WO2016181807A1 - Transmission device, transmission method, receiving device and receiving method - Google Patents

Transmission device, transmission method, receiving device and receiving method Download PDF

Info

Publication number
WO2016181807A1
WO2016181807A1 PCT/JP2016/062882 JP2016062882W WO2016181807A1 WO 2016181807 A1 WO2016181807 A1 WO 2016181807A1 JP 2016062882 W JP2016062882 W JP 2016062882W WO 2016181807 A1 WO2016181807 A1 WO 2016181807A1
Authority
WO
WIPO (PCT)
Prior art keywords
plp
transmission
physical
identification information
packet
Prior art date
Application number
PCT/JP2016/062882
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 和幸
山岸 靖明
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016181807A1 publication Critical patent/WO2016181807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/28Arrangements for simultaneous broadcast of plural pieces of information
    • H04H20/33Arrangements for simultaneous broadcast of plural pieces of information by plural channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/2362Generation or processing of Service Information [SI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2385Channel allocation; Bandwidth allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream

Definitions

  • the present technology relates to a transmission device, a transmission method, a reception device, and a reception method, and in particular, when channel bonding is performed, a transmission device, a transmission method, a reception device, which can perform more flexible operation, And a receiving method.
  • channel bonding In digital broadcasting, channel bonding (Channel bonding) is known in which multiple channels are combined and used.
  • PLP bundling PLP (Physical Layer Pipe) bundling
  • PLP Physical Layer Pipe
  • channel bonding is expected to be adopted in the next generation ATSC (Advanced Television Systems Committee) standard called ATSC3.0.
  • ATSC Advanced Television Systems Committee
  • the present technology has been made in view of such a situation, and enables a more flexible operation when channel bonding is performed.
  • the transmission device when performing channel bonding using a combination of a plurality of frequency bands, when a PLP (Physical Layer Layer) to be used is dynamically switched every predetermined time.
  • a generating unit configured to generate correspondence information that associates first identification information defined in a physical layer and second identification information defined in a layer higher than the physical layer, and the channel bonding.
  • a transmission unit that transmits a transmission stream including the correspondence information.
  • the transmission device according to the first aspect of the present technology may be an independent device, or may be an internal block constituting one device.
  • a transmission method according to the first aspect of the present technology is a transmission method corresponding to the transmission device according to the first aspect of the present technology described above.
  • the PLP to be used when performing channel bonding using a combination of a plurality of frequency bands, is dynamically switched every predetermined time.
  • Correspondence information in which the first identification information defined in the physical layer and the second identification information defined in the hierarchy higher than the physical layer are associated with each other is generated, and by the channel bonding, A transmission stream including the correspondence information is transmitted.
  • the receiving apparatus is a physical layer that is used when a PLP to be used is dynamically switched every predetermined time when performing channel bonding using a combination of a plurality of frequency bands.
  • a receiving unit that receives a transmission stream that includes correspondence information in which the first identification information defined in the above is associated with the second identification information defined in a layer higher than the physical layer, and the correspondence information
  • a control unit that controls the operation of each unit that processes the transmission stream based on the first identification information corresponding to the second identification information that is specified.
  • the receiving device may be an independent device, or may be an internal block constituting one device.
  • the reception method according to the second aspect of the present technology is a reception method corresponding to the reception device according to the second aspect of the present technology described above.
  • the PLP to be used when performing channel bonding using a combination of a plurality of frequency bands, is dynamically switched every predetermined time
  • a transmission stream including correspondence information in which the first identification information defined in the physical layer and the second identification information defined in a layer higher than the physical layer are associated with each other is received, Based on the first identification information corresponding to the second identification information specified by the correspondence information, the operation of each unit that processes the transmission stream is controlled.
  • more flexible operation can be performed when channel bonding is performed.
  • FIG. 10 is a diagram illustrating a description example of a PRT in an operation example 1.
  • FIG. 10 is a figure which shows the system pipe model of the example 2 of operation. It is a figure explaining the dynamic switching of PLP in the operation example 2.
  • FIG. 10 is a diagram illustrating a description example of a PRT in an operation example 2.
  • FIG. 10 It is a figure explaining the concept of the layer structure corresponding to ATSC3.0.
  • FIG. 1 is a diagram illustrating a configuration of an embodiment of a transmission system to which the present technology is applied.
  • a system refers to a logical collection of a plurality of devices.
  • the transmission system 1 includes a transmission device 10 and a reception device 20.
  • data transmission conforming to a digital broadcasting standard such as ATSC3.0 is performed.
  • the transmission apparatus 10 transmits (transmits) a stream of video, audio, captions, and the like (components thereof) constituting content such as a TV program as a digital broadcast signal via the transmission path 30.
  • the receiving device 20 receives a digital broadcast signal transmitted (transmitted) from the transmitting device 10 via the transmission path 30, acquires and processes a stream of video, audio, subtitles, and the like (components thereof), and Output video and audio of content such as TV programs.
  • the transmission line 30 for example, a terrestrial wave, a satellite line, a cable television network (wired line), or the like can be used.
  • IP / UDP packet that is, an IP (Internet Protocol) packet including a UDP (User Datagram Protocol) packet, instead of a TS (Transport Stream) packet for data transmission.
  • IP Internet Protocol
  • UDP User Datagram Protocol
  • TS Transport Stream
  • LLS Link Layer Signaling
  • SLS Service Layer Signaling
  • the LLS signaling information includes metadata such as SLT (Service List Table), EAD (Emergency Alerting Description), RRD (Region Rating Rating), and the like.
  • SLT includes information indicating the configuration of a stream and a service in the broadcast network, such as information necessary for channel selection.
  • EAD contains information about emergency alerts.
  • RRD contains information about the rating.
  • SLS signaling information includes metadata such as USD (User Service Description), MPD (Media Presentation Description), LSID (LCT Session Instance Description), for example.
  • the USD includes information such as another metadata acquisition destination.
  • MPD is control information for managing the playback of component streams.
  • LSID is control information of the ROUTE (Real-time Object Delivery over Unidirectional Transport) protocol.
  • a frequency hopping method that changes the frequency band to be used every predetermined time may be employed for the purpose of fading countermeasures.
  • DVB-T2 Digital Video Broadcasting-Second Generation Terrestrial
  • TFS Time Frequency Slicing
  • this frequency hopping method is also expected to be used in ATSC 3.0 channel bonding.
  • identification information (PHYSICAL_BS_ID and PHYSICAL_PLP_ID, which will be described later) defined on the physical layer side is changed by dynamically switching the PLP to be used at predetermined time intervals.
  • PLP Physical Layer
  • PRT PLP Resolving Table
  • PLP Physical Layer Layer Pipe
  • fixing the PLP to be used without using the frequency hopping method is said to be static.
  • ⁇ Physical '' information related to the physical layer defined on the physical layer side
  • logical information related to the physical layer defined on the higher layer side than the physical layer
  • FIG. 2 is a diagram illustrating an example of PRT syntax.
  • the PRT is transmitted as LLS signaling information.
  • NUM_LOGICAL_PLP indicates the number of logical PLPs.
  • NUM_LOGICAL_PLP a logical PLP loop is repeated according to the number of logical PLPs indicated by NUM_LOGICAL_PLP.
  • LOGICAL_BS_ID LOGICAL_PLP_ID
  • PHYSICAL_BS_ID PHYSICAL_PLP_ID
  • dynamic a logical PLP loop.
  • the 16-bit LOGICAL_BS_ID is an identifier corresponding to a unique identifier assigned to one frequency band among the frequency bands subject to channel bonding. For example, for LOGICAL_BS_ID, an identifier assigned to the smallest frequency band among the frequency bands targeted for channel bonding can be adopted. In this case, the first BS_ID in the NUM_RF loop of the physical layer corresponds to this.
  • the 8-bit LOGICAL_PLP_ID is a unique identifier assigned to each PLP subject to channel bonding.
  • 16-bit PHYSICAL_BS_ID is an identifier unique to the frequency band (RF channel) of the physical layer issued by a predetermined standardization organization or an organization equivalent thereto. For example, in the United States, this corresponds to RF_ID issued by the Federal Communications Commission (FCC).
  • FCC Federal Communications Commission
  • the 6-bit PHYSICAL_PLP_ID is an identifier unique to the PLP of the physical layer assigned to each PLP in each frequency band (RF channel (BS: Broadcast Stream)) of the physical layer.
  • the 16-bit N_PHISICAL_BS_ID is the PHISICAL_BS_ID of the target PLP at the next time indicated by PLP_SWITCH_TIMING.
  • the 6-bit N_PHSICAL_PLP_ID is the PHSICAL_PLP_ID of the target PLP at the next time indicated by PLP_SWITCH_TIMING.
  • the 80-bit PLP_SWITCH_TIMING is time information indicating the time when the target PLP is switched when the target PLP is dynamically operated, that is, the time when the configuration of the target PLP is changed.
  • time information for example, PTP (Precision Time Protocol) defined in IEEE (Institute of Electrical and Electronic Engineers) 1588 can be used.
  • PTP is an example of time information, and other time information such as NTP (Network Time Protocol) may be used.
  • FIG. 3 is a diagram showing a system pipe model of operation example 1 corresponding to an operation mode when PLP is operated statically.
  • the frequency band of PHYSICAL_RF_ID that is “0x1234” is described as RF channel # 0, and the frequency band of PHYSICAL_BS_ID that is “0x9abc” is described as RF channel # 1.
  • PLP # ij is described, “i” represents RF channel #i, and “j” represents PHYSICAL_PLP_ID.
  • RF channel # 0 of PHYSICAL_BS_ID that is “0x1234” and RF channel # 1 of PHYSICAL_BS_ID that is “0x9abc” Combined and channel bonding is done.
  • RF channel # 0 transmits PLP_00 with PLP_ID being “0” and PLP # 01 with PLP_ID being “1”.
  • PLP # 00 transmits NTP (Network Time Protocol), service channel (service), and ESG (Electronic Service Guide) service streams.
  • the service channel stream includes SLS signaling information and video, audio, and subtitle (components) streams.
  • the SLS signaling information is signaling information for each service channel such as USD or MPD.
  • NTP is time information.
  • ESG is an electronic service guide.
  • a service channel and a stream of LLS signaling information are transmitted.
  • This service channel stream includes a robust audio stream having high robustness.
  • a service channel and a stream of LLS signaling information are transmitted.
  • This service channel stream includes a video (component) stream.
  • PLP # 11 SLS signaling information and video (component) streams are transmitted in the service channel.
  • PLP # 12 a stream of subtitles (components thereof) is transmitted in the service channel.
  • PLP # 13 a stream of emergency voice (component) is transmitted on the service channel.
  • PLP # 00 In RF channel # 0 and RF channel # 1 combined by channel bonding, different service channel streams are transmitted in PLP # 00, PLP # 10, and PLP # 13, respectively. It belongs to PLP group 1. That is, in this PLP group 1, since the stream of LLS signaling information is transmitted by PLP # 10, the receiving device 20 can acquire the SLT therefrom and hold it as channel selection information.
  • the receiving device 20 can acquire the SLS signaling information transmitted by PLP # 00 based on the channel selection information (SLT).
  • the SLS signaling information includes information for connecting to the PLP # 10 and PLP # 13 component streams.
  • the receiving device 20 for example, it is possible to reproduce content of ultra-high definition video (for example, 4K resolution or 8K resolution) composed of components included in different service channels, or to reproduce emergency sound. .
  • ultra-high definition video for example, 4K resolution or 8K resolution
  • PLP # 00, PLP # 10, and PLP # 13 belong to the same PLP group 1, but the LLS signaling information stream is transmitted by PLP # 10, and the SLS signaling information stream Is transmitted by PLP # 00, and a component stream is transmitted by each PLP. That is, the PLP group 1 groups signaling information and component streams related to a specific service across RF channels (frequency bands).
  • the receiving device 20 can acquire the SLS signaling information transmitted by PLP # 11 based on the channel selection information (SLT).
  • the SLS signaling information includes information for connecting to the PLP # 01, PLP # 12, and PLP # 13 component streams.
  • the reception device 20 reproduces content of ultra-high definition video (for example, 4K resolution or 8K resolution) composed of components included in different service channels, or reproduces robust audio or emergency audio. be able to.
  • ultra-high definition video for example, 4K resolution or 8K resolution
  • PLP # 01, PLP # 11, PLP # 12, and PLP # 13 belong to the same PLP group 2, but the streams of LLS signaling information and SLS signaling information are PLP # 01. And PLP # 11, and the component stream is transmitted by each PLP. That is, the PLP group 2 groups signaling information and component streams related to a specific service across RF channels (frequency bands).
  • the PLP group can be set, for example, by specifying the BS_ID and the PLP_ID for each ROUTE session by SLS signaling information (metadata thereof). Further, for example, a PLP (shared PLP) shared by the PLP group 1 and the PLP group 2 can be set like PLP # 13.
  • the PLP used by each PLP group is fixed as shown in FIG. That is, in RF channel # 0 and RF channel # 1 combined by channel bonding, PLP # 00 and PLP # 10 are always used in PLP group 1, and PLP # 01, PLP # 11, and PLP # 12 are always It is used in PLP group 2, and PLP # 13 is used in PLP group 1 and PLP group 2 as a shared PLP.
  • the operation example 1 represents an operation mode when the PLP is operated statically, in the PRT of FIG. 5, “0” is set as dynamic for all the PLPs, N_PHISICAL_BS_ID, N_PHSICAL_PLP_ID, and PLP_SWITCH_TIMING are not set.
  • the physical ID consisting of PHYSICAL_BS_ID “0x1234” and the physical ID consisting of PHYSICAL_PLP_ID “0x00” is associated with the logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x00”. . That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x00” corresponds to the physical ID of PLP # 00.
  • the physical ID consisting of PHYSICAL_BS_ID being “0x1234” and the physical ID consisting of PHYSICAL_PLP_ID being “0x01” is associated with the logical ID consisting of LOGICAL_BS_ID being “0x1234” and LOGICAL_PLP_ID being “0x01”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x01” corresponds to the physical ID of PLP # 01.
  • the physical ID consisting of PHYSICAL_BS_ID being “0x9abc” and the physical ID consisting of PHYSICAL_PLP_ID being “0x00” is associated with the logical ID consisting of LOGICAL_BS_ID being “0x1234” and LOGICAL_PLP_ID being “0x02”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x02” corresponds to the physical ID of PLP # 10.
  • the physical ID consisting of PHYSICAL_BS_ID “0x9abc” and PHYSICAL_PLP_ID “0x01” is associated with the logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x03”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x03” corresponds to the physical ID of PLP # 11.
  • the physical ID consisting of PHYSICAL_BS_ID “0x9abc” and PHYSICAL_PLP_ID “0x02” is associated with the logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x04”. That is, the logical ID composed of LOGICAL_BS_ID which is “0x1234” and LOGICAL_PLP_ID which is “0x04” corresponds to the physical ID of PLP # 12.
  • the physical ID consisting of PHYSICAL_BS_ID which is “0x9abc” and the physical ID consisting of PHYSICAL_PLP_ID which is “0x03” is associated with the logical ID consisting of LOGICAL_BS_ID which is “0x1234” and LOGICAL_PLP_ID which is “0x05”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x05” corresponds to the physical ID of PLP # 13.
  • FIG. 6 is a diagram illustrating a system pipe model of operation example 2 corresponding to an operation mode when PLP is dynamically operated.
  • RF channel # 0 of PHYSICAL_RF_ID which is “0x1234” and RF channel # 1 of PHYSICAL_RF_ID which is “0x9abc” are included. Combined and channel bonding is done.
  • RF channel # 0 transmits PLP_00 with PLP_ID being “0” and PLP # 01 with PLP_ID being “1”.
  • PLP # 10 with PLP_ID being “0” PLP # 11 with PLP_ID being “1”
  • PLP # 13 of PLP_ID “3” is transmitted.
  • PLP # 00, PLP # 10, and PLP # 13 belong to PLP group 1
  • PLP # 01, PLP # 11, and PLP # 12 PLP # 13 belongs to PLP group 2.
  • the PLP is dynamically operated.
  • PLP group 1 uses PLP # 00 of RF channel # 0 and PLP # 13 of RF channel # 1 from time t0 to time t1.
  • PLP group 1 uses PLP # 10 and PLP # 13 of RF channel # 1 from time t1 to time t3, and PLP # 00 and RF channel # 0 of RF channel # 0 from time t3 to time t4. 1 PLP # 13 is used.
  • the PLP used by the PLP group 1 is changed to the PLP # 00 of the RF channel # 0 and the RF channel # 1 every predetermined time. It is switched alternately with PLP # 10.
  • PLP # 13 which is a shared PLP is always used. Therefore, the receiving device 20 acquires signaling information, components, and the like transmitted by the target PLP in the PLP group 1 that are switched at predetermined time intervals.
  • PLP group 2 if attention is paid to PLP group 2 to which PLP # 01, PLP # 11, PLP # 12, and PLP # 13 belong, PLP group 2 , Using PLP # 11, PLP # 12, and PLP # 13 of RF channel # 1, and from time t2 to time t4, PLP # 01 of RF channel # 0, PLP # 12 of RF channel # 1, and , PLP # 13 is used.
  • the PLP used by the PLP group 2 is changed to the PLP # 11 of the RF channel # 1 and the RF channel # 0 at every predetermined time. It is switched alternately with PLP # 01.
  • the PLP # 12 of the RF channel # 1 and the PLP # 13 that is a shared PLP are always used. Therefore, the receiving device 20 acquires signaling information, components, and the like transmitted by the target PLP in the PLP group 2 that are switched at predetermined time intervals.
  • the PRT is acquired at predetermined time intervals such as time t0 to time t1, time t1 to time t2, time t2 to time t3, and FIG. 8 is a time t0 to time in FIG. A description example of PRT at time tx during t1 is illustrated.
  • N_PHISICAL_BS_ID, N_PHSICAL_PLP_ID, and PLP_SWITCH_TIMING are set.
  • the physical ID consisting of PHYSICAL_BS_ID “0x1234” and the physical ID consisting of PHYSICAL_PLP_ID “0x00” is associated with the logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x00”. . That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x00” corresponds to the physical ID of PLP # 00.
  • this PLP # 00 is a dynamic PLP, “1” is set as dynamic, and N_PHSICAL_BS_ID that is “0x9abc”, N_PHSICAL_PLP_ID that is “0x00”, and PLP_SWITCH_TIMING that is t1 are set. . That is, it represents that the target PLP is switched from PLP # 00 to PLP # 10 at the next time t1.
  • a physical ID consisting of PHYSICAL_BS_ID “0x9abc” and PHYSICAL_PLP_ID “0x01” is associated with a logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x01”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x01” corresponds to the physical ID of PLP # 11.
  • PLP # 11 is a dynamic PLP
  • “1” is set as dynamic
  • N_PHSICAL_BS_ID which is “0x1234”
  • N_PHSICAL_PLP_ID which is “0x01”
  • PLP_SWITCH_TIMING which is t2 are set. . That is, it represents that the target PLP is switched from PLP # 11 to PLP # 01 at the next time t2.
  • the physical ID consisting of PHYSICAL_BS_ID “0x9abc” and PHYSICAL_PLP_ID “0x02” is associated with the logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x02”. That is, the logical ID composed of LOGICAL_BS_ID which is “0x1234” and LOGICAL_PLP_ID which is “0x02” corresponds to the physical ID of PLP # 12.
  • a physical ID consisting of PHYSICAL_BS_ID “0x9abc” and PHYSICAL_PLP_ID “0x03” is associated with a logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x03”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x03” corresponds to the physical ID of PLP # 13.
  • PLP # 12 and PLP # 13 are static PLPs, “0” is set as dynamic, and N_PHSICAL_BS_ID, N_PHSICAL_PLP_ID, and PLP_SWITCH_TIMING are not set.
  • the PLP to be used is dynamically switched every predetermined time, but the PRT in FIG. 8 is transmitted as the LLS signaling information.
  • the receiving device 20 can acquire the changed identification information (N_PHYSICAL_BS_ID, N_PHYSICAL_PLP_ID) by PRT. In response to such a change in identification information in the physical layer, more flexible operation can be performed.
  • the receiving device 20 since the logical ID (LOGICAL_BS_ID, LOGICAL_PLP_ID), the physical ID before change (PHYSICAL_BS_ID, PHYSICAL_PLP_ID), and the physical ID after change (N_PHYSICAL_BS_ID, N_PHYSICAL_PLP_ID) are associated by PRT, the receiving device 20 Even when the PLP used at every predetermined time is dynamically switched and the physical ID changes, the logical ID can be converted to the changed physical ID using the PRT. Thereby, the receiving apparatus 20 can specify the PLP after switching and acquire LLS signaling information, SLS signaling information, components, and the like.
  • FIG. 9 is a diagram for explaining the concept of the layer structure corresponding to ATSC 3.0.
  • an IP packet (IP packet) is transmitted in layer 3 (L3).
  • the IP packet includes an IP header (IP (Header), a UDP header (UDP Header), and data (Data). That is, the IP packet is an IP / UDP packet including a UDP packet.
  • IP / UDP packet In the data of the IP packet (IP / UDP packet), a ROUTE packet, NTP, etc. are arranged. This ROUTE packet stores SLS signaling information and component data.
  • a generic packet (Generic packet) as a transmission packet is transmitted.
  • the Generic packet is composed of a Generic header (Generic Header) and a payload (Payload).
  • GME Generic Header
  • Payload Payload
  • the payload of the generic packet one or a plurality of IP packets are arranged and encapsulated.
  • LLS signaling information such as SLT and PRT
  • a first method transmitted as L2 signaling information and a second method transmitted using IP / UDP packets can be adopted.
  • the LLS signaling information is arranged as L2 signaling information in the payload of the generic packet as indicated by A1 in the figure.
  • the LLS signaling information is arranged as data of the IP / UDP packet as indicated by A2 in the figure.
  • the BB frame (Baseband Frame) of layer 1 (L1) corresponding to the physical layer is composed of a BB frame header (Baseband Frame Header) and a payload (Payload).
  • a plurality of generic packets are arranged and encapsulated in the payload of the BB frame.
  • data (Data) obtained by scrambling a plurality of BB frames is mapped to an FEC frame (FECFEFrame), and a physical layer error correction parity (Parity) is added.
  • the physical layer frame (ATSC ⁇ (Physical) Frame) of layer 1 (L1) is composed of a bootstrap, a preamble, and a data part (Data).
  • SSC ⁇ (Physical) Frame) of layer 1 (L1) is composed of a bootstrap, a preamble, and a data part (Data).
  • Data data part
  • mapping processing is performed, and further, physical layer processing such as interleaving in the time direction and the frequency direction is performed.
  • the data obtained by the mapping is mapped.
  • FIG. 10 is a diagram illustrating a configuration example of the transmission device 10 of FIG.
  • the transmission device 10 includes a control unit 101, a component acquisition unit 102, an encoder 103, a signaling generation unit 104, a signaling processing unit 105, a packet generation unit 106, a physical layer frame generation unit 107, and a transmission unit 108. Is done.
  • the control unit 101 controls the operation of each unit of the transmission device 10.
  • the component acquisition unit 102 acquires data such as video, audio, and subtitles (components) constituting content (for example, a television program) provided by a specific service, and supplies the acquired data to the encoder 103.
  • the encoder 103 encodes data (components) such as video and audio supplied from the component acquisition unit 102 according to a predetermined encoding method, and supplies the encoded data to the packet generation unit 106.
  • the corresponding content is acquired from the storage location of the already recorded content according to the broadcast time zone, or the live content is acquired from the studio or location location.
  • the signaling generation unit 104 acquires raw data for generating signaling information from an external server or a built-in storage.
  • the signaling generation unit 104 generates signaling information using raw data of signaling information.
  • LLS signaling information such as SLT and PRT
  • SLS signaling information L1 signaling information and the like are generated as signaling information.
  • LLS signaling information and SLS signaling information are supplied to the packet generation unit 106, and L1 signaling information is supplied to the physical layer frame generation unit 107.
  • the packet generation unit 106 generates ROUTE packets and IP packets (IP / UDP packets) using video (audio) (components) data supplied from the encoder 103 and signaling information supplied from the signaling processing unit 105. To do. Further, the packet generation unit 106 encapsulates one or a plurality of IP packets to generate a generic packet and supplies it to the physical layer frame generation unit 107.
  • a ROUTE packet storing SLS signaling information and component data is arranged in the IP / UDP packet data.
  • an IP / UDP packet storing the ROUTE packet and LLS signaling information as L2 signaling information are arranged.
  • the LLS signaling information is arranged in the IP / UDP packet data in addition to the ROUTE packet storing the SLS signaling information and the component data.
  • the generic packet payload an IP / UDP packet storing the ROUTE packet and LLS signaling information is arranged.
  • the physical layer frame generation unit 107 generates a physical layer frame by encapsulating a plurality of generic packets supplied from the packet generation unit 106 and supplies the generated physical layer frame to the transmission unit 108. However, in the physical layer frame, L1 signaling information supplied from the signaling processing unit 105 is arranged in the preamble.
  • the transmission unit 108 performs, for example, OFDM (Orthogonal Frequency Division Multiplexing) modulation on the physical layer frame supplied from the physical layer frame generation unit 107, and transmits it as a digital broadcast signal via the antenna 111.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the transmission device 10 has a channel bonding function, and a digital broadcast signal is transmitted using a plurality of frequency bands combined by channel bonding. Moreover, the transmission apparatus 10 has a function of a frequency hopping method, and when the PLP is dynamically operated, the PLP to be used is changed every predetermined time.
  • the signaling generation unit 104 has been described as generating signaling information.
  • the packet generation unit 106 or the physical layer frame generation unit 107 may generate the signaling information.
  • the packet generator 106 can generate LLS signaling information or SLS signaling information and store it in the packet.
  • the physical layer frame generation unit 107 can generate L1 signaling information and place it in the physical layer frame.
  • the transmission device 10 of FIG. 10 it is not necessary that all functional blocks are physically arranged in a single device, and at least some of the functional blocks are physically independent from other functional blocks. It may be configured as a device.
  • FIG. 11 is a diagram illustrating a configuration example of the receiving device 20 of FIG.
  • the receiving device 20 includes a control unit 201, a receiving unit 202, a physical layer frame processing unit 203, a packet processing unit 204, a signaling processing unit 205, a decoder 206, a display unit 207, and a speaker 208.
  • the control unit 201 controls the operation of each unit of the receiving device 20.
  • the receiving unit 202 receives a digital broadcast signal transmitted from the transmission device 10 using channel bonding via the antenna 211, performs processing such as OFDM demodulation, and the physical layer frame obtained thereby is received. To the physical layer frame processing unit 203. However, when the PLP is dynamically operated in the transmission apparatus 10, the PLP to be used is changed every predetermined time.
  • the physical layer frame processing unit 203 performs processing on the physical layer frame supplied from the receiving unit 202, extracts a generic packet, and supplies it to the packet processing unit 204. Further, the physical layer frame processing unit 203 acquires L1 signaling information arranged in the preamble of the physical layer frame and supplies the L1 signaling information to the signaling processing unit 205.
  • the packet processing unit 204 performs processing on the generic packet supplied from the physical layer frame processing unit 203. Further, the packet processing unit 204 performs processing on an IP packet (IP / UDP packet) and a ROUTE packet extracted from the generic packet, and extracts signaling information and component data. The signaling information is supplied to the signaling processing unit 205, and the component data is supplied to the decoder 206.
  • IP / UDP packet IP / UDP packet
  • ROUTE packet extracted from the generic packet
  • LLS signaling information as L2 signaling information is extracted from the payload of the generic packet and stored in the IP / UDP packet.
  • SLS signaling information and component data are extracted from the ROUTE packet.
  • the LLS signaling information is extracted from the IP / UDP packet arranged in the payload of the generic packet, and the IP / UDP packet is extracted. SLS signaling information and component data are extracted from the stored ROUTE packet.
  • the signaling processing unit 205 appropriately processes the signaling information supplied from the physical layer frame processing unit 203 and the packet processing unit 204 and supplies it to the control unit 201.
  • L1 signaling information, LLS signaling information, SLS signaling information, and the like are processed as signaling information.
  • the control unit 201 controls the operation of each unit based on the signaling information supplied from the signaling processing unit 205. For example, the control unit 201 controls processing performed by the physical layer frame processing unit 203 and the packet processing unit 204 based on L1 signaling information and the like.
  • control unit 201 controls packet filtering performed by the packet processing unit 204 based on LLS signaling information and SLS signaling information, such as video and audio. (Component) data is supplied to the decoder 206.
  • the decoder 206 decodes data (components) such as video and audio supplied from the packet processing unit 204 according to a predetermined decoding method, and supplies the resulting video data to the display unit 207. Audio data is supplied to the speaker 208.
  • the display unit 207 displays video corresponding to the video data supplied from the decoder 206. Further, the speaker 208 outputs sound corresponding to the audio data supplied from the decoder 206. As a result, the receiving device 20 outputs video and audio of content (for example, a television program) provided by the service channel (service) selected by the user.
  • content for example, a television program
  • the signaling information is processed by the signaling processing unit 205.
  • the physical layer frame processing unit 203 or the packet processing unit 204 may process the signaling information.
  • the physical layer frame processing unit 203 can process L1 signaling information.
  • the packet processing unit 204 can process LLS signaling information or SLS signaling information.
  • FIG. 11 a configuration in which the display unit 207 and the speaker 208 are built in as a case where the reception device 20 is a fixed receiver such as a television receiver or a mobile receiver such as a smartphone or a tablet terminal.
  • the reception device 20 is a fixed receiver such as a television receiver or a mobile receiver such as a smartphone or a tablet terminal.
  • a set top box STB
  • a display unit 207 and a speaker 208 are provided outside.
  • step S101 the component acquisition unit 102 acquires components such as video and audio.
  • the component data acquired by the component acquisition unit 102 is encoded by the encoder 103.
  • step S102 the signaling generation unit 104 generates signaling information.
  • L1 signaling information, LLS signaling information, SLS signaling information, and the like are generated.
  • step S103 packet / frame generation processing is performed.
  • the packet generation unit 106 generates a ROUTE packet, an IP packet (IP / UDP packet), and a generic packet. Further, the physical layer frame generation unit 107 generates a physical layer frame.
  • SLS signaling information and component data are arranged in a ROUTE packet stored in an IP / UDP packet in common with the first method and the second method.
  • LLS signaling information is arranged in the payload of the generic packet.
  • LLS signaling information is arranged in the data of the IP / UDP packet.
  • L1 signaling information is arranged in the preamble of the physical layer frame.
  • step S104 the transmission unit 108 performs processing on the physical layer frame and transmits the digital layer signal via the antenna 111.
  • a digital broadcast signal is transmitted using a plurality of frequency bands coupled by channel bonding.
  • the PLP to be used is changed every predetermined time.
  • reception processing is a process executed when a specific service channel (service) is selected.
  • step S201 the reception unit 202 receives a digital broadcast signal transmitted from the transmission device 10 using channel bonding via the antenna 211.
  • the PLP is dynamically operated in the transmission device 10
  • the PLP used for each predetermined frequency is changed.
  • step S202 packet / frame processing is performed.
  • the physical layer frame processing unit 203 processes the physical layer frame. Further, the packet processing unit 204 performs processing on generic packets, IP packets (IP / UDP packets), and ROUTE packets.
  • step S203 the signaling processing unit 205 processes the signaling information from the physical layer frame processing unit 203 or the packet processing unit 204.
  • the control unit 201 controls the operation of each unit based on the processing result of the signaling information by the signaling processing unit 205.
  • the PRT as the correspondence information in which the physical ID (physical BS_ID, physical PLP_ID) and the logical ID (logical BS_ID, logical PLP_ID) are associated with each other is transmitted, so the signaling processing unit 205 Supplies the PRT processing result to the control unit 201.
  • the control unit 201 uses the logical ID ( (Logical BS_ID, logical PLP_ID) can be converted into a physical ID after change (physical BS_ID, physical PLP_ID). Accordingly, the control unit 201 can acquire and process LLS signaling information, SLS signaling information, and the like by specifying the PLP after switching and controlling the operation of each unit.
  • logical ID (Logical BS_ID, logical PLP_ID) can be converted into a physical ID after change (physical BS_ID, physical PLP_ID). Accordingly, the control unit 201 can acquire and process LLS signaling information, SLS signaling information, and the like by specifying the PLP after switching and controlling the operation of each unit.
  • LLS signaling information is extracted from the payload of the generic packet.
  • LLS signaling information is extracted from the IP / UDP packet.
  • step S204 the control unit 201 controls the operation of each unit based on the signaling information acquired by the signaling processing unit 205, so that the decoder 206 decodes component data such as video and audio. As a result, the video of the content is displayed on the display unit 207, and the sound is output from the speaker 208.
  • ATSC for example, ATSC3.0
  • ATSC3.0 which is a method adopted in the United States and the like
  • ISDB Integrated Services
  • DVB Digital Video Broadcasting
  • the names of the signaling information such as SLT described above are merely examples, and other names may be used. Even if another name is used as the name of the signaling information, the name is merely changed formally, and the substantial content of the signaling information is not different.
  • the SLT may be referred to as FIT (Fast Information Table).
  • FIT Flust Information Table
  • FIG. 14 is a diagram illustrating a configuration example of the hardware of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 905 is further connected to the bus 904.
  • An input unit 906, an output unit 907, a recording unit 908, a communication unit 909, and a drive 910 are connected to the input / output interface 905.
  • the input unit 906 includes a keyboard, a mouse, a microphone, and the like.
  • the output unit 907 includes a display, a speaker, and the like.
  • the recording unit 908 includes a hard disk, a nonvolatile memory, and the like.
  • the communication unit 909 includes a network interface or the like.
  • the drive 910 drives a removable medium 911 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 901 loads the program recorded in the ROM 902 or the recording unit 908 to the RAM 903 via the input / output interface 905 and the bus 904, and executes the program. A series of processing is performed.
  • the program executed by the computer 900 can be provided by being recorded on a removable medium 911 as a package medium, for example.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the recording unit 908 via the input / output interface 905 by installing the removable medium 911 in the drive 910. Further, the program can be received by the communication unit 909 via a wired or wireless transmission medium and installed in the recording unit 908. In addition, the program can be installed in the ROM 902 or the recording unit 908 in advance.
  • the processing performed by the computer according to the program does not necessarily have to be performed in chronological order in the order described as the flowchart. That is, the processing performed by the computer according to the program includes processing executed in parallel or individually (for example, parallel processing or object processing).
  • the program may be processed by one computer (processor), or may be processed in a distributed manner by a plurality of computers.
  • the present technology can take the following configurations.
  • a first defined in the physical layer is used when a PLP (Physical Layer Pipe) to be used is dynamically switched every predetermined time.
  • a generation unit that generates correspondence information in which identification information is associated with second identification information defined in a higher hierarchy than the physical layer;
  • a transmission unit configured to transmit a transmission stream including the correspondence information by the channel bonding.
  • the correspondence information is As the first identification information, a first physical ID that is a unique identifier assigned to each frequency band, and a second physical ID that is a unique identifier assigned to each PLP included in the frequency band
  • a first logical ID corresponding to a unique identifier assigned to one frequency band among the frequency bands targeted for channel bonding, and each PLP targeted for channel bonding is associated.
  • the correspondence information further includes the first physical ID and the second physical ID after the PLP is dynamically switched.
  • the transmission device corresponds to an IP (Internet Protocol) transmission method, The transmission apparatus according to any one of (1) to (4), wherein the correspondence information is arranged and transmitted in a payload of a transmission packet capable of storing an IP packet.
  • the transmission stream corresponds to the IP transmission method, The transmission device according to any one of (1) to (4), wherein the correspondence information is arranged and transmitted in a UDP (User Datagram Protocol) packet included in the IP packet.
  • the transmission apparatus according to any one of (1) to (6), wherein the transmission stream corresponds to an ATSC (Advanced Television Systems Committee) 3.0 standard.
  • ATSC Advanced Television Systems Committee
  • the transmitting device is In the case of performing channel bonding using a plurality of frequency bands combined, first identification information defined in the physical layer, which is used when a PLP to be used is dynamically switched every predetermined time, and Generating correspondence information in association with second identification information defined in a layer higher than the physical layer; A transmission method including a step of transmitting a transmission stream including the correspondence information by the channel bonding.
  • first identification information defined in the physical layer which is used when a PLP to be used is dynamically switched every predetermined time
  • a receiving unit that receives a transmission stream including correspondence information associated with second identification information defined in a layer higher than the physical layer;
  • a control unit that controls the operation of each unit that processes the transmission stream based on the first identification information corresponding to the second identification information specified by the correspondence information.
  • the correspondence information is As the first identification information, a first physical ID that is a unique identifier assigned to each frequency band, and a second physical ID that is a unique identifier assigned to each PLP included in the frequency band
  • a first logical ID corresponding to a unique identifier assigned to one frequency band among the frequency bands targeted for channel bonding, and each PLP targeted for channel bonding is associated.
  • the correspondence information further includes the first physical ID and the second physical ID after the PLP is dynamically switched.
  • the reception device corresponds to (11), wherein the correspondence information further includes time information indicating a time at which the PLP is dynamically switched.
  • the transmission stream corresponds to the IP transmission method, The reception device according to any one of (9) to (12), wherein the correspondence information is arranged and transmitted in a payload of a transmission packet capable of storing an IP packet.
  • the transmission stream corresponds to the IP transmission method, The receiving device according to any one of (9) to (12), wherein the correspondence information is arranged and transmitted in a UDP packet included in an IP packet.
  • the receiving device according to any one of (9) to (14), wherein the transmission stream corresponds to a standard of ATSC3.0.
  • the receiving device is In the case of performing channel bonding using a plurality of frequency bands combined, first identification information defined in the physical layer, which is used when a PLP to be used is dynamically switched every predetermined time, and Receiving a transmission stream including correspondence information associated with second identification information defined in a layer higher than the physical layer; A receiving method including a step of controlling an operation of each unit that processes the transmission stream based on the first identification information corresponding to the second identification information specified by the correspondence information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

The present invention pertains to a transmission device, transmission method, receiving device and receiving method, with which it is possible to perform operations more flexibly when channel bonding is performed. When channel bonding is performed using a plurality of frequency domains bonded to one another, the receiving device receives a transmission stream that includes correspondence information that associates first identification information prescribed in a physical layer and that is used, when the PLP used is dynamically switched each predetermined period of time, with second identification information prescribed higher in the hierarchy than the physical layer, and controls the operation of each of the parts that process the transmission stream on the basis of the first identification information associated with the second identification information, specified by the correspondence information. The present invention may be used in TV receivers that support channel bonding, for example.

