。 The sine wave generator 310 generates a sine wave necessary for generating a drive signal for vibrating the plate 120 at the natural frequency. For example, when the plate 120 is vibrated at a natural frequency f of 33.5 [kHz], the frequency of the sine wave is 33.5 [kHz]. The sine wave generator 310 inputs an ultrasonic band sine wave signal to the amplitude modulator 320.
 振幅変調器320は、駆動制御部240から入力される振幅データを用いて、正弦波発生器310から入力される正弦波信号の振幅を変調して駆動信号を生成する。振幅変調器320は、正弦波発生器310から入力される超音波帯の正弦波信号の振幅のみを変調し、周波数及び位相は変調せずに、駆動信号を生成する。 The amplitude modulator 320 modulates the amplitude of the sine wave signal input from the sine wave generator 310 using the amplitude data input from the drive control unit 240 to generate a drive signal. The amplitude modulator 320 modulates only the amplitude of the sine wave signal in the ultrasonic band input from the sine wave generator 310, and generates the drive signal without modulating the frequency and phase.
 このため、振幅変調器320が出力する駆動信号は、正弦波発生器310から入力される超音波帯の正弦波信号の振幅のみを変調した超音波帯の正弦波信号である。なお、振幅データがゼロの場合は、駆動信号の振幅はゼロになる。これは、振幅変調器320が駆動信号を出力しないことと等しい。 Therefore, the drive signal output by the amplitude modulator 320 is an ultrasonic band sine wave signal obtained by modulating only the amplitude of the ultrasonic band sine wave signal input from the sine wave generator 310. Note that when the amplitude data is zero, the amplitude of the drive signal is zero. This is equivalent to the amplitude modulator 320 not outputting a drive signal.
 図8は、実施の形態の入力装置100の第1の動作例を説明する図である。図9は、図8に示す第1の動作例に対応する振動素子140の振動パターンを示す。 FIG. 8 is a diagram illustrating a first operation example of the input device 100 according to the embodiment. FIG. 9 shows a vibration pattern of the vibration element 140 corresponding to the first operation example shown in FIG.
 図8には、ディスプレイパネル12に表示されるテキストを示す。テキストの一部には、ハイパーリンクが設定されている。なお、図8に示すテキストは、英語版ウィキペディアからの引用である(Olympic Games (May 26, 2015, 2:10 UTC) Wikipedia: The Free Encyclopedia. Retrieved from http://en.wikipedia.org/wiki/Olympic_Games)。 FIG. 8 shows text displayed on the display panel 12. A hyperlink is set in a part of the text. The text shown in FIG. 8 is quoted from the English version of Wikipedia (Olympic Games (May 26, 2015, 2:10 UTC) Wikipedia: The Free Encyclopedia. Retrieved from http://en.wikipedia.org/wiki / Olympic_Games).
 図8では、ハイパーリンクが設定されていない単語を黒で示し、ハイパーリンクが設定されている単語をグレーで示す。ポインタ12Aは、利用者が入力装置100を物体1の表面1A(図1及び図2参照)で移動させることにより、ディスプレイパネル12に表示される画像の中で移動する。 In FIG. 8, a word for which no hyperlink is set is shown in black, and a word for which a hyperlink is set is shown in gray. The pointer 12A moves in the image displayed on the display panel 12 when the user moves the input device 100 on the surface 1A of the object 1 (see FIGS. 1 and 2).
 例えば、ハイパーリンクが設定されている単語"Ancient Olympic Games"の"Ancient"にポインタ12Aが触れたとする。より具体的には、上向きの矢印で示すように、時刻t11でポインタ12Aが"Ancient"の下側から接近して触れ始める。 For example, assume that the pointer 12A touches “Ancient” of the word “Ancient Olympic Games” for which a hyperlink is set. More specifically, as indicated by an upward arrow, the pointer 12A approaches from the lower side of “Ancient” and starts to touch at time t11.
 このようにポインタ12Aが操作された場合には、振動素子140を駆動する駆動信号の振動パターンは、図9に示すように、時刻t11で振幅がゼロからA1になり、ごく短い時間が経過した時刻t12で振幅がゼロになる振動パターンである。 When the pointer 12A is operated in this way, the vibration pattern of the drive signal for driving the vibration element 140 changes from zero to A1 at time t11 as shown in FIG. 9, and a very short time has elapsed. This is a vibration pattern in which the amplitude becomes zero at time t12.
 なお、図9に示す振動パターンは、例えば、振幅を表すデータを時系列的に並べたデータによって表される。すなわちり、図9に示す振動パターンは、時系列的に配列される振幅を表す複数の振幅データの包絡線によって与えられる。 The vibration pattern shown in FIG. 9 is represented by, for example, data in which data representing amplitudes are arranged in time series. That is, the vibration pattern shown in FIG. 9 is given by envelopes of a plurality of amplitude data representing amplitudes arranged in time series.
 図9に示すような振動パターンで振動素子140が駆動されると、プレート120には、時刻t11で超音波帯の固有振動が発生し、時刻t12で超音波帯の固有振動が発生しなくなる。 When the vibration element 140 is driven with the vibration pattern as shown in FIG. 9, the natural vibration of the ultrasonic band is generated on the plate 120 at the time t11, and the natural vibration of the ultrasonic band is not generated at the time t12.
 プレート120に超音波帯の固有振動が発生すると、スクイーズ効果によってプレート120と物体1の表面1A(図1及び図2参照)との間に空気層が介在し、表面1Aに対するプレート120の動摩擦係数が低下する。 When natural vibration of the ultrasonic band is generated in the plate 120, an air layer is interposed between the plate 120 and the surface 1A of the object 1 (see FIGS. 1 and 2) due to the squeeze effect, and the dynamic friction coefficient of the plate 120 with respect to the surface 1A. Decreases.
 また、プレート120に超音波帯の固有振動が発生している状態から、超音波帯の固有振動が発生しない状態に切り替わると、空気層がなくなるため、表面1Aに対するプレート120の動摩擦係数が増大する。 Further, when switching from the state in which the natural vibration of the ultrasonic band is generated in the plate 120 to the state in which the natural vibration of the ultrasonic band is not generated, the air layer disappears, and thus the dynamic friction coefficient of the plate 120 with respect to the surface 1A increases. .
 従って、入力装置100を操作する利用者は、時刻t11では動摩擦力の低下によって入力装置100が表面1Aに対して滑りやすくなる感触を得て、時刻t12では動摩擦力の増大によって入力装置100が表面1Aに対して滑りにくくなる感触を得る。 Therefore, the user who operates the input device 100 has a feeling that the input device 100 becomes slippery with respect to the surface 1A due to the decrease in the dynamic friction force at time t11, and the input device 100 is exposed to the surface due to the increase in the dynamic friction force at time t12. Get a feel that is less slippery than 1A.
 このため、時刻t11において、ハイパーリンクが設定されている単語にポインタ12Aが接触するときに、入力装置100が表面1Aに対して滑りやすくなり、時刻t11の直後の時刻t12で振動が発生しなくなると、動摩擦力の増大により、入力装置100が表面1Aに対して滑りにくくなる。 For this reason, when the pointer 12A comes into contact with a word for which a hyperlink is set at time t11, the input device 100 becomes slippery with respect to the surface 1A, and vibration does not occur at time t12 immediately after time t11. Then, due to the increase of the dynamic friction force, the input device 100 is less likely to slip with respect to the surface 1A.
 従って、ハイパーリンクが設定されている単語にポインタ12Aが接触するときは、入力装置100が表面1Aに対して一瞬滑りやすくなり、その直後(時刻t12)に入力装置100が表面1Aに対して滑りにくくなることによって、利用者の手には、入力装置100が突起物に当たったような触感が提供される。これにより、利用者はポインタ12Aがハイパーリンクが設定されている単語に到達したことを触感で知覚できる。 Therefore, when the pointer 12A comes into contact with a word for which a hyperlink is set, the input device 100 easily slides on the surface 1A for a moment, and immediately thereafter (time t12), the input device 100 slips on the surface 1A. By becoming difficult, the user's hand is provided with a tactile sensation as if the input device 100 hit the projection. Thereby, the user can perceive with tactile sensation that the pointer 12A has reached the word for which the hyperlink is set.
