WO2016182068A1 - Light source for raman amplification, light source system for raman amplification, raman amplifier, raman amplifying system - Google Patents

Light source for raman amplification, light source system for raman amplification, raman amplifier, raman amplifying system Download PDF

Info

Publication number
WO2016182068A1
WO2016182068A1 PCT/JP2016/064337 JP2016064337W WO2016182068A1 WO 2016182068 A1 WO2016182068 A1 WO 2016182068A1 JP 2016064337 W JP2016064337 W JP 2016064337W WO 2016182068 A1 WO2016182068 A1 WO 2016182068A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
raman amplification
light source
incoherent
raman
Prior art date
Application number
PCT/JP2016/064337
Other languages
French (fr)
Japanese (ja)
Inventor
大越 春喜
森本 政仁
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015210487A external-priority patent/JP6774753B2/en
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201680022816.1A priority Critical patent/CN107533270B/en
Publication of WO2016182068A1 publication Critical patent/WO2016182068A1/en
Priority to US15/810,707 priority patent/US10938175B2/en
Priority to US17/187,147 priority patent/US11652329B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics

Definitions

  • the present invention relates to a light source for Raman amplification, a light source system for Raman amplification, a Raman amplifier, and a Raman amplification system.
  • Raman amplification is backward pumping Raman amplification in which pumping light is incident on an optical fiber for Raman amplification so as to propagate in a direction opposite to the propagation direction of signal light.
  • Raman amplification for further acceleration (100 Gb / s), longer distance (100 km transmission), and wider bandwidth (utilization of L, S-band) for the next generation, Raman amplification called forward excitation Raman amplification.
  • the key is to use a method in which excitation light is incident on the optical fiber for use in the same direction as the propagation direction of the signal light simultaneously with the backward excitation Raman amplification. This method is called bidirectional excitation Raman amplification.
  • flattening of Raman gain and broadening of the bandwidth can be achieved by using only the backward pumping Raman amplification by using the wavelength multiplexing pumping method, but flattening of the noise figure (NF) cannot be achieved without using bidirectional pumping Raman amplification.
  • NF noise figure
  • RIN is an index obtained by standardizing a minute intensity fluctuation component of laser light with all light output.
  • the lifetime of an excitation level that generates a gain is short ( ⁇ several fsec). Therefore, if there is intensity noise in the excitation light source, it becomes noise of the signal light as it is through the amplification process.
  • EDFA since the lifetime of the excitation level is long ( ⁇ 10 msec), there is no such fear.
  • the gain per unit length is very small compared to EDFA, but in forward pumping Raman amplification, signal light and pumping light propagate together in an optical fiber over a long distance, so that pumping is gradually performed. Light noise changes as signal light noise.
  • RIN transfer This is called RIN transfer.
  • the forward pumping Raman amplification requires a characteristic that the RIN transfer is low, in particular, the group velocity difference between the signal light and the pumping light is small, and the time for transmitting through the optical fiber in parallel becomes long. In dispersion shifted fiber (DSF) or the like, this reduction in RIN transfer is important.
  • SBS is one of the third-order nonlinear optical effects, and is a phenomenon in which part of light is scattered backward by acoustic phonons excited in an optical fiber by light.
  • the excitation light when SBS occurs, the excitation light is scattered backward, which is not preferable because it does not contribute to Raman amplification effectively.
  • the total light output intensity is the same, a pump light source that emits single mode oscillation and narrow linewidth laser light easily generates SBS. Therefore, the number of oscillation longitudinal modes is increased to increase the number of longitudinal modes.
  • the pumping light source with a reduced light output can suppress SBS without reducing the Raman gain. If the oscillation longitudinal mode is a continuous light source having a broad spectrum width, SBS can be suppressed even more effectively.
  • Non-linear effects must be avoided because they cause signal light distortion and lead to communication quality degradation.
  • Current optical communication is generally wavelength multiplex communication, and even if the power of signal light of one wavelength is small, the overall power is increased by multiplexing. For example, even if the power of signal light of each wavelength is 1 mW, if 100 wave multiplexing is performed, the total power becomes 100 mW.
  • optical signal amplification is performed to compensate for loss in the transmission line, if the signal light is amplified at a position with a lumped constant amplifier such as EDFA at a time, the power of the amplified signal light is transmitted. Since it is introduced into the road at once, nonlinear effects are likely to be caused.
  • the Raman amplification gain exceeds the transmission loss of the optical fiber that is the transmission line on the incident side of the transmission line.
  • the power of the signal light in the optical fiber is at the incident end of the signal light. It becomes larger than power and is likely to cause a nonlinear effect.
  • higher-order Raman amplification is being studied in which Raman amplification is repeated until the wavelength at which Raman excitation light can be used as signal light excitation light in cascade.
  • excitation light having a wavelength of about 1450 nm is used.
  • the excitation light having a wavelength of about 1350 nm is Raman-amplified and the Raman amplification is performed. It is based on the principle that 1450 nm excitation light Raman-amplifies signal light in the 1550 nm band. By doing so, the pump light of 1450 nm that Raman-amplifies the signal light at the incident end of the transmission line has low power, so the Raman gain of the signal light in the 1550 nm band is small, and the excitation of 1450 nm is performed as the signal light is transmitted.
  • the light is amplified by 1350 nm excitation light, and the Raman gain for the signal light in the 1550 nm band increases.
  • This makes it possible to regard the transmission line as a transmission line as if the transmission line loss and Raman gain were successfully canceled and the transmission loss of the optical fiber was zero, and the nonlinear effect was reduced. Further reduction is possible.
  • 1450 nm excitation light is called primary excitation light
  • 1350 nm excitation light is called secondary excitation light
  • this system is called a secondary excitation system.
  • High-order Raman excitation systems such as the 3rd order and 4th order have been studied based on the same principle. Even in such a high-order Raman excitation system, low RIN transfer and low SBS are high quality transmission. Is essential.
  • Patent Documents 3 and 4 Patent Documents 1 to 4
  • the Raman amplification light source, the Raman amplification light source system, the Raman amplifier, and the Raman amplification system that can solve the above-described four problems at the same time have not yet achieved practical characteristics.
  • the present invention has been made in view of the above, and an object thereof is to provide a Raman amplification light source, a Raman amplification light source system, a Raman amplifier, and a Raman amplification system that can simultaneously solve the four problems.
  • a Raman amplification light source Raman-amplifies signal light transmitted through an optical transmission fiber by stimulated Raman scattering in the optical transmission fiber.
  • the Rento amplified light characterized in that it comprises an output unit for outputting to said optical transmission fiber the signal light as the primary excitation light having a wavelength of Raman amplification.
  • the Raman amplification light source includes the plurality of incoherent light sources and the plurality of excitation light sources in the Raman amplification optical fiber such that the secondary excitation light pumps the incoherent light forward. It is connected.
  • the Raman amplification light source includes the plurality of incoherent light sources and the plurality of excitation light sources in the Raman amplification optical fiber so that the secondary excitation light pumps the incoherent light backward. It is connected.
  • the Raman amplification light source is characterized in that the output unit is connected to the optical transmission fiber so that the primary pumping light pumps the signal light forward.
  • the Raman amplification light source is characterized in that the output unit is connected to the optical transmission fiber so that the primary pumping light pumps the signal light backward.
  • a Raman amplification light source is a Raman amplification light source for Raman amplification of signal light transmitted through an optical transmission fiber with the optical transmission fiber, and a plurality of incoherent light outputs incoherent light.
  • a plurality of pumping light sources that output secondary pumping light having a wavelength for Raman amplification of the incoherent light, the plurality of incoherent light sources, the plurality of pumping light sources, and the optical transmission fiber
  • An output unit that outputs the input incoherent light and the secondary pumping light so as to propagate in the same direction through the optical transmission fiber, wherein the input incoherent light is transmitted in the optical transmission fiber; Raman amplification is performed by the input secondary excitation light, and primary excitation light having a wavelength for Raman amplification of the signal light is generated.
  • the Rukoto is performed by the input secondary excitation light, and primary excitation light having a wavelength for Raman amplification of the signal light is generated.
  • a Raman amplification light source includes an excitation light source that outputs excitation light having a wavelength for Raman amplification of secondary excitation light output from at least one of the plurality of excitation light sources. To do.
  • the Raman amplification light source is the ASE (Amplified Spontaneous Emission) light source including the SLD (Super Luminescent Diode), the SOA (Semiconductor Optical Amplifier), and the rare earth-doped optical fiber. It contains at least one.
  • SLD Super Luminescent Diode
  • SOA semiconductor Optical Amplifier
  • the plurality of incoherent light sources include an SLD and an SOA, and the incoherent light output from the SLD is optically amplified by the SOA and output.
  • An incoherent light source is included.
  • the Raman amplification light source according to an aspect of the present invention is characterized in that the plurality of incoherent light sources include incoherent light sources configured by connecting SOAs in multiple stages.
  • the plurality of excitation light sources include a Fabry-Perot (FP) type, an FP type combined with an optical fiber Bragg grating (FBG), a DFB type, And at least one of DBR type semiconductor lasers.
  • FP Fabry-Perot
  • FBG optical fiber Bragg grating
  • DFB DFB
  • DBR DBR type semiconductor lasers
  • the Raman amplification light source according to an aspect of the present invention is characterized in that the plurality of incoherent light sources include incoherent light sources that output incoherent light in different wavelength bands.
  • a Raman amplification light source system includes a Raman amplification light source according to an aspect of the present invention and a Raman amplification light source according to an aspect of the present invention, and an output of each of the Raman amplification light sources.
  • the unit is connected to the optical transmission fiber so that the primary pumping light bi-directionally pumps the signal light.
  • a Raman amplification light source system includes two Raman amplification light sources according to an aspect of the present invention, and an output unit of each Raman amplification light source includes the primary excitation light as the signal light. It is connected to the optical transmission fiber so as to be bi-directionally excited.
  • a Raman amplification light source system is a Raman amplification light source system for Raman-amplifying signal light transmitted through an optical transmission fiber with the optical transmission fiber, and outputs first incoherent light.
  • a second light source unit including a second output unit that outputs the secondary pumping light to the optical transmission fiber, and the first output unit and the second output unit.
  • the output unit refers to the optical transmission so that the incoherent light and the secondary excitation light propagate in the optical transmission fiber in opposite directions between the first output unit and the second output unit.
  • the input incoherent light is Raman amplified by the input secondary pumping light.
  • the primary pumping light having a wavelength for Raman amplification of the signal light is generated.
  • the second light source unit outputs a second plurality of incoherent lights having a wavelength that is Raman-amplified by the secondary excitation light.
  • a coherent light source and the first light source unit includes a second plurality of pump light sources that output second secondary pump light having a wavelength for Raman amplification of the second incoherent light, and
  • the second output unit of the light source unit is connected to the second plurality of incoherent light sources, outputs the second incoherent light to the optical transmission fiber, and outputs the second incoherent light of the first light source unit.
  • the first output unit is connected to the second plurality of pumping light sources, outputs the second secondary pumping light to the optical transmission fiber, and the first output unit and the second output unit. Is the second incoherent light and the front A second secondary pumping light is connected to the optical transmission fiber so as to propagate in the opposite direction between the first output unit and the second output unit, In the optical transmission fiber between the first output unit and the second output unit, the input second incoherent light is Raman amplified by the input second secondary pumping light, A second primary pumping light having a wavelength for Raman amplification of the signal light is generated.
  • the plurality of incoherent light sources include an ASE (Amplified Spontaneous Emission) light source including an SLD (Super Luminescent Diode), an SOA (Semiconductor Optical Amplifier), and a rare earth-doped optical fiber. It is characterized by including at least one of these.
  • the plurality of incoherent light sources include an SLD and an SOA, and the incoherent light output from the SLD is optically amplified by the SOA and output.
  • An incoherent light source is included.
  • the Raman amplification light source system is characterized in that the plurality of incoherent light sources include an incoherent light source configured by connecting SOAs in multiple stages.
  • the plurality of excitation light sources are Fabry-Perot (FP) type having different wavelengths, FP type, and FP-FBG in which an optical fiber Bragg grating (FBG) is combined. It includes at least one of a type, a DFB type, and a DBR type semiconductor laser.
  • FP Fabry-Perot
  • FBG optical fiber Bragg grating
  • the Raman amplification light source system is characterized in that the plurality of incoherent light sources include incoherent light sources that output incoherent light in different wavelength bands.
  • a Raman amplifier according to an aspect of the present invention includes the Raman amplification light source or the Raman amplification light source system according to an aspect of the present invention, and the optical transmission fiber.
  • a Raman amplification system includes the Raman amplification light source or the Raman amplification light source system according to an aspect of the present invention, and the optical transmission fiber.
  • FIG. 1 is a schematic configuration diagram of a Raman amplification system using a Raman amplification light source according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of the WDM coupler.
  • FIG. 3 is a diagram illustrating another example of the configuration of the WDM coupler.
  • FIG. 4 is a diagram illustrating an example of an arrangement of wavelengths of incoherent light and secondary excitation light.
  • FIG. 5 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the second embodiment.
  • FIG. 6 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the third embodiment.
  • FIG. 1 is a schematic configuration diagram of a Raman amplification system using a Raman amplification light source according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of the WDM coupler.
  • FIG. 3 is a diagram illustrating another example of
  • FIG. 7 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the fourth embodiment.
  • FIG. 8 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the fifth embodiment.
  • FIG. 9 is a schematic configuration diagram of a Raman amplification system using a Raman amplification light source according to the sixth embodiment.
  • FIG. 10 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the seventh embodiment.
  • FIG. 11 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the eighth embodiment.
  • FIG. 12 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the ninth embodiment.
  • FIG. 13 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the tenth embodiment.
  • FIG. 14 is a diagram illustrating an example of the configuration of an incoherent light source.
  • FIG. 1 is a schematic configuration diagram of a Raman amplification system using a Raman amplification light source according to the first embodiment.
  • a Raman amplification system 100 includes a transmitter 1001 that transmits signal light S1 that is WDM signal light in a 1.55 ⁇ m band, an optical transmission fiber 1002 that is a transmission path that transmits the signal light S1,
  • the optical transmission system 1000 includes a receiver 1003 that receives the signal light S1.
  • the Raman amplification system 100 is composed of a Raman amplification light source 10 and an optical transmission fiber 1002. Note that the Raman amplification system 100 according to the first embodiment and the Raman amplification systems according to the following embodiments are also configured as Raman amplifiers.
  • the Raman amplification light source 10 includes a plurality of incoherent light sources 11, a plurality of excitation light sources 12, a WDM coupler 13, a Raman amplification optical fiber 14, and a WDM coupler 15 as an output unit.
  • the plurality of incoherent light sources 11 output incoherent light IL having different wavelengths from each other.
  • the incoherent light is not a laser light source that oscillates in a single or a plurality of discrete modes (longitudinal modes) but means light that is a set of uncorrelated photons having a continuous spectrum.
  • the plurality of incoherent light sources 11 include at least one of an ASE (Amplified Spontaneous Emission) light source including an SLD (Super Luminescent Diode), an SOA (Semiconductor Optical Amplifier), and a rare earth doped optical fiber (for example, EDF). In Embodiment 1, it is assumed that all are SLDs.
  • the plurality of excitation light sources 12 each output secondary excitation light SPL having wavelengths different from each other and having a wavelength for Raman amplification of the incoherent light IL.
  • the plurality of pumping light sources 12 are at least one of a Fabry-Perot (FP) type, a FP type, and an FP-FBG type, a DFB type, and a DBR type semiconductor laser having a combination of an FP type and an optical fiber Bragg grating (FBG).
  • FP Fabry-Perot
  • FBG optical fiber Bragg grating
  • the WDM coupler 13 combines each incoherent light IL and each secondary excitation light SPL and outputs the combined light.
  • FIG. 2 is a diagram illustrating an example of the configuration of the WDM coupler 13.
  • the WDM coupler 13 has a configuration in which a plurality of WDM couplers 13a made of a dielectric multilayer filter and a plurality of WDM couplers 13b made of a dielectric multilayer filter are connected in series by an optical fiber.
  • Each WDM coupler 13a is connected to each incoherent light source 11 by an optical fiber, has a wavelength characteristic that reflects incoherent light IL output from the connected incoherent light source 11 and transmits light of other wavelengths. Have.
  • each WDM coupler 13b is connected to each pumping light source 12 by an optical fiber, reflects the secondary pumping light SPL output from the connected pumping light source 12, and transmits light of other wavelengths. Has characteristics. Thereby, the WDM coupler 13 can multiplex each incoherent light IL and each secondary excitation light SPL, and can output it from the output port 13c.
  • FIG. 3 is a diagram showing a WDM coupler 13 'which is another example of the configuration of the WDM coupler.
  • the WDM coupler 13 ' includes an AWG (Arrayed Waveguide Gratings) 13'a using a planar lightwave circuit (PLC).
  • AWG Arrayed Waveguide Gratings
  • PLC planar lightwave circuit
  • Each of the plurality of ports 13′aa on the multi-port side of the AWG 13′a is connected to each incoherent light source 11, and each of the plurality of ports 13′ab is connected to each excitation light source 12.
  • the WDM coupler 13 ' can multiplex each incoherent light IL and each secondary pumping light SPL and output them from the output port 13'ac.
  • the Raman amplification optical fiber 14 is connected to the plurality of incoherent light sources 11 and the plurality of pumping light sources 12 via the WDM coupler 13, and each secondary pumping light SPL to which the input incoherent light IL is input. Is Raman amplified and output as incoherent amplified light.
  • the Raman amplification optical fiber 14 is a known optical fiber such as a highly nonlinear optical fiber.
  • the plurality of incoherent light sources 11 and the plurality of pumping light sources 12 are connected to the Raman amplification optical fiber 14 via the WDM coupler 13 so that each secondary pumping light SPL forwardly pumps each incoherent light IL.
  • the propagation directions of the secondary pumping light SPL and the incoherent light IL are the same.
  • the WDM coupler 15 serving as an output unit is connected to an optical transmission fiber 1002 and receives incoherent amplified light.
  • the optical transmission fiber 1002 is used as primary pumping light FPL having a wavelength for Raman amplification of the signal light S1.
  • the WDM coupler 15 is a known WDM coupler using a dielectric multilayer filter or the like.
  • the WDM coupler 15 is connected to the optical transmission fiber 1002 so that the primary pumping light FPL pumps the signal light S1 forward. That is, the WDM coupler 15 is connected to the optical transmission fiber 1002 so that the propagation direction of the primary pumping light FPL is the same as the propagation direction of the signal light S1.
  • the signal light S1 transmitted through the optical transmission fiber 1002 is Raman-amplified by the primary pumping light FPL due to the stimulated Raman scattering phenomenon in the optical transmission fiber 1002.
  • the present inventors can reduce RIN transfer to signal light even when incoherent light Raman-amplified by coherent secondary pumping light such as FP semiconductor laser is used as primary pumping light. I found it.
  • a plurality of excitation light sources 12 made of FP type semiconductor lasers are used as secondary excitation light SPL, and incoherent light Raman-amplified by the Raman amplification optical fiber 14 is subjected to primary excitation.
  • the signal light S1 is Raman-amplified by the optical transmission fiber 1002 as the optical FPL. Thereby, a low RIN transfer is realized.
  • the incoherent light IL has a wider wavelength band of light emission than a coherent light source such as an FP type semiconductor laser, and has a peak intensity lower than the whole intensity of light emission. Therefore, low SBS is realizable by amplifying this and using it as primary excitation light FPL. Further, due to the wide wavelength band of the emission of the incoherent light IL, it is difficult for the four-wave mixing, which is a typical nonlinear effect, to satisfy the phase matching condition, and the generation of the four-wave mixing is suppressed. Thereby, a low nonlinear effect is realizable.
  • incoherent light sources 11 that output incoherent light IL having different wavelengths
  • pumping light sources 12 that output secondary pumping light SPL each having a different wavelength
  • the Raman amplification light source 10 can solve the above four problems at the same time.
  • the wavelength, number, band, and power of the excitation light source 12 and the incoherent light source 11 can be appropriately adjusted according to the amplification band, desired gain, and gain flatness of the signal light S1 to be amplified.
  • FIG. 4 is a diagram illustrating an example of an arrangement of wavelengths of incoherent light and secondary excitation light.
  • the number of incoherent light sources 11 SLD
  • the number of excitation light sources 12 excitation FP-LD
  • the wavelengths of the secondary excitation light SPLA, SPLB, SPLC, and SPLD are 1350 nm, 1370 nm, 1380 nm, and 1400 nm, respectively, and the power is 250 mW.
  • the wavelengths of the incoherent lights ILA and ILB are 1450 nm and 1480 nm, respectively, the 3 dB bandwidth is 30 nm, and the power is 5 mW.
  • the incoherent lights ILA and ILB are Raman-amplified and become the primary excitation light FPL.
  • the Raman peaks RPA, RPB, RPC are divided into wavelengths having a low light intensity on the long wavelength side and a wavelength having a low light intensity on the short wavelength side relative to the peak wavelengths of the incoherent lights ILA, ILB. Since the wavelengths of the secondary pumping light SPLA, SPLB, SPLC, and SPLD are set so that the RPD is positioned, high Raman gain is given to the light having a low light intensity of the incoherent light ILA and ILB. Can do. As a result, the primary excitation light FPL has a flatter spectral shape with respect to the wavelength.
  • the power is high and the broadband incoherent of about 1430 nm to 1500 nm is set.
  • Raman amplified light primary excitation light
  • C + L band signal light from 1530 nm to 1625 nm, which is used in optical communication, can be Raman amplified.
  • incoherent light sources 11 by combining different types of incoherent light sources that output incoherent light in different wavelength bands, such as an ASE light source using SLD and EDF, an SOA and ASE light source, and an SOA and SLD, excitation light is combined. If the wavelength band is widened, the gain band can be easily widened. For example, when an SOA operating in a wavelength band of several tens of nm centered on the 1480 nm band is used as an incoherent light source, it is difficult to operate the SOA at other wavelengths.
  • the excitation light wavelength band can be expanded not only to the 1480 nm band but also to the 1300 nm band and the 1550 nm band.
  • an ASE light source an optical fiber connected with an optical fiber added with different rare earth elements (Er or Er and Al 2 O 3 or Yb co-doped, PbS semiconductor quantum dots), or an optical fiber co-doped with different rare earth elements
  • the excitation light wavelength band can be broadened.
  • FIG. 5 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the second embodiment.
  • the Raman amplification system 100A is composed of a Raman amplification light source 10A and an optical transmission fiber 1002.
  • the Raman amplification light source 10A includes a plurality of incoherent light sources 11, a plurality of excitation light sources 12, WDM couplers 13Aa and 13Ab, a Raman amplification optical fiber 14, and a WDM coupler 15.
  • WDM coupler 13Aa combines and outputs each incoherent light IL.
  • the WDM coupler 13Ab combines and outputs the respective secondary pumping lights SPL.
  • the WDM couplers 13Aa and 13Ab can be configured using a dielectric multilayer filter or AWG as illustrated in FIGS.
  • the Raman amplification optical fiber 14 is connected to a plurality of incoherent light sources 11 via a WDM coupler 13Aa, and is connected to a plurality of excitation light sources 12 via a WDM coupler 13Ab.
  • the Raman amplification optical fiber 14 Raman-amplifies each input incoherent light IL with each input secondary excitation light SPL, and outputs it as incoherent amplified light.
  • each of the plurality of incoherent light sources 11 and the plurality of pumping light sources 12 is used for Raman amplification via each of the WDM couplers 13Aa and 13Ab so that each secondary pumping light SPL pumps each incoherent light IL backward. It is connected to the optical fiber 14. That is, in the Raman amplification optical fiber 14, the propagation directions of the secondary pumping light SPL and the incoherent light IL are opposite to each other.
  • the WDM coupler 15 is connected to the optical transmission fiber 1002, receives incoherent amplified light, and outputs it to the optical transmission fiber 1002 as primary pumping light FPL having a wavelength for Raman amplification of the signal light S1.
  • the WDM coupler 15 is connected to the optical transmission fiber 1002 so that the primary pumping light FPL pumps the signal light S1 forward.
  • the signal light S1 is Raman amplified by the primary pumping light FPL in the optical transmission fiber 1002.
  • the Raman amplification light source 10A can solve the above-described four problems at the same time as the Raman amplification light source 10. Furthermore, in this Raman amplification light source 10A, in the Raman amplification optical fiber 14, each secondary pumping light SPL Raman-amplifies each incoherent light IL by backward pumping. Thereby, since each secondary excitation light SPL further reduces the RIN transfer of each incoherent light IL, the RIN transfer to the signal light S1 is further reduced.
  • FIG. 6 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the third embodiment.
  • the Raman amplification system 100B includes a Raman amplification light source 10B and an optical transmission fiber 1002.
  • the Raman amplification light source 10B has a configuration in which the WDM coupler 15 of the Raman amplification light source 10 is replaced with a WDM coupler 15B.
  • the WDM coupler 15B is connected to the optical transmission fiber 1002, receives incoherent amplified light, and outputs it to the optical transmission fiber 1002 as primary pumping light FPL having a wavelength for Raman amplification of the signal light S1.
  • the WDM coupler 15B is connected to the optical transmission fiber 1002 so that the primary pumping light FPL pumps the signal light S1 backward. That is, the WDM coupler 15B is connected to the optical transmission fiber 1002 so that the propagation direction of the primary pumping light FPL is opposite to the propagation direction of the signal light S1.
  • the signal light S1 is Raman amplified by the primary pumping light FPL in the optical transmission fiber 1002.
  • the Raman amplification light source 10B can solve the above-described four problems at the same time as the Raman amplification light source 10. Further, in the case of the Raman amplification light source 10B, the low nonlinear effect can be further suppressed as compared with the case of the forward excitation type like the Raman amplification light source 10. Since this is a backward pumping type, since the signal light S1 begins to receive transmission loss of the optical transmission fiber 1002 and the power starts to decrease, the signal light S1 is amplified by Raman amplification by the primary pumping light FPL. Because the primary pumping light FPL and the signal light S1 propagate in the opposite directions than in the optical transmission fiber 1002, it is more difficult to satisfy the phase matching condition causing the nonlinear effect than forward pumping. .
  • FIG. 7 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the fourth embodiment.
  • the Raman amplification system 100C is composed of a Raman amplification light source 10C and an optical transmission fiber 1002.
  • the Raman amplification light source 10C has a configuration in which the WDM coupler 15 of the Raman amplification light source 10A is replaced with a WDM coupler 15C.
  • the WDM coupler 15C is connected to the optical transmission fiber 1002, receives incoherent amplified light, and outputs it to the optical transmission fiber 1002 as primary pumping light FPL having a wavelength for Raman amplification of the signal light S1.
  • the WDM coupler 15C is connected to the optical transmission fiber 1002 so that the primary pumping light FPL pumps the signal light S1 backward. That is, the WDM coupler 15C is connected to the optical transmission fiber 1002 so that the propagation direction of the primary pumping light FPL is opposite to the propagation direction of the signal light S1.
  • the signal light S1 is Raman amplified by the primary pumping light FPL in the optical transmission fiber 1002.
  • the Raman amplification light source 10C can solve the above four problems at the same time as the Raman amplification light source 10. Furthermore, in this Raman amplification light source 10C, as in the Raman amplification light source 10A, in the Raman amplification optical fiber 14, each secondary excitation light SPL Raman-amplifies each incoherent light IL by backward excitation. Thereby, since each secondary excitation light SPL further reduces the RIN transfer of each incoherent light IL, the RIN transfer to the signal light S1 is further reduced.
  • FIG. 8 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the fifth embodiment.
  • the Raman amplification system 100D includes a Raman amplification light source system 10D and an optical transmission fiber 1002.
  • the Raman amplification light source system 10D includes a Raman amplification light source 10 and a Raman amplification light source 10B.
  • the WDM couplers 15 and 15B of the Raman amplification light sources 10 and 10B output from the WDM couplers 15 and 15B, respectively.
  • the primary pumping light FPL is connected to the optical transmission fiber 1002 so as to bi-directionally pump the signal light S1. That is, the Raman amplification system 100D is a bidirectional excitation system using the Raman amplification light source system 10D.
  • the Raman amplification light source system 10D can also solve the above four problems at the same time. Furthermore, according to the Raman amplification light source system 10D, it is easy to achieve the flattening of the wavelength of Raman gain, the broadening of the bandwidth, and the flattening of the NF because of the bidirectional excitation type.
  • the Raman amplification light source 10A and the Raman amplification light source 10C constitute a Raman amplification light source system, and the primary excitation light FPL output from the WDM couplers 15 and 15C of the Raman amplification light sources 10A and 10C, respectively. May be connected to the optical transmission fiber 1002 so as to bidirectionally pump the signal light S1, and a bidirectionally pumped Raman amplification system similar to the Raman amplification system 100D may be configured.
  • FIG. 9 is a schematic configuration diagram of a Raman amplification system using a Raman amplification light source according to the sixth embodiment.
  • the Raman amplification system 100E includes a Raman amplification light source 10E and an optical transmission fiber 1002.
  • the Raman amplification light source 10E includes a plurality of incoherent light sources 11, a plurality of excitation light sources 12, and a WDM coupler 13 as an output unit.
  • the WDM coupler 13 is connected to a plurality of incoherent light sources 11, a plurality of pumping light sources 12, and an optical transmission fiber 1002, and is input from each incoherent light IL input from each incoherent light source 11 and each pumping light source 12. Each secondary pumping light SPL is output so as to propagate through the optical transmission fiber 1002 in the same direction. Further, the WDM coupler 13 is connected to the optical transmission fiber 1002 so that each incoherent light IL and each secondary pumping light SPL propagate in the same direction as the signal light S1 in the optical transmission fiber 1002. Such a configuration can be realized by connecting the WDM coupler 13 shown in FIG.
  • each incoherent light IL and each secondary pumping light SPL may be coupled to the optical transmission fiber 1002 so as to be output.
  • each incoherent light IL is gradually Raman-amplified by each secondary excitation light SPL in the optical transmission fiber 1002, and primary excitation light FPL having a wavelength for Raman amplification of the signal light S1 is generated.
  • the primary pumping light FPL propagates in the same direction as the signal light S1, and Raman-amplifies the signal light S1. That is, the Raman amplification system 100E is a forward excitation type and secondary excitation type Raman amplification system.
  • This Raman amplification light source 10E can also solve the above four problems at the same time. Further, according to the Raman amplification light source 10E, the primary pumping light FPL for Raman amplification of the signal light S1 in the optical transmission fiber 1002 in the vicinity of the WDM coupler 13 has a small power, but the Raman gain of the signal light S1 is small. As the signal light S1 is transmitted through the optical transmission fiber 1002, the incoherent light IL is amplified by the secondary pumping light SPL, the power of the primary pumping light FPL is increased, and the Raman gain for the signal light S1 is increased.
  • the optical transmission fiber 1002 when the optical transmission fiber 1002 is viewed as a whole, the transmission loss and the Raman gain are canceled well, and the transmission loss of the optical fiber is zero, or the power fluctuation of the signal light S1 in the longitudinal direction of the optical transmission fiber 1002 is small. It can be regarded as a road, and the nonlinear effect can be further reduced.
  • the wavelengths of the secondary excitation light SPLA, SPLB, SPLC, and SPLD are 1350 nm, 1370 nm, 1380 nm, and 1400 nm, respectively, and the power is 250 mW.
  • the wavelengths of the coherent lights ILA and ILB being 1450 nm and 1480 nm, respectively, the 3 dB bandwidth being 30 nm, and the power being 5 mW.
  • the signal light S1 is a WDM signal light composed of four signal lights, and the wavelengths thereof are 1530 nm, 1560 nm, 1590 nm, and 1620 nm.
  • the length of the optical transmission fiber 1002 is 50 km. As a result, a Raman gain of about 10 dB was obtained at each signal light wavelength. The difference between the maximum Raman gain and the minimum Raman gain at the wavelengths of the four signal lights was 1 dB or less.
  • the Raman amplification system 100E can be used not only as a secondary excitation system but also as a tertiary excitation system or higher order excitation system by setting the wavelength of the secondary excitation light SPL. Can be operated as well.
  • (b) is Raman-amplified by (a) and the amplification (B) operated as a secondary excitation Raman amplification system that Raman-amplifies the signal light S1 in the wavelength range of around 1590 nm ⁇ 20 nm.
  • the Raman amplification light source 10E includes an excitation light source that outputs excitation light having a wavelength for Raman amplification of the secondary excitation light SPL output from at least one of the plurality of excitation light sources 12.
  • the above four problems can be achieved at the same time, and the flattening of the Raman gain, the broadening of the band, and the flattening of the NF can be easily achieved. .
  • FIG. 10 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the seventh embodiment.
  • the Raman amplification system 100F includes a Raman amplification light source system 10F and an optical transmission fiber 1002.
  • the Raman amplification light source system 10F includes a Raman amplification light source 10E and a Raman amplification light source 10EA.
  • the Raman amplification light source 10E has a configuration in which the WDM coupler 13 is connected to the optical transmission fiber 1002 so that the signal light S1 is input from the output port 13c and output from the input port 13d.
  • each incoherent light IL input from the Raman amplification light source 10EA is gradually Raman amplified by each secondary pumping light SPL, and primary pumping light FPL having a wavelength for Raman amplification of the signal light S1 is obtained. Generated.
  • the primary pumping light FPL propagates in the opposite direction to the signal light S1, and Raman-amplifies the signal light S1.
  • the primary pumping light FPL generated by the Raman amplification light source 10E propagates in the same direction as the signal light S1, and Raman amplifies the signal light S1.
  • the WDM couplers 13 of the Raman amplification light sources 10E and 10EA are connected to the optical transmission fiber 1002 so that the primary pumping light FPL bi-directionally pumps the signal light S1, and the Raman amplification system 100F includes: This is a bidirectional excitation type and secondary excitation type Raman amplification system using the Raman amplification light source system 10F.
  • the Raman amplification light source system 10F can solve the above four problems at the same time, and can further reduce the non-linear effect as in the case of the Raman amplification light source 10E. Since it is a type, the degree of freedom in designing the power distribution of the signal light S1 in the longitudinal direction of the optical transmission fiber 1002 can be increased. For example, in addition to the amplification band, desired gain, and gain flatness of the signal light S1 to be amplified, depending on the wavelength, number, band, and power of each excitation light source 12 and incoherent light source 11 in each of the Raman amplification light sources 10E and 10EA The power distribution of the signal light S1 in the longitudinal direction can be adjusted.
  • the Raman amplification system 100F can be used not only as a secondary excitation system, but also as a tertiary excitation system or a higher-order excitation system similar to the Raman amplification system 100E. It is possible to operate.
  • FIG. 11 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the eighth embodiment.
  • the Raman amplification system 100H includes a Raman amplification light source system 10H and an optical transmission fiber 1002.
  • the Raman amplification light source system 10H includes a first light source unit 10HA and a second light source unit 10HB.
  • the first light source unit 10HA is connected to the first plurality of incoherent light sources 11A that output the incoherent light IL, the first plurality of incoherent light sources 11A, and the optical transmission fiber 1002, and the incoherent light IL
  • a WDM coupler 16 that is a first output unit that outputs the signal to the optical transmission fiber 1002.
  • the second light source unit 10HB includes a first plurality of pump light sources 12A that output secondary pump light SPL having a wavelength for Raman amplification of the incoherent light IL, the first plurality of pump light sources 12A, and the optical transmission fiber 1002.
  • a WDM coupler 17 serving as a second output unit that outputs the secondary pumping light SPL to the optical transmission fiber 1002.
  • the first plurality of incoherent light sources 11A like the plurality of incoherent light sources 11, output incoherent light IL having different wavelengths from each other.
  • the first plurality of incoherent light sources 11A includes at least one of an ASE light source including an SLD, an SOA, and a rare earth-doped optical fiber. In the eighth embodiment, all are assumed to be SLDs.
  • the power of the incoherent light IL output from each incoherent light source 11A is, for example, 40 mW.
  • the first plurality of pumping light sources 12A like the plurality of pumping light sources 12, output secondary pumping light SPL each having a different wavelength and a wavelength for Raman amplification of the incoherent light IL.
  • the first plurality of pumping light sources 12A include at least one of FP type, FP-FBG type, DFB type, and DBR type semiconductor lasers having different wavelengths from each other. In Embodiment 8, it is assumed that all are FP semiconductor lasers.
  • the power of the secondary pumping light SPL output from each pumping light source 12A is, for example, 500 mW.
  • the WDM coupler 16 and the WDM coupler 17 are configured so that the incoherent light IL and the secondary pumping light SPL propagate through the optical transmission fiber 1002 in the opposite direction between the WDM coupler 16 and the WDM coupler 17. It is connected to the.
  • the incoherent light IL propagates in the same direction as the signal light S1
  • the secondary excitation light SPL propagates in the opposite direction to the signal light S1.
  • the Raman amplification light source system 10H in the optical transmission fiber 1002 between the WDM coupler 16 and the WDM coupler 17, the input incoherent light IL is gradually Raman amplified by the secondary pumping light SPL, and the signal light S1 is converted.
  • Primary excitation light FPL having a wavelength for Raman amplification is generated.
  • the primary pumping light FPL propagates in the same direction as the signal light S1, and Raman-amplifies the signal light S1. That is, the Raman amplification system 100H is a forward excitation type and secondary excitation type Raman amplification system.
  • This Raman amplification light source system 10H can solve the above four problems at the same time. Further, according to the Raman amplification light source system 10H, the transmission loss and the Raman gain are canceled satisfactorily as if the optical transmission fiber 1002 as a whole has the same effect as the Raman amplification light source 10E. Alternatively, it can be regarded as a transmission line in which the power fluctuation of the signal light S1 in the longitudinal direction of the optical transmission fiber 1002 is small, and the nonlinear effect can be further reduced.
  • the Raman amplification system 100H can be used not only as a secondary excitation system, but also as a tertiary excitation system or a higher-order excitation system, as with the Raman amplification system 100E. It is possible to operate.
  • FIG. 12 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the ninth embodiment.
  • the Raman amplification system 100I is composed of a Raman amplification light source system 10I and an optical transmission fiber 1002.
  • This Raman amplification light source system 10I also includes a first light source unit 10HA and a second light source unit 10HB, similarly to the Raman amplification light source system 10H.
  • the WDM coupler 16 and the WDM coupler 17 perform optical transmission so that the incoherent light IL and the secondary pumping light SPL propagate in the opposite direction between the WDM coupler 16 and the WDM coupler 17 through the optical transmission fiber 1002.
  • the point connected to the fiber 1002 is the same as that of the Raman amplification light source system 10H.
  • the incoherent light IL propagates in the opposite direction to the signal light S1, and the secondary pumping light SPL is in the same direction as the signal light S1. It is connected to the optical transmission fiber 1002 so as to propagate.
  • the input incoherent light IL is secondarily pumped in the optical transmission fiber 1002 between the WDM coupler 16 and the WDM coupler 17.
  • the primary pumping light FPL having a wavelength that is gradually Raman amplified by the light SPL and Raman-amplifies the signal light S1 is generated.
  • the primary excitation light FPL propagates in the opposite direction to the signal light S1 and Raman-amplifies the signal light S1. That is, the Raman amplification system 100I is a backward excitation type and secondary excitation type Raman amplification system.
  • This Raman amplification light source system 10I can also solve the above four problems at the same time. Further, according to the Raman amplification light source system 10I, the Raman amplification system 100I can be used not only as a secondary excitation system, but also as a tertiary excitation system or a higher-order excitation system similar to the Raman amplification system 100E. It is possible to operate.
  • FIG. 13 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the tenth embodiment.
  • the Raman amplification system 100J includes a Raman amplification light source system 10J and an optical transmission fiber 1002.
  • the Raman amplification light source system 10J includes a first light source unit 10HAA and a second light source unit 10HBA.
  • the first light source unit 10HAA includes a first plurality of incoherent light sources 11A that output incoherent light IL, a second plurality of pumping light sources 12B that output second secondary pumping light SPL2, and a first Are connected to the plurality of incoherent light sources 11 A, the second plurality of pumping light sources 12 B, and the optical transmission fiber 1002, and outputs the incoherent light IL and the second secondary pumping light SPL 2 to the optical transmission fiber 1002.
  • a WDM coupler 16A that is an output unit.
  • the second light source unit 10HBA includes a first plurality of excitation light sources 12A that output the secondary excitation light SPL, a second plurality of incoherent light sources 11B that output the second incoherent light IL2, and a first
  • the second pumping light source 12A, the second plurality of incoherent light sources 11B, and the optical transmission fiber 1002 are connected to each other, and the second incoherent light IL2 and the secondary pumping light SPL are output to the optical transmission fiber 1002.
  • a WDM coupler 17A serving as an output unit.
  • the second plurality of incoherent light sources 11B outputs second incoherent light IL2 having a wavelength that is Raman-amplified by the second secondary pumping light SPL2 output from the second plurality of pumping light sources 12B.
  • the first plurality of pump light sources 12A outputs secondary pump light SPL having a wavelength for Raman amplification of the incoherent light IL output from the first plurality of incoherent light sources 11A.
  • the incoherent light IL and the secondary pumping light SPL propagate through the optical transmission fiber 1002 in the opposite directions between the WDM coupler 16A and the WDM coupler 17A, and
  • the incoherent light IL2 and the second secondary pumping light SPL2 are connected to the optical transmission fiber 1002 so as to propagate in the opposite direction between the WDM coupler 16A and the WDM coupler 17A.
  • the incoherent light IL and the second secondary pumping light SPL2 propagate in the same direction as the signal light S1, and the secondary pumping light SPL and the second incoherent light IL2 are transmitted with the signal light S1. Propagate in the opposite direction.
  • the input incoherent light IL is gradually Raman amplified by the secondary pumping light SPL in the optical transmission fiber 1002 between the WDM coupler 16A and the WDM coupler 17A, and the signal light S1 is obtained.
  • Primary excitation light FPL having a wavelength for Raman amplification is generated.
  • the input second incoherent light IL2 is gradually generated by the second secondary pumping light SPL2 in the optical transmission fiber 1002 between the WDM coupler 16A and the WDM coupler 17A.
  • the second primary pumping light FPL2 that is Raman-amplified and has a wavelength for Raman-amplifying the signal light S1 is generated.
  • the primary pumping light FPL propagates in the same direction as the signal light S1
  • the second primary pumping light FPL2 propagates in the opposite direction to the signal light S1, and each Raman-amplifies the signal light S1. That is, the Raman amplification system 100J is a bidirectional excitation type and secondary excitation type Raman amplification system.
  • This Raman amplification light source system 10J can also solve the above four problems at the same time. Further, according to this Raman amplification light source system 10J, since it is a bidirectional pumping type, the degree of freedom in designing the power distribution of the signal light S1 in the longitudinal direction of the optical transmission fiber 1002 can be increased. For example, the amplification band, desired gain, and gain flatness of the signal light S1 to be amplified according to the wavelength, number, band, and power of each of the excitation light sources 12A and 12B and the incoherent light sources 11A and 11B in each of the light source units 10HAA and 10HBA In addition, the power distribution of the signal light S1 in the longitudinal direction can be adjusted.
  • the secondary pumping light for Raman-amplifying the incoherent light IL input from the front is not limited to the secondary pumping light SPL introduced from the rear, but the second pumping light input from the front.
  • the incoherent light IL to which the second secondary pumping light SPL2 is input from the front may be Raman amplified. Which secondary excitation light Raman-amplifies which incoherent light depends on the design of the system.
  • the Raman amplification system 100J can be used not only as a secondary excitation system, but also as a tertiary excitation system or a higher-order excitation system similar to the Raman amplification system 100E. It is possible to operate.
  • the plurality of incoherent light sources 11, 11A, or 11B are configured by connecting SOAs 11a in multiple stages as shown in FIG. 14A, and the incoherent light IL or IL2 is output.
  • the coherent light source 11C may be included, and as shown in FIG. 14B, the SLD 11b and the SOA 11a are included, and the incoherent light output from the SLD 11b is optically amplified by the SOA 11a as incoherent light IL or IL2.
  • An incoherent light source 11D configured to output may be included. Thereby, the power of the incoherent light IL or IL2 can be increased.
  • the Raman amplification light source, the Raman amplification light source system, the Raman amplifier, and the Raman amplification system according to the present invention are useful for optical fiber communication.

Abstract

This light source for Raman amplification for Raman-amplifying a signal light, which is transmitted through a light transmission fiber, is provided with: a plurality of incoherent light sources which output an incoherent light; a plurality of excitation light sources which output a secondary excited light having a wavelength at which the incoherent light is Raman-amplified; an optical fiber for Raman-amplification which is connected to the plurality of incoherent light sources and the plurality of excitation light sources and in which the incoherent light is Raman-amplified by the secondary excited light to be output; and an output unit which is connected to the light transmission fiber, receives the incoherent amplified light, which has been Raman-amplified through the optical fiber for Raman-amplification, and outputs, as a primary excited light having a wavelength at which the signal light is Raman-amplified, the incoherent amplified light to the light transmission fiber.

Description

ラマン増幅用光源、ラマン増幅用光源システム、ラマン増幅器、ラマン増幅システムRaman amplification light source, Raman amplification light source system, Raman amplifier, Raman amplification system
 本発明は、ラマン増幅用光源、ラマン増幅用光源システム、ラマン増幅器、ラマン増幅システムに関するものである。 The present invention relates to a light source for Raman amplification, a light source system for Raman amplification, a Raman amplifier, and a Raman amplification system.
 これまで光ファイバ通信において、エルビウム添加ファイバ増幅器(EDFA)を用いて、伝送距離、伝送容量の拡大が成されてきた。しかし現在では、EDFAだけでなくラマン増幅を活用し、両者を有効に組み合せることが必要不可欠な技術となっている。現在、ラマン増幅として主に用いられているのは、ラマン増幅用の光ファイバに対して、信号光の伝搬方向と反対の方向に伝搬するように励起光を入射する後方励起ラマン増幅である。しかし、次世代に向けた更なる高速化(100Gb/s)、長距離化(100km伝送)、広帯域化(L、S-bandの活用)のためには、前方励起ラマン増幅と呼ばれる、ラマン増幅用の光ファイバに対して信号光の伝搬方向と同一方向に伝搬するように励起光を入射する方式を後方励起ラマン増幅と同時に用いることが鍵となっている。この方式は、双方向励起ラマン増幅と呼ばれる。なお、波長多重励起方式を用いることにより後方励起ラマン増幅のみでもラマン利得の平坦化、広帯域化は達成できるが、双方向励起ラマン増幅を利用しないと雑音指数(NF)の平坦化が達成できないことが報告されている(非特許文献1、2)。 So far, in optical fiber communication, the transmission distance and transmission capacity have been expanded by using an erbium-doped fiber amplifier (EDFA). However, at present, it is an indispensable technique to utilize not only EDFA but also Raman amplification and effectively combine the two. At present, the main use as Raman amplification is backward pumping Raman amplification in which pumping light is incident on an optical fiber for Raman amplification so as to propagate in a direction opposite to the propagation direction of signal light. However, for further acceleration (100 Gb / s), longer distance (100 km transmission), and wider bandwidth (utilization of L, S-band) for the next generation, Raman amplification called forward excitation Raman amplification The key is to use a method in which excitation light is incident on the optical fiber for use in the same direction as the propagation direction of the signal light simultaneously with the backward excitation Raman amplification. This method is called bidirectional excitation Raman amplification. In addition, flattening of Raman gain and broadening of the bandwidth can be achieved by using only the backward pumping Raman amplification by using the wavelength multiplexing pumping method, but flattening of the noise figure (NF) cannot be achieved without using bidirectional pumping Raman amplification. Have been reported (Non-Patent Documents 1 and 2).
 ここで、これまでEDFA用励起光源として広く用いられてきた14XXnm帯半導体レーザモジュール(LDM)とは別に、なぜ新たにインコヒーレントな前方励起ラマン増幅用励起光源が必要であるかを述べる。ラマン増幅、特に前方励起ラマン増幅では必要とされる主な特性を下記に挙げる。
(1)低RINトランスファー(Relative Intensity Noise :相対強度雑音)
(2)低SBS(Stimulated Brillouin Scattering :誘導ブリルアン散乱)
(3)低非線形効果
 これに加えて、現在の広帯域な波長多重伝送(DWDM伝送)に対応するために、
(4)広帯域な波長域で増幅利得を制御して光増幅
 を行える必要がある。
Here, aside from the 14XX nm band semiconductor laser module (LDM) that has been widely used as an excitation light source for EDFA, a new incoherent excitation light source for forward excitation Raman amplification will be described. The main characteristics required for Raman amplification, particularly forward excitation Raman amplification, are listed below.
(1) Low RIN transfer (Relative Intensity Noise)
(2) Low SBS (Stimulated Brillouin Scattering)
(3) Low non-linear effect In addition to this, in order to cope with the current wideband wavelength division multiplexing (DWDM transmission),
(4) It is necessary to perform optical amplification by controlling amplification gain in a wide wavelength range.
 RINとは、レーザ光の微小な強度変動成分を全光出力で規格化した指標である。ラマン増幅という現象は、利得を生み出す励起準位の寿命が短い(≒数fsec)ため、励起光源に強度雑音があるとそのまま増幅過程を通じて信号光の雑音となってしまう。EDFAでは励起準位の寿命が長い(≒10msec)ためこのようなおそれはなかった。ラマン増幅は、単位長さ当たりの利得がEDFAに比べて非常に小さいが、前方励起ラマン増幅では、信号光と励起光とが長距離にわたって光ファイバ中を一緒に伝搬することにより、徐々に励起光の雑音が信号光の雑音として乗り移る。これをRINトランスファーと呼ぶ。後方励起ラマン増幅では、信号光と励起光が対向しているので、ある雑音成分を持った励起光と信号光が交差する時間が短く、励起光の雑音が信号光に与える影響は少ない。また、励起光の雑音はランダムであるため、信号光が影響を受けたとしても対向して進むうちに平均化される。以上のことから分かるように、前方励起ラマン増幅では、RINトランスファーが低いという特性が要求され、特に信号光と励起光の群速度差が小さく、平行して光ファイバ内を伝送する時間が長くなる分散シフトファイバ(DSF)などでは、このRINトランスファーの低減は重要である。 RIN is an index obtained by standardizing a minute intensity fluctuation component of laser light with all light output. In the phenomenon of Raman amplification, the lifetime of an excitation level that generates a gain is short (≈several fsec). Therefore, if there is intensity noise in the excitation light source, it becomes noise of the signal light as it is through the amplification process. In EDFA, since the lifetime of the excitation level is long (≈10 msec), there is no such fear. In Raman amplification, the gain per unit length is very small compared to EDFA, but in forward pumping Raman amplification, signal light and pumping light propagate together in an optical fiber over a long distance, so that pumping is gradually performed. Light noise changes as signal light noise. This is called RIN transfer. In the backward pumping Raman amplification, since the signal light and the pumping light face each other, the time when the pumping light having a certain noise component and the signal light intersect is short, and the noise of the pumping light has little influence on the signal light. Moreover, since the noise of the excitation light is random, even if the signal light is affected, it is averaged as it travels oppositely. As can be seen from the above, the forward pumping Raman amplification requires a characteristic that the RIN transfer is low, in particular, the group velocity difference between the signal light and the pumping light is small, and the time for transmitting through the optical fiber in parallel becomes long. In dispersion shifted fiber (DSF) or the like, this reduction in RIN transfer is important.
 SBSは、3次の非線形光学効果の1つであり、光によって光ファイバ中に励起された音響フォノンによって光の一部が後方に散乱される現象である。励起光についてはSBSが起こると励起光が後方に散乱され、有効にラマン増幅に寄与しなくなるので好ましくない。一般的に全光出力強度が同じであれば、シングルモード発振、狭線幅なレーザ光を出力する励起光源はSBSを容易に発生するので、発振縦モードの数を増やして縦モード1本当たりの光出力を減らした励起光源の方が、ラマン利得を減らさずにSBSを抑制することができる。発振縦モードが連続的でブロードなスペクトル幅を持った光源なら尚更有効にSBSを抑制できる。 SBS is one of the third-order nonlinear optical effects, and is a phenomenon in which part of light is scattered backward by acoustic phonons excited in an optical fiber by light. As for the excitation light, when SBS occurs, the excitation light is scattered backward, which is not preferable because it does not contribute to Raman amplification effectively. In general, if the total light output intensity is the same, a pump light source that emits single mode oscillation and narrow linewidth laser light easily generates SBS. Therefore, the number of oscillation longitudinal modes is increased to increase the number of longitudinal modes. The pumping light source with a reduced light output can suppress SBS without reducing the Raman gain. If the oscillation longitudinal mode is a continuous light source having a broad spectrum width, SBS can be suppressed even more effectively.
 非線形効果は信号光の歪を引き起こし、通信品質劣化に繋がるので避けなければならない。現在の光通信は波長多重通信が一般的であり、1つの波長の信号光のパワーが小さくても、多重化することで全体のパワーは大きくなる。例えば各波長の信号光のパワーが1mWでも100波多重化を行うと全体のパワーは100mWとなる。信号光に対して光増幅を行って伝送路の損失を補償する時に、EDFAのような集中定数型の増幅器で一度にある位置で信号光を増幅すると、その増幅された信号光のパワーが伝送路に一度に導入されるので非線形効果が引き起こされやすい。これを避けるには、ラマン増幅の様な分布定数型増幅器で徐々に増幅するのが有利である。しかし、前方励起ラマン増幅では、伝送路の入射側で、ラマン増幅利得が、伝送路である光ファイバの伝送損失を上回り、この部分では光ファイバ中の信号光のパワーが信号光の入射端におけるパワーよりも大きくなり、非線形効果が引き起こされやすくなる。これを避けるため、ラマン励起光をカスケード的に信号光の励起光として使える波長までラマン増幅を繰り返す高次ラマン増幅が検討されている。たとえば、1550nm帯の信号光をラマン増幅するためには1450nm程度の波長の励起光が用いられるが、このとき1350nm程度の波長の励起光で1450nmの励起光をラマン増幅し、そのラマン増幅された1450nmの励起光が1550nm帯の信号光をラマン増幅するという原理のものである。このようにすることで、伝送路の入射端では信号光をラマン増幅する1450nmの励起光はパワーが小さいため、1550nm帯の信号光のラマン利得が小さく、信号光が伝送するにしたがって1450nmの励起光が1350nmの励起光により増幅されて1550nm帯の信号光に対するラマン利得が大きくなる。これにより、伝送路全体としてみると伝送路の損失とラマン利得が上手くキャンセルしてあたかも光ファイバの伝送損失が0であるかのような伝送路と見做すことが可能になり、非線形効果をさらに低減可能であるとされている。この時、1450nmの励起光は1次励起光と呼ばれ、1350nmの励起光は2次励起光と呼ばれ、このシステムは2次励起システムと呼ばれる。同様の原理で3次、4次と言った高次のラマン励起システムが検討されているが、このような高次ラマン励起システムであっても、低RINトランスファー、低SBSは高品質な伝送には必須である。 Non-linear effects must be avoided because they cause signal light distortion and lead to communication quality degradation. Current optical communication is generally wavelength multiplex communication, and even if the power of signal light of one wavelength is small, the overall power is increased by multiplexing. For example, even if the power of signal light of each wavelength is 1 mW, if 100 wave multiplexing is performed, the total power becomes 100 mW. When optical signal amplification is performed to compensate for loss in the transmission line, if the signal light is amplified at a position with a lumped constant amplifier such as EDFA at a time, the power of the amplified signal light is transmitted. Since it is introduced into the road at once, nonlinear effects are likely to be caused. To avoid this, it is advantageous to gradually amplify with a distributed constant amplifier such as Raman amplification. However, in forward pumped Raman amplification, the Raman amplification gain exceeds the transmission loss of the optical fiber that is the transmission line on the incident side of the transmission line. In this part, the power of the signal light in the optical fiber is at the incident end of the signal light. It becomes larger than power and is likely to cause a nonlinear effect. In order to avoid this, higher-order Raman amplification is being studied in which Raman amplification is repeated until the wavelength at which Raman excitation light can be used as signal light excitation light in cascade. For example, in order to Raman-amplify signal light in the 1550 nm band, excitation light having a wavelength of about 1450 nm is used. At this time, the excitation light having a wavelength of about 1350 nm is Raman-amplified and the Raman amplification is performed. It is based on the principle that 1450 nm excitation light Raman-amplifies signal light in the 1550 nm band. By doing so, the pump light of 1450 nm that Raman-amplifies the signal light at the incident end of the transmission line has low power, so the Raman gain of the signal light in the 1550 nm band is small, and the excitation of 1450 nm is performed as the signal light is transmitted. The light is amplified by 1350 nm excitation light, and the Raman gain for the signal light in the 1550 nm band increases. This makes it possible to regard the transmission line as a transmission line as if the transmission line loss and Raman gain were successfully canceled and the transmission loss of the optical fiber was zero, and the nonlinear effect was reduced. Further reduction is possible. At this time, 1450 nm excitation light is called primary excitation light, 1350 nm excitation light is called secondary excitation light, and this system is called a secondary excitation system. High-order Raman excitation systems such as the 3rd order and 4th order have been studied based on the same principle. Even in such a high-order Raman excitation system, low RIN transfer and low SBS are high quality transmission. Is essential.
 従来、上記の4つの課題を解決するために、様々な技術が開示されている(非特許文献3、4、特許文献1~4)。 Conventionally, various techniques have been disclosed in order to solve the above four problems (Non-patent Documents 3 and 4, Patent Documents 1 to 4).
特許第3676167号公報Japanese Patent No. 3676167 米国特許第07190861号明細書U.S. Pat. No. 07190861 米国特許第07215836号明細書U.S. Pat. No. 07215836 米国特許第07233431号明細書U.S. Pat. No. 07233431
 しかしながら、前記した4つの課題を同時に解決可能なラマン増幅用光源、ラマン増幅用光源システム、ラマン増幅器およびラマン増幅システムは未だ実用に至る程の特性に達していない。 However, the Raman amplification light source, the Raman amplification light source system, the Raman amplifier, and the Raman amplification system that can solve the above-described four problems at the same time have not yet achieved practical characteristics.
 本発明は、上記に鑑みてなされたものであって、4つの課題を同時に解決可能なラマン増幅用光源、ラマン増幅用光源システム、ラマン増幅器およびラマン増幅システムを提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a Raman amplification light source, a Raman amplification light source system, a Raman amplifier, and a Raman amplification system that can simultaneously solve the four problems.
 上述した課題を解決し、目的を達成するために、本発明の一態様に係るラマン増幅用光源は、光伝送ファイバを伝送する信号光を該光伝送ファイバ中の誘導ラマン散乱現象によりラマン増幅するためのラマン増幅用光源であって、インコヒーレント光を出力する複数のインコヒーレント光源と、前記インコヒーレント光をラマン増幅する波長を有する2次励起光を出力する複数の励起光源と、前記複数のインコヒーレント光源および前記複数の励起光源に接続されており、入力された前記インコヒーレント光を入力された前記2次励起光によりラマン増幅して出力するラマン増幅用光ファイバと、前記光伝送ファイバに接続されており、前記ラマン増幅用光ファイバによりラマン増幅されたインコヒーレント増幅光が入力され、前記インコヒーレント増幅光を、前記信号光をラマン増幅する波長を有する1次励起光として前記光伝送ファイバに出力する出力部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a Raman amplification light source according to one aspect of the present invention Raman-amplifies signal light transmitted through an optical transmission fiber by stimulated Raman scattering in the optical transmission fiber. A plurality of incoherent light sources for outputting incoherent light; a plurality of pumping light sources for outputting secondary pumping light having a wavelength for Raman amplification of the incoherent light; An optical fiber for Raman amplification connected to an incoherent light source and the plurality of pumping light sources, and Raman-amplifying the input incoherent light with the input secondary pumping light; and the optical transmission fiber Connected, and the incoherent amplified light Raman-amplified by the Raman-amplifying optical fiber is input, The Rento amplified light, characterized in that it comprises an output unit for outputting to said optical transmission fiber the signal light as the primary excitation light having a wavelength of Raman amplification.
 本発明の一態様に係るラマン増幅用光源は、前記複数のインコヒーレント光源および前記複数の励起光源は、前記2次励起光が前記インコヒーレント光を前方励起するように前記ラマン増幅用光ファイバに接続されていることを特徴とする。 The Raman amplification light source according to an aspect of the present invention includes the plurality of incoherent light sources and the plurality of excitation light sources in the Raman amplification optical fiber such that the secondary excitation light pumps the incoherent light forward. It is connected.
 本発明の一態様に係るラマン増幅用光源は、前記複数のインコヒーレント光源および前記複数の励起光源は、前記2次励起光が前記インコヒーレント光を後方励起するように前記ラマン増幅用光ファイバに接続されていることを特徴とする。 The Raman amplification light source according to an aspect of the present invention includes the plurality of incoherent light sources and the plurality of excitation light sources in the Raman amplification optical fiber so that the secondary excitation light pumps the incoherent light backward. It is connected.
 本発明の一態様に係るラマン増幅用光源は、前記出力部は、前記1次励起光が前記信号光を前方励起するように前記光伝送ファイバに接続されていることを特徴とする。 The Raman amplification light source according to an aspect of the present invention is characterized in that the output unit is connected to the optical transmission fiber so that the primary pumping light pumps the signal light forward.
 本発明の一態様に係るラマン増幅用光源は、前記出力部は、前記1次励起光が前記信号光を後方励起するように前記光伝送ファイバに接続されていることを特徴とする。 The Raman amplification light source according to an aspect of the present invention is characterized in that the output unit is connected to the optical transmission fiber so that the primary pumping light pumps the signal light backward.
 本発明の一態様に係るラマン増幅用光源は、光伝送ファイバを伝送する信号光を該光伝送ファイバでラマン増幅するためのラマン増幅用光源であって、インコヒーレント光を出力する複数のインコヒーレント光源と、前記インコヒーレント光をラマン増幅する波長を有する2次励起光を出力する複数の励起光源と、前記複数のインコヒーレント光源、前記複数の励起光源および前記光伝送ファイバに接続されており、入力された前記インコヒーレント光および前記2次励起光を、前記光伝送ファイバを同一方向に伝搬するように出力する出力部と、を備え、前記光伝送ファイバにおいて、入力された前記インコヒーレント光が入力された前記2次励起光によりラマン増幅され、前記信号光をラマン増幅する波長を有する1次励起光が生成されることを特徴とする。 A Raman amplification light source according to an aspect of the present invention is a Raman amplification light source for Raman amplification of signal light transmitted through an optical transmission fiber with the optical transmission fiber, and a plurality of incoherent light outputs incoherent light. Connected to a light source, a plurality of pumping light sources that output secondary pumping light having a wavelength for Raman amplification of the incoherent light, the plurality of incoherent light sources, the plurality of pumping light sources, and the optical transmission fiber, An output unit that outputs the input incoherent light and the secondary pumping light so as to propagate in the same direction through the optical transmission fiber, wherein the input incoherent light is transmitted in the optical transmission fiber; Raman amplification is performed by the input secondary excitation light, and primary excitation light having a wavelength for Raman amplification of the signal light is generated. And wherein the Rukoto.
 本発明の一態様に係るラマン増幅用光源は、前記複数の励起光源のうちの少なくとも1つが出力する2次励起光をラマン増幅する波長を有する励起光を出力する励起光源を備えることを特徴とする。 A Raman amplification light source according to an aspect of the present invention includes an excitation light source that outputs excitation light having a wavelength for Raman amplification of secondary excitation light output from at least one of the plurality of excitation light sources. To do.
 本発明の一態様に係るラマン増幅用光源は、前記複数のインコヒーレント光源は、SLD(Super Luminescent Diode)、SOA(Semiconductor Optical Amplifier)および希土類添加光ファイバを備えたASE(Amplified Spontaneous Emission)光源の少なくとも一つを含むことを特徴とする。 The Raman amplification light source according to an aspect of the present invention is the ASE (Amplified Spontaneous Emission) light source including the SLD (Super Luminescent Diode), the SOA (Semiconductor Optical Amplifier), and the rare earth-doped optical fiber. It contains at least one.
 本発明の一態様に係るラマン増幅用光源は、前記複数のインコヒーレント光源は、SLDおよびSOAを有し、SLDから出力されるインコヒーレント光をSOAで光増幅して出力するように構成されたインコヒーレント光源を含むことを特徴とする。 In the Raman amplification light source according to an aspect of the present invention, the plurality of incoherent light sources include an SLD and an SOA, and the incoherent light output from the SLD is optically amplified by the SOA and output. An incoherent light source is included.
 本発明の一態様に係るラマン増幅用光源は、前記複数のインコヒーレント光源は、SOAが多段接続されて構成されたインコヒーレント光源を含むことを特徴とする。 The Raman amplification light source according to an aspect of the present invention is characterized in that the plurality of incoherent light sources include incoherent light sources configured by connecting SOAs in multiple stages.
 本発明の一態様に係るラマン増幅用光源は、前記複数の励起光源は、ファブリぺロー(FP)型、FP型と光ファイバブラッググレーティング(FBG)とを組み合わせたFP-FBG型、DFB型、およびDBR型の半導体レーザの少なくとも一つを含むことを特徴とする。 In the Raman amplification light source according to an aspect of the present invention, the plurality of excitation light sources include a Fabry-Perot (FP) type, an FP type combined with an optical fiber Bragg grating (FBG), a DFB type, And at least one of DBR type semiconductor lasers.
 本発明の一態様に係るラマン増幅用光源は、前記複数のインコヒーレント光源は、互いに異なる波長帯域のインコヒーレント光を出力するインコヒーレント光源を含むことを特徴とする。 The Raman amplification light source according to an aspect of the present invention is characterized in that the plurality of incoherent light sources include incoherent light sources that output incoherent light in different wavelength bands.
 本発明の一態様に係るラマン増幅用光源システムは、本発明の一態様に係るラマン増幅用光源と、本発明の一態様に係るラマン増幅用光源とを備え、前記各ラマン増幅用光源の出力部が、前記1次励起光が前記信号光を双方向励起するように前記光伝送ファイバに接続されていることを特徴とする。 A Raman amplification light source system according to an aspect of the present invention includes a Raman amplification light source according to an aspect of the present invention and a Raman amplification light source according to an aspect of the present invention, and an output of each of the Raman amplification light sources. The unit is connected to the optical transmission fiber so that the primary pumping light bi-directionally pumps the signal light.
 本発明の一態様に係るラマン増幅用光源システムは、本発明の一態様に係るラマン増幅用光源を2つ備え、前記各ラマン増幅用光源の出力部が、前記1次励起光が前記信号光を双方向励起するように前記光伝送ファイバに接続されていることを特徴とする。 A Raman amplification light source system according to an aspect of the present invention includes two Raman amplification light sources according to an aspect of the present invention, and an output unit of each Raman amplification light source includes the primary excitation light as the signal light. It is connected to the optical transmission fiber so as to be bi-directionally excited.
 本発明の一態様に係るラマン増幅用光源システムは、光伝送ファイバを伝送する信号光を該光伝送ファイバでラマン増幅するためのラマン増幅用光源システムであって、インコヒーレント光を出力する第1の複数のインコヒーレント光源と、前記第1の複数のインコヒーレント光源および前記光伝送ファイバに接続されており、前記インコヒーレント光を前記光伝送ファイバに出力する第1の出力部と、を備える第1の光源部と、前記インコヒーレント光をラマン増幅する波長を有する2次励起光を出力する第1の複数の励起光源と、前記第1の複数の励起光源および前記光伝送ファイバに接続されており、前記2次励起光を前記光伝送ファイバに出力する第2の出力部と、を備える第2の光源部と、を備え、前記第1の出力部と前記第2の出力部とは、前記インコヒーレント光と前記2次励起光とが、前記第1の出力部と前記第2の出力部との間で前記光伝送ファイバを反対方向に伝搬するように前記光伝送ファイバに接続されており、前記第1の出力部と前記第2の出力部との間の前記光伝送ファイバにおいて、入力された前記インコヒーレント光が入力された前記2次励起光によりラマン増幅され、前記信号光をラマン増幅する波長を有する1次励起光が生成されることを特徴とする。 A Raman amplification light source system according to an aspect of the present invention is a Raman amplification light source system for Raman-amplifying signal light transmitted through an optical transmission fiber with the optical transmission fiber, and outputs first incoherent light. A plurality of incoherent light sources, a first output unit connected to the first plurality of incoherent light sources and the optical transmission fiber, and outputting the incoherent light to the optical transmission fiber. A first light source unit, a first plurality of pump light sources that output secondary pump light having a wavelength for Raman amplification of the incoherent light, the first pump light sources, and the optical transmission fiber. A second light source unit including a second output unit that outputs the secondary pumping light to the optical transmission fiber, and the first output unit and the second output unit. The output unit refers to the optical transmission so that the incoherent light and the secondary excitation light propagate in the optical transmission fiber in opposite directions between the first output unit and the second output unit. In the optical transmission fiber connected to the fiber and between the first output unit and the second output unit, the input incoherent light is Raman amplified by the input secondary pumping light. The primary pumping light having a wavelength for Raman amplification of the signal light is generated.
 本発明の一態様に係るラマン増幅用光源システムは、前記第2の光源部は、前記2次励起光によりラマン増幅される波長を有する第2のインコヒーレント光を出力する第2の複数のインコヒーレント光源を備え、前記第1の光源部は、前記第2のインコヒーレント光をラマン増幅する波長を有する第2の2次励起光を出力する第2の複数の励起光源を備え、前記第2の光源部の第2の出力部は、前記第2の複数のインコヒーレント光源に接続されており、前記第2のインコヒーレント光を前記光伝送ファイバに出力し、前記第1の光源部の第1の出力部は、前記第2の複数の励起光源に接続されており、前記第2の2次励起光を前記光伝送ファイバに出力し、前記第1の出力部と前記第2の出力部とは、前記第2のインコヒーレント光と前記第2の2次励起光とが、前記第1の出力部と前記第2の出力部との間で前記光伝送ファイバを反対方向に伝搬するように前記光伝送ファイバに接続されており、前記第1の出力部と前記第2の出力部との間の前記光伝送ファイバにおいて、入力された前記第2のインコヒーレント光が入力された前記第2の2次励起光によりラマン増幅され、前記信号光をラマン増幅する波長を有する第2の1次励起光が生成されることを特徴とする。 In the Raman amplification light source system according to one aspect of the present invention, the second light source unit outputs a second plurality of incoherent lights having a wavelength that is Raman-amplified by the secondary excitation light. A coherent light source, and the first light source unit includes a second plurality of pump light sources that output second secondary pump light having a wavelength for Raman amplification of the second incoherent light, and The second output unit of the light source unit is connected to the second plurality of incoherent light sources, outputs the second incoherent light to the optical transmission fiber, and outputs the second incoherent light of the first light source unit. The first output unit is connected to the second plurality of pumping light sources, outputs the second secondary pumping light to the optical transmission fiber, and the first output unit and the second output unit. Is the second incoherent light and the front A second secondary pumping light is connected to the optical transmission fiber so as to propagate in the opposite direction between the first output unit and the second output unit, In the optical transmission fiber between the first output unit and the second output unit, the input second incoherent light is Raman amplified by the input second secondary pumping light, A second primary pumping light having a wavelength for Raman amplification of the signal light is generated.
 本発明の一態様に係るラマン増幅用光源システムは、前記複数のインコヒーレント光源は、SLD(Super Luminescent Diode)、SOA(Semiconductor Optical Amplifier)および希土類添加光ファイバを備えたASE(Amplified Spontaneous Emission)光源の少なくとも一つを含むことを特徴とする。 In the Raman amplification light source system according to one aspect of the present invention, the plurality of incoherent light sources include an ASE (Amplified Spontaneous Emission) light source including an SLD (Super Luminescent Diode), an SOA (Semiconductor Optical Amplifier), and a rare earth-doped optical fiber. It is characterized by including at least one of these.
 本発明の一態様に係るラマン増幅用光源システムは、前記複数のインコヒーレント光源は、SLDおよびSOAを含み、SLDから出力されるインコヒーレント光をSOAで光増幅して出力するように構成されたインコヒーレント光源を含むことを特徴とする。 In the Raman amplification light source system according to an aspect of the present invention, the plurality of incoherent light sources include an SLD and an SOA, and the incoherent light output from the SLD is optically amplified by the SOA and output. An incoherent light source is included.
 本発明の一態様に係るラマン増幅用光源システムは、前記複数のインコヒーレント光源は、SOAが多段接続されて構成されたインコヒーレント光源を含むことを特徴とする。 The Raman amplification light source system according to an aspect of the present invention is characterized in that the plurality of incoherent light sources include an incoherent light source configured by connecting SOAs in multiple stages.
 本発明の一態様に係るラマン増幅用光源システムは、前記複数の励起光源は、互いに波長が異なるファブリぺロー(FP)型、FP型と光ファイバブラッググレーティング(FBG)とを組み合わせたFP-FBG型、DFB型、およびDBR型の半導体レーザの少なくとも一つを含むことを特徴とする。 In the Raman amplification light source system according to one aspect of the present invention, the plurality of excitation light sources are Fabry-Perot (FP) type having different wavelengths, FP type, and FP-FBG in which an optical fiber Bragg grating (FBG) is combined. It includes at least one of a type, a DFB type, and a DBR type semiconductor laser.
 本発明の一態様に係るラマン増幅用光源システムは、前記複数のインコヒーレント光源は、互いに異なる波長帯域のインコヒーレント光を出力するインコヒーレント光源を含むことを特徴とする。 The Raman amplification light source system according to an aspect of the present invention is characterized in that the plurality of incoherent light sources include incoherent light sources that output incoherent light in different wavelength bands.
 本発明の一態様に係るラマン増幅器は、本発明の一態様に係るラマン増幅用光源またはラマン増幅用光源システムと、前記光伝送ファイバと、を備えることを特徴とする。 A Raman amplifier according to an aspect of the present invention includes the Raman amplification light source or the Raman amplification light source system according to an aspect of the present invention, and the optical transmission fiber.
 本発明の一態様に係るラマン増幅システムは、本発明の一態様に係るラマン増幅用光源またはラマン増幅用光源システムと、前記光伝送ファイバと、を備えることを特徴とする。 A Raman amplification system according to an aspect of the present invention includes the Raman amplification light source or the Raman amplification light source system according to an aspect of the present invention, and the optical transmission fiber.
 本発明によれば、4つの課題を同時に解決可能なラマン増幅用光源、ラマン増幅用光源システム、ラマン増幅器およびラマン増幅システムを実現できるという効果を奏する。 According to the present invention, it is possible to realize a Raman amplification light source, a Raman amplification light source system, a Raman amplifier, and a Raman amplification system that can simultaneously solve the four problems.
図1は、実施の形態1に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。FIG. 1 is a schematic configuration diagram of a Raman amplification system using a Raman amplification light source according to the first embodiment. 図2は、WDMカプラの構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of the WDM coupler. 図3は、WDMカプラの構成の別の一例を示す図である。FIG. 3 is a diagram illustrating another example of the configuration of the WDM coupler. 図4は、インコヒーレント光および2次励起光の波長の配置の一例を示す図である。FIG. 4 is a diagram illustrating an example of an arrangement of wavelengths of incoherent light and secondary excitation light. 図5は、実施の形態2に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。FIG. 5 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the second embodiment. 図6は、実施の形態3に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。FIG. 6 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the third embodiment. 図7は、実施の形態4に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。FIG. 7 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the fourth embodiment. 図8は、実施の形態5に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。FIG. 8 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the fifth embodiment. 図9は、実施の形態6に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。FIG. 9 is a schematic configuration diagram of a Raman amplification system using a Raman amplification light source according to the sixth embodiment. 図10は、実施の形態7に係るラマン増幅用光源システムを用いたラマン増幅システムの模式的な構成図である。FIG. 10 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the seventh embodiment. 図11は、実施の形態8に係るラマン増幅用光源システムを用いたラマン増幅システムの模式的な構成図である。FIG. 11 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the eighth embodiment. 図12は、実施の形態9に係るラマン増幅用光源システムを用いたラマン増幅システムの模式的な構成図である。FIG. 12 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the ninth embodiment. 図13は、実施の形態10に係るラマン増幅用光源システムを用いたラマン増幅システムの模式的な構成図である。FIG. 13 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the tenth embodiment. 図14は、インコヒーレント光源の構成の例を示す図である。FIG. 14 is a diagram illustrating an example of the configuration of an incoherent light source.
 以下に、図面を参照して本発明に係るラマン増幅用光源、ラマン増幅用光源システム、ラマン増幅器およびラマン増幅システムの実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付している。 Hereinafter, embodiments of a Raman amplification light source, a Raman amplification light source system, a Raman amplifier, and a Raman amplification system according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Moreover, in each drawing, the same code | symbol is attached | subjected suitably to the same or corresponding element.
(実施の形態1)
 図1は、実施の形態1に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。図1に示すように、ラマン増幅システム100は、1.55μm帯のWDM信号光である信号光S1を送信する送信器1001と、信号光S1を伝送する伝送路である光伝送ファイバ1002と、信号光S1を受信する受信器1003と、を備える光伝送システム1000に適用されている。ラマン増幅システム100は、ラマン増幅用光源10と光伝送ファイバ1002とで構成されている。なお、本実施の形態1に係るラマン増幅システム100および以下に示す各実施形態に係るラマン増幅システムは、ラマン増幅器としても構成されている。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a Raman amplification system using a Raman amplification light source according to the first embodiment. As shown in FIG. 1, a Raman amplification system 100 includes a transmitter 1001 that transmits signal light S1 that is WDM signal light in a 1.55 μm band, an optical transmission fiber 1002 that is a transmission path that transmits the signal light S1, The optical transmission system 1000 includes a receiver 1003 that receives the signal light S1. The Raman amplification system 100 is composed of a Raman amplification light source 10 and an optical transmission fiber 1002. Note that the Raman amplification system 100 according to the first embodiment and the Raman amplification systems according to the following embodiments are also configured as Raman amplifiers.
 ラマン増幅用光源10は、複数のインコヒーレント光源11と、複数の励起光源12と、WDMカプラ13と、ラマン増幅用光ファイバ14と、出力部としてのWDMカプラ15と、を備えている。 The Raman amplification light source 10 includes a plurality of incoherent light sources 11, a plurality of excitation light sources 12, a WDM coupler 13, a Raman amplification optical fiber 14, and a WDM coupler 15 as an output unit.
 複数のインコヒーレント光源11は、それぞれ互いに異なる波長を有するインコヒーレント光ILを出力する。なお、インコヒーレント光とは、単一または複数の離散的なモード(縦モード)で発振するレーザ光源ではなく、連続的なスペクトルを持った無相関な光子の集合からなる光を意味する。複数のインコヒーレント光源11は、SLD(Super Luminescent Diode)、SOA(Semiconductor Optical Amplifier)および希土類添加光ファイバ(たとえばEDF)を備えたASE(Amplified Spontaneous Emission)光源の少なくとも一つを含むが、本実施の形態1では、全てがSLDであるとする。 The plurality of incoherent light sources 11 output incoherent light IL having different wavelengths from each other. Note that the incoherent light is not a laser light source that oscillates in a single or a plurality of discrete modes (longitudinal modes) but means light that is a set of uncorrelated photons having a continuous spectrum. The plurality of incoherent light sources 11 include at least one of an ASE (Amplified Spontaneous Emission) light source including an SLD (Super Luminescent Diode), an SOA (Semiconductor Optical Amplifier), and a rare earth doped optical fiber (for example, EDF). In Embodiment 1, it is assumed that all are SLDs.
 複数の励起光源12は、それぞれ、互いに異なる波長であり、かつインコヒーレント光ILをラマン増幅する波長を有する2次励起光SPLを出力する。複数の励起光源12は、互いに波長が異なるファブリぺロー(FP)型、FP型と光ファイバブラッググレーティング(FBG)とを組み合わせたFP-FBG型、DFB型、およびDBR型の半導体レーザの少なくとも一つを含むが、本実施の形態1では、全てがFP型半導体レーザであるとする。 The plurality of excitation light sources 12 each output secondary excitation light SPL having wavelengths different from each other and having a wavelength for Raman amplification of the incoherent light IL. The plurality of pumping light sources 12 are at least one of a Fabry-Perot (FP) type, a FP type, and an FP-FBG type, a DFB type, and a DBR type semiconductor laser having a combination of an FP type and an optical fiber Bragg grating (FBG). In the first embodiment, it is assumed that all are FP semiconductor lasers.
 WDMカプラ13は、各インコヒーレント光ILと各2次励起光SPLとを合波して出力する。図2は、WDMカプラ13の構成の一例を示す図である。WDMカプラ13は、誘電体多層膜フィルタからなる複数のWDMカプラ13aと、誘電体多層膜フィルタからなる複数のWDMカプラ13bとが光ファイバにより直列に接続された構成を有する。各WDMカプラ13aは、光ファイバにより各インコヒーレント光源11に接続されており、接続されたインコヒーレント光源11から出力されるインコヒーレント光ILを反射し、その他の波長の光を透過する波長特性を有する。同様に、各WDMカプラ13bは、光ファイバにより各励起光源12に接続されており、接続された励起光源12から出力される2次励起光SPLを反射し、その他の波長の光を透過する波長特性を有する。これにより、WDMカプラ13は、各インコヒーレント光ILと各2次励起光SPLとを合波して出力ポート13cから出力できる。 The WDM coupler 13 combines each incoherent light IL and each secondary excitation light SPL and outputs the combined light. FIG. 2 is a diagram illustrating an example of the configuration of the WDM coupler 13. The WDM coupler 13 has a configuration in which a plurality of WDM couplers 13a made of a dielectric multilayer filter and a plurality of WDM couplers 13b made of a dielectric multilayer filter are connected in series by an optical fiber. Each WDM coupler 13a is connected to each incoherent light source 11 by an optical fiber, has a wavelength characteristic that reflects incoherent light IL output from the connected incoherent light source 11 and transmits light of other wavelengths. Have. Similarly, each WDM coupler 13b is connected to each pumping light source 12 by an optical fiber, reflects the secondary pumping light SPL output from the connected pumping light source 12, and transmits light of other wavelengths. Has characteristics. Thereby, the WDM coupler 13 can multiplex each incoherent light IL and each secondary excitation light SPL, and can output it from the output port 13c.
 図3は、WDMカプラの構成の別の一例であるWDMカプラ13´を示す図である。WDMカプラ13´は、平面光波回路(PLC)を用いたAWG(Arrayed Waveguide Gratings)13´aを備えている。AWG13´aの多ポート側の複数のポート13´aaのそれぞれは、各インコヒーレント光源11に接続されており、複数のポート13´abのそれぞれは、各励起光源12に接続されている。これにより、WDMカプラ13´は、各インコヒーレント光ILと各2次励起光SPLとを合波して出力ポート13´acから出力できる。 FIG. 3 is a diagram showing a WDM coupler 13 'which is another example of the configuration of the WDM coupler. The WDM coupler 13 'includes an AWG (Arrayed Waveguide Gratings) 13'a using a planar lightwave circuit (PLC). Each of the plurality of ports 13′aa on the multi-port side of the AWG 13′a is connected to each incoherent light source 11, and each of the plurality of ports 13′ab is connected to each excitation light source 12. As a result, the WDM coupler 13 'can multiplex each incoherent light IL and each secondary pumping light SPL and output them from the output port 13'ac.
 図1に戻る。ラマン増幅用光ファイバ14は、WDMカプラ13を介して複数のインコヒーレント光源11および複数の励起光源12に接続されており、入力された各インコヒーレント光ILを入力された各2次励起光SPLによりラマン増幅し、インコヒーレント増幅光として出力する。ラマン増幅用光ファイバ14は、高非線形性光ファイバなどの公知の光ファイバである。ここで、複数のインコヒーレント光源11および複数の励起光源12は、各2次励起光SPLが各インコヒーレント光ILを前方励起するように、WDMカプラ13を介してラマン増幅用光ファイバ14に接続されている。すなわち、ラマン増幅用光ファイバ14中において各2次励起光SPLと各インコヒーレント光ILとは伝搬方向が同一方向である。 Return to Figure 1. The Raman amplification optical fiber 14 is connected to the plurality of incoherent light sources 11 and the plurality of pumping light sources 12 via the WDM coupler 13, and each secondary pumping light SPL to which the input incoherent light IL is input. Is Raman amplified and output as incoherent amplified light. The Raman amplification optical fiber 14 is a known optical fiber such as a highly nonlinear optical fiber. Here, the plurality of incoherent light sources 11 and the plurality of pumping light sources 12 are connected to the Raman amplification optical fiber 14 via the WDM coupler 13 so that each secondary pumping light SPL forwardly pumps each incoherent light IL. Has been. That is, in the Raman amplification optical fiber 14, the propagation directions of the secondary pumping light SPL and the incoherent light IL are the same.
 出力部としてのWDMカプラ15は、光伝送ファイバ1002に接続されており、インコヒーレント増幅光が入力され、これを、信号光S1をラマン増幅する波長を有する1次励起光FPLとして光伝送ファイバ1002に出力する。WDMカプラ15は誘電体多層膜フィルタなどを用いた公知のWDMカプラである。ここで、WDMカプラ15は、1次励起光FPLが信号光S1を前方励起するように光伝送ファイバ1002に接続されている。すなわち、WDMカプラ15は、1次励起光FPLの伝搬方向が信号光S1の伝搬方向と同一方向になるように光伝送ファイバ1002に接続されている。これにより、光伝送ファイバ1002を伝送する信号光S1は光伝送ファイバ1002中の誘導ラマン散乱現象によって、1次励起光FPLによりラマン増幅される。 The WDM coupler 15 serving as an output unit is connected to an optical transmission fiber 1002 and receives incoherent amplified light. The optical transmission fiber 1002 is used as primary pumping light FPL having a wavelength for Raman amplification of the signal light S1. Output to. The WDM coupler 15 is a known WDM coupler using a dielectric multilayer filter or the like. Here, the WDM coupler 15 is connected to the optical transmission fiber 1002 so that the primary pumping light FPL pumps the signal light S1 forward. That is, the WDM coupler 15 is connected to the optical transmission fiber 1002 so that the propagation direction of the primary pumping light FPL is the same as the propagation direction of the signal light S1. Thereby, the signal light S1 transmitted through the optical transmission fiber 1002 is Raman-amplified by the primary pumping light FPL due to the stimulated Raman scattering phenomenon in the optical transmission fiber 1002.
 1次励起光としてインコヒーレント光を用いると、1次励起光から信号光へのRINトランスファーが低減できることは知られているが、インコヒーレント光源はその出力パワーが一般的に小さいため、そのままラマン増幅用の1次励起光源として使うことは困難である。 It is known that when incoherent light is used as the primary pumping light, RIN transfer from the primary pumping light to the signal light can be reduced. However, since the output power of the incoherent light source is generally small, Raman amplification is performed as it is. It is difficult to use as a primary excitation light source.
 これに対して、本発明者らは、FP型半導体レーザなどのコヒーレントな2次励起光によりラマン増幅したインコヒーレント光を1次励起光とした場合でも、信号光へのRINトランスファーが低減できることを見出した。そして、ラマン増幅システム100では、ラマン増幅用光源10において、FP型半導体レーザからなる複数の励起光源12を2次励起光SPLとしてラマン増幅用光ファイバ14によりラマン増幅したインコヒーレント光を1次励起光FPLとして信号光S1を光伝送ファイバ1002によりラマン増幅する構成としている。これにより、低RINトランスファーが実現される。 On the other hand, the present inventors can reduce RIN transfer to signal light even when incoherent light Raman-amplified by coherent secondary pumping light such as FP semiconductor laser is used as primary pumping light. I found it. In the Raman amplification system 100, in the Raman amplification light source 10, a plurality of excitation light sources 12 made of FP type semiconductor lasers are used as secondary excitation light SPL, and incoherent light Raman-amplified by the Raman amplification optical fiber 14 is subjected to primary excitation. The signal light S1 is Raman-amplified by the optical transmission fiber 1002 as the optical FPL. Thereby, a low RIN transfer is realized.
 また、インコヒーレント光ILは、FP型半導体レーザなどのコヒーレント光源と比較して発光の波長帯域が広く、発光の全体の強度に対してピーク強度が低い。そのため、これを増幅して1次励起光FPLとして使用することで低SBSを実現できる。さらに、インコヒーレント光ILの発光の波長帯域の広さにより、代表的な非線形効果である4光波混合はその位相整合条件を満たすことが困難となり、4光波混合の発生が抑制される。これにより、低非線形効果を実現できる。 Further, the incoherent light IL has a wider wavelength band of light emission than a coherent light source such as an FP type semiconductor laser, and has a peak intensity lower than the whole intensity of light emission. Therefore, low SBS is realizable by amplifying this and using it as primary excitation light FPL. Further, due to the wide wavelength band of the emission of the incoherent light IL, it is difficult for the four-wave mixing, which is a typical nonlinear effect, to satisfy the phase matching condition, and the generation of the four-wave mixing is suppressed. Thereby, a low nonlinear effect is realizable.
 さらには、それぞれ互いに異なる波長を有するインコヒーレント光ILを出力する複数のインコヒーレント光源11と、それぞれ互いに異なる波長を有する2次励起光SPLを出力する複数の励起光源12を備えているため、広帯域な波長域で信号光の増幅利得を制御して光増幅することができる。 Furthermore, since it includes a plurality of incoherent light sources 11 that output incoherent light IL having different wavelengths, and a plurality of pumping light sources 12 that output secondary pumping light SPL each having a different wavelength, broadband It is possible to perform optical amplification by controlling the amplification gain of signal light in a wide wavelength range.
 このように、ラマン増幅用光源10により、前記した4つの課題を同時に解決することができる。 As described above, the Raman amplification light source 10 can solve the above four problems at the same time.
 なお、励起光源12およびインコヒーレント光源11の波長、数、帯域、パワーは、増幅すべき信号光S1の増幅帯域、所望の利得および利得平坦性によって適宜調整することが可能である。 Note that the wavelength, number, band, and power of the excitation light source 12 and the incoherent light source 11 can be appropriately adjusted according to the amplification band, desired gain, and gain flatness of the signal light S1 to be amplified.
 つぎに、インコヒーレント光と2次励起光との波長の配置とパワーの例について説明する。図4は、インコヒーレント光および2次励起光の波長の配置の一例を示す図である。図4に示す例では、インコヒーレント光源11(SLD)の数が2であり、励起光源12(励起FP-LD)の数が4であるとする。図4に示すように、2次励起光SPLA、SPLB、SPLC、SPLDの波長をそれぞれ1350nm、1370nm、1380nm、1400nmとし、パワーはいずれも250mWとする。また、インコヒーレント光ILA、ILBの波長をそれぞれ1450nm、1480nmとし、3dB帯域幅をいずれも30nmとし、パワーをいずれも5mWとする。2次励起光SPLA、SPLB、SPLC、SPLDのそれぞれから約100nmだけラマンシフトした長波長側の位置に、各2次励起光によるラマンピークRPA、RPB、RPC、RPDをピーク位置としたラマン利得帯域が形成される。これにより、インコヒーレント光ILA、ILBがラマン増幅され、1次励起光FPLとなる。ここで、図4に示す例では、インコヒーレント光ILA、ILBのピーク波長に対して長波長側の光強度が低い波長と短波長側の光強度が低い波長とにラマンピークRPA、RPB、RPC、RPDが位置するように2次励起光SPLA、SPLB、SPLC、SPLDの波長を設定しているので、インコヒーレント光ILA、ILBの光強度が低い波長の光に対して高いラマン利得を与えることができる。その結果、1次励起光FPLは波長に対してより平坦なスペクトル形状となる。 Next, an example of wavelength arrangement and power of incoherent light and secondary excitation light will be described. FIG. 4 is a diagram illustrating an example of an arrangement of wavelengths of incoherent light and secondary excitation light. In the example shown in FIG. 4, it is assumed that the number of incoherent light sources 11 (SLD) is two and the number of excitation light sources 12 (excitation FP-LD) is four. As shown in FIG. 4, the wavelengths of the secondary excitation light SPLA, SPLB, SPLC, and SPLD are 1350 nm, 1370 nm, 1380 nm, and 1400 nm, respectively, and the power is 250 mW. In addition, the wavelengths of the incoherent lights ILA and ILB are 1450 nm and 1480 nm, respectively, the 3 dB bandwidth is 30 nm, and the power is 5 mW. Raman gain band with Raman peaks RPA, RPB, RPC, RPD due to each secondary excitation light at the position on the long wavelength side shifted by about 100 nm from each of the secondary excitation light SPLA, SPLB, SPLC, SPLD. Is formed. As a result, the incoherent lights ILA and ILB are Raman-amplified and become the primary excitation light FPL. Here, in the example shown in FIG. 4, the Raman peaks RPA, RPB, RPC are divided into wavelengths having a low light intensity on the long wavelength side and a wavelength having a low light intensity on the short wavelength side relative to the peak wavelengths of the incoherent lights ILA, ILB. Since the wavelengths of the secondary pumping light SPLA, SPLB, SPLC, and SPLD are set so that the RPD is positioned, high Raman gain is given to the light having a low light intensity of the incoherent light ILA and ILB. Can do. As a result, the primary excitation light FPL has a flatter spectral shape with respect to the wavelength.
 たとえば、実施の形態1において、上記のように2次励起光SPLA、SPLB、SPLC、SPLD、インコヒーレント光ILA、ILBを設定した場合、高パワーであり、かつ1430nm~1500nm程度の広帯域なインコヒーレントラマン増幅光(1次励起光)が得られ、1530nmから1625nm程度までの、光通信で使用されるC+Lバンドの信号光をラマン増幅可能である。 For example, in the first embodiment, when the secondary pumping light SPLA, SPLB, SPLC, SPLD, incoherent light ILA, ILB is set as described above, the power is high and the broadband incoherent of about 1430 nm to 1500 nm is set. Raman amplified light (primary excitation light) is obtained, and C + L band signal light from 1530 nm to 1625 nm, which is used in optical communication, can be Raman amplified.
 なお、複数のインコヒーレント光源11において、SLDとEDFによるASE光源、SOAとASE光源、SOAとSLDなど、互いに異なる波長帯域のインコヒーレント光を出力する別種のインコヒーレント光源を組み合わせることで、励起光波長帯域を広帯域化すれば、利得帯域の広帯域化が容易となる。例えば1480nm帯を中心とした数十nmの波長帯で動作するSOAをインコヒーレント光源として用いる場合、当該SOAをそれ以外の波長では動作させるのは困難である。そこで、当該SOAとSLDやASE光源とを併用すると、励起光波長帯域を1480nm帯だけでなく1300nm帯や1550nm帯まで拡大することが可能である。また、ASE光源として異なる希土類元素(ErまたはErとAl23やYbの共ドープ、PbSの半導体量子ドット)を添加した光ファイバを接続した光ファイバや、異なる希土類元素を共添加した光ファイバを用いたASE光源を利用することで、励起光波長帯域を広帯域化することができる。 In addition, in a plurality of incoherent light sources 11, by combining different types of incoherent light sources that output incoherent light in different wavelength bands, such as an ASE light source using SLD and EDF, an SOA and ASE light source, and an SOA and SLD, excitation light is combined. If the wavelength band is widened, the gain band can be easily widened. For example, when an SOA operating in a wavelength band of several tens of nm centered on the 1480 nm band is used as an incoherent light source, it is difficult to operate the SOA at other wavelengths. Therefore, when the SOA and the SLD or ASE light source are used in combination, the excitation light wavelength band can be expanded not only to the 1480 nm band but also to the 1300 nm band and the 1550 nm band. Also, as an ASE light source, an optical fiber connected with an optical fiber added with different rare earth elements (Er or Er and Al 2 O 3 or Yb co-doped, PbS semiconductor quantum dots), or an optical fiber co-doped with different rare earth elements By using an ASE light source using, the excitation light wavelength band can be broadened.
(実施の形態2)
 図5は、実施の形態2に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。ラマン増幅システム100Aは、ラマン増幅用光源10Aと光伝送ファイバ1002とで構成されている。
(Embodiment 2)
FIG. 5 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the second embodiment. The Raman amplification system 100A is composed of a Raman amplification light source 10A and an optical transmission fiber 1002.
 ラマン増幅用光源10Aは、複数のインコヒーレント光源11と、複数の励起光源12と、WDMカプラ13Aa、13Abと、ラマン増幅用光ファイバ14と、WDMカプラ15と、を備えている。 The Raman amplification light source 10A includes a plurality of incoherent light sources 11, a plurality of excitation light sources 12, WDM couplers 13Aa and 13Ab, a Raman amplification optical fiber 14, and a WDM coupler 15.
 WDMカプラ13Aaは、各インコヒーレント光ILを合波して出力する。WDMカプラ13Abは、各2次励起光SPLを合波して出力する。WDMカプラ13Aa、13Abは、図2、3に例示するような誘電体多層膜フィルタやAWGを用いて構成できる。 WDM coupler 13Aa combines and outputs each incoherent light IL. The WDM coupler 13Ab combines and outputs the respective secondary pumping lights SPL. The WDM couplers 13Aa and 13Ab can be configured using a dielectric multilayer filter or AWG as illustrated in FIGS.
 ラマン増幅用光ファイバ14は、WDMカプラ13Aaを介して複数のインコヒーレント光源11に接続されており、WDMカプラ13Abを介して複数の励起光源12に接続されている。ラマン増幅用光ファイバ14は、入力された各インコヒーレント光ILを入力された各2次励起光SPLによりラマン増幅し、インコヒーレント増幅光として出力する。ここで、複数のインコヒーレント光源11および複数の励起光源12はそれぞれ、各2次励起光SPLが各インコヒーレント光ILを後方励起するように、WDMカプラ13Aa、13Abのそれぞれを介してラマン増幅用光ファイバ14に接続されている。すなわち、ラマン増幅用光ファイバ14中において各2次励起光SPLと各インコヒーレント光ILとは伝搬方向が反対方向である。 The Raman amplification optical fiber 14 is connected to a plurality of incoherent light sources 11 via a WDM coupler 13Aa, and is connected to a plurality of excitation light sources 12 via a WDM coupler 13Ab. The Raman amplification optical fiber 14 Raman-amplifies each input incoherent light IL with each input secondary excitation light SPL, and outputs it as incoherent amplified light. Here, each of the plurality of incoherent light sources 11 and the plurality of pumping light sources 12 is used for Raman amplification via each of the WDM couplers 13Aa and 13Ab so that each secondary pumping light SPL pumps each incoherent light IL backward. It is connected to the optical fiber 14. That is, in the Raman amplification optical fiber 14, the propagation directions of the secondary pumping light SPL and the incoherent light IL are opposite to each other.
 WDMカプラ15は、光伝送ファイバ1002に接続されており、インコヒーレント増幅光が入力され、これを、信号光S1をラマン増幅する波長を有する1次励起光FPLとして光伝送ファイバ1002に出力する。ここで、WDMカプラ15は、1次励起光FPLが信号光S1を前方励起するように光伝送ファイバ1002に接続されている。これにより、信号光S1は光伝送ファイバ1002中で1次励起光FPLによりラマン増幅される。 The WDM coupler 15 is connected to the optical transmission fiber 1002, receives incoherent amplified light, and outputs it to the optical transmission fiber 1002 as primary pumping light FPL having a wavelength for Raman amplification of the signal light S1. Here, the WDM coupler 15 is connected to the optical transmission fiber 1002 so that the primary pumping light FPL pumps the signal light S1 forward. Thereby, the signal light S1 is Raman amplified by the primary pumping light FPL in the optical transmission fiber 1002.
 このラマン増幅用光源10Aによっても、ラマン増幅用光源10と同様に、前記した4つの課題を同時に解決することができる。さらに、このラマン増幅用光源10Aでは、ラマン増幅用光ファイバ14において、各2次励起光SPLは各インコヒーレント光ILを後方励起によりラマン増幅する。これにより、各2次励起光SPLは各インコヒーレント光ILのRINトランスファーがさらに低減されるので、信号光S1へのRINトランスファーもさらに低減される。 The Raman amplification light source 10A can solve the above-described four problems at the same time as the Raman amplification light source 10. Furthermore, in this Raman amplification light source 10A, in the Raman amplification optical fiber 14, each secondary pumping light SPL Raman-amplifies each incoherent light IL by backward pumping. Thereby, since each secondary excitation light SPL further reduces the RIN transfer of each incoherent light IL, the RIN transfer to the signal light S1 is further reduced.
(実施の形態3)
 図6は、実施の形態3に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。ラマン増幅システム100Bは、ラマン増幅用光源10Bと光伝送ファイバ1002とで構成されている。
(Embodiment 3)
FIG. 6 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the third embodiment. The Raman amplification system 100B includes a Raman amplification light source 10B and an optical transmission fiber 1002.
 ラマン増幅用光源10Bは、ラマン増幅用光源10のWDMカプラ15をWDMカプラ15Bに置き換えた構成を有する。WDMカプラ15Bは、光伝送ファイバ1002に接続されており、インコヒーレント増幅光が入力され、これを、信号光S1をラマン増幅する波長を有する1次励起光FPLとして光伝送ファイバ1002に出力する。ここで、WDMカプラ15Bは、1次励起光FPLが信号光S1を後方励起するように光伝送ファイバ1002に接続されている。すなわち、WDMカプラ15Bは、1次励起光FPLの伝搬方向が信号光S1の伝搬方向と反対方向になるように光伝送ファイバ1002に接続されている。これにより、信号光S1は光伝送ファイバ1002中で1次励起光FPLによりラマン増幅される。 The Raman amplification light source 10B has a configuration in which the WDM coupler 15 of the Raman amplification light source 10 is replaced with a WDM coupler 15B. The WDM coupler 15B is connected to the optical transmission fiber 1002, receives incoherent amplified light, and outputs it to the optical transmission fiber 1002 as primary pumping light FPL having a wavelength for Raman amplification of the signal light S1. Here, the WDM coupler 15B is connected to the optical transmission fiber 1002 so that the primary pumping light FPL pumps the signal light S1 backward. That is, the WDM coupler 15B is connected to the optical transmission fiber 1002 so that the propagation direction of the primary pumping light FPL is opposite to the propagation direction of the signal light S1. Thereby, the signal light S1 is Raman amplified by the primary pumping light FPL in the optical transmission fiber 1002.
 このラマン増幅用光源10Bによっても、ラマン増幅用光源10と同様に、前記した4つの課題を同時に解決することができる。また、ラマン増幅用光源10Bの場合、ラマン増幅用光源10のような前方励起型の場合よりも、低非線形効果を更に抑制可能である。これは後方励起型のため、信号光S1が光伝送ファイバ1002の伝送損失を受け始めてパワーが小さくなり始めてから1次励起光FPLによるラマン増幅により増幅されるため、信号光S1のパワーが前方励起型より光伝送ファイバ1002内で小さく保てることと、1次励起光FPLと信号光S1とが逆方向に伝搬するので、非線形効果を起こす位相整合条件を満たすことが前方励起より困難であることによる。 The Raman amplification light source 10B can solve the above-described four problems at the same time as the Raman amplification light source 10. Further, in the case of the Raman amplification light source 10B, the low nonlinear effect can be further suppressed as compared with the case of the forward excitation type like the Raman amplification light source 10. Since this is a backward pumping type, since the signal light S1 begins to receive transmission loss of the optical transmission fiber 1002 and the power starts to decrease, the signal light S1 is amplified by Raman amplification by the primary pumping light FPL. Because the primary pumping light FPL and the signal light S1 propagate in the opposite directions than in the optical transmission fiber 1002, it is more difficult to satisfy the phase matching condition causing the nonlinear effect than forward pumping. .
(実施の形態4)
 図7は、実施の形態4に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。ラマン増幅システム100Cは、ラマン増幅用光源10Cと光伝送ファイバ1002とで構成されている。
(Embodiment 4)
FIG. 7 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the fourth embodiment. The Raman amplification system 100C is composed of a Raman amplification light source 10C and an optical transmission fiber 1002.
 ラマン増幅用光源10Cは、ラマン増幅用光源10AのWDMカプラ15をWDMカプラ15Cに置き換えた構成を有する。WDMカプラ15Cは、光伝送ファイバ1002に接続されており、インコヒーレント増幅光が入力され、これを、信号光S1をラマン増幅する波長を有する1次励起光FPLとして光伝送ファイバ1002に出力する。ここで、WDMカプラ15Cは、1次励起光FPLが信号光S1を後方励起するように光伝送ファイバ1002に接続されている。すなわち、WDMカプラ15Cは、1次励起光FPLの伝搬方向が信号光S1の伝搬方向と反対方向になるように光伝送ファイバ1002に接続されている。これにより、信号光S1は光伝送ファイバ1002中で1次励起光FPLによりラマン増幅される。 The Raman amplification light source 10C has a configuration in which the WDM coupler 15 of the Raman amplification light source 10A is replaced with a WDM coupler 15C. The WDM coupler 15C is connected to the optical transmission fiber 1002, receives incoherent amplified light, and outputs it to the optical transmission fiber 1002 as primary pumping light FPL having a wavelength for Raman amplification of the signal light S1. Here, the WDM coupler 15C is connected to the optical transmission fiber 1002 so that the primary pumping light FPL pumps the signal light S1 backward. That is, the WDM coupler 15C is connected to the optical transmission fiber 1002 so that the propagation direction of the primary pumping light FPL is opposite to the propagation direction of the signal light S1. Thereby, the signal light S1 is Raman amplified by the primary pumping light FPL in the optical transmission fiber 1002.
 このラマン増幅用光源10Cによっても、ラマン増幅用光源10と同様に、前記した4つの課題を同時に解決することができる。さらに、このラマン増幅用光源10Cでは、ラマン増幅用光源10Aと同様に、ラマン増幅用光ファイバ14において、各2次励起光SPLは各インコヒーレント光ILを後方励起によりラマン増幅する。これにより、各2次励起光SPLは各インコヒーレント光ILのRINトランスファーがさらに低減されるので、信号光S1へのRINトランスファーもさらに低減される。 The Raman amplification light source 10C can solve the above four problems at the same time as the Raman amplification light source 10. Furthermore, in this Raman amplification light source 10C, as in the Raman amplification light source 10A, in the Raman amplification optical fiber 14, each secondary excitation light SPL Raman-amplifies each incoherent light IL by backward excitation. Thereby, since each secondary excitation light SPL further reduces the RIN transfer of each incoherent light IL, the RIN transfer to the signal light S1 is further reduced.
(実施の形態5)
 図8は、実施の形態5に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。ラマン増幅システム100Dは、ラマン増幅用光源システム10Dと光伝送ファイバ1002とで構成されている。
(Embodiment 5)
FIG. 8 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source according to the fifth embodiment. The Raman amplification system 100D includes a Raman amplification light source system 10D and an optical transmission fiber 1002.
 ラマン増幅用光源システム10Dは、ラマン増幅用光源10と、ラマン増幅用光源10Bとを備えており、ラマン増幅用光源10、10BのWDMカプラ15、15Bが、WDMカプラ15、15Bのそれぞれから出力される1次励起光FPLが信号光S1を双方向励起するように光伝送ファイバ1002に接続されている。すなわち、ラマン増幅システム100Dは、ラマン増幅用光源システム10Dを用いた双方向励起システムである。 The Raman amplification light source system 10D includes a Raman amplification light source 10 and a Raman amplification light source 10B. The WDM couplers 15 and 15B of the Raman amplification light sources 10 and 10B output from the WDM couplers 15 and 15B, respectively. The primary pumping light FPL is connected to the optical transmission fiber 1002 so as to bi-directionally pump the signal light S1. That is, the Raman amplification system 100D is a bidirectional excitation system using the Raman amplification light source system 10D.
 このラマン増幅用光源システム10Dによっても、前記した4つの課題を同時に解決することができる。さらに、ラマン増幅用光源システム10Dによれば、双方向励起型であることにより、ラマン利得の波長平坦化、広帯域化、NFの波長平坦化も達成容易となる。 The Raman amplification light source system 10D can also solve the above four problems at the same time. Furthermore, according to the Raman amplification light source system 10D, it is easy to achieve the flattening of the wavelength of Raman gain, the broadening of the bandwidth, and the flattening of the NF because of the bidirectional excitation type.
 なお、ラマン増幅用光源10Aと、ラマン増幅用光源10Cとでラマン増幅用光源システムを構成し、ラマン増幅用光源10A、10CのWDMカプラ15、15Cを、それぞれから出力される1次励起光FPLが信号光S1を双方向励起するように光伝送ファイバ1002に接続し、ラマン増幅システム100Dと同様の双方向励起ラマン増幅システムを構成してもよい。 The Raman amplification light source 10A and the Raman amplification light source 10C constitute a Raman amplification light source system, and the primary excitation light FPL output from the WDM couplers 15 and 15C of the Raman amplification light sources 10A and 10C, respectively. May be connected to the optical transmission fiber 1002 so as to bidirectionally pump the signal light S1, and a bidirectionally pumped Raman amplification system similar to the Raman amplification system 100D may be configured.
(実施の形態6)
 図9は、実施の形態6に係るラマン増幅用光源を用いたラマン増幅システムの模式的な構成図である。ラマン増幅システム100Eは、ラマン増幅用光源10Eと光伝送ファイバ1002とで構成されている。
(Embodiment 6)
FIG. 9 is a schematic configuration diagram of a Raman amplification system using a Raman amplification light source according to the sixth embodiment. The Raman amplification system 100E includes a Raman amplification light source 10E and an optical transmission fiber 1002.
 ラマン増幅用光源10Eは、複数のインコヒーレント光源11と、複数の励起光源12と、出力部としてのWDMカプラ13とを備えている。 The Raman amplification light source 10E includes a plurality of incoherent light sources 11, a plurality of excitation light sources 12, and a WDM coupler 13 as an output unit.
 WDMカプラ13は、複数のインコヒーレント光源11、複数の励起光源12および光伝送ファイバ1002に接続されており、各インコヒーレント光源11から入力された各インコヒーレント光ILおよび各励起光源12から入力された各2次励起光SPLを、光伝送ファイバ1002を同一方向に伝搬するように出力する。さらに、WDMカプラ13は、各インコヒーレント光ILおよび各2次励起光SPLが光伝送ファイバ1002中で信号光S1と同一方向に伝搬するように光伝送ファイバ1002に接続されている。このような構成は、図2に示すWDMカプラ13を、入力ポート13dから信号光S1が入力され、出力ポート13cから出力されるように光伝送ファイバ1002に接続することにより実現できる。また、図3に示すWDMカプラ13´を使用する場合には、信号光合波用のポート13´adを設け、ポート13´adから信号光S1が入力され、出力ポート13´acから信号光S1と各インコヒーレント光ILと各2次励起光SPLとが合波されて出力されるように光伝送ファイバ1002に接続すればよい。 The WDM coupler 13 is connected to a plurality of incoherent light sources 11, a plurality of pumping light sources 12, and an optical transmission fiber 1002, and is input from each incoherent light IL input from each incoherent light source 11 and each pumping light source 12. Each secondary pumping light SPL is output so as to propagate through the optical transmission fiber 1002 in the same direction. Further, the WDM coupler 13 is connected to the optical transmission fiber 1002 so that each incoherent light IL and each secondary pumping light SPL propagate in the same direction as the signal light S1 in the optical transmission fiber 1002. Such a configuration can be realized by connecting the WDM coupler 13 shown in FIG. 2 to the optical transmission fiber 1002 so that the signal light S1 is input from the input port 13d and output from the output port 13c. When the WDM coupler 13 'shown in FIG. 3 is used, a signal light multiplexing port 13'ad is provided, the signal light S1 is input from the port 13'ad, and the signal light S1 is output from the output port 13'ac. And each incoherent light IL and each secondary pumping light SPL may be coupled to the optical transmission fiber 1002 so as to be output.
 このラマン増幅システム100Eでは、光伝送ファイバ1002において、各インコヒーレント光ILが各2次励起光SPLにより徐々にラマン増幅され、信号光S1をラマン増幅する波長を有する1次励起光FPLが生成される。1次励起光FPLは、信号光S1と同一方向に伝搬し、信号光S1をラマン増幅する。すなわち、ラマン増幅システム100Eは、前方励起型かつ2次励起型のラマン増幅システムである。 In this Raman amplification system 100E, each incoherent light IL is gradually Raman-amplified by each secondary excitation light SPL in the optical transmission fiber 1002, and primary excitation light FPL having a wavelength for Raman amplification of the signal light S1 is generated. The The primary pumping light FPL propagates in the same direction as the signal light S1, and Raman-amplifies the signal light S1. That is, the Raman amplification system 100E is a forward excitation type and secondary excitation type Raman amplification system.
 このラマン増幅用光源10Eによっても、前記した4つの課題を同時に解決することができる。さらに、このラマン増幅用光源10Eによれば、WDMカプラ13の近傍の光伝送ファイバ1002では信号光S1をラマン増幅する1次励起光FPLはパワーが小さいため、信号光S1のラマン利得が小さいが、信号光S1が光伝送ファイバ1002を伝送するにしたがってインコヒーレント光ILが2次励起光SPLにより増幅されて1次励起光FPLのパワーが大きくなり、信号光S1に対するラマン利得が大きくなる。これにより、光伝送ファイバ1002全体としてみると伝送損失とラマン利得が上手くキャンセルしてあたかも光ファイバの伝送損失が0、または光伝送ファイバ1002の長手方向での信号光S1のパワーの変動が小さい伝送路と見做すことが可能になり、非線形効果をさらに低減可能である。 This Raman amplification light source 10E can also solve the above four problems at the same time. Further, according to the Raman amplification light source 10E, the primary pumping light FPL for Raman amplification of the signal light S1 in the optical transmission fiber 1002 in the vicinity of the WDM coupler 13 has a small power, but the Raman gain of the signal light S1 is small. As the signal light S1 is transmitted through the optical transmission fiber 1002, the incoherent light IL is amplified by the secondary pumping light SPL, the power of the primary pumping light FPL is increased, and the Raman gain for the signal light S1 is increased. Accordingly, when the optical transmission fiber 1002 is viewed as a whole, the transmission loss and the Raman gain are canceled well, and the transmission loss of the optical fiber is zero, or the power fluctuation of the signal light S1 in the longitudinal direction of the optical transmission fiber 1002 is small. It can be regarded as a road, and the nonlinear effect can be further reduced.
 なお、ラマン増幅システム100Eの構成で、図4に例示するように、2次励起光SPLA、SPLB、SPLC、SPLDの波長をそれぞれ1350nm、1370nm、1380nm、1400nmとし、パワーはいずれも250mWとし、インコヒーレント光ILA、ILBの波長をそれぞれ1450nm、1480nmとし、3dB帯域幅をいずれも30nmとし、パワーをいずれも5mWとして、ラマン増幅の実験を行った。信号光S1は4つの信号光からなるWDM信号光とし、その波長は1530nm、1560nm、1590nm、1620nmとした。また、光伝送ファイバ1002の長さを50kmとした。その結果、各信号光の波長で約10dBのラマン利得が得られた。また、4つの信号光の波長における最大のラマン利得と最小のラマン利得との差は1dB以下であった。 In the configuration of the Raman amplification system 100E, as illustrated in FIG. 4, the wavelengths of the secondary excitation light SPLA, SPLB, SPLC, and SPLD are 1350 nm, 1370 nm, 1380 nm, and 1400 nm, respectively, and the power is 250 mW. Experiments of Raman amplification were performed with the wavelengths of the coherent lights ILA and ILB being 1450 nm and 1480 nm, respectively, the 3 dB bandwidth being 30 nm, and the power being 5 mW. The signal light S1 is a WDM signal light composed of four signal lights, and the wavelengths thereof are 1530 nm, 1560 nm, 1590 nm, and 1620 nm. The length of the optical transmission fiber 1002 is 50 km. As a result, a Raman gain of about 10 dB was obtained at each signal light wavelength. The difference between the maximum Raman gain and the minimum Raman gain at the wavelengths of the four signal lights was 1 dB or less.
 また、ラマン増幅用光源10Eによれば、ラマン増幅システム100Eは、2次励起光SPLの波長の設定により、2次励起システムとしてだけでなく、3次励起システムまたはそれ以上の高次の励起システムとしても動作可能である。例えば、2次励起光SPLの波長として(a)1380nm±20nmを用い、インコヒーレント光源11として(b)1480nm±20nmのSLDを用いると、(b)が(a)によってラマン増幅され、その増幅された(b)が1590nm±20nm前後の波長域の信号光S1をラマン増幅する2次励起ラマン増幅システムとして動作する。 Further, according to the Raman amplification light source 10E, the Raman amplification system 100E can be used not only as a secondary excitation system but also as a tertiary excitation system or higher order excitation system by setting the wavelength of the secondary excitation light SPL. Can be operated as well. For example, when (a) 1380 nm ± 20 nm is used as the wavelength of the secondary excitation light SPL and (b) 1480 nm ± 20 nm SLD is used as the incoherent light source 11, (b) is Raman-amplified by (a) and the amplification (B) operated as a secondary excitation Raman amplification system that Raman-amplifies the signal light S1 in the wavelength range of around 1590 nm ± 20 nm.
 また、例えば2次励起光SPLの波長として(a)1290nm±20nmおよび(a´)1380nm±20nmを用い、インコヒーレント光源11として(b)1480nm±20nmのSLDを用いると、(a´)が(a)によってラマン増幅され、その増幅された(a´)及び(a´)が(b)をラマン増幅し、そのラマン増幅された(b)が1590nm±20nm前後の波長域の信号光S1をラマン増幅する3次励起ラマン増幅システムとして動作する。この場合、ラマン増幅用光源10Eは、複数の励起光源12のうちの少なくとも1つが出力する2次励起光SPLをラマン増幅する波長を有する励起光を出力する励起光源を備える。この時、(a)、(a´)、(b)のパワーを調整すると、前記4つの課題を同時に達成可能で且つ、ラマン利得の平坦化、広帯域化、NFの平坦化も達成容易となる。 For example, when (a) 1290 nm ± 20 nm and (a ′) 1380 nm ± 20 nm are used as the wavelengths of the secondary excitation light SPL, and (b) 1480 nm ± 20 nm SLD is used as the incoherent light source 11, (a ′) becomes Raman amplification is performed by (a), and the amplified (a ′) and (a ′) Raman-amplify (b). The Raman-amplified (b) is signal light S1 in a wavelength region around 1590 nm ± 20 nm. Operates as a third-order excitation Raman amplification system for Raman amplification. In this case, the Raman amplification light source 10E includes an excitation light source that outputs excitation light having a wavelength for Raman amplification of the secondary excitation light SPL output from at least one of the plurality of excitation light sources 12. At this time, by adjusting the powers of (a), (a ′), and (b), the above four problems can be achieved at the same time, and the flattening of the Raman gain, the broadening of the band, and the flattening of the NF can be easily achieved. .
(実施の形態7)
 図10は、実施の形態7に係るラマン増幅用光源システムを用いたラマン増幅システムの模式的な構成図である。ラマン増幅システム100Fは、ラマン増幅用光源システム10Fと光伝送ファイバ1002とで構成されている。
(Embodiment 7)
FIG. 10 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the seventh embodiment. The Raman amplification system 100F includes a Raman amplification light source system 10F and an optical transmission fiber 1002.
 ラマン増幅用光源システム10Fは、ラマン増幅用光源10Eと、ラマン増幅用光源10EAとを備えている。ラマン増幅用光源10EAは、ラマン増幅用光源10Eにおいて、WDMカプラ13を、出力ポート13cから信号光S1が入力され、入力ポート13dから出力されるように光伝送ファイバ1002に接続した構成を有する。光伝送ファイバ1002において、ラマン増幅用光源10EAから入力された各インコヒーレント光ILが各2次励起光SPLにより徐々にラマン増幅され、信号光S1をラマン増幅する波長を有する1次励起光FPLが生成される。1次励起光FPLは、信号光S1と反対方向に伝搬し、信号光S1をラマン増幅する。一方、ラマン増幅用光源10Eにより生成された1次励起光FPLは、信号光S1と同一方向に伝搬し、信号光S1をラマン増幅する。 The Raman amplification light source system 10F includes a Raman amplification light source 10E and a Raman amplification light source 10EA. In the Raman amplification light source 10E, the Raman amplification light source 10EA has a configuration in which the WDM coupler 13 is connected to the optical transmission fiber 1002 so that the signal light S1 is input from the output port 13c and output from the input port 13d. In the optical transmission fiber 1002, each incoherent light IL input from the Raman amplification light source 10EA is gradually Raman amplified by each secondary pumping light SPL, and primary pumping light FPL having a wavelength for Raman amplification of the signal light S1 is obtained. Generated. The primary pumping light FPL propagates in the opposite direction to the signal light S1, and Raman-amplifies the signal light S1. On the other hand, the primary pumping light FPL generated by the Raman amplification light source 10E propagates in the same direction as the signal light S1, and Raman amplifies the signal light S1.
 このように、各ラマン増幅用光源10E、10EAのWDMカプラ13は、1次励起光FPLが信号光S1を双方向励起するように光伝送ファイバ1002に接続されており、ラマン増幅システム100Fは、ラマン増幅用光源システム10Fを用いた双方向励起型かつ2次励起型のラマン増幅システムとなっている。 Thus, the WDM couplers 13 of the Raman amplification light sources 10E and 10EA are connected to the optical transmission fiber 1002 so that the primary pumping light FPL bi-directionally pumps the signal light S1, and the Raman amplification system 100F includes: This is a bidirectional excitation type and secondary excitation type Raman amplification system using the Raman amplification light source system 10F.
 このラマン増幅用光源システム10Fによっても、前記した4つの課題を同時に解決することができるとともに、ラマン増幅用光源10Eの場合と同様に、非線形効果をさらに低減可能であり、さらには、双方向励起型であるので、光伝送ファイバ1002の長手方向における信号光S1のパワーの分布の設計の自由度を高くできる。たとえば、ラマン増幅用光源10E、10EAのそれぞれにおける各励起光源12およびインコヒーレント光源11の波長、数、帯域、パワーにより、増幅すべき信号光S1の増幅帯域、所望の利得および利得平坦性に加え、長手方向における信号光S1のパワーの分布を調整できる。さらに、ラマン増幅用光源システム10Fによれば、ラマン増幅システム100Fは、ラマン増幅システム100Eと同様に、2次励起システムとしてだけでなく、3次励起システムまたはそれ以上の高次の励起システムとしても動作可能である。 The Raman amplification light source system 10F can solve the above four problems at the same time, and can further reduce the non-linear effect as in the case of the Raman amplification light source 10E. Since it is a type, the degree of freedom in designing the power distribution of the signal light S1 in the longitudinal direction of the optical transmission fiber 1002 can be increased. For example, in addition to the amplification band, desired gain, and gain flatness of the signal light S1 to be amplified, depending on the wavelength, number, band, and power of each excitation light source 12 and incoherent light source 11 in each of the Raman amplification light sources 10E and 10EA The power distribution of the signal light S1 in the longitudinal direction can be adjusted. Further, according to the Raman amplification light source system 10F, the Raman amplification system 100F can be used not only as a secondary excitation system, but also as a tertiary excitation system or a higher-order excitation system similar to the Raman amplification system 100E. It is possible to operate.
(実施の形態8)
 図11は、実施の形態8に係るラマン増幅用光源システムを用いたラマン増幅システムの模式的な構成図である。ラマン増幅システム100Hは、ラマン増幅用光源システム10Hと光伝送ファイバ1002とで構成されている。
(Embodiment 8)
FIG. 11 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the eighth embodiment. The Raman amplification system 100H includes a Raman amplification light source system 10H and an optical transmission fiber 1002.
 ラマン増幅用光源システム10Hは、第1の光源部10HAと第2の光源部10HBとを備えている。第1の光源部10HAは、インコヒーレント光ILを出力する第1の複数のインコヒーレント光源11Aと、第1の複数のインコヒーレント光源11Aおよび光伝送ファイバ1002に接続されており、インコヒーレント光ILを光伝送ファイバ1002に出力する第1の出力部であるWDMカプラ16と、を備える。第2の光源部10HBは、インコヒーレント光ILをラマン増幅する波長を有する2次励起光SPLを出力する第1の複数の励起光源12Aと、第1の複数の励起光源12Aおよび光伝送ファイバ1002に接続されており、2次励起光SPLを光伝送ファイバ1002に出力する第2の出力部であるWDMカプラ17と、を備える。 The Raman amplification light source system 10H includes a first light source unit 10HA and a second light source unit 10HB. The first light source unit 10HA is connected to the first plurality of incoherent light sources 11A that output the incoherent light IL, the first plurality of incoherent light sources 11A, and the optical transmission fiber 1002, and the incoherent light IL And a WDM coupler 16 that is a first output unit that outputs the signal to the optical transmission fiber 1002. The second light source unit 10HB includes a first plurality of pump light sources 12A that output secondary pump light SPL having a wavelength for Raman amplification of the incoherent light IL, the first plurality of pump light sources 12A, and the optical transmission fiber 1002. And a WDM coupler 17 serving as a second output unit that outputs the secondary pumping light SPL to the optical transmission fiber 1002.
 第1の複数のインコヒーレント光源11Aは、複数のインコヒーレント光源11と同様に、それぞれ互いに異なる波長を有するインコヒーレント光ILを出力する。第1の複数のインコヒーレント光源11Aは、SLD、SOAおよび希土類添加光ファイバを備えたASE光源の少なくとも一つを含むが、本実施の形態8では、全てがSLDであるとする。各インコヒーレント光源11Aから出力されるインコヒーレント光ILのパワーはたとえば40mWである。 The first plurality of incoherent light sources 11A, like the plurality of incoherent light sources 11, output incoherent light IL having different wavelengths from each other. The first plurality of incoherent light sources 11A includes at least one of an ASE light source including an SLD, an SOA, and a rare earth-doped optical fiber. In the eighth embodiment, all are assumed to be SLDs. The power of the incoherent light IL output from each incoherent light source 11A is, for example, 40 mW.
 第1の複数の励起光源12Aは、複数の励起光源12と同様に、それぞれ、互いに異なる波長であり、かつインコヒーレント光ILをラマン増幅する波長を有する2次励起光SPLを出力する。第1の複数の励起光源12Aは、互いに波長が異なるFP型、FP型とFBGとを組み合わせたFP-FBG型、DFB型、およびDBR型の半導体レーザの少なくとも一つを含むが、本実施の形態8では、全てがFP型半導体レーザであるとする。各励起光源12Aから出力される2次励起光SPLのパワーはたとえば500mWである。 The first plurality of pumping light sources 12A, like the plurality of pumping light sources 12, output secondary pumping light SPL each having a different wavelength and a wavelength for Raman amplification of the incoherent light IL. The first plurality of pumping light sources 12A include at least one of FP type, FP-FBG type, DFB type, and DBR type semiconductor lasers having different wavelengths from each other. In Embodiment 8, it is assumed that all are FP semiconductor lasers. The power of the secondary pumping light SPL output from each pumping light source 12A is, for example, 500 mW.
 WDMカプラ16とWDMカプラ17とは、インコヒーレント光ILと2次励起光SPLとが、WDMカプラ16とWDMカプラ17との間で光伝送ファイバ1002を反対方向に伝搬するように光伝送ファイバ1002に接続されている。これにより、具体的には、インコヒーレント光ILは信号光S1と同一方向に伝搬し、2次励起光SPLは信号光S1と反対方向に伝搬する。 The WDM coupler 16 and the WDM coupler 17 are configured so that the incoherent light IL and the secondary pumping light SPL propagate through the optical transmission fiber 1002 in the opposite direction between the WDM coupler 16 and the WDM coupler 17. It is connected to the. Thus, specifically, the incoherent light IL propagates in the same direction as the signal light S1, and the secondary excitation light SPL propagates in the opposite direction to the signal light S1.
 このラマン増幅用光源システム10Hでは、WDMカプラ16とWDMカプラ17との間の光伝送ファイバ1002において、入力されたインコヒーレント光ILが2次励起光SPLにより徐々にラマン増幅され、信号光S1をラマン増幅する波長を有する1次励起光FPLが生成される。1次励起光FPLは、信号光S1と同一方向に伝搬し、信号光S1をラマン増幅する。すなわち、ラマン増幅システム100Hは、前方励起型かつ2次励起型のラマン増幅システムである。 In this Raman amplification light source system 10H, in the optical transmission fiber 1002 between the WDM coupler 16 and the WDM coupler 17, the input incoherent light IL is gradually Raman amplified by the secondary pumping light SPL, and the signal light S1 is converted. Primary excitation light FPL having a wavelength for Raman amplification is generated. The primary pumping light FPL propagates in the same direction as the signal light S1, and Raman-amplifies the signal light S1. That is, the Raman amplification system 100H is a forward excitation type and secondary excitation type Raman amplification system.
 このラマン増幅用光源システム10Hによっても、前記した4つの課題を同時に解決することができる。さらに、このラマン増幅用光源システム10Hによれば、ラマン増幅用光源10Eと同様の作用により、光伝送ファイバ1002全体としてみると伝送損失とラマン利得が上手くキャンセルしてあたかも光ファイバの伝送損失が0、または光伝送ファイバ1002の長手方向での信号光S1のパワーの変動が小さい伝送路と見做すことが可能になり、非線形効果をさらに低減可能である。さらに、ラマン増幅用光源システム10Hによれば、ラマン増幅システム100Hは、ラマン増幅システム100Eと同様に、2次励起システムとしてだけでなく、3次励起システムまたはそれ以上の高次の励起システムとしても動作可能である。 This Raman amplification light source system 10H can solve the above four problems at the same time. Further, according to the Raman amplification light source system 10H, the transmission loss and the Raman gain are canceled satisfactorily as if the optical transmission fiber 1002 as a whole has the same effect as the Raman amplification light source 10E. Alternatively, it can be regarded as a transmission line in which the power fluctuation of the signal light S1 in the longitudinal direction of the optical transmission fiber 1002 is small, and the nonlinear effect can be further reduced. Further, according to the Raman amplification light source system 10H, the Raman amplification system 100H can be used not only as a secondary excitation system, but also as a tertiary excitation system or a higher-order excitation system, as with the Raman amplification system 100E. It is possible to operate.
(実施の形態9)
 図12は、実施の形態9に係るラマン増幅用光源システムを用いたラマン増幅システムの模式的な構成図である。ラマン増幅システム100Iは、ラマン増幅用光源システム10Iと光伝送ファイバ1002とで構成されている。
(Embodiment 9)
FIG. 12 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the ninth embodiment. The Raman amplification system 100I is composed of a Raman amplification light source system 10I and an optical transmission fiber 1002.
 このラマン増幅用光源システム10Iも、ラマン増幅用光源システム10Hと同様に、第1の光源部10HAと第2の光源部10HBとを備えている。また、WDMカプラ16とWDMカプラ17とが、インコヒーレント光ILと2次励起光SPLとが、WDMカプラ16とWDMカプラ17との間で光伝送ファイバ1002を反対方向に伝搬するように光伝送ファイバ1002に接続されている点もラマン増幅用光源システム10Hと同様である。しかし、ラマン増幅用光源システム10Hとは異なり、WDMカプラ16とWDMカプラ17とは、インコヒーレント光ILが信号光S1と反対方向に伝搬し、2次励起光SPLは信号光S1と同一方向に伝搬するように光伝送ファイバ1002に接続されている。 This Raman amplification light source system 10I also includes a first light source unit 10HA and a second light source unit 10HB, similarly to the Raman amplification light source system 10H. In addition, the WDM coupler 16 and the WDM coupler 17 perform optical transmission so that the incoherent light IL and the secondary pumping light SPL propagate in the opposite direction between the WDM coupler 16 and the WDM coupler 17 through the optical transmission fiber 1002. The point connected to the fiber 1002 is the same as that of the Raman amplification light source system 10H. However, unlike the Raman amplification light source system 10H, in the WDM coupler 16 and the WDM coupler 17, the incoherent light IL propagates in the opposite direction to the signal light S1, and the secondary pumping light SPL is in the same direction as the signal light S1. It is connected to the optical transmission fiber 1002 so as to propagate.
 このラマン増幅用光源システム10Iにおいても、ラマン増幅用光源システム10Hの場合と同様に、WDMカプラ16とWDMカプラ17との間の光伝送ファイバ1002において、入力されたインコヒーレント光ILが2次励起光SPLにより徐々にラマン増幅され、信号光S1をラマン増幅する波長を有する1次励起光FPLが生成される。ただし、ラマン増幅用光源システム10Hの場合とは異なり、1次励起光FPLは、信号光S1と反対方向に伝搬し、信号光S1をラマン増幅する。すなわち、ラマン増幅システム100Iは、後方励起型かつ2次励起型のラマン増幅システムである。 In this Raman amplification light source system 10I, similarly to the case of the Raman amplification light source system 10H, the input incoherent light IL is secondarily pumped in the optical transmission fiber 1002 between the WDM coupler 16 and the WDM coupler 17. The primary pumping light FPL having a wavelength that is gradually Raman amplified by the light SPL and Raman-amplifies the signal light S1 is generated. However, unlike the case of the Raman amplification light source system 10H, the primary excitation light FPL propagates in the opposite direction to the signal light S1 and Raman-amplifies the signal light S1. That is, the Raman amplification system 100I is a backward excitation type and secondary excitation type Raman amplification system.
 このラマン増幅用光源システム10Iによっても、前記した4つの課題を同時に解決することができる。さらに、ラマン増幅用光源システム10Iによれば、ラマン増幅システム100Iは、ラマン増幅システム100Eと同様に、2次励起システムとしてだけでなく、3次励起システムまたはそれ以上の高次の励起システムとしても動作可能である。 This Raman amplification light source system 10I can also solve the above four problems at the same time. Further, according to the Raman amplification light source system 10I, the Raman amplification system 100I can be used not only as a secondary excitation system, but also as a tertiary excitation system or a higher-order excitation system similar to the Raman amplification system 100E. It is possible to operate.
(実施の形態10)
 図13は、実施の形態10に係るラマン増幅用光源システムを用いたラマン増幅システムの模式的な構成図である。ラマン増幅システム100Jは、ラマン増幅用光源システム10Jと光伝送ファイバ1002とで構成されている。
(Embodiment 10)
FIG. 13 is a schematic configuration diagram of a Raman amplification system using the Raman amplification light source system according to the tenth embodiment. The Raman amplification system 100J includes a Raman amplification light source system 10J and an optical transmission fiber 1002.
 ラマン増幅用光源システム10Jは、第1の光源部10HAAと第2の光源部10HBAとを備えている。第1の光源部10HAAは、インコヒーレント光ILを出力する第1の複数のインコヒーレント光源11Aと、更に第2の2次励起光SPL2を出力する第2の複数の励起光源12Bと、第1の複数のインコヒーレント光源11A、第2の複数の励起光源12Bおよび光伝送ファイバ1002に接続されており、インコヒーレント光ILおよび第2の2次励起光SPL2を光伝送ファイバ1002に出力する第1の出力部であるWDMカプラ16Aと、を備える。第2の光源部10HBAは、2次励起光SPLを出力する第1の複数の励起光源12Aと、第2のインコヒーレント光IL2を出力する第2の複数のインコヒーレント光源11Bと、第1の複数の励起光源12A、第2の複数のインコヒーレント光源11Bおよび光伝送ファイバ1002に接続されており、第2のインコヒーレント光IL2および2次励起光SPLを光伝送ファイバ1002に出力する第2の出力部であるWDMカプラ17Aと、を備える。 The Raman amplification light source system 10J includes a first light source unit 10HAA and a second light source unit 10HBA. The first light source unit 10HAA includes a first plurality of incoherent light sources 11A that output incoherent light IL, a second plurality of pumping light sources 12B that output second secondary pumping light SPL2, and a first Are connected to the plurality of incoherent light sources 11 A, the second plurality of pumping light sources 12 B, and the optical transmission fiber 1002, and outputs the incoherent light IL and the second secondary pumping light SPL 2 to the optical transmission fiber 1002. And a WDM coupler 16A that is an output unit. The second light source unit 10HBA includes a first plurality of excitation light sources 12A that output the secondary excitation light SPL, a second plurality of incoherent light sources 11B that output the second incoherent light IL2, and a first The second pumping light source 12A, the second plurality of incoherent light sources 11B, and the optical transmission fiber 1002 are connected to each other, and the second incoherent light IL2 and the secondary pumping light SPL are output to the optical transmission fiber 1002. A WDM coupler 17A serving as an output unit.
 第2の複数のインコヒーレント光源11Bは、第2の複数の励起光源12Bが出力する第2の2次励起光SPL2によりラマン増幅される波長を有する第2のインコヒーレント光IL2を出力する。第1の複数の励起光源12Aは、第1の複数のインコヒーレント光源11Aが出力するインコヒーレント光ILをラマン増幅する波長を有する2次励起光SPLを出力する。 The second plurality of incoherent light sources 11B outputs second incoherent light IL2 having a wavelength that is Raman-amplified by the second secondary pumping light SPL2 output from the second plurality of pumping light sources 12B. The first plurality of pump light sources 12A outputs secondary pump light SPL having a wavelength for Raman amplification of the incoherent light IL output from the first plurality of incoherent light sources 11A.
 WDMカプラ16AとWDMカプラ17Aとは、インコヒーレント光ILと2次励起光SPLとが、WDMカプラ16AとWDMカプラ17Aとの間で光伝送ファイバ1002を反対方向に伝搬し、かつ、第2のインコヒーレント光IL2と第2の2次励起光SPL2とが、WDMカプラ16AとWDMカプラ17Aとの間で光伝送ファイバ1002を反対方向に伝搬するように光伝送ファイバ1002に接続されている。これにより、具体的には、インコヒーレント光ILおよび第2の2次励起光SPL2は信号光S1と同一方向に伝搬し、2次励起光SPLおよび第2のインコヒーレント光IL2は信号光S1と反対方向に伝搬する。 In the WDM coupler 16A and the WDM coupler 17A, the incoherent light IL and the secondary pumping light SPL propagate through the optical transmission fiber 1002 in the opposite directions between the WDM coupler 16A and the WDM coupler 17A, and The incoherent light IL2 and the second secondary pumping light SPL2 are connected to the optical transmission fiber 1002 so as to propagate in the opposite direction between the WDM coupler 16A and the WDM coupler 17A. Thus, specifically, the incoherent light IL and the second secondary pumping light SPL2 propagate in the same direction as the signal light S1, and the secondary pumping light SPL and the second incoherent light IL2 are transmitted with the signal light S1. Propagate in the opposite direction.
 このラマン増幅用光源システム10Jでは、WDMカプラ16AとWDMカプラ17Aとの間の光伝送ファイバ1002において、入力されたインコヒーレント光ILが2次励起光SPLにより徐々にラマン増幅され、信号光S1をラマン増幅する波長を有する1次励起光FPLが生成される。さらに、このラマン増幅用光源システム10Jでは、WDMカプラ16AとWDMカプラ17Aとの間の光伝送ファイバ1002において、入力された第2のインコヒーレント光IL2が第2の2次励起光SPL2により徐々にラマン増幅され、信号光S1をラマン増幅する波長を有する第2の1次励起光FPL2が生成される。1次励起光FPLは信号光S1と同一方向に伝搬し、第2の1次励起光FPL2は信号光S1と反対方向に伝搬して、それぞれ信号光S1をラマン増幅する。すなわち、ラマン増幅システム100Jは、双方向励起型かつ2次励起型のラマン増幅システムである。 In this Raman amplification light source system 10J, the input incoherent light IL is gradually Raman amplified by the secondary pumping light SPL in the optical transmission fiber 1002 between the WDM coupler 16A and the WDM coupler 17A, and the signal light S1 is obtained. Primary excitation light FPL having a wavelength for Raman amplification is generated. Further, in the Raman amplification light source system 10J, the input second incoherent light IL2 is gradually generated by the second secondary pumping light SPL2 in the optical transmission fiber 1002 between the WDM coupler 16A and the WDM coupler 17A. The second primary pumping light FPL2 that is Raman-amplified and has a wavelength for Raman-amplifying the signal light S1 is generated. The primary pumping light FPL propagates in the same direction as the signal light S1, and the second primary pumping light FPL2 propagates in the opposite direction to the signal light S1, and each Raman-amplifies the signal light S1. That is, the Raman amplification system 100J is a bidirectional excitation type and secondary excitation type Raman amplification system.
 このラマン増幅用光源システム10Jによっても、前記した4つの課題を同時に解決することができる。さらに、このラマン増幅用光源システム10Jによれば、双方向励起型であるので、光伝送ファイバ1002の長手方向における信号光S1のパワーの分布の設計の自由度を高くできる。たとえば、光源部10HAA、10HBAのそれぞれにおける各励起光源12A、12Bおよびインコヒーレント光源11A、11Bの波長、数、帯域、パワーにより、増幅すべき信号光S1の増幅帯域、所望の利得および利得平坦性に加え、長手方向における信号光S1のパワーの分布を調整できる。さらに、ラマン増幅システム100Jにおいて、前方から入力されるインコヒーレント光ILをラマン増幅する2次励起光は後方から導入される2次励起光SPLに限定されるものではなく、前方から入力される第2の2次励起光SPL2が前方から入力されるインコヒーレント光ILをラマン増幅しても良い。どの2次励起光がどのインコヒーレント光をラマン増幅するかは、システムの設計に依存するものである。さらに、ラマン増幅用光源システム10Jによれば、ラマン増幅システム100Jは、ラマン増幅システム100Eと同様に、2次励起システムとしてだけでなく、3次励起システムまたはそれ以上の高次の励起システムとしても動作可能である。 This Raman amplification light source system 10J can also solve the above four problems at the same time. Further, according to this Raman amplification light source system 10J, since it is a bidirectional pumping type, the degree of freedom in designing the power distribution of the signal light S1 in the longitudinal direction of the optical transmission fiber 1002 can be increased. For example, the amplification band, desired gain, and gain flatness of the signal light S1 to be amplified according to the wavelength, number, band, and power of each of the excitation light sources 12A and 12B and the incoherent light sources 11A and 11B in each of the light source units 10HAA and 10HBA In addition, the power distribution of the signal light S1 in the longitudinal direction can be adjusted. Further, in the Raman amplification system 100J, the secondary pumping light for Raman-amplifying the incoherent light IL input from the front is not limited to the secondary pumping light SPL introduced from the rear, but the second pumping light input from the front. The incoherent light IL to which the second secondary pumping light SPL2 is input from the front may be Raman amplified. Which secondary excitation light Raman-amplifies which incoherent light depends on the design of the system. Further, according to the Raman amplification light source system 10J, the Raman amplification system 100J can be used not only as a secondary excitation system, but also as a tertiary excitation system or a higher-order excitation system similar to the Raman amplification system 100E. It is possible to operate.
 なお、上記実施の形態において、複数のインコヒーレント光源11、11Aまたは11Bは、図14における(a)に示すように、SOA11aが多段接続されて構成され、インコヒーレント光ILまたはIL2を出力するインコヒーレント光源11Cを含んでいてもよいし、図14における(b)に示すように、SLD11bおよびSOA11aを含み、SLD11bから出力されるインコヒーレント光をSOA11aで光増幅してインコヒーレント光ILまたはIL2として出力するように構成されたインコヒーレント光源11Dを含んでいてもよい。これにより、インコヒーレント光ILまたはIL2のパワーを大きくすることができる。 In the above-described embodiment, the plurality of incoherent light sources 11, 11A, or 11B are configured by connecting SOAs 11a in multiple stages as shown in FIG. 14A, and the incoherent light IL or IL2 is output. The coherent light source 11C may be included, and as shown in FIG. 14B, the SLD 11b and the SOA 11a are included, and the incoherent light output from the SLD 11b is optically amplified by the SOA 11a as incoherent light IL or IL2. An incoherent light source 11D configured to output may be included. Thereby, the power of the incoherent light IL or IL2 can be increased.
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。 Further, the present invention is not limited by the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
 以上のように、本発明に係るラマン増幅用光源、ラマン増幅用光源システム、ラマン増幅器、および、ラマン増幅システムは、光ファイバ通信に有用である。 As described above, the Raman amplification light source, the Raman amplification light source system, the Raman amplifier, and the Raman amplification system according to the present invention are useful for optical fiber communication.
 10、10A、10B、10C、10E、10EA ラマン増幅用光源
 10D、10F、10H、10I、10J ラマン増幅用光源システム
 10HA、10HAA 第1の光源部
 10HB、10HBA 第2の光源部
 11、11A、11B、11C、11D インコヒーレント光源
 12 、12A、12B 励起光源
 13、13´、13a、13b、13Aa、13Ab、15、15B、15C、16、16A、17、17A WDMカプラ
 13´a AWG
 13c、13´ac 出力ポート
 13d 入力ポート
 13´aa、13´ab、13´ad ポート
 14 ラマン増幅用光ファイバ
 100、100A、100B、100C、100D、100E、100F、100H、100I、100J ラマン増幅システム
 1000 光伝送システム
 1001 送信器
 1002 光伝送ファイバ
 1003 受信器
 FPL 1次励起光
 FPL2 第2の1次励起光
 IL、ILA、ILB インコヒーレント光
 IL2 第2のインコヒーレント光
 RPA、RPB、RPC、RPD ラマンピーク
 S1 信号光
 SPL、SPLA 2次励起光
 SPL2 第2の2次励起光
10, 10A, 10B, 10C, 10E, 10EA Raman amplification light source 10D, 10F, 10H, 10I, 10J Raman amplification light source system 10HA, 10HAA First light source unit 10HB, 10HBA Second light source unit 11, 11A, 11B 11C, 11D Incoherent light source 12, 12A, 12B Excitation light source 13, 13 ', 13a, 13b, 13Aa, 13Ab, 15, 15B, 15C, 16, 16A, 17, 17A WDM coupler 13'a AWG
13c, 13'ac output port 13d input port 13'aa, 13'ab, 13'ad port 14 Raman amplification optical fiber 100, 100A, 100B, 100C, 100D, 100E, 100F, 100H, 100I, 100J Raman amplification system 1000 Optical transmission system 1001 Transmitter 1002 Optical transmission fiber 1003 Receiver FPL Primary pumping light FPL2 Second primary pumping light IL, ILA, ILB Incoherent light IL2 Second incoherent light RPA, RPB, RPC, RPD Raman Peak S1 Signal light SPL, SPLA Secondary excitation light SPL2 Second secondary excitation light

Claims (23)

  1.  光伝送ファイバを伝送する信号光を該光伝送ファイバ中の誘導ラマン散乱現象によりラマン増幅するためのラマン増幅用光源であって、
     インコヒーレント光を出力する複数のインコヒーレント光源と、
     前記インコヒーレント光をラマン増幅する波長を有する2次励起光を出力する複数の励起光源と、
     前記複数のインコヒーレント光源および前記複数の励起光源に接続されており、入力された前記インコヒーレント光を入力された前記2次励起光によりラマン増幅して出力するラマン増幅用光ファイバと、
     前記光伝送ファイバに接続されており、前記ラマン増幅用光ファイバによりラマン増幅されたインコヒーレント増幅光が入力され、前記インコヒーレント増幅光を、前記信号光をラマン増幅する波長を有する1次励起光として前記光伝送ファイバに出力する出力部と、
     を備えることを特徴とするラマン増幅用光源。
    A Raman amplification light source for Raman amplification of signal light transmitted through an optical transmission fiber by stimulated Raman scattering in the optical transmission fiber,
    A plurality of incoherent light sources that output incoherent light; and
    A plurality of excitation light sources for outputting secondary excitation light having a wavelength for Raman amplification of the incoherent light;
    A Raman amplification optical fiber that is connected to the plurality of incoherent light sources and the plurality of pump light sources, and that Raman-amplifies and outputs the input incoherent light with the input secondary pump light;
    Primary pumping light connected to the optical transmission fiber, input with incoherent amplified light Raman-amplified by the Raman-amplifying optical fiber, and having the wavelength for Raman-amplifying the signal light from the incoherent amplified light. An output unit that outputs to the optical transmission fiber as
    A light source for Raman amplification characterized by comprising:
  2.  前記複数のインコヒーレント光源および前記複数の励起光源は、前記2次励起光が前記インコヒーレント光を前方励起するように前記ラマン増幅用光ファイバに接続されていることを特徴とする請求項1に記載のラマン増幅用光源。 The plurality of incoherent light sources and the plurality of pumping light sources are connected to the Raman amplification optical fiber so that the secondary pumping light forwardly pumps the incoherent light. The light source for Raman amplification as described.
  3.  前記複数のインコヒーレント光源および前記複数の励起光源は、前記2次励起光が前記インコヒーレント光を後方励起するように前記ラマン増幅用光ファイバに接続されていることを特徴とする請求項1に記載のラマン増幅用光源。 The plurality of incoherent light sources and the plurality of pumping light sources are connected to the Raman amplification optical fiber so that the secondary pumping light pumps the incoherent light backward. The light source for Raman amplification as described.
  4.  前記出力部は、前記1次励起光が前記信号光を前方励起するように前記光伝送ファイバに接続されていることを特徴とする請求項1~3のいずれか一つに記載のラマン増幅用光源。 The Raman amplifying device according to any one of claims 1 to 3, wherein the output unit is connected to the optical transmission fiber so that the primary pumping light forward pumps the signal light. light source.
  5.  前記出力部は、前記1次励起光が前記信号光を後方励起するように前記光伝送ファイバに接続されていることを特徴とする請求項1~3のいずれか一つに記載のラマン増幅用光源。 The Raman amplifying device according to any one of claims 1 to 3, wherein the output unit is connected to the optical transmission fiber so that the primary pumping light pumps the signal light backward. light source.
  6.  光伝送ファイバを伝送する信号光を該光伝送ファイバでラマン増幅するためのラマン増幅用光源であって、
     インコヒーレント光を出力する複数のインコヒーレント光源と、
     前記インコヒーレント光をラマン増幅する波長を有する2次励起光を出力する複数の励起光源と、
     前記複数のインコヒーレント光源、前記複数の励起光源および前記光伝送ファイバに接続されており、入力された前記インコヒーレント光および前記2次励起光を、前記光伝送ファイバを同一方向に伝搬するように出力する出力部と、
     を備え、
     前記光伝送ファイバにおいて、入力された前記インコヒーレント光が入力された前記2次励起光によりラマン増幅され、前記信号光をラマン増幅する波長を有する1次励起光が生成されることを特徴とするラマン増幅用光源。
    A light source for Raman amplification for Raman amplification of signal light transmitted through an optical transmission fiber with the optical transmission fiber,
    A plurality of incoherent light sources that output incoherent light; and
    A plurality of excitation light sources for outputting secondary excitation light having a wavelength for Raman amplification of the incoherent light;
    The plurality of incoherent light sources, the plurality of pumping light sources, and the optical transmission fiber are connected to propagate the input incoherent light and the secondary pumping light in the same direction in the optical transmission fiber. An output section to output,
    With
    In the optical transmission fiber, the input incoherent light is Raman-amplified by the input secondary pumping light, and primary pumping light having a wavelength for Raman-amplifying the signal light is generated. Light source for Raman amplification.
  7.  前記複数の励起光源のうちの少なくとも1つが出力する2次励起光をラマン増幅する波長を有する励起光を出力する励起光源を備えることを特徴とする請求項6に記載のラマン増幅用光源。 The Raman amplification light source according to claim 6, further comprising an excitation light source that outputs excitation light having a wavelength for Raman amplification of secondary excitation light output by at least one of the plurality of excitation light sources.
  8.  前記複数のインコヒーレント光源は、SLD(Super Luminescent Diode)、SOA(Semiconductor Optical Amplifier)および希土類添加光ファイバを備えたASE(Amplified Spontaneous Emission)光源の少なくとも一つを含むことを特徴とする請求項1~7のいずれか一つに記載のラマン増幅用光源。 The plurality of incoherent light sources include at least one of an ASE (Amplified Spontaneous Emission) light source including an SLD (Super Luminescent Diode), an SOA (Semiconductor Optical Amplifier), and a rare earth-doped optical fiber. 8. The Raman amplification light source according to any one of 1 to 7.
  9.  前記複数のインコヒーレント光源は、SLDおよびSOAを有し、SLDから出力されるインコヒーレント光をSOAで光増幅して出力するように構成されたインコヒーレント光源を含むことを特徴とする請求項1~8のいずれか一つに記載のラマン増幅用光源。 The plurality of incoherent light sources includes an SLD and an SOA, and includes an incoherent light source configured to optically amplify and output incoherent light output from the SLD with the SOA. The light source for Raman amplification according to any one of 1 to 8.
  10.  前記複数のインコヒーレント光源は、SOAが多段接続されて構成されたインコヒーレント光源を含むことを特徴とする請求項1~9のいずれか一つに記載のラマン増幅用光源。 10. The Raman amplification light source according to claim 1, wherein the plurality of incoherent light sources include an incoherent light source configured by connecting SOAs in multiple stages.
  11.  前記複数の励起光源は、ファブリぺロー(FP)型、FP型と光ファイバブラッググレーティング(FBG)とを組み合わせたFP-FBG型、DFB型、およびDBR型の半導体レーザの少なくとも一つを含むことを特徴とする請求項1~10のいずれか一つに記載のラマン増幅用光源。 The plurality of pump light sources include at least one of a Fabry-Perot (FP) type, a FP type and a FP-FBG type, a DFB type, and a DBR type semiconductor laser that are a combination of an optical fiber Bragg grating (FBG). The Raman amplification light source according to any one of claims 1 to 10, wherein:
  12.  前記複数のインコヒーレント光源は、互いに異なる波長帯域のインコヒーレント光を出力するインコヒーレント光源を含むことを特徴とする請求項1~11のいずれか一つに記載のラマン増幅用光源。 12. The Raman amplification light source according to claim 1, wherein the plurality of incoherent light sources include incoherent light sources that output incoherent light in different wavelength bands.
  13.  請求項4に記載のラマン増幅用光源と、請求項5に記載のラマン増幅用光源とを備え、前記各ラマン増幅用光源の出力部が、前記1次励起光が前記信号光を双方向励起するように前記光伝送ファイバに接続されていることを特徴とするラマン増幅用光源システム。 A light source for Raman amplification according to claim 4 and a light source for Raman amplification according to claim 5, wherein an output section of each of the light sources for Raman amplification includes bidirectional excitation of the signal light by the primary excitation light. Thus, the Raman amplification light source system is connected to the optical transmission fiber.
  14.  請求項6に記載のラマン増幅用光源を2つ備え、前記各ラマン増幅用光源の出力部が、前記1次励起光が前記信号光を双方向励起するように前記光伝送ファイバに接続されていることを特徴とするラマン増幅用光源システム。 The two Raman amplification light sources according to claim 6 are provided, and an output unit of each Raman amplification light source is connected to the optical transmission fiber so that the primary excitation light bi-directionally excites the signal light. A light source system for Raman amplification.
  15.  光伝送ファイバを伝送する信号光を該光伝送ファイバでラマン増幅するためのラマン増幅用光源システムであって、
     インコヒーレント光を出力する第1の複数のインコヒーレント光源と、前記第1の複数のインコヒーレント光源および前記光伝送ファイバに接続されており、前記インコヒーレント光を前記光伝送ファイバに出力する第1の出力部と、を備える第1の光源部と、
     前記インコヒーレント光をラマン増幅する波長を有する2次励起光を出力する第1の複数の励起光源と、前記第1の複数の励起光源および前記光伝送ファイバに接続されており、前記2次励起光を前記光伝送ファイバに出力する第2の出力部と、を備える第2の光源部と、
     を備え、前記第1の出力部と前記第2の出力部とは、前記インコヒーレント光と前記2次励起光とが、前記第1の出力部と前記第2の出力部との間で前記光伝送ファイバを反対方向に伝搬するように前記光伝送ファイバに接続されており、
     前記第1の出力部と前記第2の出力部との間の前記光伝送ファイバにおいて、入力された前記インコヒーレント光が入力された前記2次励起光によりラマン増幅され、前記信号光をラマン増幅する波長を有する1次励起光が生成されることを特徴とするラマン増幅用光源システム。
    A Raman amplification light source system for Raman amplification of signal light transmitted through an optical transmission fiber with the optical transmission fiber,
    A first plurality of incoherent light sources that output incoherent light; a first plurality of incoherent light sources connected to the first plurality of incoherent light sources and the optical transmission fiber; and a first that outputs the incoherent light to the optical transmission fiber. A first light source unit comprising: an output unit;
    A plurality of first pumping light sources that output secondary pumping light having a wavelength for Raman amplification of the incoherent light; the first pumping light sources; and the optical transmission fiber; A second output unit that outputs light to the optical transmission fiber; and a second light source unit comprising:
    The first output unit and the second output unit are configured such that the incoherent light and the secondary excitation light are transmitted between the first output unit and the second output unit. Connected to the optical transmission fiber so as to propagate in the opposite direction of the optical transmission fiber,
    In the optical transmission fiber between the first output unit and the second output unit, the input incoherent light is Raman-amplified by the input secondary pumping light, and the signal light is Raman-amplified. A light source system for Raman amplification characterized in that primary excitation light having a wavelength to be generated is generated.
  16.  前記第2の光源部は、前記2次励起光によりラマン増幅される波長を有する第2のインコヒーレント光を出力する第2の複数のインコヒーレント光源を備え、
     前記第1の光源部は、前記第2のインコヒーレント光をラマン増幅する波長を有する第2の2次励起光を出力する第2の複数の励起光源を備え、
     前記第2の光源部の第2の出力部は、前記第2の複数のインコヒーレント光源に接続されており、前記第2のインコヒーレント光を前記光伝送ファイバに出力し、
     前記第1の光源部の第1の出力部は、前記第2の複数の励起光源に接続されており、前記第2の2次励起光を前記光伝送ファイバに出力し、
     前記第1の出力部と前記第2の出力部とは、前記第2のインコヒーレント光と前記第2の2次励起光とが、前記第1の出力部と前記第2の出力部との間で前記光伝送ファイバを反対方向に伝搬するように前記光伝送ファイバに接続されており、
     前記第1の出力部と前記第2の出力部との間の前記光伝送ファイバにおいて、入力された前記第2のインコヒーレント光が入力された前記第2の2次励起光によりラマン増幅され、前記信号光をラマン増幅する波長を有する第2の1次励起光が生成されることを特徴とする請求項15に記載のラマン増幅用光源システム。
    The second light source unit includes a second plurality of incoherent light sources that output second incoherent light having a wavelength that is Raman-amplified by the secondary excitation light,
    The first light source unit includes a second plurality of excitation light sources that output second secondary excitation light having a wavelength for Raman amplification of the second incoherent light,
    A second output unit of the second light source unit is connected to the second plurality of incoherent light sources, and outputs the second incoherent light to the optical transmission fiber;
    The first output unit of the first light source unit is connected to the second plurality of pump light sources, and outputs the second secondary pump light to the optical transmission fiber,
    The first output unit and the second output unit are configured such that the second incoherent light and the second secondary excitation light are transmitted between the first output unit and the second output unit. Connected to the optical transmission fiber so as to propagate in the opposite direction of the optical transmission fiber between,
    In the optical transmission fiber between the first output unit and the second output unit, the input second incoherent light is Raman amplified by the input second secondary pumping light, 16. The Raman amplification light source system according to claim 15, wherein second primary excitation light having a wavelength for Raman amplification of the signal light is generated.
  17.  前記複数のインコヒーレント光源は、SLD(Super Luminescent Diode)、SOA(Semiconductor Optical Amplifier)および希土類添加光ファイバを備えたASE(Amplified Spontaneous Emission)光源の少なくとも一つを含むことを特徴とする請求項13~16のいずれか一つに記載のラマン増幅用光源システム。 The plurality of incoherent light sources include at least one of an SLD (Super Luminescent Diode), an SOA (Semiconductor Optical Amplifier), and an ASE (Amplified Spontaneous Emission) light source including a rare earth-doped optical fiber. The light source system for Raman amplification according to any one of 1 to 16.
  18.  前記複数のインコヒーレント光源は、SLDおよびSOAを含み、SLDから出力されるインコヒーレント光をSOAで光増幅して出力するように構成されたインコヒーレント光源を含むことを特徴とする請求項13~17のいずれか一つに記載のラマン増幅用光源システム。 The plurality of incoherent light sources includes an SLD and an SOA, and includes an incoherent light source configured to optically amplify and output incoherent light output from the SLD with the SOA. The light source system for Raman amplification according to any one of 17.
  19.  前記複数のインコヒーレント光源は、SOAが多段接続されて構成されたインコヒーレント光源を含むことを特徴とする請求項13~18のいずれか一つに記載のラマン増幅用光源システム。 The Raman amplification light source system according to any one of claims 13 to 18, wherein the plurality of incoherent light sources include incoherent light sources configured by connecting SOAs in multiple stages.
  20.  前記複数の励起光源は、互いに波長が異なるファブリぺロー(FP)型、FP型と光ファイバブラッググレーティング(FBG)とを組み合わせたFP-FBG型、DFB型、およびDBR型の半導体レーザの少なくとも一つを含むことを特徴とする請求項13~19のいずれか一つに記載のラマン増幅用光源システム。 The plurality of excitation light sources include at least one of a Fabry-Perot (FP) type having a wavelength different from each other, an FP-FBG type, a DFB type, and a DBR type semiconductor laser combining an FP type and an optical fiber Bragg grating (FBG). The light source system for Raman amplification according to any one of claims 13 to 19, wherein
  21.  前記複数のインコヒーレント光源は、互いに異なる波長帯域のインコヒーレント光を出力するインコヒーレント光源を含むことを特徴とする請求項13~20のいずれか一つに記載のラマン増幅用光源システム。 The Raman amplification light source system according to any one of claims 13 to 20, wherein the plurality of incoherent light sources include incoherent light sources that output incoherent light in different wavelength bands.
  22.  請求項1~12のいずれか一つに記載のラマン増幅用光源または請求項13~21のいずれか一つに記載のラマン増幅用光源システムと、
     前記光伝送ファイバと、
     を備えることを特徴とするラマン増幅器。
    A light source for Raman amplification according to any one of claims 1 to 12, or a light source system for Raman amplification according to any one of claims 13 to 21,
    The optical transmission fiber;
    A Raman amplifier comprising:
  23.  請求項1~12のいずれか一つに記載のラマン増幅用光源または請求項13~21のいずれか一つに記載のラマン増幅用光源システムと、
     前記光伝送ファイバと、
     を備えることを特徴とするラマン増幅システム。
    A light source system for Raman amplification according to any one of claims 1 to 12, or a light source system for Raman amplification according to any one of claims 13 to 21,
    The optical transmission fiber;
    A Raman amplification system comprising:
PCT/JP2016/064337 2015-05-13 2016-05-13 Light source for raman amplification, light source system for raman amplification, raman amplifier, raman amplifying system WO2016182068A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680022816.1A CN107533270B (en) 2015-05-13 2016-05-13 Raman amplification light source, Raman amplification light source system, Raman amplifier, and Raman amplification system
US15/810,707 US10938175B2 (en) 2015-05-13 2017-11-13 Light source for Raman amplification, light source system for Raman amplification, Raman amplifier, and Raman amplifying system
US17/187,147 US11652329B2 (en) 2015-05-13 2021-02-26 Light source for Raman amplification, light source system for Raman amplification, Raman amplifier, and Raman amplifying system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562160953P 2015-05-13 2015-05-13
US62/160,953 2015-05-13
JP2015210487A JP6774753B2 (en) 2015-05-13 2015-10-27 Raman amplification light source system, Raman amplifier, Raman amplification system
JP2015-210487 2015-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/810,707 Continuation US10938175B2 (en) 2015-05-13 2017-11-13 Light source for Raman amplification, light source system for Raman amplification, Raman amplifier, and Raman amplifying system

Publications (1)

Publication Number Publication Date
WO2016182068A1 true WO2016182068A1 (en) 2016-11-17

Family

ID=57248896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064337 WO2016182068A1 (en) 2015-05-13 2016-05-13 Light source for raman amplification, light source system for raman amplification, raman amplifier, raman amplifying system

Country Status (1)

Country Link
WO (1) WO2016182068A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171169A (en) * 2017-07-03 2017-09-15 无锡市德科立光电子技术有限公司 Combine raman pump source and raman amplifier
WO2022054860A1 (en) * 2020-09-09 2022-03-17 古河電気工業株式会社 Light source, light source device, method for driving light source, raman amplifier, and raman amplification system
WO2023106348A1 (en) * 2021-12-08 2023-06-15 古河電気工業株式会社 Light source, light source device, drive method for light source, raman amplifier, and raman amplification system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214503A (en) * 1999-01-19 2000-08-04 Lucent Technol Inc Optical communication system using high order raman amplifier
JP2001222036A (en) * 1999-05-31 2001-08-17 Furukawa Electric Co Ltd:The Raman amplification and optical signal transmission method utilizing the same
US6556342B1 (en) * 2002-05-31 2003-04-29 Corning Incorporated Thulium doped fiber pump for pumping Raman amplifiers
JP2003295238A (en) * 2002-03-15 2003-10-15 Fitel Usa Corp Wide band raman amplifier
JP3676167B2 (en) * 1999-02-04 2005-07-27 ルーセント テクノロジーズ インコーポレーテッド Raman amplifier with pump source for improved performance
US20050201675A1 (en) * 2003-01-15 2005-09-15 Knopp Kevin J. Monolithic semiconductor light source with spectral controllability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214503A (en) * 1999-01-19 2000-08-04 Lucent Technol Inc Optical communication system using high order raman amplifier
JP3676167B2 (en) * 1999-02-04 2005-07-27 ルーセント テクノロジーズ インコーポレーテッド Raman amplifier with pump source for improved performance
JP2001222036A (en) * 1999-05-31 2001-08-17 Furukawa Electric Co Ltd:The Raman amplification and optical signal transmission method utilizing the same
JP2003295238A (en) * 2002-03-15 2003-10-15 Fitel Usa Corp Wide band raman amplifier
US6556342B1 (en) * 2002-05-31 2003-04-29 Corning Incorporated Thulium doped fiber pump for pumping Raman amplifiers
US20050201675A1 (en) * 2003-01-15 2005-09-15 Knopp Kevin J. Monolithic semiconductor light source with spectral controllability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171169A (en) * 2017-07-03 2017-09-15 无锡市德科立光电子技术有限公司 Combine raman pump source and raman amplifier
WO2022054860A1 (en) * 2020-09-09 2022-03-17 古河電気工業株式会社 Light source, light source device, method for driving light source, raman amplifier, and raman amplification system
WO2023106348A1 (en) * 2021-12-08 2023-06-15 古河電気工業株式会社 Light source, light source device, drive method for light source, raman amplifier, and raman amplification system

Similar Documents

Publication Publication Date Title
EP2306604B1 (en) Optical repeater comprising a Raman amplifier
JP7060648B2 (en) Raman amplification light source, Raman amplification light source system, Raman amplifier, Raman amplification system
JP4115027B2 (en) Excitation light generation means, Raman amplifier and optical repeater using the same
JP2000098433A5 (en)
CN107533270B (en) Raman amplification light source, Raman amplification light source system, Raman amplifier, and Raman amplification system
US6529317B2 (en) L-band erbium-doped fiber amplifier pumped by 1530 nm-band pump
JP2009533711A (en) System and method for implementing high capacity repeaterless optical communication system
WO2016182068A1 (en) Light source for raman amplification, light source system for raman amplification, raman amplifier, raman amplifying system
JP3884744B2 (en) Gain-flattened broadband erbium-doped fiber amplifier
JP2003243755A (en) Long-band erbium doped fiber amplifier
JP2004289811A (en) Optical transmission system
KR100396510B1 (en) Dispersion-compensated optical fiber amplifier
US20050105166A1 (en) Multiple order raman amplifier
Harun et al. Gain and noise figure improvements in double-pass S-band EDFA
JP4960198B2 (en) Optical fiber amplifier
JP4205651B2 (en) Optical repeater
JP3273911B2 (en) Optical fiber amplifier, semiconductor laser module for excitation and optical signal transmission system
US7039283B2 (en) Optical amplification producing wider total gain bandwidth
US6624928B1 (en) Raman amplification
JP2005183999A (en) Wideband light source
WO2023106348A1 (en) Light source, light source device, drive method for light source, raman amplifier, and raman amplification system
JPH11330593A (en) Broadband spontaneous emission type optical source
Harun et al. S-band Brillouin/erbium fiber laser for DWDM application
JP4572511B2 (en) Optical transmission system and optical amplification method
Harun et al. Gain clamping in single-pass and double-pass L-band erbium-doped fiber amplifiers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792792

Country of ref document: EP

Kind code of ref document: A1