Description

送信装置、送信方法、受信装置、及び、受信方法Transmission device, transmission method, reception device, and reception method
 本技術は、送信装置、送信方法、受信装置、及び、受信方法に関し、特に、チャネルボンディングが行われる場合に、より柔軟な運用を行うことができるようにした送信装置、送信方法、受信装置、及び、受信方法に関する。 The present technology relates to a transmission device, a transmission method, a reception device, and a reception method, and in particular, when channel bonding is performed, a transmission device, a transmission method, a reception device, which can perform more flexible operation, And a receiving method.
 デジタル放送において、複数のチャネルを結合して使用するチャネルボンディング(Channel bonding)が知られている。例えば、DVB-C2(Digital Video Broadcasting - Cable second generation)規格では、チャネルボンディングの1つとして、PLPバンドリング(PLP(Physical Layer Pipe) bundling)が規定されている(例えば、非特許文献1参照)。 In digital broadcasting, channel bonding (Channel bonding) is known in which multiple channels are combined and used. For example, in the DVB-C2 (Digital Video Broadcasting-Cable Second Generation) standard, PLP bundling (PLP (Physical Layer Pipe) bundling) is defined as one of channel bonding (for example, see Non-Patent Document 1). .
 また、ATSC3.0と称される、次世代のATSC(Advanced Television Systems Committee)規格においても、チャネルボンディングの採用が見込まれている。 Also, channel bonding is expected to be adopted in the next generation ATSC (Advanced Television Systems Committee) standard called ATSC3.0.
 ところで、ATSC3.0等のデジタル放送の規格においては、チャネルボンディングが行われる場合に、より柔軟に運用を行うための技術が要請されている。 By the way, in digital broadcasting standards such as ATSC 3.0, there is a demand for technology for more flexible operation when channel bonding is performed.
 本技術はこのような状況に鑑みてなされたものであり、チャネルボンディングが行われる場合に、より柔軟な運用を行うことができるようにするものである。 The present technology has been made in view of such a situation, and enables a more flexible operation when channel bonding is performed.
 本技術の第1の側面の送信装置は、複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLP(Physical Layer Pipe)が動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報を生成する生成部と、前記チャネルボンディングによって、前記対応情報を含む伝送ストリームを送信する送信部とを備える送信装置である。 The transmission device according to the first aspect of the present technology, when performing channel bonding using a combination of a plurality of frequency bands, when a PLP (Physical Layer Layer) to be used is dynamically switched every predetermined time. A generating unit configured to generate correspondence information that associates first identification information defined in a physical layer and second identification information defined in a layer higher than the physical layer, and the channel bonding. And a transmission unit that transmits a transmission stream including the correspondence information.
 本技術の第1の側面の送信装置は、独立した装置であってもよいし、1つの装置を構成している内部ブロックであってもよい。また、本技術の第1の側面の送信方法は、上述した本技術の第1の側面の送信装置に対応する送信方法である。 The transmission device according to the first aspect of the present technology may be an independent device, or may be an internal block constituting one device. A transmission method according to the first aspect of the present technology is a transmission method corresponding to the transmission device according to the first aspect of the present technology described above.
 本技術の第1の側面の送信装置、及び、送信方法においては、複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLPが動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報が生成され、前記チャネルボンディングによって、前記対応情報を含む伝送ストリームが送信される。 In the transmission device and the transmission method according to the first aspect of the present technology, when performing channel bonding using a combination of a plurality of frequency bands, the PLP to be used is dynamically switched every predetermined time. Correspondence information in which the first identification information defined in the physical layer and the second identification information defined in the hierarchy higher than the physical layer are associated with each other is generated, and by the channel bonding, A transmission stream including the correspondence information is transmitted.
 本技術の第2の側面の受信装置は、複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLPが動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報を含む伝送ストリームを受信する受信部と、前記対応情報により特定される、前記第2識別情報に対応した前記第1の識別情報に基づいて、前記伝送ストリームを処理する各部の動作を制御する制御部とを備える受信装置である。 The receiving apparatus according to the second aspect of the present technology is a physical layer that is used when a PLP to be used is dynamically switched every predetermined time when performing channel bonding using a combination of a plurality of frequency bands. A receiving unit that receives a transmission stream that includes correspondence information in which the first identification information defined in the above is associated with the second identification information defined in a layer higher than the physical layer, and the correspondence information And a control unit that controls the operation of each unit that processes the transmission stream based on the first identification information corresponding to the second identification information that is specified.
 本技術の第2の側面の受信装置は、独立した装置であってもよいし、1つの装置を構成している内部ブロックであってもよい。また、本技術の第2の側面の受信方法は、上述した本技術の第2の側面の受信装置に対応する受信方法である。 The receiving device according to the second aspect of the present technology may be an independent device, or may be an internal block constituting one device. The reception method according to the second aspect of the present technology is a reception method corresponding to the reception device according to the second aspect of the present technology described above.
 本技術の第2の側面の受信装置、及び、受信方法においては、複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLPが動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報を含む伝送ストリームが受信され、前記対応情報により特定される、前記第2識別情報に対応した前記第1の識別情報に基づいて、前記伝送ストリームを処理する各部の動作が制御される。 In the receiving device and the receiving method according to the second aspect of the present technology, when performing channel bonding using a combination of a plurality of frequency bands, the PLP to be used is dynamically switched every predetermined time A transmission stream including correspondence information in which the first identification information defined in the physical layer and the second identification information defined in a layer higher than the physical layer are associated with each other is received, Based on the first identification information corresponding to the second identification information specified by the correspondence information, the operation of each unit that processes the transmission stream is controlled.
 本技術の第1の側面、及び、第2の側面によれば、チャネルボンディングが行われる場合に、より柔軟な運用を行うことができる。 According to the first aspect and the second aspect of the present technology, more flexible operation can be performed when channel bonding is performed.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 It should be noted that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術を適用した伝送システムの一実施の形態の構成を示す図である。It is a figure showing the composition of the 1 embodiment of the transmission system to which this art is applied. PRTのシンタックスの例を示す図である。It is a figure which shows the example of the syntax of PRT. 運用例1のシステムパイプモデルを示す図である。It is a figure which shows the system pipe model of the example 1 of operation. 運用例1におけるPLPの動的な切り替えを説明する図である。It is a figure explaining the dynamic switching of PLP in the example 1 of operation. 運用例1のPRTの記述例を示す図である。10 is a diagram illustrating a description example of a PRT in an operation example 1. FIG. 運用例2のシステムパイプモデルを示す図である。It is a figure which shows the system pipe model of the example 2 of operation. 運用例2におけるPLPの動的な切り替え説明する図である。It is a figure explaining the dynamic switching of PLP in the operation example 2. FIG. 運用例2のPRTの記述例を示す図である。10 is a diagram illustrating a description example of a PRT in an operation example 2. FIG. ATSC3.0に対応したレイヤ構造の概念を説明する図である。It is a figure explaining the concept of the layer structure corresponding to ATSC3.0. 送信装置の構成例を示す図である。It is a figure which shows the structural example of a transmitter. 受信装置の構成例を示す図である。It is a figure which shows the structural example of a receiver. 送信処理を説明するフローチャートである。It is a flowchart explaining a transmission process. 受信処理を説明するフローチャートである。It is a flowchart explaining a reception process. コンピュータの構成例を示す図である。It is a figure which shows the structural example of a computer.
 以下、図面を参照しながら本技術の実施の形態について説明する。なお、説明は以下の順序で行うものとする。 Hereinafter, embodiments of the present technology will be described with reference to the drawings. The description will be made in the following order.
1.システムの構成
2.本技術の概要
3.運用例
(1)運用例1:PLPが静的に運用される場合の運用形態
(2)運用例2:PLPが動的に運用される場合の運用形態
4.シグナリングの伝送方法
5.各装置の構成
6.各装置で実行される処理の流れ
7.変形例
8.コンピュータの構成
1. 1. System configuration 2. Outline of this technology Operation example (1) Operation example 1: Operation mode when PLP is operated statically (2) Operation example 2: Operation mode when PLP is dynamically operated 4. Signaling transmission method Configuration of each device 6. 6. Process flow executed by each device Modification 8 Computer configuration
<1.システムの構成> <1. System configuration>
 図1は、本技術を適用した伝送システムの一実施の形態の構成を示す図である。なお、システムとは、複数の装置が論理的に集合した物をいう。 FIG. 1 is a diagram illustrating a configuration of an embodiment of a transmission system to which the present technology is applied. A system refers to a logical collection of a plurality of devices.
 図1において、伝送システム1は、送信装置10と受信装置20から構成される。この伝送システム1では、ATSC3.0等のデジタル放送の規格に準拠したデータ伝送が行われる。 1, the transmission system 1 includes a transmission device 10 and a reception device 20. In this transmission system 1, data transmission conforming to a digital broadcasting standard such as ATSC3.0 is performed.
 送信装置10は、テレビ番組等のコンテンツを構成するビデオやオーディオ、字幕等(のコンポーネント)のストリームを、デジタル放送信号として、伝送路30を介して送信(伝送)する。 The transmission apparatus 10 transmits (transmits) a stream of video, audio, captions, and the like (components thereof) constituting content such as a TV program as a digital broadcast signal via the transmission path 30.
 受信装置20は、送信装置10から伝送路30を介して送信(伝送)されてくる、デジタル放送信号を受信して、ビデオやオーディオ、字幕等(のコンポーネント)のストリームを取得して処理し、テレビ番組等のコンテンツの映像や音声を出力する。 The receiving device 20 receives a digital broadcast signal transmitted (transmitted) from the transmitting device 10 via the transmission path 30, acquires and processes a stream of video, audio, subtitles, and the like (components thereof), and Output video and audio of content such as TV programs.
 なお、図1において、伝送路30としては、例えば地上波のほか、衛星回線やケーブルテレビジョン網(有線回線)等を利用することができる。 In FIG. 1, as the transmission line 30, for example, a terrestrial wave, a satellite line, a cable television network (wired line), or the like can be used.
<2.本技術の概要> <2. Overview of this technology>
 ところで、ATSC3.0では、データ伝送に、TS(Transport Stream)パケットではなく、IP/UDPパケット、すなわち、UDP(User Datagram Protocol)パケットを含むIP(Internet Protocol)パケットを用いることが決定されている。 By the way, in ATSC 3.0, it is decided to use an IP / UDP packet, that is, an IP (Internet Protocol) packet including a UDP (User Datagram Protocol) packet, instead of a TS (Transport Stream) packet for data transmission. .
 また、ATSC3.0においては、LLS(Link Layer Signaling)シグナリング情報と、SLS(Service Layer Signaling)シグナリング情報を規定して、先行して取得されるLLSシグナリング情報に記述される情報に従い、サービスごとのSLSシグナリング情報が取得されるようにしている。 Also, in ATSC 3.0, LLS (Link Layer Signaling) signaling information and SLS (Service Layer Signaling) signaling information are defined, and according to information described in LLS signaling information acquired in advance, for each service. SLS signaling information is acquired.
 LLSシグナリング情報としては、例えば、SLT(Service List Table),EAD(Emergency Alerting Description),RRD(Region Rating Description)等のメタデータが含まれる。SLTは、サービスの選局に必要な情報など、放送ネットワークにおけるストリームやサービスの構成を示す情報を含む。EADは、緊急警報に関する情報を含む。RRDは、レーティングに関する情報を含む。 The LLS signaling information includes metadata such as SLT (Service List Table), EAD (Emergency Alerting Description), RRD (Region Rating Rating), and the like. The SLT includes information indicating the configuration of a stream and a service in the broadcast network, such as information necessary for channel selection. EAD contains information about emergency alerts. The RRD contains information about the rating.
 SLSシグナリング情報としては、例えば、USD(User Service Description),MPD(Media Presentation Description),LSID(LCT Session Instance Description)等のメタデータが含まれる。USDは、他のメタデータの取得先などの情報を含む。MPDは、コンポーネントのストリームの再生を管理するための制御情報である。LSIDは、ROUTE(Real-time Object Delivery over Unidirectional Transport)プロトコルの制御情報である。 SLS signaling information includes metadata such as USD (User Service Description), MPD (Media Presentation Description), LSID (LCT Session Instance Description), for example. The USD includes information such as another metadata acquisition destination. MPD is control information for managing the playback of component streams. LSID is control information of the ROUTE (Real-time Object Delivery over Unidirectional Transport) protocol.
 ここで、ATSC3.0では、複数のチャネル(周波数帯域)を結合して利用するチャネルボンディングの採用が見込まれており、チャネルボンディングを利用した各種の運用形態が想定されている。 Here, in ATSC 3.0, it is expected that channel bonding using a plurality of channels (frequency bands) combined will be used, and various operation modes using channel bonding are assumed.
 また、放送の分野では、フェージング対策などを目的として、所定の時間ごとに使用する周波数帯域を変更する周波数ホッピング方式が採用されることがある。例えば、DVB-T2(Digital Video Broadcasting - Second Generation Terrestrial)においては、TFS(Time Frequency Slicing)と称される技術が規定されている。ここで、ATSC3.0のチャネルボンディングにおいても、この周波数ホッピング方式の採用が見込まれている。 In the field of broadcasting, a frequency hopping method that changes the frequency band to be used every predetermined time may be employed for the purpose of fading countermeasures. For example, in DVB-T2 (Digital Video Broadcasting-Second Generation Terrestrial), a technology called TFS (Time Frequency Slicing) is defined. Here, this frequency hopping method is also expected to be used in ATSC 3.0 channel bonding.
 この周波数ホッピング方式を用いた場合、所定の時間ごとに、使用するPLPが動的に切り替わることで、物理層側で規定される識別情報(後述するPHYSICAL_BS_IDと、PHYSICAL_PLP_ID)が変更され、物理層よりも上位の階層側では、このような物理層における識別情報の変化に対応できないことが想定される。 When this frequency hopping method is used, identification information (PHYSICAL_BS_ID and PHYSICAL_PLP_ID, which will be described later) defined on the physical layer side is changed by dynamically switching the PLP to be used at predetermined time intervals. On the upper layer side, it is assumed that such a change in identification information in the physical layer cannot be handled.
 そのため、チャネルボンディングが行われる場合において、周波数ホッピング方式が採用されるときに、上位の階層で、物理層の識別情報の変化に対応できるようにすることで、より柔軟な運用を行うことができるようにしたい、という要請があった。 Therefore, when channel bonding is performed, when a frequency hopping method is adopted, it is possible to perform more flexible operation by making it possible to cope with changes in identification information of the physical layer in a higher layer. There was a request to do so.
 本技術では、このような要請に対応するための記述子として、PRT(PLP Resolving Table)を定義して、チャネルボンディングが行われる場合に、より柔軟な運用を行うことができるようにする方式を提案する。 In this technology, PRT (PLP Resolving Table) is defined as a descriptor to respond to such requests, and a method that allows more flexible operation when channel bonding is performed. suggest.
 なお、以下の説明では、チャネルボンディングにおいて、周波数ホッピング方式を用いて、使用するPLP(Physical Layer Pipe)を、所定の時間ごとに変更することを、PLPが動的であるという。一方で、周波数ホッピング方式を用いずに、使用するPLPを固定とすることを、PLPが静的であるという。 In the following description, it is said that PLP is dynamic when a PLP (Physical Layer Layer Pipe) to be used is changed every predetermined time by using a frequency hopping method in channel bonding. On the other hand, fixing the PLP to be used without using the frequency hopping method is said to be static.
 また、以下の説明では、物理層側で規定される物理層に関する情報を、物理(Physical)と称する一方で、物理層よりも上位の階層側で規定される物理層に関する情報を、論理(Logical)と称して区別するものとする。 In the following description, information related to the physical layer defined on the physical layer side is referred to as `` Physical '', while information related to the physical layer defined on the higher layer side than the physical layer is referred to as logical (Logical ) To distinguish.
(PRTのシンタックス)
 図2は、PRTのシンタックスの例を示す図である。なお、PRTは、LLSシグナリング情報として伝送される。
(PRT syntax)
FIG. 2 is a diagram illustrating an example of PRT syntax. The PRT is transmitted as LLS signaling information.
 図2において、8ビットのNUM_LOGICAL_PLPは、論理PLPの個数を示す。NUM_LOGICAL_PLPの次には、NUM_LOGICAL_PLPが示す論理PLPの個数に応じて、論理PLPループが繰り返される。 In FIG. 2, 8-bit NUM_LOGICAL_PLP indicates the number of logical PLPs. Next to NUM_LOGICAL_PLP, a logical PLP loop is repeated according to the number of logical PLPs indicated by NUM_LOGICAL_PLP.
 この論理PLPループ内には、LOGICAL_BS_ID,LOGICAL_PLP_ID,PHYSICAL_BS_ID,PHYSICAL_PLP_ID,dynamicが配置される。 LOGICAL_BS_ID, LOGICAL_PLP_ID, PHYSICAL_BS_ID, PHYSICAL_PLP_ID, and dynamic are arranged in this logical PLP loop.
 16ビットのLOGICAL_BS_IDは、チャネルボンディングの対象の周波数帯域の中の1つの周波数帯域に割り当てられた固有の識別子に応じた識別子である。例えば、LOGICAL_BS_IDには、チャネルボンディングの対象の周波数帯域のうち、最も小さい周波数帯域に割り当てられた識別子を採用することができる。この場合、物理層のNUM_RFループ内の最初のBS_IDがこれに相当する。 The 16-bit LOGICAL_BS_ID is an identifier corresponding to a unique identifier assigned to one frequency band among the frequency bands subject to channel bonding. For example, for LOGICAL_BS_ID, an identifier assigned to the smallest frequency band among the frequency bands targeted for channel bonding can be adopted. In this case, the first BS_ID in the NUM_RF loop of the physical layer corresponds to this.
 8ビットのLOGICAL_PLP_IDは、チャネルボンディングの対象のPLPごとに割り当てられる固有の識別子である。 The 8-bit LOGICAL_PLP_ID is a unique identifier assigned to each PLP subject to channel bonding.
 16ビットのPHYSICAL_BS_IDは、所定の標準化団体又はそれに準ずる機関により発行される物理層の周波数帯域(RFチャネル)に固有な識別子である。例えば米国では、連邦通信委員会(FCC:Federal Communications Commission)が発行するRF_IDがこれに相当する。 16-bit PHYSICAL_BS_ID is an identifier unique to the frequency band (RF channel) of the physical layer issued by a predetermined standardization organization or an organization equivalent thereto. For example, in the United States, this corresponds to RF_ID issued by the Federal Communications Commission (FCC).
 6ビットのPHYSICAL_PLP_IDは、物理層の各周波数帯域(RFチャネル(BS:Broadcast Stream))内で、PLPごとに割り当てられる物理層のPLPに固有な識別子である。 The 6-bit PHYSICAL_PLP_ID is an identifier unique to the PLP of the physical layer assigned to each PLP in each frequency band (RF channel (BS: Broadcast Stream)) of the physical layer.
 1ビットのdynamicは、対象のPLPが動的に運用されているかどうかを示すフラグである。例えば、dynamic="1"が設定された場合、対象のPLPは、動的に運用されていることを示す。また、dynamic="1"が設定された場合には、N_PHISICAL_BS_ID,N_PHSICAL_PLP_ID,PLP_SWITCH_TIMINGが配置される。 ∙ 1-bit dynamic is a flag indicating whether or not the target PLP is dynamically operated. For example, when dynamic = "1" is set, it indicates that the target PLP is dynamically operated. Further, when dynamic = "1" is set, N_PHISICAL_BS_ID, N_PHSICAL_PLP_ID, and PLP_SWITCH_TIMING are arranged.
 16ビットのN_PHISICAL_BS_IDは、PLP_SWITCH_TIMINGが示す次の時刻に対象となるPLPのPHISICAL_BS_IDである。6ビットのN_PHSICAL_PLP_IDは、PLP_SWITCH_TIMINGが示す次の時刻に対象となるPLPのPHSICAL_PLP_IDである。 The 16-bit N_PHISICAL_BS_ID is the PHISICAL_BS_ID of the target PLP at the next time indicated by PLP_SWITCH_TIMING. The 6-bit N_PHSICAL_PLP_ID is the PHSICAL_PLP_ID of the target PLP at the next time indicated by PLP_SWITCH_TIMING.
 80ビットのPLP_SWITCH_TIMINGは、対象のPLPが動的に運用される場合に、対象のPLPを切り替える時刻、すなわち、対象のPLPの構成が変更される時刻を示す時刻情報である。この時刻情報としては、例えば、IEEE(Institute of Electrical and Electronic Engineers) 1588で規定されているPTP(Precision Time Protocol)を用いることができる。ただし、PTPは、時刻情報の一例であって、例えば、NTP(Network Time Protocol)などの他の時刻情報を用いるようにしてもよい。 The 80-bit PLP_SWITCH_TIMING is time information indicating the time when the target PLP is switched when the target PLP is dynamically operated, that is, the time when the configuration of the target PLP is changed. As this time information, for example, PTP (Precision Time Protocol) defined in IEEE (Institute of Electrical and Electronic Engineers) 1588 can be used. However, PTP is an example of time information, and other time information such as NTP (Network Time Protocol) may be used.
<3.運用例> <3. Operation example>
(1)運用例1 (1) Operation example 1
(システムパイプモデル)
 図3は、PLPが静的に運用される場合の運用形態に対応した運用例1のシステムパイプモデルを示す図である。
(System pipe model)
FIG. 3 is a diagram showing a system pipe model of operation example 1 corresponding to an operation mode when PLP is operated statically.
 なお、以下の説明においては、説明の都合上、"0x1234"であるPHYSICAL_RF_IDの周波数帯域を、RFチャネル#0と記述し、"0x9abc"であるPHYSICAL_BS_IDの周波数帯域を、RFチャネル#1と記述するものとする。また、PLP#ijと記述した場合、「i」は、RFチャネル#iを表し、「j」は、PHYSICAL_PLP_IDを表すものとする。 In the following description, for convenience of explanation, the frequency band of PHYSICAL_RF_ID that is “0x1234” is described as RF channel # 0, and the frequency band of PHYSICAL_BS_ID that is “0x9abc” is described as RF channel # 1. Shall. When PLP # ij is described, “i” represents RF channel #i, and “j” represents PHYSICAL_PLP_ID.
 図3においては、所定の周波数帯域(例えば6MHz)を有する放送波(RFチャネル)のうち、"0x1234"であるPHYSICAL_BS_IDのRFチャネル#0と、"0x9abc"であるPHYSICAL_BS_IDのRFチャネル#1とが結合され、チャネルボンディングが行われている。 In FIG. 3, among broadcast waves (RF channels) having a predetermined frequency band (for example, 6 MHz), RF channel # 0 of PHYSICAL_BS_ID that is “0x1234” and RF channel # 1 of PHYSICAL_BS_ID that is “0x9abc” Combined and channel bonding is done.
 チャネルボンディングを行うために結合されたRFチャネルのうち、RFチャネル#0においては、"0"であるPLP_IDのPLP#00と、"1"であるPLP_IDのPLP#01が伝送されている。これらのPLPのうち、PLP#00では、NTP(Network Time Protocol)と、サービスチャネル(サービス)と、ESG(Electronic Service Guide)サービスのストリームが伝送されている。 Of the RF channels coupled for channel bonding, RF channel # 0 transmits PLP_00 with PLP_ID being “0” and PLP # 01 with PLP_ID being “1”. Among these PLPs, PLP # 00 transmits NTP (Network Time Protocol), service channel (service), and ESG (Electronic Service Guide) service streams.
 PLP#00において、サービスチャネルのストリームは、SLSシグナリング情報、並びにビデオ、オーディオ、及び、字幕(のコンポーネント)のストリームを含んでいる。SLSシグナリング情報は、USDやMPD等のサービスチャネルごとのシグナリング情報である。また、NTPは、時刻情報である。ESGは、電子サービスガイドである。 In PLP # 00, the service channel stream includes SLS signaling information and video, audio, and subtitle (components) streams. The SLS signaling information is signaling information for each service channel such as USD or MPD. NTP is time information. ESG is an electronic service guide.
 PLP#01においては、サービスチャネルと、LLSシグナリング情報(例えばSLT)のストリームが伝送されている。このサービスチャネルのストリームは、ロバスト性の高いロバストオーディオのストリームを含んでいる。 In PLP # 01, a service channel and a stream of LLS signaling information (for example, SLT) are transmitted. This service channel stream includes a robust audio stream having high robustness.
 一方で、チャネルボンディングを行うために結合されたRFチャネルのうち、RFチャネル#1においては、"0"であるPLP_IDのPLP#10と、"1"であるPLP_IDのPLP#11と、"2"であるPLP_IDのPLP#12と、"3"であるPLP_IDのPLP#13が伝送されている。 On the other hand, among RF channels coupled for channel bonding, in RF channel # 1, PLP # 10 with PLP_ID being “0”, PLP # 11 with PLP_ID being “1”, and “2” PLP # 12 having a PLP_ID of “3” and PLP # 13 having a PLP_ID of “3” are transmitted.
 これらのPLPのうち、PLP#10では、サービスチャネルと、LLSシグナリング情報(例えばSLT)のストリームが伝送されている。このサービスチャネルのストリームは、ビデオ(のコンポーネント)のストリームを含んでいる。 Among these PLPs, in PLP # 10, a service channel and a stream of LLS signaling information (for example, SLT) are transmitted. This service channel stream includes a video (component) stream.
 PLP#11において、サービスチャネルでは、SLSシグナリング情報及びビデオ(のコンポーネント)のストリームが伝送されている。また、PLP#12において、サービスチャネルでは、字幕(のコンポーネント)のストリームが伝送されている。また、PLP#13において、サービスチャネルでは、緊急音声(のコンポーネント)のストリームが伝送されている。 In PLP # 11, SLS signaling information and video (component) streams are transmitted in the service channel. In PLP # 12, a stream of subtitles (components thereof) is transmitted in the service channel. In PLP # 13, a stream of emergency voice (component) is transmitted on the service channel.
 ここで、チャネルボンディングにより結合されたRFチャネル#0とRFチャネル#1において、PLP#00と、PLP#10と、PLP#13では、異なるサービスチャネルのストリームがそれぞれ伝送されているが、同一のPLPグループ1に属している。すなわち、このPLPグループ1においては、PLP#10で、LLSシグナリング情報のストリームが伝送されているので、受信装置20は、そこからSLTを取得し、選局情報として保持することができる。 Here, in RF channel # 0 and RF channel # 1 combined by channel bonding, different service channel streams are transmitted in PLP # 00, PLP # 10, and PLP # 13, respectively. It belongs to PLP group 1. That is, in this PLP group 1, since the stream of LLS signaling information is transmitted by PLP # 10, the receiving device 20 can acquire the SLT therefrom and hold it as channel selection information.
 また、受信装置20は、サービスチャネルが選局された場合、選局情報(SLT)に基づいて、PLP#00で伝送されているSLSシグナリング情報を取得することができる。このSLSシグナリング情報には、PLP#00のコンポーネントのストリームのほか、PLP#10とPLP#13のコンポーネントのストリームに接続するための情報が含まれている。 Further, when the service channel is selected, the receiving device 20 can acquire the SLS signaling information transmitted by PLP # 00 based on the channel selection information (SLT). In addition to the PLP # 00 component stream, the SLS signaling information includes information for connecting to the PLP # 10 and PLP # 13 component streams.
 これにより、受信装置20では、例えば、異なるサービスチャネルに含まれるコンポーネントから構成される超高精細映像(例えば4K解像度や8K解像度)のコンテンツを再生したり、緊急音声を再生したりすることができる。 Thereby, in the receiving device 20, for example, it is possible to reproduce content of ultra-high definition video (for example, 4K resolution or 8K resolution) composed of components included in different service channels, or to reproduce emergency sound. .
 このように、PLP#00と、PLP#10と、PLP#13とは、同一のPLPグループ1に属しているが、LLSシグナリング情報のストリームは、PLP#10で伝送され、SLSシグナリング情報のストリームは、PLP#00で伝送され、コンポーネントのストリームは、各PLPで伝送されている。すなわち、PLPグループ1によって、特定のサービスに関するシグナリング情報やコンポーネントのストリームが、RFチャネル(周波数帯域)をまたいでグルーピングされていることになる。 Thus, PLP # 00, PLP # 10, and PLP # 13 belong to the same PLP group 1, but the LLS signaling information stream is transmitted by PLP # 10, and the SLS signaling information stream Is transmitted by PLP # 00, and a component stream is transmitted by each PLP. That is, the PLP group 1 groups signaling information and component streams related to a specific service across RF channels (frequency bands).
 一方で、チャネルボンディングにより結合されたRFチャネル#0とRFチャネル#1において、PLP#01と、PLP#11と、PLP#12と、PLP#13では、異なるサービスチャネルのストリームがそれぞれ伝送されているが、同一のPLPグループ2に属している。すなわち、PLPグループ2においては、PLP#01で、LLSシグナリング情報のストリームが伝送されているので、受信装置20は、そこからSLTを取得し、選局情報として保持することができる。 On the other hand, in RF channel # 0 and RF channel # 1 combined by channel bonding, different service channel streams are transmitted in PLP # 01, PLP # 11, PLP # 12, and PLP # 13, respectively. But belong to the same PLP group 2. That is, in the PLP group 2, since the stream of LLS signaling information is transmitted by PLP # 01, the receiving device 20 can acquire the SLT therefrom and hold it as channel selection information.
 また、受信装置20は、サービスチャネルが選局された場合、選局情報(SLT)に基づいて、PLP#11で伝送されているSLSシグナリング情報を取得することができる。このSLSシグナリング情報には、PLP#11のコンポーネントのストリームのほか、PLP#01と、PLP#12と、PLP#13のコンポーネントのストリームに接続するための情報が含まれている。 Further, when the service channel is selected, the receiving device 20 can acquire the SLS signaling information transmitted by PLP # 11 based on the channel selection information (SLT). In addition to the PLP # 11 component stream, the SLS signaling information includes information for connecting to the PLP # 01, PLP # 12, and PLP # 13 component streams.
 これにより、受信装置20では、例えば、異なるサービスチャネルに含まれるコンポーネントから構成される超高精細映像(例えば4K解像度や8K解像度)のコンテンツを再生したり、ロバスト音声や緊急音声を再生したりすることができる。 As a result, for example, the reception device 20 reproduces content of ultra-high definition video (for example, 4K resolution or 8K resolution) composed of components included in different service channels, or reproduces robust audio or emergency audio. be able to.
 このように、PLP#01と、PLP#11と、PLP#12と、PLP#13とは、同一のPLPグループ2に属しているが、LLSシグナリング情報とSLSシグナリング情報のストリームは、PLP#01とPLP#11で伝送され、コンポーネントのストリームは、各PLPで伝送されている。すなわち、PLPグループ2によって、特定のサービスに関するシグナリング情報やコンポーネントのストリームが、RFチャネル(周波数帯域)をまたいでグルーピングされていることになる。 Thus, PLP # 01, PLP # 11, PLP # 12, and PLP # 13 belong to the same PLP group 2, but the streams of LLS signaling information and SLS signaling information are PLP # 01. And PLP # 11, and the component stream is transmitted by each PLP. That is, the PLP group 2 groups signaling information and component streams related to a specific service across RF channels (frequency bands).
 なお、PLPグループは、例えば、SLSシグナリング情報(のメタデータ)により、ROUTEセッションごとのBS_IDと、PLP_IDを指定することで、設定することができる。また、例えば、PLP#13のように、PLPグループ1とPLPグループ2で共有されるPLP(シェアードPLP)を設定することもできる。 Note that the PLP group can be set, for example, by specifying the BS_ID and the PLP_ID for each ROUTE session by SLS signaling information (metadata thereof). Further, for example, a PLP (shared PLP) shared by the PLP group 1 and the PLP group 2 can be set like PLP # 13.
 また、運用例1では、PLPが静的に運用されているので、図4に示すように、各PLPグループにより使用されるPLPは、固定とされる。すなわち、チャネルボンディングにより結合されたRFチャネル#0とRFチャネル#1において、PLP#00とPLP#10は、常にPLPグループ1で使用され、PLP#01とPLP#11とPLP#12は、常にPLPグループ2で使用され、PLP#13はシェアードPLPとして、PLPグループ1とPLPグループ2で使用される。 In the operation example 1, since the PLP is operated statically, the PLP used by each PLP group is fixed as shown in FIG. That is, in RF channel # 0 and RF channel # 1 combined by channel bonding, PLP # 00 and PLP # 10 are always used in PLP group 1, and PLP # 01, PLP # 11, and PLP # 12 are always It is used in PLP group 2, and PLP # 13 is used in PLP group 1 and PLP group 2 as a shared PLP.
(PRTの記述例)
 以上のように構成される運用例1のシステムパイプモデル(図3)について、PRTにより、物理ID(物理BS_ID,物理PLP_ID)と、論理ID(論理BS_ID,論理PLP_ID)との対応関係を表すと、図5に示すようになる。
(Example of PRT description)
For the system pipe model (FIG. 3) of Operation Example 1 configured as described above, the correspondence between the physical ID (physical BS_ID, physical PLP_ID) and the logical ID (logical BS_ID, logical PLP_ID) is expressed by PRT. As shown in FIG.
 ただし、運用例1は、PLPが静的に運用される場合の運用形態を表しているので、図5のPRTにおいて、すべてのPLPに対して、dynamicとして、"0"が設定されるとともに、N_PHISICAL_BS_ID、N_PHSICAL_PLP_ID、及び、PLP_SWITCH_TIMINGは、未設定とされる。 However, since the operation example 1 represents an operation mode when the PLP is operated statically, in the PRT of FIG. 5, “0” is set as dynamic for all the PLPs, N_PHISICAL_BS_ID, N_PHSICAL_PLP_ID, and PLP_SWITCH_TIMING are not set.
 図5においては、"0x1234"であるPHYSICAL_BS_IDと、"0x00"であるPHYSICAL_PLP_IDからなる物理IDには、"0x1234"であるLOGICAL_BS_IDと、"0x00"であるLOGICAL_PLP_IDからなる論理IDが対応付けられている。すなわち、PLP#00の物理IDに対して、"0x1234"であるLOGICAL_BS_IDと、"0x00"であるLOGICAL_PLP_IDからなる論理IDが対応している。 In FIG. 5, the physical ID consisting of PHYSICAL_BS_ID “0x1234” and the physical ID consisting of PHYSICAL_PLP_ID “0x00” is associated with the logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x00”. . That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x00” corresponds to the physical ID of PLP # 00.
 "0x1234"であるPHYSICAL_BS_IDと、"0x01"であるPHYSICAL_PLP_IDからなる物理IDには、"0x1234"であるLOGICAL_BS_IDと、"0x01"であるLOGICAL_PLP_IDからなる論理IDが対応付けられている。すなわち、PLP#01の物理IDに対して、"0x1234"であるLOGICAL_BS_IDと、"0x01"であるLOGICAL_PLP_IDからなる論理IDが対応している。 The physical ID consisting of PHYSICAL_BS_ID being “0x1234” and the physical ID consisting of PHYSICAL_PLP_ID being “0x01” is associated with the logical ID consisting of LOGICAL_BS_ID being “0x1234” and LOGICAL_PLP_ID being “0x01”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x01” corresponds to the physical ID of PLP # 01.
 "0x9abc"であるPHYSICAL_BS_IDと、"0x00"であるPHYSICAL_PLP_IDからなる物理IDには、"0x1234"であるLOGICAL_BS_IDと、"0x02"であるLOGICAL_PLP_IDからなる論理IDが対応付けられている。すなわち、PLP#10の物理IDに対して、"0x1234"であるLOGICAL_BS_IDと、"0x02"であるLOGICAL_PLP_IDからなる論理IDが対応している。 The physical ID consisting of PHYSICAL_BS_ID being “0x9abc” and the physical ID consisting of PHYSICAL_PLP_ID being “0x00” is associated with the logical ID consisting of LOGICAL_BS_ID being “0x1234” and LOGICAL_PLP_ID being “0x02”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x02” corresponds to the physical ID of PLP # 10.
 "0x9abc"であるPHYSICAL_BS_IDと、"0x01"であるPHYSICAL_PLP_IDからなる物理IDには、"0x1234"であるLOGICAL_BS_IDと、"0x03"であるLOGICAL_PLP_IDからなる論理IDが対応付けられている。すなわち、PLP#11の物理IDに対して、"0x1234"であるLOGICAL_BS_IDと、"0x03"であるLOGICAL_PLP_IDからなる論理IDが対応している。 The physical ID consisting of PHYSICAL_BS_ID “0x9abc” and PHYSICAL_PLP_ID “0x01” is associated with the logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x03”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x03” corresponds to the physical ID of PLP # 11.
 "0x9abc"であるPHYSICAL_BS_IDと、"0x02"であるPHYSICAL_PLP_IDからなる物理IDには、"0x1234"であるLOGICAL_BS_IDと、"0x04"であるLOGICAL_PLP_IDからなる論理IDが対応付けられている。すなわち、PLP#12の物理IDに対して、"0x1234"であるLOGICAL_BS_IDと、"0x04"であるLOGICAL_PLP_IDからなる論理IDが対応している。 The physical ID consisting of PHYSICAL_BS_ID “0x9abc” and PHYSICAL_PLP_ID “0x02” is associated with the logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x04”. That is, the logical ID composed of LOGICAL_BS_ID which is “0x1234” and LOGICAL_PLP_ID which is “0x04” corresponds to the physical ID of PLP # 12.
 "0x9abc"であるPHYSICAL_BS_IDと、"0x03"であるPHYSICAL_PLP_IDからなる物理IDには、"0x1234"であるLOGICAL_BS_IDと、"0x05"であるLOGICAL_PLP_IDからなる論理IDが対応付けられている。すなわち、PLP#13の物理IDに対して、"0x1234"であるLOGICAL_BS_IDと、"0x05"であるLOGICAL_PLP_IDからなる論理IDが対応している。 The physical ID consisting of PHYSICAL_BS_ID which is “0x9abc” and the physical ID consisting of PHYSICAL_PLP_ID which is “0x03” is associated with the logical ID consisting of LOGICAL_BS_ID which is “0x1234” and LOGICAL_PLP_ID which is “0x05”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x05” corresponds to the physical ID of PLP # 13.
 以上のように、運用例1では、PLPを静的に運用しているため、使用されるPLPは固定とされるため、対象のPLPの物理IDが変化することはない。 As described above, in the operation example 1, since the PLP is operated statically, the PLP used is fixed, and thus the physical ID of the target PLP does not change.