 以上のような振動素子140の駆動制御は、コンピュータシステム10の本体部11(図4参照)の振幅データ出力部540がメモリ550に格納される振幅データを入力装置100に伝送する。そして、入力装置100の駆動制御部240が振幅データを振幅変調器320に出力し、正弦波発生器310から出力される超音波帯の正弦波信号を振幅変調器320が振幅データで振幅変調することによって駆動信号を生成し、駆動信号によって振動素子140が駆動される。 In the drive control of the vibration element 140 as described above, the amplitude data output unit 540 of the main body 11 (see FIG. 4) of the computer system 10 transmits the amplitude data stored in the memory 550 to the input device 100. Then, the drive control unit 240 of the input device 100 outputs amplitude data to the amplitude modulator 320, and the amplitude modulator 320 amplitude-modulates the sine wave signal of the ultrasonic band output from the sine wave generator 310 with the amplitude data. Thus, a drive signal is generated, and the vibration element 140 is driven by the drive signal.
 なお、時刻t12は、時刻t11で振動素子140を駆動した後に、振動素子140の駆動をオフにするタイミングを表す。すなわち、振動素子140は、時刻t11から時刻t12の期間の間にわたってオンにされる。このように振動素子140をオンにする期間は、用途等に応じて適宜設定すればよい。このため、時刻t11に対する時刻t12のタイミングは、振動素子140をオンにする期間によって決定される。 Note that time t12 represents the timing at which the driving of the vibrating element 140 is turned off after the vibrating element 140 is driven at time t11. That is, the vibration element 140 is turned on during a period from time t11 to time t12. Thus, the period during which the vibration element 140 is turned on may be set as appropriate according to the application. For this reason, the timing of the time t12 with respect to the time t11 is determined by the period during which the vibration element 140 is turned on.
 次に、図10及び図11を用いて、振幅データと振幅データ出力部540の制御処理について説明する。 Next, the control processing of the amplitude data and the amplitude data output unit 540 will be described with reference to FIGS.
 図10は、メモリ550に格納されるデータを示す図である。 FIG. 10 is a diagram showing data stored in the memory 550.
 メモリ550に格納されるデータは、アプリケーションの種類を表すデータと、振動パターンを表すパターンデータとを関連付けたデータである。 The data stored in the memory 550 is data in which data representing the type of application is associated with pattern data representing a vibration pattern.
 アプリケーションの種類を表すデータとして、アプリケーションID(Identification)を示す。また、振動パターンを表すパターンデータとして、P1~P5を示す。振動パターンを表すパターンデータは、振幅を表すデータを含んでおり、例えば、図9に示す振動パターンを表す。 · Shows application ID (Identification) as data indicating the type of application. P1 to P5 are shown as pattern data representing the vibration pattern. The pattern data representing the vibration pattern includes data representing the amplitude, and represents, for example, the vibration pattern shown in FIG.
 なお、アプリケーションIDで表されるアプリケーションは、スマートフォン端末機、又は、タブレット型コンピュータで利用可能なあらゆるアプリケーションを含む。 Note that the application represented by the application ID includes any application that can be used on a smartphone terminal or a tablet computer.
 図11は、振幅データ出力部540が実行する処理を示すフローチャートである。図11に示す処理は、コンピュータシステム10本体部11(図6参照)に、入力装置100を利用するためのアプリケーションプログラムをインストールすることによって実行可能になる。 FIG. 11 is a flowchart showing processing executed by the amplitude data output unit 540. The processing shown in FIG. 11 can be executed by installing an application program for using the input device 100 in the computer system 10 main body 11 (see FIG. 6).
 本体部11のOS(Operating System)は、所定の制御周期毎に本体部11を駆動するための制御を実行する。このため、振幅データ出力部540は、所定の制御周期毎に演算を行う。 The OS (Operating System) of the main body 11 executes control for driving the main body 11 at every predetermined control cycle. For this reason, the amplitude data output unit 540 performs calculation every predetermined control period.
 また、本体部11のOSは、ポインタ12Aが、ハイパーリンクが設定されている単語に触れているかどうかを判定する。OSは、ポインタ12Aが、ハイパーリンクが設定されている単語に触れている場合には、触れていることを表す信号(ハイパーリンク接触信号)を出力する。このような処理は、本体部11の制御部510が実行する。制御部510は、ハイパーリンク接触信号を振幅データ出力部540に入力する。 Also, the OS of the main body 11 determines whether or not the pointer 12A touches a word for which a hyperlink is set. When the pointer 12A touches a word for which a hyperlink is set, the OS outputs a signal (hyperlink contact signal) indicating that the pointer is touched. Such processing is executed by the control unit 510 of the main body unit 11. Control unit 510 inputs a hyperlink contact signal to amplitude data output unit 540.
 振幅データ出力部540は、本体部11の電源がオンにされることにより、処理をスタートさせる。 The amplitude data output unit 540 starts the process when the main unit 11 is turned on.
 振幅データ出力部540は、ハイパーリンク接触信号が入力されているかどうかを判定する(ステップS1)。 The amplitude data output unit 540 determines whether a hyperlink contact signal is input (step S1).
 振幅データ出力部540は、ステップS1でハイパーリンク接触信号が入力されている(S1:YES)と判定した場合は、メモリ550から振幅データを読み出して、振幅値を設定する(ステップS2A)。 When the amplitude data output unit 540 determines that the hyperlink contact signal is input in step S1 (S1: YES), the amplitude data output unit 540 reads the amplitude data from the memory 550 and sets the amplitude value (step S2A).
 振幅データ出力部540は、ステップS2Aで振幅値を設定した振幅データを出力する(ステップS3)。これにより、振幅データ出力部540から入力装置100に振幅データが伝送され、振幅変調器320は、正弦波発生器310から出力される正弦波の振幅を変調して駆動信号を生成し、振動素子140を駆動する。 The amplitude data output unit 540 outputs the amplitude data in which the amplitude value is set in step S2A (step S3). As a result, amplitude data is transmitted from the amplitude data output unit 540 to the input device 100, and the amplitude modulator 320 modulates the amplitude of the sine wave output from the sine wave generator 310 to generate a drive signal, and the vibration element 140 is driven.
 一方、ステップS1でハイパーリンク接触信号が入力されていない(S1:NO)ないと判定した場合は、振幅データ出力部540は、振幅値をゼロに設定する(ステップS2B)。 On the other hand, if it is determined in step S1 that no hyperlink contact signal is input (S1: NO), the amplitude data output unit 540 sets the amplitude value to zero (step S2B).
 この結果、振幅データ出力部540は、振幅値がゼロの振幅データを出力し、振幅変調器320は、正弦波発生器310から出力される正弦波の振幅をゼロに変調した駆動信号を生成する。このため、この場合は、振動素子140は駆動されない。 As a result, the amplitude data output unit 540 outputs amplitude data having an amplitude value of zero, and the amplitude modulator 320 generates a drive signal in which the amplitude of the sine wave output from the sine wave generator 310 is modulated to zero. . For this reason, in this case, the vibration element 140 is not driven.
 以上より、ハイパーリンクが設定されている単語にポインタ12Aが接触すると、利用者の手には、入力装置100が突起物に当たったような触感が提供される。これにより、利用者はポインタ12Aがハイパーリンクが設定されている単語に到達したことを触感で知覚できる。 As described above, when the pointer 12A touches a word for which a hyperlink is set, the user's hand is provided with a tactile sensation as if the input device 100 hit the protrusion. Thereby, the user can perceive with tactile sensation that the pointer 12A has reached the word for which the hyperlink is set.
 なお、ここでは、ポインタ12Aがハイパーリンクが設定されている単語に到達したときに振動素子140を駆動する動作例について説明したが、ハイパーリンクが設定されている単語以外の任意の単語にポインタ12Aが到達したときに振動素子140を駆動するようにしてもよい。 Here, an example of the operation of driving the vibration element 140 when the pointer 12A reaches the word for which the hyperlink is set has been described. However, the pointer 12A can be set to any word other than the word for which the hyperlink is set. The vibration element 140 may be driven when the angle reaches.
 図12は、実施の形態の入力装置100の第2の動作例を説明する図である。図13は、図12に示す第2の動作例に対応する振動素子140の振動パターンを示す。 FIG. 12 is a diagram illustrating a second operation example of the input device 100 according to the embodiment. FIG. 13 shows a vibration pattern of the vibration element 140 corresponding to the second operation example shown in FIG.
 図12には、ディスプレイパネル12に表示されるアイコンを示す。 FIG. 12 shows icons displayed on the display panel 12.
 例えば、アイコン12Cをポインタ12Aが通過する場合について説明する。より具体的には、右向きの矢印で示すように、時刻t21でポインタ12Aがアイコン12Cの左側から接近して触れ始め、時刻t22でアイコン12Cを触れ終わったとする。 For example, the case where the pointer 12A passes through the icon 12C will be described. More specifically, as indicated by a right-pointing arrow, it is assumed that the pointer 12A starts approaching and touching from the left side of the icon 12C at time t21 and finishes touching the icon 12C at time t22.
 このようにポインタ12Aが操作された場合には、振動素子140を駆動する駆動信号の振動パターンは、図13に示すように、時刻t21で振幅がゼロからB1になり、時刻t12で振幅がゼロになる振動パターンになる。 When the pointer 12A is thus operated, the vibration pattern of the drive signal for driving the vibration element 140 changes from zero to B1 at time t21 and zero at time t12, as shown in FIG. The vibration pattern becomes
 このように振動素子140が駆動されると、プレート120には、時刻t21で超音波帯の固有振動が発生し、時刻t22で超音波帯の固有振動が発生しなくなる。 When the vibration element 140 is driven in this way, the natural vibration of the ultrasonic band is generated on the plate 120 at the time t21, and the natural vibration of the ultrasonic band is not generated at the time t22.
 プレート120に超音波帯の固有振動が発生すると、スクイーズ効果によってプレート120と物体1の表面1A(図1及び図2参照)との間に空気層が介在し、表面1Aに対するプレート120の動摩擦係数が低下する。 When natural vibration of the ultrasonic band is generated in the plate 120, an air layer is interposed between the plate 120 and the surface 1A of the object 1 (see FIGS. 1 and 2) due to the squeeze effect, and the dynamic friction coefficient of the plate 120 with respect to the surface 1A. Decreases.
 また、プレート120に超音波帯の固有振動が発生している状態から、超音波帯の固有振動が発生しない状態に切り替わると、空気層がなくなるため、表面1Aに対するプレート120の動摩擦係数が増大する。 Further, when switching from the state in which the natural vibration of the ultrasonic band is generated in the plate 120 to the state in which the natural vibration of the ultrasonic band is not generated, the air layer disappears, and thus the dynamic friction coefficient of the plate 120 with respect to the surface 1A increases. .
 このため、時刻t21において、ポインタ12がアイコン12Cの表示領域に入るときに、入力装置100が表面1Aに対して滑りやすくなり、時刻t22において、ポインタ12がアイコン12Cの表示領域から外に出ると、動摩擦力の増大により、入力装置100が表面1Aに対して滑りにくくなる。 Therefore, when the pointer 12 enters the display area of the icon 12C at time t21, the input device 100 becomes slippery with respect to the surface 1A, and when the pointer 12 goes out of the display area of the icon 12C at time t22. Due to the increase of the dynamic friction force, the input device 100 is less likely to slip with respect to the surface 1A.
 従って、ポインタ12がアイコン12Cの表示領域内に入るときは、入力装置100が表面1Aに対して滑りやすくなり、利用者の手には、入力装置100が滑りやすくなるような触感が提供される。これにより、利用者はポインタ12がアイコン12Cの表示領域に入ったことを触感で知覚できる。 Therefore, when the pointer 12 enters the display area of the icon 12C, the input device 100 becomes slippery with respect to the surface 1A, and a tactile sensation that makes the input device 100 slippery is provided to the user's hand. . As a result, the user can perceive the tactile sensation that the pointer 12 has entered the display area of the icon 12C.
 また、ポインタ12がアイコン12Cの表示領域内にあるときも、入力装置100が表面1Aに対して滑りやすくなり、利用者の手には、入力装置100が滑りやすくなるような触感が提供される。これにより、利用者はポインタ12がアイコン12Cの表示領域にあることを触感で知覚できる。 Further, even when the pointer 12 is within the display area of the icon 12C, the input device 100 becomes slippery with respect to the surface 1A, and a tactile sensation that makes the input device 100 slippery is provided to the user's hand. . Thereby, the user can perceive by touch that the pointer 12 is in the display area of the icon 12C.
 また、ポインタ12がアイコン12Cの表示領域から外に出るときは、入力装置100が表面1Aに対して滑りにくくなることによって、利用者の手には、入力装置100が突起物に当たったような触感が提供される。これにより、利用者はポインタ12がアイコン12Cの表示領域から離れたことを触感で知覚できる。 Further, when the pointer 12 goes out of the display area of the icon 12C, the input device 100 is difficult to slip with respect to the surface 1A, so that the input device 100 hits the protrusion on the user's hand. A tactile sensation is provided. As a result, the user can perceive the tactile sensation that the pointer 12 has left the display area of the icon 12C.
 以上のような振動素子140の駆動制御では、コンピュータシステム10の本体部11(図4参照)の振幅データ出力部540がメモリ550に格納される振幅データを入力装置100に伝送する。そして、入力装置100の駆動制御部240が振幅データを振幅変調器320に入力し、振幅変調器320が超音波帯の正弦波信号を振幅データで振幅変調することにより、駆動信号を生成する。この駆動信号によって振動素子140が駆動される。以上のようにして、振動素子140の駆動制御が実現される。 In the drive control of the vibration element 140 as described above, the amplitude data output unit 540 of the main body 11 (see FIG. 4) of the computer system 10 transmits the amplitude data stored in the memory 550 to the input device 100. Then, the drive control unit 240 of the input device 100 inputs the amplitude data to the amplitude modulator 320, and the amplitude modulator 320 generates a drive signal by amplitude-modulating the sine wave signal of the ultrasonic band with the amplitude data. The vibration element 140 is driven by this drive signal. As described above, drive control of the vibration element 140 is realized.
 次に、図14及び図15を用いて、振幅データと振幅データ出力部540の制御処理について説明する。 Next, the control process of the amplitude data and amplitude data output unit 540 will be described with reference to FIGS.
 図14は、メモリ550に格納されるデータを示す図である。 FIG. 14 is a diagram showing data stored in the memory 550.
 メモリ550に格納されるデータは、アプリケーションの種類を表すデータと、アイコン12Cの表示領域を表す領域データと、振動パターンを表すパターンデータとを関連付けたデータである。領域データは、すべてのアプリケーションにおいて、ディスプレイパネル12に表示されるすべてのGUI操作部、画像を表示する領域、又は、ページ全体を表す領域について存在する。 The data stored in the memory 550 is data in which data representing the type of application, area data representing the display area of the icon 12C, and pattern data representing the vibration pattern are associated with each other. In all applications, the area data exists for all GUI operation units displayed on the display panel 12, an area for displaying an image, or an area representing the entire page.
 アプリケーションの種類を表すデータとして、アプリケーションIDを示す。領域データとして、操作入力が行われるGUI操作部等が表示される領域の座標値を表す式f1~f5を示す。また、振動パターンを表すパターンデータとして、Q1~Q5を示す。振動パターンを表すパターンデータは、振幅を表すデータを含んでおり、例えば、図13に示す振動パターンを表す。 · Shows the application ID as data indicating the type of application. As the area data, equations f1 to f5 representing the coordinate values of the area in which the GUI operation unit or the like where the operation input is performed are displayed are shown. Further, Q1 to Q5 are shown as pattern data representing the vibration pattern. The pattern data representing the vibration pattern includes data representing the amplitude, and represents, for example, the vibration pattern shown in FIG.
 なお、アプリケーションIDで表されるアプリケーションは、スマートフォン端末機、又は、タブレット型コンピュータで利用可能なあらゆるアプリケーションを含む。 Note that the application represented by the application ID includes any application that can be used on a smartphone terminal or a tablet computer.
 図15は、振幅データ出力部540が実行する処理を示すフローチャートである。 FIG. 15 is a flowchart showing processing executed by the amplitude data output unit 540.
 本体部11のOS(Operating System)は、所定の制御周期毎に本体部11を駆動するための制御を実行する。このため、振幅データ出力部540は、所定の制御周期毎に演算を行う。 The OS (Operating System) of the main body 11 executes control for driving the main body 11 at every predetermined control cycle. For this reason, the amplitude data output unit 540 performs calculation every predetermined control period.
 また、本体部11のOSは、ポインタ12Aが、アイコン12Cの表示領域がに触れているかどうかを判定する。OSは、ポインタ12Aが、アイコン12Cの表示領域に触れている場合には、触れていることを表す信号(アイコン接触信号)を出力する。このような処理は、本体部11の制御部510が実行する。制御部510は、アイコン接触信号を振幅データ出力部540に入力する。 Further, the OS of the main body 11 determines whether the pointer 12A is touching the display area of the icon 12C. When the pointer 12A touches the display area of the icon 12C, the OS outputs a signal indicating that the pointer 12A is touching (icon contact signal). Such processing is executed by the control unit 510 of the main body unit 11. Control unit 510 inputs an icon contact signal to amplitude data output unit 540.
 振幅データ出力部540は、本体部11の電源がオンにされることにより、処理をスタートさせる。 The amplitude data output unit 540 starts the process when the main unit 11 is turned on.
 振幅データ出力部540は、現在のポインタ12Aの位置を表す位置データと、現在のアプリケーションの種類に関連付けられた領域データを取得する(ステップS21)。 The amplitude data output unit 540 acquires position data indicating the current position of the pointer 12A and area data associated with the current application type (step S21).
 振幅データ出力部540は、現在のポインタ12Aの位置が、いずれかの領域データが表す領域内であるかどうかを判定する(ステップS22)。 The amplitude data output unit 540 determines whether or not the current position of the pointer 12A is within the region represented by any region data (step S22).
 振幅データ出力部540は、ステップS22で現在のポインタ12Aの位置が、いずれかの領域データが表す領域内である(S22:YES)と判定した場合は、メモリ550から振幅データを読み出して、振幅値を設定する(ステップS23A)。 If the amplitude data output unit 540 determines in step S22 that the current position of the pointer 12A is within the region represented by any of the region data (S22: YES), the amplitude data output unit 540 reads the amplitude data from the memory 550 and determines the amplitude. A value is set (step S23A).
 ここで、例えば、現在のポインタ12Aの位置がアイコン12Cの表示領域に入っていたとすると、アイコン12Cの領域データに関連付けられた振動パターンに含まれる振幅データが読み出され、振幅値が設定される。 Here, for example, if the current position of the pointer 12A is within the display area of the icon 12C, the amplitude data included in the vibration pattern associated with the area data of the icon 12C is read and the amplitude value is set. .
 振幅データ出力部540は、ステップS23Aで振幅値を設定した振幅データを出力する(ステップS24)。これにより、振幅データ出力部540から入力装置100に振幅データが伝送され、振幅変調器320は、正弦波発生器310から出力される正弦波の振幅を変調して駆動信号を生成し、駆動信号によって振動素子140が駆動される。 The amplitude data output unit 540 outputs the amplitude data set with the amplitude value in step S23A (step S24). As a result, the amplitude data is transmitted from the amplitude data output unit 540 to the input device 100, and the amplitude modulator 320 modulates the amplitude of the sine wave output from the sine wave generator 310 to generate a drive signal, and the drive signal Thus, the vibration element 140 is driven.
 一方、ステップS22で現在のポインタ12Aの位置が、いずれかの領域データが表す領域内ではない(S22:NO)ないと判定した場合は、振幅データ出力部540は、振幅値をゼロに設定する(ステップS23B)。 On the other hand, if it is determined in step S22 that the current position of the pointer 12A is not within the region represented by any of the region data (S22: NO), the amplitude data output unit 540 sets the amplitude value to zero. (Step S23B).
 この結果、振幅データ出力部540は、ステップS24で振幅値がゼロの振幅データを出力し、振幅変調器320は、正弦波発生器310から出力される正弦波の振幅をゼロに変調した駆動信号を生成する。この場合は、振動素子140は駆動されない。 As a result, the amplitude data output unit 540 outputs amplitude data whose amplitude value is zero in step S24, and the amplitude modulator 320 is a drive signal obtained by modulating the amplitude of the sine wave output from the sine wave generator 310 to zero. Is generated. In this case, the vibration element 140 is not driven.
 以上より、ポインタ12がアイコン12Cの表示領域内に入るときは、利用者の手には、入力装置100が滑りやすくなるような触感が提供され、利用者はポインタ12がアイコン12Cの表示領域に入ったことを触感で知覚できる。 As described above, when the pointer 12 enters the icon 12C display area, the user's hand is provided with a tactile sensation that makes the input device 100 slippery, and the user moves the pointer 12 into the icon 12C display area. You can perceive that you have entered.
 また、ポインタ12がアイコン12Cの表示領域内にあるときも、入力装置100が滑りやすくなるような触感が提供されるため、利用者はポインタ12がアイコン12Cの表示領域にあることを触感で知覚できる。 Further, even when the pointer 12 is within the display area of the icon 12C, a tactile sensation that makes the input device 100 easy to slip is provided, so that the user perceives that the pointer 12 is in the display area of the icon 12C. it can.
 また、ポインタ12がアイコン12Cの表示領域から外に出るときは、利用者の手には、入力装置100が突起物に当たったような触感が提供されるため、利用者はポインタ12がアイコン12Cの表示領域から離れたことを触感で知覚できる。 Further, when the pointer 12 goes out of the display area of the icon 12C, the user's hand is provided with a tactile sensation as if the input device 100 hit the protrusion. It can be perceived by touch that the user has left the display area.
 なお、第2動作例では、ポインタ12Aがアイコンの表示領域に入ったとき、又は、出たときに振動素子140のオン/オフを切り替える形態について説明したが、アイコン以外の様々なGUI操作部とポインタ12Aとの位置関係に応じて振動素子140を駆動してもよい。 In the second operation example, the mode in which the vibration element 140 is switched on / off when the pointer 12A enters or exits the icon display area has been described. The vibration element 140 may be driven according to the positional relationship with the pointer 12A.
 図16及び図17は、実施の形態の入力装置100の第3の動作例を説明する図である。図18は、図16に示す第3の動作例に対応する振動素子140の振動パターンを示す図である。 16 and 17 are diagrams illustrating a third operation example of the input device 100 according to the embodiment. FIG. 18 is a diagram illustrating a vibration pattern of the vibration element 140 corresponding to the third operation example illustrated in FIG. 16.
 図16では、ディスプレイパネル12の画像をスクロールする場合について説明する。 FIG. 16 illustrates a case where the image on the display panel 12 is scrolled.
 図16に示すスクロールバー12Dを上下に移動させることによってディスプレイパネル12の画像をスクロールすることができるが、ここでは、キーボード13(図4参照)のCtrlキーを押しながら、円を描くように入力装置100を操作することによってディスプレイパネル12の画像をスクロールする場合について説明する。 The image on the display panel 12 can be scrolled by moving the scroll bar 12D shown in FIG. 16 up and down. Here, while pressing the Ctrl key of the keyboard 13 (see FIG. 4), input is made to draw a circle. A case where the image on the display panel 12 is scrolled by operating the device 100 will be described.
 Ctrlキーを押しながら、図17に示すように円を描くように入力装置100を操作すると、ディスプレイパネル12の画像をスクロールすることができる。 When the input device 100 is operated to draw a circle as shown in FIG. 17 while pressing the Ctrl key, the image on the display panel 12 can be scrolled.
 例えば、Ctrlキーを押しながら、ポインタ12Aが図17に示すように時計回りに円を描くように入力装置100を操作すると、ディスプレイパネル12の画像を上方向にスクロールできることとする。 For example, when the input device 100 is operated so that the pointer 12A draws a circle clockwise as shown in FIG. 17 while pressing the Ctrl key, the image on the display panel 12 can be scrolled upward.
 Ctrlキーが押された状態で、時刻t31でポインタ12Aが時計回りに円を描くように移動し始め、時刻t32で停止したとする。 Suppose that the pointer 12A starts to move in a clockwise circle at time t31 while the Ctrl key is pressed, and stops at time t32.
 このようにポインタ12Aが操作された場合には、振動素子140を駆動する駆動信号の振動パターンは、図18に示すようになる。時刻t31で振幅がゼロからC1になり、直後に振幅がゼロになり、その後、所定の操作量に到達する度に、振幅C2(<C1)で振動素子140が駆動される。 When the pointer 12A is operated in this way, the vibration pattern of the drive signal that drives the vibration element 140 is as shown in FIG. At time t31, the amplitude changes from zero to C1, and immediately after that, the amplitude becomes zero. Then, every time a predetermined operation amount is reached, the vibration element 140 is driven with the amplitude C2 (<C1).
 このように振動素子140が駆動されると、プレート120には、スクロール操作を開始した時刻t31で超音波帯の固有振動が発生し、時刻t32でスクロール操作が終了するまで、所定の操作量に到達する度に、振幅C2(<C1)で振動素子140が駆動されることになる。 When the vibration element 140 is driven in this way, the plate 120 is subjected to a natural vibration of the ultrasonic band at the time t31 when the scroll operation is started, and reaches a predetermined operation amount until the scroll operation is finished at the time t32. Each time it reaches, the vibration element 140 is driven with the amplitude C2 (<C1).
 スクロール操作を開始した時刻t31に振幅C1で振動素子140が駆動され、その直後に振動素子140がオフにされると、入力装置100が表面1Aに対して滑りやすい状態から滑りにくい状態になることにより、利用者の手には、入力装置100が突起物に当たったような触感が提供される。これにより、利用者はスクロールが開始されたことを触感で知覚できる。 When the vibration element 140 is driven with the amplitude C1 at the time t31 when the scroll operation is started and the vibration element 140 is turned off immediately after that, the input device 100 becomes slippery from the slippery state with respect to the surface 1A. Thus, the user's hand is provided with a tactile sensation as if the input device 100 hit the projection. As a result, the user can perceive that the scrolling has started by tactile sensation.
 また、スクロール操作を続けると、操作量が所定量に到達する度に振幅C2で振動素子140が駆動される。振幅C2は、振幅C1よりも小さいので、操作量が所定量に到達する度に、利用者の手には、入力装置100が小さな突起物に当たったような触感が提供される。これにより、利用者はスクロール操作の操作量が所定量に到達したことを触感で知覚できる。 If the scroll operation is continued, the vibration element 140 is driven with the amplitude C2 every time the operation amount reaches a predetermined amount. Since the amplitude C2 is smaller than the amplitude C1, every time the operation amount reaches a predetermined amount, the user's hand is provided with a tactile sensation as if the input device 100 hit a small protrusion. Thereby, the user can perceive with tactile sensation that the operation amount of the scroll operation has reached a predetermined amount.
 なお、図17には時計回りにポインタ12Aを移動させることにより、ディスプレイパネル12の画像を上方向にスクロールできる場合について説明したが、Ctrlキーを押しながら、ポインタ12Aが反時計回りに円を描くように入力装置100を操作すると、ディスプレイパネル12の画像を下方向にスクロールできることとする。 Note that FIG. 17 illustrates the case where the image on the display panel 12 can be scrolled upward by moving the pointer 12A clockwise, but the pointer 12A draws a circle counterclockwise while pressing the Ctrl key. When the input device 100 is operated as described above, the image on the display panel 12 can be scrolled downward.
 以上のような振動素子140の駆動制御では、コンピュータシステム10の本体部11(図4参照)の振幅データ出力部540がメモリ550に格納される振幅データを入力装置100に伝送する。そして、入力装置100の駆動制御部240が振幅データを振幅変調器320に出力し、振幅変調器320が振幅データを用いて駆動信号を生成することによって、振動素子140の駆動制御が実現される。 In the drive control of the vibration element 140 as described above, the amplitude data output unit 540 of the main body 11 (see FIG. 4) of the computer system 10 transmits the amplitude data stored in the memory 550 to the input device 100. Then, the drive control unit 240 of the input device 100 outputs the amplitude data to the amplitude modulator 320, and the amplitude modulator 320 generates a drive signal using the amplitude data, whereby drive control of the vibration element 140 is realized. .
 次に、図19及び図20を用いて、振幅データと振幅データ出力部540の制御処理について説明する。 Next, the control processing of the amplitude data and amplitude data output unit 540 will be described with reference to FIGS. 19 and 20.
 図19は、メモリ550に格納されるデータを示す図である。 FIG. 19 is a diagram showing data stored in the memory 550.
 メモリ550に格納されるデータは、アプリケーションの種類を表すデータと、所定の操作量を表す操作量データと、振動パターンを表すパターンデータとを関連付けたデータである。操作量データは、図18に示す振幅C2の振動を発生させる所定の操作量を表すデータである。 The data stored in the memory 550 is data in which data representing the type of application, operation amount data representing a predetermined operation amount, and pattern data representing a vibration pattern are associated with each other. The manipulated variable data is data representing a predetermined manipulated variable that generates a vibration having an amplitude C2 shown in FIG.
 アプリケーションの種類を表すデータとして、アプリケーションIDを示す。操作量データとして、振幅C2の振動を発生させる所定の操作量を表す式S1~S5を示す。また、振動パターンを表すパターンデータとして、R1~R5を示す。振動パターンを表すパターンデータは、振幅を表すデータを含んでおり、例えば、図18に示す振幅C1とC2の振動パターンを表す。 · Shows the application ID as data indicating the type of application. As the operation amount data, equations S1 to S5 representing a predetermined operation amount for generating the vibration with the amplitude C2 are shown. In addition, R1 to R5 are shown as pattern data representing the vibration pattern. The pattern data representing the vibration pattern includes data representing the amplitude, and represents, for example, the vibration pattern having the amplitudes C1 and C2 illustrated in FIG.
 図20は、振幅データ出力部540が実行する処理を示すフローチャートである。 FIG. 20 is a flowchart showing processing executed by the amplitude data output unit 540.
 本体部11のOS(Operating System)は、所定の制御周期毎に本体部11を駆動するための制御を実行する。このため、振幅データ出力部540は、所定の制御周期毎に演算を行う。 The OS (Operating System) of the main body 11 executes control for driving the main body 11 at every predetermined control cycle. For this reason, the amplitude data output unit 540 performs calculation every predetermined control period.
 振幅データ出力部540は、本体部11の電源がオンにされることにより、処理をスタートさせる。 The amplitude data output unit 540 starts the process when the main unit 11 is turned on.
 振幅データ出力部540は、Ctrlキーが押されているかどうかを判定する(ステップS31)。Ctrlキーが押されている状態でポインタ12Aが円を描くように入力装置100が操作されると、ディスプレイパネル12の画像を上方向又は下方向にスクロールできるからである。なお、ステップS31の処理は、Ctrlキーが押されていると判定するまで繰り返し実行される。 The amplitude data output unit 540 determines whether or not the Ctrl key is pressed (step S31). This is because if the input device 100 is operated so that the pointer 12A draws a circle while the Ctrl key is pressed, the image on the display panel 12 can be scrolled upward or downward. Note that the process of step S31 is repeatedly executed until it is determined that the Ctrl key is pressed.
 振幅データ出力部540は、Ctrlキーが押されている(S31:YES)と判定すると、スクロールが開始されたかどうかを判定する(ステップS32)。スクロールが開始されたかどうかは、ポインタ12Aの位置が移動したかどうかで判定すればよい。なお、ステップS32の処理は、スクロールが開始されたと判定するまで繰り返し実行される。 When the amplitude data output unit 540 determines that the Ctrl key is pressed (S31: YES), the amplitude data output unit 540 determines whether scrolling has started (step S32). Whether or not scrolling has started can be determined based on whether or not the position of the pointer 12A has moved. Note that the process of step S32 is repeatedly executed until it is determined that scrolling has started.
 振幅データ出力部540は、スクロール開始時の振幅値を設定する(ステップS33)。例えば、図18に示す振幅C1が設定される。 The amplitude data output unit 540 sets the amplitude value at the start of scrolling (step S33). For example, the amplitude C1 shown in FIG. 18 is set.
 振幅データ出力部540は、ステップS33で振幅値を設定した振幅データを出力する(ステップS34)。これにより、振幅データ出力部540から入力装置100に振幅データが伝送され、振幅変調器320は、正弦波発生器310から出力される正弦波の振幅を変調して駆動信号を生成し、振動素子140を駆動する。例えば、図18に示す振幅C1で振動素子140が駆動される。 The amplitude data output unit 540 outputs the amplitude data set with the amplitude value in step S33 (step S34). As a result, amplitude data is transmitted from the amplitude data output unit 540 to the input device 100, and the amplitude modulator 320 modulates the amplitude of the sine wave output from the sine wave generator 310 to generate a drive signal, and the vibration element 140 is driven. For example, the vibration element 140 is driven with the amplitude C1 shown in FIG.
 振幅データ出力部540は、スクロール操作の操作量が所定の操作量に到達したかどうかを判定する(ステップS35)。所定の操作量は、図19に示す操作量データによって予め決定されている。 The amplitude data output unit 540 determines whether or not the operation amount of the scroll operation has reached a predetermined operation amount (step S35). The predetermined operation amount is determined in advance by operation amount data shown in FIG.
 振幅データ出力部540は、所定の操作量に到達した(S35:YES)と判定した場合は、メモリ550から振幅データを読み出して、振幅値を設定する(ステップS36A)。 When it is determined that the predetermined operation amount has been reached (S35: YES), the amplitude data output unit 540 reads the amplitude data from the memory 550 and sets the amplitude value (step S36A).
 ここで、例えば、スクロール操作を開始してからポインタ12Aの操作量が所定の操作量に到達していたとすると、アプリケーションIDに関連付けられた振動パターンに含まれる振幅データが読み出され、振幅値が設定される。 Here, for example, if the operation amount of the pointer 12A has reached a predetermined operation amount after the scroll operation is started, the amplitude data included in the vibration pattern associated with the application ID is read and the amplitude value is Is set.
 振幅データ出力部540は、ステップS36Aで振幅値を設定した振幅データを出力する(ステップS37)。これにより、振幅データ出力部540から入力装置100に振幅データが伝送され、振幅変調器320は、正弦波発生器310から出力される正弦波の振幅を変調して駆動信号を生成し、振動素子140を駆動する。 The amplitude data output unit 540 outputs the amplitude data for which the amplitude value is set in step S36A (step S37). As a result, amplitude data is transmitted from the amplitude data output unit 540 to the input device 100, and the amplitude modulator 320 modulates the amplitude of the sine wave output from the sine wave generator 310 to generate a drive signal, and the vibration element 140 is driven.
 一方、ステップS35で所定の操作量に到達していない(S35:NO)と判定した場合は、振幅データ出力部540は、振幅値をゼロに設定する(ステップS36B)。 On the other hand, if it is determined in step S35 that the predetermined operation amount has not been reached (S35: NO), the amplitude data output unit 540 sets the amplitude value to zero (step S36B).
 この結果、振幅データ出力部540は、振幅値がゼロの振幅データを出力し、振幅変調器320は、正弦波発生器310から出力される正弦波の振幅をゼロに変調した駆動信号を生成する。このため、この場合は、振動素子140は駆動されない。 As a result, the amplitude data output unit 540 outputs amplitude data having an amplitude value of zero, and the amplitude modulator 320 generates a drive signal in which the amplitude of the sine wave output from the sine wave generator 310 is modulated to zero. . For this reason, in this case, the vibration element 140 is not driven.
 ステップS36A又はS36Bの処理が終了すると、振幅データ出力部540は、スクロール操作が終了してかどうかを判定する(ステップS38)。スクロール操作が終了するのは、ポインタ12Aの位置が移動していない場合である。 When the process of step S36A or S36B is completed, the amplitude data output unit 540 determines whether or not the scroll operation is completed (step S38). The scrolling operation ends when the position of the pointer 12A has not moved.
 振幅データ出力部540は、スクロール操作が終了していない(S38:NO)と判定すると、フローをステップS35にリターンする。 If the amplitude data output unit 540 determines that the scroll operation has not ended (S38: NO), the flow returns to step S35.
 一方、振幅データ出力部540は、スクロール操作が終了している(S38:YES)と判定すると、一連のフローを終了する(エンド)。 On the other hand, if the amplitude data output unit 540 determines that the scroll operation has ended (S38: YES), the series of flows ends (end).
 以上より、スクロール操作を開始すると、大きな振幅で振動素子140が駆動され、その直後に振動素子140がオフにされるので、入力装置100が表面1Aに対して滑りやすい状態から滑りにくい状態になることにより、利用者の手には、入力装置100が比較的大きな突起物に当たったような触感が提供される。これにより、利用者はスクロールが開始されたことを触感で知覚できる。 As described above, when the scroll operation is started, the vibration element 140 is driven with a large amplitude, and immediately after that, the vibration element 140 is turned off. Thus, the user's hand is provided with a tactile sensation as if the input device 100 hit a relatively large protrusion. As a result, the user can perceive that the scrolling has started by tactile sensation.
 また、スクロール操作を続けると、操作量が所定量に到達する度に小さな振幅で振動素子140が駆動されるので、操作量が所定量に到達する度に、利用者の手には、入力装置100が比較的小さな突起物に当たったような触感が提供される。これにより、利用者はスクロール操作の操作量が所定量に到達したことを触感で知覚できる。 Further, if the scroll operation is continued, the vibration element 140 is driven with a small amplitude every time the operation amount reaches the predetermined amount. Therefore, every time the operation amount reaches the predetermined amount, the user's hand holds the input device. A tactile sensation such that 100 hits a relatively small protrusion is provided. Thereby, the user can perceive with tactile sensation that the operation amount of the scroll operation has reached a predetermined amount.
 なお、振幅C1と振幅C2は、上述したように振幅C1が振幅C2よりも大きい場合に限らず、振幅C1と振幅C2が等しくてもよく、また、振幅C1よりも振幅C2が大きくてもよい。 The amplitude C1 and the amplitude C2 are not limited to the case where the amplitude C1 is larger than the amplitude C2, as described above, and the amplitude C1 and the amplitude C2 may be equal, or the amplitude C2 may be larger than the amplitude C1. .
 また、実施の形態の第3動作例では、Ctrlキーを押した状態で、円を描くように入力装置100を操作することによってスクロール操作を行う際に、スクロール操作の開始時と、所定の操作量に到達したときに、振動素子140を駆動する形態について説明した。しかしながら、図16に示すスクロールバー12Dをポインタ12Aで移動させる場合に、スクロールバー12Dの移動量が所定量に到達する度に、振動素子140を駆動して触感を提供してもよい。 In the third operation example of the embodiment, when the scroll operation is performed by operating the input device 100 so as to draw a circle with the Ctrl key pressed, the scroll operation is started and a predetermined operation is performed. The mode in which the vibration element 140 is driven when the amount is reached has been described. However, when the scroll bar 12D shown in FIG. 16 is moved by the pointer 12A, the vibration element 140 may be driven to provide a tactile sensation every time the amount of movement of the scroll bar 12D reaches a predetermined amount.
 なお、第3動作例では、入力装置100を用いてスクロール操作を行う際に振動素子140のオン/オフを切り替える形態について説明したが、スクロール操作以外の操作時に振動素子140のオン/オフを切り替えるようにしてもよい。 In the third operation example, the mode in which the vibration element 140 is turned on / off when the scroll operation is performed using the input device 100 has been described. However, the vibration element 140 is turned on / off during an operation other than the scroll operation. You may do it.
 以上、実施の形態の入力装置100は、ポインタ12Aの位置及び位置の移動度合に応じて、プレート120に超音波帯の固有振動を発生させるので、スクイーズ効果を利用して、利用者に良好な触感を提供することができる。 As described above, since the input device 100 according to the embodiment generates the natural vibration of the ultrasonic band on the plate 120 according to the position of the pointer 12A and the degree of movement of the position, it is favorable for the user by using the squeeze effect. A tactile sensation can be provided.
 スクイーズ効果により、プレート120と物体1の表面1Aとの間にごく薄い空気層が介在するため、入力装置100を表面1Aに対して移動させると、動摩擦力が低下する。 Due to the squeeze effect, a very thin air layer is interposed between the plate 120 and the surface 1A of the object 1, so that when the input device 100 is moved with respect to the surface 1A, the dynamic friction force decreases.
 このように動摩擦力が低下した状態から、振動素子140をオフにすると、プレート120と物体1の表面1Aとの間に空気層が介在しなくなるため、入力装置100は表面1Aに対して滑りにくくなり、入力装置100が凸部に当たったような触感を利用者に提供することができる。 When the vibration element 140 is turned off from the state in which the dynamic friction force is reduced in this way, an air layer is not interposed between the plate 120 and the surface 1A of the object 1, so that the input device 100 is difficult to slip with respect to the surface 1A. Thus, it is possible to provide the user with a tactile sensation as if the input device 100 hit the convex portion.
 以上のように、実施の形態によれば、良好な触感を提供できる入力装置100を提供することができる。 As described above, according to the embodiment, it is possible to provide the input device 100 that can provide a good tactile sensation.
 なお、以上では、メモリ550に格納したデータを用いて、本体部11側で振幅データを生成し、振幅データを入力装置100に伝送し、入力装置100が振幅データを用いて駆動信号を生成して、振動素子140を駆動する形態について説明した。 In the above, amplitude data is generated on the main body 11 side using the data stored in the memory 550, the amplitude data is transmitted to the input device 100, and the input device 100 generates a drive signal using the amplitude data. Thus, the mode of driving the vibration element 140 has been described.
 しかしながら、入力装置100が移動検出部220で検出する移動方向及び移動量に基づいて、振動素子140を駆動するようにしてもよい。この場合は、本体部11は振動素子140の駆動制御に関与しなくてよい。例えば、特定の移動方向に入力装置100が移動した場合に振動素子140を所定のパターンで駆動してもよいし、特定の移動量だけ入力装置100が移動した場合に振動素子140を所定のパターンで駆動してもよい。 However, the vibration element 140 may be driven based on the movement direction and the movement amount detected by the movement detection unit 220 by the input device 100. In this case, the main body 11 does not have to be involved in the drive control of the vibration element 140. For example, when the input device 100 moves in a specific movement direction, the vibration element 140 may be driven in a predetermined pattern, or when the input device 100 moves by a specific movement amount, the vibration element 140 may be driven in a predetermined pattern. It may be driven by.
 ここで、図21及び図22を用いて、実施の形態の第1変形例について説明する。 Here, a first modification of the embodiment will be described with reference to FIGS. 21 and 22.
 図21は、実施の形態の第1変形例の入力装置100Aの構成を示す図である。 FIG. 21 is a diagram illustrating a configuration of an input device 100A according to a first modification of the embodiment.
 入力装置100Aは、振動素子140、アンプ141、キャンセルボタン113、及び制御装置200Aを含む。制御装置200Aは、制御部210、移動検出部220、通信部230、駆動制御部240、メモリ250、正弦波発生器310、及び振幅変調器320を有する。 The input device 100A includes a vibration element 140, an amplifier 141, a cancel button 113, and a control device 200A. The control device 200A includes a control unit 210, a movement detection unit 220, a communication unit 230, a drive control unit 240, a memory 250, a sine wave generator 310, and an amplitude modulator 320.
 入力装置100Aは、図7に示す入力装置100の制御装置200の代わりに制御装置200Aを含む。制御装置200Aは、図7に示す制御装置200にメモリ250を加えたものである。 The input device 100A includes a control device 200A instead of the control device 200 of the input device 100 shown in FIG. The control device 200A is obtained by adding a memory 250 to the control device 200 shown in FIG.
 第1変形例の入力装置100Aは、メモリ250に、図10、図14、及び図19に示すテーブル形式のデータと同様のデータを格納し、入力装置100A側で振幅データを生成するようにしたものである。 The input device 100A of the first modified example stores data similar to the table format data shown in FIGS. 10, 14, and 19 in the memory 250, and generates amplitude data on the input device 100A side. Is.
 ここでは、図8を援用して説明する。第1変形例では、ハイパーリンクが設定されている単語に、識別子が割り当てられている。このような識別子は、例えば、OSが割り当てるものを用いることができる。 Here, FIG. 8 is used for explanation. In the first modification, an identifier is assigned to a word for which a hyperlink is set. As such an identifier, for example, an identifier assigned by the OS can be used.
 図22は、メモリ250に格納されるデータを示す図である。 FIG. 22 is a diagram showing data stored in the memory 250.
 メモリ250に格納されるデータは、アプリケーションの種類を表すデータと、リンクIDと、振動パターンを表すパターンデータとを関連付けたデータである。リンクIDは、ハイパーリンクが設定されている単語に割り当てられている識別子である。リンクIDは、識別子出力部の一例としての制御部510が出力する。 The data stored in the memory 250 is data in which data representing the type of application, link ID, and pattern data representing a vibration pattern are associated with each other. The link ID is an identifier assigned to a word for which a hyperlink is set. The link ID is output by the control unit 510 as an example of an identifier output unit.
 本体部11の振幅データ出力部540がポインタ12Aが接触したハイパーリンクのリンクIDを入力装置100Aに伝送し、駆動制御部240がメモリ250に格納されるデータ(図22)を参照し、アプリケーションIDとリンクIDに対応する振動パターンを読み出す。そして、振動パターンに含まれる振幅データを振幅変調器320に出力する。この結果、振幅変調器320から出力される駆動信号によって振動素子140が駆動される。 The amplitude data output unit 540 of the main body unit 11 transmits the link ID of the hyperlink touched by the pointer 12A to the input device 100A, and the drive control unit 240 refers to the data (FIG. 22) stored in the memory 250, and the application ID The vibration pattern corresponding to the link ID is read out. Then, the amplitude data included in the vibration pattern is output to the amplitude modulator 320. As a result, the vibration element 140 is driven by the drive signal output from the amplitude modulator 320.
 このように、振動パターンを含むテーブル形式のデータを入力装置100Aのメモリ250に格納して置いてもよい。 In this way, table format data including vibration patterns may be stored in the memory 250 of the input device 100A.
 振動素子140の駆動方法は、上述した第1動作例と同様であるため、第1変形例によれば、良好な触感を提供できる入力装置100Aを提供することができる。 Since the driving method of the vibration element 140 is the same as the first operation example described above, according to the first modification, it is possible to provide the input device 100A that can provide a good tactile sensation.
 また、以下で説明する実施の形態の第2変形例のようにしてもよい。 Also, a second modification of the embodiment described below may be used.
 図23は、実施の形態の第2変形例の本体部11Aを示す図である。本体部11Aは、図6に示す本体部11から、振幅データ出力部540を取り除いた構成を有する。また、本体部11Aは、第1変形例の入力装置100Aと組み合わせて用いる。 FIG. 23 is a diagram showing a main body 11A of a second modification of the embodiment. The main body 11A has a configuration in which the amplitude data output unit 540 is removed from the main body 11 shown in FIG. The main body 11A is used in combination with the input device 100A of the first modification.
 第2変形例では、本体部11Aは、ハイパーリンク接触信号と、ポインタ12Aの座標を入力装置100Aに伝送する。そして、入力装置100Aは、ハイパーリンク接触信号に基づいて、図11に示す処理を実行することにより、振動素子140を駆動する。また、入力装置100Aは、ポインタ12Aの座標を用いて、図15に示す処理を実行する。また、入力装置100Aは、ポインタ12Aの座標を用いて、図20に示す処理を実行する。 In the second modification, the main body 11A transmits the hyperlink contact signal and the coordinates of the pointer 12A to the input device 100A. Then, the input device 100A drives the vibration element 140 by executing the process shown in FIG. 11 based on the hyperlink contact signal. Further, the input device 100A executes the process shown in FIG. 15 using the coordinates of the pointer 12A. Also, the input device 100A executes the process shown in FIG. 20 using the coordinates of the pointer 12A.
 振動素子140の駆動方法は、上述した第1変形例と同様であるため、第2変形例によれば、良好な触感を提供できる入力装置100Aを提供することができる。 Since the driving method of the vibration element 140 is the same as that of the first modification described above, according to the second modification, it is possible to provide the input device 100A that can provide a good tactile sensation.
 以上、本発明の例示的な実施の形態の入力装置について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。 The input device according to the exemplary embodiment of the present invention has been described above. However, the present invention is not limited to the specifically disclosed embodiment, and does not depart from the scope of the claims. Various modifications and changes are possible.
 100 入力装置
 110 筐体
 111 ホイール
 112 左ボタン
 113 キャンセルボタン
 114 ケーブル
 115 LED
 116 センサ
 120 プレート
 130 両面テープ
 140 振動素子
 200 制御装置
 210 制御部
 220 移動検出部
 230 通信部
 240 駆動制御部
 310 正弦波発生器
 320 振幅変調器
 10 コンピュータシステム
 11 本体部
 12 ディスプレイパネル
 13 キーボード
 15 モデム
 510 制御部
 520 アプリケーションプロセッサ
 530 通信部
 540 振幅データ出力部
 550 メモリ
100 Input device 110 Case 111 Wheel 112 Left button 113 Cancel button 114 Cable 115 LED
DESCRIPTION OF SYMBOLS 116 Sensor 120 Plate 130 Double-sided tape 140 Vibration element 200 Control apparatus 210 Control part 220 Movement detection part 230 Communication part 240 Drive control part 310 Sine wave generator 320 Amplitude modulator 10 Computer system 11 Main body part 12 Display panel 13 Keyboard 15 Modem 510 Control unit 520 Application processor 530 Communication unit 540 Amplitude data output unit 550 Memory

Claims (9)

  1.  物体の表面に接する接触面を有するプレートと、
     前記接触面を表出させて前記プレートを保持し、利用者が手で触れるマウス型の筐体と、
     前記プレート又は前記筐体に配設され、前記表面に対する前記プレート及び前記筐体の移動方向及び移動量を検出する移動検出部と、
     前記接触面に振動を発生させる振動素子と、
     前記接触面に超音波帯の固有振動を発生させる駆動信号で前記振動素子を駆動する駆動制御部であって、前記移動検出部によって検出される前記移動方向及び前記移動量に基づいて、前記固有振動の強度が変化するように前記振動素子を駆動する駆動制御部と
     を含む入力装置。
    A plate having a contact surface in contact with the surface of the object;
    A mouse-type housing that exposes the contact surface to hold the plate and is touched by a user's hand;
    A movement detector disposed on the plate or the housing and detecting a movement direction and a movement amount of the plate and the housing with respect to the surface;
    A vibration element for generating vibration on the contact surface;
    A drive control unit that drives the vibration element with a drive signal that generates a natural vibration of an ultrasonic band on the contact surface, and is based on the movement direction and the movement amount detected by the movement detection unit. And a drive control unit that drives the vibration element such that the intensity of vibration changes.
  2.  前記入力装置は、表示部と、前記移動検出部によって検出される前記移動方向及び前記移動量に基づいて前記表示部に表示されるポインタの位置を求めるポインタ制御部と、前記ポインタの位置及び当該位置の時間的変化度合に応じて、前記固有振動の強度が変化するように前記駆動信号の振動パターンを出力する振動パターン出力部とを含む情報処理装置に有線又は無線で接続されており、
     前記駆動制御部は、前記振動パターン出力部から出力される前記振動パターンに基づく前記駆動信号を用いて前記振動素子を駆動する、請求項1記載の入力装置。
    The input device includes: a display unit; a pointer control unit that obtains a position of a pointer displayed on the display unit based on the movement direction and the movement amount detected by the movement detection unit; a position of the pointer; Wired or wirelessly connected to an information processing device including a vibration pattern output unit that outputs a vibration pattern of the drive signal so that the intensity of the natural vibration changes according to the degree of temporal change in position,
    The input device according to claim 1, wherein the drive control unit drives the vibration element using the drive signal based on the vibration pattern output from the vibration pattern output unit.
  3.  前記入力装置は、前記駆動信号の前記固有振動の強度と識別子とを関連付けた振幅データを保持するメモリをさらに含み、
     前記入力装置は、表示部と、前記移動検出部によって検出される前記移動方向及び前記移動量に基づいて前記表示部に表示されるポインタの位置を求めるポインタ制御部と、前記ポインタの位置及び当該位置の時間的変化度合に応じて前記識別子を出力する識別子出力部とを含む情報処理装置に有線又は無線で接続されており、
     前記駆動制御部は、前記情報処理装置から伝送される前記識別子に前記振幅データ内で対応する前記固有振動の強度を有する前記駆動信号を用いて、前記振動素子を駆動する、請求項1記載の入力装置。
    The input device further includes a memory that holds amplitude data in which the natural vibration intensity of the drive signal is associated with an identifier,
    The input device includes: a display unit; a pointer control unit that obtains a position of a pointer displayed on the display unit based on the movement direction and the movement amount detected by the movement detection unit; a position of the pointer; It is wired or wirelessly connected to an information processing device including an identifier output unit that outputs the identifier according to the degree of temporal change in position,
    The said drive control part drives the said vibration element using the said drive signal which has the intensity | strength of the said natural vibration corresponding to the said identifier transmitted from the said information processing apparatus in the said amplitude data. Input device.
  4.  前記入力装置は、表示部と、前記移動検出部によって検出される前記移動方向及び前記移動量に基づいて前記表示部に表示されるポインタの位置を求めるポインタ制御部とを含む情報処理装置に有線又は無線で接続されており、
     前記入力装置は、前記表示部における位置と、前記駆動信号の前記固有振動の強度とを関連付けた振幅データを保持するメモリをさらに含み、
     前記駆動制御部は、前記情報処理装置から伝送される前記ポインタの位置と、前記振幅データとに基づいて、前記ポインタの位置及び当該位置の時間的変化度合に応じて、前記固有振動の強度が変化するように前記振動素子を駆動する、請求項1記載の入力装置。
    The input device is wired to an information processing device including a display unit and a pointer control unit that obtains a position of a pointer displayed on the display unit based on the movement direction and the movement amount detected by the movement detection unit. Or connected wirelessly,
    The input device further includes a memory that holds amplitude data that associates the position in the display unit with the intensity of the natural vibration of the drive signal,
    Based on the position of the pointer transmitted from the information processing apparatus and the amplitude data, the drive control unit determines the intensity of the natural vibration according to the position of the pointer and the temporal change degree of the position. The input device according to claim 1, wherein the vibration element is driven to change.
  5.  前記駆動制御部は、前記ポインタが、前記表示部に表示されるテキストに含まれる所定の記号に触れると、前記固有振動の強度が変化するように前記振動素子を駆動する、請求項2乃至4のいずれか一項記載の入力装置。 The drive control unit drives the vibration element so that the intensity of the natural vibration changes when the pointer touches a predetermined symbol included in text displayed on the display unit. The input device according to any one of the above.
  6.  前記駆動制御部は、前記ポインタの位置が、前記表示部に表示されるGUI操作部の表示領域に入るとき、又は、前記GUI操作部の表示領域から出るときに、前記固有振動の強度が変化するように前記振動素子を駆動する、請求項2乃至4のいずれか一項記載の入力装置。 The drive control unit changes the intensity of the natural vibration when the position of the pointer enters a display region of the GUI operation unit displayed on the display unit or exits from the display region of the GUI operation unit. The input device according to any one of claims 2 to 4, wherein the vibration element is driven so as to.
  7.  前記駆動制御部は、前記ポインタによって操作されるGUI操作部の操作量が所定の操作量に達すると、前記固有振動の強度が変化するように前記振動素子を駆動する、請求項2乃至4のいずれか一項記載の入力装置。 5. The drive control unit according to claim 2, wherein when the operation amount of the GUI operation unit operated by the pointer reaches a predetermined operation amount, the drive element drives the vibration element such that the intensity of the natural vibration changes. The input device according to any one of claims.
  8.  前記筐体に設けられ、前記駆動制御部による前記振動素子の駆動を停止させる停止指令を出力する操作部と
     をさらに含む、請求項1乃至7のいずれか一項記載の入力装置。
    The input device according to claim 1, further comprising: an operation unit that is provided in the housing and outputs a stop command to stop driving of the vibration element by the drive control unit.
  9.  前記筐体の前記接触面が表出する第1側とは反対の第2側に設けられる、ホイール入力部、又は、ボタン入力部をさらに含む、請求項1乃至8のいずれか一項記載の入力装置。 The wheel input part or button input part provided in the 2nd side opposite to the 1st side where the said contact surface of the said housing | casing exposes is further included in any one of Claims 1 thru | or 8. Input device.
PCT/JP2015/065550 2015-05-29 2015-05-29 Input device WO2016194042A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065550 WO2016194042A1 (en) 2015-05-29 2015-05-29 Input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065550 WO2016194042A1 (en) 2015-05-29 2015-05-29 Input device

Publications (1)

Publication Number Publication Date
WO2016194042A1 true WO2016194042A1 (en) 2016-12-08

Family

ID=57440955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065550 WO2016194042A1 (en) 2015-05-29 2015-05-29 Input device

Country Status (1)

Country Link
WO (1) WO2016194042A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294844A (en) * 2008-06-04 2009-12-17 Saitama Univ Mouse and mouse pad
JP2014102829A (en) * 2012-11-20 2014-06-05 Immersion Corp System and method for feedforward and feedback with haptic effects

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294844A (en) * 2008-06-04 2009-12-17 Saitama Univ Mouse and mouse pad
JP2014102829A (en) * 2012-11-20 2014-06-05 Immersion Corp System and method for feedforward and feedback with haptic effects

Similar Documents

Publication Publication Date Title
US8264465B2 (en) Haptic feedback for button and scrolling action simulation in touch input devices
KR101516926B1 (en) Drive controlling apparatus, electronic device and drive controlling method
WO2015045063A1 (en) Drive control apparatus, electronic device, and drive control method
US20100020036A1 (en) Portable electronic device and method of controlling same
WO2013186846A1 (en) Program and electronic device
JP2011528826A (en) Haptic feedback for touch screen key simulation
KR20160003031A (en) Simulation of tangible user interface interactions and gestures using array of haptic cells
US20160349846A1 (en) Electronic device, input apparatus, and drive controlling method
EP3382516A1 (en) Tactile sense presentation device and tactile sense presentation method
US20160349847A1 (en) Electronic device, input apparatus, and drive controlling method
US20200264705A1 (en) Information processing apparatus and electronic device
US11086435B2 (en) Drive control device, electronic device, and drive control method
US20180101233A1 (en) Apparatus, systems, and method for simulating a physical keyboard
JP6528086B2 (en) Electronics
JP2019145146A (en) Device, system and method for using corrugated tessellation to create surface features
WO2016194042A1 (en) Input device
KR101682527B1 (en) touch keypad combined mouse using thin type haptic module
WO2013186841A1 (en) Electronic device and vibration provision method
WO2017017835A1 (en) Mouse device
JP2006079135A (en) Tactile sense presentation device
JP6300891B1 (en) INPUT DEVICE, INFORMATION PROCESSING DEVICE, INPUT DEVICE CONTROL METHOD, AND INPUT DEVICE CONTROL PROGRAM
KR100957001B1 (en) Haptic feedback providing module using magnetic force, handheld with haptic feedback providing module and providing method thereof
JP6399216B2 (en) Drive control apparatus, electronic device, drive control program, and drive control method
WO2017029717A1 (en) Drive control device, electronic device, drive control program, and drive control method
JP2017199208A (en) Pen type input device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP