WO2016181704A1 - Organic electroluminescence module and smart device - Google Patents

Organic electroluminescence module and smart device Download PDF

Info

Publication number
WO2016181704A1
WO2016181704A1 PCT/JP2016/058584 JP2016058584W WO2016181704A1 WO 2016181704 A1 WO2016181704 A1 WO 2016181704A1 JP 2016058584 W JP2016058584 W JP 2016058584W WO 2016181704 A1 WO2016181704 A1 WO 2016181704A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
electrode
organic electroluminescence
light emitting
bezel
Prior art date
Application number
PCT/JP2016/058584
Other languages
French (fr)
Japanese (ja)
Inventor
夏樹 山本
一由 小俣
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017517634A priority Critical patent/JPWO2016181704A1/en
Publication of WO2016181704A1 publication Critical patent/WO2016181704A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present invention relates to an organic electroluminescence module having a touch detection function and a smart device having the same.
  • a light emitting diode using a light guide plate Light Emitting Diode, hereinafter abbreviated as “LED”
  • LED Light Emitting Diode
  • organic light emitting diode Organic Light Emitting Diode, hereinafter, an organic electroluminescence element, Organic EL element or “OLED”.
  • an icon part which is a common function key button provided in the lower part of the smart device corresponds to this.
  • This common function key button has, for example, three types of marks indicating “Home” (displayed by a square mark, etc.), “Back” (displayed by an arrow mark, etc.), and “Search” (displayed by a magnifying glass mark, etc.). It may be provided.
  • the above-mentioned organic electroluminescence element has attracted attention as a surface light source for illumination in addition to applications such as television, and studies on its application are underway in various fields.
  • organic electroluminescence elements with thin flexibility have begun to be developed using a film substrate, taking advantage of its thinness and excellent flexibility, organic electroluminescence elements can be used as light sources for smart devices, particularly smartphones.
  • smart devices particularly smartphones
  • studies on application to backlights, functional key lights, decoration lights, camera auxiliary lights, and the like have been actively made.
  • decoration lights each smart media manufacturer needs to appeal its brand by emitting its own logo on smartphones, which tend to have a single design, and fine pixel division like a display
  • the possibility of its application has been studied from an early stage.
  • a film / film type touch sensor is often used which is laminated to a size equivalent to that of a cover glass.
  • a glass / glass type may be used.
  • a capacitive detection type is often employed as a touch detection type.
  • a method called “projection capacitive method”, which has fine electrode patterns in the x-axis and y-axis directions, is employed. In this method, it is possible to detect two or more touches called “multi-touch”.
  • the organic electroluminescence element is a surface light emitter, and unlike the conventional light source for illumination, it is thin and flexible, and can be bent into various shapes. Strength.
  • an in-cell type organic electroluminescence element is a promising candidate as a device having a light emitting function and capable of providing a touch detection function. come. By applying this method, there is no need to laminate an additional touch panel, which can greatly contribute to the reduction of the number of parts.
  • a multi-touch function such as a scroll operation or a tap operation
  • an in-cell type organic electroluminescence module capable of detecting a scrolling action and a tapping action by a finger touch and capable of displaying a company logo and the like and a smart device equipped with the in-cell type are demanded.
  • the present invention has been made in view of the above-described problems and situations, and the problem to be solved is an organic electroluminescence module having an organic electroluminescence element having a light emitting display function, a scroll operation function and a tap operation function, and Providing a smart device.
  • the inventor is an organic electroluminescence module constituted by an organic electroluminescence panel and an electrical connection member, and the organic electroluminescence panel is a pair of organic electroluminescence elements.
  • a bezel region which is a non-light emitting display region constituted by the electrodes, has at least one bezel electrode that does not contribute to the light emission operation, and the electrical connection member is electrically connected to the organic electroluminescence panel via a conductive member.
  • An organic electroluminescence module having an organic electroluminescence panel and an electrical connection member, wherein the organic electroluminescence panel is configured to sandwich an organic functional layer group including a light emitting layer between a pair of an anode electrode and a cathode electrode
  • the device has at least one bezel electrode that does not contribute to the light emitting operation in the bezel region that is a non-light emitting display region
  • the electrical connection member has an electrical energy supply line to the anode electrode and the cathode electrode of the organic electroluminescence panel, and a signal line to the bezel electrode
  • the organic electroluminescence module wherein the electrical connection member is electrically connected to the organic electroluminescence panel via a conductive member.
  • a light emitting element driving circuit unit for instructing light emission of the organic electroluminescence element; and a capacitance type touch detection circuit unit for detecting a self-capacitance change of the anode electrode or a self-capacitance change of the bezel electrode.
  • the light emission period of the organic electroluminescence panel controlled by the light emitting element driving circuit unit is separated from the touch sensing period controlled by the touch detection circuit unit, and the capacitance of the organic electroluminescence panel is not detected in the touch sensing period.
  • the organic electroluminescence module according to item 2 wherein at least one of the pair of electrodes is in a floating potential state.
  • a smart device comprising the organic electroluminescence module according to any one of items 1 to 3, A smart device, wherein the organic electroluminescence module is disposed on a main display surface side, a back surface side, or a side surface side.
  • an organic electroluminescence module having an organic electroluminescence element having a light emitting function, a scroll operation and a tap operation, and a smart device equipped with the organic electroluminescence module.
  • organic electroluminescence module in the organic electroluminescence module of the present invention (hereinafter abbreviated as “organic EL module”), as shown in FIG.
  • organic EL module In addition to the anode electrode and the cathode electrode that contribute to light emission, a “bezel electrode” that does not contribute to light emission is disposed in at least one place in the bezel region of the organic EL panel, A touch detection circuit is provided for the bezel electrode.
  • a first electric control member for controlling light emission of an organic electroluminescence element (hereinafter abbreviated as “organic EL element”) between a pair of anode / cathode electrodes arranged at opposite positions.
  • the light-emitting element driving circuit unit is included, and at least one electrode of the pair of electrodes functions as a touch detection electrode as the second electric control member, and the touch detection circuit unit is included therein.
  • the anode electrode in the organic EL panel is used as a detection electrode for a normal tap operation or a double tap operation applied to the logo portion with a finger or the like.
  • anode electrode anode electrode
  • cathode cathode
  • the touching finger and touch When the capacitance between the detection electrodes is Cf and the capacitance between the anode electrode and the cathode electrode is Cel, the capacitance when touching (when touching) is “Cf + Cel”, and there is no finger touch.
  • Cf Cf + Cel
  • the light emitting element driving circuit unit and the touch detection circuit unit are provided independently, and the anode electrode (in order to prevent the capacitance Cel between the anode electrode and the cathode electrode from being detected during touch detection).
  • Touch detection is performed by turning off the switch between the anode) and cathode electrode (cathode) and the light emitting element driving circuit unit, and setting at least one of the anode electrode (anode) and cathode electrode (cathode) to a floating potential state.
  • the floating potential state in the present invention refers to a floating potential state that is not connected to the power supply or the ground of the device, and the anode electrode (anode) or cathode electrode (cathode) at the time of touch detection has a floating potential.
  • the electrostatic capacitance Cel of the organic EL panel is not detected, and as a result, touch detection by finger touch becomes possible.
  • Cel is not present in at least one bezel electrode, and it is possible to detect a finger touch to the area by detecting a change in Cf.
  • touch detection by switch-off operation to the part and Cf change detection of the bezel electrode it is possible to perform the company logo light emission, touch operation, and slide touch operation on the back and side surfaces of the smart device and the entire surface in a small format. .
  • FIG. 1 Schematic sectional view showing an example of the overall configuration of the organic electroluminescence module of the present invention
  • the schematic top view which shows an example of a structure of the organic electroluminescent panel which comprises an organic electroluminescent module, and an electrical connection member (FPC: flexible printed circuit) Schematic top view and schematic back view showing an example of an organic electroluminescence module configured by connecting an organic electroluminescence panel and an electrical connection member Schematic sectional view showing an example of an organic electroluminescence module
  • the schematic block diagram which shows the example of arrangement
  • the organic electroluminescence module of the present invention has an organic electroluminescence panel and an electrical connection member, and the organic electroluminescence panel has a configuration in which an organic functional layer group including a light emitting layer is sandwiched between a pair of anode electrodes and a cathode electrode.
  • An organic electroluminescence element and at least one bezel electrode that does not contribute to light emission operation is provided in a bezel region that is a non-light-emitting display region
  • the electrical connection member includes an anode electrode and a cathode of the organic electroluminescence panel
  • an organic electroluminescence module includes a light emitting element driving circuit unit for instructing light emission of the organic electroluminescent element, and a self-operating of the anode electrode, from the viewpoint that the effect of the present invention can be further expressed.
  • a configuration having a capacitive touch detection circuit unit that detects a change in capacitance or a change in self-capacitance of the bezel electrode can simplify the circuit and exhibit an efficient touch detection function. From the viewpoint of being able to.
  • the light emission period of the organic electroluminescence panel controlled by the light emitting element driving circuit unit and the touch sensing period controlled by the touch detection circuit unit are separated, and in the touch sensing period, the electric capacitance of the organic electroluminescence panel is In order to prevent detection, it is preferable that at least one of the pair of electrodes is in a floating potential state from the viewpoint of more clearly separating the light emission period and the sensing period.
  • the organic electroluminescence module of the present invention on the main display surface side, the back surface side or the side surface side, various users can easily operate regardless of the size of the operating hand or the size of the smart device body.
  • a smart device that can be provided can be provided.
  • organic electroluminescence element a member constituted by a pair of electrodes and an organic functional layer unit
  • organic electroluminescence element or organic EL element a member constituted by a pair of electrodes and an organic functional layer unit
  • organic electroluminescent panel or an organic EL panel the structure which has arrange
  • organic electroluminescent panel or an organic EL panel the structure which has arrange
  • organic electroluminescent panel or an organic EL panel the structure which has arrange
  • organic electroluminescent panel or an organic EL panel the structure which has arrange
  • organic electroluminescent panel or an organic EL panel the structure which has arrange
  • organic electroluminescent panel or an organic EL panel
  • the “bezel region” in the present invention refers to a region that does not contribute to light emission in the organic EL element, specifically, a region excluding the light emitting display region.
  • An electrode that is formed in this bezel region and is not electrically connected to the anode electrode and the cathode electrode of the organic EL element is referred to as a “bezel electrode”.
  • the organic EL module of the present invention has a configuration in which an electrical connection member is joined to an organic EL panel, and the electrical connection member is a capacitive touch detection circuit unit and a light emitting element drive for driving the organic EL panel.
  • the organic EL panel has at least an anode electrode and a cathode electrode as a pair of planar electrodes at opposing positions inside, and the pair of electrodes are connected to the light emitting element driving circuit unit.
  • the present invention is characterized in that a bezel electrode that is not connected to the pair of electrodes is provided in the outer peripheral portion of the light emitting region constituted by the pair of electrodes, that is, the bezel region portion.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic EL module of the present invention.
  • an anode electrode (4, anode) and, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron are formed on a transparent substrate (3).
  • An organic functional layer unit (5) composed of an injection layer or the like is laminated to constitute a light emitting region (LA).
  • a cathode electrode (6, cathode) is laminated on the upper part of the organic functional layer unit (5) to constitute the organic EL element (9).
  • two bezel electrodes (BZ-A and BZ-B) are arranged on the outer peripheral portion of the light emitting region (LA).
  • the outer peripheral part of the organic EL element (9) is sealed with a sealing adhesive layer (7), and on its surface, harmful gas (oxygen, moisture, etc.) from the external environment is prevented from penetrating into the light emitting part.
  • the sealing member (8) is arranged to constitute the organic EL panel (2).
  • the organic EL panel (2) according to the present invention may have a configuration in which a metal foil layer is provided on the outermost surface side for the purpose of protecting the organic EL element (9).
  • the anode electrode (4) and the cathode electrode (6) which are a pair of electrodes, are connected to a light emitting element driving circuit unit (12) that controls light emission. Also, the two bezel electrodes (BZ-A and BZ-B), or the two bezel electrodes (BZ-A and BZ-B) and the anode electrode (4), touch detection for detecting touch (finger touch) Connected to the circuit unit (14).
  • the surface of the transparent base (3) opposite to the surface on which the organic EL element is formed is, for example, an anode of an organic electroluminescence panel on a flexible substrate.
  • An electric connection member FPC, flexible printed circuit
  • FPC flexible printed circuit
  • FIG. 2 is a schematic top view showing an example of the configuration of an FPC (flexible printed circuit) as an example of an organic EL panel constituting an organic EL module and an electrical connection member.
  • FPC flexible printed circuit
  • 2A is a schematic top view showing an example of an organic EL panel.
  • the organic EL panel (2) shown in FIG. 2A comprises a transparent substrate (3), an anode electrode (4), an organic functional layer group including a light emitting layer (not shown), and a cathode electrode (6).
  • the organic EL element (9) to be formed is arranged to form a light emitting region (LA). From the organic EL element (9), an extraction electrode from the anode electrode (4) and an extraction electrode from the cathode electrode (6) are arranged. Further, a bezel electrode A (BZ-A) and a bezel electrode B (BZ-B) are formed independently of other electrodes on the upper and lower portions outside the light emitting region (LA).
  • a sealing member (8) is formed on the organic EL element (9) and each bezel electrode.
  • the ends of the anode electrode (4), the cathode electrode (6), and the bezel electrodes (BZ-A and BZ-B) are electrically connected to an FPC (flexible printed circuit) which is an electrical connection member described with reference to FIG. Because it is connected, it is exposed.
  • FPC flexible printed circuit
  • FIG. 2 B shown in the lower part of FIG. 2 is a schematic top view showing an example of the configuration of an FPC (flexible printed circuit) which is an electrical connection member.
  • FPC flexible printed circuit
  • the FPC shown in B of FIG. 2 is electrically connected to each electrode constituting the organic EL panel (2) described above on a printed wiring board (PCB) to control driving power supply and information. It has a printed wiring (PC) and each pad (P) for transmission to the part.
  • the pads include a bezel electrode A connection pad (BZ-AP) for connecting the bezel electrode A (BZ-A), and a cathode electrode connection pad (6-P) for connecting the cathode electrode (6). ), An anode electrode connection pad (4-P) for connecting the anode electrode (4), and a bezel electrode B connection pad (BZ-BP) for connecting the bezel electrode B (BZ-B).
  • BZ-AP bezel electrode A connection pad
  • 6-P cathode electrode connection pad
  • BZ-BP bezel electrode B connection pad
  • FIG. 3 is a schematic diagram showing an example of the organic EL module (1) configured by connecting the organic EL panel (2) described in FIG. 2 and an electrical connection member (FPC).
  • FPC electrical connection member
  • a shown in the upper part of FIG. 3 is a schematic top view of the organic EL module (1)
  • B shown in the lower part of FIG. 3 is a schematic rear view when the organic EL module (1) is observed from the back side. . Therefore, a schematic top view of the electrical connection member (FPC) observed from the top side shown by B in FIG. 2 and a schematic back view of the electrical connection member (FPC) observed from the back side shown by B in FIG.
  • FPC electrical connection member
  • the bezel electrode A (BZ-A), the anode electrode (4), the cathode electrode (6), and the bezel electrode B which are electrodes constituting the organic EL panel (2) described in FIG. (BZ-B), the bezel electrode A connection pad (BZ-AP), the cathode electrode connection pad (6-P), and the anode electrode connection pad (4) included in the electrical connection member (FPC).
  • -P) and the bezel electrode B connection pad (BZ-BP) are electrically connected to form the organic EL module (1).
  • 3 is a transparent base material which comprises an organic electroluminescent panel (2), 8 is the sealing member arrange
  • FIG. 3 B shown in the lower part of FIG. 3 is a view of the organic EL module (1) seen from the back side, and a protective film (F) is disposed on the outermost surface.
  • FIG. 4 is a schematic cross-sectional view showing an example of the organic EL module having the configuration described in FIG.
  • FIG. 4A is a cross-sectional view represented by the II cut plane shown in FIG. 3 and includes a bezel electrode A formed in the bezel region.
  • the bezel electrode A (BZ-A) is disposed under the transparent base material (3) and is sealed by the sealing member (8).
  • the end portion of the bezel electrode A (BZ-A) constitutes an exposed extraction electrode, and the end portion of the electrical connection member (FPC) has a bezel electrode A connection pad (BZ-AP).
  • the bezel electrode A (BZ-A) and the bezel electrode A connection pad (BZ-AP) are electrically connected by a conductive member (not shown) to constitute the organic EL module (1). Yes.
  • a protective film (F) for protecting the organic EL module (1) is provided below the sealing member (8).
  • FIG. 4 B shown in the lower part of FIG. 4 is a cross-sectional view taken along the line II-II shown in FIG. 3, and is a cross-sectional view including the cathode electrode (6).
  • the organic EL element (9) is disposed under the transparent substrate (3) and is sealed by the sealing member (8).
  • a lead electrode of the cathode electrode (6) is formed from the end of the organic EL element (9).
  • a cathode electrode connection pad (6-P) is provided at the end of the electrical connection member (FPC).
  • the cathode electrode (6) and the cathode electrode connection pad (6-P) are electrically conductive members (non-conductive).
  • the organic EL module (1) is configured by electrical connection according to the figure.
  • a protective film (F) for protecting the organic EL module (1) is provided below the sealing member.
  • FIG. 5A and 5B are schematic configuration diagrams showing an example of a smart device including the organic EL module of the present invention, FIG. 5A is a main display screen side, and FIG. 5B is a back side.
  • FIG. 5B is a schematic diagram showing an example of a configuration having a main display screen (120) and a sub display screen (110) on the main surface side of the smart device (100) shown in FIG. 5A.
  • the smart device (100) shown in FIG. 5A includes a display screen (110) and a main display screen (120) including a liquid crystal display device on the front side.
  • a conventionally known liquid crystal display device can be used as the liquid crystal display device constituting the main display screen (120).
  • the organic EL module of the present invention may be arranged, or a conventional organic EL module may be arranged.
  • Each of the sub display screens (110) has a plurality of organic EL panels of the present invention or conventional organic EL panels, and icon display portions (111) having different display patterns are arranged. At the time of light emission, light emission of various display patterns such as figures, characters, and patterns is visually recognized. Further, when the organic EL panel is in a non-light emitting state, various display patterns are not visually recognized.
  • FIG. 5B is a configuration on the back side of the smart device (100), and an overall configuration in which an organic EL module (1) having a scroll function or a touch function including the organic EL element (9) is arranged as a sub display screen.
  • An example of a schematic diagram is shown.
  • the organic EL module (1) of the present invention has a main display screen side as shown in FIG. 5A, a back side as shown in FIG. 5B, or a smart device.
  • the organic EL module (1) of the present invention having a scroll function or a touch function as a secondary display screen is preferably provided on the back side as exemplified in FIG. 5B.
  • the configuration is the most preferred embodiment.
  • FIG. 6 is a schematic diagram illustrating an example of a scroll operation and a tap operation by a smart device.
  • FIG. 6 is a rear view of the same smart device (100) as FIG. 5B, and includes the organic EL module (1) of the present invention.
  • FIG. 6 is a diagram showing the internal structure of the region of the organic EL module (1), an organic EL panel (2) including an organic EL element (9) having a light emitting region (LA), An organic EL module (1) composed of an electrical connection member (FPC) is disposed.
  • FIG. 6C is a diagram showing a state of scrolling operation, for example, page scrolling, on the organic EL panel (2), and the finger (15) is touched in the vertical direction of the organic EL panel (2).
  • Scrolling SC
  • page scrolling is performed.
  • D shown in FIG. 6 is a diagram illustrating a situation where a tap operation is performed.
  • T double-tapping
  • Tap operation can be performed.
  • FIG. 7 is an overall configuration diagram of a smart device including the organic EL module of the present invention.
  • FIG. 7 shows an example in which the sub display screens are arranged on both the front side and the back side.
  • the cover glass (104) is disposed on the front surface side (main display screen side), the liquid crystal panel (105) is disposed on the lower surface side thereof, and the lower portion thereof is driven.
  • a battery (not shown) or the like which is power for use is stored.
  • an organic EL panel (2) is arranged on the lower surface side of the sub display screen (110) on the front side, and the organic EL panel (2) passes through a flexible printed circuit (FPC) which is an electrical connection unit. Are connected to a printed wiring circuit (PCB) for controlling driving.
  • FPC flexible printed circuit
  • the liquid crystal panel (105) is also connected to a printed wiring circuit (PCB) via a flexible printed circuit (FPC). Moreover, when electrically connecting the extraction electrode part of an organic EL panel (2) and a flexible printed circuit (FPC), it joins using a conductive adhesive.
  • the conductive adhesive will be described later.
  • the sub display screen (102B) includes the organic EL element (2) and a flexible printed circuit (FPC) electrically connected thereto on the lower surface side of the light-transmissive protective member (F).
  • the organic EL device (1) and the flexible printed circuit (FPC) are connected to a printed wiring circuit (PCB) that controls driving.
  • the organic EL module of the present invention it is preferable to mainly apply the following two touch detection methods.
  • the light emitting element circuit unit is always energized to emit light, and the bezel electrode A and the bezel electrode B having a switch function are used.
  • the switches are turned “ON” in order from the bezel electrode A to the bezel electrode B.
  • Cf the change in the capacitance
  • a tap operation can be performed by detecting a change in Cf of only the anode detection electrode, and a double tap can be enabled by detecting a change in Cf with a time difference. Details will be described later.
  • the organic EL panel (2) constituting the organic EL module (1) includes, for example, an anode electrode (4, anode) and an organic functional layer unit on the transparent substrate (3) as illustrated in FIG. (5) is laminated, and an organic EL element (9) having a light emitting region (LA) is formed by laminating a cathode electrode (6, cathode) on the organic functional layer unit (5). .
  • the outer peripheral portion of the organic EL element (9) is sealed with a sealing adhesive (7), and a sealing member (8) is disposed on the surface thereof to constitute an organic EL panel (2).
  • Anode / organic functional layer unit (hole injection transport layer / light emitting layer / electron injection transport layer) / cathode (ii) Anode / organic functional layer unit (hole injection transport layer / light emitting layer / hole blocking layer / Electron injection transport layer) / cathode (iii) Anode / organic functional layer unit (hole injection transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron injection transport layer) / cathode (iv) Anode / organic functional layer Unit (hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer) / cathode (v) Anode / organic functional layer unit (hole injection layer / hole transport layer / light emitting layer / hole) Blocking layer / electron transport layer / electron injection layer) / cathode (vi) anode / organic functional layer unit (hole injection layer / hole transport layer / electron blocking layer / light emitting layer (I
  • transparent substrate examples of the transparent substrate (3) applicable to the organic EL element according to the present invention include transparent materials such as glass and plastic. Examples of the transparent substrate (3) having light transmittance preferably used include glass, quartz, and resin films.
  • transparent as used in the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more, preferably 70% or more, and more preferably 85% or more.
  • the glass material examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass.
  • a physical treatment such as polishing, a coating made of an inorganic material or an organic material, or these coatings, if necessary.
  • a combined hybrid coating can be formed.
  • polyesters such as polyethylene terephthalate (abbreviation: PET) and polyethylene naphthalate (abbreviation: PEN), polyethylene (abbreviation: PE), polypropylene (abbreviation: PP), cellophane, and cellulose diene.
  • Cellulose esters such as acetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate, and derivatives thereof, polyvinylidene chloride, polyvinyl alcohol ( Abbreviation: PVA), polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate (abbreviation: PC), norbornene resin, polymethylpentene, poly -Terketone, polyimide (abbreviation: PI), polyethersulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate (abbreviation: PMMA), acrylic And polyarylates, cycloolefin resins (abbreviation: COP) such as Art
  • a gas barrier layer may be provided on the transparent substrate (3) as described above, if necessary.
  • any material that has a function of suppressing intrusion of water or oxygen that causes deterioration of the organic EL element may be used.
  • an inorganic substance such as silicon oxide, silicon dioxide, or silicon nitride may be used. Can be used.
  • anode electrode anode
  • the anode constituting the organic EL element include metals such as Ag and Au, alloys containing metal as a main component, CuI, indium-tin composite oxide (ITO), and metal oxides such as SnO 2 and ZnO.
  • a metal or a metal-based alloy is preferable, and silver or a silver-based alloy is more preferable.
  • the anode according to the present invention may be a transparent electrode or a non-transparent electrode, but is designed as a transparent electrode when the anode side is a light extraction surface (light emitting surface).
  • the purity of silver is preferably 99% or more. Further, palladium (Pd), copper (Cu), gold (Au), or the like may be added to ensure the stability of silver.
  • the transparent anode is preferably a layer composed mainly of silver, but specifically, it may be formed of silver alone or an alloy containing silver (Ag) as a main component. It may be.
  • Such alloys include silver / magnesium (Ag / Mg), silver / copper (Ag / Cu), silver / palladium (Ag / Pd), silver / palladium / copper (Ag / Pd / Cu), silver -Indium (Ag.In) etc. are mentioned.
  • the anode constituting the organic EL device according to the present invention is a transparent anode composed mainly of silver and having a thickness in the range of 2 to 20 nm.
  • the thickness is preferably in the range of 4 to 12 nm.
  • a thickness of 20 nm or less is preferable because the absorption component and reflection component of the transparent anode can be kept low and high light transmittance can be maintained.
  • the layer composed mainly of silver means that the silver content in the transparent anode is 60% by mass or more, preferably the silver content is 80% by mass or more, More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more.
  • transparent in the transparent anode according to the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the transparent anode may have a configuration in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
  • a base layer may be provided at the lower portion from the viewpoint of improving the uniformity of the silver film of the transparent anode to be formed.
  • a base layer it is a layer containing the organic compound which has a nitrogen atom or a sulfur atom, and the method of forming a transparent anode on the said base layer is a preferable aspect.
  • the organic EL device in the case of taking a structure in which two or more organic functional layer units composed of an organic functional layer group and a light emitting layer are laminated between the anode and the cathode, two or more The organic functional layer units can be separated by an intermediate electrode layer unit having independent connection terminals for obtaining electrical connection.
  • Bezel electrode In the present invention, it is characterized in that a bezel electrode for touch detection is formed in a non-light emitting region, but the bezel electrode is made of the same material and method as those used for forming the anode described above or the cathode described later. It can be formed in the bezel region.
  • the light emitting layer constituting the organic EL element preferably has a structure containing a phosphorescent light emitting compound as a light emitting material.
  • the light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be an interface between the light emitting layer and another adjacent layer.
  • the light emitting layer is not particularly limited in its configuration as long as the light emitting material included satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to provide a non-light emitting intermediate layer between the light emitting layers.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
  • the sum total of the thickness of a light emitting layer means the thickness also including the said intermediate
  • the light emitting layer as described above is prepared by using, for example, a vacuum emitting method, a spin coating method, a casting method, an LB method (Langmuir Blodget, Langmuir Blodgett method), a wet coating method, an ink jet method, and the like. It can form by the well-known method of these.
  • the light-emitting layer may be a mixture of a plurality of light-emitting materials having different characteristics.
  • a phosphorescent light-emitting material and a fluorescent light-emitting material are mixed and used in the same light-emitting layer. Also good.
  • the structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
  • a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • a known host compound may be used alone, or a plurality of types of host compounds may be used in combination.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent device can be improved.
  • a plurality of kinds of light emitting materials described later it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
  • Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US2005 / 0112407, US2009 No./0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication No. 2009. / 08 028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
  • a phosphorescent compound also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant
  • a fluorescent compound both a fluorescent compound or a fluorescent material
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C.
  • a preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
  • At least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer.
  • An inclined configuration may be used.
  • Preferred phosphorescent compounds in the present invention include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
  • the phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
  • Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. And dyes, polythiophene dyes, and rare earth complex phosphors.
  • each layer other than the light emitting layer constituting the organic functional layer unit will be described in the order of a charge injection layer, a hole transport layer, an electron transport layer, and a blocking layer.
  • the charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (NST 30, November 30, 1998) The details are described in Chapter 2, “Electrode Materials” (pages 123 to 166) of the second edition of “The Company”).
  • the charge injection layer includes a hole injection layer and an electron injection layer.
  • the charge injection layer exists between the anode and the light emitting layer or the hole transport layer if it is a hole injection layer, or between the cathode and the light emitting layer or the electron transport layer if it is an electron injection layer.
  • the hole injection layer is a layer disposed adjacent to the anode, which is a transparent electrode, in order to lower the driving voltage and improve the luminance of light emission.
  • the organic EL element and its industrialization front line June 30, 1998 The details are described in Chapter 2, “Electrode Materials” (pages 123 to 166) of the second volume of “issued by TS Co., Ltd.”.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer
  • Examples of the triarylamine derivative include benzidine type represented by ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ′′).
  • Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
  • hexaazatriphenylene derivatives described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
  • the electron injection layer is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the cathode is composed of a transparent electrode, it is adjacent to the transparent electrode.
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq).
  • Metals represented by strontium and aluminum alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc.
  • the transparent electrode is a cathode
  • an organic material such as a metal complex is particularly preferably used.
  • the electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 ⁇ m.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer and the electron blocking layer also have a function as a hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has characteristics of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
  • the hole transport material As the hole transport material, the above-mentioned materials can be used. Further, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used. Particularly, aromatic tertiary amine compounds are used. It is preferable to use it.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p
  • the above-described hole transport material may be a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method).
  • the thin film can be formed by the method.
  • the thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the hole transport layer may have a single structure containing one or more of the above materials.
  • the p property can be increased by doping impurities into the hole transport material constituting the hole transport layer.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • an electron transport material also serving as a hole blocking material
  • electrons injected from the cathode are used. What is necessary is just to have the function to transmit to a light emitting layer.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes
  • a metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
  • the electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the electron transport layer may have a single structure composed of one or more of the above materials.
  • blocking layer examples include a hole blocking layer and an electron blocking layer, which are provided as necessary in addition to the constituent layers of the organic functional layer unit described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of an electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made.
  • the structure of a positive hole transport layer can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the cathode is an electrode that functions to supply holes to the organic functional layer group and the light emitting layer, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO Oxide semiconductors such as 2 and SnO 2 .
  • the cathode can be formed as a thin film by depositing these conductive materials by vapor deposition or sputtering.
  • the sheet resistance as a cathode is several hundred ⁇ / sq.
  • the film thickness is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • a light transmissive cathode is selected and configured.
  • sealing member examples of the sealing means used for sealing the organic EL element include a method in which a sealing member, a cathode, and a transparent substrate are bonded with a sealing adhesive.
  • the sealing member only needs to be disposed so as to cover the display area of the organic EL element, and may be concave or flat. Moreover, if it is not a light extraction side, transparency and electrical insulation will not be specifically limited.
  • the sealing member include a glass plate, a polymer plate, a metal plate, and a polymer film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate or polymer film include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the sealing member a polymer film and a metal film can be preferably used from the viewpoint of reducing the thickness of the organic EL element. Furthermore, the polymer film has a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g / m 2 .multidot.m at a temperature of 25 ⁇ 0.5 ° C. and a relative humidity of 90 ⁇ 2% RH measured by a method according to JIS K 7129-1992.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm (1 atm is 1.01325 ⁇ 10 5 a Pa) equal to or lower than a temperature of 25 ⁇ 0.5 ° C.
  • water vapor permeability at a relative humidity of 90 ⁇ 2% RH is preferably not more than 1 ⁇ 10 -3 g / m 2 ⁇ 24h.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase. can do.
  • the gap between the sealing member and the light emitting region of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
  • the electrical connection member according to the present invention is also called FPC (Flexible Printed Circuit), and is also called a printed circuit board (PCB, Printed Circuit Board) or a printed circuit board as shown in FIG. ) Above, printed wiring (PC) and each pad (electrically connected to each electrode constituting the organic EL panel (2) described above to supply driving power and transmit each information to the control unit) P).
  • the pads include a bezel electrode A connection pad (BZ-AP) for connecting the bezel electrode A (BZ-A), and a cathode electrode connection pad (6-P) for connecting the cathode electrode (6).
  • the organic EL module of the present invention is configured by being bonded to the organic EL panel in the arrangement.
  • the substrate constituting the printed circuit board (PCB) is not particularly limited as long as it is a transparent and flexible plastic film having sufficient mechanical strength.
  • Polyimide resin abbreviation: PI
  • polycarbonate resin ABS
  • PET polyethylene terephthalate resin
  • PEN polyethylene naphthalate resin
  • COP cycloolefin resin
  • PI polyimide resin
  • PET polyethylene terephthalate resin
  • PEN polyethylene naphthalate resin
  • COP cycloolefin resin
  • COP cycloolefin resin
  • the material constituting the printed wiring is preferably composed of a conductive metal material, and examples thereof include gold, silver, copper, and ITO. In the invention, it is preferable to form with copper.
  • PC printed wiring
  • a photoresist material or the like is applied, or a dry resist film is laminated, and a desired wiring pattern is obtained.
  • exposure is performed through a mask material or the like, development is performed, and a resist pattern is formed through an unnecessary resist stripping process.
  • a desired printed wiring pattern is formed by removing the copper layer in a region other than the mask by immersing in a copper layer etchant or applying the etchant by showering.
  • the electrical connecting member and the organic EL panel are electrically connected via a conductive member.
  • the members to be electrically connected include the bezel electrode A connection pad (BZ-AP) for connecting the bezel electrode A (BZ-A) as exemplified in FIG. 2B, the cathode electrode (6).
  • the cathode electrode connection pad (6-P) for connecting the anode electrode the pad for connecting the anode electrode (4-P) for connecting the anode electrode (4), and the bezel electrode B (BZ-B) A pad such as a bezel electrode B connection pad (BZ-BP).
  • the constituent material of the pad is not particularly limited as long as it is a member having conductivity, but is preferably an anisotropic conductive film (ACF, Anisotropic Conductive Film), a conductive paste, or a metal paste.
  • ACF anisotropic conductive film
  • anisotropic conductive film examples include a conductive film obtained by forming a layer having fine conductive particles having conductivity mixed with a thermosetting resin into a film shape.
  • the conductive particle-containing layer that can be used in the present invention is not particularly limited as long as it is a layer containing conductive particles as an anisotropic conductive member, and can be appropriately selected according to the purpose.
  • the conductive particles that can be used as the anisotropic conductive member according to the present invention are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include metal particles and metal-coated resin particles.
  • Examples of commercially available ACFs include low-temperature curing ACFs that can also be applied to resin films, such as MF-331 (manufactured by Hitachi Chemical).
  • the metal particles include nickel, cobalt, silver, copper, gold, and palladium. These may be used individually by 1 type and may use 2 or more types together. Among these, nickel, silver, and copper are preferable. In the said metal particle, you may use the particle
  • metal-coated resin particles examples include particles in which the surface of the resin core is coated with any metal of nickel, copper, gold, and palladium. Similarly, particles having gold and palladium added to the outermost surface of the resin core may be used. Further, a resin core whose surface is coated with a metal protrusion or an organic material may be used.
  • metal paste commercially available metal nanoparticle pastes such as silver particle paste, silver-palladium particle paste, gold particle paste, and copper particle paste can be appropriately selected and used.
  • the metal paste include silver pastes for organic substrates (CA-6178, CA-6178B, CA-2500E, CA-2503-4, CA-2503N, CA-271, etc., sold by Daiken Chemical Co., Ltd.
  • Resistance value 15-30 m ⁇ ⁇ cm, formed by screen printing, curing temperature: 120-200 ° C., LTCC paste (PA-88 (Ag), TCR-880 (Ag), PA-Pt (Ag ⁇ Pt)) ), Silver paste for glass substrate (US-201, UA-302, baking temperature: 430 to 480 ° C.), and the like.
  • FIG. 8 is a drive circuit diagram showing an example (embodiment 1) of a method for driving an organic EL module.
  • the organic EL panel (2) shown in the center has an anode electrode wiring (25) and a cathode electrode wiring (26), and a diode is provided between both wirings.
  • An organic EL element (22) and a capacitor (21, Cel) are connected.
  • the anode electrode wiring (25) drawn from the anode electrode is directly connected to the light emitting element drive circuit section (23), while the cathode electrode drawn from the cathode electrode.
  • the wiring (26) is also directly connected to the light emitting element driving circuit unit (23).
  • the light emitting element driving circuit section (23) is connected to the ground (27). This ground (27) is specifically called a signal ground.
  • the light emitting element drive circuit unit (12) incorporates a constant current drive circuit or a constant voltage drive circuit, controls the light emission timing of the organic EL element, and applies reverse bias (reverse applied voltage) as necessary. It has a light emitting element driving circuit section (23).
  • the light emitting element driving circuit unit (12) in the present invention is composed of an anode electrode wiring (25), a light emitting element driving circuit section (23), and a cathode electrode wiring (26) as shown by the solid line in FIG. The circuit range.
  • an independent first bezel electrode A (BZ-A) for functioning as a detection electrode is connected via a switch 4 (SW4) to the touch detection circuit unit ( 24) and further on the lower side, the second bezel electrode B (BZ-B) is connected to the touch detection circuit section (24) via the switch 5 (SW5).
  • the touch detection circuit unit (24) is connected to the ground (27).
  • a configuration in which the switch 4 (SW4) and the switch 5 (SW5) are incorporated in the touch detection circuit unit (24) may be employed.
  • the configuration of the light emitting element driving circuit unit (23) according to the present invention is not particularly limited, and a conventionally known light emitting element driving circuit unit (organic EL element driving circuit) can be applied.
  • the light emission pattern in the organic EL element having the circuit configuration shown in FIG. 8 is a system that always emits light.
  • a time division method having a function of applying a current according to the amount of light emitted from the organic EL element, which is a light emitting element may be used between the anode electrode and the cathode electrode.
  • a constant current circuit including a step-up or step-down DC-DC converter circuit, a current value feedback circuit, a DC-DC converter switch control circuit, and the like is known.
  • FIG. 9 is a schematic circuit diagram showing an example of the configuration of the light emitting element driving circuit unit (23) according to the present invention.
  • the light emitting element drive circuit section (23) includes a step-up or step-down DC-DC converter circuit (31), a DC-DC converter switch element control circuit (32), and a current value feedback circuit (33).
  • the detection resistance is R 1 and the comparison potential is V ref
  • the anode potential of the organic EL element (22) is DC ⁇ so that the current I OLED flowing through the organic EL element (22) becomes V ref / R 1.
  • a constant current circuit can be obtained by stepping up or down the voltage by the DC converter circuit (31).
  • the configuration of the touch detection circuit unit (24) is not particularly limited, and a conventional known touch detection circuit unit can be applied.
  • the touch detection circuit is composed of an amplifier, a filter, an AD converter, a rectifying / smoothing circuit, a comparator, and the like.
  • Typical examples include a self-capacitance detection method, a series capacitance division comparison method (OMRON method), and the like.
  • OMRON method series capacitance division comparison method
  • the switches constituting the drive circuit are not particularly limited as long as they have a switch function such as an FET (field effect transistor), a TFT (thin film transistor), or the like.
  • FIG. 10 is a circuit operation diagram illustrating an example of the circuit operation in the sensing period according to the first embodiment.
  • the organic EL element (22) is always connected to the light emitting element driving circuit unit (23), continuously emits light, and is controlled by the touch detection circuit unit.
  • This is a driving method in which a sensing period appears periodically.
  • the sensing period first, in the state where the switch 4 (SW4) of the bezel electrode A (BZ-A) of the touch detection circuit unit (14) is set to “ON”, the bezel electrode A (BZ-A) which is the detection electrode.
  • the capacitance Cf1 is generated between the finger (15A) and the bezel electrode A (BZ-A) as the detection electrode, and the first touch detection A is performed.
  • the capacitance Cf1 is connected to the ground (16A, ground). 29A is a touch detection information route at the time of the first sensing.
  • the switch 5 (SW5) of the bezel electrode B (BZ-B) is in the “OFF” state.
  • the switch 4 (SW4) of the bezel electrode A (BZ-A) is set to “OFF”, and the switch 5 (SW5) of the bezel electrode B (BZ-B) is set to “ON”.
  • a capacitance Cf2 (not shown) is formed between the finger (15B) and the bezel electrode B (BZ-B) as the detection electrode.
  • the second touch detection B is performed.
  • 29B is a touch detection information route at the time of second sensing.
  • FIG. 11 is a timing chart of circuit operation in the sensing period of the first embodiment described in FIG.
  • the OLED applied voltage is always “ON” is always in the light emission state, and the entire period is the light emission period (LT).
  • SW4 and SW5 of the touch detection circuit unit (14) are sequentially “ON / OFF”, so that the sensing period (ST) can be divided into two to periodically perform touch detection.
  • FIG. 12 is a drive circuit diagram showing another example (embodiment 2) of the always-emitting organic EL module.
  • the light emitting element drive circuit section (23) is the same as the first embodiment shown in FIG.
  • the touch detection circuit unit (14) is composed of a bezel electrode A (BZ-A) and a bezel electrode B (BZ-B) as in the first embodiment.
  • Each bezel electrode is an independent touch detection circuit. Connected to the units (24 and 25), and each touch detection is controlled independently. Accordingly, SW4 and SW5 in Embodiment 1 shown in FIG. 10 are not necessary.
  • the sensing method is the same as in the first embodiment.
  • Embodiment 3 Time division method in which the light emission period and the touch sensing period are separated
  • Embodiment 3 is a time-division type organic EL module in which the light emission period (LT) of the organic EL panel controlled by the light emitting element drive circuit unit and the touch sensing period (ST) controlled by the touch detection circuit unit are separated. 1).
  • FIG. 13 is a drive circuit diagram of the time-division type organic EL module (1) in which the light emission period (LT) and the touch sensing period (ST) are separated.
  • the organic EL panel (2) shown in the center has an anode electrode wiring (25) and a cathode electrode wiring (26), and a diode is provided between both wirings.
  • An organic EL element (22) and a capacitor (21, Cel) are connected.
  • the anode electrode wiring (25) for organic EL element light emission led out from the anode electrode is connected to the light emitting element drive circuit unit (23) via the switch 1 (SW1).
  • the cathode electrode wiring (26) drawn from the cathode electrode is connected to the light emitting element drive circuit section (23) via the switch 2 (SW2). Further, the light emitting element driving circuit section (23) is connected to the ground (27).
  • the light emitting element driving circuit unit (12) incorporates a constant current driving circuit or a constant voltage driving circuit, controls the light emission timing of the organic EL element, and applies reverse bias (reverse applied voltage) as necessary. And a light emitting element driving circuit portion (23).
  • the light emitting element driving circuit unit (23) and SW1 and SW2 are shown as independent components. However, the switch 1 (SW1) is connected to the light emitting element driving circuit unit (23) as necessary. ) Or switch 2 (SW2) may be incorporated.
  • the light emitting element driving circuit unit (12) in the configuration shown in FIG. 13 is a circuit range including the anode electrode wiring (25), SW1, the light emitting element driving circuit unit (23), SW2, and the cathode electrode wiring (26).
  • the touch detection circuit unit (14) shown on the right side touches via the switch 4 (SW4) in order to cause the first bezel electrode A (BZ-A) described in FIG. 8 to function independently as a detection electrode. It is connected to the detection circuit section (24). Further, as explained in FIG. 8, the second bezel electrode B (BZ-B) is connected to the touch detection circuit section (24) via the switch 5 (SW5) at the bottom. .
  • the anode electrode wiring 2 (25A) drawn out from the anode electrode is connected to the touch detection circuit unit (24) via the switch 3 (SW3), and the touch detection electrode group Is configured.
  • the touch detection circuit unit (24) is connected to the ground (27).
  • the switch 3 (SW3), the switch 4 (SW4), and the switch 5 (SW5) may be incorporated in the touch detection circuit unit (24).
  • the light emission period (LT) of the organic EL panel controlled by the light emitting element driving circuit unit (12) and touch detection are controlled by ON / OFF control of each switch.
  • the touch sensing period (ST) controlled by the circuit unit (14) can be separated and driven, and the touch sensor function can be expressed in the organic EL module.
  • FIG. 14 shows the state of the drive circuit diagram in the light emission period (LT) of the organic EL panel.
  • FIG. 15 shows a drive circuit diagram in the touch sensing period (ST) of the organic EL panel.
  • SW3 and SW5 which are switches for controlling the drive of the touch detection circuit unit (14) are turned on by SW1 and SW2.
  • the state is set to “OFF”, and after SW1 and SW2 are set to “OFF”, as shown in FIG.
  • the timing at which SW3 is turned “ON” is preferably set to “ON” after a predetermined standby time (t) has elapsed after SW1 and SW2 described above are turned “OFF”.
  • the standby period (t) is preferably in the range of about 0 ⁇ to 5 ⁇ of the charge / discharge time constant ⁇ of the organic EL element.
  • FIG. 16 is a timing chart of a method in which the light emission period and the touch sensing period in the third embodiment are time-divided.
  • the period from when SW1 and SW2 are turned “ON” to when it is turned “OFF” is the light emission period (LT), and SW1 and SW2 are turned “OFF” and the standby time (t , (Not shown), SW 4, SW 3, SW 5 are sequentially set to “ON” and “OFF”, touch detection is performed, and the period from when SW 5 is turned “OFF” is the sensing period (ST), LT + ST is referred to as one frame period (1FT).
  • the light emitting period (LT), touch sensing period (ST), and one frame period (1FT) in the organic EL module of the present invention are not particularly limited, and conditions suitable for the environment to be applied can be appropriately selected.
  • the light emission period (LT) of the organic EL element is 0.1 to 2.0 msec.
  • the touch sensing period (ST) is 0.05 to 0.3 msec.
  • the one frame period (1FT) can be in the range of 0.15 to 2.3 msec.
  • the one frame period (1FT) is preferably 60 Hz or more for the purpose of reducing flicker.
  • the touch detection method in the touch sensing period of the timing chart shown in FIG. 16 is as described above, and “ON” and “OFF” of the switch 4 (SW4) of the bezel electrode A (BZ-A) ⁇ the anode detection electrode (25A ) Switch 3 (SW3) “ON” and “OFF” ⁇ Bezel electrode B (BZ-B) switch 5 (SW5) switch “ON” and “OFF” while touching with fingers (15A to 15C)
  • SW4 of the bezel electrode A (BZ-A) ⁇ the anode detection electrode (25A )
  • Switch 3 Switch 3
  • B Bezel electrode B
  • switch 5 switch “ON” and “OFF” while touching with fingers
  • the bezel electrode B (BZ-B) ⁇ the anode detection electrode (25A) ⁇ the bezel electrode A ( BZ-A) Scrolls pages and screens from bottom to top by detecting Cf changes while switching each switch between “ON” and “OFF”. Can Lumpur.
  • a tap operation can be performed by detecting a change in Cf of only the anode detection electrode (25A), and a double tap can be detected by detecting a change in Cf with a time difference.
  • FIG. 17 is a timing chart showing another example of the light emission period and the sensing period in the embodiment 3.
  • the switch 4 (SW4) of the bezel electrode A (BZ-A) and the bezel electrode A mode in which the sensing period by the switch 5 (SW5) of B (BZ-B) overlaps with the light emission period (LT) of the organic EL element is shown. That is, it is a method of performing sensing with the bezel electrode during the light emission period (LT) of the organic EL element.
  • FIG. 18 is a drive circuit diagram showing another example (embodiment 4) of the time-division type organic EL module in which the light emission period and the touch sensing period are separated.
  • the light-emitting element drive circuit unit (23) is the same as that of the third embodiment shown in FIGS. 13 to 15, and the light emission period of the organic EL element is set by “ON” and “OFF” of SW1 and SW2. Control.
  • the electrode configuration for touch detection in the touch detection circuit unit (14) is the same as in the third embodiment, with the bezel electrode A (BZ-A), the bezel electrode B (BZ-B), and the anode detection electrode (25A).
  • the bezel electrode (BZ-A and BZ-B) and the anode detection electrode (25A) are connected to individual touch detection circuit units (24 to 26), respectively, and each touch detection is performed independently. And control it.
  • SW4 and SW5 as shown in FIG. 13 are unnecessary in the circuit of the bezel electrode A (BZ-A) and the bezel electrode B (BZ-B).
  • the sensing method is the same as the method shown in FIGS. 16 and 17 of the third embodiment.
  • the organic EL module of the present invention can achieve small formatting and thinning, can achieve simplification of the process, and can be suitably used for various smart devices and lighting devices such as smartphones and tablets.
  • Smart device As shown in FIGS. 5 to 7 described above, for example, it can be provided as a smart device (100) including the organic EL module of the present invention on the sub-display screen on the back side.
  • the organic electroluminescence module of the present invention is an organic electroluminescence module having an organic electroluminescence element having a light emitting function and a scroll operation and a tap operation, and can be suitably used for various smart devices such as smartphones and tablets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention addresses the problem of providing an organic electroluminescence module that has an organic electroluminescence element provided with a light-emitting function as well as scrolling and tapping capabilities and a smart device that is equipped with the organic electroluminescence module. This organic electroluminescence module has an organic electroluminescence panel and an electrical connection member. The organic electroluminescence module is characterized in that: the organic electroluminescence panel has an organic electroluminescence element that has a structure wherein an organic functional layer group including a light-emitting layer is sandwiched between one pair of electrodes comprising an anode and a cathode and at least one bezel electrode that does not contribute to the emission of light and is disposed in a bezel region serving as a non-light-emitting region; the electrical connection member has electric energy supply lines to the anode and the cathode of the organic electroluminescence panel and a signal line to the bezel electrode; and the electrical connection member is electrically connected to the organic electroluminescence panel via an electrically conductive member.

Description

有機エレクトロルミネッセンスモジュール及びスマートデバイスOrganic electroluminescence module and smart device
 本発明は、タッチ検出機能を有する有機エレクトロルミネッセンスモジュールと、それを具備したスマートデバイスに関する。 The present invention relates to an organic electroluminescence module having a touch detection function and a smart device having the same.
 従来、平面状の光源体としては、導光板を用いた発光ダイオード(Light Emitting Diode、以下、「LED」と略記する。)や、有機発光ダイオード(Organic Light Emitting Diode、以下、有機エレクトロルミネッセンス素子、有機EL素子又は「OLED」と略記する。)等が挙げられる。 Conventionally, as a planar light source body, a light emitting diode using a light guide plate (Light Emitting Diode, hereinafter abbreviated as “LED”), an organic light emitting diode (Organic Light Emitting Diode, hereinafter, an organic electroluminescence element, Organic EL element or “OLED”).
 2008年ごろから、世界的にスマートデバイス(例えば、スマートフォン、タブレット等)の生産量が飛躍的に伸長してきている。これらのスマートデバイスには、その操作性の観点から、フラットな面を有するキーが配置されている。例えば、スマートデバイスの下段部に設けられている共通機能キーボタンであるアイコン部がそれに相当する。この共通機能キーボタンには、例えば、「ホーム」(四角形などのマークで表示)、「戻る」(矢印マークなどで表示)、「検索」(虫眼鏡マークなどで表示)を示す3種類のマークが設けられている場合がある。 Since around 2008, the production volume of smart devices (for example, smartphones, tablets, etc.) has grown dramatically worldwide. In these smart devices, a key having a flat surface is arranged from the viewpoint of operability. For example, an icon part which is a common function key button provided in the lower part of the smart device corresponds to this. This common function key button has, for example, three types of marks indicating “Home” (displayed by a square mark, etc.), “Back” (displayed by an arrow mark, etc.), and “Search” (displayed by a magnifying glass mark, etc.). It may be provided.
 このような共通機能キーボタンは、視認性向上の観点から、表示するマークのパターン形状に応じて、例えば、LED等を使用する場合には、あらかじめLED導光板などの平面発光デバイスをスマートデバイスの内部に設置して利用する方法が開示されている(例えば、特許文献1参照。)。 From the viewpoint of improving the visibility, such a common function key button is used in accordance with the pattern shape of the mark to be displayed. A method of installing and using the inside is disclosed (for example, refer to Patent Document 1).
 また、LED光源を用いた静電容量式情報入力ユニットとして、センサー電極の感度を高め、センサー回路による静電容量の変化の検出を確実にし、使用者の入力操作を安定して処理することを目的とした、センサー電極が形成されたフレキシブルプリント回路(以下、「FPC」と略記する。)と、表面パネルとの間に、アイコン等の部位を回避する位置に、同形状の空気層よりも誘電率の高い接着剤層を設けることにより、静電容量を検出する検出電極の精度を向上させる方法が開示されている(例えば、特許文献2参照。)。 In addition, as a capacitive information input unit using an LED light source, it is possible to increase the sensitivity of the sensor electrode, ensure the detection of the change in capacitance by the sensor circuit, and stably process the user's input operation. Between the target flexible printed circuit (hereinafter abbreviated as “FPC”) on which the sensor electrode is formed and the surface panel, a position avoiding a site such as an icon, rather than an air layer of the same shape A method of improving the accuracy of a detection electrode that detects electrostatic capacitance by providing an adhesive layer having a high dielectric constant is disclosed (for example, see Patent Document 2).
 前述の有機エレクトロルミネッセンス素子は、テレビジョンなどのアプリケーションに加え、照明用の面光源としても注目され、各分野でその適用に関する検討が進められている。 The above-mentioned organic electroluminescence element has attracted attention as a surface light source for illumination in addition to applications such as television, and studies on its application are underway in various fields.
 近年、フィルム基板を用いて、薄型のフレキシブル性を備えた有機エレクトロルミネッセンス素子が開発され始めており、その薄さや優れたフレキシブル性を活かし、有機エレクトロルミネッセンス素子を、スマートデバイス、特にスマートフォン用の光源、例えば、バックライト、機能性キー用ライト、装飾用ライト、カメラ補助光等に適用する検討が盛んになされている。また、装飾用ライトについては、各スマートメディアメーカーが、単一デザインになりがちなスマートフォンの自社ロゴ部を発光させて、ブランドをアピールしたいというニーズがあることと、ディスプレイのような細かな画素分割が要求されないこともあり、早くからその適用の可能性に関する検討が進められている。 In recent years, organic electroluminescence elements with thin flexibility have begun to be developed using a film substrate, taking advantage of its thinness and excellent flexibility, organic electroluminescence elements can be used as light sources for smart devices, particularly smartphones, For example, studies on application to backlights, functional key lights, decoration lights, camera auxiliary lights, and the like have been actively made. In addition, for decoration lights, each smart media manufacturer needs to appeal its brand by emitting its own logo on smartphones, which tend to have a single design, and fine pixel division like a display However, the possibility of its application has been studied from an early stage.
 一方、単に光るだけの一画素の有機エレクトロルミネッセンス光源(照明)に対し、別機能を取り込んだ多機能の有機エレクトロルミネッセンス素子の開発がすすめられ、例えば、有機エレクトロルミネッセンスパネル特性を利用した温度検知、パネルの電極面を検知電極に使ったタッチ操作検出などの開発が盛んになされている。 On the other hand, the development of multifunctional organic electroluminescence elements incorporating different functions is promoted for one pixel of organic electroluminescence light source (illumination) that simply shines. For example, temperature detection using the characteristics of organic electroluminescence panels, Developments such as touch operation detection using the electrode surface of the panel as a detection electrode have been actively developed.
 この様なスマートデバイスにおけるタッチ検出機能としては、ディスプレイ部および共通機能キー部にいたるまで、タッチ検出のための静電容量方式のタッチ検出型デバイスをカバーガラスの裏面側へ配置する方法が検討されている。 As a touch detection function in such a smart device, a method of arranging a capacitive touch detection type device for touch detection on the back side of the cover glass up to the display unit and the common function key unit has been studied. ing.
 このタッチ検出型デバイスとしては、フィルム/フィルム型のタッチセンサーを、カバーガラスと同等のサイズまで拡大させてラミネートしたものを用いられることが多い。特に、厚さに制約がないような機種の場合には、ガラス/ガラスタイプのものが用いられることもある。タッチ検出方式としては、近年、静電容量方式のものが採用されることが多い。メインディスプレイ向けには、「投影型静電容量方式」と呼ばれる、x軸、y軸方向それぞれに精細な電極パターンを有する方式が採用される。当該方式では、いわゆる「マルチタッチ」と呼ばれる2点以上のタッチ検出が可能となる。 As this touch detection type device, a film / film type touch sensor is often used which is laminated to a size equivalent to that of a cover glass. In particular, in the case of a model whose thickness is not restricted, a glass / glass type may be used. In recent years, a capacitive detection type is often employed as a touch detection type. For the main display, a method called “projection capacitive method”, which has fine electrode patterns in the x-axis and y-axis directions, is employed. In this method, it is possible to detect two or more touches called “multi-touch”.
 このようなタッチセンサーが利用される場合でも、これまでは共通機能キーの部分には、タッチ機能を持たない発光デバイスが使用されていた。しかしながら、近年、いわゆる「インセル」型、あるいは「オンセル」型のディスプレイが登場したことにより、共通機能キー用の発光デバイスに、独自のタッチ検出機能を設けることが強く求められてきた。 Even when such a touch sensor is used, a light emitting device having no touch function has been used for the common function key part until now. However, in recent years, with the emergence of so-called “in-cell” type or “on-cell” type displays, it has been strongly required to provide a unique touch detection function in a light emitting device for a common function key.
 一方、有機エレクトロルミネッセンス素子は、面発光体であり、これまでの照明用光源と異なり、薄膜で、かつフレキシブル性を具備し、様々形状に曲げたりすることができる、という点が最も特徴のある強みである。 On the other hand, the organic electroluminescence element is a surface light emitter, and unlike the conventional light source for illumination, it is thin and flexible, and can be bent into various shapes. Strength.
 スマートデバイスであるスマートフォンについては、近年、どのセットメーカの製品にも、デバイスのデザインが同じように見えてしまうという不満があることから、例えば、背面側のカンパニーロゴ部を発光させることによりブランドアピールを行う、通話時に点滅する、着信時に点灯する、等の訴求機能を備えたスマートフォンの開発も進められている。 With regard to smartphones that are smart devices, in recent years, there has been a complaint that any set maker's product looks the same in the design of the device. For example, brand appeal by making the company logo on the back side emit light. The development of smartphones with appealing functions, such as making calls, flashing during calls, and turning on when receiving calls, is also underway.
 スマートフォンの操作方法として、共通機能キー(アイコンキー)を排除し、その機能をディスプレイ内部に取り込むことが主流となりつつあり、かつ指紋認証や脈拍測定、操作性向上用の小サイズのタッチパッドなど、様々な追加機能デバイスをスマートフォン背面部に搭載するという流れも徐々に検討され始めている。 As a smartphone operation method, it is becoming mainstream to eliminate common function keys (icon keys) and incorporate the functions into the display, and fingerprint authentication, pulse measurement, small touchpad for operability improvement, etc. The trend of installing various additional function devices on the back of smartphones is also gradually being considered.
 しかしながら、上記のカンパニーロゴの配置、追加機能デバイスの配置を設計検証する際には、スマートフォン内部の各種部品、例えば、RF(高周波)アンテナやNFC(近距離無線通信)コイル、バックカバーの機械強度制約による加工形状制約から、多数のデバイスをスマートフォン背面部に搭載するには、自ずと限界があることが問題となっていた。 However, when designing and verifying the placement of the above company logo and the placement of additional function devices, the mechanical strength of various components inside the smartphone, such as RF (high frequency) antennas, NFC (near field communication) coils, and back covers Due to processing shape restrictions due to restrictions, it has been a problem that there is a limit to mounting a large number of devices on the back of the smartphone.
 背面側のスイッチ機能、特に、タッチ機能を活かしたインタラクティブな操作性の付与や、カンパニーロゴを光らせることによる新たな表示機能を具備する機種等については、それぞれの機能を両立するための解決策の模索が続けられている。 For models that have a switch function on the back side, in particular, an interactive operability that makes use of the touch function, and a new display function that shines the company logo, there are solutions to achieve both functions. The search continues.
 上記の問題を解決するための具体的な手段としては、発光機能を備え、かつタッチ検出機能を付与することができるデバイスとして、例えば、インセル型の有機エレクトロルミネッセンス素子が、有力な候補となってくる。この方式を適用することにより、追加のタッチパネルをラミネートする必要もなくなり、部品点数の削減にも大きく貢献することができる。しかしながら、スクロール操作やタップ操作などのマルチタッチ機能を付与させようとする場合には、インセル型の有機エレクトロルミネッセンス素子では、アノード電極そのものをエリア分割する必要があった。 As a specific means for solving the above problem, for example, an in-cell type organic electroluminescence element is a promising candidate as a device having a light emitting function and capable of providing a touch detection function. come. By applying this method, there is no need to laminate an additional touch panel, which can greatly contribute to the reduction of the number of parts. However, in order to provide a multi-touch function such as a scroll operation or a tap operation, in the in-cell type organic electroluminescence element, it is necessary to divide the anode electrode itself into areas.
 従って、指触によるスクロール動作やタップ動作を検出することが可能で、かつカンパニーロゴ等の表示が可能なインセル型の有機エレクトロルミネッセンスモジュール、とそれを具備したスマートデバイスの開発が求められている。 Therefore, the development of an in-cell type organic electroluminescence module capable of detecting a scrolling action and a tapping action by a finger touch and capable of displaying a company logo and the like and a smart device equipped with the in-cell type are demanded.
特開2012-194291号公報JP 2012-194291 A 特開2013-065429号公報JP 2013-0665429 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、発光表示機能と、スクロール動作機能やタップ動作機能を兼ね備えた有機エレクトロルミネッセンス素子を有する有機エレクトロルミネッセンスモジュールと、それを具備したスマートデバイスを提供することである。 The present invention has been made in view of the above-described problems and situations, and the problem to be solved is an organic electroluminescence module having an organic electroluminescence element having a light emitting display function, a scroll operation function and a tap operation function, and Providing a smart device.
 本発明者は、上記課題を解決すべく、鋭意検討を進めた結果、有機エレクトロルミネッセンスパネルと電気接続部材とにより構成される有機エレクトロルミネッセンスモジュールで、有機エレクトロルミネッセンスパネルが、有機エレクトロルミネッセンス素子の一対の電極により構成される非発光表示領域であるベゼル領域に、発光動作に寄与しない少なくとも1つのベゼル電極を有し、電気接続部材は導電性部材を介して、前記有機エレクトロルミネッセンスパネルと電気的に接続されていることを特徴とする有機エレクトロルミネッセンスモジュールにより、上記課題を解決することができることを見いだし本発明に至った。 As a result of intensive studies to solve the above problems, the inventor is an organic electroluminescence module constituted by an organic electroluminescence panel and an electrical connection member, and the organic electroluminescence panel is a pair of organic electroluminescence elements. A bezel region, which is a non-light emitting display region constituted by the electrodes, has at least one bezel electrode that does not contribute to the light emission operation, and the electrical connection member is electrically connected to the organic electroluminescence panel via a conductive member. It has been found that the above-mentioned problems can be solved by an organic electroluminescence module characterized by being connected, and the present invention has been achieved.
 すなわち、本発明に係る課題は、以下の手段により解決される。 That is, the problem according to the present invention is solved by the following means.
 1.有機エレクトロルミネッセンスパネルと電気接続部材を有する有機エレクトロルミネッセンスモジュールであって
 前記有機エレクトロルミネッセンスパネルは、一対のアノード電極とカソード電極間に、発光層を含む有機機能層群を挟持する構成の有機エレクトロルミネッセンス素子を有し、かつ、非発光表示領域であるベゼル領域に、発光動作に寄与しない少なくとも1つのベゼル電極を有し、
 前記電気接続部材は、前記有機エレクトロルミネッセンスパネルのアノード電極及びカソード電極への電気エネルギー供給ラインと、前記ベゼル電極への信号ラインを有し、
 前記電気接続部材は、導電性部材を介して、前記有機エレクトロルミネッセンスパネルと電気的に接続されていることを特徴とする有機エレクトロルミネッセンスモジュール。
1. An organic electroluminescence module having an organic electroluminescence panel and an electrical connection member, wherein the organic electroluminescence panel is configured to sandwich an organic functional layer group including a light emitting layer between a pair of an anode electrode and a cathode electrode The device has at least one bezel electrode that does not contribute to the light emitting operation in the bezel region that is a non-light emitting display region,
The electrical connection member has an electrical energy supply line to the anode electrode and the cathode electrode of the organic electroluminescence panel, and a signal line to the bezel electrode,
The organic electroluminescence module, wherein the electrical connection member is electrically connected to the organic electroluminescence panel via a conductive member.
 2.前記有機エレクトロルミネッセンス素子の発光を指示する発光素子駆動回路ユニットと、前記アノード電極の自己静電容量変化又は前記ベゼル電極の自己容量変化を検知する静電容量方式のタッチ検出回路ユニットを有することを特徴とする第1項に記載の有機エレクトロルミネッセンスモジュール。 2. A light emitting element driving circuit unit for instructing light emission of the organic electroluminescence element; and a capacitance type touch detection circuit unit for detecting a self-capacitance change of the anode electrode or a self-capacitance change of the bezel electrode. 2. The organic electroluminescence module according to item 1, which is characterized.
 3.前記発光素子駆動回路ユニットにより制御する有機エレクトロルミネッセンスパネルの発光期間と、前記タッチ検出回路ユニットにより制御するタッチセンシング期間とが分離され、前記タッチセンシング期間では、有機エレクトロルミネッセンスパネルの電気容量が検出されないように、前記一対の電極の少なくとも一方の電極がフローティング電位の状態であることを特徴とする第2項に記載の有機エレクトロルミネッセンスモジュール。 3. The light emission period of the organic electroluminescence panel controlled by the light emitting element driving circuit unit is separated from the touch sensing period controlled by the touch detection circuit unit, and the capacitance of the organic electroluminescence panel is not detected in the touch sensing period. Thus, the organic electroluminescence module according to item 2, wherein at least one of the pair of electrodes is in a floating potential state.
 4.第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンスモジュールを具備するスマートデバイスであって、
 前記有機エレクトロルミネッセンスモジュールが、主表示面側、背面側又は側面側に配置されていることを特徴とするスマートデバイス。
4). A smart device comprising the organic electroluminescence module according to any one of items 1 to 3,
A smart device, wherein the organic electroluminescence module is disposed on a main display surface side, a back surface side, or a side surface side.
 本発明の上記手段により、発光機能と、スクロール動作やタップ動作を兼ね備えた有機エレクトロルミネッセンス素子を有する有機エレクトロルミネッセンスモジュールと、それを具備したスマートデバイスを提供することができる。 By the above means of the present invention, it is possible to provide an organic electroluminescence module having an organic electroluminescence element having a light emitting function, a scroll operation and a tap operation, and a smart device equipped with the organic electroluminescence module.
 本発明で規定する構成からなる有機エレクトロルミネッセンスモジュールの技術的特徴とその効果の発現機構は、以下のとおりである。 The technical features of the organic electroluminescence module having the configuration defined in the present invention and the mechanism of its effects are as follows.
 これまで、スマートメディアの背面に具備されているカンパニーロゴ部に発光部材を適用し、かつタッチの操作性機能を組み込むことを試みる場合は、LEDチップおよび導光板、指での簡単なタッチ操作や上下あるいは左右のスクロール操作といった「単純」な操作の割には複雑な電極パターン構成を有するタッチパネルモジュールや遮光部材、及びそれに接続される多数の配線を有するフレキシブルプリント回路(FPC)など、複数の部材をアセンブリする必要があり、それぞれ発光機能とタッチ検出機能とが分離しているアセンブリによる構成であるため、厚膜化し、スモールフォーマット化に対しては障害となっていた。 Up to now, when applying a light emitting member to the company logo part on the back of smart media and trying to incorporate a touch operability function, simple touch operations with the LED chip and light guide plate, Multiple members such as a touch panel module having a complicated electrode pattern configuration, a light shielding member, and a flexible printed circuit (FPC) having a large number of wirings connected to the “simple” operation such as a vertical or horizontal scroll operation Therefore, the light emitting function and the touch detection function are separated from each other. Therefore, the film thickness is increased, which is an obstacle to the small format.
 上記問題に対し、本発明の有機エレクトロルミネッセンスモジュール(以下、「有機ELモジュール」と略記する。)では、後述の図1にその代表的な構成を示すように、有機エレクトロルミネッセンスパネル(以下、「有機ELパネル」と略記する。)に対し、発光に寄与するアノード電極及びカソード電極に加え、発光に寄与しない「ベゼル電極」を有機ELパネルのベゼル領域の少なくとも1か所に配置し、さらに、当該ベゼル電極に対してタッチ検出回路を有することを特徴とする。また、第一の電気制御部材として、対向位置に配置されている一対のアノード/カソード電極間に、有機エレクトロルミネッセンス素子(以下、「有機EL素子」と略記する。)の発光を制御するための発光素子駆動回路ユニットを有し、第二の電気制御部材として、一対の電極の少なくとも一方の電極をタッチ検出電極として機能させ、そこにタッチ検出回路ユニットを有している構成を特徴とする。 With respect to the above problem, in the organic electroluminescence module of the present invention (hereinafter abbreviated as “organic EL module”), as shown in FIG. In addition to the anode electrode and the cathode electrode that contribute to light emission, a “bezel electrode” that does not contribute to light emission is disposed in at least one place in the bezel region of the organic EL panel, A touch detection circuit is provided for the bezel electrode. Further, as a first electric control member, for controlling light emission of an organic electroluminescence element (hereinafter abbreviated as “organic EL element”) between a pair of anode / cathode electrodes arranged at opposite positions. The light-emitting element driving circuit unit is included, and at least one electrode of the pair of electrodes functions as a touch detection electrode as the second electric control member, and the touch detection circuit unit is included therein.
 本発明において、ロゴ部へ指などを用いて印加される通常のタップ動作やダブルタップ動作については、有機ELパネル内のアノード電極を検出電極として使用する。 In the present invention, the anode electrode in the organic EL panel is used as a detection electrode for a normal tap operation or a double tap operation applied to the logo portion with a finger or the like.
 通常、有機ELパネル又は有機EL素子の構成において、アノード電極(陽極)又はカソード電極(陰極)をタッチ検出電極(以下、単に「検出電極」ともいう。)として使用する場合、タッチする指とタッチ検出電極間の静電容量をCfとし、アノード電極とカソード電極間の静電容量をCelとした場合、タッチ時(指触時)の静電容量は「Cf+Cel」となり、指触がない状態での静電容量は「Cel」となるが、通常の場合は、Cf<Celであるため、タッチ検出が困難であった。 Usually, in the configuration of an organic EL panel or an organic EL element, when an anode electrode (anode) or a cathode electrode (cathode) is used as a touch detection electrode (hereinafter also simply referred to as “detection electrode”), the touching finger and touch When the capacitance between the detection electrodes is Cf and the capacitance between the anode electrode and the cathode electrode is Cel, the capacitance when touching (when touching) is “Cf + Cel”, and there is no finger touch. However, in the normal case, Cf <Cel, so that touch detection is difficult.
 本発明の有機ELモジュールでは、発光素子駆動回路ユニットと、タッチ検出回路ユニットを独立して設け、かつタッチ検出時には、アノード電極とカソード電極間の静電容量Celが検出されないように、アノード電極(陽極)及びカソード電極(陰極)と発光素子駆動回路部間のスイッチをオフにし、アノード電極(陽極)及びカソード電極(陰極)の少なくとも一方の電極をフローティング電位の状態とすることにより、タッチ検出を可能にすることができ、その結果、スモールフォーマット化及び薄膜化を達成し、工程の簡素化が達成することができたものである。 In the organic EL module of the present invention, the light emitting element driving circuit unit and the touch detection circuit unit are provided independently, and the anode electrode (in order to prevent the capacitance Cel between the anode electrode and the cathode electrode from being detected during touch detection). Touch detection is performed by turning off the switch between the anode) and cathode electrode (cathode) and the light emitting element driving circuit unit, and setting at least one of the anode electrode (anode) and cathode electrode (cathode) to a floating potential state. As a result, small formatting and thinning can be achieved, and simplification of the process can be achieved.
 なお、本発明でいうフローティング電位の状態とは、電源や機器のグランドに接続されていない浮遊電位状態をいい、タッチ検出時のアノード電極(陽極)又はカソード電極(陰極)はフローティング電位をとるため、有機ELパネルの静電容量Celは検出されない状態となり、その結果、指触によるタッチ検出が可能となる。 The floating potential state in the present invention refers to a floating potential state that is not connected to the power supply or the ground of the device, and the anode electrode (anode) or cathode electrode (cathode) at the time of touch detection has a floating potential. The electrostatic capacitance Cel of the organic EL panel is not detected, and as a result, touch detection by finger touch becomes possible.
 また、少なくとも1か所に配置されているベゼル電極には、Celは存在せず、Cfの変動を検出することでそのエリアへの指触を検知することが可能であり、上記有機ELパネル発光部へのスイッチオフ操作によるタッチ検出とベゼル電極のCf変化検知を組み合わせることによって、スマートデバイス背面および側面、全面でのカンパニーロゴ発光とタッチ操作、スライドタッチ操作をスモールフォーマットで行うことが可能となる。 Further, Cel is not present in at least one bezel electrode, and it is possible to detect a finger touch to the area by detecting a change in Cf. By combining touch detection by switch-off operation to the part and Cf change detection of the bezel electrode, it is possible to perform the company logo light emission, touch operation, and slide touch operation on the back and side surfaces of the smart device and the entire surface in a small format. .
本発明の有機エレクトロルミネッセンスモジュールの全体構成の一例を示す概略断面図Schematic sectional view showing an example of the overall configuration of the organic electroluminescence module of the present invention 有機エレクトロルミネッセンスモジュールを構成する有機エレクトロルミネッセンスパネルと、電気接続部材(FPC:フレキシブルプリント回路)の構成の一例を示す概略上面図The schematic top view which shows an example of a structure of the organic electroluminescent panel which comprises an organic electroluminescent module, and an electrical connection member (FPC: flexible printed circuit) 有機エレクトロルミネッセンスパネルと、電気接続部材を接続して構成した有機エレクトロルミネッセンスモジュールの一例を示す概略上面図及び概略背面図Schematic top view and schematic back view showing an example of an organic electroluminescence module configured by connecting an organic electroluminescence panel and an electrical connection member 有機エレクトロルミネッセンスモジュールの一例を示す概略断面図Schematic sectional view showing an example of an organic electroluminescence module 本発明の有機エレクトロルミネッセンスモジュールを具備したスマートデバイスの主表示面側の配置例を示す概略構成図The schematic block diagram which shows the example of arrangement | positioning by the side of the main display surface of the smart device which comprised the organic electroluminescent module of this invention 本発明の有機エレクトロルミネッセンスモジュールを具備したスマートデバイスの背面側の配置例を示す概略構成図The schematic block diagram which shows the example of arrangement | positioning of the back side of the smart device which comprised the organic electroluminescent module of this invention スマートデバイスによるスクロール操作及びタップ操作の一例を示す概略図Schematic showing an example of scroll operation and tap operation by a smart device 有機エレクトロルミネッセンスモジュールを具備したスマートデバイスの一例を示す概略断面図Schematic sectional view showing an example of a smart device having an organic electroluminescence module 有機エレクトロルミネッセンスモジュールの一例である実施態様1の駆動回路図Drive circuit diagram of Embodiment 1 which is an example of an organic electroluminescence module 発光素子駆動回路部の構成の一例を示す概略回路図Schematic circuit diagram showing an example of the configuration of the light emitting element driving circuit unit 実施態様1のセンシング期間における回路作動の一例を示す回路作動図Circuit operation | movement figure which shows an example of the circuit operation | movement in the sensing period of Embodiment 1 実施態様1における発光期間とセンシング期間の一例を示すタイミングチャートTiming chart showing an example of a light emission period and a sensing period in Embodiment 1 有機エレクトロルミネッセンスモジュールの他の一例である実施態様2の駆動回路図Driving circuit diagram of Embodiment 2 which is another example of the organic electroluminescence module 有機エレクトロルミネッセンスモジュールの他の一例(時分割方式)である実施態様3の駆動回路図Driving circuit diagram of Embodiment 3 which is another example (time division method) of the organic electroluminescence module 実施態様3の発光期間における回路作動の一例を示す回路作動図Circuit operation | movement figure which shows an example of the circuit operation | movement in the light emission period of Embodiment 3 実施態様3のセンシング期間における回路作動の一例を示す回路作動図Circuit operation | movement figure which shows an example of the circuit operation | movement in the sensing period of Embodiment 3 実施態様3における発光期間とセンシング期間の一例を示すタイミングチャートTiming chart showing an example of a light emission period and a sensing period in Embodiment 3 実施態様3における発光期間とセンシング期間の他の一例を示すタイミングチャートTiming chart which shows another example of the light emission period and sensing period in Embodiment 3 有機エレクトロルミネッセンスモジュールの他の一例(時分割方式)である実施態様4の駆動回路図Drive circuit diagram of Embodiment 4 which is another example (time division method) of the organic electroluminescence module
 本発明の有機エレクトロルミネッセンスモジュールは、有機エレクトロルミネッセンスパネルと電気接続部材とを有し、有機エレクトロルミネッセンスパネルは、一対のアノード電極とカソード電極間に発光層を含む有機機能層群を挟持する構成の有機エレクトロルミネッセンス素子を有し、かつ、非発光表示領域であるベゼル領域に、発光動作に寄与しない少なくとも1つのベゼル電極を有し、前記電気接続部材は、前記有機エレクトロルミネッセンスパネルのアノード電極及びカソード電極への電気エネルギー供給ラインと、前記ベゼル電極への信号ラインを有し、前記電気接続部材は、導電性部材を介して、前記有機エレクトロルミネッセンスパネルと電気的に接続されていることを特徴とする。この特徴は、各請求項に係る発明に共通する技術的特徴である。 The organic electroluminescence module of the present invention has an organic electroluminescence panel and an electrical connection member, and the organic electroluminescence panel has a configuration in which an organic functional layer group including a light emitting layer is sandwiched between a pair of anode electrodes and a cathode electrode. An organic electroluminescence element and at least one bezel electrode that does not contribute to light emission operation is provided in a bezel region that is a non-light-emitting display region, and the electrical connection member includes an anode electrode and a cathode of the organic electroluminescence panel An electrical energy supply line to the electrode and a signal line to the bezel electrode, wherein the electrical connection member is electrically connected to the organic electroluminescence panel through a conductive member. To do. This feature is a technical feature common to the claimed invention.
 本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、有機エレクトロルミネッセンスモジュールは、前記有機エレクトロルミネッセンス素子の発光を指示する発光素子駆動回路ユニットと、前記アノード電極の自己静電容量変化又は前記ベゼル電極の自己容量変化を検知する静電容量方式のタッチ検出回路ユニットを有する構成とすることが、回路がより簡素化され、効率の良いタッチ検出機能を発現することができる観点から好ましい。 As an embodiment of the present invention, an organic electroluminescence module includes a light emitting element driving circuit unit for instructing light emission of the organic electroluminescent element, and a self-operating of the anode electrode, from the viewpoint that the effect of the present invention can be further expressed. A configuration having a capacitive touch detection circuit unit that detects a change in capacitance or a change in self-capacitance of the bezel electrode can simplify the circuit and exhibit an efficient touch detection function. From the viewpoint of being able to.
 また、前記発光素子駆動回路ユニットにより制御する有機エレクトロルミネッセンスパネルの発光期間と、前記タッチ検出回路ユニットにより制御するタッチセンシング期間とを分離し、前記タッチセンシング期間では、有機エレクトロルミネッセンスパネルの電気容量が検出されないように、前記一対の電極の少なくとも一方の電極がフローティング電位の状態とすることが、発光期間とセンシング期間をより明確に分離できる観点から好ましい。 Further, the light emission period of the organic electroluminescence panel controlled by the light emitting element driving circuit unit and the touch sensing period controlled by the touch detection circuit unit are separated, and in the touch sensing period, the electric capacitance of the organic electroluminescence panel is In order to prevent detection, it is preferable that at least one of the pair of electrodes is in a floating potential state from the viewpoint of more clearly separating the light emission period and the sensing period.
 また、本発明の有機エレクトロルミネッセンスモジュールを、主表示面側、背面側又は側面側に配置することにより、操作する手の大きさやスマートデバイス本体の大きさによらず、様々なユーザーが、楽に操作することができるスマートデバイスを提供することができる。 In addition, by arranging the organic electroluminescence module of the present invention on the main display surface side, the back surface side or the side surface side, various users can easily operate regardless of the size of the operating hand or the size of the smart device body. A smart device that can be provided can be provided.
 以下の説明において、本発明では、一対の電極と有機機能層ユニットにより構成されている部材を「有機エレクトロルミネッセンス素子又は有機EL素子」と称す。また、透明基材上に有機EL素子及び封止部材を配置した構成を「有機エレクトロルミネッセンスパネル又は有機ELパネル」と称す。また、「有機エレクトロルミネッセンスモジュール又は有機ELモジュール」とは、有機ELパネルと、静電容量方式のタッチ検出回路ユニットと発光素子駆動回路ユニットと、電気接続部材により構成され、発光機能とタッチ検出機能を有している構成をいう。 In the following description, in the present invention, a member constituted by a pair of electrodes and an organic functional layer unit is referred to as “organic electroluminescence element or organic EL element”. Moreover, the structure which has arrange | positioned the organic EL element and the sealing member on the transparent base material is called "an organic electroluminescent panel or an organic EL panel." The “organic electroluminescence module or organic EL module” is composed of an organic EL panel, a capacitive touch detection circuit unit, a light emitting element drive circuit unit, and an electrical connection member, and has a light emitting function and a touch detection function. The structure which has this.
 また、本発明でいう「ベゼル領域」とは、有機EL素子において、発光に寄与しない領域、具体的には、発光表示領域を除く領域をいう。このベゼル領域に形成し、有機EL素子のアノード電極とカソード電極とは、電気的に接続していない電極を「ベゼル電極」と称す。 In addition, the “bezel region” in the present invention refers to a region that does not contribute to light emission in the organic EL element, specifically, a region excluding the light emitting display region. An electrode that is formed in this bezel region and is not electrically connected to the anode electrode and the cathode electrode of the organic EL element is referred to as a “bezel electrode”.
 以下、本発明の構成要素、及び本発明を実施するための形態・態様について、図を交えて詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。なお、各図の説明において、構成要素の末尾に括弧内で記載した数字は、各図における符号を表す。 Hereinafter, constituent elements of the present invention, and modes and modes for carrying out the present invention will be described in detail with reference to the drawings. In the present application, “˜” representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value. In the description of each figure, the number described in parentheses at the end of the constituent element represents the code in each figure.
 《有機ELモジュール》
 本発明の有機ELモジュールは、有機ELパネルに電気接続部材を接合した構成を有し、前記電気接続部材は、静電容量方式のタッチ検出回路ユニットと、前記有機ELパネルを駆動する発光素子駆動回路部とを有し、前記有機ELパネルは、内部の対向する位置に面状の一対の電極として、少なくともアノード電極とカソード電極を有し、当該一対の電極が、発光素子駆動回路ユニットに接続され、一対の電極で構成される発光領域の外周部、すなわち、ベゼル領域部に、一対の電極とは接続していないベゼル電極を有している構成であることを特徴とする。
<< Organic EL module >>
The organic EL module of the present invention has a configuration in which an electrical connection member is joined to an organic EL panel, and the electrical connection member is a capacitive touch detection circuit unit and a light emitting element drive for driving the organic EL panel. The organic EL panel has at least an anode electrode and a cathode electrode as a pair of planar electrodes at opposing positions inside, and the pair of electrodes are connected to the light emitting element driving circuit unit. In addition, the present invention is characterized in that a bezel electrode that is not connected to the pair of electrodes is provided in the outer peripheral portion of the light emitting region constituted by the pair of electrodes, that is, the bezel region portion.
 以下、本発明の有機ELモジュール全体の概略構成について、図を交えて説明する。 Hereinafter, a schematic configuration of the entire organic EL module of the present invention will be described with reference to the drawings.
 図1は、本発明の有機ELモジュールの構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic EL module of the present invention.
 図1に示す有機ELモジュール(1)では、透明基材(3)上に、アノード電極(4、陽極)と、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等から構成される有機機能層ユニット(5)が積層されて、発光領域(LA)を構成している。有機機能層ユニット(5)の上部には、カソード電極(6、陰極)が積層されて、有機EL素子(9)を構成している。また、発光領域(LA)の外周部には、2つのベゼル電極(BZ-A及びBZ-B)が配置されている。この有機EL素子(9)の外周部を封止用接着剤層(7)で封止し、その表面に、外部環境からの有害ガス(酸素、水分等)の発光部への浸透を防止することを目的として封止部材(8)が配置され、有機ELパネル(2)を構成している。 In the organic EL module (1) shown in FIG. 1, an anode electrode (4, anode) and, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron are formed on a transparent substrate (3). An organic functional layer unit (5) composed of an injection layer or the like is laminated to constitute a light emitting region (LA). A cathode electrode (6, cathode) is laminated on the upper part of the organic functional layer unit (5) to constitute the organic EL element (9). Further, two bezel electrodes (BZ-A and BZ-B) are arranged on the outer peripheral portion of the light emitting region (LA). The outer peripheral part of the organic EL element (9) is sealed with a sealing adhesive layer (7), and on its surface, harmful gas (oxygen, moisture, etc.) from the external environment is prevented from penetrating into the light emitting part. For this purpose, the sealing member (8) is arranged to constitute the organic EL panel (2).
 また、本発明に係る有機ELパネル(2)においては、有機EL素子(9)の保護を目的として、最表面側にメタルホイル層を設ける構成であってもよい。 The organic EL panel (2) according to the present invention may have a configuration in which a metal foil layer is provided on the outermost surface side for the purpose of protecting the organic EL element (9).
 図1の記載の構成において、一対の電極であるアノード電極(4)とカソード電極(6)は、発光を制御する発光素子駆動回路ユニット(12)に接続されている。また、2つのベゼル電極(BZ-A及びBZ-B)、又は2つのベゼル電極(BZ-A及びBZ-B)及びアノード電極(4)は、タッチ(指触)を検出するためのタッチ検出回路ユニット(14)に接続されている。 In the configuration shown in FIG. 1, the anode electrode (4) and the cathode electrode (6), which are a pair of electrodes, are connected to a light emitting element driving circuit unit (12) that controls light emission. Also, the two bezel electrodes (BZ-A and BZ-B), or the two bezel electrodes (BZ-A and BZ-B) and the anode electrode (4), touch detection for detecting touch (finger touch) Connected to the circuit unit (14).
 また、有機ELパネル(2)とは分離した状態で、透明基材(3)の有機EL素子を形成した面とは反対側の面には、例えば、フレキシブル基板上に有機エレクトロルミネッセンスパネルのアノード電極及びカソード電極への電気エネルギー供給ラインと、ベゼル電極への信号ラインを設けた電気接続部材(FPC、フレキシブルプリント回路)が、導電性部材を介して、有機ELパネルと電気的に接続されている。この構成の詳細については後述する。 Moreover, in the state separated from the organic EL panel (2), the surface of the transparent base (3) opposite to the surface on which the organic EL element is formed is, for example, an anode of an organic electroluminescence panel on a flexible substrate. An electric connection member (FPC, flexible printed circuit) provided with an electric energy supply line to the electrode and the cathode electrode and a signal line to the bezel electrode is electrically connected to the organic EL panel through the conductive member. Yes. Details of this configuration will be described later.
 次いで、有機ELパネルと電気接続部材より構成される有機ELモジュールについて説明する。 Next, an organic EL module composed of an organic EL panel and an electrical connection member will be described.
 図2は、有機ELモジュールを構成する有機ELパネルと、電気接続部材の一例として、FPC(フレキシブルプリント回路)の構成の一例を示す概略上面図である。 FIG. 2 is a schematic top view showing an example of the configuration of an FPC (flexible printed circuit) as an example of an organic EL panel constituting an organic EL module and an electrical connection member.
 図2の上段に示すAは、有機ELパネルの一例を示す概略上面図である。 2A is a schematic top view showing an example of an organic EL panel.
 図2のAに示す有機ELパネル(2)は、透明基材(3)上に、アノード電極(4)、発光層を含む有機機能層群(不図示)、及びカソード電極(6)より構成される有機EL素子(9)が配置されていて、発光領域(LA)を形成している。有機EL素子(9)からは、アノード電極(4)からの引き出し電極と、カソード電極(6)からの引き出し電極が配置されている。更に、発光領域(LA)外の上部及び下部には、ベゼル電極A(BZ-A)とベゼル電極B(BZ-B)が、他の電極とは独立して形成されている。 The organic EL panel (2) shown in FIG. 2A comprises a transparent substrate (3), an anode electrode (4), an organic functional layer group including a light emitting layer (not shown), and a cathode electrode (6). The organic EL element (9) to be formed is arranged to form a light emitting region (LA). From the organic EL element (9), an extraction electrode from the anode electrode (4) and an extraction electrode from the cathode electrode (6) are arranged. Further, a bezel electrode A (BZ-A) and a bezel electrode B (BZ-B) are formed independently of other electrodes on the upper and lower portions outside the light emitting region (LA).
 この有機EL素子(9)と各ベゼル電極上には、封止部材(8)が形成されている。 A sealing member (8) is formed on the organic EL element (9) and each bezel electrode.
 アノード電極(4)、カソード電極(6)及びベゼル電極(BZ-A及びBZ-B)の端部は、図2のBで説明する電気接続部材であるFPC(フレキシブルプリント回路)と電気的に接続するため、露出した状態となっている。 The ends of the anode electrode (4), the cathode electrode (6), and the bezel electrodes (BZ-A and BZ-B) are electrically connected to an FPC (flexible printed circuit) which is an electrical connection member described with reference to FIG. Because it is connected, it is exposed.
 図2の下段に示すBは、電気接続部材であるFPC(フレキシブルプリント回路)の構成の一例を示す概略上面図である。 B shown in the lower part of FIG. 2 is a schematic top view showing an example of the configuration of an FPC (flexible printed circuit) which is an electrical connection member.
 図2のBに記載のFPCは、プリント配線基板(PCB)上に、上記説明した有機ELパネル(2)を構成する各電極と電気的に接続し、駆動電力の供給や、各情報を制御部に伝達するためのプリント配線(PC)と各パッド(P)を有している。パッドとしては、ベゼル電極A(BZ-A)を接続するためのベゼル電極A接続用パッド(BZ-A-P)、カソード電極(6)を接続するためのカソード電極接続用パッド(6-P)、アノード電極(4)を接続するためのアノード電極接続用パッド(4-P)、ベゼル電極B(BZ-B)を接続するためのベゼル電極B接続用パッド(BZ-B-P)が配置されている。 The FPC shown in B of FIG. 2 is electrically connected to each electrode constituting the organic EL panel (2) described above on a printed wiring board (PCB) to control driving power supply and information. It has a printed wiring (PC) and each pad (P) for transmission to the part. The pads include a bezel electrode A connection pad (BZ-AP) for connecting the bezel electrode A (BZ-A), and a cathode electrode connection pad (6-P) for connecting the cathode electrode (6). ), An anode electrode connection pad (4-P) for connecting the anode electrode (4), and a bezel electrode B connection pad (BZ-BP) for connecting the bezel electrode B (BZ-B). Has been placed.
 図3は、図2で説明した有機ELパネル(2)と、電気接続部材(FPC)を接続して構成した有機ELモジュール(1)の一例を示す概略図である。 FIG. 3 is a schematic diagram showing an example of the organic EL module (1) configured by connecting the organic EL panel (2) described in FIG. 2 and an electrical connection member (FPC).
 図3の上段に示すAは、有機ELモジュール(1)の概略上面図であり、図3の下段に示すBは、有機ELモジュール(1)を背面側から観察した時の概略背面図である。従って、図2のBで示す上面側から観察した時の電気接続部材(FPC)の概略上面図と、図3のBで示す背面側から観察した電気接続部材(FPC)の概略背面図とは、上下の構成が逆になっている。 A shown in the upper part of FIG. 3 is a schematic top view of the organic EL module (1), and B shown in the lower part of FIG. 3 is a schematic rear view when the organic EL module (1) is observed from the back side. . Therefore, a schematic top view of the electrical connection member (FPC) observed from the top side shown by B in FIG. 2 and a schematic back view of the electrical connection member (FPC) observed from the back side shown by B in FIG. The upper and lower configurations are reversed.
 図3のAで示すように、図2で説明した有機ELパネル(2)を構成する電極であるベゼル電極A(BZ-A)、アノード電極(4)、カソード電極(6)及びベゼル電極B(BZ-B)と、電気接続部材(FPC)が具備しているベゼル電極A接続用パッド(BZ-A-P)、カソード電極接続用パッド(6-P)、アノード電極接続用パッド(4-P)及びベゼル電極B接続用パッド(BZ-B-P)を電気的に接続して、有機ELモジュール(1)を構成する。3は、有機ELパネル(2)を構成する透明基材であり、8は最下部に配置されている封止部材、9は有機EL素子である。 As shown by A in FIG. 3, the bezel electrode A (BZ-A), the anode electrode (4), the cathode electrode (6), and the bezel electrode B, which are electrodes constituting the organic EL panel (2) described in FIG. (BZ-B), the bezel electrode A connection pad (BZ-AP), the cathode electrode connection pad (6-P), and the anode electrode connection pad (4) included in the electrical connection member (FPC). -P) and the bezel electrode B connection pad (BZ-BP) are electrically connected to form the organic EL module (1). 3 is a transparent base material which comprises an organic electroluminescent panel (2), 8 is the sealing member arrange | positioned at the lowest part, 9 is an organic EL element.
 図3の下段に示すBは、有機ELモジュール(1)を背面側から見た図であり、最表面に保護フィルム(F)が配置されている。 B shown in the lower part of FIG. 3 is a view of the organic EL module (1) seen from the back side, and a protective film (F) is disposed on the outermost surface.
 図4は、図3で説明した構成の有機ELモジュールの一例を示す概略断面図である。 FIG. 4 is a schematic cross-sectional view showing an example of the organic EL module having the configuration described in FIG.
 図4の上段に示すAは、図3に記載しているI-I切断面で表される断面図であり、ベゼル領域に形成したベゼル電極Aを含む断面図である。 4A is a cross-sectional view represented by the II cut plane shown in FIG. 3 and includes a bezel electrode A formed in the bezel region.
 図4のAで示す断面図では、透明基材(3)の下に、ベゼル電極A(BZ-A)が配置され、封止部材(8)により封止されている。ベゼル電極A(BZ-A)の端部は、露出している引出電極を構成し、電気接続部材(FPC)の端部にはベゼル電極A接続用パッド(BZ-A-P)を有し、ベゼル電極A(BZ-A)とベゼル電極A接続用パッド(BZ-A-P)は、導電性部材(不図示)により電気的に接続して、有機ELモジュール(1)を構成している。封止部材(8)の下部には、有機ELモジュール(1)を保護するための保護フィルム(F)が設けられている。 4A, the bezel electrode A (BZ-A) is disposed under the transparent base material (3) and is sealed by the sealing member (8). The end portion of the bezel electrode A (BZ-A) constitutes an exposed extraction electrode, and the end portion of the electrical connection member (FPC) has a bezel electrode A connection pad (BZ-AP). The bezel electrode A (BZ-A) and the bezel electrode A connection pad (BZ-AP) are electrically connected by a conductive member (not shown) to constitute the organic EL module (1). Yes. A protective film (F) for protecting the organic EL module (1) is provided below the sealing member (8).
 図4の下段に示すBは、図3に記載しているII-II切断面で表される断面図であり、カソード電極(6)を含む断面図である。 B shown in the lower part of FIG. 4 is a cross-sectional view taken along the line II-II shown in FIG. 3, and is a cross-sectional view including the cathode electrode (6).
 図4のBで示す断面図では、透明基材(3)の下に、有機EL素子(9)が配置され、封止部材(8)により封止されている。有機EL素子(9)の端部より、カソード電極(6)の引出電極が形成されている。電気接続部材(FPC)の端部にはカソード電極接続用パッド(6-P)が設けられており、カソード電極(6)とカソード電極接続用パッド(6-P)は、導電性部材(不図示)により電気的に接続して、有機ELモジュール(1)を構成している。封止部材の下部には、有機ELモジュール(1)を保護するための保護フィルム(F)が設けられている。 4B, the organic EL element (9) is disposed under the transparent substrate (3) and is sealed by the sealing member (8). A lead electrode of the cathode electrode (6) is formed from the end of the organic EL element (9). A cathode electrode connection pad (6-P) is provided at the end of the electrical connection member (FPC). The cathode electrode (6) and the cathode electrode connection pad (6-P) are electrically conductive members (non-conductive). The organic EL module (1) is configured by electrical connection according to the figure. A protective film (F) for protecting the organic EL module (1) is provided below the sealing member.
 図5A及び図5Bは、本発明の有機ELモジュールを具備したスマートデバイスの一例を示す概略構成図であり、図5Aは、主表示画面側であり、図5Bは背面側である。 5A and 5B are schematic configuration diagrams showing an example of a smart device including the organic EL module of the present invention, FIG. 5A is a main display screen side, and FIG. 5B is a back side.
 図5Aで示すスマートデバイス(100)の主表面側には、主表示画面(120)と副表示画面(110)とを有している構成の一例を示す概略図である。 FIG. 5B is a schematic diagram showing an example of a configuration having a main display screen (120) and a sub display screen (110) on the main surface side of the smart device (100) shown in FIG. 5A.
 図5Aに示すスマートデバイス(100)では、表面側には、表示画面(110)と、液晶表示デバイス等で構成される主表示画面(120)等を備えて構成されている。主表示画面(120)を構成する液晶表示装置としては、従来公知の液晶表示装置を用いることができる。副表示画面(110)には、本発明の有機ELモジュールを配置しても、あるいは従来の有機ELジュールを配置してもよい。 The smart device (100) shown in FIG. 5A includes a display screen (110) and a main display screen (120) including a liquid crystal display device on the front side. A conventionally known liquid crystal display device can be used as the liquid crystal display device constituting the main display screen (120). On the sub display screen (110), the organic EL module of the present invention may be arranged, or a conventional organic EL module may be arranged.
 副表示画面(110)は、それぞれ複数の本発明の有機ELパネル又は従来の有機ELパネルを有し、表示パターンが異なるアイコン表示部(111)が配置され、各アイコン表示では、有機ELパネルの発光時に、図形、文字、模様等の各種表示パターンの発光が視認される。また、有機ELパネルが非発光状態である場合には、各種表示パターンは視認されない。 Each of the sub display screens (110) has a plurality of organic EL panels of the present invention or conventional organic EL panels, and icon display portions (111) having different display patterns are arranged. At the time of light emission, light emission of various display patterns such as figures, characters, and patterns is visually recognized. Further, when the organic EL panel is in a non-light emitting state, various display patterns are not visually recognized.
 図5Bは、スマートデバイス(100)の背面側の構成であり、副表示画面として、有機EL素子(9)を含むスクロール機能あるいはタッチ機能を有する有機ELモジュール(1)が配置されている全体構成概略図の一例を示す。 FIG. 5B is a configuration on the back side of the smart device (100), and an overall configuration in which an organic EL module (1) having a scroll function or a touch function including the organic EL element (9) is arranged as a sub display screen. An example of a schematic diagram is shown.
 図5A及び図5Bで示したスマートデバイス(100)では、本発明の有機ELモジュール(1)は、図5Aで示すような主表示画面側、図5Bで示すような背面側、あるいは、スマートデバイス(100)の側面部に配置してもよいが、好ましくは、図5Bで例示するような背面側に、副表示画面としてスクロール機能あるいはタッチ機能を有する本発明の有機ELモジュール(1)を有する構成が、最も好ましい態様である。 In the smart device (100) shown in FIGS. 5A and 5B, the organic EL module (1) of the present invention has a main display screen side as shown in FIG. 5A, a back side as shown in FIG. 5B, or a smart device. The organic EL module (1) of the present invention having a scroll function or a touch function as a secondary display screen is preferably provided on the back side as exemplified in FIG. 5B. The configuration is the most preferred embodiment.
 次いで、本発明の有機ELモジュール(1)を具備したスマートデバイスによるスクロール操作及びタップ操作の概要を説明する。なお、具体的な操作方法に関しては、後述する回路図を用いた実施態様にて説明する。 Next, an outline of scroll operation and tap operation by a smart device equipped with the organic EL module (1) of the present invention will be described. A specific operation method will be described in an embodiment using a circuit diagram to be described later.
 図6は、スマートデバイスによるスクロール操作及びタップ操作の一例を示す概略図である。 FIG. 6 is a schematic diagram illustrating an example of a scroll operation and a tap operation by a smart device.
 図6に示すAは、図5Bと同様のスマートデバイス(100)の背面図であり、本発明の有機ELモジュール(1)を具備している構成である。 A shown in FIG. 6 is a rear view of the same smart device (100) as FIG. 5B, and includes the organic EL module (1) of the present invention.
 図6に示すBは、有機ELモジュール(1)の領域の内部構造を示す図であり、発光領域(LA)を有する有機EL素子(9)を具備している有機ELパネル(2)と、電気接続部材(FPC)により構成されている有機ELモジュール(1)が配置されている。 B shown in FIG. 6 is a diagram showing the internal structure of the region of the organic EL module (1), an organic EL panel (2) including an organic EL element (9) having a light emitting region (LA), An organic EL module (1) composed of an electrical connection member (FPC) is disposed.
 図6に示すCでは、有機ELパネル(2)に対しスクロール操作、例えば、ページスクロールの状況を示す図であり、指(15)を、有機ELパネル(2)の上下方向に指触してスクロール(SC)を行うことにより、ページスクロールを行う。 FIG. 6C is a diagram showing a state of scrolling operation, for example, page scrolling, on the organic EL panel (2), and the finger (15) is touched in the vertical direction of the organic EL panel (2). By scrolling (SC), page scrolling is performed.
 図6に示すDは、タップ操作を行う状況を示す図であり、有機ELパネル(2)に対し、指(15)により、有機ELパネル(2)の画面をダブルタップ(T)することにより、タップ操作を行うことができる。 D shown in FIG. 6 is a diagram illustrating a situation where a tap operation is performed. By double-tapping (T) the screen of the organic EL panel (2) with the finger (15) on the organic EL panel (2). , Tap operation can be performed.
 図7は、本発明の有機ELモジュールを具備したスマートデバイスの全体構成図である。図7では、副表示画面が、表面側と裏面側の双方に配置されている例を示してある。 FIG. 7 is an overall configuration diagram of a smart device including the organic EL module of the present invention. FIG. 7 shows an example in which the sub display screens are arranged on both the front side and the back side.
 図7に示すスマートデバイス(100)では、表面側(主表示画面側)にカバーガラス(104)が配置され、その下面側に、液晶パネル(105)が配置され、更にその下部には、駆動用電力である電池(不図示)等が収納されている。一方、表面側の副表示画面(110)の下面側には、有機ELパネル(2)が配置され、当該有機ELパネル(2)は、電気接続ユニットであるフレキシブルプリント回路(FPC)を介して、駆動を制御するプリント配線回路(PCB)に接続されている。 In the smart device (100) shown in FIG. 7, the cover glass (104) is disposed on the front surface side (main display screen side), the liquid crystal panel (105) is disposed on the lower surface side thereof, and the lower portion thereof is driven. A battery (not shown) or the like which is power for use is stored. On the other hand, an organic EL panel (2) is arranged on the lower surface side of the sub display screen (110) on the front side, and the organic EL panel (2) passes through a flexible printed circuit (FPC) which is an electrical connection unit. Are connected to a printed wiring circuit (PCB) for controlling driving.
 また、前記液晶パネル(105)も、フレキシブルプリント回路(FPC)を介して、プリント配線回路(PCB)に接続されている。また、有機ELパネル(2)の引き出し電極部とフレキシブルプリント回路(FPC)とを電気的に接続する場合には、導電性接着剤を用いて接合する。導電性接着剤については後述する。 The liquid crystal panel (105) is also connected to a printed wiring circuit (PCB) via a flexible printed circuit (FPC). Moreover, when electrically connecting the extraction electrode part of an organic EL panel (2) and a flexible printed circuit (FPC), it joins using a conductive adhesive. The conductive adhesive will be described later.
 図7に示すスマートデバイス(100)においては、裏面側には、図5Bで示した本発明の有機ELモジュール(1)から構成されている副表示画面(102B)を有する構成を記載してある。 In the smart device (100) shown in FIG. 7, a configuration having a sub-display screen (102B) configured from the organic EL module (1) of the present invention shown in FIG. 5B is described on the back side. .
 副表示画面(102B)は、光透過性の保護部材(F)の下面側に、有機EL素子(2)と、それと電気的に接続されているフレキシブルプリント回路(FPC)から構成される本発明の有機ELデバイス(1)を有し、フレキシブルプリント回路(FPC)は駆動を制御するプリント配線回路(PCB)に接続されている。 The sub display screen (102B) includes the organic EL element (2) and a flexible printed circuit (FPC) electrically connected thereto on the lower surface side of the light-transmissive protective member (F). The organic EL device (1) and the flexible printed circuit (FPC) are connected to a printed wiring circuit (PCB) that controls driving.
 (スクロール操作及びタップ操作)
 上記図6で示した本発明のベゼル電極を具備した有機ELモジュール(1)によるスクロール操作及びタップ操作について説明する。
(Scroll operation and tap operation)
The scroll operation and tap operation by the organic EL module (1) provided with the bezel electrode of the present invention shown in FIG. 6 will be described.
 本発明の有機ELモジュールにおいては、主には、以下に示す2つのタッチ検出方法を適用することが好ましい。 In the organic EL module of the present invention, it is preferable to mainly apply the following two touch detection methods.
 第1の方法は、後述の図8~図12でその詳細を説明するが、2つのベゼル電極(ベゼル電極A及びベゼル電極B)のみを用いて、タッチ検出によるスクロール操作やタップ操作を行う形態である。 The details of the first method will be described with reference to FIGS. 8 to 12, which will be described later, but only two bezel electrodes (bezel electrode A and bezel electrode B) are used to perform a scroll operation and a tap operation by touch detection. It is.
 この方法では、発光素子回路ユニットは常時通電して発光状態とし、スイッチ機能を備えたベゼル電極A及びベゼル電極Bを用い、タッチ検出時に、ベゼル電極Aからベゼル電極Bの順にスイッチの「ON」を切り替えながら静電容量(以下、Cfともいう。)の変化を検知することにより、ページや画面を上から下にスクロールするという動作ができ、逆にベゼル電極Bからベゼル電極Aの順にスイッチの「ON」を切り替えながらCf変化を検知することにより、ページや画面を下から上にスクロールができる。このような方法では、有機EL素子の発光ラインをショートさせてフローティング状態にする必要がないため、極めて簡単な回路や方法で、スクロール操作等を行うことができる。 In this method, the light emitting element circuit unit is always energized to emit light, and the bezel electrode A and the bezel electrode B having a switch function are used. When a touch is detected, the switches are turned “ON” in order from the bezel electrode A to the bezel electrode B. By detecting the change in the capacitance (hereinafter also referred to as Cf) while switching, the operation of scrolling the page or screen from the top to the bottom can be performed. By detecting the Cf change while switching “ON”, the page or screen can be scrolled from the bottom to the top. In such a method, since it is not necessary to short-circuit the light emitting line of the organic EL element to be in a floating state, a scroll operation or the like can be performed with a very simple circuit or method.
 第2の方法は、後述の図13~図17でその詳細を説明するが、2つのベゼル電極(ベゼル電極A及びベゼル電極B)と、有機EL素子のアノード電極を検知電極として用い、時分割方式で、タッチ検出によるスクロール操作やタップ操作と、有機EL素子の発光制御を行う方法である。 The details of the second method will be described with reference to FIGS. 13 to 17 described later, but using two bezel electrodes (bezel electrode A and bezel electrode B) and an anode electrode of an organic EL element as detection electrodes, time division is performed. This is a method of performing scroll operation and tap operation by touch detection and light emission control of the organic EL element.
 この構成では、ベゼル電極A→アノード検知電極→ベゼル電極Bの順にスイッチの「ON」を切り替えながらCf変化を検知することにより、ページや画面を上から下にスクロールするという動作ができ、逆にベゼル電極B→アノード検知電極→ベゼル電極Aの順にスイッチの「ON」を切り替えながらCf変化を検知することにより、ページや画面を下から上にスクロールができる。 In this configuration, by detecting the Cf change while switching the switch “ON” in the order of bezel electrode A → anode detection electrode → bezel electrode B, an operation of scrolling the page or screen from top to bottom can be performed. By detecting the change in Cf while switching the switch “ON” in the order of bezel electrode B → anode detection electrode → bezel electrode A, the page or screen can be scrolled from bottom to top.
 また、アノード検知電極のみのCf変化を検知することにより、タップ動作を行うことができ、Cf変化の検知を時間差で行うことにより、ダブルタップを可能とすることができる。詳細については後述する。 Further, a tap operation can be performed by detecting a change in Cf of only the anode detection electrode, and a double tap can be enabled by detecting a change in Cf with a time difference. Details will be described later.
 《有機ELモジュールの構成部材》
 次いで、本発明の有機ELモジュールの主要構成部材である有機EL素子を含む有機ELパネルと電気接続部材(FPC)の詳細について説明する。
<< Components of organic EL module >>
Next, details of an organic EL panel including an organic EL element, which is a main constituent member of the organic EL module of the present invention, and an electrical connection member (FPC) will be described.
 〔有機ELパネルの構成〕
 有機ELモジュール(1)を構成する有機ELパネル(2)は、例えば、前記図1で例示したように、透明基材(3)上に、アノード電極(4、陽極)と、有機機能層ユニット(5)が積層されて、有機機能層ユニット(5)の上部には、カソード電極(6、陰極)が積層されて、発光領域(LA)を有する有機EL素子(9)を構成している。この有機EL素子(9)の外周部を封止用接着剤(7)で封止し、その表面に、封止部材(8)が配置され、有機ELパネル(2)が構成されている。
[Configuration of organic EL panel]
The organic EL panel (2) constituting the organic EL module (1) includes, for example, an anode electrode (4, anode) and an organic functional layer unit on the transparent substrate (3) as illustrated in FIG. (5) is laminated, and an organic EL element (9) having a light emitting region (LA) is formed by laminating a cathode electrode (6, cathode) on the organic functional layer unit (5). . The outer peripheral portion of the organic EL element (9) is sealed with a sealing adhesive (7), and a sealing member (8) is disposed on the surface thereof to constitute an organic EL panel (2).
 以下に、有機EL素子の構成の代表例を示す。 The following is a typical example of the configuration of the organic EL element.
 (i)陽極/有機機能層ユニット(正孔注入輸送層/発光層/電子注入輸送層)/陰極
 (ii)陽極/有機機能層ユニット(正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層)/陰極
 (iii)陽極/有機機能層ユニット(正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層)/陰極
 (iv)陽極/有機機能層ユニット(正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層)/陰極
 (v)陽極/有機機能層ユニット(正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層)/陰極
 (vi)陽極/有機機能層ユニット(正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層)/陰極
 更に、本発明に係る有機ELパネルにおいては、非発光領域であるベゼル領域に、陽極(アノード電極)や陰極(カソード電極)とは電気的に接続していないベゼル電極を有していることを特徴とする。
(I) Anode / organic functional layer unit (hole injection transport layer / light emitting layer / electron injection transport layer) / cathode (ii) Anode / organic functional layer unit (hole injection transport layer / light emitting layer / hole blocking layer / Electron injection transport layer) / cathode (iii) Anode / organic functional layer unit (hole injection transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron injection transport layer) / cathode (iv) Anode / organic functional layer Unit (hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer) / cathode (v) Anode / organic functional layer unit (hole injection layer / hole transport layer / light emitting layer / hole) Blocking layer / electron transport layer / electron injection layer) / cathode (vi) anode / organic functional layer unit (hole injection layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / electron) Injection layer) / cathode Further, in the organic EL panel according to the present invention, the bezel region, which is a non-light emitting region, is positively charged. The (anode electrode) and a cathode (cathode electrode), characterized in that it has a bezel electrode not electrically connected.
 本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。 As for the outline of the organic EL element applicable to the present invention, for example, JP2013-157634A, JP2013-168552A, JP2013-177361A, JP2013-187221A, JP JP 2013-191644 A, JP 2013-191804 A, JP 2013-225678 A, JP 2013-235994 A, JP 2013-243234 A, JP 2013-243236 A, JP 2013-2013 A. JP 242366, JP 2013-243371, JP 2013-245179, JP 2014-003249, JP 2014-003299, JP 2014-013910, JP 2014-017493. Gazette, JP 2014-017494 A It can be mentioned configurations described in equal.
 更に、有機EL素子を構成する各構成材料の詳細について説明する。 Further, details of each constituent material constituting the organic EL element will be described.
 〔透明基材〕
 本発明に係る有機EL素子に適用可能な透明基材(3)としては、例えば、ガラス、プラスチック等の透明材料を挙げることができる。好ましく用いられる光透過性を有する透明基材(3)としては、ガラス、石英、樹脂フィルムを挙げることができる。本発明でいう透明とは、波長550nmでの光透過率が50%以上であることをいい、好ましくは70%以上であり、さらに好ましくは85%以上である。
(Transparent substrate)
Examples of the transparent substrate (3) applicable to the organic EL element according to the present invention include transparent materials such as glass and plastic. Examples of the transparent substrate (3) having light transmittance preferably used include glass, quartz, and resin films. The term “transparent” as used in the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more, preferably 70% or more, and more preferably 85% or more.
 ガラス材料としては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、隣接する層との密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜を形成することができる。 Examples of the glass material include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. On the surface of these glass materials, from the viewpoint of adhesion with adjacent layers, durability, and smoothness, a physical treatment such as polishing, a coating made of an inorganic material or an organic material, or these coatings, if necessary. A combined hybrid coating can be formed.
 樹脂フィルムを構成する樹脂材料としては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン(略称:PE)、ポリプロピレン(略称:PP)、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール(略称:PVA)、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド(略称:PI)、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート(略称:PMMA)、アクリル及びポリアリレート類、アートン(商品名JSR社製)及びアペル(商品名三井化学社製)等のシクロオレフィン系樹脂(略称:COP)等を挙げることができる。 Examples of the resin material constituting the resin film include polyesters such as polyethylene terephthalate (abbreviation: PET) and polyethylene naphthalate (abbreviation: PEN), polyethylene (abbreviation: PE), polypropylene (abbreviation: PP), cellophane, and cellulose diene. Cellulose esters such as acetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate, and derivatives thereof, polyvinylidene chloride, polyvinyl alcohol ( Abbreviation: PVA), polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate (abbreviation: PC), norbornene resin, polymethylpentene, poly -Terketone, polyimide (abbreviation: PI), polyethersulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate (abbreviation: PMMA), acrylic And polyarylates, cycloolefin resins (abbreviation: COP) such as Arton (trade name, manufactured by JSR) and Apel (trade name, manufactured by Mitsui Chemicals).
 有機EL素子においては、上記説明した透明基材(3)上に、必要に応じて、ガスバリアー層を設ける構成であってもよい。 In the organic EL element, a gas barrier layer may be provided on the transparent substrate (3) as described above, if necessary.
 ガスバリアー層を形成する材料としては、水分や酸素など、有機EL素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素などの無機物を用いることができる。更に、ガスバリアー層の脆弱性を改良するため、これら無機層と有機材料からなる有機層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 As a material for forming the gas barrier layer, any material that has a function of suppressing intrusion of water or oxygen that causes deterioration of the organic EL element may be used. For example, an inorganic substance such as silicon oxide, silicon dioxide, or silicon nitride may be used. Can be used. Furthermore, in order to improve the brittleness of the gas barrier layer, it is more preferable to have a laminated structure of these inorganic layers and organic layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 〔アノード電極:陽極〕
 有機EL素子を構成する陽極としては、Ag、Au等の金属又は金属を主成分とする合金、CuI、あるいはインジウム-スズの複合酸化物(ITO)、SnO及びZnO等の金属酸化物を挙げることができるが、金属又は金属を主成分とする合金であることが好ましく、更に好ましくは、銀又は銀を主成分とする合金である。本発明に係る陽極としては、透明電極であっても、非透明電極でもよいが、陽極側が光取出し面(発光面)となる場合には、透明電極として設計する。
[Anode electrode: anode]
Examples of the anode constituting the organic EL element include metals such as Ag and Au, alloys containing metal as a main component, CuI, indium-tin composite oxide (ITO), and metal oxides such as SnO 2 and ZnO. However, a metal or a metal-based alloy is preferable, and silver or a silver-based alloy is more preferable. The anode according to the present invention may be a transparent electrode or a non-transparent electrode, but is designed as a transparent electrode when the anode side is a light extraction surface (light emitting surface).
 透明陽極を、銀を主成分として構成する場合、銀の純度としては、99%以上であることが好ましい。また、銀の安定性を確保するためにパラジウム(Pd)、銅(Cu)及び金(Au)等が添加されていてもよい。 When the transparent anode is composed mainly of silver, the purity of silver is preferably 99% or more. Further, palladium (Pd), copper (Cu), gold (Au), or the like may be added to ensure the stability of silver.
 透明陽極としては、銀を主成分として構成されている層であることが好ましいが、具体的には、銀単独で形成しても、あるいは銀(Ag)を主成分として含有する合金から構成されていてもよい。そのような合金としては、例えば、銀・マグネシウム(Ag・Mg)、銀・銅(Ag・Cu)、銀・パラジウム(Ag・Pd)、銀・パラジウム・銅(Ag・Pd・Cu)、銀・インジウム(Ag・In)などが挙げられる。 The transparent anode is preferably a layer composed mainly of silver, but specifically, it may be formed of silver alone or an alloy containing silver (Ag) as a main component. It may be. Examples of such alloys include silver / magnesium (Ag / Mg), silver / copper (Ag / Cu), silver / palladium (Ag / Pd), silver / palladium / copper (Ag / Pd / Cu), silver -Indium (Ag.In) etc. are mentioned.
 上記陽極を構成する各構成材料の中でも、本発明に係る有機EL素子を構成する陽極としては、銀を主成分として構成し、厚さが2~20nmの範囲内にある透明陽極であることが好ましいが、更に好ましくは厚さが4~12nmの範囲内である。厚さが20nm以下であれば、透明陽極の吸収成分及び反射成分が低く抑えられ、高い光透過率が維持されるため好ましい。 Among the constituent materials constituting the anode, the anode constituting the organic EL device according to the present invention is a transparent anode composed mainly of silver and having a thickness in the range of 2 to 20 nm. The thickness is preferably in the range of 4 to 12 nm. A thickness of 20 nm or less is preferable because the absorption component and reflection component of the transparent anode can be kept low and high light transmittance can be maintained.
 本発明でいう銀を主成分として構成されている層とは、透明陽極中の銀の含有量が60質量%以上であることをいい、好ましくは銀の含有量が80質量%以上であり、より好ましくは銀の含有量が90質量%以上であり、特に好ましくは銀の含有量が98質量%以上である。また、本発明に係る透明陽極でいう「透明」とは、波長550nmでの光透過率が50%以上であることをいう。 In the present invention, the layer composed mainly of silver means that the silver content in the transparent anode is 60% by mass or more, preferably the silver content is 80% by mass or more, More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more. The term “transparent” in the transparent anode according to the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more.
 透明陽極においては、銀を主成分として構成されている層が、必要に応じて複数の層に分けて積層された構成であっても良い。 The transparent anode may have a configuration in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
 また、本発明においては、陽極が、銀を主成分として構成する透明陽極である場合には、形成する透明陽極の銀膜の均一性を高める観点から、その下部に、下地層を設けることが好ましい。下地層としては、特に制限はないが、窒素原子又は硫黄原子を有する有機化合物を含有する層であることが好ましく、当該下地層上に、透明陽極を形成する方法が好ましい態様である。 Further, in the present invention, when the anode is a transparent anode composed mainly of silver, a base layer may be provided at the lower portion from the viewpoint of improving the uniformity of the silver film of the transparent anode to be formed. preferable. Although there is no restriction | limiting in particular as a base layer, It is preferable that it is a layer containing the organic compound which has a nitrogen atom or a sulfur atom, and the method of forming a transparent anode on the said base layer is a preferable aspect.
 〔中間電極〕
 本発明に係る有機EL素子においては、陽極と陰極との間に、有機機能層群と発光層から構成される有機機能層ユニットを二つ以上積層した構造をとる場合には、二つ以上の有機機能層ユニット間を、電気的接続を得るための独立した接続端子を有する中間電極層ユニットで分離した構造をすることができる。
[Intermediate electrode]
In the organic EL device according to the present invention, in the case of taking a structure in which two or more organic functional layer units composed of an organic functional layer group and a light emitting layer are laminated between the anode and the cathode, two or more The organic functional layer units can be separated by an intermediate electrode layer unit having independent connection terminals for obtaining electrical connection.
 〔ベゼル電極〕
 本発明においては、非発光領域にタッチ検出用のベゼル電極を形成することを特徴とするが、ベゼル電極は上記説明した陽極、または後述する陰極の形成に用いるのと同様の材料及び方法により、ベゼル領域に形成することができる。
[Bezel electrode]
In the present invention, it is characterized in that a bezel electrode for touch detection is formed in a non-light emitting region, but the bezel electrode is made of the same material and method as those used for forming the anode described above or the cathode described later. It can be formed in the bezel region.
 〔発光層〕
 有機EL素子を構成する発光層は、発光材料としてリン光発光化合物が含有されている構成が好ましい。
[Light emitting layer]
The light emitting layer constituting the organic EL element preferably has a structure containing a phosphorescent light emitting compound as a light emitting material.
 発光層は、電極又は電子輸送層から注入された電子と、正孔輸送層から注入された正孔とが再結合して発光する層であり、発光する部分は発光層の層内であっても、発光層と隣接する他層との界面であってもよい。 The light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be an interface between the light emitting layer and another adjacent layer.
 発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層間には非発光性の中間層を設けることが好ましい。 The light emitting layer is not particularly limited in its configuration as long as the light emitting material included satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to provide a non-light emitting intermediate layer between the light emitting layers.
 発光層の厚さの総和は、1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内であることがさらに好ましい。なお、発光層の厚さの総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む厚さをいう。 The total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. In addition, the sum total of the thickness of a light emitting layer means the thickness also including the said intermediate | middle layer, when a nonluminous intermediate | middle layer exists between light emitting layers.
 以上のような発光層は、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット、Langmuir Blodgett法)、湿式塗布法、インクジェット法等の公知の方法により形成することができる。 The light emitting layer as described above is prepared by using, for example, a vacuum emitting method, a spin coating method, a casting method, an LB method (Langmuir Blodget, Langmuir Blodgett method), a wet coating method, an ink jet method, and the like. It can form by the well-known method of these.
 また、発光層は、特性の異なる複数の発光材料を混合してもよく、リン光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)とを同一発光層中に混合して用いてもよい。発光層の構成としては、ホスト化合物(発光ホスト等ともいう)及び発光材料(発光ドーパント化合物ともいう。)を含有し、発光材料より発光させることが好ましい。 The light-emitting layer may be a mixture of a plurality of light-emitting materials having different characteristics. A phosphorescent light-emitting material and a fluorescent light-emitting material (also referred to as a fluorescent dopant or a fluorescent compound) are mixed and used in the same light-emitting layer. Also good. The structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
 (ホスト化合物)
 発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらにリン光量子収率が0.01未満であることが好ましい。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
(Host compound)
As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、あるいは、複数種のホスト化合物を併用してもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能となり、有機電界発光素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types of host compounds may be used in combination. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent device can be improved. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 発光層に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
 本発明に適用可能なホスト化合物としては、例えば、特開2001-257076号公報、同2001-357977号公報、同2002-8860号公報、同2002-43056号公報、同2002-105445号公報、同2002-352957号公報、同2002-231453号公報、同2002-234888号公報、同2002-260861号公報、同2002-305083号公報、米国特許公開第2005/0112407号明細書、米国特許公開第2009/0030202号明細書、国際公開第2001/039234号、国際公開第2008/056746号、国際公開第2005/089025号、国際公開第2007/063754号、国際公開第2005/030900号、国際公開第2009/086028号、国際公開第2012/023947号、特開2007-254297号公報、欧州特許第2034538号明細書等に記載されている化合物を挙げることができる。 Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US2005 / 0112407, US2009 No./0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication No. 2009. / 08 028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
 (発光材料)
 本発明で用いることのできる発光材料としては、リン光発光性化合物(リン光性化合物、リン光発光材料又はリン光発光ドーパントともいう。)及び蛍光発光性化合物(蛍光性化合物又は蛍光発光材料ともいう。)が挙げられる。
(Luminescent material)
As the light-emitting material that can be used in the present invention, a phosphorescent compound (also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant) and a fluorescent compound (both a fluorescent compound or a fluorescent material) are used. Say).
 〈リン光発光性化合物〉
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
<Phosphorescent compound>
A phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて、上記リン光量子収率として0.01以上が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)又は希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
 本発明においては、少なくとも一つの発光層が、二種以上のリン光発光性化合物が含有されていてもよく、発光層におけるリン光発光性化合物の濃度比が発光層の厚さ方向で変化している傾斜構成であってもよい。 In the present invention, at least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. An inclined configuration may be used.
 本発明に使用できる公知のリン光発光性化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。 Specific examples of known phosphorescent compounds that can be used in the present invention include compounds described in the following documents.
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許公開第2006/835469号明細書、米国特許公開第2006/0202194号明細書、米国特許公開第2007/0087321号明細書、米国特許公開第2005/0244673号明細書等に記載の化合物を挙げることができる。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Publication No. 2006/835469, US Patent Publication No. 2006/020202194. The compounds described in the specification, US Patent Publication No. 2007/0087321, US Patent Publication No. 2005/0244673, and the like can be mentioned.
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2009/000673号、米国特許第7332232号明細書、米国特許公開第2009/0039776号、米国特許第6687266号明細書、米国特許公開第2006/0008670号明細書、米国特許公開第2008/0015355号明細書、米国特許第7396598号明細書、米国特許公開第2003/0138657号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。 Also, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42,1248 (2003), International Publication No. 2009/050290, International Publication No. 2009/000673, US Pat. No. 7,332,232, US Patent Publication No. 2009/0039776, US Pat. No. 6,687,266, US Pat. As described in Japanese Patent Publication No. 2006/0008670, US Patent Publication No. 2008/0015355, US Pat. No. 7,396,598, US Patent Publication No. 2003/0138667, US Pat. No. 7090928, etc. A compound can be mentioned.
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2006/056418号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2006/082742号、米国特許公開第2005/0260441号明細書、米国特許第7534505号明細書、米国特許公開第2007/0190359号明細書、米国特許第7338722号明細書、米国特許第7279704号明細書、米国特許公開第2006/103874号明細書等に記載の化合物も挙げることができる。 Also, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2006/056418, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2006/082742, US Patent Publication No. 2005/0260441, Compounds described in U.S. Pat. No. 7,534,505, U.S. Patent Publication No. 2007/0190359, U.S. Pat. No. 7,338,722, U.S. Pat. No. 7,279,704, U.S. Pat. Publication No. 2006/103874, etc. Can also be mentioned.
 さらには、国際公開第2005/076380号、国際公開第2008/140115号、国際公開第2011/134013号、国際公開第2010/086089号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/073149号、特開2009-114086号公報、特開2003-81988号公報、特開2002-363552号公報等に記載の化合物も挙げることができる。 Furthermore, International Publication No. 2005/076380, International Publication No. 2008/140115, International Publication No. 2011/134013, International Publication No. 2010/086089, International Publication No. 2012/020327, International Publication No. 2011/051404. Further, compounds described in International Publication No. 2011/073149, JP2009-114086, JP2003-81988, JP2002-363552, and the like can also be mentioned.
 本発明において好ましいリン光発光性化合物としては、Irを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも1つの配位様式を含む錯体が好ましい。 Preferred phosphorescent compounds in the present invention include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
 上記説明したリン光発光性化合物(リン光発光性金属錯体ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載されている参考文献等に開示されている方法を適用することにより合成することができる。 The phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
 〈蛍光発光性化合物〉
 蛍光発光性化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素又は希土類錯体系蛍光体等が挙げられる。
<Fluorescent compound>
Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. And dyes, polythiophene dyes, and rare earth complex phosphors.
 〔発光層を除く有機機能層群〕
 次いで、有機機能層ユニットを構成する発光層以外の各層について、電荷注入層、正孔輸送層、電子輸送層及び阻止層の順に説明する。
[Organic functional layer group excluding luminescent layer]
Next, each layer other than the light emitting layer constituting the organic functional layer unit will be described in the order of a charge injection layer, a hole transport layer, an electron transport layer, and a blocking layer.
 (電荷注入層)
 電荷注入層は、駆動電圧低下や発光輝度向上のために、電極と発光層の間に設けられる層であり、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、電荷注入層としては、正孔注入層と電子注入層とがある。
(Charge injection layer)
The charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (NST 30, November 30, 1998) The details are described in Chapter 2, “Electrode Materials” (pages 123 to 166) of the second edition of “The Company”). The charge injection layer includes a hole injection layer and an electron injection layer.
 電荷注入層は、一般には、正孔注入層であれば、陽極と、発光層又は正孔輸送層との間、電子注入層であれば陰極と、発光層又は電子輸送層との間に存在させることができるが、本発明においては、透明電極に隣接した位置に電荷注入層を配置させることが好ましい。 In general, the charge injection layer exists between the anode and the light emitting layer or the hole transport layer if it is a hole injection layer, or between the cathode and the light emitting layer or the electron transport layer if it is an electron injection layer. In the present invention, it is preferable to dispose the charge injection layer at a position adjacent to the transparent electrode.
 正孔注入層は、駆動電圧低下や発光輝度向上のために、透明電極である陽極に隣接して配置される層であり、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されている。 The hole injection layer is a layer disposed adjacent to the anode, which is a transparent electrode, in order to lower the driving voltage and improve the luminance of light emission. “The organic EL element and its industrialization front line (November 30, 1998 The details are described in Chapter 2, “Electrode Materials” (pages 123 to 166) of the second volume of “issued by TS Co., Ltd.”.
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT(ポリエチレンジオキシチオフェン):PSS(ポリスチレンスルホン酸)、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. Examples of materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer (e.g., PEDOT (polyethylene dioxythiophene): PSS (polystyrene sulfonic acid), aniline copolymers, polyaniline, polythiophene, etc.) and the like can be mentioned.
 トリアリールアミン誘導体としては、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATA(4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン)に代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of the triarylamine derivative include benzidine type represented by α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ″). Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているヘキサアザトリフェニレン誘導体も、同様に正孔輸送材料として用いることができる。 In addition, hexaazatriphenylene derivatives described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
 電子注入層は、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことであり、陰極が透明電極で構成されている場合には、当該透明電極に隣接して設けられ、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されている。 The electron injection layer is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. When the cathode is composed of a transparent electrode, it is adjacent to the transparent electrode. The details are described in the second chapter, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL devices and their forefront of industrialization” (issued by NTS, November 30, 1998). Are listed.
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデン、酸化アルミニウム等に代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、透明電極が陰極の場合は、金属錯体等の有機材料が特に好適に用いられる。電子注入層はごく薄い膜であることが望ましく、構成材料にもよるが、その層厚は1nm~10μmの範囲が好ましい。 Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq). When the transparent electrode is a cathode, an organic material such as a metal complex is particularly preferably used. The electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 μm.
 (正孔輸送層)
 正孔輸送層は正孔を輸送する機能を有する正孔輸送材料より構成されており、広い意味で正孔注入層及び電子阻止層も正孔輸送層としての機能を有する。正孔輸送層は、単層又は複数層設けることができる。
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer and the electron blocking layer also have a function as a hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかの特性を有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー及びチオフェンオリゴマー等が挙げられる。 The hole transport material has characteristics of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
 正孔輸送材料としては、上記のものを使用することができるが、更には、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることができ、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, the above-mentioned materials can be used. Further, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used. Particularly, aromatic tertiary amine compounds are used. It is preferable to use it.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(略称:TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン及びN-フェニルカルバゾール等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) Quadriphenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N -Diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole and the like.
 正孔輸送層は、上記の正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法(ラングミュア・ブロジェット、Langmuir Blodgett法)等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の層厚については特に制限はないが、通常は5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内である。この正孔輸送層は、上記材料の一種又は二種以上含有する単一構造であってもよい。 For the hole transport layer, the above-described hole transport material may be a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). The thin film can be formed by the method. The thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 μm, preferably in the range of 5 to 200 nm. The hole transport layer may have a single structure containing one or more of the above materials.
 また、正孔輸送層を構成する正孔輸送材料に不純物をドープすることにより、p性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報及びJ.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Also, the p property can be increased by doping impurities into the hole transport material constituting the hole transport layer. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
 このように、正孔輸送層のp性を高くすると、より低消費電力の有機EL素子を作製することができるため好ましい。 Thus, it is preferable to increase the p property of the hole transport layer because an organic EL element with lower power consumption can be produced.
 (電子輸送層)
 電子輸送層は、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層構造又は複数層の積層構造として設けることができる。
(Electron transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
 単層構造の電子輸送層及び積層構造の電子輸送層において、発光層に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソード(陰極)より注入された電子を発光層に伝達する機能を有していれば良い。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。さらにこれらの材料を高分子鎖に導入した高分子材料又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In the electron transport layer having a single layer structure and the electron transport layer having a multilayer structure, as an electron transport material (also serving as a hole blocking material) constituting the layer portion adjacent to the light emitting layer, electrons injected from the cathode (cathode) are used. What is necessary is just to have the function to transmit to a light emitting layer. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. it can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes A metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法等の公知の方法により、薄膜化することで形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の一種又は二種以上からなる単一構造であってもよい。 The electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method. The thickness of the electron transport layer is not particularly limited, but is usually in the range of 5 nm to 5 μm, preferably in the range of 5 to 200 nm. The electron transport layer may have a single structure composed of one or more of the above materials.
 (阻止層)
 阻止層としては、正孔阻止層及び電子阻止層が挙げられ、上記説明した有機機能層ユニットの各構成層の他に、必要に応じて設けられる層である。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等を挙げることができる。
(Blocking layer)
Examples of the blocking layer include a hole blocking layer and an electron blocking layer, which are provided as necessary in addition to the constituent layers of the organic functional layer unit described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of an electron carrying layer can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に適用する正孔阻止層の層厚としては、好ましくは3~100nmの範囲内であり、さらに好ましくは5~30nmの範囲内である。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made. Moreover, the structure of a positive hole transport layer can be used as an electron blocking layer as needed. The layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
 〔陰極〕
 陰極は、有機機能層群や発光層に正孔を供給するために機能する電極であり、金属、合金、有機又は無機の導電性化合物若しくはこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO及びSnO等の酸化物半導体などが挙げられる。
〔cathode〕
The cathode is an electrode that functions to supply holes to the organic functional layer group and the light emitting layer, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO Oxide semiconductors such as 2 and SnO 2 .
 陰極は、これらの導電性材料を蒸着やスパッタリング等の成膜方法により薄膜として形成することができる。また、陰極としてのシート抵抗は、数百Ω/sq.以下が好ましく、膜厚は通常5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内で選ばれる。 The cathode can be formed as a thin film by depositing these conductive materials by vapor deposition or sputtering. The sheet resistance as a cathode is several hundred Ω / sq. The film thickness is usually in the range of 5 nm to 5 μm, preferably in the range of 5 to 200 nm.
 なお、有機EL素子が、陰極側からも発光光Lを取り出す方式の両面発光型の場合には、陰極としては、光透過性の陰極を選択して構成する。 In the case where the organic EL element is a double-sided light emitting type in which the emitted light L is also taken out from the cathode side, a light transmissive cathode is selected and configured.
 〔封止部材〕
 有機EL素子を封止するのに用いられる封止手段としては、例えば、封止部材と、陰極及び透明基板とを封止用接着剤で接着する方法を挙げることができる。
(Sealing member)
Examples of the sealing means used for sealing the organic EL element include a method in which a sealing member, a cathode, and a transparent substrate are bonded with a sealing adhesive.
 封止部材は、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、光取出し側でなければ、透明性及び電気絶縁性は、特に限定されない。 The sealing member only needs to be disposed so as to cover the display area of the organic EL element, and may be concave or flat. Moreover, if it is not a light extraction side, transparency and electrical insulation will not be specifically limited.
 封止部材としては、具体的には、ガラス板、ポリマー板、金属板、ポリマーフィルム等が挙げられる。ガラス板としては、例えば、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板又はポリマーフィルムとしては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金が挙げられる。 Specific examples of the sealing member include a glass plate, a polymer plate, a metal plate, and a polymer film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate or polymer film include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 封止部材としては、有機EL素子を薄膜化することできる観点から、ポリマーフィルム及び金属フィルムを好ましく使用することができる。さらに、ポリマーフィルムは、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm(1atmは、1.01325×10Paである)以下であって、温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましい。 As the sealing member, a polymer film and a metal film can be preferably used from the viewpoint of reducing the thickness of the organic EL element. Furthermore, the polymer film has a water vapor transmission rate of 1 × 10 −3 g / m 2 .multidot.m at a temperature of 25 ± 0.5 ° C. and a relative humidity of 90 ± 2% RH measured by a method according to JIS K 7129-1992. The oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 × 10 −3 ml / m 2 · 24 h · atm (1 atm is 1.01325 × 10 5 a Pa) equal to or lower than a temperature of 25 ± 0.5 ° C., water vapor permeability at a relative humidity of 90 ± 2% RH is preferably not more than 1 × 10 -3 g / m 2 · 24h.
 封止部材と有機EL素子の表示領域(発光領域)との間隙には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することができる。また、封止部材と有機EL素子の発光領域との間隙を真空とすることや、その間隙部に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area (light emitting area) of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase. can do. Further, the gap between the sealing member and the light emitting region of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
 《電気接続部材》
 本発明に係る電気接続部材は、FPC(フレキシブルプリント回路、Flexible Printed Circuits)ともいい、前記図2の(b)で示すように、プリント配線基板(PCB、Printed Circuit Board、プリント回路基板ともいう。)上に、上記説明した有機ELパネル(2)を構成する各電極と電気的に接続し、駆動電力の供給や、各情報を制御部に伝達するためのプリント配線(PC)と各パッド(P)を有している。パッドとしては、ベゼル電極A(BZ-A)を接続するためのベゼル電極A接続用パッド(BZ-A-P)、カソード電極(6)を接続するためのカソード電極接続用パッド(6-P)、アノード電極(4)を接続するためのアノード電極接続用パッド(4-P)、ベゼル電極B(BZ-B)を接続するためのベゼル電極B接続用パッド(BZ-B-P)が配置されている構成で、有機ELパネルと接合して、本発明の有機ELモジュールを構成している。
《Electrical connection member》
The electrical connection member according to the present invention is also called FPC (Flexible Printed Circuit), and is also called a printed circuit board (PCB, Printed Circuit Board) or a printed circuit board as shown in FIG. ) Above, printed wiring (PC) and each pad (electrically connected to each electrode constituting the organic EL panel (2) described above to supply driving power and transmit each information to the control unit) P). The pads include a bezel electrode A connection pad (BZ-AP) for connecting the bezel electrode A (BZ-A), and a cathode electrode connection pad (6-P) for connecting the cathode electrode (6). ), An anode electrode connection pad (4-P) for connecting the anode electrode (4), and a bezel electrode B connection pad (BZ-BP) for connecting the bezel electrode B (BZ-B). The organic EL module of the present invention is configured by being bonded to the organic EL panel in the arrangement.
 プリント配線基板(PCB)を構成する基板としては、透明でフレキシブル性を有し、かつ十分な機械的強度を備えたプラスチックフィルムであれば特に制限はなく、ポリイミド樹脂(略称:PI)、ポリカーボネート樹脂(略称:PC)、ポリエチレンテレフタレート樹脂(略称:PET)、ポリエチレンナフタレート樹脂(略称:PEN)、シクロオレフィン樹脂(略称:COP)等が挙げられるが、好ましくは、ポリイミド樹脂(略称:PI)、ポリエチレンテレフタレート樹脂(略称:PET)、ポリエチレンナフタレート樹脂(略称:PEN)が好ましい。 The substrate constituting the printed circuit board (PCB) is not particularly limited as long as it is a transparent and flexible plastic film having sufficient mechanical strength. Polyimide resin (abbreviation: PI), polycarbonate resin (Abbreviation: PC), polyethylene terephthalate resin (abbreviation: PET), polyethylene naphthalate resin (abbreviation: PEN), cycloolefin resin (abbreviation: COP), and the like, preferably a polyimide resin (abbreviation: PI), Polyethylene terephthalate resin (abbreviation: PET) and polyethylene naphthalate resin (abbreviation: PEN) are preferable.
 また、プリント配線(PC、Printed Circuit)を構成する材料としては、導電性を有する金属材料で構成されていることが好ましく、例えば、金、銀、銅、ITO等を挙げることができるが、本発明では、銅により形成することが好ましい。 Further, the material constituting the printed wiring (PC, Printed Circuit) is preferably composed of a conductive metal material, and examples thereof include gold, silver, copper, and ITO. In the invention, it is preferable to form with copper.
 プリント配線(PC)を形成する方法としては、プリント配線基板(PCB)上に銅層を形成した後、フォトレジスト材料等を塗布する、あるいはドライレジストフィルムをラミネートした後、所望の配線パターンとなるように、マスク材等を介して露光し、次いで現像し、不要のレジストの剥離処理を経て、レジストパターンを形成する。 As a method of forming a printed wiring (PC), after forming a copper layer on a printed wiring board (PCB), a photoresist material or the like is applied, or a dry resist film is laminated, and a desired wiring pattern is obtained. As described above, exposure is performed through a mask material or the like, development is performed, and a resist pattern is formed through an unnecessary resist stripping process.
 次いで、銅層のエッチング液に浸漬、あるいはエッチング液をシャワーリングして付与することにより、マスク以外の領域の銅層を除去して、所望のプリント配線パターンを形成する。 Next, a desired printed wiring pattern is formed by removing the copper layer in a region other than the mask by immersing in a copper layer etchant or applying the etchant by showering.
 本発明の有機ELモジュールにおいては、電気接続部材と有機ELパネルが、導電性部材を介して電気的に接続されていることが好ましい態様である。 In the organic EL module of the present invention, it is preferable that the electrical connecting member and the organic EL panel are electrically connected via a conductive member.
 電気的に接続する部材とは、図2のBで例示したようなベゼル電極A(BZ-A)を接続するためのベゼル電極A接続用パッド(BZ-A-P)、カソード電極(6)を接続するためのカソード電極接続用パッド(6-P)、アノード電極(4)を接続するためのアノード電極接続用パッド(4-P)、ベゼル電極B(BZ-B)を接続するためのベゼル電極B接続用パッド(BZ-B-P)等のパッドである。 The members to be electrically connected include the bezel electrode A connection pad (BZ-AP) for connecting the bezel electrode A (BZ-A) as exemplified in FIG. 2B, the cathode electrode (6). For connecting the cathode electrode connection pad (6-P) for connecting the anode electrode, the pad for connecting the anode electrode (4-P) for connecting the anode electrode (4), and the bezel electrode B (BZ-B) A pad such as a bezel electrode B connection pad (BZ-BP).
 パッドの構成材料としては、導電性を備えた部材であれば特に制限はないが、異方性導電フィルム(ACF、Anisotropic Corductive Film)、導電性ペースト、又は金属ペーストであることが好ましい。 The constituent material of the pad is not particularly limited as long as it is a member having conductivity, but is preferably an anisotropic conductive film (ACF, Anisotropic Conductive Film), a conductive paste, or a metal paste.
 異方性導電フィルム(ACF)とは、例えば、熱硬化性樹脂に混ぜ合わせた導電性を持つ微細な導電性粒子を有する層を膜状に成型した導電性フィルムを挙げることができる。本発明に用いることができる導電性粒子含有層としては、異方性導電部材としての導電性粒子を含有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。本発明に係る異方性導電部材として用いることができる導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属粒子、金属被覆樹脂粒子などが挙げられる。市販されているACFとしては、例えば、MF-331(日立化成製)などの、樹脂フィルムにも適用可能な低温硬化型のACFを挙げることができる。 Examples of the anisotropic conductive film (ACF) include a conductive film obtained by forming a layer having fine conductive particles having conductivity mixed with a thermosetting resin into a film shape. The conductive particle-containing layer that can be used in the present invention is not particularly limited as long as it is a layer containing conductive particles as an anisotropic conductive member, and can be appropriately selected according to the purpose. The conductive particles that can be used as the anisotropic conductive member according to the present invention are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include metal particles and metal-coated resin particles. Examples of commercially available ACFs include low-temperature curing ACFs that can also be applied to resin films, such as MF-331 (manufactured by Hitachi Chemical).
 金属粒子としては、例えば、ニッケル、コバルト、銀、銅、金、パラジウムなどが挙げられる。これらは、一種単独で使用してもよいし、二種以上を併用してもよい。これらの中でも、ニッケル、銀、銅が好ましい。当該金属粒子においては、表面酸化を防ぐ目的で、表面に金やパラジウムを付与した粒子を用いてもよい。更に、表面に金属突起や有機物で絶縁被膜を施したものを用いてもよい。 Examples of the metal particles include nickel, cobalt, silver, copper, gold, and palladium. These may be used individually by 1 type and may use 2 or more types together. Among these, nickel, silver, and copper are preferable. In the said metal particle, you may use the particle | grains which gave the surface gold | metal | money and palladium for the purpose of preventing surface oxidation. Furthermore, you may use what gave the metal film and the insulating film with the organic substance on the surface.
 金属被覆樹脂粒子としては、例えば、樹脂コアの表面をニッケル、銅、金、及びパラジウムのいずれかの金属で被覆した粒子が挙げられる。同様に、樹脂コアの最外表面に金、パラジウムを付与した粒子を用いてもよい。更に、樹脂コアの表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。 Examples of the metal-coated resin particles include particles in which the surface of the resin core is coated with any metal of nickel, copper, gold, and palladium. Similarly, particles having gold and palladium added to the outermost surface of the resin core may be used. Further, a resin core whose surface is coated with a metal protrusion or an organic material may be used.
 また、金属ペーストとしては、市販されている金属ナノ粒子ペースト、例えば、銀粒子ペースト、銀-パラジウム粒子ペースト、金粒子ペースト、銅粒子ペースト等を適宜選択して用いることができる。金属ペーストとしては、例えば、大研化学社から販売されている有機基板用銀ペースト(CA-6178、CA-6178B、CA-2500E、CA-2503-4、CA-2503N、CA-271等、比抵抗値:15~30mΩ・cm、スクリーン印刷法で形成、硬化温度:120~200℃)、LTCC用ペースト(PA-88(Ag)、TCR-880(Ag)、PA-Pt(Ag・Pt))、ガラス基板用銀ペースト(US-201、UA-302、焼成温度:430~480℃)等を挙げることができる。 As the metal paste, commercially available metal nanoparticle pastes such as silver particle paste, silver-palladium particle paste, gold particle paste, and copper particle paste can be appropriately selected and used. Examples of the metal paste include silver pastes for organic substrates (CA-6178, CA-6178B, CA-2500E, CA-2503-4, CA-2503N, CA-271, etc., sold by Daiken Chemical Co., Ltd. Resistance value: 15-30 mΩ · cm, formed by screen printing, curing temperature: 120-200 ° C., LTCC paste (PA-88 (Ag), TCR-880 (Ag), PA-Pt (Ag · Pt)) ), Silver paste for glass substrate (US-201, UA-302, baking temperature: 430 to 480 ° C.), and the like.
 《有機ELモジュールの構成例》
 次いで、本発明の有機ELモジュールの発光操作及びタッチ検出操作について、駆動回路図及びタイミングチャートを用いて説明する。
<< Configuration example of organic EL module >>
Next, a light emission operation and a touch detection operation of the organic EL module of the present invention will be described using a drive circuit diagram and a timing chart.
 〔実施態様1:常時発光方式の有機ELモジュール〕
 図8は、有機ELモジュールの駆動方法の一例(実施態様1)を示す駆動回路図である。
[Embodiment 1: Constant-emission organic EL module]
FIG. 8 is a drive circuit diagram showing an example (embodiment 1) of a method for driving an organic EL module.
 図8に示す有機ELモジュール(1)の回路図において、中央に示した有機ELパネル(2)は、アノード電極配線(25)とカソード電極配線(26)を有し、両配線間にダイオードである有機EL素子(22)と、コンデンサー(21、Cel)が接続されている。 In the circuit diagram of the organic EL module (1) shown in FIG. 8, the organic EL panel (2) shown in the center has an anode electrode wiring (25) and a cathode electrode wiring (26), and a diode is provided between both wirings. An organic EL element (22) and a capacitor (21, Cel) are connected.
 左側の発光素子駆動回路ユニット(12)では、アノード電極より引き出されたアノード電極配線(25)が直接、発光素子駆動回路部(23)に接続され、一方、カソード電極から引きだされたカソード電極配線(26)も、直接、発光素子駆動回路部(23)に接続されている。また、発光素子駆動回路部(23)は、グランド(27)につながれている。このグランド(27)は、詳しくはシグナル・グランドと呼ばれている。 In the left light emitting element drive circuit unit (12), the anode electrode wiring (25) drawn from the anode electrode is directly connected to the light emitting element drive circuit section (23), while the cathode electrode drawn from the cathode electrode. The wiring (26) is also directly connected to the light emitting element driving circuit unit (23). Further, the light emitting element driving circuit section (23) is connected to the ground (27). This ground (27) is specifically called a signal ground.
 発光素子駆動回路ユニット(12)には、定電流駆動回路、あるいは定電圧駆動回路が組み込まれ、有機EL素子の発光のタイミングを制御し、必要に応じて、逆バイアス印加(逆印加電圧)する発光素子駆動回路部(23)を有する。 The light emitting element drive circuit unit (12) incorporates a constant current drive circuit or a constant voltage drive circuit, controls the light emission timing of the organic EL element, and applies reverse bias (reverse applied voltage) as necessary. It has a light emitting element driving circuit section (23).
 本発明でいう発光素子駆動回路ユニット(12)とは、図8の実線で示すように、アノード電極配線(25)、発光素子駆動回路部(23)及びカソード電極配線(26)で構成されている回路範囲をいう。 The light emitting element driving circuit unit (12) in the present invention is composed of an anode electrode wiring (25), a light emitting element driving circuit section (23), and a cathode electrode wiring (26) as shown by the solid line in FIG. The circuit range.
 一方、右側に記載したタッチ検出回路ユニット(14)は、検出電極として機能させるための独立した第1のベゼル電極A(BZ-A)を、スイッチ4(SW4)を介してタッチ検出回路部(24)に接続され、更に下方側に、第2のベゼル電極B(BZ-B)を、スイッチ5(SW5)を介してタッチ検出回路部(24)に接続されている。 On the other hand, in the touch detection circuit unit (14) shown on the right side, an independent first bezel electrode A (BZ-A) for functioning as a detection electrode is connected via a switch 4 (SW4) to the touch detection circuit unit ( 24) and further on the lower side, the second bezel electrode B (BZ-B) is connected to the touch detection circuit section (24) via the switch 5 (SW5).
 このタッチ検出回路部(24)は、グランド(27)につながれている。このタッチ検出回路部(24)の内部にスイッチ4(SW4)及びスイッチ5(SW5)が組み込まれている構成であってもよい。 The touch detection circuit unit (24) is connected to the ground (27). A configuration in which the switch 4 (SW4) and the switch 5 (SW5) are incorporated in the touch detection circuit unit (24) may be employed.
 本発明に係る発光素子駆動回路部(23)としては、その構成に特に制限はなく、従来の公知の発光素子駆動回路部(有機EL素子駆動回路)を適用することができる。 The configuration of the light emitting element driving circuit unit (23) according to the present invention is not particularly limited, and a conventionally known light emitting element driving circuit unit (organic EL element driving circuit) can be applied.
 図8で示す回路構成からなる有機EL素子における発光パターンは、常時発光させる方式であるが、その他には、例えば、後述する図13~図16に示すように、あらかじめ設定した発光素子の発光パターンに応じて、アノード電極とカソード電極との間に、発光素子である有機EL素子の発光光量に応じて電流を印加する機能を有する時分割方式を用いてもよい。 The light emission pattern in the organic EL element having the circuit configuration shown in FIG. 8 is a system that always emits light. In addition, for example, as shown in FIG. 13 to FIG. Accordingly, a time division method having a function of applying a current according to the amount of light emitted from the organic EL element, which is a light emitting element, may be used between the anode electrode and the cathode electrode.
 この発光素子駆動回路としては、昇圧型又は降圧型のDC-DCコンバーター回路、電流値のフィードバック回路、DC-DCコンバーターのスイッチ制御回路等からなる定電流回路が知られており、また、特開2002-156944号公報、特開2005-265937号公報、特開2010-040246号公報等に記載されている発光素子駆動回路を参照することができる。 As this light emitting element driving circuit, a constant current circuit including a step-up or step-down DC-DC converter circuit, a current value feedback circuit, a DC-DC converter switch control circuit, and the like is known. Reference can be made to the light emitting element driving circuits described in Japanese Patent Application Laid-Open No. 2002-156944, Japanese Patent Application Laid-Open No. 2005-265937, Japanese Patent Application Laid-Open No. 2010-040246, and the like.
 以下、本発明に適用可能な発光素子駆動回路部(23)の構成例を以下に示す。 Hereinafter, a configuration example of the light emitting element driving circuit unit (23) applicable to the present invention will be shown below.
 図9は、本発明に係る発光素子駆動回路部(23)の構成の一例を示す概略回路図である。 FIG. 9 is a schematic circuit diagram showing an example of the configuration of the light emitting element driving circuit unit (23) according to the present invention.
 図9において、発光素子駆動回路部(23)は、昇圧型又は降圧型のDC-DCコンバーター回路(31)、DC-DCコンバーターのスイッチ素子制御回路(32)、電流値のフィードバック回路(33)を有している。例えば、検出抵抗をR、比較電位をVrefとすると、有機EL素子(22)に流れる電流IOLEDがVref/Rとなるように、有機EL素子(22)のアノード電位がDC-DCコンバーター回路(31)で昇圧又は降圧されることにより、定電流回路とすることができる。ここで、フィードバック回路(33)は、V=Vrefとなるように、DC-DCコンバーター回路(31)の出力Voutにフィードバックを掛ける。例えば、Vref=0.19V、R=100Ωとすると、定電流値Vref/R=1.9mAとなるように、VoutがDC-DCコンバーター回路(31)により調整される。 In FIG. 9, the light emitting element drive circuit section (23) includes a step-up or step-down DC-DC converter circuit (31), a DC-DC converter switch element control circuit (32), and a current value feedback circuit (33). have. For example, when the detection resistance is R 1 and the comparison potential is V ref , the anode potential of the organic EL element (22) is DC− so that the current I OLED flowing through the organic EL element (22) becomes V ref / R 1. A constant current circuit can be obtained by stepping up or down the voltage by the DC converter circuit (31). Here, the feedback circuit (33) applies feedback to the output V out of the DC-DC converter circuit (31) so that V X = V ref . For example, when V ref = 0.19 V and R 1 = 100Ω, V out is adjusted by the DC-DC converter circuit (31) so that the constant current value V ref / R 1 = 1.9 mA.
 一方、タッチ検出回路部(24)としては、その構成に特に制限はなく、従来の公知のタッチ検出回路部を適用することができる。一般に、タッチ検出回路は、増幅器、フィルター、AD変換器、整流平滑回路、比較器等で構成され、代表例としては、自己容量検出方式、直列容量分圧比較方式(オムロン方式)等を挙げることができ、また、特開2012-073783号公報、特開2013-088932号公報、特開2014-053000号公報等に記載されているタッチ検出回路を参照することができる。 On the other hand, the configuration of the touch detection circuit unit (24) is not particularly limited, and a conventional known touch detection circuit unit can be applied. In general, the touch detection circuit is composed of an amplifier, a filter, an AD converter, a rectifying / smoothing circuit, a comparator, and the like. Typical examples include a self-capacitance detection method, a series capacitance division comparison method (OMRON method), and the like. In addition, reference can be made to touch detection circuits described in JP 2012-073783 A, JP 2013-088932 A, JP 2014-053000 A, and the like.
 本発明において、駆動回路を構成するスイッチ類としては、FET(電界効果トランジスター)、TFT(薄膜フィルムトランジスター)等のスイッチ機能を備えたものであればよく、特に制限はない。 In the present invention, the switches constituting the drive circuit are not particularly limited as long as they have a switch function such as an FET (field effect transistor), a TFT (thin film transistor), or the like.
 次いで、図8で示す実施態様1におけるセンシング方法(タッチ検出方法)について説明する。 Next, the sensing method (touch detection method) in Embodiment 1 shown in FIG. 8 will be described.
 図10は、実施態様1のセンシング期間における回路作動の一例を示す回路作動図である。 FIG. 10 is a circuit operation diagram illustrating an example of the circuit operation in the sensing period according to the first embodiment.
 図10で示す実施態様1においては、有機EL素子(22)は、発光素子駆動回路部(23)に常時接続されている状態にあり、連続的に連続発光し、タッチ検知回路部により制御するセンシング期間が周期的に出現する駆動方式とである。 In Embodiment 1 shown in FIG. 10, the organic EL element (22) is always connected to the light emitting element driving circuit unit (23), continuously emits light, and is controlled by the touch detection circuit unit. This is a driving method in which a sensing period appears periodically.
 センシング期間としては、はじめに、タッチ検出回路ユニット(14)のベゼル電極A(BZ-A)のスイッチ4(SW4)を「ON」にした状態で、検出電極であるベゼル電極A(BZ-A)の保護部材の上面部を指(15A)によりタッチすることにより、指(15A)と検出電極であるベゼル電極A(BZ-A)間に静電容量Cf1が生じ、第1のタッチ検出Aを行う。なお、静電容量Cf1はアース(16A、接地)につながっている。29Aは、第1のセンシング時のタッチ検出情報ルートである。この時、ベゼル電極B(BZ-B)のスイッチ5(SW5)は「OFF」の状態とする。 As the sensing period, first, in the state where the switch 4 (SW4) of the bezel electrode A (BZ-A) of the touch detection circuit unit (14) is set to “ON”, the bezel electrode A (BZ-A) which is the detection electrode. By touching the upper surface of the protective member with the finger (15A), a capacitance Cf1 is generated between the finger (15A) and the bezel electrode A (BZ-A) as the detection electrode, and the first touch detection A is performed. Do. The capacitance Cf1 is connected to the ground (16A, ground). 29A is a touch detection information route at the time of the first sensing. At this time, the switch 5 (SW5) of the bezel electrode B (BZ-B) is in the “OFF” state.
 次いで、ベゼル電極A(BZ-A)のスイッチ4(SW4)を「OFF」にし、ベゼル電極B(BZ-B)のスイッチ5(SW5)を「ON」にした状態で、検出電極であるベゼル電極B(BZ-B)の保護部材の上面部を指(15B)によりタッチすることにより、指(15B)と検出電極であるベゼル電極B(BZ-B)間に静電容量Cf2(不図示)が生じ、第2のタッチ検出Bを行う。なお29Bは、第2のセンシング時のタッチ検出情報ルートである。 Next, the switch 4 (SW4) of the bezel electrode A (BZ-A) is set to “OFF”, and the switch 5 (SW5) of the bezel electrode B (BZ-B) is set to “ON”. By touching the upper surface of the protective member of the electrode B (BZ-B) with the finger (15B), a capacitance Cf2 (not shown) is formed between the finger (15B) and the bezel electrode B (BZ-B) as the detection electrode. ) Occurs, and the second touch detection B is performed. 29B is a touch detection information route at the time of second sensing.
 このようにして、タッチ検出時に、ベゼル電極Aからベゼル電極Bの順にスイッチであるSW4及びSW5の「ON」、「OFF」を切り替えながら静電容量Cf1及びCf2の変化量を検知することにより、ページや画面を上から下にスクロールするという動作ができ、逆にベゼル電極Bからベゼル電極Aの順にスイッチの「ON」、「OFF」を切り替えながら静電容量Cfの変化を検知することにより、ページや画面を下から上にスクロールができる。 In this way, by detecting the amount of change in the capacitances Cf1 and Cf2 while switching “ON” and “OFF” of the switches SW4 and SW5 in the order of the bezel electrode A to the bezel electrode B at the time of touch detection, By detecting the change in the capacitance Cf while switching the “ON” and “OFF” of the switch in the order from the bezel electrode B to the bezel electrode A, the page or screen can be scrolled from top to bottom. Scroll pages and screens from bottom to top.
 図11は、図10で説明した実施態様1のセンシング期間における回路作動のタイミングチャートである。 FIG. 11 is a timing chart of circuit operation in the sensing period of the first embodiment described in FIG.
 図11で示すように、発光素子駆動回路部(23)にはスイッチが存在しておらず、回路が常時繋がった状態になっているため、下段に示すように、OLED印加電圧は、常に「ON」の常時発光状態にあり、全期間が発光期間(LT)となっている。これに対し、タッチ検知回路ユニット(14)のSW4及びSW5を、順次「ON/OFF」することにより、センシング期間(ST)を2分割して、タッチ検知を周期的に行うことができる。 As shown in FIG. 11, since the light emitting element drive circuit unit (23) has no switch and the circuit is always connected, the OLED applied voltage is always “ “ON” is always in the light emission state, and the entire period is the light emission period (LT). On the other hand, SW4 and SW5 of the touch detection circuit unit (14) are sequentially “ON / OFF”, so that the sensing period (ST) can be divided into two to periodically perform touch detection.
 〔実施態様2:常時発光方式の有機ELモジュール2〕
 図12は、常時発光方式の有機ELモジュールの他の一例(実施態様2)を示す駆動回路図である。
[Embodiment 2: Organic EL module 2 of constant light emission type]
FIG. 12 is a drive circuit diagram showing another example (embodiment 2) of the always-emitting organic EL module.
 図12においては、発光素子駆動回路部(23)は、図8で示した実施態様1と同様で、常時発光方式である。 In FIG. 12, the light emitting element drive circuit section (23) is the same as the first embodiment shown in FIG.
 タッチ検出回路ユニット(14)は、実施態様1と同様にベゼル電極A(BZ-A)とベゼル電極B(BZ-B)で構成しているが、それぞれのベゼル電極は、独立したタッチ検出回路部(24及び25)に接続され、それぞれのタッチ検出を、独立して制御する。それに伴い、図10で示した実施態様1におけるSW4及びSW5は不要となる。 The touch detection circuit unit (14) is composed of a bezel electrode A (BZ-A) and a bezel electrode B (BZ-B) as in the first embodiment. Each bezel electrode is an independent touch detection circuit. Connected to the units (24 and 25), and each touch detection is controlled independently. Accordingly, SW4 and SW5 in Embodiment 1 shown in FIG. 10 are not necessary.
 センシング方法に関しては、実施態様1と同様である。 The sensing method is the same as in the first embodiment.
 〔実施態様3:発光期間とタッチセンシング期間が分離された時分割方式〕
 実施態様3は、発光素子駆動回路ユニットにより制御する有機ELパネルの発光期間(LT)と、タッチ検出回路ユニットにより制御するタッチセンシング期間(ST)とが分離された時分割方式の有機ELモジュール(1)である。
[Embodiment 3: Time division method in which the light emission period and the touch sensing period are separated]
Embodiment 3 is a time-division type organic EL module in which the light emission period (LT) of the organic EL panel controlled by the light emitting element drive circuit unit and the touch sensing period (ST) controlled by the touch detection circuit unit are separated. 1).
 図13は、発光期間(LT)とタッチセンシング期間(ST)が分離された時分割方式の有機ELモジュール(1)の駆動回路図である。 FIG. 13 is a drive circuit diagram of the time-division type organic EL module (1) in which the light emission period (LT) and the touch sensing period (ST) are separated.
 図13に示す有機ELモジュール(1)の回路図において、中央に示した有機ELパネル(2)は、アノード電極配線(25)とカソード電極配線(26)を有し、両配線間にダイオードである有機EL素子(22)と、コンデンサー(21、Cel)が接続されている。 In the circuit diagram of the organic EL module (1) shown in FIG. 13, the organic EL panel (2) shown in the center has an anode electrode wiring (25) and a cathode electrode wiring (26), and a diode is provided between both wirings. An organic EL element (22) and a capacitor (21, Cel) are connected.
 左側の発光素子駆動回路ユニット(12)では、アノード電極より引き出された有機EL素子発光用のアノード電極配線(25)がスイッチ1(SW1)を介して、発光素子駆動回路部(23)に接続され、一方、カソード電極から引きだされたカソード電極配線(26)がスイッチ2(SW2)を介して、発光素子駆動回路部(23)に接続されている。また、発光素子駆動回路部(23)は、グランド(27)につながれている。 In the left side light emitting element drive circuit unit (12), the anode electrode wiring (25) for organic EL element light emission led out from the anode electrode is connected to the light emitting element drive circuit unit (23) via the switch 1 (SW1). On the other hand, the cathode electrode wiring (26) drawn from the cathode electrode is connected to the light emitting element drive circuit section (23) via the switch 2 (SW2). Further, the light emitting element driving circuit section (23) is connected to the ground (27).
 この発光素子駆動回路ユニット(12)には、定電流駆動回路、あるいは定電圧駆動回路が組み込まれ、有機EL素子の発光のタイミングを制御し、必要に応じて、逆バイアス印加(逆印加電圧)する発光素子駆動回路部(23)を有する。また、図13では、発光素子駆動回路部(23)と、SW1とSW2とがそれぞれ独立した構成で示してあるが、必要に応じて、発光素子駆動回路部(23)に、スイッチ1(SW1)又はスイッチ2(SW2)が組み込まれた構成であってもよい。 The light emitting element driving circuit unit (12) incorporates a constant current driving circuit or a constant voltage driving circuit, controls the light emission timing of the organic EL element, and applies reverse bias (reverse applied voltage) as necessary. And a light emitting element driving circuit portion (23). In FIG. 13, the light emitting element driving circuit unit (23) and SW1 and SW2 are shown as independent components. However, the switch 1 (SW1) is connected to the light emitting element driving circuit unit (23) as necessary. ) Or switch 2 (SW2) may be incorporated.
 図13で示す構成における発光素子駆動回路ユニット(12)とは、アノード電極配線(25)、SW1、発光素子駆動回路部(23)、SW2及びカソード電極配線(26)で構成されている回路範囲をいう。 The light emitting element driving circuit unit (12) in the configuration shown in FIG. 13 is a circuit range including the anode electrode wiring (25), SW1, the light emitting element driving circuit unit (23), SW2, and the cathode electrode wiring (26). Say.
 一方、右側に示すタッチ検出回路ユニット(14)は、前記図8で説明した第1のベゼル電極A(BZ-A)を検出電極として独立に機能させるため、スイッチ4(SW4)を介してタッチ検出回路部(24)に接続している。更に、前記図8で説明したのと同様に、最下部に、第2のベゼル電極B(BZ-B)を、スイッチ5(SW5)を介してタッチ検出回路部(24)に接続されている。 On the other hand, the touch detection circuit unit (14) shown on the right side touches via the switch 4 (SW4) in order to cause the first bezel electrode A (BZ-A) described in FIG. 8 to function independently as a detection electrode. It is connected to the detection circuit section (24). Further, as explained in FIG. 8, the second bezel electrode B (BZ-B) is connected to the touch detection circuit section (24) via the switch 5 (SW5) at the bottom. .
 加えて、タッチ検出用電極として機能させため、アノード電極から引き出したアノード電極配線2(25A)を、スイッチ3(SW3)を介してタッチ検出回路部(24)に接続して、タッチ検出電極群を構成している。 In addition, in order to function as a touch detection electrode, the anode electrode wiring 2 (25A) drawn out from the anode electrode is connected to the touch detection circuit unit (24) via the switch 3 (SW3), and the touch detection electrode group Is configured.
 このタッチ検出回路部(24)は、グランド(27)につながれている。このタッチ検出回路部(24)内部に、前記スイッチ3(SW3)、スイッチ4(SW4)及びスイッチ5(SW5)が組み込まれている構成であってもよい。 The touch detection circuit unit (24) is connected to the ground (27). The switch 3 (SW3), the switch 4 (SW4), and the switch 5 (SW5) may be incorporated in the touch detection circuit unit (24).
 図13に示す回路構成からなる有機ELモジュール(1)においては、各スイッチのON/OFF制御により、発光素子駆動回路ユニット(12)により制御する有機ELパネルの発光期間(LT)と、タッチ検出回路ユニット(14)により制御するタッチセンシング期間(ST)とを分離して駆動させることが可能となり、有機ELモジュールにタッチセンサー機能を発現させることができる。 In the organic EL module (1) having the circuit configuration shown in FIG. 13, the light emission period (LT) of the organic EL panel controlled by the light emitting element driving circuit unit (12) and touch detection are controlled by ON / OFF control of each switch. The touch sensing period (ST) controlled by the circuit unit (14) can be separated and driven, and the touch sensor function can be expressed in the organic EL module.
 図14は、有機ELパネルの発光期間(LT)における駆動回路図の状態を示すものであり、SW1及びSW2を「ON」とし、SW3~SW5を「OFF」の状態とすることにより、有機EL素子(22)がオフ電圧から電圧が上昇し、発光に必要な電圧となった時点で発光が開始される。次いで、SW1及びSW2を「OFF」にすると、有機EL素子への電流供給が停止し、消灯される。 FIG. 14 shows the state of the drive circuit diagram in the light emission period (LT) of the organic EL panel. By setting SW1 and SW2 to “ON” and SW3 to SW5 to “OFF”, the organic EL panel is turned on. Light emission starts when the voltage of the element (22) rises from the off-voltage and becomes a voltage necessary for light emission. Next, when SW1 and SW2 are turned “OFF”, the current supply to the organic EL element is stopped and turned off.
 図15は、有機ELパネルのタッチセンシング期間(ST)における駆動回路図を示すものであり、タッチ検出回路ユニット(14)の駆動をコントロールするスイッチであるSW3~SW5は、SW1及びSW2が「ON」の状態では「OFF」状態とし、SW1及びSW2を「OFF」にした後、図15で示すように「ON」にして、タッチ検出を行う。ただし、SW3を「ON」とするタイミングは、上記説明したSW1及びSW2を「OFF」にしたのち、所定の待機時間(t)を経たのち、「ON」とすることが好ましい。この待機期間(t)としては、有機EL素子の充放電時定数τの0τ~5τ程度の範囲内であることが好ましい。 FIG. 15 shows a drive circuit diagram in the touch sensing period (ST) of the organic EL panel. SW3 and SW5 which are switches for controlling the drive of the touch detection circuit unit (14) are turned on by SW1 and SW2. In the state of “”, the state is set to “OFF”, and after SW1 and SW2 are set to “OFF”, as shown in FIG. However, the timing at which SW3 is turned “ON” is preferably set to “ON” after a predetermined standby time (t) has elapsed after SW1 and SW2 described above are turned “OFF”. The standby period (t) is preferably in the range of about 0τ to 5τ of the charge / discharge time constant τ of the organic EL element.
 図16は、実施態様3における発光期間とタッチセンシング期間を時分割した方式のタイミングチャートである。 FIG. 16 is a timing chart of a method in which the light emission period and the touch sensing period in the third embodiment are time-divided.
 図16に示すタイミングチャートにおいて、SW1及びSW2を「ON」にしてから「OFF」にするまでの期間が、発光期間(LT)であり、SW1及びSW2を「OFF」にして、待機時間(t、不図示)を経て、SW4、SW3、SW5を順次「ON」及び「OFF」にしてタッチ検出を行った後、SW5を「OFF」にするまでの期間が、センシング期間(ST)であり、LT+STを1フレーム期間(1FT)と称する。 In the timing chart shown in FIG. 16, the period from when SW1 and SW2 are turned “ON” to when it is turned “OFF” is the light emission period (LT), and SW1 and SW2 are turned “OFF” and the standby time (t , (Not shown), SW 4, SW 3, SW 5 are sequentially set to “ON” and “OFF”, touch detection is performed, and the period from when SW 5 is turned “OFF” is the sensing period (ST), LT + ST is referred to as one frame period (1FT).
 本発明の有機ELモジュールにおける発光期間(LT)、タッチセンシング期間(ST)及び1フレーム期間(1FT)としては、特に制限はなく、適用する環境に適した条件を適宜選択することができるが、一例としては、有機EL素子の発光期間(LT)としては、0.1~2.0msec.の範囲内であり、タッチセンシング期間(ST)としては0.05~0.3msec.の範囲内であり、1フレーム期間(1FT)としては、0.15~2.3msecの範囲内を挙げることができる。また、1フレーム期間(1FT)としては、フリッカ低減の目的からは、60Hz以上とすることが好ましい。 The light emitting period (LT), touch sensing period (ST), and one frame period (1FT) in the organic EL module of the present invention are not particularly limited, and conditions suitable for the environment to be applied can be appropriately selected. As an example, the light emission period (LT) of the organic EL element is 0.1 to 2.0 msec. And the touch sensing period (ST) is 0.05 to 0.3 msec. The one frame period (1FT) can be in the range of 0.15 to 2.3 msec. In addition, the one frame period (1FT) is preferably 60 Hz or more for the purpose of reducing flicker.
 図16で示すタイミングチャートのタッチセンシング期間におけるタッチ検出方法は、前述のとおりであり、ベゼル電極A(BZ-A)のスイッチ4(SW4)の「ON」及び「OFF]→アノード検知電極(25A)のスイッチ3(SW3)の「ON」及び「OFF]→ベゼル電極B(BZ-B)のスイッチ5(SW5)の「ON」及び「OFF」を切り替えながら、指(15A~15C)のタッチ操作によるCf1~Cf3の変化を検知することにより、ページや画面を上から下にスクロールするという動作ができ、逆にベゼル電極B(BZ-B)→アノード検知電極(25A)→ベゼル電極A(BZ-A)の順に各スイッチの「ON」、「OFF」を切り替えながらCf変化を検知することにより、ページや画面を下から上にスクロールができる。 The touch detection method in the touch sensing period of the timing chart shown in FIG. 16 is as described above, and “ON” and “OFF” of the switch 4 (SW4) of the bezel electrode A (BZ-A) → the anode detection electrode (25A ) Switch 3 (SW3) “ON” and “OFF” → Bezel electrode B (BZ-B) switch 5 (SW5) switch “ON” and “OFF” while touching with fingers (15A to 15C) By detecting the change in Cf1 to Cf3 due to the operation, the operation of scrolling the page or screen from the top to the bottom can be performed. Conversely, the bezel electrode B (BZ-B) → the anode detection electrode (25A) → the bezel electrode A ( BZ-A) Scrolls pages and screens from bottom to top by detecting Cf changes while switching each switch between “ON” and “OFF”. Can Lumpur.
 また、アノード検知電極(25A)のみのCf変化を検知することにより、タップ動作を行うことができ、Cf変化の検知を時間差で行うことにより、ダブルタップ検出を可能とすることができる。 Further, a tap operation can be performed by detecting a change in Cf of only the anode detection electrode (25A), and a double tap can be detected by detecting a change in Cf with a time difference.
 図17は、実施態様3における発光期間とセンシング期間の他の一例を示すタイミングチャートで、図16に示すタイミングチャートに対し、ベゼル電極A(BZ-A)のスイッチ4(SW4)、及びベゼル電極B(BZ-B)のスイッチ5(SW5)によるセンシング期間が、有機EL素子の発光期間(LT)と重なっている態様を示す。すなわち、有機EL素子の発光期間(LT)中に、ベゼル電極によるセンシングを行う方法である。 FIG. 17 is a timing chart showing another example of the light emission period and the sensing period in the embodiment 3. Compared to the timing chart shown in FIG. 16, the switch 4 (SW4) of the bezel electrode A (BZ-A) and the bezel electrode A mode in which the sensing period by the switch 5 (SW5) of B (BZ-B) overlaps with the light emission period (LT) of the organic EL element is shown. That is, it is a method of performing sensing with the bezel electrode during the light emission period (LT) of the organic EL element.
 〔実施態様4:発光期間とタッチセンシング期間が分離された時分割方式2〕
 図18は、発光期間とタッチセンシング期間が分離された時分割方式の有機ELモジュールの他の一例(実施態様4)を示す駆動回路図である。
[Embodiment 4: Time division method 2 in which light emission period and touch sensing period are separated]
FIG. 18 is a drive circuit diagram showing another example (embodiment 4) of the time-division type organic EL module in which the light emission period and the touch sensing period are separated.
 図18においては、発光素子駆動回路部(23)は、図13~図15で示した実施態様3と同様で、SW1及びSW2の「ON」、「OFF」により、有機EL素子の発光期間を制御する。 In FIG. 18, the light-emitting element drive circuit unit (23) is the same as that of the third embodiment shown in FIGS. 13 to 15, and the light emission period of the organic EL element is set by “ON” and “OFF” of SW1 and SW2. Control.
 一方、タッチ検出回路ユニット(14)におけるタッチ検出用の電極構成は、実施態様3と同様に、ベゼル電極A(BZ-A)、ベゼル電極B(BZ-B)及びアノード検知電極(25A)により構成しているが、それぞれベゼル電極(BZ-A及びBZ-B)、及びアノード検知電極(25A)は、個別のタッチ検出回路部(24~26)に接続され、それぞれのタッチ検出を、独立して制御する方法である。このような構成においては、ベゼル電極A(BZ-A)及びベゼル電極B(BZ-B)の回路では、図13で示すようなSW4及びSW5は不要となる。センシング方法に関しては、実施態様3の図16及び図17で示した方法と同様である。 On the other hand, the electrode configuration for touch detection in the touch detection circuit unit (14) is the same as in the third embodiment, with the bezel electrode A (BZ-A), the bezel electrode B (BZ-B), and the anode detection electrode (25A). The bezel electrode (BZ-A and BZ-B) and the anode detection electrode (25A) are connected to individual touch detection circuit units (24 to 26), respectively, and each touch detection is performed independently. And control it. In such a configuration, SW4 and SW5 as shown in FIG. 13 are unnecessary in the circuit of the bezel electrode A (BZ-A) and the bezel electrode B (BZ-B). The sensing method is the same as the method shown in FIGS. 16 and 17 of the third embodiment.
 《有機ELモジュールの適用分野》
 本発明の有機ELモジュールは、スモールフォーマット化及び薄型化を達成し、工程の簡素化を達成することができ、スマートフォンやタブレット等の各種スマートデバイス及び照明装置に好適に利用できる。
<< Application fields of organic EL modules >>
The organic EL module of the present invention can achieve small formatting and thinning, can achieve simplification of the process, and can be suitably used for various smart devices and lighting devices such as smartphones and tablets.
 〔スマートデバイス〕
 前述の図5~図7で示したように、例えば、裏面側の副表示画面に本発明の有機ELモジュールを具備したスマートデバイス(100)として提供することができる。
[Smart device]
As shown in FIGS. 5 to 7 described above, for example, it can be provided as a smart device (100) including the organic EL module of the present invention on the sub-display screen on the back side.
 本発明の有機エレクトロルミネッセンスモジュールは、発光機能と、スクロール動作やタップ動作を兼ね備えた有機エレクトロルミネッセンス素子を有する有機エレクトロルミネッセンスモジュールであり、スマートフォンやタブレット等の各種スマートデバイスに好適に利用できる。 The organic electroluminescence module of the present invention is an organic electroluminescence module having an organic electroluminescence element having a light emitting function and a scroll operation and a tap operation, and can be suitably used for various smart devices such as smartphones and tablets.
 1 有機ELモジュール
 2 有機ELパネル
 3 透明基材
 4 アノード電極
 4-P アノード電極接続用パッド
 5 有機機能層ユニット
 6 カソード電極
 6-P カソード電極接続用パッド
 7 封止用接着剤層
 8 封止部材
 9、22 有機EL素子
 10 従来型のタッチ検出電極
 12 発光素子駆動回路ユニット
 14 タッチ検出回路ユニット
 15、15A、15B、15C 指
 16、16A 接地(アース)
 21 コンデンサー(Cel)
 23 発光素子駆動回路部
 24、25、26 タッチ検出回路部
 25 アノード電極配線
 26 カソード電極配線
 27 グランド
 28 発光制御情報ルート
 29A、29B、30 タッチ検出情報ルート
 31 DC-DCコンバーター回路
 32 スイッチ素子制御回路
 33 フィードバック回路
 100 スマートデバイス
 102B 副表示画面(背面側)
 104 カバーガラス
 105 液晶パネル
 110 副表示画面
 111 アイコン表示部
 120 液晶表示装置
 1FT 1フレーム期間
 BZ-A ベゼル電極A
 BZ-B ベゼル電極B
 BZ-A-P ベゼル電極A接続用パッド
 BZ-B-P ベゼル電極B接続用パッド
 Cf、Cf1 指とタッチ検出電極間の静電容量
 Cel アノード電極とカソード電極間の静電容量
 F 保護部材
 FPC フレキシブルプリント回路
 LA 発光領域
 LT 発光期間
 PCB プリント配線回路
 PL プリント配線
 SC スクロール
 ST センシング期間、タッチセンシング期間
 SW1 スイッチ1
 SW2 スイッチ2
 SW3 スイッチ3
 SW4 スイッチ4
 SW5 スイッチ5
 T タップ
DESCRIPTION OF SYMBOLS 1 Organic EL module 2 Organic EL panel 3 Transparent base material 4 Anode electrode 4-P Anode electrode connection pad 5 Organic functional layer unit 6 Cathode electrode 6-P Cathode electrode connection pad 7 Adhesive layer for sealing 8 Sealing member 9, 22 Organic EL element 10 Conventional touch detection electrode 12 Light emitting element drive circuit unit 14 Touch detection circuit unit 15, 15A, 15B, 15C Finger 16, 16A Ground (ground)
21 Condenser (Cel)
23 Light-Emitting Element Drive Circuit Unit 24, 25, 26 Touch Detection Circuit Unit 25 Anode Electrode Wiring 26 Cathode Electrode Wiring 27 Ground 28 Light Emission Control Information Route 29A, 29B, 30 Touch Detection Information Route 31 DC-DC Converter Circuit 32 Switch Element Control Circuit 33 Feedback circuit 100 Smart device 102B Sub display screen (rear side)
104 Cover Glass 105 Liquid Crystal Panel 110 Sub Display Screen 111 Icon Display Unit 120 Liquid Crystal Display 1FT 1 Frame Period BZ-A Bezel Electrode A
BZ-B Bezel electrode B
BZ-A-P Bezel electrode A connection pad BZ-BP Bezel electrode B connection pad Cf, Cf1 Capacitance between finger and touch detection electrode Cel Capacitance between anode electrode and cathode electrode F Protection member FPC Flexible printed circuit LA Light emitting area LT Light emitting period PCB Printed wiring circuit PL Printed wiring SC Scroll ST Sensing period, Touch sensing period SW1 Switch 1
SW2 switch 2
SW3 switch 3
SW4 switch 4
SW5 Switch 5
T tap

Claims (4)

  1.  有機エレクトロルミネッセンスパネルと電気接続部材とを有する有機エレクトロルミネッセンスモジュールであって
     前記有機エレクトロルミネッセンスパネルは、一対のアノード電極とカソード電極間に発光層を含む有機機能層群を挟持する構成の有機エレクトロルミネッセンス素子を有し、かつ、非発光表示領域であるベゼル領域に、発光動作に寄与しない少なくとも1つのベゼル電極を有し、
     前記電気接続部材は、前記有機エレクトロルミネッセンスパネルのアノード電極及びカソード電極への電気エネルギー供給ラインと、前記ベゼル電極への信号ラインを有し、
     前記電気接続部材は、導電性部材を介して、前記有機エレクトロルミネッセンスパネルと電気的に接続されていることを特徴とする有機エレクトロルミネッセンスモジュール。
    An organic electroluminescence module having an organic electroluminescence panel and an electrical connection member, wherein the organic electroluminescence panel includes an organic functional layer group including a light emitting layer between a pair of an anode electrode and a cathode electrode. The device has at least one bezel electrode that does not contribute to the light emitting operation in the bezel region that is a non-light emitting display region,
    The electrical connection member has an electrical energy supply line to the anode electrode and the cathode electrode of the organic electroluminescence panel, and a signal line to the bezel electrode,
    The organic electroluminescence module, wherein the electrical connection member is electrically connected to the organic electroluminescence panel via a conductive member.
  2.  前記有機エレクトロルミネッセンス素子の発光を指示する発光素子駆動回路ユニットと、前記アノード電極の自己静電容量変化又は前記ベゼル電極の自己容量変化を検知する静電容量方式のタッチ検出回路ユニットを有することを特徴とする請求項1に記載の有機エレクトロルミネッセンスモジュール。 A light emitting element driving circuit unit for instructing light emission of the organic electroluminescence element; and a capacitance type touch detection circuit unit for detecting a self-capacitance change of the anode electrode or a self-capacitance change of the bezel electrode. The organic electroluminescence module according to claim 1.
  3.  前記発光素子駆動回路ユニットにより制御する有機エレクトロルミネッセンスパネルの発光期間と、前記タッチ検出回路ユニットにより制御するタッチセンシング期間とが分離され、前記タッチセンシング期間では、有機エレクトロルミネッセンスパネルの電気容量が検出されないように、前記一対の電極の少なくとも一方の電極がフローティング電位の状態であることを特徴とする請求項2に記載の有機エレクトロルミネッセンスモジュール。 The light emission period of the organic electroluminescence panel controlled by the light emitting element drive circuit unit is separated from the touch sensing period controlled by the touch detection circuit unit, and the electric capacitance of the organic electroluminescence panel is not detected in the touch sensing period. The organic electroluminescence module according to claim 2, wherein at least one of the pair of electrodes is in a floating potential state.
  4.  請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンスモジュールを具備するスマートデバイスであって、
     前記有機エレクトロルミネッセンスモジュールが、主表示面側、背面側又は側面側に配置されていることを特徴とするスマートデバイス。
    A smart device comprising the organic electroluminescence module according to any one of claims 1 to 3,
    A smart device, wherein the organic electroluminescence module is disposed on a main display surface side, a back surface side, or a side surface side.
PCT/JP2016/058584 2015-05-13 2016-03-17 Organic electroluminescence module and smart device WO2016181704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017517634A JPWO2016181704A1 (en) 2015-05-13 2016-03-17 Organic electroluminescence module and smart device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015098090 2015-05-13
JP2015-098090 2015-05-13

Publications (1)

Publication Number Publication Date
WO2016181704A1 true WO2016181704A1 (en) 2016-11-17

Family

ID=57248079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058584 WO2016181704A1 (en) 2015-05-13 2016-03-17 Organic electroluminescence module and smart device

Country Status (2)

Country Link
JP (1) JPWO2016181704A1 (en)
WO (1) WO2016181704A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101385A1 (en) * 2016-11-30 2018-06-07 コニカミノルタ株式会社 Electronic device
CN110928078A (en) * 2019-12-12 2020-03-27 厦门天马微电子有限公司 Display panel, preparation method thereof and display device
CN112528933A (en) * 2020-12-22 2021-03-19 厦门天马微电子有限公司 Flexible circuit board, display device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251820A (en) * 1996-03-14 1997-09-22 Matsushita Electric Works Ltd El light emission type touch switch
JP2007534070A (en) * 2004-04-22 2007-11-22 ソニー エリクソン モバイル コミュニケーションズ, エービー Control interface device for electronic equipment
JP2009076237A (en) * 2007-09-19 2009-04-09 Mitsubishi Motors Corp El light emitting type touch switch
JP2011514700A (en) * 2008-01-29 2011-05-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ OLED lighting device with integrated proximity sensor
JP2012502421A (en) * 2008-09-08 2012-01-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ OLED with capacitive proximity sensing means
JP2012504811A (en) * 2008-10-01 2012-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ OLED device and electronic circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251820A (en) * 1996-03-14 1997-09-22 Matsushita Electric Works Ltd El light emission type touch switch
JP2007534070A (en) * 2004-04-22 2007-11-22 ソニー エリクソン モバイル コミュニケーションズ, エービー Control interface device for electronic equipment
JP2009076237A (en) * 2007-09-19 2009-04-09 Mitsubishi Motors Corp El light emitting type touch switch
JP2011514700A (en) * 2008-01-29 2011-05-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ OLED lighting device with integrated proximity sensor
JP2012502421A (en) * 2008-09-08 2012-01-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ OLED with capacitive proximity sensing means
JP2012504811A (en) * 2008-10-01 2012-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ OLED device and electronic circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101385A1 (en) * 2016-11-30 2018-06-07 コニカミノルタ株式会社 Electronic device
CN110928078A (en) * 2019-12-12 2020-03-27 厦门天马微电子有限公司 Display panel, preparation method thereof and display device
CN110928078B (en) * 2019-12-12 2022-07-12 厦门天马微电子有限公司 Display panel, preparation method thereof and display device
CN112528933A (en) * 2020-12-22 2021-03-19 厦门天马微电子有限公司 Flexible circuit board, display device and manufacturing method thereof
CN112528933B (en) * 2020-12-22 2022-09-27 厦门天马微电子有限公司 Flexible circuit board, display device and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2016181704A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6708124B2 (en) Organic electroluminescence module, smart device and lighting device
JP6365665B2 (en) Organic electroluminescence module, smart device and lighting device
JP6319434B2 (en) Organic electroluminescence module, smart device and lighting device
JP6477683B2 (en) Organic electroluminescence module and smart device
JP6801664B2 (en) Organic electroluminescence modules, smart devices and lighting equipment
JP6245102B2 (en) ORGANIC ELECTROLUMINESCENCE MODULE AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENCE MODULE
JP6741062B2 (en) Organic electroluminescence module, smart device and lighting device
WO2016181704A1 (en) Organic electroluminescence module and smart device
JP2016099921A (en) Organic electroluminescence module, and smart device and illuminating device including the same
JPWO2018123723A1 (en) Organic electroluminescence module, information processing device, input device and lighting device
WO2018123887A1 (en) Passive matrix organic electroluminescent display, and touch detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517634

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792429

Country of ref document: EP

Kind code of ref document: A1