(2)運用例2 (2) Operation example 2
(システムパイプモデル)
 図6は、PLPが動的に運用される場合の運用形態に対応した運用例2のシステムパイプモデルを示す図である。
(System pipe model)
FIG. 6 is a diagram illustrating a system pipe model of operation example 2 corresponding to an operation mode when PLP is dynamically operated.
 図6においては、所定の周波数帯域(例えば6MHz)を有する放送波(RFチャネル)のうち、"0x1234"であるPHYSICAL_RF_IDのRFチャネル#0と、"0x9abc "であるPHYSICAL_RF_IDのRFチャネル#1とが結合され、チャネルボンディングが行われている。 In FIG. 6, among broadcast waves (RF channels) having a predetermined frequency band (for example, 6 MHz), RF channel # 0 of PHYSICAL_RF_ID which is “0x1234” and RF channel # 1 of PHYSICAL_RF_ID which is “0x9abc” are included. Combined and channel bonding is done.
 チャネルボンディングを行うために結合されたRFチャネルのうち、RFチャネル#0においては、"0"であるPLP_IDのPLP#00と、"1"であるPLP_IDのPLP#01が伝送されている。また、RFチャネルのうち、RFチャネル#1においては、"0"であるPLP_IDのPLP#10と、"1"であるPLP_IDのPLP#11と、"2"であるPLP_IDのPLP#12と、"3"であるPLP_IDのPLP#13が伝送されている。 Of the RF channels coupled for channel bonding, RF channel # 0 transmits PLP_00 with PLP_ID being “0” and PLP # 01 with PLP_ID being “1”. Among the RF channels, in RF channel # 1, PLP # 10 with PLP_ID being “0”, PLP # 11 with PLP_ID being “1”, PLP # 12 with PLP_ID being “2”, PLP # 13 of PLP_ID “3” is transmitted.
 また、チャネルボンディングにより結合されたRFチャネル#0とRFチャネル#1において、PLP#00とPLP#10とPLP#13は、PLPグループ1に属し、PLP#01とPLP#11とPLP#12とPLP#13は、PLPグループ2に属している。 Also, in RF channel # 0 and RF channel # 1 coupled by channel bonding, PLP # 00, PLP # 10, and PLP # 13 belong to PLP group 1, and PLP # 01, PLP # 11, and PLP # 12 PLP # 13 belongs to PLP group 2.
 ここで、運用例2では、PLPが動的に運用されているが、図7に示すように、PLP#00、PLP#10、及び、PLP#13が属しているPLPグループ1に注目すれば、PLPグループ1は、時刻t0乃至時刻t1では、RFチャネル#0のPLP#00と、RFチャネル#1のPLP#13を使用している。また、PLPグループ1は、時刻t1乃至時刻t3では、RFチャネル#1のPLP#10とPLP#13を使用し、時刻t3乃至時刻t4では、RFチャネル#0のPLP#00と、RFチャネル#1のPLP#13を使用している。 Here, in the operation example 2, the PLP is dynamically operated. However, as shown in FIG. 7, if attention is paid to the PLP group 1 to which the PLP # 00, PLP # 10, and PLP # 13 belong. PLP group 1 uses PLP # 00 of RF channel # 0 and PLP # 13 of RF channel # 1 from time t0 to time t1. Also, PLP group 1 uses PLP # 10 and PLP # 13 of RF channel # 1 from time t1 to time t3, and PLP # 00 and RF channel # 0 of RF channel # 0 from time t3 to time t4. 1 PLP # 13 is used.
 このように、運用例2では、PLPが動的に運用されているので、所定の時間ごとに、PLPグループ1により使用されるPLPが、RFチャネル#0のPLP#00と、RFチャネル#1のPLP#10とで交互に切り替えられている。ただし、この例では、シェアードPLPであるPLP#13は、常に使用されている。したがって、受信装置20では、所定の時間ごとに切り替わる、PLPグループ1内の対象のPLPで伝送されるシグナリング情報やコンポーネント等が取得されることになる。 As described above, in the operation example 2, since the PLP is dynamically operated, the PLP used by the PLP group 1 is changed to the PLP # 00 of the RF channel # 0 and the RF channel # 1 every predetermined time. It is switched alternately with PLP # 10. However, in this example, PLP # 13 which is a shared PLP is always used. Therefore, the receiving device 20 acquires signaling information, components, and the like transmitted by the target PLP in the PLP group 1 that are switched at predetermined time intervals.
 一方で、図7に示すように、PLP#01、PLP#11、PLP#12、及び、PLP#13が属しているPLPグループ2に注目すれば、PLPグループ2は、時刻t0乃至時刻t2では、RFチャネル#1のPLP#11、PLP#12、及び、PLP#13を使用し、時刻t2乃至時刻t4では、RFチャネル#0のPLP#01と、RFチャネル#1のPLP#12、及び、PLP#13を使用している。 On the other hand, as shown in FIG. 7, if attention is paid to PLP group 2 to which PLP # 01, PLP # 11, PLP # 12, and PLP # 13 belong, PLP group 2 , Using PLP # 11, PLP # 12, and PLP # 13 of RF channel # 1, and from time t2 to time t4, PLP # 01 of RF channel # 0, PLP # 12 of RF channel # 1, and , PLP # 13 is used.
 このように、運用例2では、PLPが動的に運用されているので、所定の時間ごとに、PLPグループ2により使用されるPLPが、RFチャネル#1のPLP#11と、RFチャネル#0のPLP#01とで交互に切り替えられている。ただし、この例では、RFチャネル#1のPLP#12と、シェアードPLPであるPLP#13は、常に使用されている。したがって、受信装置20では、所定の時間ごとに切り替わる、PLPグループ2内の対象のPLPで伝送されるシグナリング情報やコンポーネント等が取得されることになる。 As described above, in the operation example 2, since the PLP is dynamically operated, the PLP used by the PLP group 2 is changed to the PLP # 11 of the RF channel # 1 and the RF channel # 0 at every predetermined time. It is switched alternately with PLP # 01. However, in this example, the PLP # 12 of the RF channel # 1 and the PLP # 13 that is a shared PLP are always used. Therefore, the receiving device 20 acquires signaling information, components, and the like transmitted by the target PLP in the PLP group 2 that are switched at predetermined time intervals.
(PRTの記述例)
 以上のように構成される運用例2のシステムパイプモデル(図6)について、PRTにより、物理ID(物理BS_ID,物理PLP_ID)と、論理ID(論理BS_ID,論理PLP_ID)との対応関係を表すと、図8に示すようになる。
(Example of PRT description)
Regarding the system pipe model (FIG. 6) of the operation example 2 configured as described above, the correspondence between the physical ID (physical BS_ID, physical PLP_ID) and the logical ID (logical BS_ID, logical PLP_ID) is expressed by PRT. As shown in FIG.
 ただし、PRTは、例えば、時刻t0乃至時刻t1、時刻t1乃至時刻t2、時刻t2乃至時刻t3などの所定の時間ごとに取得されるものであり、図8は、図7において、時刻t0乃至時刻t1の間の時刻txにおけるPRTの記述例を例示している。 However, the PRT is acquired at predetermined time intervals such as time t0 to time t1, time t1 to time t2, time t2 to time t3, and FIG. 8 is a time t0 to time in FIG. A description example of PRT at time tx during t1 is illustrated.
 また、運用例2は、PLPが動的に運用される場合の運用形態を表しているので、図8のPRTにおいて、動的に切り替わるPLPに対しては、dynamicとして、"1"が設定されるとともに、N_PHISICAL_BS_ID、N_PHSICAL_PLP_ID、及び、PLP_SWITCH_TIMINGが設定されている。 In addition, since the operation example 2 represents an operation mode when the PLP is dynamically operated, “1” is set as dynamic for the PLP that dynamically switches in the PRT of FIG. 8. N_PHISICAL_BS_ID, N_PHSICAL_PLP_ID, and PLP_SWITCH_TIMING are set.
 図8においては、"0x1234"であるPHYSICAL_BS_IDと、"0x00"であるPHYSICAL_PLP_IDからなる物理IDには、"0x1234"であるLOGICAL_BS_IDと、"0x00"であるLOGICAL_PLP_IDからなる論理IDが対応付けられている。すなわち、PLP#00の物理IDに対して、"0x1234"であるLOGICAL_BS_IDと、"0x00"であるLOGICAL_PLP_IDからなる論理IDが対応している。 In FIG. 8, the physical ID consisting of PHYSICAL_BS_ID “0x1234” and the physical ID consisting of PHYSICAL_PLP_ID “0x00” is associated with the logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x00”. . That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x00” corresponds to the physical ID of PLP # 00.
 また、このPLP#00は、動的なPLPであるので、dynamicとして"1"が設定され、"0x9abc"であるN_PHSICAL_BS_IDと、"0x00"であるN_PHSICAL_PLP_IDと、t1であるPLP_SWITCH_TIMINGが設定されている。すなわち、次の時刻t1において、対象のPLPが、PLP#00から、PLP#10に切り替わることを表している。 Further, since this PLP # 00 is a dynamic PLP, “1” is set as dynamic, and N_PHSICAL_BS_ID that is “0x9abc”, N_PHSICAL_PLP_ID that is “0x00”, and PLP_SWITCH_TIMING that is t1 are set. . That is, it represents that the target PLP is switched from PLP # 00 to PLP # 10 at the next time t1.
 図8において、"0x9abc"であるPHYSICAL_BS_IDと、"0x01"であるPHYSICAL_PLP_IDからなる物理IDには、"0x1234"であるLOGICAL_BS_IDと、"0x01"であるLOGICAL_PLP_IDからなる論理IDが対応付けられている。すなわち、PLP#11の物理IDに対して、"0x1234"であるLOGICAL_BS_IDと、"0x01"であるLOGICAL_PLP_IDからなる論理IDが対応している。 In FIG. 8, a physical ID consisting of PHYSICAL_BS_ID “0x9abc” and PHYSICAL_PLP_ID “0x01” is associated with a logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x01”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x01” corresponds to the physical ID of PLP # 11.
 また、このPLP#11は、動的なPLPであるので、dynamicとして"1"が設定され、"0x1234"であるN_PHSICAL_BS_IDと、"0x01"であるN_PHSICAL_PLP_IDと、t2であるPLP_SWITCH_TIMINGが設定されている。すなわち、次の時刻t2において、対象のPLPが、PLP#11から、PLP#01に切り替わることを表している。 Since PLP # 11 is a dynamic PLP, “1” is set as dynamic, N_PHSICAL_BS_ID which is “0x1234”, N_PHSICAL_PLP_ID which is “0x01”, and PLP_SWITCH_TIMING which is t2 are set. . That is, it represents that the target PLP is switched from PLP # 11 to PLP # 01 at the next time t2.
 図8において、"0x9abc"であるPHYSICAL_BS_IDと、"0x02"であるPHYSICAL_PLP_IDからなる物理IDには、"0x1234"であるLOGICAL_BS_IDと、"0x02"であるLOGICAL_PLP_IDからなる論理IDが対応付けられている。すなわち、PLP#12の物理IDに対して、"0x1234"であるLOGICAL_BS_IDと、"0x02"であるLOGICAL_PLP_IDからなる論理IDが対応している。 In FIG. 8, the physical ID consisting of PHYSICAL_BS_ID “0x9abc” and PHYSICAL_PLP_ID “0x02” is associated with the logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x02”. That is, the logical ID composed of LOGICAL_BS_ID which is “0x1234” and LOGICAL_PLP_ID which is “0x02” corresponds to the physical ID of PLP # 12.
 また、"0x9abc"であるPHYSICAL_BS_IDと、"0x03"であるPHYSICAL_PLP_IDからなる物理IDには、"0x1234"であるLOGICAL_BS_IDと、"0x03"であるLOGICAL_PLP_IDからなる論理IDが対応付けられている。すなわち、PLP#13の物理IDに対して、"0x1234"であるLOGICAL_BS_IDと、"0x03"であるLOGICAL_PLP_IDからなる論理IDが対応している。 Also, a physical ID consisting of PHYSICAL_BS_ID “0x9abc” and PHYSICAL_PLP_ID “0x03” is associated with a logical ID consisting of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x03”. That is, the logical ID composed of LOGICAL_BS_ID “0x1234” and LOGICAL_PLP_ID “0x03” corresponds to the physical ID of PLP # 13.
 なお、PLP#12とPLP#13は、静的なPLPであるので、dynamicとして"0"が設定され、N_PHSICAL_BS_ID、N_PHSICAL_PLP_ID、及び、PLP_SWITCH_TIMINGは、未設定とされる。 Since PLP # 12 and PLP # 13 are static PLPs, “0” is set as dynamic, and N_PHSICAL_BS_ID, N_PHSICAL_PLP_ID, and PLP_SWITCH_TIMING are not set.
 以上のように、運用例2では、PLPを動的に運用しているため、所定の時間ごとに、使用するPLPが動的に切り替えられるが、図8のPRTを、LLSシグナリング情報として伝送されるようにすることで、受信装置20では、物理層側で規定される識別情報(PHYSICAL_BS_ID,PHYSICAL_PLP_ID)が変化した場合でも、PRTにより、変更後の識別情報(N_PHYSICAL_BS_ID,N_PHYSICAL_PLP_ID)を取得できるので、このような物理層における識別情報の変化に対応して、より柔軟な運用を行うことができる。 As described above, in the operation example 2, since the PLP is dynamically operated, the PLP to be used is dynamically switched every predetermined time, but the PRT in FIG. 8 is transmitted as the LLS signaling information. By doing so, even if the identification information (PHYSICAL_BS_ID, PHYSICAL_PLP_ID) defined on the physical layer side changes, the receiving device 20 can acquire the changed identification information (N_PHYSICAL_BS_ID, N_PHYSICAL_PLP_ID) by PRT. In response to such a change in identification information in the physical layer, more flexible operation can be performed.
 具体的には、論理ID(LOGICAL_BS_ID,LOGICAL_PLP_ID)と、変更前の物理ID(PHYSICAL_BS_ID,PHYSICAL_PLP_ID)及び変更後の物理ID(N_PHYSICAL_BS_ID,N_PHYSICAL_PLP_ID)がPRTにより対応付けられているので、受信装置20は、所定の時間ごとに使用するPLPが動的に切り替えられて、物理IDが変化した場合でも、PRTを用いて、論理IDを変更後の物理IDに変換することができる。これにより、受信装置20は、切り替え後のPLPを特定して、LLSシグナリング情報やSLSシグナリング情報、コンポーネントなどを取得することができる。 Specifically, since the logical ID (LOGICAL_BS_ID, LOGICAL_PLP_ID), the physical ID before change (PHYSICAL_BS_ID, PHYSICAL_PLP_ID), and the physical ID after change (N_PHYSICAL_BS_ID, N_PHYSICAL_PLP_ID) are associated by PRT, the receiving device 20 Even when the PLP used at every predetermined time is dynamically switched and the physical ID changes, the logical ID can be converted to the changed physical ID using the PRT. Thereby, the receiving apparatus 20 can specify the PLP after switching and acquire LLS signaling information, SLS signaling information, components, and the like.
<4.シグナリングの伝送方法> <4. Signaling Transmission Method>
(レイヤ構造)
 図9は、ATSC3.0に対応したレイヤ構造の概念を説明する図である。
(Layer structure)
FIG. 9 is a diagram for explaining the concept of the layer structure corresponding to ATSC 3.0.
 図9において、レイヤ3(L3)では、IPパケット(IP Packet)が伝送される。IPパケットは、IPヘッダ(IP Header)と、UDPヘッダ(UDP Header)及びデータ(Data)から構成される。すなわち、IPパケットは、UDPパケットが含まれたIP/UDPパケットとされる。IPパケット(IP/UDPパケット)のデータには、ROUTEパケットやNTPなどが配置される。このROUTEパケットには、SLSシグナリング情報やコンポーネントのデータが格納される。 In FIG. 9, an IP packet (IP packet) is transmitted in layer 3 (L3). The IP packet includes an IP header (IP (Header), a UDP header (UDP Header), and data (Data). That is, the IP packet is an IP / UDP packet including a UDP packet. In the data of the IP packet (IP / UDP packet), a ROUTE packet, NTP, etc. are arranged. This ROUTE packet stores SLS signaling information and component data.
 レイヤ2(L2)では、伝送パケットとしてのGenericパケット(Generic Packet)が伝送される。Genericパケットは、Genericヘッダ(Generic Header)とペイロード(Payload)から構成される。Genericパケットのペイロードには、1又は複数のIPパケットが配置され、カプセル化(encapsulation)される。 In Layer 2 (L2), a generic packet (Generic packet) as a transmission packet is transmitted. The Generic packet is composed of a Generic header (Generic Header) and a payload (Payload). In the payload of the generic packet, one or a plurality of IP packets are arranged and encapsulated.
 ここで、SLTやPRT等のLLSシグナリング情報の伝送方式としては、L2シグナリング情報として伝送される第1の方式と、IP/UDPパケットで伝送される第2の方式を採用することができる。 Here, as a transmission method of LLS signaling information such as SLT and PRT, a first method transmitted as L2 signaling information and a second method transmitted using IP / UDP packets can be adopted.
 すなわち、第1の方式を採用した場合、図中のA1に示すように、LLSシグナリング情報は、Genericパケットのペイロードに、L2シグナリング情報として配置される。一方で、第2の方式を採用した場合、図中のA2に示すように、LLSシグナリング情報は、IP/UDPパケットのデータとして配置される。 That is, when the first scheme is adopted, the LLS signaling information is arranged as L2 signaling information in the payload of the generic packet as indicated by A1 in the figure. On the other hand, when the second method is adopted, the LLS signaling information is arranged as data of the IP / UDP packet as indicated by A2 in the figure.
 物理層に相当するレイヤ1(L1)のBBフレーム(Baseband Frame)は、BBフレームヘッダ(Baseband Frame Header)とペイロード(Payload)から構成される。BBフレームのペイロードには、複数のGenericパケットが配置され、カプセル化される。また、レイヤ1においては、複数のBBフレームをスクランブルして得られるデータ(Data)がFECフレーム(FEC Frame)にマッピングされ、物理層のエラー訂正用のパリティ(Parity)が付加される。 The BB frame (Baseband Frame) of layer 1 (L1) corresponding to the physical layer is composed of a BB frame header (Baseband Frame Header) and a payload (Payload). A plurality of generic packets are arranged and encapsulated in the payload of the BB frame. In layer 1, data (Data) obtained by scrambling a plurality of BB frames is mapped to an FEC frame (FECFEFrame), and a physical layer error correction parity (Parity) is added.
 レイヤ1(L1)の物理層フレーム(ATSC (Physical) Frame)は、ブートストラップ(Bootstrap)、プリアンブル(Preamble)、及び、データ部(Data)から構成される。そして、物理層フレームのデータ部には、複数のFECフレームに対して、ビットインターリーブを行った後に、マッピング処理を行い、さらに、時間方向と周波数方向にインターリーブを行うなどの物理層の処理が行われることで得られるデータがマッピングされる。 The physical layer frame (ATSC 物理 (Physical) Frame) of layer 1 (L1) is composed of a bootstrap, a preamble, and a data part (Data). In the data part of the physical layer frame, after performing bit interleaving on a plurality of FEC frames, mapping processing is performed, and further, physical layer processing such as interleaving in the time direction and the frequency direction is performed. The data obtained by the mapping is mapped.
<5.各装置の構成> <5. Configuration of each device>
 次に、図1の伝送システム1を構成する、送信装置10と受信装置20の詳細な構成を説明する。 Next, detailed configurations of the transmission device 10 and the reception device 20 that constitute the transmission system 1 of FIG. 1 will be described.
(送信装置の構成)
 図10は、図1の送信装置10の構成例を示す図である。
(Configuration of transmitter)
FIG. 10 is a diagram illustrating a configuration example of the transmission device 10 of FIG.
 図10において、送信装置10は、制御部101、コンポーネント取得部102、エンコーダ103、シグナリング生成部104、シグナリング処理部105、パケット生成部106、物理層フレーム生成部107、及び、送信部108から構成される。 10, the transmission device 10 includes a control unit 101, a component acquisition unit 102, an encoder 103, a signaling generation unit 104, a signaling processing unit 105, a packet generation unit 106, a physical layer frame generation unit 107, and a transmission unit 108. Is done.
 制御部101は、送信装置10の各部の動作を制御する。 The control unit 101 controls the operation of each unit of the transmission device 10.
 コンポーネント取得部102は、特定のサービスにより提供されるコンテンツ(例えばテレビ番組)を構成するビデオやオーディオ、字幕等(のコンポーネント)のデータを取得し、エンコーダ103に供給する。エンコーダ103は、コンポーネント取得部102から供給される、ビデオやオーディオ等(のコンポーネント)のデータを、所定の符号化方式に従って符号化して、パケット生成部106に供給する。 The component acquisition unit 102 acquires data such as video, audio, and subtitles (components) constituting content (for example, a television program) provided by a specific service, and supplies the acquired data to the encoder 103. The encoder 103 encodes data (components) such as video and audio supplied from the component acquisition unit 102 according to a predetermined encoding method, and supplies the encoded data to the packet generation unit 106.
 なお、コンテンツとしては、例えば、既に収録されたコンテンツの保管場所から、放送時間帯に応じて該当するコンテンツが取得されたり、あるいはスタジオやロケーション場所からライブのコンテンツが取得されたりする。 Note that, as the content, for example, the corresponding content is acquired from the storage location of the already recorded content according to the broadcast time zone, or the live content is acquired from the studio or location location.
 シグナリング生成部104は、外部のサーバや内蔵するストレージ等から、シグナリング情報を生成するための素データを取得する。シグナリング生成部104は、シグナリング情報の素データを用いて、シグナリング情報を生成する。 The signaling generation unit 104 acquires raw data for generating signaling information from an external server or a built-in storage. The signaling generation unit 104 generates signaling information using raw data of signaling information.
 ここでは、シグナリング情報として、LLSシグナリング情報(SLTやPRT等)やSLSシグナリング情報のほか、L1シグナリング情報などが生成される。このようなシグナリング情報のうち、LLSシグナリング情報、及び、SLSシグナリング情報は、パケット生成部106に供給され、L1シグナリング情報は、物理層フレーム生成部107に供給される。 Here, in addition to LLS signaling information (such as SLT and PRT) and SLS signaling information, L1 signaling information and the like are generated as signaling information. Among such signaling information, LLS signaling information and SLS signaling information are supplied to the packet generation unit 106, and L1 signaling information is supplied to the physical layer frame generation unit 107.
 パケット生成部106は、エンコーダ103から供給されるビデオやオーディオ等(のコンポーネント)のデータと、シグナリング処理部105から供給されるシグナリング情報を用い、ROUTEパケットやIPパケット(IP/UDPパケット)を生成する。また、パケット生成部106は、1又は複数のIPパケットをカプセル化することで、Genericパケットを生成し、物理層フレーム生成部107に供給する。 The packet generation unit 106 generates ROUTE packets and IP packets (IP / UDP packets) using video (audio) (components) data supplied from the encoder 103 and signaling information supplied from the signaling processing unit 105. To do. Further, the packet generation unit 106 encapsulates one or a plurality of IP packets to generate a generic packet and supplies it to the physical layer frame generation unit 107.
 具体的には、第1の方式を採用した場合、IP/UDPパケットのデータには、SLSシグナリング情報やコンポーネントのデータを格納したROUTEパケットが配置される。そして、Genericパケットのペイロードには、当該ROUTEパケットを格納したIP/UDPパケットや、L2シグナリング情報としてのLLSシグナリング情報が配置される。 Specifically, when the first method is adopted, a ROUTE packet storing SLS signaling information and component data is arranged in the IP / UDP packet data. In the generic packet payload, an IP / UDP packet storing the ROUTE packet and LLS signaling information as L2 signaling information are arranged.
 一方で、第2の方式を採用した場合、IP/UDPパケットのデータには、SLSシグナリング情報やコンポーネントのデータを格納したROUTEパケットのほか、LLSシグナリング情報が配置される。そして、Genericパケットのペイロードには、当該ROUTEパケットやLLSシグナリング情報を格納したIP/UDPパケットが配置される。 On the other hand, when the second method is adopted, the LLS signaling information is arranged in the IP / UDP packet data in addition to the ROUTE packet storing the SLS signaling information and the component data. In the generic packet payload, an IP / UDP packet storing the ROUTE packet and LLS signaling information is arranged.
 物理層フレーム生成部107は、パケット生成部106から供給される、複数のGenericパケットをカプセル化などすることで、物理層フレームを生成し、送信部108に供給する。ただし、物理層フレームにおいて、プリアンブルには、シグナリング処理部105から供給されるL1シグナリング情報が配置される。 The physical layer frame generation unit 107 generates a physical layer frame by encapsulating a plurality of generic packets supplied from the packet generation unit 106 and supplies the generated physical layer frame to the transmission unit 108. However, in the physical layer frame, L1 signaling information supplied from the signaling processing unit 105 is arranged in the preamble.
 送信部108は、物理層フレーム生成部107から供給される物理層フレームに対して、例えばOFDM(Orthogonal Frequency Division Multiplexing)変調などの処理を行い、アンテナ111を介して、デジタル放送信号として送信する。 The transmission unit 108 performs, for example, OFDM (Orthogonal Frequency Division Multiplexing) modulation on the physical layer frame supplied from the physical layer frame generation unit 107, and transmits it as a digital broadcast signal via the antenna 111.
 ただし、送信装置10は、チャネルボンディングの機能を有しており、チャネルボンディングにより結合された複数の周波数帯域を利用して、デジタル放送信号が送信されることになる。また、送信装置10は、周波数ホッピング方式の機能を有しており、PLPが動的に運用される場合には、所定の時間ごとに使用するPLPが変更されることになる。 However, the transmission device 10 has a channel bonding function, and a digital broadcast signal is transmitted using a plurality of frequency bands combined by channel bonding. Moreover, the transmission apparatus 10 has a function of a frequency hopping method, and when the PLP is dynamically operated, the PLP to be used is changed every predetermined time.
 なお、図10においては、シグナリング生成部104によりシグナリング情報が生成されるとして説明したが、パケット生成部106又は物理層フレーム生成部107がシグナリング情報を生成するようにしてもよい。例えば、パケット生成部106は、LLSシグナリング情報又はSLSシグナリング情報を生成し、パケットに格納することができる。また、例えば、物理層フレーム生成部107は、L1シグナリング情報を生成し、物理層フレームに配置することができる。 In FIG. 10, the signaling generation unit 104 has been described as generating signaling information. However, the packet generation unit 106 or the physical layer frame generation unit 107 may generate the signaling information. For example, the packet generator 106 can generate LLS signaling information or SLS signaling information and store it in the packet. Also, for example, the physical layer frame generation unit 107 can generate L1 signaling information and place it in the physical layer frame.
 また、図10の送信装置10において、すべての機能ブロックが、物理的に単一の装置内に配置される必要はなく、少なくとも一部の機能ブロックが、他の機能ブロックとは物理的に独立した装置として構成されるようにしてもよい。 Further, in the transmission device 10 of FIG. 10, it is not necessary that all functional blocks are physically arranged in a single device, and at least some of the functional blocks are physically independent from other functional blocks. It may be configured as a device.
(受信装置の構成)
 図11は、図1の受信装置20の構成例を示す図である。
(Receiver configuration)
FIG. 11 is a diagram illustrating a configuration example of the receiving device 20 of FIG.
 図11において、受信装置20は、制御部201、受信部202、物理層フレーム処理部203、パケット処理部204、シグナリング処理部205、デコーダ206、表示部207、及び、スピーカ208から構成される。 11, the receiving device 20 includes a control unit 201, a receiving unit 202, a physical layer frame processing unit 203, a packet processing unit 204, a signaling processing unit 205, a decoder 206, a display unit 207, and a speaker 208.
 制御部201は、受信装置20の各部の動作を制御する。 The control unit 201 controls the operation of each unit of the receiving device 20.
 受信部202は、送信装置10からチャネルボンディングを利用して送信されてくるデジタル放送信号を、アンテナ211を介して受信して、例えばOFDM復調などの処理を行い、それにより得られる物理層フレームを、物理層フレーム処理部203に供給する。ただし、送信装置10において、PLPが動的に運用される場合には、所定の時間ごとに使用するPLPが変更されることになる。 The receiving unit 202 receives a digital broadcast signal transmitted from the transmission device 10 using channel bonding via the antenna 211, performs processing such as OFDM demodulation, and the physical layer frame obtained thereby is received. To the physical layer frame processing unit 203. However, when the PLP is dynamically operated in the transmission apparatus 10, the PLP to be used is changed every predetermined time.
 物理層フレーム処理部203は、受信部202から供給される物理層フレームに対する処理を行い、Genericパケットを抽出し、パケット処理部204に供給する。また、物理層フレーム処理部203は、物理層フレームのプリアンブルに配置されたL1シグナリング情報を取得して、シグナリング処理部205に供給する。 The physical layer frame processing unit 203 performs processing on the physical layer frame supplied from the receiving unit 202, extracts a generic packet, and supplies it to the packet processing unit 204. Further, the physical layer frame processing unit 203 acquires L1 signaling information arranged in the preamble of the physical layer frame and supplies the L1 signaling information to the signaling processing unit 205.
 パケット処理部204は、物理層フレーム処理部203から供給されるGenericパケットに対する処理を行う。また、パケット処理部204は、Genericパケットから抽出されるIPパケット(IP/UDPパケット)やROUTEパケットに対する処理を行い、シグナリング情報やコンポーネントのデータを抽出する。そして、シグナリング情報は、シグナリング処理部205に供給され、コンポーネントのデータは、デコーダ206に供給される。 The packet processing unit 204 performs processing on the generic packet supplied from the physical layer frame processing unit 203. Further, the packet processing unit 204 performs processing on an IP packet (IP / UDP packet) and a ROUTE packet extracted from the generic packet, and extracts signaling information and component data. The signaling information is supplied to the signaling processing unit 205, and the component data is supplied to the decoder 206.
 具体的には、上述した送信側の送信装置10にて第1の方式が採用された場合、Genericパケットのペイロードから、L2シグナリング情報としてのLLSシグナリング情報が抽出され、IP/UDPパケットに格納されるROUTEパケットから、SLSシグナリング情報やコンポーネントのデータが抽出される。 Specifically, when the first method is adopted in the transmission apparatus 10 on the transmission side described above, LLS signaling information as L2 signaling information is extracted from the payload of the generic packet and stored in the IP / UDP packet. SLS signaling information and component data are extracted from the ROUTE packet.
 一方で、上述した送信側の送信装置10にて第2の方式が採用された場合、Genericパケットのペイロードに配置されるIP/UDPパケットから、LLSシグナリング情報が抽出され、当該IP/UDPパケットに格納されるROUTEパケットから、SLSシグナリング情報やコンポーネントのデータが抽出される。 On the other hand, when the second method is adopted in the transmission apparatus 10 on the transmission side described above, the LLS signaling information is extracted from the IP / UDP packet arranged in the payload of the generic packet, and the IP / UDP packet is extracted. SLS signaling information and component data are extracted from the stored ROUTE packet.
 シグナリング処理部205には、物理層フレーム処理部203及びパケット処理部204から供給されるシグナリング情報を適宜処理して、制御部201に供給する。ここでは、シグナリング情報として、L1シグナリング情報、LLSシグナリング情報やSLSシグナリング情報などが処理される。 The signaling processing unit 205 appropriately processes the signaling information supplied from the physical layer frame processing unit 203 and the packet processing unit 204 and supplies it to the control unit 201. Here, L1 signaling information, LLS signaling information, SLS signaling information, and the like are processed as signaling information.
 制御部201は、シグナリング処理部205から供給されるシグナリング情報に基づいて、各部の動作を制御する。例えば、制御部201は、L1シグナリング情報等に基づいて、物理層フレーム処理部203やパケット処理部204で行われる処理などを制御する。 The control unit 201 controls the operation of each unit based on the signaling information supplied from the signaling processing unit 205. For example, the control unit 201 controls processing performed by the physical layer frame processing unit 203 and the packet processing unit 204 based on L1 signaling information and the like.
 また、例えば、制御部201は、サービスチャネル(サービス)が選局された場合、LLSシグナリング情報及びSLSシグナリング情報に基づいて、パケット処理部204で行われるパケットのフィルタリングを制御し、ビデオやオーディオ等(のコンポーネント)のデータがデコーダ206に供給されるようにする。 Further, for example, when a service channel (service) is selected, the control unit 201 controls packet filtering performed by the packet processing unit 204 based on LLS signaling information and SLS signaling information, such as video and audio. (Component) data is supplied to the decoder 206.
 デコーダ206は、パケット処理部204から供給される、ビデオやオーディオ等(のコンポーネント)のデータに対して、所定の復号方式に従って復号して、その結果得られるビデオデータを表示部207に供給し、オーディオデータをスピーカ208に供給する。 The decoder 206 decodes data (components) such as video and audio supplied from the packet processing unit 204 according to a predetermined decoding method, and supplies the resulting video data to the display unit 207. Audio data is supplied to the speaker 208.
 表示部207は、デコーダ206から供給されるビデオデータに対応する映像を表示する。また、スピーカ208は、デコーダ206から供給されるオーディオデータに対応する音声を出力する。これにより、受信装置20においては、ユーザにより選局されたサービスチャネル(サービス)により提供されるコンテンツ(例えばテレビ番組)の映像と音声が出力される。 The display unit 207 displays video corresponding to the video data supplied from the decoder 206. Further, the speaker 208 outputs sound corresponding to the audio data supplied from the decoder 206. As a result, the receiving device 20 outputs video and audio of content (for example, a television program) provided by the service channel (service) selected by the user.
 なお、図11においては、シグナリング処理部205によりシグナリング情報が処理されるとして説明したが、物理層フレーム処理部203又はパケット処理部204がシグナリング情報を処理するようにしてもよい。例えば、物理層フレーム処理部203は、L1シグナリング情報を処理することができる。また、例えば、パケット処理部204は、LLSシグナリング情報、又は、SLSシグナリング情報を処理することができる。 In FIG. 11, it has been described that the signaling information is processed by the signaling processing unit 205. However, the physical layer frame processing unit 203 or the packet processing unit 204 may process the signaling information. For example, the physical layer frame processing unit 203 can process L1 signaling information. For example, the packet processing unit 204 can process LLS signaling information or SLS signaling information.
 また、図11においては、受信装置20が、テレビ受像機等の固定受信機や、スマートフォンやタブレット端末等のモバイル受信機である場合として、表示部207及びスピーカ208が内蔵されている場合の構成を示したが、例えば、録画機やセットトップボックス(STB:Set Top Box)などの場合には、表示部207及びスピーカ208が外部に設けられた構成となる。 In FIG. 11, a configuration in which the display unit 207 and the speaker 208 are built in as a case where the reception device 20 is a fixed receiver such as a television receiver or a mobile receiver such as a smartphone or a tablet terminal. However, for example, in the case of a recorder, a set top box (STB), a display unit 207 and a speaker 208 are provided outside.
<6.各装置で実行される処理の流れ> <6. Flow of processing executed by each device>
 次に、図12乃至図13のフローチャートを参照して、図1の伝送システム1を構成する各装置で実行される処理の流れを説明する。 Next, with reference to the flowcharts of FIGS. 12 to 13, the flow of processing executed by each device constituting the transmission system 1 of FIG. 1 will be described.
(送信処理)
 まず、図12のフローチャートを参照して、図1の送信装置10により実行される送信処理の流れを説明する。
(Transmission process)
First, the flow of transmission processing executed by the transmission device 10 of FIG. 1 will be described with reference to the flowchart of FIG.
 ステップS101において、コンポーネント取得部102は、ビデオやオーディオ等のコンポーネントを取得する。コンポーネント取得部102により取得されたコンポーネントのデータは、エンコーダ103により符号化される。 In step S101, the component acquisition unit 102 acquires components such as video and audio. The component data acquired by the component acquisition unit 102 is encoded by the encoder 103.
 ステップS102において、シグナリング生成部104は、シグナリング情報を生成する。ここでは、L1シグナリング情報、LLSシグナリング情報やSLSシグナリング情報などが生成される。 In step S102, the signaling generation unit 104 generates signaling information. Here, L1 signaling information, LLS signaling information, SLS signaling information, and the like are generated.
 ステップS103においては、パケット・フレーム生成処理が行われる。 In step S103, packet / frame generation processing is performed.
 このパケット・フレーム生成処理では、パケット生成部106によって、ROUTEパケットやIPパケット(IP/UDPパケット)、Genericパケットが生成される。また、物理層フレーム生成部107によって、物理層フレームが生成される。 In this packet / frame generation process, the packet generation unit 106 generates a ROUTE packet, an IP packet (IP / UDP packet), and a generic packet. Further, the physical layer frame generation unit 107 generates a physical layer frame.
 ここでは、第1の方式と第2の方式で共通して、IP/UDPパケットに格納されるROUTEパケットに、SLSシグナリング情報やコンポーネントのデータが配置される。また、第1の方式を採用した場合には、Genericパケットのペイロードに、LLSシグナリング情報が配置される。一方で、第2の方式を採用した場合には、IP/UDPパケットのデータに、LLSシグナリング情報が配置される。さらに、物理層フレームのプリアンブルには、L1シグナリング情報が配置されることになる。 Here, SLS signaling information and component data are arranged in a ROUTE packet stored in an IP / UDP packet in common with the first method and the second method. When the first method is adopted, LLS signaling information is arranged in the payload of the generic packet. On the other hand, when the second method is adopted, LLS signaling information is arranged in the data of the IP / UDP packet. Further, L1 signaling information is arranged in the preamble of the physical layer frame.
 ステップS104において、送信部108は、物理層フレームに対する処理を行い、アンテナ111を介してデジタル放送信号として送信する。ただし、ここでは、チャネルボンディングにより結合された複数の周波数帯域を利用して、デジタル放送信号が送信されることになる。また、PLPが動的に運用される場合には、所定の時間ごとに使用するPLPが変更されることになる。 In step S104, the transmission unit 108 performs processing on the physical layer frame and transmits the digital layer signal via the antenna 111. However, here, a digital broadcast signal is transmitted using a plurality of frequency bands coupled by channel bonding. Further, when the PLP is dynamically operated, the PLP to be used is changed every predetermined time.
 以上、送信処理の流れについて説明した。 The flow of transmission processing has been described above.
(受信処理)
 次に、図13のフローチャートを参照して、図1の受信装置20により実行される受信処理の流れを説明する。なお、この受信処理は、特定のサービスチャネル(サービス)が選局された場合に実行される処理とされる。
(Reception processing)
Next, the flow of reception processing executed by the reception device 20 of FIG. 1 will be described with reference to the flowchart of FIG. This reception process is a process executed when a specific service channel (service) is selected.
 ステップS201において、受信部202は、送信装置10からチャネルボンディングを利用して送信されてくるデジタル放送信号を、アンテナ211を介して受信する。ここでは、送信装置10において、PLPが動的に運用される場合には、所定の周波数ごとに使用するPLPが変更されることになる。 In step S201, the reception unit 202 receives a digital broadcast signal transmitted from the transmission device 10 using channel bonding via the antenna 211. Here, when the PLP is dynamically operated in the transmission device 10, the PLP used for each predetermined frequency is changed.
 ステップS202においては、パケット・フレーム処理が行われる。 In step S202, packet / frame processing is performed.
 このパケット・フレーム処理では、物理層フレーム処理部203によって、物理層フレームに対する処理が行われる。また、パケット処理部204によって、GenericパケットやIPパケット(IP/UDPパケット)、ROUTEパケットに対する処理が行われる。 In this packet / frame processing, the physical layer frame processing unit 203 processes the physical layer frame. Further, the packet processing unit 204 performs processing on generic packets, IP packets (IP / UDP packets), and ROUTE packets.
 ステップS203において、シグナリング処理部205は、物理層フレーム処理部203又はパケット処理部204からのシグナリング情報を処理する。また、制御部201は、シグナリング処理部205によるシグナリング情報の処理結果に基づいて、各部の動作を制御する。 In step S203, the signaling processing unit 205 processes the signaling information from the physical layer frame processing unit 203 or the packet processing unit 204. The control unit 201 controls the operation of each unit based on the processing result of the signaling information by the signaling processing unit 205.
 ここでは、例えば、LLSシグナリング情報として、物理ID(物理BS_ID,物理PLP_ID)と、論理ID(論理BS_ID,論理PLP_ID)を対応付けた対応情報としてのPRTが伝送されてくるので、シグナリング処理部205は、このPRTの処理結果を、制御部201に供給する。 Here, for example, as the LLS signaling information, the PRT as the correspondence information in which the physical ID (physical BS_ID, physical PLP_ID) and the logical ID (logical BS_ID, logical PLP_ID) are associated with each other is transmitted, so the signaling processing unit 205 Supplies the PRT processing result to the control unit 201.
 制御部201は、PLPが動的に運用される場合に、所定の時間ごとに使用するPLPが動的に切り替えられて、物理IDが変化したとき、PRTの処理結果に基づいて、論理ID(論理BS_ID,論理PLP_ID)を、変化後の物理ID(物理BS_ID,物理PLP_ID)に変換することができる。これにより、制御部201は、切り替え後のPLPを特定して、各部の動作を制御することで、LLSシグナリング情報やSLSシグナリング情報などを取得して処理することができる。 When the PLP is dynamically operated and the PLP to be used is dynamically switched at every predetermined time and the physical ID changes, the control unit 201 uses the logical ID ( (Logical BS_ID, logical PLP_ID) can be converted into a physical ID after change (physical BS_ID, physical PLP_ID). Accordingly, the control unit 201 can acquire and process LLS signaling information, SLS signaling information, and the like by specifying the PLP after switching and controlling the operation of each unit.
 ここでは、第1の方式を採用した場合には、Genericパケットのペイロードから、LLSシグナリング情報が抽出される。一方で、第2の方式を採用した場合には、IP/UDPパケットから、LLSシグナリング情報が抽出される。 Here, when the first method is adopted, LLS signaling information is extracted from the payload of the generic packet. On the other hand, when the second method is adopted, LLS signaling information is extracted from the IP / UDP packet.
 ステップS204においては、制御部201は、シグナリング処理部205により取得されるシグナリング情報に基づいて、各部の動作を制御することで、デコーダ206により、ビデオやオーディオ等のコンポーネントのデータが復号される。これにより、コンテンツの映像が表示部207に表示され、その音声がスピーカ208から出力される。 In step S204, the control unit 201 controls the operation of each unit based on the signaling information acquired by the signaling processing unit 205, so that the decoder 206 decodes component data such as video and audio. As a result, the video of the content is displayed on the display unit 207, and the sound is output from the speaker 208.
 以上、受信処理の流れについて説明した。 The flow of reception processing has been described above.
<7.変形例> <7. Modification>
 上述した説明としては、デジタル放送の規格として、米国等で採用されている方式であるATSC(例えばATSC3.0)を説明したが、本技術は、日本等が採用する方式であるISDB(Integrated Services Digital Broadcasting)や、欧州の各国等が採用する方式であるDVB(Digital Video Broadcasting)などに適用するようにしてもよい。 As described above, although the ATSC (for example, ATSC3.0), which is a method adopted in the United States and the like, has been described as a standard for digital broadcasting, this technology is based on ISDB (Integrated Services) which is a method adopted by Japan and the like. (Digital よ い Broadcasting) and DVB (Digital Video Broadcasting) which is a method adopted by European countries.
 また、上述したSLTなどのシグナリング情報の名称は、一例であって、他の名称が用いられるようにしてもよい。仮に、シグナリング情報の名称として、他の名称が用いられた場合であっても、単に形式的に名称が変更になっただけであり、そのシグナリング情報の実質的な内容が異なるものではない。例えば、SLTは、FIT(Fast Information Table)などと称される場合がある。また、PRTについても、他の名称が用いられる場合が想定される。 Further, the names of the signaling information such as SLT described above are merely examples, and other names may be used. Even if another name is used as the name of the signaling information, the name is merely changed formally, and the substantial content of the signaling information is not different. For example, the SLT may be referred to as FIT (Fast Information Table). Moreover, the case where another name is used also about PRT is assumed.
<8.コンピュータの構成> <8. Computer configuration>
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。図14は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示す図である。 The series of processes described above can be executed by hardware or software. When a series of processing is executed by software, a program constituting the software is installed in the computer. FIG. 14 is a diagram illustrating a configuration example of the hardware of a computer that executes the above-described series of processing by a program.
 コンピュータ900において、CPU(Central Processing Unit)901,ROM(Read Only Memory)902,RAM(Random Access Memory)903は、バス904により相互に接続されている。バス904には、さらに、入出力インターフェース905が接続されている。入出力インターフェース905には、入力部906、出力部907、記録部908、通信部909、及び、ドライブ910が接続されている。 In the computer 900, a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, and a RAM (Random Access Memory) 903 are connected to each other by a bus 904. An input / output interface 905 is further connected to the bus 904. An input unit 906, an output unit 907, a recording unit 908, a communication unit 909, and a drive 910 are connected to the input / output interface 905.
 入力部906は、キーボード、マウス、マイクロフォンなどよりなる。出力部907は、ディスプレイ、スピーカなどよりなる。記録部908は、ハードディスクや不揮発性のメモリなどよりなる。通信部909は、ネットワークインターフェースなどよりなる。ドライブ910は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア911を駆動する。 The input unit 906 includes a keyboard, a mouse, a microphone, and the like. The output unit 907 includes a display, a speaker, and the like. The recording unit 908 includes a hard disk, a nonvolatile memory, and the like. The communication unit 909 includes a network interface or the like. The drive 910 drives a removable medium 911 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
 以上のように構成されるコンピュータ900では、CPU901が、ROM902や記録部908に記録されているプログラムを、入出力インターフェース905及びバス904を介して、RAM903にロードして実行することにより、上述した一連の処理が行われる。 In the computer 900 configured as described above, the CPU 901 loads the program recorded in the ROM 902 or the recording unit 908 to the RAM 903 via the input / output interface 905 and the bus 904, and executes the program. A series of processing is performed.
 コンピュータ900(CPU901)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア911に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線又は無線の伝送媒体を介して提供することができる。 The program executed by the computer 900 (CPU 901) can be provided by being recorded on a removable medium 911 as a package medium, for example. The program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
 コンピュータ900では、プログラムは、リムーバブルメディア911をドライブ910に装着することにより、入出力インターフェース905を介して、記録部908にインストールすることができる。また、プログラムは、有線又は無線の伝送媒体を介して、通信部909で受信し、記録部908にインストールすることができる。その他、プログラムは、ROM902や記録部908に、あらかじめインストールしておくことができる。 In the computer 900, the program can be installed in the recording unit 908 via the input / output interface 905 by installing the removable medium 911 in the drive 910. Further, the program can be received by the communication unit 909 via a wired or wireless transmission medium and installed in the recording unit 908. In addition, the program can be installed in the ROM 902 or the recording unit 908 in advance.
 ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであってもよいし、複数のコンピュータによって分散処理されるものであってもよい。 Here, in the present specification, the processing performed by the computer according to the program does not necessarily have to be performed in chronological order in the order described as the flowchart. That is, the processing performed by the computer according to the program includes processing executed in parallel or individually (for example, parallel processing or object processing). The program may be processed by one computer (processor), or may be processed in a distributed manner by a plurality of computers.
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
 また、本技術は、以下のような構成をとることができる。 Also, the present technology can take the following configurations.
(1)
 複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLP(Physical Layer Pipe)が動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報を生成する生成部と、
 前記チャネルボンディングによって、前記対応情報を含む伝送ストリームを送信する送信部と
 を備える送信装置。
(2)
 前記対応情報は、
  前記第1の識別情報としての、前記周波数帯域ごとに割り当てられる固有の識別子である第1の物理ID、及び、前記周波数帯域に含まれるPLPごとに割り当てられる固有の識別子である第2の物理IDと、
  前記第2の識別情報としての、前記チャネルボンディングの対象の周波数帯域の中の1つの周波数帯域に割り当てられた固有の識別子に対応する第1の論理ID、及び、前記チャネルボンディングの対象のPLPごとに割り当てられる固有の識別子である第2の論理IDと
 を対応付けている
 (1)に記載の送信装置。
(3)
 前記対応情報は、前記PLPが動的に切り替えられた後における、前記第1の物理IDと前記第2の物理IDをさらに含む
 (2)に記載の送信装置。
(4)
 前記対応情報は、前記PLPが動的に切り替わる時刻を示す時刻情報をさらに含む
 (3)に記載の送信装置。
(5)
 前記伝送ストリームは、IP(Internet Protocol)伝送方式に対応しており、
 前記対応情報は、IPパケットを格納可能な伝送パケットのペイロードに配置されて伝送される
 (1)乃至(4)のいずれかに記載の送信装置。
(6)
 前記伝送ストリームは、IP伝送方式に対応しており、
 前記対応情報は、IPパケットに含まれるUDP(User Datagram Protocol)パケットに配置されて伝送される
 (1)乃至(4)のいずれかに記載の送信装置。
(7)
 前記伝送ストリームは、ATSC(Advanced Television Systems Committee)3.0の規格に対応している
 (1)乃至(6)のいずれかに記載の送信装置。
(8)
 送信装置の送信方法において、
 前記送信装置が、
 複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLPが動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報を生成し、
 前記チャネルボンディングによって、前記対応情報を含む伝送ストリームを送信する
 ステップを含む送信方法。
(9)
 複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLPが動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報を含む伝送ストリームを受信する受信部と、
 前記対応情報により特定される、前記第2識別情報に対応した前記第1の識別情報に基づいて、前記伝送ストリームを処理する各部の動作を制御する制御部と
 を備える受信装置。
(10)
 前記対応情報は、
  前記第1の識別情報としての、前記周波数帯域ごとに割り当てられる固有の識別子である第1の物理ID、及び、前記周波数帯域に含まれるPLPごとに割り当てられる固有の識別子である第2の物理IDと、
  前記第2の識別情報としての、前記チャネルボンディングの対象の周波数帯域の中の1つの周波数帯域に割り当てられた固有の識別子に対応する第1の論理ID、及び、前記チャネルボンディングの対象のPLPごとに割り当てられる固有の識別子である第2の論理IDと
 を対応付けている
 (9)に記載の受信装置。
(11)
 前記対応情報は、前記PLPが動的に切り替えられた後における、前記第1の物理IDと前記第2の物理IDをさらに含む
 (10)に記載の受信装置。
(12)
 前記対応情報は、前記PLPが動的に切り替わる時刻を示す時刻情報をさらに含む
 (11)に記載の受信装置。
(13)
 前記伝送ストリームは、IP伝送方式に対応しており、
 前記対応情報は、IPパケットを格納可能な伝送パケットのペイロードに配置されて伝送される
 (9)乃至(12)のいずれかに記載の受信装置。
(14)
 前記伝送ストリームは、IP伝送方式に対応しており、
 前記対応情報は、IPパケットに含まれるUDPパケットに配置されて伝送される
 (9)乃至(12)のいずれかに記載の受信装置。
(15)
 前記伝送ストリームは、ATSC3.0の規格に対応している
 (9)乃至(14)のいずれかに記載の受信装置。
(16)
 受信装置の受信方法において、
 前記受信装置が、
 複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLPが動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報を含む伝送ストリームを受信し、
 前記対応情報により特定される、前記第2の識別情報に対応した前記第1の識別情報に基づいて、前記伝送ストリームを処理する各部の動作を制御する
 ステップを含む受信方法。
(1)
When performing channel bonding using a combination of a plurality of frequency bands, a first defined in the physical layer is used when a PLP (Physical Layer Pipe) to be used is dynamically switched every predetermined time. A generation unit that generates correspondence information in which identification information is associated with second identification information defined in a higher hierarchy than the physical layer;
And a transmission unit configured to transmit a transmission stream including the correspondence information by the channel bonding.
(2)
The correspondence information is
As the first identification information, a first physical ID that is a unique identifier assigned to each frequency band, and a second physical ID that is a unique identifier assigned to each PLP included in the frequency band When,
As the second identification information, a first logical ID corresponding to a unique identifier assigned to one frequency band among the frequency bands targeted for channel bonding, and each PLP targeted for channel bonding The transmission device according to (1), wherein the second logical ID, which is a unique identifier assigned to, is associated.
(3)
The transmission apparatus according to (2), wherein the correspondence information further includes the first physical ID and the second physical ID after the PLP is dynamically switched.
(4)
The transmission device according to (3), wherein the correspondence information further includes time information indicating a time at which the PLP is dynamically switched.
(5)
The transmission stream corresponds to an IP (Internet Protocol) transmission method,
The transmission apparatus according to any one of (1) to (4), wherein the correspondence information is arranged and transmitted in a payload of a transmission packet capable of storing an IP packet.
(6)
The transmission stream corresponds to the IP transmission method,
The transmission device according to any one of (1) to (4), wherein the correspondence information is arranged and transmitted in a UDP (User Datagram Protocol) packet included in the IP packet.
(7)
The transmission apparatus according to any one of (1) to (6), wherein the transmission stream corresponds to an ATSC (Advanced Television Systems Committee) 3.0 standard.
(8)
In the transmission method of the transmission device,
The transmitting device is
In the case of performing channel bonding using a plurality of frequency bands combined, first identification information defined in the physical layer, which is used when a PLP to be used is dynamically switched every predetermined time, and Generating correspondence information in association with second identification information defined in a layer higher than the physical layer;
A transmission method including a step of transmitting a transmission stream including the correspondence information by the channel bonding.
(9)
In the case of performing channel bonding using a plurality of frequency bands combined, first identification information defined in the physical layer, which is used when a PLP to be used is dynamically switched every predetermined time, and A receiving unit that receives a transmission stream including correspondence information associated with second identification information defined in a layer higher than the physical layer;
And a control unit that controls the operation of each unit that processes the transmission stream based on the first identification information corresponding to the second identification information specified by the correspondence information.
(10)
The correspondence information is
As the first identification information, a first physical ID that is a unique identifier assigned to each frequency band, and a second physical ID that is a unique identifier assigned to each PLP included in the frequency band When,
As the second identification information, a first logical ID corresponding to a unique identifier assigned to one frequency band among the frequency bands targeted for channel bonding, and each PLP targeted for channel bonding The receiving device according to (9), wherein the second logical ID, which is a unique identifier assigned to, is associated.
(11)
The receiving apparatus according to (10), wherein the correspondence information further includes the first physical ID and the second physical ID after the PLP is dynamically switched.
(12)
The reception device according to (11), wherein the correspondence information further includes time information indicating a time at which the PLP is dynamically switched.
(13)
The transmission stream corresponds to the IP transmission method,
The reception device according to any one of (9) to (12), wherein the correspondence information is arranged and transmitted in a payload of a transmission packet capable of storing an IP packet.
(14)
The transmission stream corresponds to the IP transmission method,
The receiving device according to any one of (9) to (12), wherein the correspondence information is arranged and transmitted in a UDP packet included in an IP packet.
(15)
The receiving device according to any one of (9) to (14), wherein the transmission stream corresponds to a standard of ATSC3.0.
(16)
In the receiving method of the receiving device,
The receiving device is
In the case of performing channel bonding using a plurality of frequency bands combined, first identification information defined in the physical layer, which is used when a PLP to be used is dynamically switched every predetermined time, and Receiving a transmission stream including correspondence information associated with second identification information defined in a layer higher than the physical layer;
A receiving method including a step of controlling an operation of each unit that processes the transmission stream based on the first identification information corresponding to the second identification information specified by the correspondence information.
 1 伝送システム, 10 送信装置, 20 受信装置, 30 伝送路, 101 制御部, 102 コンポーネント取得部, 104 シグナリング生成部, 105 シグナリング処理部, 106 パケット生成部, 107 物理層フレーム生成部, 108 送信部, 201 制御部, 202 受信部, 203 物理層フレーム処理部, 204 パケット処理部, 205 シグナリング処理部, 900 コンピュータ, 901 CPU 1 transmission system, 10 transmission device, 20 reception device, 30 transmission path, 101 control unit, 102 component acquisition unit, 104 signaling generation unit, 105 signaling processing unit, 106 packet generation unit, 107 physical layer frame generation unit, 108 transmission unit , 201 control unit, 202 reception unit, 203 physical layer frame processing unit, 204 packet processing unit, 205 signaling processing unit, 900 computer, 901 CPU

Claims (16)

  1.  複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLP(Physical Layer Pipe)が動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報を生成する生成部と、
     前記チャネルボンディングによって、前記対応情報を含む伝送ストリームを送信する送信部と
     を備える送信装置。
    When performing channel bonding using a combination of a plurality of frequency bands, a first defined in the physical layer is used when a PLP (Physical Layer Pipe) to be used is dynamically switched every predetermined time. A generation unit that generates correspondence information in which identification information is associated with second identification information defined in a higher hierarchy than the physical layer;
    And a transmission unit configured to transmit a transmission stream including the correspondence information by the channel bonding.
  2.  前記対応情報は、
      前記第1の識別情報としての、前記周波数帯域ごとに割り当てられる固有の識別子である第1の物理ID、及び、前記周波数帯域に含まれるPLPごとに割り当てられる固有の識別子である第2の物理IDと、
      前記第2の識別情報としての、前記チャネルボンディングの対象の周波数帯域の中の1つの周波数帯域に割り当てられた固有の識別子に対応する第1の論理ID、及び、前記チャネルボンディングの対象のPLPごとに割り当てられる固有の識別子である第2の論理IDと
     を対応付けている
     請求項1に記載の送信装置。
    The correspondence information is
    As the first identification information, a first physical ID that is a unique identifier assigned to each frequency band, and a second physical ID that is a unique identifier assigned to each PLP included in the frequency band When,
    As the second identification information, a first logical ID corresponding to a unique identifier assigned to one frequency band among the frequency bands targeted for channel bonding, and each PLP targeted for channel bonding The transmission apparatus according to claim 1, wherein the second logical ID, which is a unique identifier assigned to, is associated.
  3.  前記対応情報は、前記PLPが動的に切り替えられた後における、前記第1の物理IDと前記第2の物理IDをさらに含む
     請求項2に記載の送信装置。
    The transmission device according to claim 2, wherein the correspondence information further includes the first physical ID and the second physical ID after the PLP is dynamically switched.
  4.  前記対応情報は、前記PLPが動的に切り替わる時刻を示す時刻情報をさらに含む
     請求項3に記載の送信装置。
    The transmission device according to claim 3, wherein the correspondence information further includes time information indicating a time at which the PLP is dynamically switched.
  5.  前記伝送ストリームは、IP(Internet Protocol)伝送方式に対応しており、
     前記対応情報は、IPパケットを格納可能な伝送パケットのペイロードに配置されて伝送される
     請求項1に記載の送信装置。
    The transmission stream corresponds to an IP (Internet Protocol) transmission method,
    The transmission device according to claim 1, wherein the correspondence information is arranged and transmitted in a payload of a transmission packet that can store an IP packet.
  6.  前記伝送ストリームは、IP伝送方式に対応しており、
     前記対応情報は、IPパケットに含まれるUDP(User Datagram Protocol)パケットに配置されて伝送される
     請求項1に記載の送信装置。
    The transmission stream corresponds to the IP transmission method,
    The transmission apparatus according to claim 1, wherein the correspondence information is arranged and transmitted in a UDP (User Datagram Protocol) packet included in the IP packet.
  7.  前記伝送ストリームは、ATSC(Advanced Television Systems Committee)3.0の規格に対応している
     請求項1に記載の送信装置。
    The transmission apparatus according to claim 1, wherein the transmission stream corresponds to a standard of ATSC (Advanced Television Systems Committee) 3.0.
  8.  送信装置の送信方法において、
     前記送信装置が、
     複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLPが動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報を生成し、
     前記チャネルボンディングによって、前記対応情報を含む伝送ストリームを送信する
     ステップを含む送信方法。
    In the transmission method of the transmission device,
    The transmitting device is
    In the case of performing channel bonding using a plurality of frequency bands combined, first identification information defined in the physical layer, which is used when a PLP to be used is dynamically switched every predetermined time, and Generating correspondence information in association with second identification information defined in a layer higher than the physical layer;
    A transmission method including a step of transmitting a transmission stream including the correspondence information by the channel bonding.
  9.  複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLPが動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報を含む伝送ストリームを受信する受信部と、
     前記対応情報により特定される、前記第2識別情報に対応した前記第1の識別情報に基づいて、前記伝送ストリームを処理する各部の動作を制御する制御部と
     を備える受信装置。
    In the case of performing channel bonding using a plurality of frequency bands combined, first identification information defined in the physical layer, which is used when a PLP to be used is dynamically switched every predetermined time, and A receiving unit that receives a transmission stream including correspondence information associated with second identification information defined in a layer higher than the physical layer;
    And a control unit that controls the operation of each unit that processes the transmission stream based on the first identification information corresponding to the second identification information specified by the correspondence information.
  10.  前記対応情報は、
      前記第1の識別情報としての、前記周波数帯域ごとに割り当てられる固有の識別子である第1の物理ID、及び、前記周波数帯域に含まれるPLPごとに割り当てられる固有の識別子である第2の物理IDと、
      前記第2の識別情報としての、前記チャネルボンディングの対象の周波数帯域の中の1つの周波数帯域に割り当てられた固有の識別子に対応する第1の論理ID、及び、前記チャネルボンディングの対象のPLPごとに割り当てられる固有の識別子である第2の論理IDと
     を対応付けている
     請求項9に記載の受信装置。
    The correspondence information is
    As the first identification information, a first physical ID that is a unique identifier assigned to each frequency band, and a second physical ID that is a unique identifier assigned to each PLP included in the frequency band When,
    As the second identification information, a first logical ID corresponding to a unique identifier assigned to one frequency band among the frequency bands targeted for channel bonding, and each PLP targeted for channel bonding The receiving apparatus according to claim 9, wherein the second logical ID, which is a unique identifier assigned to, is associated.
  11.  前記対応情報は、前記PLPが動的に切り替えられた後における、前記第1の物理IDと前記第2の物理IDをさらに含む
     請求項10に記載の受信装置。
    The receiving device according to claim 10, wherein the correspondence information further includes the first physical ID and the second physical ID after the PLP is dynamically switched.
  12.  前記対応情報は、前記PLPが動的に切り替わる時刻を示す時刻情報をさらに含む
     請求項11に記載の受信装置。
    The receiving device according to claim 11, wherein the correspondence information further includes time information indicating a time at which the PLP is dynamically switched.
  13.  前記伝送ストリームは、IP伝送方式に対応しており、
     前記対応情報は、IPパケットを格納可能な伝送パケットのペイロードに配置されて伝送される
     請求項9に記載の受信装置。
    The transmission stream corresponds to the IP transmission method,
    The receiving device according to claim 9, wherein the correspondence information is arranged and transmitted in a payload of a transmission packet capable of storing an IP packet.
  14.  前記伝送ストリームは、IP伝送方式に対応しており、
     前記対応情報は、IPパケットに含まれるUDPパケットに配置されて伝送される
     請求項9に記載の受信装置。
    The transmission stream corresponds to the IP transmission method,
    The receiving device according to claim 9, wherein the correspondence information is arranged and transmitted in a UDP packet included in an IP packet.
  15.  前記伝送ストリームは、ATSC3.0の規格に対応している
     請求項9に記載の受信装置。
    The receiving apparatus according to claim 9, wherein the transmission stream corresponds to the ATSC 3.0 standard.
  16.  受信装置の受信方法において、
     前記受信装置が、
     複数の周波数帯域を結合して使用するチャネルボンディングを行う場合において、所定の時間ごとに、使用するPLPが動的に切り替わるときに用いられる、物理層で規定される第1の識別情報と、前記物理層よりも上位の階層で規定される第2の識別情報とを対応付けた対応情報を含む伝送ストリームを受信し、
     前記対応情報により特定される、前記第2の識別情報に対応した前記第1の識別情報に基づいて、前記伝送ストリームを処理する各部の動作を制御する
     ステップを含む受信方法。
    In the receiving method of the receiving device,
    The receiving device is
    In the case of performing channel bonding using a plurality of frequency bands combined, first identification information defined in the physical layer, which is used when a PLP to be used is dynamically switched every predetermined time, and Receiving a transmission stream including correspondence information associated with second identification information defined in a layer higher than the physical layer;
    A receiving method including a step of controlling an operation of each unit that processes the transmission stream based on the first identification information corresponding to the second identification information specified by the correspondence information.
PCT/JP2016/062882 2015-05-08 2016-04-25 Transmission device, transmission method, receiving device and receiving method WO2016181807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015096069 2015-05-08
JP2015-096069 2015-05-08

Publications (1)

Publication Number Publication Date
WO2016181807A1 true WO2016181807A1 (en) 2016-11-17

Family

ID=57249190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062882 WO2016181807A1 (en) 2015-05-08 2016-04-25 Transmission device, transmission method, receiving device and receiving method

Country Status (1)

Country Link
WO (1) WO2016181807A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110574008A (en) * 2017-04-28 2019-12-13 日本电信电话株式会社 ID space conversion system and method thereof
JP2022507913A (en) * 2018-11-23 2022-01-18 ソニーグループ株式会社 TV receiver applications for TVs and electronic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067983A2 (en) * 2008-12-11 2010-06-17 Lg Electronics, Inc. Method of transmitting and receiving a signal and apparatus for transmitting and receiving a signal
JP2013520036A (en) * 2010-02-26 2013-05-30 パナソニック株式会社 Physical layer signaling in digital broadcasting systems
US20130219431A1 (en) * 2010-09-14 2013-08-22 Lg Electronics Inc. Apparatus for transmitting broadcasting signal, apparatus for receiving broadcasting signal, and method for transmitting/receiving broadcasting signal through apparatus for transmitting/receiving broadcasting signal
WO2013172550A1 (en) * 2012-05-10 2013-11-21 Samsung Electronics Co., Ltd. A method and apparatus for transmission and reception of data streams in digital video broadcasting systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067983A2 (en) * 2008-12-11 2010-06-17 Lg Electronics, Inc. Method of transmitting and receiving a signal and apparatus for transmitting and receiving a signal
JP2013520036A (en) * 2010-02-26 2013-05-30 パナソニック株式会社 Physical layer signaling in digital broadcasting systems
US20130219431A1 (en) * 2010-09-14 2013-08-22 Lg Electronics Inc. Apparatus for transmitting broadcasting signal, apparatus for receiving broadcasting signal, and method for transmitting/receiving broadcasting signal through apparatus for transmitting/receiving broadcasting signal
WO2013172550A1 (en) * 2012-05-10 2013-11-21 Samsung Electronics Co., Ltd. A method and apparatus for transmission and reception of data streams in digital video broadcasting systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital transmission system for cable systems (DVB-C2)", ETSI EN 302 769 V1.2.1, April 2011 (2011-04-01), pages 51 - 58,105, XP014064454 *
"Digital Video Broadcasting (DVB); Implementation Guidelines for a second generation digital cable transmission system (DVB-C2)", ETSI TS 102 991 V1.2.1, June 2011 (2011-06-01), pages 45 - 47,149,160, XP014065717 *
GOMEZ-BARQUERO, DAVID ET AL.: "DVB-NGH: The Next Generation of Digital Broadcast Services to Handheld Devices", IEEE TRANSACTIONS ON BROADCASTING, vol. 60, no. 2, June 2014 (2014-06-01), pages 246 - 257, XP011549840 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110574008A (en) * 2017-04-28 2019-12-13 日本电信电话株式会社 ID space conversion system and method thereof
JP2022507913A (en) * 2018-11-23 2022-01-18 ソニーグループ株式会社 TV receiver applications for TVs and electronic devices
JP7235214B2 (en) 2018-11-23 2023-03-08 ソニーグループ株式会社 Television receiver applications for TVs and electronic devices

Similar Documents

Publication Publication Date Title
US11671676B2 (en) Device and method for transmitting media data across multiple frequency bands
KR102445458B1 (en) Transmitting device, transmitting method, receiving device, and receiving method
US11490138B2 (en) Reception apparatus, reception method, transmission apparatus, and transmission method for indicating presence or absence of signaling information in a payload of a packet
KR102634779B1 (en) Receiving devices, transmitting devices and data processing methods
US20190387388A1 (en) Reception apparatus, reception method, transmission apparatus, and transmission method
US11956159B2 (en) Transmission device, transmission method, reception device, and reception method
US20180077456A1 (en) Receiving device, transmitting device, and data processing method
WO2016166947A1 (en) Transmission device and method, reception device and method
KR102212928B1 (en) Reception apparatus, reception method, transmission apparatus, and transmission method
WO2016181807A1 (en) Transmission device, transmission method, receiving device and receiving method
JP6607373B2 (en) Receiving device, receiving method, transmitting device, and transmitting method
WO2016181806A1 (en) Transmission device, transmission method, receiving device and receiving method
US20240179100A1 (en) Transmission device, transmission method, reception device, and reception method
JPWO2018168456A1 (en) Receiving device and data processing method
WO2023013123A1 (en) Retransmitting device, retransmitting method, receiving device, and receiving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP