WO2016178513A1 - C5-c8 유기산 생산에 관여하는 신규한 유전자, 균주 및 이를 이용한 바이오 연료의 제조방법 - Google Patents

C5-c8 유기산 생산에 관여하는 신규한 유전자, 균주 및 이를 이용한 바이오 연료의 제조방법 Download PDF

Info

Publication number
WO2016178513A1
WO2016178513A1 PCT/KR2016/004705 KR2016004705W WO2016178513A1 WO 2016178513 A1 WO2016178513 A1 WO 2016178513A1 KR 2016004705 W KR2016004705 W KR 2016004705W WO 2016178513 A1 WO2016178513 A1 WO 2016178513A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
hexanoic acid
strain
gene
seq
Prior art date
Application number
PCT/KR2016/004705
Other languages
English (en)
French (fr)
Inventor
상병인
이태호
전병승
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150063131A external-priority patent/KR20160131239A/ko
Priority claimed from KR1020150063414A external-priority patent/KR101766955B1/ko
Priority claimed from KR1020150063129A external-priority patent/KR20160131237A/ko
Priority claimed from KR1020150063130A external-priority patent/KR20160131238A/ko
Priority claimed from KR1020150063128A external-priority patent/KR101745084B1/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2016178513A1 publication Critical patent/WO2016178513A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids

Definitions

  • the present invention relates to a novel gene involved in C5-C8 organic acid production, a vector comprising the gene, a microorganism transformed with the vector, and a C5-C8 organic acid production method using the same.
  • the present invention also relates to novel strains for producing C5-C8 organic acids and methods for producing C5-C8 organic acids using the same.
  • the present invention also relates to a method for producing hexanoic acid using a megaspera hexanoica strain.
  • the present invention relates to a novel strain having the ability to produce C4 and C6 organic acids and a method for producing a biofuel using the novel strain.
  • the present invention relates to a novel gene involved in the production of hexanoic acid and a method for producing hexanoic acid and hexanol using the same.
  • Bioenergy is a sustainable energy source made from biomass in the natural world. It is a greenhouse gas that is the main cause of global warming because it is produced from plants such as corn, sugar cane, cellulose for disposal, and agricultural and environmental waste. By using various organic wastes without increasing carbon dioxide (CO 2 ), there is an effect of reducing waste.
  • CO 2 carbon dioxide
  • liquid biofuels have the advantage of being mixed with the existing automotive liquid fuel.
  • Biofuels derived from such renewable vegetable raw materials are ethanol (C2) and butanol (C4) as fuel for transportation, but aviation fuels require materials with higher carbon numbers. The development of new biofuels is needed.
  • Clostridium tyrobutyricum S1 (KCTC 12103BP) has been disclosed as a strain for producing butyric acid, which is a representative C4 material (patent Document 1)
  • Non Patent Literature 1 As a strain for producing hexanoic acid, which is a C6 substance, Clostridium cloverberry, megaspera elsdeni and the like have been disclosed (Non Patent Literature 1), but the production amount is not enough to apply to the production process of biofuel It is insufficient to follow.
  • Hexanoic acid is a linear fatty acid having six carbons, which is used to make perfumes, drugs, lubricating greases, rubbers, dyes, etc., and can be converted to hexanol through a simple catalytic reaction. Hexanol can be used as gasoline, diesel, or jet fuel through esterification, and it is necessary to develop a technology for producing hexanoic acid as a precursor of biofuel.
  • Hexanoic acid production using microbial fermentation is one of the most studied studies on the production of hexanoic acid using Clostridium kluyveri, an anaerobic bacterium published in 1942.
  • the strain can produce H2, butyric acid, hexanoic acid using ethanol and acetate or succinate. As excess acetic acid is produced, hexanoic acid is mainly produced. From these relationships, it was found that butyric acid is used as an intermediate in hexanoic acid synthesis.
  • carbohydrates contained in the biomass can be changed into various biofuels and biochemical raw materials such as alcohols, carboxylic acids, ethers, esters, etc.
  • saccharide substances are alcohols and C3 by microorganisms, enzymes or chemical reactions. It can be converted into important basic chemicals, including -C6 carboxylic acid.
  • Korean Patent Laid-Open Publication No. 10-2012-0037217 discloses a method for increasing production yield by applying genetic level manipulation to an enzyme involved in the production route of biobutanol.
  • n-butanol and n-butyric acid which are representative C4 substances
  • ABE fermentation acetone-butanol-ethanol fermentation
  • Clostridium beijerinckii and Clostridium acetobutylicum are well known as representative microorganisms which mainly produce n-butanol.
  • microorganisms that produce n-hexanoic acid include Clostridium kluyverii , Megasphaera elsdenii , and the like.
  • Korean Patent Publication No. 10-2014-0026207 discloses a microorganism strain for producing hexanol with enhanced activity of a cytochrome p450 monooxidant, and discloses a microorganism of Accession No. KACC 93152B, beta-ketohexanoyl-CoA ( Disclosed is a recombinant strain in which a base sequence encoding a cytochrome p450 monooxidant, which is responsible for producing hexanol, is introduced into a predetermined strain through recombination technology through oxidizing ⁇ -ketohexanoyl-CoA).
  • Clostridium kluyverii HA Barker and SM Taha, J. Bacteriol., 43, 347 (1942) It is known and much research has been conducted on this.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2013-0077296
  • Patent Document 2 KR 10-1316732
  • Patent Document 3 Republic of Korea Patent Publication No. 10-2014-0050226
  • Patent Document 4 Korean Unexamined Patent Publication No. 10-2012-0038782
  • Patent Document 5 Korean Unexamined Patent Publication No. 10-2012-0082141
  • Patent Document 6 Korean Unexamined Patent Publication No. 10-2012-0082138
  • Patent Document 7 Republic of Korea Patent Publication No. 10-2011-0007981
  • Patent Document 8 Korean Unexamined Patent Publication No. 10-2012-0037217
  • Patent Document 9 Korean Unexamined Patent Publication No. 10-2014-0026207
  • Non-Patent Document 1 B. H. Kim and G. M. Gadd, Bacterial physiology and metabolism. Cambridge University Press, Cambridge (2008)
  • Non-Patent Document 2 Roddick, F.A. and M.L. Britz, Journal of Chemical Technology and Biotechnology, 1997 69 (3) 383-391.
  • Non-Patent Document 3 H. A. Barker and S. M. Taha, J. Bacteriol., 43, 347 (1942)
  • the present invention has been made to solve the above-described problems, a novel gene involved in C5-C8 organic acid production, a vector comprising the gene, a microorganism transformed with the vector, and a C5-C8 organic acid production method using the same To provide.
  • the present invention is a strain that produces a C5-C8 organic acid when cultured in a medium containing fructose, in particular, when the C2-C6 organic acid is added to the outside during cultivation can be selectively converted to C5-C8 organic acid production It is to provide a strain and a method for producing a C5-C8 organic acid using the strain.
  • the present invention is to improve the productivity, to provide a method for producing hexanoic acid in high yield.
  • the present invention is to provide a novel strain capable of producing C4 organic acid and C6 organic acid with excellent production capacity when cultured in a medium containing a carbon source and a method for producing a biofuel using the strain.
  • a procedure kapeuroyi a novel microorganism producing hexanoate acid two sense ribonucleic galactose Tito lance (Caproiciproducens galactitolivorans ), and by establishing its metabolic pathway, the gene bundle involved in producing hexanoic acid finally using galactitol as a nutrient source, and through this new gene involved in hexanoic acid production,
  • the present invention provides a transformed microorganism, a method for preparing hexanoic acid using the same, and a method for preparing hexanol using the same.
  • the present invention to solve the above problems,
  • genes encoding enzymes involved in C5-C8 organic acid biosynthesis comprising one or more nucleotide sequences selected from the group consisting of SEQ ID NOs: 1-8.
  • the nucleotide sequence of SEQ ID NO: 1 encodes Acetyl-CoA acetyltransferase (THL)
  • the nucleotide sequence of SEQ ID NO: 2 encodes 3-hydroxyacyl-CoA dehydrogenase (HBD)
  • the nucleotide sequence encodes 3-hydroxyacyl-CoA dehydratase (CRT)
  • the nucleotide sequence of SEQ ID NO: 4 encodes Acyl-CoA dehydrogenase (ACDH)
  • the nucleotide sequence of SEQ ID NO: 5 is Acetyl-CoA transferase (ACT)
  • the base sequence of SEQ ID NO: 6 encodes Butyryl-CoA dehydrogenase (BCDH)
  • the base sequence of SEQ ID NO: 7 encodes an Electron transfer flavoprotein alpha subunit (ETF A), and the base of SEQ ID NO: 8
  • the sequence may be that encodes an Electron transfer flavoprotein beta subunit (
  • the gene may be derived from Megasphaera hexanoica strain (KCCM11835P).
  • the C5 organic acid may be pentanoic acid
  • the C6 organic acid may be hexanoic acid
  • the C7 organic acid may be heptanoic acid
  • the C8 organic acid may be octanoic acid
  • the present invention also provides a vector comprising a gene encoding the enzyme involved in the C5-C8 organic acid biosynthesis.
  • the vector comprises a first vector comprising a gene represented by SEQ ID NO: 1 or SEQ ID NO: 10; And a second vector comprising a gene represented by SEQ ID NO: 4.
  • the second vector may further include one or more selected from genes represented by SEQ ID NOs: 2 to 3 and SEQ ID NOs: 5 to 9.
  • the present invention provides a microorganism having a C5-C8 organic acid production capacity, transformed by the vector.
  • the microorganism may be selected from the group consisting of bacteria, yeast and fungi.
  • the microorganism is a gene encoding an enzyme involved in lactate biosynthesis, a gene encoding an enzyme involved in acetate biosynthesis, a gene encoding an enzyme involved in ethanol biosynthesis And one or more genes selected from the group consisting of genes encoding enzymes involved in succinate biosynthesis may be weakened or deleted.
  • the present invention also provides a method for producing C5-C8 organic acid by culturing the microorganism.
  • KCCM11835P Megasphaera hexanoica strain (KCCM11835P), which produces C5-C8 organic acids when cultured in a medium containing fructose, is provided.
  • the strain may be isolated from bovine intestine.
  • C5-C8 organic acid when C2-C6 organic acid is added during the strain culture, C5-C8 organic acid may be produced.
  • C6 organic acid when C2 organic acid, C4 organic acid or a mixture thereof is added to the strain culture, C6 organic acid may be produced, wherein the C2 organic acid is acetic acid, the C4 organic acid is butyric acid, and the C6 organic acid may be hexanoic acid. have.
  • C2 organic acid and C3 organic acid are added in the culture of the strain, C5 organic acid may be produced, wherein the C2 organic acid is acetic acid, the C3 organic acid is propionic acid, and the C5 organic acid may be pentanoic acid.
  • C7 organic acid when C2 organic acid and C5 organic acid are added in the culture of the strain, C7 organic acid may be produced, wherein the C2 organic acid is acetic acid, the C5 organic acid is pentanoic acid, and the C7 organic acid may be heptanoic acid.
  • C8 organic acid when C2 organic acid and C6 organic acid are added in the culture of the strain, C8 organic acid may be produced, wherein the C2 organic acid is acetic acid, the C6 organic acid is hexanoic acid, and the C8 organic acid may be octanoic acid.
  • the medium comprises tryptophan, peptone, yeast extract, beef extract, K 2 HPO 4 , Tween 80, cysteine-HCl x H 2 O, salt solution, distilled water or mixtures thereof May be PYG medium.
  • the present invention provides a method for producing C5-C8 organic acid by culturing Megasphaera hexanoica strain (KCCM 11835P) in a medium containing fructose.
  • KCCM 11835P Megasphaera hexanoica strain
  • the method may selectively convert C5-C8 organic acid by adding C2-C6 organic acid to the culture medium when the strain is cultured.
  • C2 organic acid, C4 organic acid or a mixture thereof may be added to the medium to produce C6 organic acid, wherein the C2 organic acid is acetic acid, the C4 organic acid is butyric acid, and the C6 organic acid is hexano. It can be Iksan.
  • the strain culture may be converted to C5 organic acid by adding C2 organic acid and C3 organic acid to the medium, wherein the C2 organic acid is acetic acid, the C3 organic acid is propionic acid, the C5 organic acid may be pentanoic acid.
  • C2 organic acid may be converted into C7 organic acid by adding C2 organic acid and C5 organic acid to the culture medium, wherein the C2 organic acid is acetic acid, the C5 organic acid is pentanoic acid, and the C7 organic acid may be heptanoic acid.
  • C2 organic acid and C6 organic acid may be converted into C8 organic acid by adding C2 organic acid and C6 organic acid to the culture medium, wherein the C2 organic acid is acetic acid, the C6 organic acid is hexanoic acid, and the C8 organic acid may be octanoic acid. have.
  • the medium comprises tryptophan, peptone, yeast extract, beef extract, K 2 HPO 4 , Tween 80, cysteine-HCl x H 2 O, salt solution, distilled water or mixtures thereof PYG medium.
  • the culturing may be performed at 35 ° C. to 40 ° C. for 12 to 48 hours under anaerobic conditions.
  • the culture may be carried out under the conditions of pH 5.5 to 6.5.
  • Megasphaera hexanoica strain KCCM11835P
  • the culture solution may further include acetate and butyrate.
  • the concentration of the acetate may be 7 to 9 g / L
  • the concentration of the butyrate may be 13 to 15 g / L.
  • the culture solution is fructose, yeast extract, tryptophan, peptone, beef extract, K 2 HPO 4 , Tween 80, cysteine-HCl x H 2 0, resazurin, salt solution, distilled water or a mixture thereof It may include.
  • the culture solution may further comprise 6 to 18 g / L yeast extract.
  • the culture solution may further comprise 5.5 to 10.5 g / L yeast extract and 2.3 to 10.5 g / L peptone.
  • the concentration of the yeast extract may be 8.5 to 9.5 g / L
  • the concentration of the peptone may be 8.5 to 9.5 g / L.
  • the culture solution may include fructose, K 2 HPO 4 , cysteine-HCl x H 2 0, resazurin, salt solution, distilled water, vitamin K1 solution, or a mixture thereof.
  • the pH may be maintained at 6 to 6.5 during the culture, and the pH may be maintained at 4 to 5 during the recovery of hexanoic acid after the culture.
  • the volume ratio of the oleyl alcohol and the allamine 336 may be 9: 1 to 6: 3.
  • the volume ratio of the culture solution and the mixed solvent may be 1: 0.5 to 1: 3.
  • butyric acid butyric acid
  • the pH may be maintained at 5.5 to 6.5 during the culture.
  • fructose and a nitrogen source may be periodically added to the culture medium during the culture.
  • the nitrogen source may be a yeast extract, peptone or a mixture thereof.
  • the concentration of the added fructose may be 20 to 60 g / L
  • the concentration of the injected nitrogen source may be 5 to 20 g / L.
  • concentrated fructose and nitrogen source may be continuously added to the culture solution during the culture.
  • the fructose and the nitrogen source may be added at a rate of 0.1 to 3 ml / hr.
  • the culture solution may include acetate, butyrate, hexanoic acid or a mixture thereof.
  • Caproiciproducens galactitolivorans strain (KCCM10991P), which has the ability to simultaneously produce C4 and C6 organic acids in culture in a carbon source medium, is provided.
  • the carbon source medium may comprise at least one sugar selected from the group consisting of glycerol, glucose, galactitol, mannose, and fructose.
  • the C4 organic acid may be butyric acid
  • the C6 organic acid may be hexanoic acid
  • step d) producing C4 alcohol and C6 alcohol by reacting the C8-C12 compound prepared in step d) with hydrogen gas
  • It provides a method for producing a biofuel comprising a.
  • the carbon source medium may comprise at least one sugar selected from the group consisting of glycerol, glucose, galactitol, mannose, and fructose.
  • the C4 organic acid may be butyric acid
  • the C6 organic acid may be hexanoic acid
  • the culture of step a) may be carried out by anaerobic culture at 35 ° C. to 45 ° C. for 24 to 72 hours.
  • the culturing of step a) may be performed in a culture medium containing galactitol, fructose, mannose, tagatose, glucose and glycerol.
  • the separation of step b) may be performed by using an ion exchange resin, or by extracting the C4 organic acid and C6 organic acid from the culture using an organic solvent that is not mixed with water. have.
  • the C4 alcohol may be butanol, and the C6 alcohol may be hexanol.
  • the catalytic reaction of step d) is zeolite, heteropoly acids, silica-alumina, Nafion resin (Nafion-H, paratoluenesulfonic acid). (p-toluenesulfonic acid), a super acid catalyst of SO 4 2- / ZrO 2 or SO 4 2- / TiO 2 -La 2 O 3 .
  • the catalytic reaction of step d) may be performed by adding at least one enzyme selected from the group consisting of esterases and lipases.
  • the hydrogen gas of step e) may be hydrogen gas generated from step a).
  • the carbon source of step a) may be prepared by physically grinding, washing and hydrolyzing the biomass or organic waste resources.
  • SEQ ID NO: 36 which encodes enzymes involved in the metabolic pathway producing hexanoic acid using acetyl-CoA as a starting material.
  • the gene may be a gene isolated from the Caproiciproducens galactitolivorans strain (Accession No. KCCM 10991P).
  • the present invention also provides a gene represented by SEQ ID NO: 37 which encodes enzymes involved in metabolic pathways that produce pyruvic acid using galactitol as a starting material.
  • the gene may be a gene isolated from the Caproiciproducens galactitolivorans strain (Accession No. KCCM 10991P).
  • the present invention also provides a microorganism transformed by a vector comprising the gene represented by SEQ ID NO: 36 and the gene represented by SEQ ID NO: 37.
  • the present invention also provides a method for producing hexanoic acid comprising culturing the microbial strain in a carbon source medium containing galactitol to produce hexanoic acid.
  • It provides a method for producing a hexanol comprising a.
  • the separation of step b) may be performed by using an ion exchange resin, or by extracting the hexanoic acid from the culture using an organic solvent that is not mixed with water.
  • the catalytic reaction of step d) is zeolite, heteropoly acids, silica-alumina, Nafion resin (Nafion-H, paratoluenesulfonic acid ( p-toluenesulfonic acid), SO4 2- / ZrO 2 Or a super acid catalyst of SO 4 2- / TiO 2 -La 2 O 3 .
  • the catalytic reaction of step d) may be performed by adding an esterase.
  • the hydrogen gas of step e) may be hydrogen gas generated from step a).
  • the carbon source of step a) may be prepared by physically grinding, washing and hydrolyzing the biomass or organic waste resources.
  • C5-C8 organic acid when the strain of the present invention is cultured in a medium containing fructose, C5-C8 organic acid can be produced, and in particular, when C2-C6 organic acid is added externally during the culture, selective conversion to C5-C8 organic acid is possible. Do.
  • the C5-C8 organic acid produced can also be used for the production of biofuels.
  • the culture product of the strain when cultured in a medium containing a carbon source derived from a variety of biomass or organic waste resources, provides a novel strain for the simultaneous production of C4 and C6 organic acids with excellent production capacity, the culture product of the strain Through the production of high energy compounds C8-C12 compounds and biofuels can be produced.
  • 1 is a diagram showing the entire gene map and genetic information of the megaspera hexanoica strain.
  • Figure 2 is a diagram analyzing the RNA expression genes in the culture of megaspera hexanoica strain without the addition of acetic acid and butyric acid.
  • FIG. 3 is a graph showing RPKM (Read Per Kilobase per Millon mapped reads) values of RNA expression genes in the culture of Megaspera hexanoica strain by adding acetic acid and butyric acid.
  • Figure 4 is a diagram showing the RPKM value of the genes isolated from megaspera hexanoica strains.
  • FIG. 5 is a diagram illustrating a hexanoic acid biosynthetic pathway derived based on RNA expression levels of megaspera hexanoica strains.
  • FIG. 6 is a diagram showing the hexanoic acid biosynthetic pathway of E. coli blocked the lactate biosynthetic pathway, acetate biosynthetic pathway and ethanol biosynthetic pathway used in the present invention.
  • FIG. 7 is a diagram showing a vector containing genes required for the hexanoic acid biosynthetic pathway, used for the preparation of transformed microorganisms according to Example 1.
  • FIG. 7 is a diagram showing a vector containing genes required for the hexanoic acid biosynthetic pathway, used for the preparation of transformed microorganisms according to Example 1.
  • FIG. 8 is a diagram showing a vector containing genes required for the hexanoic acid biosynthetic pathway used for the preparation of transformed microorganisms according to Example 2.
  • FIG. 8 is a diagram showing a vector containing genes required for the hexanoic acid biosynthetic pathway used for the preparation of transformed microorganisms according to Example 2.
  • FIG. 9 is a diagram showing a vector containing genes required for the hexanoic acid biosynthetic pathway used for the preparation of transformed microorganisms according to Example 3.
  • FIG. 9 is a diagram showing a vector containing genes required for the hexanoic acid biosynthetic pathway used for the preparation of transformed microorganisms according to Example 3.
  • FIG. 10 is a diagram showing a vector containing genes required for the hexanoic acid biosynthetic pathway used for the preparation of transformed microorganisms according to Example 4.
  • FIG. 10 is a diagram showing a vector containing genes required for the hexanoic acid biosynthetic pathway used for the preparation of transformed microorganisms according to Example 4.
  • FIG. 11 shows a vector comprising genes required for the hexanoic acid biosynthetic pathway, used for the preparation of transformed microorganisms according to Example 5.
  • FIG. 12 is a diagram showing a vector containing a gene required for the hexanoic acid biosynthesis pathway, used for the preparation of transformed microorganisms according to Comparative Example 1.
  • FIG. 13 is a diagram showing a vector containing a gene required for a hexanoic acid biosynthetic pathway, which was used for preparation of a microorganism transformed according to Comparative Example 2.
  • FIG. 13 is a diagram showing a vector containing a gene required for a hexanoic acid biosynthetic pathway, which was used for preparation of a microorganism transformed according to Comparative Example 2.
  • Example 15 is a graph showing hexanoic acid production of transformed microorganisms according to Example 1 of the present invention.
  • 16 is a view showing a separation process of the megaspera hexanoica strain according to the present invention.
  • 17 is a view showing a 16s rRNA nucleotide sequence of the megaspera hexanoica strain according to the present invention.
  • FIG. 18 is a diagram showing a phylogenetic relationship based on the 16s rRNA nucleotide sequence of the megaspera hexanoica strain according to the present invention.
  • 19 is an SEM image of the megaspera hexanoica strain according to the present invention.
  • 20 is a graph showing the production of C5 organic acid in culture by adding C2 and C3 organic acids to the medium according to one embodiment of the present invention.
  • 21 is a graph showing the production of C6 organic acid in culture by adding C2 and C4 organic acids to the medium according to one embodiment of the present invention.
  • 22 is a graph showing the production of C7 organic acid in culture by adding C2 and C5 organic acids to the medium according to one embodiment of the present invention.
  • Figure 23 is a graph showing the production of C8 organic acid in culture by adding C2 and C6 organic acid to the medium according to an embodiment of the present invention.
  • FIG. 24 is a graph confirming the location of added butyrate in hexanoic acid produced by adding C13 labeled butyrate.
  • 25 is a graph showing the production amount of hexanoic acid according to the acetate and butyrate concentration contained in the medium.
  • FIG. 26 shows variables (acetate, butyrate, and pH) and their concentrations for applying response surface analysis.
  • Fig. 27 is a diagram showing the experimental design and the yield of hexanoic acid in the reaction surface analysis method.
  • FIG. 29 is a diagram showing a predictive model for hexanoic acid production at maximum through analysis and modeling of importance of each variable (acetate, butyrate, and pH) according to the response surface method.
  • 30 is a graph showing the actual production of hexanoic acid under the conditions of each variable (acetate, butyrate, and pH) derived through the prediction model.
  • 31 is a result showing the effect of each variable (yeast extract and beef extract) through the statistical method for the hexanoic acid concentration obtained through the reaction surface analysis method.
  • 33 is a graph showing hexanoic acid production and cell growth according to the concentration of yeast extract.
  • 35 is a graph showing the productivity of hexanoic acid during extraction and fermentation with a volume ratio of the culture solution and the mixed solvent as 1: 1.
  • 36 is a graph showing the productivity of hexanoic acid during extraction and fermentation by adding a volume ratio of the culture solution and the mixed solvent to 1: 1 and adding 3 M butyric acid as a pH adjuster.
  • 37 is a volume ratio of the culture medium and the mixed solvent is 2: 1, 3 M butyric acid (butyric acid) as a pH adjuster, fructose and nitrogen source is periodically added to extract fermentation, hexanoic acid productivity The graph shown.
  • 38 is a diagram of a reaction process for continuously supplying a concentrated nitrogen source and a carbon source during extraction and fermentation.
  • 40 is a graph showing the results of gas chromatography analysis of hexanoic acid standard.
  • Fig. 41 is a graph showing the results of gas chromatography analysis of the culture solution of caproic discourseense galactitoriboranth.
  • FIGS. 42A to 42D are graphs (3a and 3b) showing the results of GC-TOF-MS analysis obtained by extracting a culture solution of caproishidulose galactitoriboranth using hexane and ethyl acetate as solvents, and peaks of the respective graphs.
  • the result of analysis is (3c and 3d).
  • FIG. 43 is a diagram showing a phylogenetic diagram of caproic matterssense galactitoriborance and related bacteria according to the present invention.
  • Figure 44 is a graph showing that the extraction efficiency of the organic acid is changed according to the CO 2 pressure applied in the process of extracting the organic acid from the culture.
  • 45a and 45b are photographs showing the organic acid extracting apparatus used in the method according to the present invention, and the extraction amount change (45a) according to the mixing speed of the culture solution and the change in oil separation with the retention time (45b), respectively.
  • 46 is a graph showing the extraction efficiency of organic acids extracted with varying ratios of the extraction solvent and the medium while applying a pressure of CO 2 10 bar at pH 6.
  • FIG. 48 is a graph showing microbial growth and glucose consumption according to incubation time when culturing caproicidoopsense galactitor boranth according to the present invention in a medium to which glucose is added.
  • 49 is a graph showing the production of acetic acid, butyric acid and hexanoic acid according to the culture time when incubating caproprodusense galactivorant according to the present invention in a medium to which glucose is added.
  • FIG. 50 is a graph showing the galactitol consumption according to the culture time and the production of acetic acid, butyric acid and hexanoic acid when incubating caproprodusense galactivorant according to the present invention in a medium to which galactitol was added.
  • Fig. 51 shows metabolic pathways in which galactitol is metabolized in caproic matterssen galactitoriboranth.
  • FIG. 52 is a schematic illustration of operons involved in the metabolic process of producing pyruvic acid from galactitol.
  • FIG. 53 is a schematic diagram of gene clusters involved in the metabolic process of producing hexanoic acid from acetyl-CoA.
  • Fig. 54 shows the entire gene map of the caproic matterssense galactitoriboranth.
  • Fig. 55 shows the genetic map of one plasmid possessed by caproic discourseense galactitoriboranth.
  • FIG. 56 shows O.D. of culture medium according to incubation time of caproic matterssense galactitoriboranth. Numerical changes, hexanoic acid content in the culture and butyric acid content change as a byproduct.
  • New genes involved in the production of C5-C8 organic acid a vector comprising the gene, a microorganism transformed with the vector, and a C5-C8 organic acid production method using the same
  • a “deletion” is a concept encompassing a mutation, substitution or deletion of part or all of the base of the gene or introduction of some base to prevent the gene from being expressed or to exhibit enzymatic activity even though it is expressed. It includes everything that blocks the biosynthetic pathways involved in the enzymes of the gene.
  • the term "attenuation” is a concept encompassing a mutation, substitution or deletion of some bases of a gene or introduction of some bases to reduce the activity of an enzyme expressed by the gene. It includes everything that blocks some or much of the biosynthetic pathway.
  • microorganism includes algae, bacteria, protozoa, filamentous fungi, yeasts and viruses.
  • a "vector” may be any nucleic acid molecule having a purpose of delivering a specific gene into a host cell, and is generally a self-replicating sequence, a genome insertion sequence, a phage or nucleotide sequence, linear or circular, single or double stranded. DNA or RNA. In particular, it may have a foreign gene and may have a factor that facilitates transformation of a specific host cell in addition to the foreign gene.
  • vectors include sequences that direct the transcription and translation of appropriate genes, selection markers, and sequences that allow self-replicating or chromosomal insertion. Specific examples of the vector include, but are not limited to, plasmid vectors, phage or cosmid vectors.
  • genes encoding enzymes involved in C5-C8 organic acid biosynthesis have been successfully isolated from Megasphaera hexanoica strain (KCCM11835P).
  • the present invention provides genes encoding enzymes involved in C5-C8 organic acid biosynthesis, including one or more nucleotide sequences selected from the group consisting of SEQ ID NOs: 1-8.
  • the nucleotide sequence of SEQ ID NO: 1 encodes Acetyl-CoA acetyltransferase (THL)
  • the nucleotide sequence of SEQ ID NO: 2 encodes 3-hydroxyacyl-CoA dehydrogenase (HBD)
  • the nucleotide sequence of SEQ ID NO: 3 3-hydroxyacyl-CoA dehydratase (CRT) is encoded
  • the nucleotide sequence of SEQ ID NO: 4 encodes Acyl-CoA dehydrogenase (ACDH)
  • the nucleotide sequence of SEQ ID NO: 5 encodes Acetyl-CoA transferase (ACT)
  • the nucleotide sequence of SEQ ID NO: 6 encodes Butyryl-CoA dehydrogenase (BCDH)
  • the nucleotide sequence of SEQ ID NO: 7 encodes an Electron transfer flavoprotein alpha subunit (ETF A)
  • the C5 organic acid is pentanoic acid
  • C6 organic acid is hexanoic acid
  • C7 organic acid is heptanoic acid
  • C8 organic acid is preferably octanoic acid.
  • the present invention also provides a vector comprising a gene encoding the enzyme involved in the C5-C8 organic acid biosynthesis.
  • the vector according to the present invention is a vector encoding a first vector or a beta keto thiolase (BKTB) comprising the gene represented by SEQ ID NO: 1 encoding THL.
  • a first vector comprising a gene represented by 10;
  • a second vector encoding an ACDH and comprising a gene represented by SEQ ID NO: 4.
  • the second vector may further include one or more selected from genes represented by SEQ ID NOs: 2 to 3 and SEQ ID NOs: 5 to 9.
  • the second vector encodes the gene of SEQ ID NO: 2 encoding HBD, the gene of SEQ ID NO: 3 encoding CRT, the gene of SEQ ID NO: 5 encoding ACT, the gene of SEQ ID NO: 6 encoding BCDH, and ETF A. More preferably, the gene further comprises one or more genes selected from the gene of SEQ ID NO: 7 and the gene of SEQ ID NO: 8 encoding ETF B and the gene of SEQ ID NO: 9 encoding TER.
  • the present invention provides a microorganism having a C5-C8 organic acid production capacity, transformed by the vector.
  • the microorganism may be a gene encoding an enzyme involved in lactate biosynthesis, a gene encoding an enzyme involved in acetate biosynthesis, ethanol biosynthesis. It is preferred that at least one gene selected from the group consisting of genes encoding enzymes involved and genes encoding enzymes involved in succinate biosynthesis is weakened or deleted.
  • E. coli MG1655 was used as a host microorganism, but if the same deletion target gene was deleted using another E. coli, bacteria, yeast and fungus, the gene of the enzyme involved in C5-C8 organic acid biosynthesis was introduced. It will be said that the object of the invention can be achieved.
  • the present invention also provides a method for producing C5-C8 organic acid by culturing the microorganism.
  • the present invention also provides a strain of Megasphaera hexanoica (KCCM 11835P), which produces C5-C8 organic acid when cultured in a medium containing fructose as a carbon source.
  • KCCM 11835P Megasphaera hexanoica
  • the strains according to the invention were isolated from the viscera of cattle in which a large amount of strains producing organic acids were present. Specifically, only the strains resistant to hexanoic acid were selected by culturing microorganisms by adding hexanoic acid to anaerobic treated RCM medium. Subsequently, the same medium was passaged to isolate strains, and by identifying the selected strains, it was confirmed that the selected strains were strains of the genus megaspera.
  • the addition of C2 organic acid, C4 organic acid or a mixture thereof may produce a large amount of C6 organic acid, and by adding C2 organic acid and C3 organic acid, a large amount of C5 organic acid may be produced, and C2 organic acid and C5 organic acid may be produced.
  • C7 organic acid When added, a large amount of C7 organic acid can be produced, and when a C2 organic acid and C6 organic acid are added, a large amount of C8 organic acid can be produced.
  • the C2 organic acid is acetic acid
  • the C3 organic acid is propionic acid
  • the C4 organic acid is butyric acid
  • the C5 organic acid is pentanoic acid
  • the C6 organic acid is hexanoic acid
  • the C7 organic acid is heptanoic acid
  • the C8 organic acid is octanoic acid. It can be Iksan.
  • the medium used for culturing the strain may include tryptophan, peptone, yeast extract, beef extract, K 2 HPO 4 , Tween 80, cysteine-HCl x H 2 0, salt solution, distilled water or mixtures thereof, for example PYG medium having a composition of Table 1 may be used.
  • composition of the salt solution is shown in Table 2 below.
  • the present invention provides a method for producing C5-C8 organic acid by culturing Megasphaera hexanoica strain (KCCM11835P) in a medium containing fructose.
  • KCCM11835P Megasphaera hexanoica strain
  • the strain according to the present invention possesses the ability to selectively convert to C5-C8 organic acids when cultured by adding C2-C6 organic acids.
  • -C6 organic acids can be added to selectively convert and produce C5-C8 organic acids.
  • C2 organic acid, C4 organic acid, or a mixture thereof may be added to the C6 organic acid by addition, C2 organic acid and C3 organic acid may be converted into C5 organic acid, and the C2 organic acid and C5 organic acid may be produced. It can be added and converted to C7 organic acid, and C2 organic acid and C6 organic acid can be added to produce C8 organic acid.
  • the C2 organic acid is acetic acid
  • the C3 organic acid is propionic acid
  • the C4 organic acid is butyric acid
  • the C5 organic acid is pentanoic acid
  • the C6 organic acid is hexanoic acid
  • the C7 organic acid is heptanoic acid
  • the C8 organic acid is octanoic acid. It can be Iksan.
  • the medium used for culturing the strain may include tryptophan, peptone, yeast extract, beef extract, K 2 HPO 4 , Tween 80, cysteine-HCl x H 2 0, salt solution, distilled water or mixtures thereof, for example
  • the PYG medium described above can be used.
  • Cultivation of the strain according to the present invention is preferably carried out at 35 °C to 40 °C, for 12 hours to 48 hours under anaerobic conditions.
  • the culture is preferably carried out under the conditions of pH 5.5 to 6.5 in order to give optimum growth conditions to the strain according to the present invention.
  • the method for producing hexanoic acid according to the present invention comprises inoculating a culture medium by inoculating a megaspera hexanoica strain (KCCM11835P) into a culture medium; And recovering hexanoic acid from the culture solution.
  • KCCM11835P megaspera hexanoica strain
  • the culture solution preferably further comprises acetate and butyrate in the basal medium.
  • acetate and butyrate have an important effect on the promotion of cell growth and hexanoic acid production, in particular acetate was found to be the most important factor in hexanoic acid production.
  • the concentration of acetate is 7-9 g / L and the concentration of butyrate is 13-15 g / L. desirable.
  • the culture medium is a basic medium component, fructose, yeast extract, tryptophan, peptone, beef extract, K 2 HPO 4 , Tween 80, cysteine-HCl x H 2 0, resazurin, salt solution, distilled water Or mixtures thereof.
  • PYG medium having the composition shown in Table 3 can be used as the basal medium.
  • the culture solution further comprises 6 to 18 g / L yeast extract in the basal medium to increase the production of hexanoic acid.
  • the culture medium to further increase the production of hexanoic acid further comprises 5.5 to 10.5 g / L yeast extract and 2.3 to 10.5 g / L peptone
  • the concentration of the yeast extract is 8.5 to 9.5 g / L, more preferably the concentration of the peptone is 8.5 to 9.5 g / L.
  • the culture medium may include, as a basic medium component, fructose, K 2 HPO 4 , cysteine-HCl x H 2 0, resazurin, salt solution, distilled water, vitamin K1 solution or a mixture thereof.
  • mPYF medium having the composition of Table 4 can be used as the basal medium.
  • Hexanoic acid production method comprises the step of inoculating the culture medium by inoculating Megasphaera hexanoica (Megasphaera hexanoica) strain (KCCM11835P) in the culture medium; Adding a mixed solvent of oleyl alcohol and alumina 336 to the culture medium during the culture; And removing the mixed solvent to obtain hexanoic acid in the mixed solvent.
  • Megasphaera hexanoica Megasphaera hexanoica
  • KCCM11835P Megasphaera hexanoica
  • the mixed solvent may be added to the culture when the growth of the strain enters the logarithmic growth phase.
  • Megasphaera hexanoica strain (KCCM11835P) according to the present invention is most preferably added to the mixed solvent at the time of approximately 10-14 hours incubation.
  • the volume ratio of oleyl alcohol and alamin 336 included in the mixed solvent is 9: 1 to 6: 3. Too high an amount of alumina 336 outside the above range may cause microbial toxicity and inhibit growth.
  • the volume ratio of the culture solution and the mixed solvent is preferably 1: 0.5 to 1: 3, more preferably 1: 1 for batch culture and 1: 2 for fed-batch culture, as can be seen from the results of the following examples. Do.
  • the pH is most preferably maintained in the range of 5.5 to 6.5.
  • the pH of the culture solution is continuously increased.
  • the yield of hexanoic acid can be further increased.
  • fructose (carbon source) and nitrogen source may be periodically added to the culture medium during the cultivation to increase the production of hexanoic acid by cultivating oil.
  • the nitrogen source is most preferably yeast extract, peptone or a mixture thereof.
  • the concentration of the added fructose may be 20 to 60 g / L
  • the concentration of the injected nitrogen source may be 5 to 20 g / L.
  • the present invention can further improve the productivity of hexanoic acid by continuously inputting a high concentration of fructose and nitrogen source in the culture medium during the culture.
  • the reason why the high concentration of fructose and nitrogen source is continuously added is to alleviate the impact on the growth of bacteria generated when the fructose and the nitrogen source, which are carbon sources, are added all at once, and the addition is performed by adding 0.1 to 0.1 of the fructose and the nitrogen source. Preference is given to feeding at a rate of 3 ml / hr. If the lower limit is less than the productivity improvement effect of the hexanoic acid is insignificant, and if the upper limit is exceeded, the effect of reducing the impact on the growth of bacteria can be reduced.
  • the culture medium preferably contains acetate, butyrate, hexanoic acid or a mixture thereof as a component of the basal medium.
  • a caproiciproducens galactitolivorans strain (KCCM10991P) having the ability to simultaneously produce C4 and C6 organic acids when cultured in a carbon source medium.
  • the present invention was selected strains that produce C4 and C6 organic acids using a selection medium, and C4 and C6 in the product by analyzing the product produced by strain culture by chromatography analysis The presence of organic acid was confirmed. Subsequently, the selected strains were identified through a multi-faceted analysis to confirm that the selected strains were caprociprodusense galactitoriborance strains in Clostridium.
  • the carbon source medium for culturing the strain according to the present invention includes, but is not limited to, at least one sugar selected from the group consisting of glycerol, glucose, galactitol, mannose, and fructose, In particular, it was confirmed to produce a large amount of butyric acid and hexanoic acid.
  • the present invention also provides a method for producing a biofuel using the strain, the method according to the present invention,
  • step d) producing C4 alcohol and C6 alcohol by reacting the C8-C12 compound prepared in step d) with hydrogen gas
  • the strain culture of step a) may be carried out by anaerobic culture at 35 ° C. to 45 ° C. for 24 hours to 72 hours.
  • the culturing of step a) may be performed in a modified CAB culture medium containing galactitol, fructose, mannose, tagatose, glucose and glycerol.
  • the caproprodusense galactivorant strain is collected from the sludge of the sewage treatment plant, heat treatment the sludge to kill microorganisms except spore-forming bacteria, added to a predetermined volume relative to the medium, and then cultured under stirring conditions to C4 and C6 It can obtain by selecting the strain which produces the largest organic acid.
  • C4 organic acid and C6 organic acid can be produced by culturing only the strains thus selected in a medium containing the aforementioned saccharides.
  • the carbon source required for culturing the strain may be prepared by a pretreatment process such as physically crushing, washing, and hydrolyzing biomass or organic waste resources.
  • the pretreatment of organic waste may increase efficiency of dissolving organic components. Maximize and minimize the biological hydrogen production time by anaerobic fermentation, and increase the efficiency. Therefore, by physically pulverizing the biomass or organic waste resources, the microorganisms are sized to be suitable for use as a substrate, and the washing process removes components that are toxic to microorganisms such as chlorine ions. There is a need to improve the solubility of organic components by undergoing a decomposition process.
  • the step of separating only the produced C4 and C6 organic acid should be carried out, wherein the separation of step b) is carried out using an ion exchange resin, or using an organic solvent which is not mixed with water.
  • the separation of step b) is carried out using an ion exchange resin, or using an organic solvent which is not mixed with water.
  • C4 organic acids such as butyric acid and C6 organic acids such as hexanoic acid exhibit negative charges in the culture medium. May be adsorbed selectively.
  • the adsorbed organic acids may be desorbed from the anion exchange resin using an alkaline solution, an acidic solution, ethanol and the like.
  • organic solvents such as butyl butyrate, dodecanol, oleyl alcohol, etc. may be mixed with the culture medium, followed by stirring and extraction, extracted from the culture medium
  • the organic solvent containing the organic acid and the culture medium from which the organic acid is extracted can be separated by using an oil / water separator, and the organic acid can be separated by performing an additional chemical reaction on the separated organic acid-containing organic solvent.
  • various C8-C12 compounds can be prepared by carrying out esterification with the produced C4 and C6 organic acids.
  • reactions for preparing various C8-C12 compounds from hexanoic acid and butyric acid by esterification using an acid catalyst and an esterification enzyme are shown in Schemes 1 to 4 below.
  • Chemical catalysts and enzymes involved in the reaction of Schemes 1 to 4 include, but are not limited to, zeolites, heteropoly acids, silica-alumina, and Nafion-H. , Para-toluenesulfonic acid, SO4 2- / ZrO 2 Or a super acid chemical catalyst such as SO 4 2- / TiO 2 -La 2 O 3 , or at least one enzyme selected from the group consisting of esterases and lipases.
  • zeolites such as nanofiber, carrageenan, gelatin or beads
  • a carrier such as nanofiber, carrageenan, gelatin or beads
  • the hydrogen gas required for the reaction may be hydrogen gas produced together with the C4 organic acid and C6 organic acid by the strain culture of the step a).
  • Hexanoic acid New genes involved in production, microorganisms transformed with the gene, hexanoic acid production method using the same, and method for producing hexanol using the same
  • FIG. 51 shows the metabolic pathways in which galactitol is metabolized in caproicprodusense galactitoriborance.
  • galactitol is converted to pyruvic acid by a metabolic process involving a series of enzymes, the resulting pyruvic acid is pyruvic acid synthase (pyruvate synthase involved in converting pyruvic acid to acetyl-CoA or acetyl-CoA to pyruvic acid ( It is converted to acetyl-CoA by pyruvate synthase or pyruvate ferredoxin oxidoreductase.
  • a novel gene (SEQ ID NO: 37) encoding a protein enzyme involved in a series of processes from galactitol to production of pyruvic acid, the gene is Caproiciproduces galactitolivorans ( Caproiciproduces galactitolivorans ) It was successfully isolated from the strain.
  • the gene of SEQ ID NO: 37 forms an operon structure under the control of a specific promoter and operator.
  • FIG. 52 schematically illustrates the operon involved in the metabolic process of producing pyruvic acid from galactitol.
  • the resulting acetyl-CoA is then finally converted to hexanoic acid by metabolic processes involving a series of enzymes.
  • the present invention also provides another novel gene (SEQ ID NO: 36) which encodes protein enzymes involved in a series of processes from acetyl-CoA to the production of hexanoic acid, which gene is also caprociprodusense. It was successfully isolated from the Caproiciproducens galactitolivorans strain.
  • the gene of SEQ ID NO: 36 forms a cluster of genes that are concentrated at a predetermined position in the entire gene sequence of caproic constitutesense galactitoriboranth.
  • FIG. 53 schematically shows a gene cluster involved in the metabolic process for producing hexanoic acid from acetyl-CoA.
  • acetyl CoA acetyl transferase CRT (3 hydroxy dehydratase), HBD (3 hydroxy dehydrogenase), ACDH (acyl CoA dehydrogenase), ETF AB (electron transfer flavoproteins), and ACT (acetyl CoA transferase) is encoded.
  • the present invention provides a transformed microorganism using a vector comprising the genes represented by SEQ ID NO: 36 and SEQ ID NO: 37 described above, by producing a hexanoic acid by culturing the transformed microorganism in a carbon source medium It provides a method for producing hexanoic acid comprising the step of.
  • the present invention provides a method for finally preparing hexanol using the transformed microorganism, the method according to the present invention
  • the carbon source necessary for culturing the strain may be prepared by a pretreatment process such as physically crushing, washing, and hydrolyzing biomass or organic waste resources, maximizing the efficiency of dissolving organic components by pretreatment of the organic waste.
  • a pretreatment process such as physically crushing, washing, and hydrolyzing biomass or organic waste resources
  • biological hydrogen production time by anaerobic fermentation can be minimized and its efficiency can be increased. Therefore, by physically pulverizing the biomass or organic waste resources, the microorganisms are sized to be suitable for use as a substrate, and the washing process removes components that are toxic to microorganisms such as chlorine ions. There is a need to improve the solubility of organic components by undergoing a decomposition process.
  • the separation of step b) may be performed using an ion exchange resin, or the hexanoic acid may be separated from the culture medium using an organic solvent which is not mixed with water. This can be done by extraction.
  • the organic acids are separated using an ion exchange resin, hexanoic acid exhibits a negative charge in the culture medium, so that only the hexanoic acid can be selectively adsorbed in the culture medium using the anion exchange resin.
  • the adsorbed hexanoic acid can be desorbed from the anion exchange resin using an alkaline solution, an acidic solution, ethanol and the like.
  • hexanoic acid when hexanoic acid is extracted from the culture medium using an organic solvent for extraction, organic solvents such as butyl butyrate, dodecanol, oleyl alcohol, etc. may be mixed with the culture solution, followed by stirring, and extracted from the culture medium.
  • Hexanoic acid is extracted by separating the organic solvent containing hexanoic acid and the culture solution from which the hexanoic acid is extracted using an oil / water separator, and performing further chemical reactions on the separated hexanoic acid-containing organic solvent. You can do it.
  • hexylhexanoate can be prepared by performing an esterification reaction on the produced hexanoic acid.
  • an esterification reaction for example, a reaction for preparing a C12 compound hexyl hexanoate from hexanoic acid by esterification using an acid catalyst and an esterification enzyme is shown in Schemes 1 to 4 below.
  • Chemical catalysts and enzymes involved in Scheme 1 include, but are not limited to, zeolites, heteropoly acids, silica-alumina, nafion resins (Nafion-H, paratoluenesulol) P-toluenesulfonic acid, SO4 2- / ZrO 2 Or super acid chemical catalysts such as SO 4 2- / TiO 2 -La 2 O 3 , or enzymes such as esterases.
  • zeolites heteropoly acids
  • silica-alumina nafion resins (Nafion-H, paratoluenesulol) P-toluenesulfonic acid
  • super acid chemical catalysts such as SO 4 2- / TiO 2 -La 2 O 3
  • enzymes such as esterases.
  • esterase enzyme when it is immobilized on a carrier such as nanofiber, carrageenan, gelatin or beads, it is possible to recover
  • hexanol may be prepared.
  • Reaction Scheme 2 shows a reaction in which hexanol is produced by hydrogenation of hexylhexanoate produced by Scheme 1 described above.
  • the hydrogen gas required for the reaction may be hydrogen gas produced together with the hexanoic acid by the strain culture of step a).
  • New genes involved in the production of C5-C8 organic acid a vector comprising the gene, a microorganism transformed with the vector, and a C5-C8 organic acid production method using the same
  • Each of the selected colonies was inoculated in a Reinforced Clostridia medium (difco) liquid medium and incubated at 37 ° C. for 3 days, and hexanoic acid production was measured using gas chromatography (GC).
  • GC gas chromatography
  • microorganisms producing the largest amount of hexanoic acid were isolated and named Megasphaera hexanoica.
  • the strain was deposited with the Korea Microorganism Conservation Center, the microorganisms depositary institution under the Budapest Treaty, on September 30, 2009, and was assigned the deposit number KFCC11466P. Granted.
  • the genome analysis of megagaspera hexanoica was performed by GS FLX454, Illumina Hi-Shike Instruments, which was commissioned by ChunLab, a specialized genome analysis institute, and the complete genomic map was obtained using CL genomics, a bioinformatics program provided by ChunLab. Secured.
  • Figure 1 shows the entire genetic map of the megaspera hexanoica obtained by the above process.
  • a genome consisting of one contig was obtained, and the genome size was 28778511 bp, the G + C ratio was 49%, and 2821 coding sequences, 18 rRNAs, and 53 tRNAs were shown. It can be inferred that the point of change is the origin of replication.
  • RNA transcriptomic analysis was performed.
  • RNA transcriptome analysis conditions were divided into two hexanoic acid overproduced conditions and low-produced conditions, and divided into two periods: the initial logarithmic growth stage for 9 hours and the production saturation for 18 hours. Was compared.
  • RNA extraction was extracted using the RNA extraxction kit for Qiagen bacteria, and the extracted elution sample was frozen below -70 °C.
  • Sample analysis was performed by requesting cloth lab, and the analyzed result was analyzed using CLRNAseq provided free of charge by cloth lab.
  • Four samples were statistically normalized, and expression levels were compared according to conditions and time, and genes with high expression levels were obtained.
  • FIG. 2 is a diagram illustrating RNA expression genes in the culture of megaspera hexanoica strain without the addition of acetic acid and butyric acid.
  • FIG. 3 illustrates the RNA expression genes in the culture of megaspera hexanoica strain by adding acetic acid and butyric acid.
  • RPKM Read Per Kilobase per Millon mapped reads
  • Figure 4 is a view showing the RPKM value of the genes isolated from the megaspera hexanoica strain.
  • hexanoic acid biosynthesis pathway and related enzymes were derived based on the derived RNA expression levels, and the results are shown in FIG. 7.
  • (1-1) a first vector comprising a gene encoding THL
  • the primer sets shown in SEQ ID NOs: 11 and 12 were used, NDEI in front of the primer set and XHOI restriction enzyme region in the back.
  • PCR fragments amplified using PCR were treated with NDE1 and XHOI
  • pCOLA vector was also prepared after treatment with NDEI and XHOI, and a certain amount was ligated using the Mighty Mix, a ligation kit.
  • the ligated plasmid was inserted into DH5 alpha, and colony pcr was performed using the same primers to confirm that the gene was inserted into the vector.
  • the primer sets shown in SEQ ID NOs: 13 and 14 were used, NDEI in front of the primer set and XHOI restriction enzyme region in the back.
  • PCR fragments amplified using PCR were treated with NDE1 and XHOI
  • pCOLA vector was also prepared after treatment with NDE1 and XHOI, and a certain amount was ligated using the Mighty Mix, a ligation kit.
  • the ligated plasmid was inserted into DH5 alpha, and colony pcr was performed using the same primers to confirm that the gene was inserted into the vector.
  • the genes encoding HBD and CRT were attached together and inserted into the pCDF vector.
  • the primer sets shown in SEQ ID NOs: 15 and 16 were used below, and the ECOROI was inserted in front of the primer and the NOTI restriction enzyme region in the rear.
  • HBD f 5'-AAAAAGAATTCGATGTTCAAGAAAGTGATGGTCATT-3 '
  • primer sets of SEQ ID NOs: 17 and 18 were used. At this time, the entire vector was PCR amplified using Pfux polymerase (BioPact) and ligated to a blunt end without restriction enzyme treatment.
  • HBD2 f 5'-ATGTTCAAGAAAGTGATGGTCATT-3 '
  • primer sets of SEQ ID NOs: 19 and 20 below were used, and NDE1 and XHOI were used as restriction enzymes.
  • cDNA of megaspera hexanoica was used as a template, and primer sets of SEQ ID NOs: 21 and 22 were used, followed by insertion of ribosomal binding site (RBS) and Ecori restriction enzyme region, followed by ACDH.
  • RBS ribosomal binding site
  • ACDH Ecori restriction enzyme region
  • ACDH r 5'-TTTTTGTATACGGAGGACTTAAGAATCACAAAGAAACATTAGACCGG-3 '
  • genes encoding HBD and CRT were attached and inserted together in the pCDF vector by the same method as in (2-1).
  • BCDH f 5'-AAAAACATATGATGGATATCTCTAGAATGGACTTC-3 '
  • cDNA of megaspera hexanoica was used as a template, and primer sets of SEQ ID NOs: 21 and 22 were used.
  • An ACDH was inserted by inserting a ribosomal binding site (RBS) and an Ecori restriction enzyme region after the ACDH.
  • the coding gene was inserted.
  • ldhA gene encoding lactate dehydrogenase
  • pta gene encoding phosphotransacetylase
  • adhe gene encoding alcohol dehydrogenase
  • frda genes were deleted.
  • ADHE f 5'-ATTCGAGCAGATGATTTACTAAAAAAGTTTAACATTATCAGGAGA GCATTGTGTAGGCTGGAGCTGCTTC-3 '
  • ADHE r 5'-AAAAAACGGCCCCAGAAGGGGCCGTTTATATTGCCAGACAGCGCT ACTGATCCTCCTTAGTTCCTATTCC-3 '
  • the medium was incubated at 30 ° C. using LB medium containing 1.5 g / L butyrate and 20 g / L glucose, and induction when cell growth was between 0.6 and 0.8 with 1 mM IPTG.
  • TB medium rich in nitrogen was used, and 20 g / L glucose and 5 g / L butyrate were incubated at 30 ° C., and induction was performed when the cell growth was between 0.6 and 0.8 with 1 mM IPTG.
  • PH was adjusted by adding W / V 5% CaCO3 with Induction. Sampling was carried out at 12 hour intervals using sterile syringes.
  • Each of the selected colonies was inoculated in a Reinforced Clostridia medium (difco) liquid medium and incubated at 37 ° C. for 3 days, and hexanoic acid production was measured using gas chromatography (GC).
  • GC gas chromatography
  • the separated microorganisms were deposited on September 30, 2009 with Korea Microorganism Conservation Center, a microorganisms depositary institution under the Budapest Treaty, and received the deposit number KFCC11466P.The deposit was deposited on April 28, 2016 with Korea Microorganism Conservation Center. Was given (see FIG. 16).
  • the nucleotide sequence of the 16S rRNA gene of the isolated strain was identified. That is, genomic DNA was extracted from the isolated strain using Genomic DNA Preparation Kit (Promega Co., USA), and then universal primer 27F (5'-AGA GTT TGA TCC TGG CTC AG-3). 16S rRNA gene was amplified by polymerase chain reaction (PCR) with 1492R (') and 1492R (5'-TAC GGY TAC CTT GTT ACG ACT T-3'). The amplified product was purified using a PCR Purification kit, and then submitted to Macrogen for 16S rDNA sequencing.
  • PCR polymerase chain reaction
  • 16S rRNA gene nucleotide sequence of the new strain is shown in Figure 17 and SEQ ID NO: 34.
  • the 16S rDNA gene sequence of this isolated strain was retrieved from Blast (http://www.ncbi.nlm.nih.gov/BLAST) to analyze the phylogenetic relationship, and Naverboring analysis (Neighbor) Phylogenetic tree was established by -joining analysis. As a result, it was confirmed that 93.8% homology with Megaspahera pouchivorans (Fig. 18). Thus, we named this strain "Megaspera hexanoica".
  • the megaspera hexanoica strain isolated according to the present invention produces C5 organic acid using C2 and C3 organic acids, C6 organic acid using C2 and C4 organic acids, and uses C2 and C5 organic acids. It was confirmed that the C7 organic acid was produced, and the C8 organic acid was produced using the C2 and C6 organic acids.
  • the experiment was performed to confirm that the megaspera hexanoica strain according to the present invention converts C5-C8 organic acid from C2-C6 organic acid.
  • 1,2,3,4 C13-labeled butyric acid 6 ul was added to a 2 ml mPYF medium using a gas chromatography-only syringe, and then pH was adjusted to around 6.2 to 6.5 using NaOH and a thin pH probe.
  • the solution was added to a hungate tube and sterilized after anaerobic treatment.
  • the isolates were added to sterilized medium and incubated for 48 hours. After incubation, all the solutions were removed by centrifugation, and the supernatant was extracted twice with hexane. Liquid-iquid extraction
  • the extracted hexane was analyzed by ion mass spectrum using GC-TOF MASS, and the results are shown in FIG. 24.
  • the megaspera hexanoica strain according to the present invention produces hexanoic acid using butyric acid added from the outside.
  • the strain according to the present invention is a C5-C6 from an externally added C2-C6 organic acid.
  • C8 organic acid was found to have the ability to convert production.
  • Example 1 acetate, Butyrate Production conditions of hexanoic acid derived from reaction surface analysis using pH and pH as variables
  • Megasphaera hexanoica strain (KCCM11835P) of the present invention was selected from acetate, butyrate and pH as a variable affecting the production of hexanoic acid when incubating the optimum conditions through the reaction surface analysis method.
  • PYG medium having the composition shown in Table 3 above was used as a basal medium.
  • 25 is a graph showing the production amount of hexanoic acid according to the concentration of acetate and butyrate, respectively. This confirms that both acetate and butyrate are helpful factors for the production of hexanoic acid.
  • 26 to 29 are diagrams illustrating a process for deriving a condition for producing hexanoic acid to the maximum by applying the above variables and a result thereof. Through this, it was confirmed that acetate has the biggest influence on the production of hexanoic acid. In addition, the maximum production of hexanoic acid under conditions of 8.74 g / L acetate, 13.63 g / L butyrate, pH 6.24, and the amount was 10.61 g / L.
  • the productivity of the actual hexanoic acid was evaluated under the conditions derived through the reaction surface analysis method.
  • 30 is a graph showing the actual production of hexanoic acid under the conditions of each variable (acetate, butyrate, and pH) derived through the prediction model. This confirmed that the maximum production of hexanoic acid increased to 10.8 g / L under the optimum conditions.
  • KCCM11835P Megasphaera hexanoica strain
  • the yeast extract, peptone, beef extract from the nitrogen source as a variable affecting the production of hexanoic acid is selected by the reaction surface analysis method was analyzed.
  • strain culture mPYF medium having the composition shown in Table 4 above was used as a basal medium.
  • Figure 31 shows the results of the yeast extract and beef extract to the production of hexanoic acid through the reaction surface analysis method.
  • FIG. 32 shows the results of yeast extract and peptone on the production of hexanoic acid through response surface analysis. This resulted in a significant improvement in the productivity of hexanoic acid by synergistic effects of the yeast extract and peptone when used, in particular, yeast extract and beef extract each added 8.75 g / L, that is, a ratio of 1: 1 Hexanoic acid was produced at the maximum, and the amount was 10.00 g / L.
  • Example 2 confirmed that the largest influence on the production of hexanoic acid, and when only a single yeast extract is added to the nitrogen source, the effect on the production of hexanoic acid was measured.
  • 33 is a graph showing hexanoic acid production and cell growth according to the concentration of yeast extract. This increases the production of hexanoic acid in the range of 6 to 18 g / L of yeast extract, especially the maximum production of hexanoic acid when the concentration of yeast extract is 12 g / L, the amount is 12 g / L.
  • Example 1 confirms that the pH is preferably maintained at 5.5 to 6.5, especially 6.0 to 6.5 when culturing the strain according to the present invention, and after culturing the strain, recovering hexanoic acid using an organic solvent
  • a comparative experiment was conducted to derive the optimal pH at. Under two conditions with pHs of 4.73 and 6.11, experiments were carried out using a mixed solvent of oleyl alcohol and alamin 336 mixed at a ratio of 9: 1.
  • FIG. 34 is a graph showing the hexanoic acid extraction efficiency according to pH after culturing the strain. As a result, it was confirmed that 40% or more of hexanoic acid was extracted at the pH of 6.11, whereas 95% or more of hexanoic acid was extracted under the conditions of pH 4.73.
  • 35 is a graph showing the productivity of hexanoic acid during extraction and fermentation with a volume ratio of the culture solution and the mixed solvent as 1: 1. As shown in the figure, it was confirmed that hexanoic acid was extracted in a state in which the culture medium and the mixed solvent were not mixed and maintained at the interface. When extracted under the above conditions, the productivity of the hexanoic acid was expressed as 0.41 g / L / hr. Hexanoic acid yield was 20 g / L.
  • 36 is a graph showing the productivity of hexanoic acid during extraction and fermentation by adding a volume ratio of the culture solution and the mixed solvent to 1: 1 and adding 3 M butyric acid as a pH adjuster.
  • the pH was maintained at 5.99, in particular, it was confirmed that the productivity of hexanoic acid was significantly improved to 1.25 g / L / hr, 52 g / L production.
  • Example 7 by the periodic addition of fructose and the nitrogen source during the culture, hexanoate acid extraction evaluation
  • 37 is a volume ratio of the culture medium and the mixed solvent is 2: 1, 3 M butyric acid (butyric acid) as a pH adjuster, fructose and nitrogen source is periodically added to extract fermentation, hexanoic acid productivity
  • the production rate of hexanoic acid slightly decreased to 0.27 g / L / hr due to the increase in the concentration of hexanoic acid accumulated in the culture medium due to the incubation of oil, while the hexanoic acid due to the periodic input of fructose and nitrogen source. It was confirmed that the yield of up to 140 g / L was improved.
  • FIG. 38 is a diagram of a reaction process for continuously supplying a concentrated nitrogen source and a carbon source during extraction and fermentation.
  • 39 was fed continuously, and the productivity of hexanoic acid was extracted in the above conditions.
  • the maximum yield of hexanoic acid was 140.8 g / L, similar to Example 7, but the productivity of hexanoic acid was significantly improved to 0.73 g / L / hr.
  • Clostridium acetobutyricum medium mCAB
  • the selective medium was 10 g of calactitol, 4 g of yeast extract, 1 g of tryptone, 0.5 g of asparagine, 0.1 g of MgSO 4 .7H 2 O in 1 L of distilled water. , dissolved 0.1 g of MnSO 4 .H 2 O, 0.015 g of FeSO 4 .7H 2 O, 0.1 g of NaCl, 1.5 g of KH 2 PO 4, and 1.5 g of K 2 HPO 4, a frequency divider in the serum bottle Then, it was used in the anaerobic state through argon gas substitution.
  • Sludge used as spawn was collected from Jungnang Sewage Treatment Plant.
  • the sludge was heat-treated at 100 ° C. for 30 minutes to kill microorganisms except spore forming bacteria, and then inoculated into the medium to 5% (v / v) of the selected medium, and at a stirring speed of 150 rpm at 37 ° C. Incubated for a week.
  • Organic acids and hydrogen were produced.
  • microorganisms that maximize the production of hexanoic acid and butyric acid are selected, and the microorganism caproiciproducess galactitorborans ( Caproiciproducens) galactitolivorans ) (deposited to Korea Microbiological Conservation Center, Accession No. KCCM10991P).
  • the C4-C6 raw material contained in the culture cultured in Example 1.1 was analyzed by gas chromatography (GC-FID, agilent 6890N) equipped with a flame ionization detector (FID), and the generated hydrogen and carbon dioxide were thermally conductive. Analysis was carried out by gas chromatography equipped with a thermal conductivity detector (TCD). In addition, the presence of hexanoic acid was confirmed using GC-TOF-MS. In order to separate the hexanoic acid of the culture solution, an organic solvent extraction method was used as follows.
  • the culture solution was dispensed into a separatory funnel in the same amount with the extraction solvent, which is a mixture of hexane and ethyl acetate, and shaken vigorously for 20 minutes, and then the organic solvent layer was separated and analyzed by gas chromatography. .
  • GC-FID analysis confirmed that the hexanoic acid standard was detected after about 14.0 minutes, and when the culture solution was injected into the same device, it was confirmed that hexanoic acid was extracted after about 14.0 minutes at the same time period ( 40 and 41).
  • API 20NE and API 50CH tests and fatty acid components were analyzed for physiological and biochemical characterization, and 16S ribosomal DNA was analyzed for genetic analysis.
  • API inspection was performed by API standard method.
  • caproic indoleogenesis, urease, and citric acid availability reactions, and gelatin hydrolysis was positive.
  • API 50CH a test to confirm the use of 49 carbon sources, includes glycerol, D-arabinose, L-arabinose, ribose, D-xylose, galactose, glucose, fructose, mannose, dulcitol, inositol, N-acetylglucosamine, cellobiose, maltose, lactose, starch, glycogen, D-tagatose and L-fucose were used.
  • FEMs Fatty Acid Methyl Esters
  • analysis was performed to analyze the membrane fatty acid composition of the microorganism caproic matterssense galactitoriboranth.
  • the caprocyprodusense galactitorboranth culture was recovered and hydrolyzed using sodium hydroxide / methanol solution to separate fatty acids, followed by formation of fems using hydrochloric acid / methanol solution. Pems were extracted using an organic solvent and analyzed using gas chromatography.
  • compositional ratio (%) of the membrane fatty acid component of caproicid is C 14: 0 (3.17%), C 16: 0 (3.12%), C 14: 0 DMA (5.41% ), C 16: 0 DMA (22.15%), C 18: 0 DMA (4.04%), C 16: 0 ALDE (14.09%), C 18: 0 ALDE (3.13%), anteiso-C 17: 0 FAME ( 5.99%), C 18: 1 CIS 9 (1.12%), C 18: 1 CIS 9 DMA (7.65%), C 18: 1 CIS 11 DMA (4.62%), C 18: 2 CIS 9, 12 (1.08% ), Summed features 1 (2.52%), Summed features 5 (2.84%); Summed features 7 (5.56%), Summed features 8 (3.49%) and Summed features 11 (10.03%).
  • 16S ribosomal DNA (16S ribosomal DNA) of the novel microorganism caproishiprodussen galactitor boranth according to the present invention
  • 27F and 1492R which are primers capable of extracting DNA from culture and amplifying 16S ribosomal DNA DNA was amplified with a primer to obtain a PCR product of about 1.3 Kb.
  • the sequence of this DNA fragment was analyzed and confirmed the base sequence of about 1259 bp (SEQ ID NO: 35).
  • the nucleotide sequence of 16S ribosomal DNA of caprociid provedsense galactitoriborance was compared with the known 16S ribosomal DNA sequence of bacteria.
  • caproic resultssense galactitoriborance was identified as a microorganism in the genus Clostridium.
  • Caproishidurosense galactitorboranth and the closest microorganisms are Clostridium sporosphaeroides DSM 1294 T and Clostridium leptum DSM 753 T , respectively, of 94.49% and 94.26% 16S ribosomal DNA homology was shown.
  • caproishidulosesense galactitoriborance was identified as Clostridium as a new microorganism previously unknown.
  • Caproishidurosense galactitoriboranth and the most recent mycorrhizal Clostridium sporosperidodes DSM 1294 T and Clostridium leptum DSM 753 T produced acetic acid and butyric acid during incubation, but did not produce hexanoic acid. It was confirmed.
  • a rich complex nitrogen source was required, and at the same time a low redox potential.
  • a complex nitrogen source beef extract, yeast extract, tryptone, peptone, and the like were used.
  • a reducing agent Na 2 S 5H 2 O ⁇ 9H 2 O or Cystein HCl, was added.
  • composition of a medium suitable for culturing caproishiprodussense galactitoriborance is described.
  • Caprocyprodussense galactitorboranth was produced in hexanoic acid medium 1 (composition: tryticase peptone 5.00 g / L, peptone 5.00 g / L, yeast extract 10.00 g / L, beef essence 5.00 g / L and glucose 10.00 g / L carbon source and 0.50 g / L cysteine-HCl reducing agent, CaCl 2 ⁇ 2H 2 O 0.25 g / L as mineral element, MgSO 4 ⁇ 7H 2 O 0.50 g / L, K 2 HPO 4 1.00 g / L , 40 ml of a salt solution containing 1.00 g / L of KH 2 PO 4 and 10.00 g / L of NaHCO 3 ) were incubated at 120 rpm in a shake incubator set at a temperature of 40 ° C.
  • hexanoic acid medium 1 composition: tryticase peptone 5.00 g / L, peptone 5.00
  • caproic After observation for about 2 days, caproic becomes sense galactitoriborance produced hexanoic acid and butyric acid using glucose as a substrate, and the turbidity was measured using a spectrophotometer to caprocipro up to 4 (600 nm). DuSense galactitoriborance grew. The yield of hexanoic acid was about 1.5 g / L and the yield of butyric acid was around 0.7 g / L.
  • Production medium 2 composition: 4 g calactitol, 5 g yeast extract, 5 g K 2 HPO 4 , 4 g glucose, 1 g maltose, 1 g cellobiose, 1 g in 1 L distilled water) Soluble starch, 125 g meat cooked medium, 0.25 g cysteine
  • production medium 3 composition: 3 g yeast extract in 1 L distilled water, 10 g beef concentrate, 20 g galactitol, 5 g glucose , 5 g of tryptone, 1 g of soluble starch, 1 g of sodium acetate, 0.25 g of cysteine was incubated at a temperature of 37 ° C.
  • caproic discourseense galactitoriboranes produced hexanoic acid, butyric acid, and acetic acid (see FIG. 41).
  • concentration of caproic mattersense galactitoriboranth was increased to OD 600 2.3, and 2 to 3 g / L hexanoic acid as the main metabolite. And about 2 g / L butyric acid were produced.
  • FIG. 48 is a graph showing the microbial growth and glucose consumption according to the culture time in the case of culturing the caproic matterssen galactitor boranth according to the present invention in a medium to which glucose is added, and FIG. 49 according to the culture time The production amount of acetic acid, butyric acid and hexanoic acid is shown in a graph, Figure 50 shows the galactitol consumption according to the culture time when culturing the caproprodusense galactivorant according to the present invention in a medium to which galactitol was added, The yields of acetic acid, butyric acid and hexanoic acid are shown graphically.
  • the extraction was performed using a high pressure reactor capable of lowering pH without adding a strong acid for rapid extraction, and CO 2 was pressurized to about 10 to 50 bar to increase extraction efficiency.
  • CO 2 in the solution is formed into a bicarbonate, such as CO 2 to the Scheme 9 and the pH is temporarily reduced, thereby increasing the extraction efficiency of the organic acid.
  • FIG. 44 is a graph showing that the extraction efficiency of the organic acid is changed according to the applied CO 2 pressure. Referring to FIG. 44, the extraction efficiency increases as the CO 2 pressure is increased.
  • Figure 46 shows the extraction efficiency of the organic acid extracted by varying the ratio of the extraction solvent and the medium while applying a pressure of CO 2 10 bar at pH 6. Referring to FIG. 46, the extraction efficiency of the organic acid was changed depending on the volume of the extractant, and it was observed that the extraction efficiency also increased as the volume of the extraction solvent increased.
  • butyric acid and hexanoic acid were extracted from the culture medium using a primary alcohol compound.
  • Primary alcohols or other extraction solvents can be used as oleyl alcohol, dodecanol, decanol, MIBK, kerosene, liquid paraffin, etc.
  • oleyl alcohol has low solubility in water and microorganisms. It has the advantage that it can be extracted while maintaining the activity of.
  • butyric acid and hexanoic acid could be extracted from the tertiary amine types, such as de-tridecyl amine, alamin 336 (alamine 336, tri N-octyl amine), aliquots, and trioctyl amines.
  • Another organic acid separation method without using an organic solvent was an anion exchange resin method, and since hexanoic acid exhibited a negative charge in the culture, it was possible to adsorb hexanoic acid in the culture using an anion exchange resin. Hexanoic acid could be desorbed from the anion exchange resin using alkaline solution, acidic solution and ethanol.
  • the anion exchange resin used was reusable.
  • the extraction of butyric acid produced by the microorganism with a solvent mixed with alumina 336 and oleyl alcohol in a ratio of 1: 9 is shown in FIG. 5, and the reaction was carried out for 20 minutes in a high pressure reactor in which the reaction of Scheme 1 described above was performed at 50 bar. At pressure of butyric acid was recovered to the extraction solvent layer with an efficiency of 74%.
  • Biomass which can be easily obtained from the ocean, includes woodfish microalgae. Locust larvae contain a large amount of galactose multimers, such as galactan, which microorganisms can use as substrates, so caprolishidoprodense galactitorborans produce C4-C6 compounds using galactitol, a degradation product of locus Using the following method, decomposition products, such as galactitol, were obtained from the loot.
  • the wood starfish collected from the sea was pretreated by washing, drying, and grinding, and saccharification was attempted. After washing three times the wood starch and drying, the dried body was pulverized using a blender, immersed in a solution containing 0.5 ⁇ 2% H 2 SO 4 acid treatment, and heated to 90 ⁇ 120 °C for 0.5 ⁇ 1 hour After the test, the appearance was observed. Referring to FIG. 47, buttweed which was not treated with sulfuric acid was easily gelled under the influence of galactan after heat treatment, but it was hydrolyzed and liquefied by sulfuric acid pretreated with sulfuric acid.
  • galactan was hydrolyzed to obtain various types of monosaccharides, of which the most was galactose, accounting for 60-70% of the total.
  • the galactose thus produced was hydrogenated under high pressure and high temperature, and then galactitol was prepared using a hydrogenation catalyst.
  • Hexanoic acid New genes involved in production, microorganisms transformed with the gene, hexanoic acid production method using the same, and method for producing hexanol using the same
  • Sludge used as spawn was collected from Jungnang Sewage Treatment Plant.
  • the sludge was heat-treated at 100 ° C. for 30 minutes to kill microorganisms except spore forming bacteria, and then inoculated into the medium to 5% (v / v) of the selected medium, and at a stirring speed of 150 rpm at 37 ° C. Incubated for a week.
  • Organic acids and hydrogen were produced.
  • Caproiciproduces galactitolivorans Caproiciproducens galactitolivorans .
  • the strain was deposited with the Korea Microorganism Conservation Center (Accession No. KCCM 10991P).
  • Genome analysis was commissioned by Macrogen (Korea) to obtain a genetic information file, followed by the VIM editor (http://www.vim.org) and the Vector Entea Program (https://www.lifetechnologies.com/en/en). Genetic information was verified using the program /home/life-science/cloning/vector-nti-software.html and Artemis (https://www.sanger.ac.uk/resources/software/artemis). EC from all genetic information The path was drawn by extracting the number and uploading it to KEGG Mapper (http://www.genome.jp/kegg/mapper.html). The plasmid and organic acid production clusters were created by inserting the path mapped data back into the Vector Enti program.
  • Fig. 54 shows the entire gene map of the caproic constitutionsense galactitoriborance obtained by the above procedure.
  • a total of 2516 coding sequences, 62 tRNA sequences, and 12 rRNA sequences were retrieved.
  • the second blue from the outer), tRNA (third red from the outermost) and rRNA (fourth light blue from the outermost) are shown, with the two innermost concentric circles representing the GC content and GC skew from the outside. It can be inferred from FIG. 54 that the point where the GC skew changes rapidly is the origin of replication.
  • FIG. 55 shows one plasmid map possessed by caproic constitutionsense galactitoriborance.
  • FIG. These plasmids include Fts Z, W, and L, which are genes related to cell division of the caprocyprodusense galactitoriboranth, and Spo VD, which is associated with sporulation. It also includes stress response genes such as HtpG. The role of these plasmids is that when stressed, the genes contained within the plasmid act to cause cell division or spore formation.
  • Example 3 Confirmation of hexanoic acid production in the culture medium of the microorganism having the gene according to the present invention
  • a rich complex nitrogen source was required and at the same time a low redox potential.
  • a complex nitrogen source beef extract, yeast extract, tryptone, peptone, and the like were used.
  • a reducing agent Na 2 S 5H 2 O ⁇ 9H 2 O or Cystein HCl, was added.
  • Caprocyprodusense galactitoriborance to hexanoic acid production medium composition: per 1 liter of salt solution, yeast extract 15.5 g, tryptone 10 g, FeSO 4 7H 2 O 0.04 g, sodium acetate Cultured at 120 rpm in a shake incubator set at a temperature of 40 ° C. at an initial pH of 7.2 at 0.85 g and 6.5 g of sodium butyrate and 200 g of galactitol.
  • Hexanoic acid contained in the aforementioned culture solution was extracted using an extraction solvent which is a mixture of oleyl alcohol and alumina 336 (9: 1), and FIG. 56 shows O.D. Numerical changes, hexanoic acid content in the culture and butyric acid content as by-products are shown. Referring to FIG. 56, it can be seen that after about 12 days of culture, hexanoic acid is contained in a high content of 90 g / L.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 C5-C8 유기산 생산에 관여하는 신규 유전자, 상기 유전자를 포함하는 벡터, 상기 벡터로 형질전환된 미생물, 및 이를 이용한 C5-C8 유기산 생산방법에 관한 것으로서, 구체적으로는 서열번호 1 내지 8로 이루어진 군으로부터 선택된 하나 이상의 염기서열을 포함하는, C5-C8 유기산 생합성에 관여하는 효소를 코딩하는 유전자, 및 상기 유전자들을 이용한 C5-C8 유기산을 생산하는 방법에 관한 것이다. 본 발명에 따르면, C5-C8 유기산 생산에 관여하는 신규 유전자를 제공함으로써, 이를 이용하여 C5-C8 유기산을 향상된 생산 수율로 제공할 수 있다. 또한, 본 발명은 C5-C8 유기산을 생산하는 신규 균주 및 이를 이용하여 C5-C8 유기산을 생산하는 방법에 관한 것으로서, 구체적으로는 프룩토스를 함유하는 배지에서 배양시 C5-C8 유기산을 선택적으로 생산할 수 있는 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P) 및 이를 이용한 C5-C8 유기산을 생산하는 방법에 관한 것이다. 본 발명의 균주를 프룩토스를 포함하는 배지에서 배양할 경우 C5-C8 유기산을 생산할 수 있으며, 특히 배양하는 동안 외부에서 C2-C6 유기산을 첨가할 경우 C5-C8 유기산으로 선택적 전환생산이 가능하다. 또한 생산된 C5-C8 유기산은 바이오 연료의 생산에 이용될 수 있다. 또한, 본 발명은 메가스페라 헥사노이카 균주를 이용하여 헥사노익산을 생산하는 방법에 관한 것이다. 본 발명에 따른 헥사노익산 생산방법을 이용하면, 헥사노익산의 생산성을 획기적으로 향상시킬 수 있다. 또한, 본 발명은 C4 및 C6 유기산 생산능을 갖는 신규 균주 및 상기 신규 균주를 이용한 바이오 연료의 제조방법에 관한 것으로서, 구체적으로는, 탄소원 배지 중에서 배양시 C4 유기산 및 C6 유기산의 동시 생산 능력을 갖는 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans) 균주 및 이를 이용한 바이오 연료의 제조방법에 관한 것이다. 본 발명에 따르면, 다양한 바이오매스 또는 유기성 폐자원으로부터 유래된 탄소원을 함유한 배지 중에서 배양될 경우, 우수한 생산능으로 C4 및 C6 유기산을 동시생산하는 신규 균주를 제공하며, 상기 균주의 배양 산물을 통해서 고에너지 화합물인 C8-C12 화합물 및 바이오연료를 생산해낼 수 있다. 또한, 본 발명은 본 발명은 헥사노익산 생산에 관여하는 신규 유전자 및 이를 이용한 헥사노익산 및 헥산올의 제조방법에 관한 것으로서, 구체적으로는, 아세틸-CoA를 출발 물질로 하여 헥사노익산을 생산하는 대사경로에 관여하는 효소들을 암호화하는 서열번호 36으로 표시되는 유전자, 갈락티톨을 출발 물질로 하여 피루브산을 생산하는 대사경로에 관여하는 효소들을 암호화하는 서열번호 37로 표시되는 유전자, 및 상기 유전자들을 이용한 헥사노익산 및 헥산올의 제조방법에 관한 것이다. 본 발명에 따르면, 갈락티톨을 영양원으로 하여 최종적으로 헥사노익산을 생산하는데 관여하는 유전자를 제공함으로써, 이를 이용하여 헥사노익산, 더 나아가 주요 바이오 연료 성분 중 하나인 헥산올을 더욱 향상된 생산 수율로 제공할 수 있다.

Description

[규칙 제37.2조에 의해 ISA가 부여한 발명의 명칭] C5-C8 유기산 생산에 관여하는 신규한 유전자, 균주 및 이를 이용한 바이오 연료의 제조방법
본 발명은 C5-C8 유기산 생산에 관여하는 신규 유전자, 상기 유전자를 포함하는 벡터, 상기 벡터로 형질전환된 미생물, 및 이를 이용한 C5-C8 유기산 생산방법에 관한 것이다.
또한, 본 발명은 C5-C8 유기산을 생산하는 신규 균주 및 이를 이용하여 C5-C8 유기산을 생산하는 방법에 관한 것이다.
또한, 본 발명은 메가스페라 헥사노이카 균주를 이용하여 헥사노익산을 생산하는 방법에 관한 것이다.
또한, 본 발명은 C4 및 C6 유기산 생산능을 갖는 신규 균주 및 상기 신규 균주를 이용한 바이오 연료의 제조방법에 관한 것이다.
또한, 본 발명은 헥사노익산 생산에 관여하는 신규 유전자 및 이를 이용한 헥사노익산 및 헥산올의 제조방법에 관한 것이다.
지구상에서 사용되는 에너지의 80%는 화석연료로부터 생산되며, 플라스틱 원료, 합성 고무, 용매, 페인트, 접착제와 같은 원료 물질들도 대부분 석유화학공정으로부터 생산되고 있다. 이에, 화석연료의 지속적 공급이 필요하나, 그 매장량의 한계로 인해서, 새로운 대체연료의 개발이 시급한 실정이다.
현재, 이용 가능한 대체에너지로는 바이오 에너지, 테양열, 풍력, 지력, 조력발전 등이 대두되고 있으며, 그 중에서도 바이오 에너지는 수송용 연료로서 그 활용도가 높으며 환경오염 물질의 배출을 적게는 30% 이상, 많게는 90% 까지도 줄일 수 있는 장점으로 인하여, 전 세계적으로 높은 관심을 받고 있다. 바이오 에너지란 자연계에 있는 바이오매스(biomass)로부터 만들어지는 지속 가능한 에너지원을 말하는데, 옥수수, 사탕수수, 폐기용 셀룰로오스 등과 같은 식물이나 농업 및 환경 폐기물로부터 생산되기 때문에 지구 온난화의 주범이 되는 온실가스인 이산화탄소(CO2)를 증가시키지 않고 각종 유기성 폐기물을 이용함으로써 폐기물을 줄이는 효과가 있다. 또한 중금속 및 다른 유해물질을 포함하고 있지 않으며 액체 바이오 연료의 경우 기존의 자동차 액체 연료와 함께 혼합하여 사용할 수 있는 장점이 있다. 이러한 재생 가능한 식물성 원료 물질에서 유래한 바이오 연료로는 C2 물질인 에탄올과 C4 물질인 부탄올이 수송용 연료로서 이미 많은 연구가 진행되고 있지만 항공용 연료 등은 더욱 높은 탄소수를 가진 물질을 필요로 하기 때문에 새로운 바이오 연료의 개발이 필요한 실정이다.
이에, 상기 바이오 연료의 전구물질인 유기산을 생산하는 균주들이 개발되고 있으며, 예를 들어 대표적인 C4 물질인 부티르산을 생산하는 균주로서 클로스트리디움 타이로부티리쿰 S1(KCTC 12103BP)가 개시된바 있고(특허문헌 1), C6 물질인 헥사노익산을 생산하는 균주로서 클로스트리듐 클루이베리, 메가스페라 엘스데니 등이 개시된바(비특허문헌 1) 있으나, 생산량이 충분하지 않아 바이오 연료의 생산 공정에 적용하기에는 미흡한 실정이다.
또한, 아직까지 외부의 유기산을 이용하여 다양한 유기산(C5-C8)들을 선택적으로 전환생산 할 수 있는 능력을 보유한 미생물은 보고된바 없다.
한편, 헥사노익산은 6개의 탄소를 가지는 직선형의 지방산으로서 향수, 약, 윤활 그리스, 고무, 염료 등을 만드는데 사용되고 있으며, 단순 촉매 반응을 통해 헥사놀(hexanol)로 전환될 수 있다. 헥사놀은 에스테르화(esterification)를 통해서 가솔린, 디젤, 제트 연료로 사용할 수 있는바, 바이오 연료의 전구물질로서 헥사노익산을 생산하는 기술의 개발이 필요하다.
미생물 발효를 이용한 헥사노익산 생산은 1942년에 발표된 혐기성 세균인 클로스트리디움 클루이베리(Clostridium kluyveri)를 이용한 헥사노익산 생산 관련 연구가 가장 많이 진행된 균 중에 하나이다. 위 균주는 에탄올과 아세테이트 혹은 숙시네이트를 이용하여 H2, 부티르산, 헥사노산을 생산할 수 있다. 아세트산이 과잉 될수록 헥사노익산이 주로 생산이 되는데 이들의 관계에서 부티르산이 헥사노익산 합성과정에서 중간 물질로 사용된다는 사실이 밝혀졌다.
Rodick et al.은 헥사노산의 생산량을 증가시키기 위해서 이온교환 수지인 amberlite IRA-400가 포함된 배양기에서 고정화된 메가스페라 엘스데니(Megasphaera elsdenii)를 유가 배양하여 헥사노산 생산 수율을 기존 6 g/L에서 19 g/L로 30% 증가시켰다고 보고한 바 있고, 종래 한국등록특허 제10-1316732호에서는 메가스페라 엘스데니 NCIMB 702410을 이용 및 추출발효를 통해 헥사노산의 생산량을 증가시키는 방법을 개시한 바 있으나, 생산량이 충분하지 않아 바이오 연료의 생산 공정에 적용하기에는 미흡한 실정이다.
한편, 바이오매스 중에 포함되어 있는 탄수화물은 알코올, 카르복실산, 에테르, 에스테르 등과 같은 다양한 바이오연료 및 바이오화학원료로 변화될 수 있는 바, 특히 당류 물질들은 미생물, 효소 또는 화학반응에 의해서 알코올 및 C3-C6 카르복실산을 포함하는 중요한 기초 화학물질들로 변환될 수 있다. 재생가능한 식물성 원료 물질들에서 유래한 바이오연료로서 에탄올을 생산하여 이용하는 연구는 많은 부분 진행이 되었지만, C4 물질인 부탄올 또는 C6 물질인 헥산올 등을 생산하는 연구는 아직도 초보적인 단계에 머무르고 있다.
예를 들어, 바이오에탄올의 생산 수율 향상 등을 위한 종래 특허문헌들로는, 대한민국 공개특허공보 제10-2014-0050226호, 제10-2012-0038782호, 제10-2012-0082141호, 제10-2012-0082138호, 제10-2011-0007981호 외에 다수의 특허문헌들이 존재하지만, 바이오부탄올 또는 바이오헥산올과 관련된 특허문헌들은 그 수가 상대적으로 적다. 관련하여, 대한민국 공개특허공보 제10-2012-0037217호에서는, 바이오부탄올의 생산 경로에 관여하는 효소 등에 유전자 수준의 조작을 가하여, 생산 수율을 높이기 위한 방법을 개시하고 있다.
한편, 대표적인 C4 물질인 n-부탄올과 n-부티르산은 주로 클로스트리듐 (Clostridium) 속의 혐기성 세균에 의해서 아세톤-부탄올-에탄올 발효 (ABE 발효)가 수행됨으로써 생산되는 것으로 잘 알려져 있으며 (비특허문헌 1), 예를 들어 n-부탄올을 주로 생산하는 대표적인 미생물로서 클로스트리듐 베이저린키 (Clostridium beijerinckii) 및 클로스트리듐 아세토부틸리쿰 (Clostridium acetobutylicum) 등이 잘 알려져 있다. 또한, 대표적인 C6 물질인 n-헥사노익산을 생산하는 미생물로는, 클로스트리듐 클루이베리 (Clostridium kluyverii), 메가스파에라 엘스데니 (Megasphaera elsdenii) 등이 존재한다.
그러나, 아직까지 탄소원 배지 중에서 C4 유기산 및 C6 유기산을 동시에 생산하는 능력을 보유한 미생물은 보고된 바가 없으며, 더 나아가 이를 이용해서 C4 알코올 및 C6 알코올을 포함하는 바이오연료를 생산하는 연구가 보고된 바는 없다.
또한, 대한민국 공개특허공보 제10-2014-0026207호에서는 시토크롬 p450 단일산화제의 활성이 강화된 헥산올 생산용 미생물 균주로서, 기탁번호 KACC 93152B호의 미생물을 개시하고 있으며, 베타-케토헥사노일-CoA (β-ketohexanoyl-CoA)를 산화시키는 과정을 통해서 헥산올을 생성하는 기능을 담당하는 시토크롬 p450 단일산화제를 코딩하는 염기서열을 재조합기술을 통해서 소정 균주에 도입한 재조합 균주를 개시하고 있다.
또한, 헥산올 제조의 원료가 되는 n-헥사노익산을 생성하는 대표적인 미생물로서, 클로스트리듐 클루이베리 (Clostridium kluyverii) (H. A. Barker and S. M. Taha, J. Bacteriol., 43, 347 (1942))가 알려져 있으며, 이에 대해서는 많은 연구가 진행된 바 있다.
그러나, 현재까지 헥사노익산을 생산하는 미생물의 대사경로에 대해서는 알려진 바가 많지 않으며, 이러한 대사경로 중 어떠한 유전자가 헥사노익산의 생성에 관여하는지에 대한 세부 정보 역시 연구된 바가 없다.
(특허문헌 1) 대한민국 공개특허공보 제10-2013-0077296호
(특허문헌 2) KR 제10-1316732호
(특허문헌 3) 대한민국 공개특허공보 제10-2014-0050226호
(특허문헌 4) 대한민국 공개특허공보 제10-2012-0038782호
(특허문헌 5) 대한민국 공개특허공보 제10-2012-0082141호
(특허문헌 6) 대한민국 공개특허공보 제10-2012-0082138호
(특허문헌 7) 대한민국 공개특허공보 제10-2011-0007981호
(특허문헌 8) 대한민국 공개특허공보 제10-2012-0037217호
(특허문헌 9) 대한민국 공개특허공보 제10-2014-0026207호
(비특허문헌 1) B. H. Kim and G. M. Gadd, Bacterial physiology and metabolism. Cambridge University Press, Cambridge (2008)
(비특허문헌 2) Roddick, F.A. and M.L. Britz, Journal of Chemical Technology and Biotechnology, 1997 69(3) 383-391.
(비특허문헌 3) H. A. Barker and S. M. Taha, J. Bacteriol., 43, 347 (1942)
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로서, C5-C8 유기산 생산에 관여하는 신규 유전자, 상기 유전자를 포함하는 벡터, 상기 벡터로 형질전환된 미생물, 및 이를 이용한 C5-C8 유기산 생산방법을 제공하고자 한다.
또한, 본 발명에서는 프룩토스를 포함하는 배지에서 배양할 경우 C5-C8 유기산을 생산하는 균주로서, 특히 배양하는 동안 외부에서 C2-C6 유기산을 첨가할 경우 C5-C8 유기산으로 선택적 전환생산할 수 있는 신규한 균주 및 상기 균주를 이용하여 C5-C8 유기산을 생산하는 방법을 제공하고자 한다.
또한, 본 발명에서는 생산성을 향상시켜, 높은 수율로 헥사노익산을 생산하는 방법을 제공하고자 한다.
또한, 본 발명에서는 탄소원을 함유하는 배지 중에서 배양할 경우, 우수한 생산 능력으로 C4 유기산 및 C6 유기산을 생산할 수 있는 신규한 균주 및 상기 균주를 이용한 바이오 연료의 제조방법을 제공하고자 한다.
또한, 본 발명에서는 헥사노익산을 생산하는 신규 미생물로서 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans)를 확인하고, 그 대사경로를 구축함으로써, 갈락티톨을 영양원으로 하여 최종적으로 헥사노익산을 생산하는데 관여하는 유전자 다발을 확인하고, 이를 통해서 헥사노익산 생산에 관여하는 신규 유전자, 상기 유전자로 형질전환된 미생물, 이를 이용한 헥사노익산 제조방법, 및 이를 이용한 헥산올의 제조방법을 제공하고자 한다.
본 발명은 상기 과제를 해결하기 위해서,
서열번호 1 내지 8로 이루어진 군으로부터 선택된 하나 이상의 염기서열을 포함하는, C5-C8 유기산 생합성에 관여하는 효소를 코딩하는 유전자를 제공한다.
본 발명에 따르면, 상기 서열번호 1의 염기서열은 Acetyl-CoA acetyltransferase(THL)를 코딩하고, 상기 서열번호 2의 염기서열은 3-hydroxyacyl-CoA dehydrogenase(HBD)를 코딩하며, 상기 서열번호 3의 염기서열은 3-hydroxyacyl-CoA dehydratase(CRT)를 코딩하고, 상기 서열번호 4의 염기서열은 Acyl-CoA dehydrogenase(ACDH)를 코딩하며, 상기 서열번호 5의 염기서열은 Acetyl-CoA transferase(ACT)를 코딩하고, 상기 서열번호 6의 염기서열은 Butyryl-CoA dehydrogenase(BCDH)를 코딩하며, 상기 서열번호 7의 염기서열은 Electron transfer flavoprotein alpha subunit(ETF A)를 코딩하고, 상기 서열번호 8의 염기서열은 Electron transfer flavoprotein beta subunit(ETF B)를 코딩하는 것일 수 있다.
본 발명에 따르면, 상기 유전자는 메가스페라 헥사노이카 (Megasphaera hexanoica) 균주 (KCCM11835P)로부터 유래된 것일 수 있다.
본 발명에 따르면, 상기 C5 유기산은 펜타노익산이고, C6 유기산은 헥사노익산이며, C7 유기산은 헵타노익산이고, C8 유기산은 옥타노익산일 수 있다.
또한, 본 발명은 상기 C5-C8 유기산 생합성에 관여하는 효소를 코딩하는 유전자를 포함하는 벡터를 제공한다.
본 발명에 따르면, 상기 벡터는 서열번호 1 또는 서열번호 10으로 표시되는 유전자를 포함하는 제1 벡터; 및 서열번호 4로 표시되는 유전자를 포함하는 제2 벡터로 구성될 수 있다.
본 발명에 따르면, 상기 제2 벡터는 서열번호 2 내지 3 및 서열번호 5 내지 9로 표시되는 유전자 중에서 선택되는 1종 이상을 더 포함할 수 있다.
또한, 본 발명은 상기 벡터에 의해 형질전환된, C5-C8 유기산 생산능력을 가지는 미생물을 제공한다.
본 발명에 따르면, 상기 미생물은 박테리아, 효모 및 곰팡이로 구성된 군에서 선택될 수 있다.
본 발명에 따르면, 상기 미생물은 락테이트(lactate) 생합성에 관여하는 효소를 코딩하는 유전자, 아세테이트(acetate) 생합성에 관여하는 효소를 코딩하는 유전자, 에탄올(ethanol) 생합성에 관여하는 효소를 코딩하는 유전자 및 숙시네이트(succinate) 생합성에 관여하는 효소를 코딩하는 유전자로 구성된 군에서 선택되는 1종 이상의 유전자가 약화 또는 결실되어 있는 대장균일 수 있다.
또한, 본 발명은 상기 미생물을 배양하여 C5-C8 유기산을 생산하는 방법을 제공한다.
또한, 본 발명은 상기 과제를 해결하기 위하여,
프룩토스를 포함하는 배지에서 배양시 C5-C8 유기산을 생산하는 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 제공한다.
본 발명의 일 실시예에 의하면, 상기 균주는 소 내장으로부터 분리된 것일 수 있다.
본 발명의 다른 일 실시예에 의하면, 상기 균주 배양시 C2-C6 유기산을 첨가하면, C5-C8 유기산을 생산할 수 있다.
구체적으로, 상기 균주 배양시 C2 유기산, C4 유기산 또는 이들의 혼합물을 첨가하면 C6 유기산을 생산할 수 있고, 이때 상기 C2 유기산은 아세트산이고, 상기 C4 유기산은 부티르산이며, 상기 C6 유기산은 헥사노익산일 수 있다. 또한, 상기 균주 배양시 C2 유기산 및 C3 유기산을 첨가하면, C5 유기산을 생산할 수 있고, 이때 상기 C2 유기산은 아세트산이고, 상기 C3 유기산은 프로피온산이며, 상기 C5 유기산은 펜타노익산일 수 있다. 또한, 상기 균주 배양시 C2 유기산 및 C5 유기산을 첨가하면, C7 유기산을 생산할 수 있고, 이때 상기 C2 유기산은 아세트산이고, 상기 C5 유기산은 펜타노익산이며, 상기 C7 유기산은 헵타노익산일 수 있다. 또한, 상기 균주 배양시 C2 유기산 및 C6 유기산을 첨가하면, C8 유기산을 생산할 수 있고, 이때 상기 C2 유기산은 아세트산이고, 상기 C6 유기산은 헥사노익산이며, 상기 C8 유기산은 옥타노익산일 수 있다.
본 발명의 또 다른 일 실시예에 의하면, 상기 배지는 트립토판, 펩톤, 효모 추출물, 비프 추출물, K2HPO4, Tween 80, 시스테인-HCl x H20, 염 용액, 증류수 또는 이들의 혼합물을 포함하는 PYG 배지일 수 있다.
또한, 본 발명은 프룩토스를 포함하는 배지에서 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM 11835P)를 배양하여 C5-C8 유기산을 생산하는 방법을 제공한다.
본 발명의 일 실시예에 의하면, 상기 방법은 상기 균주 배양시 배지에 C2-C6 유기산을 첨가하여 C5-C8 유기산을 선택적으로 전환생산할 수 있다.
구체적으로, 상기 균주 배양시 배지에 C2 유기산, C4 유기산 또는 이들의 혼합물을 첨가하여 C6 유기산으로 전환생산할 수 있고, 이때 상기 C2 유기산은 아세트산이고, 상기 C4 유기산은 부티르산이며, 상기 C6 유기산은 헥사노익산일 수 있다. 또한, 상기 균주 배양시 배지에 C2 유기산 및 C3 유기산을 첨가하여 C5 유기산으로 전환생산할 수 있고 이때 상기 C2 유기산은 아세트산이고, 상기 C3 유기산은 프로피온산이고, 상기 C5 유기산은 펜타노익산일 수 있다. 또한, 상기 균주 배양시 배지에 C2 유기산 및 C5 유기산을 첨가하여 C7 유기산으로 전환생산할 수 있고, 이때 상기 C2 유기산은 아세트산이고, 상기 C5 유기산은 펜타노익산이고, 상기 C7 유기산은 헵타노익산일 수 있다. 또한, 상기 균주 배양시 배지에 C2 유기산 및 C6 유기산을 첨가하여 C8 유기산으로 전환생산할 수 있고, 이때 상기 C2 유기산은 아세트산이고, 상기 C6 유기산은 헥사노익산이며, 상기 C8 유기산은 옥타노익산일 수 있다.
본 발명의 다른 일 실시예에 의하면, 상기 배지는 트립토판, 펩톤, 효모 추출물, 비프 추출물, K2HPO4, Tween 80, 시스테인-HCl x H20, 염 용액, 증류수 또는 이들의 혼합물을 포함하는 PYG 배지일 수 있다.
본 발명의 또 다른 실시예에 의하면, 상기 배양은 혐기적 조건하에서 35 ℃ 내지 40 ℃에서, 12 시간 내지 48 시간 동안 수행될 수 있다.
본 발명의 또 다른 실시예에 의하면, 상기 배양은 pH 5.5 내지 6.5의 조건하에서 수행될 수 있다.
또한, 본 발명은 상기 과제를 해결하기 위하여,
메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양액에 접종하여 배양하는 단계; 및 상기 배양액으로부터 헥사노익산을 회수하는 단계를 포함하는 헥사노익산 생산방법을 제공한다.
본 발명의 일 실시예에 의하면, 상기 배양액은 아세테이트와 부티레이트를 더 포함할 수 있다. 이때, 상기 아세테이트의 농도는 7 내지 9 g/L일 수 있고, 상기 부티레이트의 농도는 13 내지 15 g/L일 수 있다.
또한, 상기 배양액은 프룩토스, 효모 추출물, 트립토판, 펩톤, 비프추출물, K2HPO4, Tween 80, 시스테인-HCl x H20, 레조아주린(resazurin), 염 용액, 증류수 또는 이들의 혼합물을 포함할 수 있다.
본 발명의 또 다른 일 실시예에 의하면, 상기 배양액은 6 내지 18 g/L의 효모 추출물을 더 포함할 수 있다.
본 발명의 또 다른 일 실시예에 의하면, 상기 배양액은 5.5 내지 10.5 g/L의 효모 추출물 및 2.3 내지 10.5 g/L의 펩톤을 더 포함할 수 있다. 이때, 상기 효모 추출물의 농도는 8.5 내지 9.5 g/L일 수 있고, 상기 펩톤의 농도는 8.5 내지 9.5 g/L일 수 있다.
또한, 상기 배양액은 프룩토스, K2HPO4, 시스테인-HCl x H20, 레조아주린(resazurin), 염 용액, 증류수, 비타민 K1 용액 또는 이들의 혼합물을 포함할 수 있다.
본 발명의 또 다른 일 실시예에 의하면, 상기 배양하는 동안 pH를 6 내지 6.5로 유지하고, 상기 배양 후 헥사노익산을 회수하는 동안 pH를 4 내지 5로 유지할 수 있다.
또한, 본 발명은 상기 과제를 해결하기 위하여,
메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양액에 접종하여 배양하는 단계; 상기 배양하는 동안 배양액에 올레일 알코올과 알라민 336의 혼합용매를 가하는 단계; 및 상기 혼합용매를 제거하여 혼합용매 중의 헥사노익산을 수득하는 단계를 포함하는 헥사노익산 생산방법을 제공한다.
본 발명의 일 실시예에 의하면, 상기 올레일 알코올과 상기 알라민 336의 부피비는 9:1 내지 6:3일 수 있다.
본 발명의 다른 일 실시예에 의하면, 배양액과 혼합용매의 부피비는 1:0.5 내지 1:3일 수 있다.
본 발명의 또 다른 일 실시예에 의하면, 상기 배양하는 동안 pH 조절제로서 2-6 M의 부티르산(butyric acid)을 투입할 수 있다. 이때, 상기 배양하는 동안 pH는 5.5 내지 6.5로 유지될 수 있다.
본 발명의 또 다른 일 실시예에 의하면, 상기 배양하는 동안 상기 배양액에 프룩토스 및 질소원을 주기적으로 투입할 수 있다. 이때, 상기 질소원은 효모 추출물, 펩톤 또는 이들의 혼합물일 수 있다. 또한, 상기 투입되는 프룩토스의 농도는 20 내지 60 g/L일 수 있고, 상기 투입되는 질소원의 농도는 5 내지 20 g/L일 수 있다.
본 발명의 또 다른 일 실시예에 의하면, 상기 배양하는 동안 상기 배양액에 농축된 프룩토스 및 질소원을 연속적으로 투입할 수 있다. 이때, 상기 프룩토스 및 질소원을 0.1 내지 3 ml/hr의 속도로 투입할 수 있다.
본 발명의 또 다른 일 실시예에 의하면, 상기 배양액은 아세테이트, 부티레이트, 헥사노익산 또는 이들의 혼합물을 포함할 수 있다.
또한, 본 발명은 상기 과제를 해결하기 위하여,
탄소원 배지 중에서 배양시 C4 유기산 및 C6 유기산의 동시 생산 능력을 갖는 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans) 균주 (KCCM10991P)를 제공한다.
본 발명의 일 구현예에 따르면, 상기 탄소원 배지는 글리세롤, 글루코오스, 갈락티톨, 만노오스, 및 프럭토오스로 이루어진 군으로부터 선택된 적어도 하나의 당류를 포함할 수 있다.
본 발명의 다른 구현예에 따르면, 상기 C4 유기산은 부티르산이며, 상기 C6 유기산은 헥사노익산일 수 있다.
또한, 본 발명은,
a) 탄소원 배지 중에서 카프로이프로두센스 갈락티보란스 균주를 배양하여 C4 유기산 및 C6 유기산을 생산하는 단계;
b) 상기 a) 단계의 생산물로부터 상기 C4 유기산 및 C6 유기산을 분리하는 단계;
c) 상기 b) 단계로부터 분리된 C4 유기산 및 C6 유기산과 동일한 몰 수의 C4 알코올 및 C6 알코올을 첨가하여 혼합액을 제조하는 단계;
d) 상기 c) 단계의 혼합액에 대해서 촉매 반응을 수행하여 C8-C12 화합물을 제조하는 단계; 및
e) 상기 d) 단계로부터 제조된 C8-C12 화합물을 수소 기체와 반응시킴으로써 C4 알코올 및 C6 알코올을 생산하는 단계
를 포함하는 바이오 연료의 제조방법을 제공한다.
본 발명의 일 구현예에 따르면, 상기 탄소원 배지는 글리세롤, 글루코오스, 갈락티톨, 만노오스, 및 프럭토오스로 이루어진 군으로부터 선택된 적어도 하나의 당류를 포함할 수 있다.
본 발명의 다른 구현예에 따르면, 상기 C4 유기산은 부티르산이며, 상기 C6 유기산은 헥사노익산일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 a) 단계의 배양은 35 ℃ 내지 45 ℃에서, 24 시간 내지 72 시간 동안 혐기 배양시킴으로써 수행될 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 a) 단계의 배양은 갈락티톨, 프럭토오스, 만노오스, 타가토스, 글루코오스 및 글리세롤을 포함하는 배양 배지 중에서 수행될 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 b) 단계의 분리는 이온교환수지를 사용하여 수행되거나, 또는 물과 섞이지 않는 유기 용매를 사용하여 상기 C4 유기산 및 C6 유기산을 배양액으로부터 추출해 냄으로써 수행될 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 C4 알코올은 부탄올이며, 상기 C6 알코올은 헥산올일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 d) 단계의 촉매 반응은 제올라이트 (Zeolite), 헤테로폴리산 (heteropoly acids), 실리카-알루미나 (silica-alumina), 나피온 수지 (Nafion-H, 파라톨루엔설폰산 (p-toluenesulfonic acid), SO42-/ZrO2 또는 SO42-/TiO2-La2O3의 초강산 촉매를 첨가하여 수행될 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 d) 단계의 촉매 반응은 에스테라아제 및 리파아제로 이루어진 군으로부터 선택된 적어도 하나의 효소를 첨가하여 수행될 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 e) 단계의 수소 기체는 상기 a) 단계로부터 생성된 수소 기체일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 a) 단계의 탄소원은 바이오매스 또는 유기성 폐자원을 물리적으로 분쇄, 세척 및 가수분해하여 제조한 것일 수 있다.
또한, 본 발명은 상기 과제를 해결하기 위하여,
아세틸-CoA를 출발 물질로 하여 헥사노익산을 생산하는 대사경로에 관여하는 효소들을 암호화하는 서열번호 36으로 표시되는 유전자를 제공한다.
본 발명에 따르면, 상기 유전자는 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans) 균주 (기탁번호 KCCM 10991P)로부터 분리된 유전자일 수 있다.
또한, 본 발명은 갈락티톨을 출발 물질로 하여 피루브산을 생산하는 대사경로에 관여하는 효소들을 암호화하는 서열번호 37로 표시되는 유전자를 제공한다.
본 발명에 따르면, 상기 유전자는 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans) 균주 (기탁번호 KCCM 10991P)로부터 분리된 유전자일 수 있다.
또한, 본 발명은 상기 서열번호 36으로 표시되는 유전자 및 상기 서열번호 37로 표시되는 유전자를 포함하는 벡터에 의해서 형질전환된 미생물을 제공한다.
또한, 본 발명은 갈락티톨을 포함하는 탄소원 배지 중에서 상기 미생물 균주를 배양하여 헥사노익산을 생산하는 단계를 포함하는 헥사노익산의 제조방법을 제공한다.
더 나아가, 본 발명은,
a) 갈락티톨을 포함하는 탄소원 배지 중에서 상기 미생물 균주를 배양하여 헥사노익산을 생산하는 단계;
b) 상기 a) 단계의 생산물로부터 상기 헥사노익산을 분리하는 단계;
c) 상기 b) 단계로부터 분리된 헥사노익산에 동일한 몰 수의 헥산올을 첨가하여 혼합액을 제조하는 단계;
d) 상기 c) 단계의 혼합액에 대해서 촉매 반응을 수행하여 C12 화합물을 제조하는 단계; 및
e) 상기 d) 단계로부터 제조된 C12 화합물을 수소 기체와 반응시킴으로써 헥산올을 생산하는 단계
를 포함하는 헥산올의 제조방법을 제공한다.
본 발명의 일 구현예에 따르면, 상기 b) 단계의 분리는 이온교환수지를 사용하여 수행되거나, 또는 물과 섞이지 않는 유기 용매를 사용하여 상기 헥사노익산을 배양액으로부터 추출해 냄으로써 수행될 수 있다.
본 발명의 다른 구현예에 따르면, 상기 d) 단계의 촉매 반응은 제올라이트 (Zeolite), 헤테로폴리산 (heteropoly acids), 실리카-알루미나 (silica-alumina), 나피온 수지 (Nafion-H, 파라톨루엔설폰산 (p-toluenesulfonic acid), SO42-/ZrO2 또는 SO42-/TiO2-La2O3의 초강산 촉매를 첨가하여 수행될 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 d) 단계의 촉매 반응은 에스테라아제를 첨가하여 수행될 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 e) 단계의 수소 기체는 상기 a) 단계로부터 생성된 수소 기체일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 a) 단계의 탄소원은 바이오매스 또는 유기성 폐자원을 물리적으로 분쇄, 세척 및 가수분해하여 제조한 것일 수 있다.
본 발명에 따르면, C5-C8 유기산 생산에 관여하는 신규 유전자를 제공함으로써, 이를 이용하여 C5-C8 유기산을 향상된 생산 수율로 제공할 수 있다.
또한, 본 발명의 균주를 프룩토스를 포함하는 배지에서 배양할 경우 C5-C8 유기산을 생산할 수 있으며, 특히 배양하는 동안 외부에서 C2-C6 유기산을 첨가할 경우 C5-C8 유기산으로 선택적 전환생산이 가능하다. 또한 생산된 C5-C8 유기산은 바이오 연료의 생산에 이용될 수 있다.
또한, 본 발명에 따른 헥사노익산 생산방법을 이용하면, 헥사노익산의 생산성을 획기적으로 향상시킬 수 있다.
또한, 본 발명에 따르면, 다양한 바이오매스 또는 유기성 폐자원으로부터 유래된 탄소원을 함유한 배지 중에서 배양될 경우, 우수한 생산능으로 C4 및 C6 유기산을 동시생산하는 신규 균주를 제공하며, 상기 균주의 배양 산물을 통해서 고에너지 화합물인 C8-C12 화합물 및 바이오연료를 생산해낼 수 있다.
또한, 본 발명에 따르면, 갈락티톨을 영양원으로 하여 최종적으로 헥사노익산을 생산하는데 관여하는 유전자를 제공함으로써, 이를 이용하여 헥사노익산, 더 나아가 주요 바이오 연료 성분 중 하나인 헥산올을 더욱 향상된 생산 수율로 제공할 수 있다.
도 1은 메가스페라 헥사노이카 균주의 전체 유전자 지도 및 유전자 정보를 도시한 도면이다.
도 2는 아세트산과 부티르산을 첨가하지 않고 메가스페라 헥사노이카 균주 배양시 RNA 발현 유전자들을 분석한 도면이다.
도 3은 아세트산과 부티르산을 첨가하여 메가스페라 헥사노이카 균주 배양시 RNA 발현 유전자들의 RPKM(Read Per Kilobase per Millon mapped reads)값을 나타낸 그래프이다.
도 4는 메가스페라 헥사노이카 균주로부터 분리된 유전자들의 RPKM 값을 나타낸 도면이다.
도 5는 메가스페라 헥사노이카 균주의 RNA 발현 레벨을 바탕으로 도출한 헥사노익산 생합성 경로를 도시한 도면이다.
도 6은 본 발명에 사용된, lactate 생합성 경로, acetate 생합성 경로 및 에탄올 생합성 경로가 차단된 대장균의 헥사노익산 생합성 경로를 도시한 도면이다.
도 7은 실시예 1에 따라 형질전환된 미생물의 제조에 사용된, 헥사노익산 생합성 경로에 필요한 유전자를 포함하는 벡터를 도시한 도면이다.
도 8은 실시예 2에 따라 형질전환된 미생물의 제조에 사용된, 헥사노익산 생합성 경로에 필요한 유전자를 포함하는 벡터를 도시한 도면이다.
도 9는 실시예 3에 따라 형질전환된 미생물의 제조에 사용된, 헥사노익산 생합성 경로에 필요한 유전자를 포함하는 벡터를 도시한 도면이다.
도 10은 실시예 4에 따라 형질전환된 미생물의 제조에 사용된, 헥사노익산 생합성 경로에 필요한 유전자를 포함하는 벡터를 도시한 도면이다.
도 11은 실시예 5에 따라 형질전환된 미생물의 제조에 사용된, 헥사노익산 생합성 경로에 필요한 유전자를 포함하는 벡터를 도시한 도면이다.
도 12는 비교예 1에 따라 형질전환된 미생물의 제조에 사용된, 헥사노익산 생합성 경로에 필요한 유전자를 포함하는 벡터를 도시한 도면이다.
도 13은 비교예 2에 따라 형질전환된 미생물의 제조에 사용된, 헥사노익산 생합성 경로에 필요한 유전자를 포함하는 벡터를 도시한 도면이다.
도 14는 본 발명의 실시예 및 비교예에 따라 형질전환된 미생물의 헥사노익산 생산량을 도시한 그래프이다.
도 15는 본 발명의 실시예 1에 따라 형질전환된 미생물의 헥사노익산 생산을 도시한 그래프이다.
도 16은 본 발명에 따른 메가스페라 헥사노이카 균주의 분리 과정을 나타낸 도면이다.
도 17은 본 발명에 따른 메가스페라 헥사노이카 균주의 16s rRNA 염기서열을 나타낸 도면이다.
도 18은 본 발명에 따른 메가스페라 헥사노이카 균주의 16s rRNA 염기서열을 바탕으로 계통학적 관계를 나타낸 도면이다.
도 19는 본 발명에 따른 메가스페라 헥사노이카 균주의 SEM 이미지이다.
도 20은 본 발명의 일 실시예에 따라 배지에 C2 및 C3 유기산을 첨가하여 배양시 C5 유기산의 생산을 나타낸 그래프이다.
도 21은 본 발명의 일 실시예에 따라 배지에 C2 및 C4 유기산을 첨가하여 배양시 C6 유기산의 생산을 나타낸 그래프이다.
도 22는 본 발명의 일 실시예에 따라 배지에 C2 및 C5 유기산을 첨가하여 배양시 C7 유기산의 생산을 나타낸 그래프이다.
도 23은 본 발명의 일 실시예에 따라 배지에 C2 및 C6 유기산을 첨가하여 배양시 C8 유기산의 생산을 나타낸 그래프이다.
도 24는 C13 표지된 부티레이트를 첨가하여 생산된 헥사노익산에서, 첨가된 부티레이트의 위치를 확인한 그래프이다.
도 25는 배지에 포함된 아세테이트와 부티레이트 농도에 따른 헥사노익산의 생산량을 나타낸 그래프이다.
도 26은 반응표면분석법을 적용하기 위한 변수(아세테이트, 부티레이트, 및 pH)들 및 이들의 농도를 나타낸 도면이다.
도 27은 반응표면분석법의 실험 설계 및 헥사노익산의 생산량을 나타낸 도면이다.
도 28은 반응표면분석법을 통해 얻은, 헥사노익산 농도에 대하여 통계학적 방법을 통해 각 변수(아세테이트, 부티레이트, 및 pH)들이 미치는 영향을 나타낸 결과이다.
도 29는 반응표면분석법에 따른 각 변수(아세테이트, 부티레이트, 및 pH)들의 중요도 분석 및 모델링을 통해, 최대의 헥사노익산 생산을 위한 예측 모델을 나타낸 도면이다.
도 30은 예측 모델을 통해 도출된 각 변수(아세테이트, 부티레이트, 및 pH)들의 조건하에서 실제 헥사노익산의 생산량을 나타낸 그래프이다.
도 31은 반응표면분석법을 통해 얻은, 헥사노익산 농도에 대하여 통계학적 방법을 통해 각 변수(효모 추출물 및 비프 추출물)들이 미치는 영향을 나타낸 결과이다.
도 32는 반응표면분석법을 통해 얻은, 헥사노익산 농도에 대하여 통계학적 방법을 통해 각 변수(효모 추출물 및 펩톤)들이 미치는 영향을 나타낸 결과이다.
도 33은 효모 추출물의 농도에 따른 헥사노익산 생산량 및 세포 성장을 나타낸 그래프이다.
도 34는 균주의 배양 후, pH에 따른 헥사노익산 추출 효율을 나타낸 그래프이다.
도 35는 배양액과 혼합용매의 부피비를 1:1로 하여 추출 발효 시 헥사노익산의 생산성을 나타낸 그래프이다.
도 36은 배양액과 혼합용매의 부피비를 1:1로 하고, pH 조절제로서 3 M의 부티르산(butyric acid)을 투입하여 추출 발효 시, 헥사노익산의 생산성을 나타낸 그래프이다.
도 37은 배양액과 혼합용매의 부피비를 2:1로 하고, pH 조절제로서 3 M의 부티르산(butyric acid)을 투입하며, 프룩토스와 질소원을 주기적으로 투입하여 추출 발효 시, 헥사노익산의 생산성을 나타낸 그래프이다.
도 38은 추출 발효 시, 농축된 질소원과 탄소원을 연속적으로 공급하는 반응 공정 도면이다.
도 39는 배양액과 혼합용매의 부피비를 2:1로 하고, pH 조절제로서 3 M의 부티르산(butyric acid)을 투입하며, 프룩토스와 질소원을 연속적으로 투입하여 추출 발효 시, 헥사노익산의 생산성을 나타낸 그래프이다.
도 40은 헥사노익산 표준물질의 가스 크로마토그래피 분석 결과를 도시한 그래프이다.
도 41은 카프로이시프로두센스 갈락티토리보란스의 배양액에 대한 가스 크로마토그래피 분석 결과를 도시한 그래프이다.
도 42a 내지 42d는 카프로이시프로두센스 갈락티토리보란스의 배양액을 헥산 및 에틸아세테이트를 용매로 사용하여 추출한 GC-TOF-MS 분석 결과를 도시한 그래프 (3a 및 3b), 또한 각각의 그래프의 피크를 분석한 결과 (3c 및 3d)이다.
도 43은 본 발명에 따른 카프로이시프로두센스 갈락티토리보란스와 관련 균들의 계통도를 도시한 도면이다.
도 44는 배양액으로부터 유기산을 추출하는 과정에서, 가해주는 CO2 압력에 따라서 유기산의 추출 효율이 변화되는 것을 나타낸 그래프이다.
도 45a 및 45b는 본 발명에 따른 방법에서 사용된 유기산 추출장치를 도시한 사진으로서, 배양액의 혼합 속도에 따른 추출량 변화 (45a) 및 정체 시간에 따른 유수분리의 변화 (45b)를 각각 비교하였다.
도 46은 pH 6에서 CO2 10 bar의 압력을 가해주면서 추출 용매와 배지의 비율을 달리해가며 추출한 유기산 추출 효율을 도시한 그래프이다.
도 47은 황산에 의한 우뭇가사리 처리로 겔 상태의 성분이 액체상태로 전환됨을 도시한 사진이다.
도 48은 글루코오스를 첨가한 배지에 본 발명에 따른 카프로이시프로두센스 갈락티토리보란스를 배양하는 경우, 배양시간에 따른 미생물 성장도 및 글루코오스 소비량을 도시한 그래프이다.
도 49는 글루코오스를 첨가한 배지에 본 발명에 따른 카프로이프로두센스 갈락티보란스를 배양하는 경우, 배양시간에 따른 아세트산, 부티르산 및 헥사노익산의 생산량을 도시한 그래프이다.
도 50은 갈락티톨을 첨가한 배지에 본 발명에 따른 카프로이프로두센스 갈락티보란스를 배양하는 경우, 배양시간에 따른 갈락티톨 소비량과, 아세트산, 부티르산 및 헥사노익산의 생산량을 도시한 그래프이다.
도 51은 카프로이시프로두센스 갈락티토리보란스에서 갈락티톨이 대사되는 대사 경로를 도시한 도면이다.
도 52는 갈락티톨로부터 피루브산을 생성하는 대사 과정에 관여하는 오페론을 개략적으로 도시한 도면이다.
도 53은 아세틸-CoA로부터 헥사노익산을 생성하는 대사 과정에 관여하는 유전자 클러스터를 개략적으로 도시한 도면이다.
도 54는 카프로이시프로두센스 갈락티토리보란스의 전체 유전자 지도를 도시한 도면이다.
도 55는 카프로이시프로두센스 갈락티토리보란스가 보유한 한 개의 플라스미드의 유전자 지도를 도시한 도면이다.
도 56은 카프로이시프로두센스 갈락티토리보란스의 배양 시간에 따른 배양액의 O.D. 수치 변화, 배양액 중 헥사노익산 함량 및 부산물로서 부티르산 함량 변화를 도시한 그래프이다.
이하, 본 발명을 보다 상세하게 설명한다.
C5-C8 유기산 생산에 관여하는 신규 유전자, 상기 유전자를 포함하는 벡터, 상기 벡터로 형질전환된 미생물, 및 이를 이용한 C5-C8 유기산 생산방법
본 발명에서 "결실"이란 해당 유전자의 일부 또는 전체 염기를 변이, 치환 또는 삭제시키거나, 일부 염기를 도입시켜 해당 유전자가 발현되지 않도록 하거나 발현되더라고 효소활성을 나타내지 못하도록 하는 것을 포괄하는 개념으로, 해당 유전자의 효소가 관여하는 생합성경로를 차단하는 모든 것을 포함한다.
본 발명에서 "약화"란 해당 유전자의 일부 염기를 변이, 치환 또는 삭제시키거나, 일부 염기를 도입시켜 해당 유전자에 의해 발현되는 효소의 활성을 감소시키는 것을 포괄하는 개념으로, 해당 유전자의 효소가 관여하는 생합성 경로의 일부 또는 상당부분을 차단하는 모든 것을 포함한다.
본 발명에서 "미생물"은 조류, 세균류, 원생동물류, 사상균류, 효모류와 바이러스 등을 포함한다.
본 발명에서 "벡터"는 특정 유전자를 숙주세포 내로 전달하는 목적을 가진 모든 핵산 분자가 될 수 있으며, 일반적으로는 자가복제서열, 게놈삽입서열, 파지 또는 뉴클레오티드 서열, 선형 또는 원형, 단일 또는 이중가닥의 DNA 혹은 RNA이다. 특히, 외래 유전자를 가지고 있으며 외래 유전자 외에 특정 숙주세포의 형질전환을 용이하게 하는 인자를 갖는 것일 수 있다. 일반적으로 벡터에는 적당한 유전자의 전사 및 번역을 지시하는 서열, 선택마커, 및 자가복제 또는 염색체 삽입을 허용하는 서열이 포함된다. 벡터의 구체적인 예로는 플라스미드 벡터, 파지 또는 코스미드 벡터 등이 있으나, 이에 제한되는 것은 아니다.
본 발명에서는, C5-C8 유기산 생합성에 관여하는 효소를 코딩하는 유전자들을 메가스페라 헥사노이카 (Megasphaera hexanoica) 균주 (KCCM11835P)로부터 성공적으로 분리해내었다.
구체적으로, 하기 실시예에 서술한 바와 같이, 메가스페라 헥사노이카 균주의 전체 유전자를 해독하였으며(도 1), 유기산 생산에 관련된 유전자 중 RNA 발현 레벨이 높게 유지되는 유전자들을 선별하였다(도 2 내지 도 4).
이를 통해 본 발명에서는 서열번호 1 내지 8로 이루어진 군으로부터 선택된 하나 이상의 염기서열을 포함하는, C5-C8 유기산 생합성에 관여하는 효소를 코딩하는 유전자들을 제공한다.
이때, 상기 서열번호 1의 염기서열은 Acetyl-CoA acetyltransferase(THL)를 코딩하고, 상기 서열번호 2의 염기서열은 3-hydroxyacyl-CoA dehydrogenase(HBD)를 코딩하며, 상기 서열번호 3의 염기서열은 3-hydroxyacyl-CoA dehydratase(CRT)를 코딩하고, 상기 서열번호 4의 염기서열은 Acyl-CoA dehydrogenase(ACDH)를 코딩하며, 상기 서열번호 5의 염기서열은 Acetyl-CoA transferase(ACT)를 코딩하고, 상기 서열번호 6의 염기서열은 Butyryl-CoA dehydrogenase(BCDH)를 코딩하며, 상기 서열번호 7의 염기서열은 Electron transfer flavoprotein alpha subunit(ETF A)를 코딩하고, 상기 서열번호 8의 염기서열은 Electron transfer flavoprotein beta subunit(ETF B)를 코딩하는 것을 특징으로 한다.
이때, 상기 C5 유기산은 펜타노익산이고, C6 유기산은 헥사노익산이며, C7 유기산은 헵타노익산이고, C8 유기산은 옥타노익산인 것이 바람직하다.
또한, 본 발명은 상기 C5-C8 유기산 생합성에 관여하는 효소를 코딩하는 유전자를 포함하는 벡터를 제공한다.
하기 실시예의 결과로부터 알 수 있는 바와 같이, 본 발명에 따른 상기 벡터는 상기 벡터는 THL을 코딩하는 서열번호 1로 표시되는 유전자를 포함하는 제1 벡터 또는 Beta keto thiolase(BKTB)를 코딩하는 서열번호 10으로 표시되는 유전자를 포함하는 제1 벡터; 및 ACDH를 코딩하며 서열번호 4로 표시되는 유전자를 포함하는 제2 벡터로 구성되는 것이 바람직하다.
본 발명에 따르면, 상기 제2 벡터는 서열번호 2 내지 3 및 서열번호 5 내지 9로 표시되는 유전자 중에서 선택되는 1종 이상을 더 포함할 수 있다.
상기 제2 벡터는 HBD를 코딩하는 서열번호 2의 유전자, CRT를 코딩하는 서열번호 3의 유전자, ACT를 코딩하는 서열번호 5의 유전자, BCDH를 코딩하는 서열번호 6의 유전자, ETF A를 코딩하는 서열번호 7의 유전자 및 ETF B를 코딩하는 서열번호 8의 유전자 및 TER를 코딩하는 서열번호 9의 유전자 중에서 선택되는 1종 이상의 유전자를 더 포함하는 것이 더욱 바람직하다.
또한, 본 발명은 상기 벡터에 의해 형질전환된, C5-C8 유기산 생산능력을 가지는 미생물을 제공한다.
또한, 상기 C5-C8 유기산 생산량을 향상시키기 위하여 상기 미생물은 락테이트(lactate) 생합성에 관여하는 효소를 코딩하는 유전자, 아세테이트(acetate) 생합성에 관여하는 효소를 코딩하는 유전자, 에탄올(ethanol) 생합성에 관여하는 효소를 코딩하는 유전자 및 숙시네이트(succinate) 생합성에 관여하는 효소를 코딩하는 유전자로 구성된 군에서 선택되는 1종 이상의 유전자가 약화 또는 결실되어 있는 것이 바람직하다.
이때, 하기 실시예에서는 대장균 MG1655를 숙주 미생물로 이용하였으나, 다른 대장균이나, 박테리아, 효모 및 곰팡이를 사용하여 동일한 결실 대상 유전자를 결실시키고, C5-C8 유기산 생합성에 관여하는 효소의 유전자를 도입시킨다면 본 발명의 목적을 달성할 수 있다고 할 것이다.
또한, 본 발명은 상기 미생물을 배양하여 C5-C8 유기산을 생산하는 방법을 제공한다.
C5-C8 유기산을 생산하는 신규 균주 및 이를 이용하여 C5-C8 유기산을 생산하는 방법
또한, 본 발명에서는, 탄소원인 프룩토스를 포함하는 배지에서 배양시 C5-C8 유기산을 생산하는 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM 11835P)를 제공한다.
하기 실시예에 상세히 서술한 바와 같이, 본 발명에 따른 균주는 유기산을 생산하는 균주가 다량 존재하는 소의 내장으로부터 분리하였다. 구체적으로, 혐기적으로 처리된 RCM 배지에 헥사노익산을 첨가하여 미생물을 배양함으로써 헥사노익산에 내성이 있는 균주만을 선별하였다. 이어서 동일한 배지를 계대 배양하여 균주를 분리하였으며, 선별된 균주를 동정함으로써 선별된 균주가 메가스페라 속 균주임을 확인하였다. 미생물 기탁기관인 한국미생물보존센터에 2009년 9월 30일자로 기탁하였으며, 기탁번호 KFCC11466P를 부여받았으며, 한국미생물보존센터에 2016년 4월 28일자로 기탁하여 기탁번화KCCM11835P를 부여받았다.
본 발명에 따른 상기 메가스페라 헥사노이카 균주를 배양시 C2-C6을 첨가하여 함께 배양하면, 하기 실시예의 결과로부터 알 수 있는 바와 같이 C5-C8 유기산으로 전환생산하는 능력을 가진다.
구체적으로, 상기 균주 배양시 C2 유기산, C4 유기산 또는 이들의 혼합물을 첨가하면 C6 유기산을 다량 생산할 수 있고, C2 유기산 및 C3 유기산을 첨가하면, C5 유기산을 다량 생산할 수 있으며, C2 유기산 및 C5 유기산을 첨가하면, C7 유기산을 다량 생산할 수 있고, C2 유기산 및 C6 유기산을 첨가하면, C8 유기산을 다량 생산할 수 있다.
이때, 상기 C2 유기산은 아세트산, 상기 C3 유기산은 프로피온산, 상기 C4 유기산은 부티르산, 상기 C5 유기산은 펜타노익산, 상기 C6 유기산은 헥사노익산, 상기 C7 유기산은 헵타노익산, 상기 C8 유기산은 옥타노익산일 수 있다.
상기 균주의 배양에 사용되는 배지는 트립토판, 펩톤, 효모 추출물, 비프 추출물, K2HPO4, Tween 80, 시스테인-HCl x H20, 염 용액, 증류수 또는 이들의 혼합물을 포함할 수 있으며, 예컨대 하기 표 1의 조성을 갖는 PYG 배지를 사용할 수 있다.
구성성분 함량
프룩토스(fructose) 20.00 g
트립토판(Trytone) 5.00 g
펩톤(peptone) 5.00 g
효모 추출물(Yeast extract) 10.00 g
비프 추출물(Beef extract) 5.00 g
K2HPO4 2.00 g
Tween 80 1.00 ml
Cystein-HCl x H20 0.50 g
염 용액 40.00 ml
증류수 950.00 ml
상기 염 용액의 구성은 하기 표 2와 같다.
구성성분 함량
CaCl2 x 2 H20 0.25 g
MgSO4 x 7 H2O 0.50 g
K2HPO4 1.00 g
KH2PO4 1.00 g
NaHCO3 10.00 g
NaCl 2.00 g
증류수 1000.00 ml
또한, 본 발명은 프룩토스를 포함하는 배지에서 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양하여 C5-C8 유기산을 생산하는 방법을 제공한다.
본 발명에 따른 상기 균주는 하기 실시예의 결과로부터 알 수 있는 바와 같이, C2-C6 유기산을 첨가하여 배양시 C5-C8 유기산으로 선택적 전환생산하는 능력을 보유하고 있는바, 상기 균주 배양시 배지에 C2-C6 유기산을 첨가하여 C5-C8 유기산을 선택적으로 전환생산할 수 있다.
구체적으로, 상기 균주 배양시 배지에 C2 유기산, C4 유기산 또는 이들의 혼합물을 첨가하여 C6 유기산으로 전환생산할 수 있고, C2 유기산 및 C3 유기산을 첨가하여 C5 유기산으로 전환생산할 수 있고 C2 유기산 및 C5 유기산을 첨가하여 C7 유기산으로 전환생산할 수 있고, C2 유기산 및 C6 유기산을 첨가하여 C8 유기산으로 전환생산할 수 있다.
이때, 상기 C2 유기산은 아세트산, 상기 C3 유기산은 프로피온산, 상기 C4 유기산은 부티르산, 상기 C5 유기산은 펜타노익산, 상기 C6 유기산은 헥사노익산, 상기 C7 유기산은 헵타노익산, 상기 C8 유기산은 옥타노익산일 수 있다.
상기 균주의 배양에 사용되는 배지는 트립토판, 펩톤, 효모 추출물, 비프 추출물, K2HPO4, Tween 80, 시스테인-HCl x H20, 염 용액, 증류수 또는 이들의 혼합물을 포함할 수 있으며, 예컨대 상술한 PYG 배지를 사용할 수 있다.
본 발명에 따른 균주의 배양은 혐기적 조건하에서 35 ℃ 내지 40 ℃에서, 12 시간 내지 48 시간 동안 수행되는 것이 바람직하다.
또한, 본 발명에 따른 균주에 최적 성장 조건을 부여하기 위해 상기 배양은 pH 5.5 내지 6.5의 조건하에서 수행되는 것이 바람직하다.
메가스페라 헥사노이카 균주를 이용하여 헥사노익산을 생산하는 방법
이하, 본 발명을 보다 상세하게 설명한다.
종래, 미생물을 이용하여 바이오 연료인 헥사놀의 전구물질인 헥사노산을 생산하는 방법이 개시된 바 있으나, 그 생산량이 충분하지 않았는바, 본 발명에서는 메가스페라 헥사노이카 균주를 이용하여, 생산성이 크게 향상된 헥사노익산을 생산하는 방법을 제공하고자 한다.
이에, 본 발명에 따른 헥사노이산 생산방법은 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양액에 접종하여 배양하는 단계; 및 상기 배양액으로부터 헥사노익산을 회수하는 단계를 포함한다.
이때, 상기 배양액은 기본 배지에 아세테이트와 부티레이트를 더 포함하는 것이 바람직하다. 하기 실시예의 결과로부터 알 수 있는 바와 같이 아세테이트와 부티레이트는 세포 성장 촉진 및 헥사노익산 생산에 중요한 영향을 끼치게 되며, 특히 아세테이트는 헥사노익산 생산에 가장 큰 영향을 끼치는 인자로 밝혀졌다. 따라서, 하기 실시예의 결과로부터 알 수 있는 바와 같이, 헥사노익산의 생산량을 크게 증가시키기 위해, 상기 아세테이트의 농도는 7 내지 9 g/L, 상기 부티레이트의 농도는 13 내지 15 g/L인 것이 가장 바람직하다.
또한, 상기 배양액은 기본배지 성분으로서, 프룩토스, 효모 추출물, 트립토판, 펩톤, 비프추출물, K2HPO4, Tween 80, 시스테인-HCl x H20, 레조아주린(resazurin), 염 용액, 증류수 또는 이들의 혼합물을 포함할 수 있다. 예컨대, 하기 표 3의 조성을 갖는 PYG 배지를 기본 배지로 사용할 수 있다.
구성성분 함량
프룩토스(fructose) 18.00 g
효모 추출물(Yeast extract) 5.00 g
트립토판(Tryptone) 5.00 g
펩톤(peptone) 10.00 g
비브추출물(Beef extract) 5.00 g
K2HPO4 2.00 g
Tween 80 1.00 ml
Cysteine-HCl x H20 0.50 g
레조아주린(resazurin) 1.00 mg
염 용액 40.00 ml
증류수 950.00 ml
또한, 하기 실시예의 결과로부터 알 수 있는 바와 같이, 헥사노익산의 생산량 증가를 위해 상기 배양액은 기본 배지에 6 내지 18 g/L의 효모 추출물을 더 포함하는 것이 바람직하다.
또한, 하기 실시예의 결과로부터 알 수 있는 바와 같이, 헥사노익산의 생산량 증가를 위해 상기 배양액은 기본 배지에 5.5 내지 10.5 g/L의 효모 추출물 및 2.3 내지 10.5 g/L의 펩톤을 더 포함하는 것이 바람직하며, 상기 효모 추출물의 농도는 8.5 내지 9.5 g/L이고, 상기 펩톤의 농도는 8.5 내지 9.5 g/L인 것이 더욱 바람직하다.
또한, 상기 배양액은 기본배지 성분으로서, 프룩토스, K2HPO4, 시스테인-HCl x H20, 레조아주린(resazurin), 염 용액, 증류수, 비타민 K1 용액 또는 이들의 혼합물을 포함할 수 있다. 예컨대, 하기 표 4의 조성을 갖는 mPYF 배지를 기본 배지로 사용할 수 있다.
구성성분 함량
프룩토스(fructose) 5.00 g
K2HPO4 2.00 g
Cysteine-HCl x H20 0.50 g
레조아주린(resazurin) 1.00 g
염 용액 40.00 ml
증류수 950.00 ml
또한, 하기 실시예의 결과로부터 알 수 있는 바와 같이 상기 균주를 배양하는 동안에는 pH를 6 내지 6.5로 유지하는 것이 바람직하고, 상기 배양 후 헥사노익산을 회수하는 동안에는 pH를 4 내지 5로 유지하는 것이 바람직하다.
본 발명에 따른 헥사노이산 생산방법은 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양액에 접종하여 배양하는 단계; 상기 배양하는 동안 배양액에 올레일 알코올과 알라민 336의 혼합용매를 가하는 단계; 및 상기 혼합용매를 제거하여 혼합용매 중의 헥사노익산을 수득하는 단계를 포함한다.
상기 혼합용매는 균주의 성장이 대수 증식기에 접어들 때 배양액에 가할 수 있다. 본 발명에 따른 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)는 대략 10-14시간 배양한 시점에 상기 혼합용매를 가하는 것이 가장 바람직하다. 또한, 상기 혼합용매에 포함된 올레일 알코올과 알라민 336의 부피비는 9:1 내지 6:3인 것이 바람직하다. 상기 범위를 벗어나 알라민 336의 양이 너무 많아지면 미생물의 독성이 유발되어 생육이 저해될 수 있다.
배양액과 혼합용매의 부피비는 1:0.5 내지 1:3인 것이 바람직하며, 하기 실시예의 결과로부터 알 수 있는 바와 같이 회분식 배양의 경우에는 1:1, 유가 배양의 경우에는 1:2인 것이 더욱 바람직하다.
본 발명의 배양기간 동안 pH는 5.5 내지 6.5의 범위에서 유지되는 것이 가장 바람직한데, 본 발명의 방법에 따라 혼합용매를 가하여 헥사노익산을 추출하게 되면, 배양액의 pH가 계속하여 상승하게 되는바, 본 발명에서는 pH 완충을 통해 pH 상승을 방지할 수 있는 조절제로서 2-6 M의 부티르산(butyric acid)을 투입하는 것이 바람직하며, 상기 부티르산은 pH 조절과 동시에 전자수용체(electron acceptor)의 역할을 하는바, 하기 실시예의 결과로부터 알 수 있는 바와 같이 헥사노익산의 생산량을 더욱 증가시킬 수 있다.
또한, 상기 배양하는 동안 상기 배양액에 프룩토스(탄소원) 및 질소원을 주기적으로 투입하여 유가 배양함으로써 헥사노익산의 생산량을 더욱 증가시킬 수 있다. 이때, 상기 질소원은 효모 추출물, 펩톤 또는 이들의 혼합물인 것이 가장 바람직하다. 또한, 상기 투입되는 프룩토스의 농도는 20 내지 60 g/L일 수 있고, 상기 투입되는 질소원의 농도는 5 내지 20 g/L일 수 있다. 상기 프룩토스와 질소원을 최적 농도로 투입하면 헥사노산의 수율을 높일 수 있는바, 상기 하한치 미만이면 그 효과가 미미하고, 상기 상한치를 초과하면 더 이상 수율 상승이 되지 않는다.
또한, 본 발명에서는 상기 배양하는 동안 상기 배양액에 고농도로 농축된 프룩토스 및 질소원을 연속적으로 투입하여 헥사노산의 생산성을 더욱 향상시킬 수 있다. 상기 고농도의 프룩토스 및 질소원을 연속적으로 투입하는 이유는, 탄소원인 프룩토스와 질소원을 한꺼번에 투입시 발생하는 균의 생육에 대한 충격을 완화하기 위한 것이며, 상기 투입은 상기 프룩토스와 질소원을 0.1 내지 3 ml/hr의 속도로 투입하는 것이 바람직하다. 상기 하한치 미만이면 헥사노익산의 생산성 향상 효과가 미미하며, 상기 상한치를 초과하면 균의 생육에 대한 충격을 완화하는 효과가 감소될 수 있다.
또한, 상기 배양액은 기본 배지의 성분으로서 아세테이트, 부티레이트, 헥사노익산 또는 이들의 혼합물을 포함하는 것이 바람직하다.
C4 및 C6 유기산 생산능을 갖는 신규 균주 및 상기 신규 균주를 이용한 바이오 연료의 제조방법
본 발명에서는, 탄소원 배지 중에서 배양시 C4 유기산 및 C6 유기산의 동시 생산 능력을 갖는 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans) 균주 (KCCM10991P)를 제공한다.
하기 실시예에도 상세히 서술된 바와 같이, 본 발명에서는 선택배지를 사용하여 C4 및 C6 유기산을 생산하는 균주들을 선별하였으며, 균주 배양에 의해서 생산된 생성물을 크로마토그래피 분석에 의해서 분석함으로써 생성물 중에서 C4 및 C6 유기산의 존재를 확인하였다. 이어서, 다면분석법을 통해서 선별된 균주를 동정함으로써 선별된 균주가 클로스트리듐 속의 카프로이시프로두센스 갈락티토리보란스 균주임을 확인하였다.
본 발명에 따른 균주를 배양하는 탄소원 배지는, 이에 제한되는 것은 아니지만, 글리세롤, 글루코오스, 갈락티톨, 만노오스, 및 프럭토오스로 이루어진 군으로부터 선택된 적어도 하나의 당류를 포함하며, 상기 당류의 혐기 발효에 의해서, 특히 부티르산 및 헥사노익산을 다량으로 생산하는 것으로 확인되었다.
한편, 본 발명에서는 또한, 상기 균주를 이용한 바이오 연료의 제조방법을 제공하는 바, 본 발명에 따른 방법은,
a) 탄소원 배지 중에서 카프로이프로두센스 갈락티보란스 균주를 배양하여 C4 유기산 및 C6 유기산을 생산하는 단계;
b) 상기 a) 단계의 생산물로부터 상기 C4 유기산 및 C6 유기산을 분리하는 단계;
c) 상기 b) 단계로부터 분리된 C4 유기산 및 C6 유기산과 동일한 몰 수의 C4 알코올 및 C6 알코올을 첨가하여 혼합액을 제조하는 단계;
d) 상기 c) 단계의 혼합액에 대해서 촉매 반응을 수행하여 C8-C12 화합물을 제조하는 단계; 및
e) 상기 d) 단계로부터 제조된 C8-C12 화합물을 수소 기체와 반응시킴으로써 C4 알코올 및 C6 알코올을 생산하는 단계
를 포함한다.
상기 a) 단계의 균주 배양은 35 ℃ 내지 45 ℃에서, 24 시간 내지 72 시간 동안 혐기 배양시킴으로써 수행될 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 a) 단계의 배양은 갈락티톨, 프럭토오스, 만노오스, 타가토스, 글루코오스 및 글리세롤을 포함하는 변형된 CAB 배양 배지 중에서 수행될 수 있다. 상기 카프로이프로두센스 갈락티보란스 균주는 하수처리장의 슬러지를 채취한 다음, 슬러지를 열처리하여 포자 형성균을 제외한 미생물을 사멸시키고, 배지 대비 소정 부피로 첨가한 다음, 교반 조건 하에서 배양하여 C4 및 C6 유기산을 최대로 생성하는 균주를 선별함으로써 얻어낼 수 있다. 이와 같이 선별된 균주만을 전술한 당류를 포함하는 배지 중에서 배양함으로써 C4 유기산 및 C6 유기산을 생산할 수 있다.
한편, 상기 균주 배양에 필요한 탄소원은 바이오매스 또는 유기성 폐자원을 물리적으로 분쇄, 세척 및 가수분해하는 등의 전처리 과정을 거쳐서 제조한 것을 사용할 수 있는데, 유기성 폐기물을 전처리함으로써 유기 성분이 용해되는 효율을 극대화하고, 혐기성 발효에 의한 생물학적 수소 생산 시간을 최소화할 수 있으며, 그 효율 역시 증가시킬 수 있게 된다. 따라서, 바이오매스 또는 유기성 폐자원을 물리적으로 분쇄함으로써 미생물이 기질로 사용하기에 적당한 크기로 만들고, 세척 과정을 통해서 염소 이온 등과 같이 미생물에 독성을 나타내는 성분을 제거하며, 호기성 미생물 등을 사용하여 가수분해 과정을 거침으로써 유기 성분의 용해도를 향상시킬 필요성이 있다.
이어서, 생산된 C4 및 C6 유기산만을 분리하는 단계를 수행하여야 하는 바, 상기 b) 단계의 분리는 이온교환수지를 사용하여 수행되거나, 또는 물과 섞이지 않는 유기 용매를 사용하여 상기 C4 유기산 및 C6 유기산을 배양액으로부터 추출해 냄으로써 수행될 수 있다. 예를 들어, 이온교환수지를 사용하여 유기산들을 분리해내는 경우, 부티르산 등의 C4 유기산과 헥사노익산 등의 C6 유기산은 배양액 중에서 음전하를 나타내므로, 음이온 교환수지를 사용하면 배양액 중에서 유기산 성분들 만을 선택적으로 흡착시킬 수 있다. 또한, 흡착된 유기산들은 알칼리 용액, 산성 용액 및 에탄올 등을 사용하여 음이온 교환수지로부터 탈착시킬 수 있다. 또한, 추출용 유기 용매를 사용하여 유기산을 배양액으로부터 추출해 내는 경우에는, 부틸 부티레이트, 도데칸올, 올레일 알코올 등과 같은 유기 용매를 배양액과 혼합한 다음, 교반해주며 추출할 수 있으며, 배양액으로부터 추출된 유기산을 함유하고 있는 유기용매와 유기산이 추출된 배양액을 유수분리기 등을 사용하여 분리하고, 분리된 유기산 함유 유기용매에 대해서 추가 화학반응을 수행함으로써 유기산을 분리해낼 수 있게 된다.
다음 단계로는, 생산된 C4 유기산 및 C6 유기산에 대해서 에스테르화 반응을 수행함으로써 다양한 C8-C12 화합물들을 제조할 수 있게 된다. 예를 들어, 산촉매 및 에스테르화 효소를 사용한 에스테르화 반응에 의해서 헥사노익산과 부티르산으로부터 다양한 C8-C12 화합물들을 제조하는 반응들을 하기 반응식 1 내지 4에 나타내었다.
<반응식 1>
Figure PCTKR2016004705-appb-I000001
<반응식 2>
Figure PCTKR2016004705-appb-I000002
<반응식 3>
Figure PCTKR2016004705-appb-I000003
<반응식 4>
Figure PCTKR2016004705-appb-I000004
상기 반응식 1 내지 4의 반응에 관여하는 화학 촉매 및 효소로는, 이에 제한되는 것은 아니지만, 제올라이트 (Zeolite), 헤테로폴리산 (heteropoly acids), 실리카-알루미나 (silica-alumina), 나피온 수지 (Nafion-H, 파라톨루엔설폰산 (p-toluenesulfonic acid), SO42-/ZrO2 또는 SO42-/TiO2-La2O3와 같은 초강산 화학 촉매, 또는 에스테라아제 및 리파아제로 이루어진 군으로부터 선택된 적어도 하나의 효소를 예로 들 수 있다. 특히, 에스테라아제 효소를 사용하는 경우에는, 이를 나노화이버, 카라기나, 젤라틴 또는 비드 등과 같은 담체에 고정시킬 경우, 용이한 효소의 회수가 가능하여 경제적인 재사용이 가능하다.
이어서, 상기와 같이 생성된 C8-C12 에스테르 화합물들에 대해서 수소화 반응을 수행하게 되면 다양한 알코올 화합물들을 제조할 수 있게 된다. 예를 들어, 하기 반응식 5 내지 8에는 전술한 반응식 1 내지 4에 의해서 생성된 에스테르 화합물들의 수소화 반응에 의해서 다양한 알코올 화합물들이 생성되는 반응들을 나타내었다.
<반응식 5>
Figure PCTKR2016004705-appb-I000005
<반응식 6>
Figure PCTKR2016004705-appb-I000006
<반응식 7>
Figure PCTKR2016004705-appb-I000007
<반응식 8>
Figure PCTKR2016004705-appb-I000008
이때, 상기 반응에 소요되는 수소 기체는, 상기 a) 단계의 균주 배양에 의해서, 상기 C4 유기산 및 C6 유기산과 더불어 생산된 수소 기체일 수 있다.
헥사노익산 생산에 관여하는 신규 유전자, 상기 유전자로 형질전환된 미생물, 이를 이용한 헥사노익산 제조방법, 및 이를 이용한 헥산올의 제조방법
본 발명에서는, 갈락티톨을 출발 물질로 하여 최종적으로 헥사노익산을 생성하는데 관여하는 신규 유전자 다발을 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans) 균주로부터 성공적으로 분리해내었다.
도 51에는 카프로이시프로두센스 갈락티토리보란스에서 갈락티톨이 대사되는 대사 경로를 도시하였다. 도 51을 참조하면, 갈락티톨은 일련의 효소들이 관여하는 대사 과정에 의해서 피루브산으로 전환되며, 생성된 피루브산은 피루브산을 아세틸-CoA로 또는 아세틸-CoA를 피루브산으로 상호 변환시키는데 관여하는 피루브산 생성효소 (pyruvate synthase 또는 pyruvate ferredoxin oxidoreductase)에 의해서 아세틸-CoA로 변환된다.
본 발명에서는, 갈락티톨로부터 피루브산의 생성까지의 일련의 과정에 관여하는 단백질 효소들을 암호화하는 신규 유전자 (서열번호 37)를 제공하며, 상기 유전자를 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans) 균주로부터 성공적으로 분리해내었다. 특히, 상기 서열번호 37의 유전자는 특정 프로모터 및 오퍼레이터의 조절을 받는 오페론 구조를 이룬다. 참고로, 도 52에는 갈락티톨로부터 피루브산을 생성하는 대사 과정에 관여하는 오페론을 개략적으로 도시하였다.
이어서, 생성된 아세틸-CoA는 다시 일련의 효소들이 관여하는 대사 과정에 의해서 최종적으로 헥사노익산으로 전환된다.
따라서, 본 발명에서는 또한, 아세틸-CoA로부터 헥사노익산의 생성까지의 일련의 과정에 관여하는 단백질 효소들을 암호화하는 또 다른 신규 유전자 (서열번호 36)를 제공하며, 이러한 유전자 역시 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans) 균주로부터 성공적으로 분리해내었다. 특히, 상기 서열번호 36의 유전자는 카프로이시프로두센스 갈락티토리보란스의 전체 유전자 서열에서 소정 위치에 밀집해 있는 유전자 클러스터를 형성한다. 도 53에는 아세틸-CoA로부터 헥사노익산을 생성하는 대사 과정에 관여하는 유전자 클러스터를 개략적으로 도시하였으며, 이러한 유전자 클러스터에 의해서, 전술한 대사 경로에 관여하는 효소들 중, 아세틸 CoA 아세틸 트랜스퍼라아제, CRT (3 히드록시 데히드라타아제), HBD (3 히드록시 데히드로게나아제), ACDH (아실 CoA 데히드로게나아제), ETF AB (전자 수송 플라보단백질; Electron transfer flavoproteins), 및 ACT (아세틸 CoA 트랜스퍼라아제)가 암호화된다.
또한, 본 발명에서는 전술한 서열번호 36 및 서열번호 37로 표시되는 유전자들을 포함하는 벡터를 이용하여 형질전환된 미생물을 제공하며, 탄소원 배지 중에서 이와 같이 형질전환된 미생물을 배양하여 헥사노익산을 생산하는 단계를 포함하는 헥사노익산의 제조방법을 제공한다.
더 나아가, 본 발명은 상기 형질전환된 미생물을 이용하여 최종적으로 헥산올을 제조하는 방법을 제공하며, 본 발명에 따른 방법은,
a) 갈락티톨을 포함하는 탄소원 배지 중에서 상기 미생물 균주를 배양하여 헥사노익산을 생산하는 단계;
b) 상기 a) 단계의 생산물로부터 상기 헥사노익산을 분리하는 단계;
c) 상기 b) 단계로부터 분리된 헥사노익산에 동일한 몰 수의 헥산올을 첨가하여 혼합액을 제조하는 단계;
d) 상기 c) 단계의 혼합액에 대해서 촉매 반응을 수행하여 C12 화합물을 제조하는 단계; 및
e) 상기 d) 단계로부터 제조된 C12 화합물을 수소 기체와 반응시킴으로써 헥산올을 생산하는 단계를 포함한다.
상기 균주 배양에 필요한 탄소원은 바이오매스 또는 유기성 폐자원을 물리적으로 분쇄, 세척 및 가수분해하는 등의 전처리 과정을 거쳐서 제조한 것을 사용할 수 있는데, 유기성 폐기물을 전처리함으로써 유기 성분이 용해되는 효율을 극대화하고, 혐기성 발효에 의한 생물학적 수소 생산 시간을 최소화할 수 있으며, 그 효율 역시 증가시킬 수 있게 된다. 따라서, 바이오매스 또는 유기성 폐자원을 물리적으로 분쇄함으로써 미생물이 기질로 사용하기에 적당한 크기로 만들고, 세척 과정을 통해서 염소 이온 등과 같이 미생물에 독성을 나타내는 성분을 제거하며, 호기성 미생물 등을 사용하여 가수분해 과정을 거침으로써 유기 성분의 용해도를 향상시킬 필요성이 있다.
이어서, 생산된 헥사노익산만을 분리하는 단계를 수행하여야 하는바, 상기 b) 단계의 분리는 이온교환수지를 사용하여 수행되거나, 또는 물과 섞이지 않는 유기 용매를 사용하여 상기 헥사노익산을 배양액으로부터 추출해 냄으로써 수행될 수 있다. 예를 들어, 이온교환수지를 사용하여 유기산들을 분리해내는 경우, 헥사노익산은 배양액 중에서 음전하를 나타내므로, 음이온 교환수지를 사용하면 배양액 중에서 헥사노익산 만을 선택적으로 흡착시킬 수 있다. 또한, 흡착된 헥사노익산은 알칼리 용액, 산성 용액 및 에탄올 등을 사용하여 음이온 교환수지로부터 탈착시킬 수 있다. 또한, 추출용 유기 용매를 사용하여 헥사노익산을 배양액으로부터 추출해 내는 경우에는, 부틸 부티레이트, 도데칸올, 올레일 알코올 등과 같은 유기 용매를 배양액과 혼합한 다음, 교반해주며 추출할 수 있으며, 배양액으로부터 추출된 헥사노익산을 함유하고 있는 유기용매와 헥사노익산이 추출된 배양액을 유수분리기 등을 사용하여 분리하고, 분리된 헥사노익산 함유 유기용매에 대해서 추가 화학반응을 수행함으로써 헥사노익산을 분리해낼 수 있게 된다.
다음 단계로는, 생산된 헥사노익산에 대해서 에스테르화 반응을 수행함으로써 헥실헥사노에이트를 제조할 수 있게 된다. 예를 들어, 산촉매 및 에스테르화 효소를 사용한 에스테르화 반응에 의해서 헥사노익산으로부터 C12 화합물인 헥실헥사노에이트를 제조하는 반응을 하기 반응식 1 내지 4에 나타내었다.
<반응식 1>
Figure PCTKR2016004705-appb-I000009
상기 반응식 1에 관여하는 화학 촉매 및 효소로는, 이에 제한되는 것은 아니지만, 제올라이트 (Zeolite), 헤테로폴리산 (heteropoly acids), 실리카-알루미나 (silica-alumina), 나피온 수지 (Nafion-H, 파라톨루엔설폰산 (p-toluenesulfonic acid), SO42-/ZrO2 또는 SO42-/TiO2-La2O3와 같은 초강산 화학 촉매, 또는 에스테라아제와 같은 효소를 예로 들 수 있다. 특히, 에스테라아제 효소를 사용하는 경우에는, 이를 나노화이버, 카라기나, 젤라틴 또는 비드 등과 같은 담체에 고정시킬 경우, 용이한 효소의 회수가 가능하여 경제적인 재사용이 가능하다.
이어서, 상기와 같이 생성된 C12 에스테르 화합물에 대해서 수소화 반응을 수행하게 되면 헥산올을 제조할 수 있게 된다. 예를 들어, 하기 반응식 2에는 전술한 반응식 1에 의해서 생성된 헥실헥사노에이트의 수소화 반응에 의해서 헥산올이 생성되는 반응을 나타내었다.
<반응식 2>
Figure PCTKR2016004705-appb-I000010
이때, 상기 반응에 소요되는 수소 기체는, 상기 a) 단계의 균주 배양에 의해서, 상기 헥사노익산과 더불어 생산된 수소 기체일 수 있다.
이하, 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
C5-C8 유기산 생산에 관여하는 신규 유전자, 상기 유전자를 포함하는 벡터, 상기 벡터로 형질전환된 미생물, 및 이를 이용한 C5-C8 유기산 생산방법
1. 균주 분리
Hexanoic acid 를 과량 생산하는 미생물을 분리하기 위해 대한민국 서울시 마장동에 위치한 우시장에서 위액이 포함된 소내장을 구매하고 이를 혐기적으로 처리하였다. 상기 혐기적으로 처리된 위액을 5 g/L hexanoic acid가 포함된 Reinforced Clostridia medium (difco)에 접종하여 37 ℃에서 3일간 증균 배양시켰다. 이 증균 배양액을 동일한 배지에 수차례 계대 배양 하였다. 증균 배양한 배양액은 Reinforced Clostridia medium (difco)배지에 도말하여 콜로니를 형성시켰다. 선발된 각각의 콜로니들을 Reinforced Clostridia medium (difco) 액체 배지에 접종하여 37 ℃에서 3일간 배양 후, 기체 크로마토그래피(Gas chromatography, GC)를 이용하여 헥사노산 생산량을 측정하였다. 그 결과, 가장 많은 양의 헥사노산을 생산하는 미생물을 분리하였으며 이를 메가스페라 헥사노이카(Megasphaera hexanoica)로 명명하였다. 해당 균주를 부다페스트 조약에 따른 미생물 기탁기관인 대한민국 한국미생물보존센터에 2009년 09월 30일자로 기탁하여 기탁번호 KFCC11466P를 부여받았으며, 한국미생물보존센터에 2016년 04월 28일자로 기탁하여 기탁번호 KCCM11835P를 부여받았다.
2. 유전체 분석
메가스페라 헥사노이카의 유전체 분석은 유전체 전문 분석 기관인 천랩에 의뢰하여 GS FLX454, 일루미나 하이시크 기기를 이용하여 분석하였으며, 천랩에서 제공하는 바이오 인포매틱 프로그램인 CL genomics 를 이용하여 완벽한 전체 유전자 지도를 확보하였다.
도 1에는 상기 과정에 의해서 얻어진 메가스페라 헥사노이카의 전체 유전자 지도를 도시하였다. 유전체 분석 결과, 1개의 contig으로 이루어진 유전체를 확보하였으며, 유전체 크기는 28778511 bp 이며, G+C 비율은 49 % 이며, 2821개의 암호화 서열, rRNA 18개, tRNA 53개 도 1로부터, GC skew가 급격히 변화되는 지점이 복제 기점임을 유추할 수 있다.
3. 유기산 생산 관련 유전자의 RNA 발현 레벨 분석을 통한 C5-C8 유기산 생합성 경로 분석
C5-C8 유기산 생산에 관여하는 유전자 및 이를 통한 생합성 경로를 분석하기 위하여, RNA 트랜스크립톰 분석(transcriptomic analysis)을 실시하였다.
RNA 트랜스크립톰 분석 조건은 헥사노익산이 과량생산하는 조건과 생산이 미미한 조건을 둘로 나누고 시간에 따라 초기 대수증식기인 9시간과 생산량이 saturation 되는 18 시간으로 나누어서 총 4개의 샘플에 대해 RNA 발현양을 비교하였다. RNA 추출은 큐아젠 박테리아용 RNA extraxction kit를 사용하여 추출하였으며, 추출된 용출 샘플은 -70 ℃ 이하로 동결하였다.
샘플 분석은 천랩에 의뢰하여 분석하였으며, 분석된 결과는 천랩에서 무료로 제공하는 CLRNAseq를 사용하여 분석하였다. 4개의 샘플은 통계학적으로 normalization 되었으며, 조건과 시간에 따라 발현양을 비교하고, 발현양이 높은 유전자원들을 확보하였다.
도 2는 아세트산과 부티르산을 첨가하지 않고 메가스페라 헥사노이카 균주 배양시 RNA 발현 유전자들을 분석한 도면이고, 도 3은 아세트산과 부티르산을 첨가하여 메가스페라 헥사노이카 균주 배양시 RNA 발현 유전자들의 RPKM(Read Per Kilobase per Millon mapped reads)값을 나타낸 그래프이며, 도 4는 메가스페라 헥사노이카 균주로부터 분리된 유전자들의 RPKM 값을 나타낸 도면이다.
이를 통해 메가스페라 헥사노이카 균주에서 유래한 유전자 중 서열번호 1 내지 8로 표시되는 유전자들이 C5-C8 유기산 생산에 가장 큰 영향을 미치는 요인임을 확인하였다.
또한, 상기 도출된 RNA 발현 레벨을 바탕으로 헥사노익산 생합성 경로 및 관련 효소들을 도출하였으며, 그 결과는 하기 도 7에 나타내었다.
4. 본 발명에 따른 유전자를 포함하는 벡터의 제조
(1). 제1 벡터의 제조
(1-1) THL을 코딩하는 유전자를 포함하는 제1 벡터
THL을 코딩하는 유전자를 pCOLA 벡터에 삽입하기 위하여, 아래의 서열번호 11 및 12의 프라이머 세트를 사용하였으며, 프라이머세트 앞쪽에는 NDEI, 뒤쪽에는 XHOI 제한효소 영역을 삽입하였다. PCR을 이용하여 증폭된 PCR fragment를 NDE1과 XHOI으로 처리하였고, pCOLA 벡터 역시 NDEI과 XHOI으로 처리한 후 프렙하였으며, 일정량을 라이게이션 키트인 마이티 믹스를 사용하여 라이게이션 하였다. 라이게이션 된 플라스미드를 DH5 alpha에 삽입하였으며, 동일한 프라이머를 사용하여 콜로니 pcr을 수행하여 벡터에 해당 유전자가 삽입되는지를 확인하였다.
[서열번호 11] THL f: 5'-AAAAACATATGAAAAATGTGGTTATTGTGTC-3'
[서열번호 12] THL r: 5'-TTTTTGAGCTCAATCTTAAGTAGTGTGTAAAATTACCG-3'
(1-2) BKTB를 코딩하는 유전자를 포함하는 제1 벡터
BKTB를 코딩하는 유전자를 pCOLA 벡터에 삽입하기 위하여, 아래의 서열번호 13 및 14의 프라이머 세트를 사용하였으며, 프라이머세트 앞쪽에는 NDEI, 뒤쪽에는 XHOI 제한효소 영역을 삽입하였다. PCR을 이용하여 증폭된 PCR fragment를 NDE1과 XHOI으로 처리하였고, pCOLA 벡터 역시 NDE1과 XHOI으로 처리한 후 프렙하였으며, 일정량을 라이게이션 키트인 마이티 믹스를 사용하여 라이게이션 하였다. 라이게이션 된 플라스미드를 DH5 alpha에 삽입하였으며, 동일한 프라이머를 사용하여 콜로니 pcr을 수행하여 벡터에 해당 유전자가 삽입되는지를 확인하였다.
[서열번호 13] BKTB f: 5'-AAAAACATATGACCCGTGAAGTTGTC-3'
[서열번호 14] BKTB r: 5'-TTTTTGAGCTCAATTTAAGCTACGCAAGCTTCTAC-3'
(2) 제2 벡터의 제조
(2-1) HBD, CRT, ACDH, ACT를 코딩하는 유전자를 포함하는 벡터의 제조
먼저, HBD와 CRT를 코딩하는 유전자를 붙여서 함께 pCDF 벡터에 삽입하였으며, 아래의 서열번호 15 및 16의 프라이머 세트를 사용하였고, 프라이머의 앞쪽에는 ECOROI, 뒤쪽은 NOTI 제한효소 영역을 삽입하였다.
[서열번호 15] HBD f: 5'-AAAAAGAATTCGATGTTCAAGAAAGTGATGGTCATT-3'
[서열번호 16] CRT r: 5'-TTTTTCGCCGGCGAATAAGCGGAAACTTCAGGCGAA-3'
상기 만들어진 벡터에서 HBD 앞쪽의 histag를 제거하고 Ecori 영역을 제거하기 위해 아래의 서열번호 17 및 18의 프라이머 세트를 사용하였다. 이때, Pfux 폴리머레이즈(바이오팩트 사)를 사용하여 벡터 전체를 PCR 증폭하여, 제한효소 처리 없이 블런트엔드로 라이게이션 하였다.
[서열번호 17] HBD2 f: 5'-ATGTTCAAGAAAGTGATGGTCATT-3'
[서열번호 18] PCOLA r: 5'-TACCGACGACGGGTACCATATA-3'
이후, ACT를 코딩하는 유전자를 삽입하기 위하여, 아래의 서열번호 19 및 20의 프라이머 세트를 사용하였으며, 제한효소로서 NDE1과 XHOI을 사용하였다.
[서열번호 19] ACT f: 5'-AAAAACATATGTATAAACTGTCGCAAATCGCT-3'
[서열번호 20] ACT r: 5'-TTTTTGAGCTCAATCATAAGGCAAAAACTCCAAAAG-3'
다음으로, 메가스페라 헥사노이카의 cDNA를 주형으로 하고, 아래의 서열번호 21 및 22의 프라이머 세트를 사용하였으며, ACDH 뒤에는 리보조말 바인딩싸이트(RBS)와 Ecori 제한효소영역을 삽입하여, ACDH를 코딩하는 유전자를 삽입하였다.
[서열번호 21] ACDH f: 5'-AAAAACATATGGGTTATATTCTTAACAAAGACCA-3'
[서열번호 22]
ACDH r: 5'-TTTTTGTATACGGAGGACTTAAGAATCACAAAGAAACATTAGACCGG-3'
(2-2) HBD, CRT, ACDH, BCDH, ETF A, ETF B, ACT를 코딩하는 유전자를 포함하는 벡터의 제조
먼저, 상기 (2-1)과 동일한 방법에 의해 HBD와 CRT를 코딩하는 유전자를 붙여서 함께 pCDF 벡터에 삽입하였다.
다음으로, BCDH, ETF A, ETF B, ACT를 코딩하는 유전자를 붙여서 함께 삽입하였으며, 아래의 서열번호 23 및 서열번호 20의 프라이머 세트를 사용하였다.
[서열번호 23] BCDH f: 5'-AAAAACATATGATGGATATCTCTAGAATGGACTTC-3'
[서열번호 20] ACT r: 5'-TTTTTGAGCTCAATCATAAGGCAAAAACTCCAAAAG-3'
다음으로, 메가스페라 헥사노이카의 cDNA를 주형으로 하고, 상기 서열번호 21 및 22의 프라이머 세트를 사용하였으며, ACDH 뒤에는 리보조말 바인딩싸이트(RBS)와 Ecori 제한효소영역을 삽입하여, ACDH를 코딩하는 유전자를 삽입하였다.
(2-3) HBD, CRT, ACDH, ETF A, ETF B, ACT를 코딩하는 유전자를 포함하는 벡터의 제조
상기 (2-2)의 플라스미드를 확보한 후, ACDH를 삽입할 당시에 뒤쪽에 삽입한 ECORI 제한효소영역과 BCDH 뒤쪽의 ECORI 제한효소영역을 사용하여 ECORI 제한효소로 자른 후, 라이게이션하여 완성하였다.
(2-4) HBD, CRT, ACDH, TER, ACT를 코딩하는 유전자를 포함하는 벡터의 제조
하기 (2-6)의 HBD, CRT, TER, ACT를 코딩하는 유전자가 삽입된 벡터에 제한효소 NDEI 싸이트 및 상기 서열번호 21과 22의 프라이머세트를 사용하여 ACDH fragment를 삽입하여 제조하였다.
(2-5) HBD, CRT, BCDH, ETF A, ETF B, ACT를 코딩하는 유전자를 포함하는 벡터의 제조
상기 (2-2)와 동일한 방법을 사용하여, HBD와 CRT를 코딩하는 유전자를 붙여서 함께 pCDF 벡터에 삽입한 후, BCDH, ETF A, ETF B, ACT를 코딩하는 유전자를 붙여서 함께 삽입하였다.
(2-6) HBD, CRT, TER, ACT를 코딩하는 유전자를 포함하는 벡터의 제조
TER을 코딩하는 유전자를 pCDF 벡터에 삽입하기 위해 하기 서열번호 24 및 25의 프라이머 세트를 사용하고, 앞쪽에는 NDEI 제한효소, 뒤쪽에는 HINDⅢ 제한효소를 사용하였으며, 상기 (2-5)의 벡터를 증폭한 후, NDEI 제한효소와 HINDⅢ 제한효소로 자른 후, PCR로 증폭된 TER fragment를 삽입하여 제조하였다.
[서열번호 24] TER f: 5'-AAAAACATATGATTGTTAAACCGATGGTCC-3'
[서열번호 25] TER r: 5'-TTTTTTTCGAAAGTTTACGCTAGTTTCGCAAGGT-3'
5. 본 발명에 따른 벡터에 의해 형질전환된 C5-C8 유기산 생산능력을 가지는 미생물의 제조
(1) ldh, pta, adhe, frda 유전자의 결실
대장균 MG1655에서 ldhA, pta, adhe 및 frda 유전자를 추가로 결실시키기 위하여, 하기 서열번호 26 내지 33의 프라이머들을 이용한 리컴비네이즈 보유 pKM 208 플라스미드와 카나마이신 레지스턴스 유전자를 보유한 pKDA를 이용한 결시 방법을 사용하였다. ldhA (lactate dehydrogenase를 코딩하는 유전자), pta (phosphotransacetylase를 코딩하는 유전자), adhe (alcohol dehydrogenase를 코딩하는 유전자) 및 frda 유전자를 결실시켰다.
[서열번호 26] ldhA1stup: 5'-AAATATTTTTAGTAGCTTAAATGTGATTCAACATCACTGGAG AAAGTCTTGTGTAGGCTGGAGCTGCTTC-3'
[서열번호 27] ldhA1stdo: 5'-ATTGGGGATTATCTGAATCAGCTCCCCTGGGTTGCAGGGGAG CGGCAAGATCCTCCTTAGTTCCTATTCC-3'
[서열번호 28] FRDA f: 5'-CTTACCCTGAAGTACGGGGCTGTGGGATAAAAACAATCTGGAGGA ATGTCGTGTAGGCTGGAGCTGCTTC-3'
[서열번호 29] FRDA r: 5'-TATCGACTTCCGGGTTATAGCGCACCACCTCAATTTTCAGGTTTT TCATCTCCTCCTTAGTTCCTATTCC-3'
[서열번호 30] PTA f: 5'-GGTGCTGTTTTGTAACCCGCCAAATCGGCGGTAACGAAAGAGGAT AAACCGTGTAGGCTGGAGCTGCTTC-3'
[서열번호 31] PTA r: 5'-TTATTTCCGGTTCAGATATCCGCAGCGCAAAGCTGCGGATGATGA CGAGAATATCCTCCTTAGTTCCTATTCC-3'
[서열번호 32] ADHE f: 5'-ATTCGAGCAGATGATTTACTAAAAAAGTTTAACATTATCAGGAGA GCATTGTGTAGGCTGGAGCTGCTTC-3'
[서열번호 33] ADHE r: 5'-AAAAAACGGCCCCAGAAGGGGCCGTTTATATTGCCAGACAGCGCT ACTGATCCTCCTTAGTTCCTATTCC-3'
(2) C5-C8 유기산 생산능력을 가지는 미생물의 제조
상기 ldh, pta, adhe, frda 유전자의 결실된 대장균 MG1655에 상기 (1-1) 벡터 및 (2-1)의 벡터를 도입한 미생물(실시예 1), 상기 (1-1) 벡터 및 (2-2)의 벡터를 도입한 미생물(실시예 2), 상기 (1-1) 벡터 및 (2-3)의 벡터를 도입한 미생물(실시예 3), 상기 (1-1) 벡터 및 (2-4)의 벡터를 도입한 미생물(실시예 4), 상기 (1-2) 벡터 및 (2-4)의 벡터를 도입한 미생물(실시예 5), 상기 (1-1)의 벡터 및 (2-5)의 벡터를 도입한 미생물(비교예 1), 상기 (1-1)의 벡터 및 (2-6)의 벡터를 도입한 미생물(비교예 2)을 제조하였다.
6. 헥사노익산 생산량 비교 실험
(1) 상기 5의 (2)에 따라 제조된 미생물을 배양하여 헥사노익산 생산량의 비교실험을 진행하였다.
배지는 부티레이트 1.5 g/L, 글루코스 20 g/L가 포함된 LB 배지를 사용하여 30 ℃에서 배양하였으며, 1mM IPTG로 세포 생육이 0.6~0.8 사이에 있을 때 induction 하였다.
그 결과, 실시예 1 내지 실시예 5에 따라 형질전환된 미생물의 헥사노익산 생산량이 비교예 1 내지 비교예 2에 비해 월등히 많은 것을 확인할 수 있었다. 비교예 1, 2와 달리 실시예 1 내지 실시예 5에는 모두 ACDH를 코딩하는 유전자가 포함되어 있었는바, ACDH를 코딩하는 유전자가 헥사노익산 생산에 가장 큰 영향을 미치는 필수요인임을 확인할 수 있었다. 또한, 이에 더하여 THL, HBD, CRT, ACT, BCDH, ETF A, ETF B, ACT를 코딩하는 유전자가 헥사노익산 생산에 도움을 주는 요인임을 확인할 수 있었다(도 14).
(2) 상술한 바와 같이 ACDH를 코딩하는 유전자가 헥사노익산 생산에 가장 큰 영향을 미치는 요인임을 확인하였는바, 실시예 1에 따라 형질전환된 미생물의 헥사노익산 생산 특성을 확인하였다.
배지는 질소원이 풍부한 TB 배지를 사용하였으며, glucose 20 g/L 및 부티레이트 5 g/L를 첨가하여 30 ℃에서 배양하였으며, 1mM IPTG로 세포 생육이 0.6~0.8 사이에 있을 때 induction 하였다. Induction 과 함께 W/V 5% CaCO3를 첨가하여 pH를 조절하였다. 샘플링은 멸균된 시린지를 이용하여 12시간 간격으로 진행하였다.
그 결과, 실시예 1에 따라 형질전환된 미생물은 시간이 지남에 따라 최대 XX g/L의 헥사노익산을 생산함을 확인하였는바, 본 발명에 따른 유전자들을 도입한 미생물은 우수한 유기산 생산능력을 가짐을 확인할 수 있었다(도 15).
기탁기관명 : 한국미생물보존센터(국외)
수탁번호 : KCCM11835P
수탁일자 : 20160428
C5-C8 유기산을 생산하는 신규 균주 및 이를 이용하여 C5-C8 유기산을 생산하는 방법
실시예 1. C5-C8 유기산을 생산하는 균주의 분리
Hexanoic acid 를 과량 생산하는 미생물을 분리하기 위해 대한민국 서울시 마장동에 위치한 우시장에서 위액이 포함된 소내장을 구매하고 이를 혐기적으로 처리하였다. 상기 혐기적으로 처리된 위액을 5 g/L hexanoic acid가 포함된 Reinforced Clostridia medium (difco)에 접종하여 37 ℃에서 3일간 증균 배양시켰다. 이 증균 배양액을 동일한 배지에 수차례 계대 배양하였다. 증균 배양한 배양액은 Reinforced Clostridia medium (difco)배지에 도말하여 콜로니를 형성시켰다. 선발된 각각의 콜로니들을 Reinforced Clostridia medium (difco) 액체 배지에 접종하여 37 ℃에서 3일간 배양 후, 기체 크로마토그래피(Gas chromatography, GC)를 이용하여 헥사노산 생산량을 측정하였다. 그 결과, 가장 많은 양의 헥사노산을 생산하는 미생물을 분리하였다. 분리된 미생물을 부다페스트 조약에 따른 미생물 기탁기관인 대한민국 한국미생물보존센터에 2009년 09월 30일자로 기탁하여 기탁번호 KFCC11466P를 부여받았으며, 한국미생물보존센터에 2016년 04월 28일자로 기탁하여 기탁번호 KCCM1835P를 부여받았다(도 16 참고).
실시예 2. 균주의 동정 및 특성
상기 분리된 균주의 16S rRNA 유전자의 염기서열 분석을 하여 동정하였다. 즉, 분리된 균주로부터 Genomic DNA Preparation Kit(Promega Co., 미국)을 사용하여 지놈 DNA(genomic DNA)를 추출한 다음, 유니버셜 프라이머(universal primer) 27F (5'-AGA GTT TGA TCC TGG CTC AG-3')와 1492R (5'-TAC GGY TAC CTT GTT ACG ACT T-3')로 중합 효소 연쇄 반응(Polymerase Chain Reaction, PCR)을 실시하여 16S rRNA 유전자를 증폭시켰다. 증폭된 산물은 PCR Purification kit을 이용하여 정제한 후 마크로젠에 16S rDNA 시퀀싱을 의뢰하였다.
신규 균주의 16S rRNA 유전자 염기서열은 도 17 및 서열번호 34에 나타내었다. 이러한 분리 균주의 16S rDNA 유전자 염기서열은 계통학적 관계를 분석하기 위해, 상기 서열을 블라스트 (http://www.ncbi.nlm.nih.gov/BLAST)에서 검색하였고, 네이버-조이닝 분석 (Neighbor-joining analysis) 법으로 계통수 (phylogenetic tree)를 정립하였다. 그 결과, 메가스파에라 파우치보란스 (Megaspahera pouchivorans)와 93.8 % 상동성을 보이는 것을 확인하였다(도 18). 따라서, 본 발명자는 상기 균주를 "메가스페라 헥사노이카 "로 명명하였다.
메가스페라 헥사노이카의 최적생장 온도 및 pH를 확인하기 위해 각각의 pH(5.5, 6.0, 6.5, 7.0, 7.5, 8.0)와 온도(30, 35, 37, 40, 45 ℃)에 따른 균주성장을 관찰하였으며, 그 결과 생장에 가장 적합한 온도와 pH는 37 ℃, pH 6.5인 것을 확인하였다.
실시예 3. C5-C8 유기산 생산 확인
본 발명에 따른 메가스페라 헥사노이카 균주의 C5-C8 유기산 생산 능력을 확인하기 위한 실험을 진행하였다.
상기 표 1의 조성을 가진 modified PYM 배지에서, pH 6.5, 온도 37 ℃에서 24-72 시간 동안 배양하였으며, 배양시 0.05 내지 0.1 몰의 C2 내지 C6 유기산을 첨가하였으며, 구체적인 실험결과는 하기 도 20 내지 도 23에 나타내었다.
실험 결과, 본 발명에 따라 분리된 메가스페라 헥사노이카 균주는 C2 및 C3 유기산을 이용하여 C5 유기산을 생산하고, C2 및 C4 유기산을 이용하여 C6 유기산을 생산하며, C2 및 C5 유기산을 이용하여 C7 유기산을 생산하고, C2 및 C6 유기산을 이용하여 C8 유기산으로 생산하는 능력을 가지고 있음을 확인할 수 있었다.
실시예 4. C5-C8 유기산 전환생산 확인
본 발명에 따른 메가스페라 헥사노이카 균주가 C2-C6 유기산으로부터 C5-C8 유기산을 전환생산함을 확인하기 위한 실험을 진행하였다.
구체적으로, 2ml mPYF 배지에 Gas chromatography 전용 시린지를 이용하여 액상으로 된 1,2,3,4가 C13 labeled된 부티르산 6 ul을 첨가한 후, NaOH 와 얇은 pH 프로브를 이용하여 pH 를 6.2~6.5 근처에 맞추고 hungate tube에 첨가하여 혐기적으로 처리한 후 멸균하였다. 분리균을 멸균된 배지에 첨가하여 48시간 동안 배양하였으며, 배양 후 모든 용액을 원심분리를 이용하여 셀을 제거하고, 상등액을 hexane 등으로 2회 추출하였다. liquid-iquid extraction 추출된 hexane을 GC-TOF MASS 를 이용하여 Ion mass spectrum을 분석하였으며, 그 결과를 하기 도 24에 나타내었다.
이를 통해 본 발명에 따른 메가스페라 헥사노이카 균주는 외부에서 첨가된 부티르산을 이용하여 헥사노익산을 생산함을 확인하였는바, 본 발명에 따른 균주는 외부에서 첨가된 C2-C6 유기산으로부터 C5-C8 유기산을 전환생산하는 능력을 가지고 있음을 확인할 수 있었다.
기탁기관명 : 한국미생물보존센터(국외)
수탁번호 : KCCM11835P
수탁일자 : 20160428
메가스페라 헥사노이카 균주를 이용하여 헥사노익산을 생산하는 방법
실시예 1. 아세테이트, 부티레이트 및 pH를 변수로 한 반응표면분석법을 통해 도출한 헥사노익산 최대 생산 조건
본 발명의 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양시 헥사노익산 생산에 영향을 끼치는 변수로서 아세테이트, 부티레이트 및 pH를 선정하여 반응표면분석법을 통해 최적 조건을 분석하였다. 균주 배양 시, 기본 배지로서, 상기 표 3에 기재된 조성을 갖는 PYG 배지를 사용하였다.
도 25는 아세테이트와 부티레이트 각각의 농도에 따른 헥사노익산의 생산량을 나타낸 그래프이다. 이를 통해 아세테이트와 부티이트는 모두 헥사노익산의 생산에 도움이 되는 인자임을 확인하였다.
도 26 내지 도 29는 상기 변수들을 적용하여 헥사노익산을 최대로 생산하는 조건을 도출하기 위한 과정 및 그 결과를 나타낸 도면이다. 이를 통해 세 가지 변수 중 아세테이트가 헥사노익산의 생산에 가장 큰 영향을 미치는 것을 확인하였다. 또한, 아세테이트 8.74 g/L, 부티레이트 13.63 g/L, pH 6.24의 조건에서 헥사노익산을 최대로 생산하며, 그 양은 10.61 g/L로 나타났다.
상기 반응표면분석법을 통해 도출된 조건 하에서 실제 헥사노익산의 생산성을 평가하였다. 도 30은 상기 예측 모델을 통해 도출된 각 변수(아세테이트, 부티레이트, 및 pH)들의 조건하에서 실제 헥사노익산의 생산량을 나타낸 그래프이다. 이를 통해 상기 최적 조건하에서 헥사노익산의 최대 생산량은 10.8 g/L까지 증가하는 것을 확인하였다.
실시예 2. 효모추출물 및 펩톤을 변수로 한 반응표면분석법을 통해 도출한 헥사노익산 최대 생산 조건
종래 미생물을 이용하여 헥사노익산을 생산하는 경우, 필요이상의 질소원이 들어가게 되어 과다한 비용이 발생하고, 헥사노익산의 생산량에도 악영향을 끼친다는 점에 착안하여, 질소원의 최적 첨가 농도를 도출하는 실험을 진행하였다.
본 발명에서는 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양 시, 헥사노익산 생산에 영향을 끼치는 변수로서 질소원 중 효모 추출물, 펩톤, 비프 추출물을 선정하여 반응표면분석법을 통해 최적 조건을 분석하였다. 균주 배양 시, 기본 배지로서, 상기 표 4에 기재된 조성을 갖는 mPYF 배지를 사용하였다.
도 31은 효모 추출물과 비프 추출물이 헥사노익산의 생산에 미치는 영향을 반응표면분석법을 통해 도출한 결과이다. 이를 통해, 효모 추출물의 농도가 증가할수록 헥사노익산의 생산성이 향상되는 것에 비해, 비프 추출물은 헥사노익산의 생산성 향상에 도움이 되지 않음을 확인하였다.
도 32는 효모 추출물과 펩톤이 헥사노익산의 생산에 미치는 영향을 반응표면분석법을 통해 도출한 결과이다. 이를 통해 효모 추출물과 펩톤을 혼합하여 사용시 이들의 상승 작용에 의해 헥사노익산의 생산성이 크게 향상됨을 확인하였으며, 특히 효모 추출물과 비프 추출물을 각각 8.75 g/L씩, 즉 1:1의 비율로 첨가 시 헥사노익산을 최대로 생산하며, 그 양은 10.00 g/L로 나타났다.
실시예 3. 헥사노익산 최대 생산을 위한 효모추출물의 농도
실시예 2를 통해 헥사노익산의 생산량에 가장 큰 영향을 끼치는 것을 확인하고, 단일 효모 추출물만을 질소원으로 첨가 시, 헥사노익산의 생산에 미치는 영향을 측정하였다. 도 33은 효모 추출물의 농도에 따른 헥사노익산 생산량 및 세포 성장을 나타낸 그래프이다. 이를 통해 효모 추출물의 농도가 6 내지 18 g/L의 범위에서 헥사노익산의 생산량이 증가하며, 특히 효모 추출물의 농도가 12 g/L일 때 헥사노익산을 최대로 생산하며, 그 양은 12 g/L로 나타났다.
실시예 4. 배양 후, 회수 단계에서 헥사노익산 생산성 향상을 위한 적정 pH
실시예 1을 통해 본 발명에 따른 균주 배양 시 pH는 5.5 내지 6.5, 특히 6.0 내지 6.5로 유지하는 것이 바람직하다는 것을 확인하고, 상기 균주를 배양 후, 유기용매를 사용하여 헥사노익산을 회수하는 단계에서의 최적의 pH를 도출하기 위한 비교실험을 진행하였다. pH는 4.73과 6.11로 적정한 두 가지 조건에서, 올레일 알코올과 알라민 336이 9:1의 비율로 혼합된 혼합용매를 사용하여 실험을 진행하였다.
도 34는 균주의 배양 후, pH에 따른 헥사노익산 추출 효율을 나타낸 그래프이다. 그 결과, pH가 6.11에서는 40% 가량의 헥사노익산이 추출되는 것에 비해, pH가 4.73인 조건에서는 95% 이상의 헥사노익산이 추출되는 것에 비해 것을 확인하였다.
실시예 5. 혼합용매를 사용한 헥사노익산 추출평가
본 발명의 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양하면서, 올레일 알코올과 알라민 336의 혼합용매를 사용하여 헥사노익산을 추출 시 생산성을 확인하기 위해 실험을 진행하였다. 균주 배양 시, 기본 배지에 아세테이트, 부티레이트 및 헥사노익산이 각각 10 g/L가 더 포함된 배지를 사용하였다.
도 35는 배양액과 혼합용매의 부피비를 1:1로 하여 추출 발효 시 헥사노익산의 생산성을 나타낸 그래프이다. 도면에 나타난 바와 같이 배양액과 혼합용매는 섞이지 않고 계면을 유지한 상태에서 헥사노익산이 추출됨을 확인하였으며, 상기 조건에서 추출시, 헥사노익산의 생산성(productivity)은 0.41 g/L/hr로 나타났으며, 헥사노익산의 생산량은 20 g/L로 나타났다.
실시예 6. pH 조절제를 사용한 헥사노익산 추출평가
pH 조절제로서 부티르산을 사용시, 헥사노익산의 생산성에 미치는 영향을 알아보기 위해 배양 하는 동안 3 M의 부티르산을 첨가한 것을 제외하고 상기 실시예 5와 동일한 조건하에서 실험을 진행하였다.
도 36은 배양액과 혼합용매의 부피비를 1:1로 하고, pH 조절제로서 3 M의 부티르산(butyric acid)을 투입하여 추출 발효 시, 헥사노익산의 생산성을 나타낸 그래프이다. 그 결과, 헥사노익산이 추출됨에도 불구하고 pH는 5.99로 유지되었으며, 특히 헥사노익산의 생산성은 1.25 g/L/hr, 생산량은 52 g/L로 크게 향상됨을 확인하였다.
실시예 7. 프룩토스와 질소원을 주기적으로 첨가하여 배양시, 헥사노익산 출평가
본 발명의 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양하면서, 프룩토스(탄소원)와 질소원을 첨가하여 유가 배양하면서 헥사노익산을 추출 시 생산성을 확인하기 위한 실험을 진행하였다. 배양 하는 동안 배양액과 혼합용매의 부피비를 2:1로 하고, 40 g/L의 프룩토스와 10 g/L의 질소원을 2회 첨가한 것을 제외하고는 실시예 6과 동일한 조건하에서 실험을 진행하였다.
도 37은 배양액과 혼합용매의 부피비를 2:1로 하고, pH 조절제로서 3 M의 부티르산(butyric acid)을 투입하며, 프룩토스와 질소원을 주기적으로 투입하여 추출 발효 시, 헥사노익산의 생산성을 나타낸 그래프이다. 그 결과, 유가 배양으로 인해 배양액 내에 축적되는 헥사노익산의 농도가 증가하게 되면서 헥사노익산의 생산 속도가 0.27 g/L/hr 로 다소 감소한 반면, 프룩토스와 질소원의 주기적 투입으로 인하여 헥사노익산의 생산량은 최대 140 g/L까지 향상됨을 확인할 수 있었다.
실시예 8. 프룩토스와 질소원을 연속적으로 첨가하여 배양시, 헥사노익산 출평가
본 발명의 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양하면서, 프룩토스(탄소원)와 질소원 투입으로 인해 발생하는 균의 생육에 대한 충격을 완화하기 위해, 프룩토스와 질소원을 연속적으로 공급하여 헥사노익산을 추출 시 생산성을 확인하기 위한 실험을 진행하였다.
도 38은 추출 발효 시, 농축된 질소원과 탄소원을 연속적으로 공급하는 반응 공정 도면이다. 도 38에 나타난 바와 같이, 균주를 배양하는 동안 시린지 펌프를 이용하여 700 g/L의 고농도로 농축된 프룩토스를 1 ml/hr의 속도로, 10 배 이상 고농도로 농축된 질소원을 1 ml/hr로 연속적으로 공급하였으며, 상기 조건에서 추출 시 헥사노익산의 생산성을 도 39에 나타내었다. 그 결과, 헥사노익산의 최대 생산량은 140.8 g/L로 상기 실시예 7과 유사하게 나타났으나, 헥사노익산의 생산성이 0.73 g/L/hr로 크게 향상됨을 확인하였다.
기탁기관명 : 한국미생물보존센터(국외)
수탁번호 : KCCM11835P
수탁일자 : 20160428
C4 및 C6 유기산 생산능을 갖는 신규 균주 및 상기 신규 균주를 이용한 바이오 연료의 제조방법
실시예 1. C4 유기산 및 C6 유기산의 동시 생산 능력을 갖는 균주 선별
실시예 1.1 C4-C6 유기산 생성 균주의 분리
당 알코올을 이용하여 C4-C6 원료물질인 헥사노익산과 부티르산을 생성하는 미생물의 선별 과정을 하기와 같이 수행하였다.
수정된 클로스트리듐 아세토부틸리큠 배지 (modified Clostridium acetobutyricum medium, mCAB)에 갈락티톨 (galactitol)이 첨가된 선택 배지를 사용하였다. 선택 배지는 1 L의 증류수에 10 g의 칼락티톨, 4 g의 효모 추출물 (yeast extract), 1 g의 트립톤 (tryptone), 0.5 g의 아스파라긴 (asparagine), 0.1 g의 MgSO4.7H2O, 0.1 g의 MnSO4.H2O, 0.015 g의 FeSO4.7H2O, 0.1 g의 NaCl, 1.5 g의 KH2PO4, 및 1.5 g의 K2HPO4를 녹이고, 혈청 병에 분주한 후, 아르곤 가스 치환을 통해서 혐기성 상태로 사용하였다. 종균으로 사용한 슬러지는 중랑 하수처리장으로부터 채취하였다. 슬러지를 100 ℃에서 30 분 동안 열처리하여 포자 형성균을 제외한 미생물을 사멸시킨 후, 선택배지 양의 5 % (v/v)가 되게 배지에 접종하고, 37 ℃ 온도에서 150 rpm의 교반 속도로 2 주일 동안 배양하였다. 배양과정에서 초산 (acetic acid, C2), 프로피오닉산 (propionic acid, C3), 부티르산 (butyric acid, C4), 펜타노익산 (pentanoic acid, C5), 헥사노익산 (hexanoic acid, C6) 등의 유기산과 수소가 생성되었다. 생성된 유기산 중에서 헥사노익산 및 부티르산을 최대로 생성하는 미생물을 선별하고 미생물 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans)로 명명하였다 (한국미생물보존센터에 기탁, 기탁번호 KCCM10991P).
실시예 1.2 미생물 배양액에서 헥사노익산의 생성 확인
실시예 1.1에서 배양된 배양액에 포함된 C4-C6 원료 물질은 불꽃 이온화 검출기 (flame ionization detector, FID)를 장착한 가스 크로마토그래피 (GC-FID, agilent 6890N)로 분석하고, 발생한 수소 및 이산화탄소는 열전도도 검출기 (thermal conductivity detector, TCD)를 장착한 가스 크로마토그래피로 분석하였다. 또한, 헥사노익산의 존재는 GC-TOF-MS를 이용하여 확인하였다. 배양액의 헥사노익산 분리를 위해서는 하기와 같이 유기용매 추출법을 이용하였다. 먼저, 배양액을 헥산 (hexane) 및 에틸아세테이트 (ethyl acetate)의 혼합액인 추출용매와 각각 동량으로 분별 깔대기에 분주하고, 20분 동안 강하게 진탕 한 후, 유기용매 층을 분리하여 가스 크로마토그래피로 분석하였다. GC-FID 분석에서 헥사노익산 표준물질이 약 14.0 분 경과 후에 검출되는 것을 확인하였으며, 배양액을 동일 기기에 주입한 결과, 동일 시간대인 약 14.0 분 경과 후에 헥사노익산이 추출되어 나오는 것을 확인하였다 (도 40 및 41). 더욱 정확한 분석을 위해서, 도 42a 내지 42d와 같이 GC-TOF-MS에 헥산 및 에틸아세테이트로 추출한 용매를 분석한 결과 나타나는 물질을 기존의 자료물질과 비교하여 헥사노익산의 존재를 확인하였다.
실시예 1.3 미생물 카프로이시프로두센스 갈락티토리보란스의 동정
신규한 미생물 카프로이시프로두센스 갈락티토리보란스의 동정을 위해서 다면분석법을 적용하였다. 생리 및 생화학적 특성분석을 위해서는 API 20NE와 API 50CH 검사 및 지방산 성분을 분석하였으며, 유전자 분석을 위해서는 16S ribosomal DNA를 분석하였다.
API 검사는 API 표준방법으로 수행하였다. API 20A 검사에서 카프로이시프로두센스 갈락티토리보란스는 인돌생성, 우레아제, 시트릭산 이용성 반응의 경우 음성으로 나타났고, 젤라틴 가수분해 반응은 양성으로 나타났다. 49 종류의 탄소원 이용을 확인하는 시험인 API 50CH에서는 글리세롤, D-아라비노오스, L-아라비노오스, 리보오스, D-자일로오스, 갈락토오스, 포도당, 프럭토오스, 만노오스, 둘시톨, 이노시톨, N-아세틸글루코사민, 셀로비오스, 맥아당, 락토오스, 전분, 글리코겐, D-타가토오스, L-푸코오스를 이용하였다. 또한, 환원제인 Na2S 9H2O 0.5 g/L가 첨가된 배지에서는 만니톨, 만노오스, 락토오스, 글루코오스, D,L-아라비노오스, 프럭토오스, 자일로오스를 각 0.1 M 씩 첨가하였을 때 이들 각 탄소원을 기질로 이용하였으며, 1 g/L 내외로 헥사노익산이 생성되었다.
미생물 카프로이시프로두센스 갈락티토리보란스의 막 지방산 조성을 분석하기 위해 펨즈 (FAMEs, Fatty Acid Methyl Esters) 분석을 수행하였다. 카프로이시프로두센스 갈락티토리보란스 배양체를 회수하고 지방산을 분리하기 위해 수산화나트륨/메탄올 용액을 이용하여 가수분해한 후, 염산/메탄올 용액을 이용하여 펨즈를 형성하였다. 펨즈는 유기용매를 이용하여 추출하고, 가스 크로마토그래피를 이용하여 분석하였다. 클로스트리듐 속 카프로이시프로두센스 갈락티토리보란스의 막 지방산 성분의 구성비율 (%)은 C14 : 0 (3.17 %), C16 : 0 (3.12 %), C14 : 0 DMA (5.41 %), C16 : 0 DMA (22.15 %), C18 : 0 DMA (4.04 %), C16 : 0 ALDE (14.09 %), C18 : 0 ALDE (3.13 %), anteiso-C17 : 0 FAME (5.99 %), C18 : 1 CIS 9 (1.12 %), C18 : 1 CIS 9 DMA (7.65 %), C18 : 1 CIS 11 DMA (4.62 %), C18 : 2 CIS 9, 12 (1.08 %), Summed features 1 (2.52 %), Summed features 5 (2.84 %); Summed features 7 (5.56 %), Summed features 8 (3.49 %) 그리고 Summed features 11 (10.03 %) 이었다.
또한, 본 발명에 따른 신규한 미생물 카프로이시프로두센스 갈락티토리보란스의 16S 리보좀 DNA (16S ribosomal DNA) 분석을 위해서, 배양체에서 DNA를 추출하고 16S 리보좀 DNA를 증폭할 수 있는 프라이머인 27F과 1492R 프라이머로 DNA를 증폭하여 약 1.3 Kb의 PCR 산물을 얻었다. 이 DNA 단편의 서열을 분석하여 약 1259 bp의 염기서열을 확인하였다 (서열번호 35). 카프로이시프로두센스 갈락티토리보란스의 16S 리보좀 DNA의 염기서열을 기존에 알려진 세균의 16S 리보좀 DNA 서열과 비교하였다. 염기서열분석으로 카프로이시프로두센스 갈락티토리보란스는 클로스트리듐 속의 미생물로 동정되었다. 카프로이시프로두센스 갈락티토리보란스와 가장 근연한 미생물은 클로스트리듐 스포로스페로이데스 (Clostridium sporosphaeroides) DSM 1294T 과 클로스트리듐 렙텀 (Clostridium leptum) DSM 753T으로서, 각각 94.49 %와 94.26 %의 16S 리보좀 DNA 상동성이 나타났다.
또한, 계통학적 분석을 위해서 카프로이시프로두센스 갈락티토리보란스의 16S 리보좀 DNA 유전자 서열을 근연균들의 서열과 비교하였다. 계통도는 근연 미생물간의 서열을 cluster X 프로그램을 이용하여 정렬하고 정렬된 서열을 MEGA3 프로그램을 이용하여 분석하였다. 인접-결합 (neighbour-joining) 방법으로 만든 계통도에서도 카프로이시프로두센스 갈락티토리보란스는 클로스트리듐 스포로스페로이데스 DSM 1294T과 같은 집단에 속하는 것으로 나타났다 (도 43 참조).
따라서, 16S ribosomal DNA 상동성 분석과 계통학적 분석을 통해서, 카프로이시프로두센스 갈락티토리보란스는 기존에 알려지지 않은 새로운 미생물로서 클로스트리듐 속으로 확인되었다. 카프로이시프로두센스 갈락티토리보란스와 가장 근연균인 클로스트리듐 스포로스페로이데스 DSM 1294T과 클로스트리듐 렙텀 DSM 753T은 배양 과정에서 초산 및 부티르산을 생성하였지만, 헥사노익산을 생성하지는 않는 것으로 확인되었다.
실시예 2. 카프로이시프로두센스 갈락티토리보란스에 의한 부티르산 및 헥사노익산 생산
카프로이시프로두센스 갈락티토리보란스로부터 헥사노익산을 생산하기 위한 최적 배지 조건으로는, 풍부한 복합 질소원이 요구되었으며, 동시에 낮은 산화환원 포텐셜이 요구되었다. 복합 질소원으로는 비프 추출물, 효모 추출물, 트립톤, 펩톤 등이 사용되었으며, 산화환원 포텐셜을 낮게 유지하기 위해서는 환원제인 Na2S 5H2O~9H2O 또는 Cystein HCl를 첨가하였다. 환원제인 Na2S 5H2O~9H2O 또는 씨스테인 HCl의 농도를 0.5 g/L 이상으로 배지에 첨가하면 카프로이시프로두센스 갈락티토리보란스에 독성이 나타나므로 0.5 g/L 이상 첨가하지 않았으며, 각 환원제들이 독성을 나타내지 않는 범위에서 두 가지 환원제를 혼합 사용함으로써 환원력을 증가시켰다. 씨스테인-HCl을 배지에 첨가하였을 때, 일반적으로 약 -100 mV의 산화환원 포텐셜을 얻을 수 있었으며, Na2S 5H2O~9H2O를 첨가하였을 때는 약 -500 mV의 산화환원 포텐셜을 얻을 수 있었다.
하기에는 카프로이시프로두센스 갈락티토리보란스를 배양하기에 적합한 배지의 조성을 서술하였다.
카프로이시프로두센스 갈락티토리보란스를 헥사노익산 생산배지 1 (조성: 트립티카아제 펩톤 5.00 g /L, 펩톤 5.00 g/L, 효모 추출물 10.00 g/L, 쇠고기 진액 5.00 g/L와 포도당 10.00 g/L의 탄소원 및 0.50 g/L 씨스테인-HCl의 환원제, 미네랄 원소로서 CaCl2 × 2H2O 0.25 g/L, MgSO4 × 7H2O 0.50 g/L, K2HPO4 1.00 g/L, KH2PO4 1.00 g/L, NaHCO3 10.00 g/L이 포함된 염용액 40ml)에서 초기 pH 7.2에서 40 ℃의 온도로 설정된 진탕 배양기에서 120 rpm으로 배양하였다. 약 2일 동안 관찰한 결과, 카프로이시프로두센스 갈락티토리보란스는 포도당을 기질로 사용하여 헥사노익산 및 부티르산을 생산하였으며 분광광도계를 이용하여 탁도를 측정한 결과 4 (600nm)까지 카프로이시프로두센스 갈락티토리보란스가 성장하였다. 헥사노익산의 생산량은 약 1.5 g/L이며 부티르산의 생산량은 0.7 g/L 내외였다. 생산배지 2 (조성: 1 L의 증류수에 4 g의 칼락티톨, 5 g의 효모 추출물, 5 g의 K2HPO4, 4 g의 포도당, 1 g의 맥아당, 1 g의 셀로비오스, 1 g의 가용성 녹말, 125 g의 육류 조리된 배지, 0.25 g의 시스테인) 및 생산배지 3 (조성: 1 L의 증류수에 3 g의 효모 추출물, 10 g의 쇠고기 진액, 20 g의 갈락티톨, 5 g의 포도당, 5 g의 트립톤, 1 g의 가용성 녹말, 1 g의 소듐아세테이트, 0.25 g의 시스테인)에서 37 ℃의 온도로 정치 배양하였다. 그 결과, 카프로이시프로두센스 갈락티토리보란스는 헥사노익산, 부티르산, 및 초산을 생산하였다 (도 41 참조). 동일 배지에서 배양액의 pH 조절 없이 5일 동안 배양 후 측정 한 결과, 카프로이시프로두센스 갈락티토리보란스의 농도는 OD600 2.3까지 증가하였으며, 주 대사산물로 2~3 g/L의 헥사노익산과 약 2 g/L의 부티르산이 생산되었다.
도 48에는 글루코오스를 첨가한 배지에 본 발명에 따른 카프로이시프로두센스 갈락티토리보란스를 배양하는 경우, 배양시간에 따른 미생물 성장도 및 글루코오스 소비량을 그래프로 도시하였으며, 도 49에는 배양시간에 따른 아세트산, 부티르산 및 헥사노익산의 생산량을 그래프로 도시하였고, 도 50에는 갈락티톨을 첨가한 배지에 본 발명에 따른 카프로이프로두센스 갈락티보란스를 배양하는 경우, 배양시간에 따른 갈락티톨 소비량과, 아세트산, 부티르산 및 헥사노익산의 생산량을 그래프로 도시하였다.
실시예 3. 생산된 부티르산 및 헥사노익산의 회수
카프로이시프로두센스 갈락티토리보란스가 생산한 부티르산과 헥사노익산의 분리는 추출법을 이용하였다. 추출은 헥산, 에틸아세테이트, 디에틸 에테르, 클로로포름 등의 물과 섞이지 않는 유기용매를 사용하였다. 배양액 및 물과 섞이지 않는 유기용매를 동일한 부피로 수분 동안 혼합하여 정치시킨 후, 카프로이시프로두센스 갈락티토리보란스 배양산물 중의 부티르산, 헥사노익산을 추출하였다. 또한, 추출하기 전 배양액의 pH를 질산을 이용하여 3 정도로 낮추었으며, 각각의 산에 대한 pKa값 이하 상태를 유지시켜 추출효율을 증가시켰다. 도 45에 도시된 장치와 같이, 신속한 추출을 위해 강산을 첨가하지 않으면서 pH를 강하시킬 수 있는 고압 반응기를 이용하여 추출하였으며, CO2를 약 10~50 bar 사이로 가압하여 추출효율을 증가시켰다. CO2를 용액 중에서 가압하면 CO2가 하기 반응식 9와 같이 중탄산으로 형성되어 pH가 일시적으로 감소되며, 따라서 유기산의 추출효율이 증가된다.
<반응식 9>
CO2 + H2O → H2CO3 → H+ + CO3 -
도 44는 가해주는 CO2 압력에 따라서 유기산의 추출 효율이 변화되는 것을 나타내는 그래프이며, 도 44를 참조하면, CO2 압력이 높아질수록 추출효율이 증가하는 것을 알 수 있다. 또한, 도 46에는 pH 6에서 CO2 10 bar의 압력을 가해주면서 추출 용매와 배지의 비율을 달리해가며 추출한 유기산 추출 효율을 도시하였다. 도 46을 참조하면, 유기산 추출효율은 추출제의 부피에 따라 달라졌으며, 추출 용매의 부피가 증가할수록 추출 효율도 증가하는 것이 관찰되었다.
또한, 유기용매를 이용하는 것 외에도 일차 알코올 (primary alcohol) 화합물을 이용하여 배양액 중에서 부티르산, 헥사노익산을 추출하였다. 일차 알코올 또는 그 외 추출 용매로 사용가능한 물질로는 올레일 알코올 (oleyl alcohol), 도데칸올, 데칸올, MIBK, 케로센, 유동 파라핀 등이 있으며, 특히 올레일 알코올은 물에 대한 용해도가 낮고 미생물의 활성을 유지시키면서 추출할 수 있다는 장점을 가지고 있다. 더 나아가, 3차 아민 종류로도 부티르산, 헥사노익산의 추출이 가능하였는 바, 데-트리데실 아민, 알라민 336 (alamine 336, 트리 N-옥틸 아민), 알리쿼트 (aliquot), 트리옥틸 아민 등을 사용할 수도 있었다. 또한, 3차 아민과 일차 알코올을 일정 비율 (1:9~2:8)로 혼합한 용액을 배양액에 첨가하여 이상 (bi-phase) 상태에서도 연속적으로 부티르산 및 헥사노익산을 분리할 수 있었다.
유기 용매를 사용하지 않는 또 다른 유기산 분리 방법으로는, 음이온 교환수지 방법이 있었으며, 헥사노익산은 배양액 중에 음전하를 나타내므로 음이온교환수지를 사용하여 배양액 중에 헥사노익산을 흡착시킬 수 있었고, 흡착된 헥사노익산을 알카리 용액과 산성용액 그리고 에탄올을 이용하여 음이온교환수지로부터 탈착시킬 수 있었다. 사용된 음이온교환수지는 재사용이 가능하였다. 알라민 336과 올레일 알코올을 1 : 9로 혼합한 용매로 미생물에 의해 생성된 부티르산을 추출한 결과는 도 5와 같으며, 전술한 반응식 1의 반응이 일어나는 고압반응기에서 20 분 동안 반응시 50 bar의 압력에서는 74 %의 효율로 부티르산이 추출 용매층으로 회수 되었다.
실시예 4. 부티르산 및 헥사노익산을 사용한 C8-C12 화합물의 합성
전술한 다양한 화학 촉매 및 효소 촉매를 사용하여 헥사노익산과 부티르산으로부터 다양한 C8-C12 화합물을 합성하였다. 즉, 카프로이시프로두센스 갈락티토리보란스가 생산한 헥사노익산과 부티르산을 이용하여, 촉매 반응 및 수소화 반응을 수행함으로써, 부틸 부틸레이트 (butylbutyrate), 헥실 헥사노에이트 (hexylhexanoate), 헥실 부틸레이트 (hexylbutyrate), 부틸 헥사노에이트 (butylhexanoate), 헥산올 (hexanol), 및 부탄올을 생산하였다. 예를 들어, 에스테라아제를 사용한 C8-C12 화합물 합성의 경우, 1 %의 부티르산과 1 % 부탄올에 노보자임 435를 처리한 후, 60분 후에 90 % 이상의 부티르산과 부탄올이 부틸 부티레이트로 합성되었다.
실시예 5. 해양 바이오매스 및 폐자원을 활용한 C4-C6 유기산 합성
해양으로부터 쉽게 얻을 수 있는 바이오매스는 우뭇가사리 미세조류 등이 있다. 우뭇가사리는 미생물이 기질로 사용할 수 있는 갈락탄과 같은 갈락토스 다량체를 다량으로 포함하고 있어서, 카프로이시프로두센스 갈락티토리보란스가 우뭇가사리의 분해 산물인 갈락티톨을 이용하여 C4-C6 화합물을 생성하므로, 하기 방법을 사용하여 우뭇가사리로부터 갈락티톨 등의 분해산물을 얻었다.
먼저, 바다에서 채취한 우뭇가사리를 세척, 건조, 및 분쇄 과정을 통해서 전처리하고, 당화를 시도하였다. 우뭇가사리를 3회 세척한 후 건조하고, 건조체를 믹서기를 이용하여 분쇄 한 후, H2SO4가 0.5~2% 포함된 용액에 침지하여 산처리하고, 0.5~1 시간 동안 90~120 ℃로 가열시킨 후, 성상을 관찰하였다. 도 47을 참조하면, 황산으로 처리하지 않은 우뭇가사리는 열처리 후 갈락탄의 영향으로 쉽게 겔화 되는 현상을 보였으나, 황산을 이용해 전처리한 우뭇가사리는 가수분해되어 액화되었다. HPLC-ELSD를 이용해 액화된 용액을 분석한 결과, 갈락탄이 가수분해되어 여러 종류의 단당류들을 얻었으며, 그 중 갈락토오스가 가장 많아서 전체의 60~70%를 차지하였다. 이렇게 생성된 갈락토오스를 고압 및 고온 조건하에서 수소를 첨가시킨 다음 수소화반응 촉매를 이용하여 갈락티톨을 제조하였다.
기탁기관명 : 한국미생물보존센터(국외)
수탁번호 : KCCM10991P
수탁일자 : 20090216
헥사노익산 생산에 관여하는 신규 유전자, 상기 유전자로 형질전환된 미생물, 이를 이용한 헥사노익산 제조방법, 및 이를 이용한 헥산올의 제조방법
이하, 실시예를 통해서 본 발명을 더욱 상세하게 설명하기로 하되, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위를 제한하는 것은 아니다.
실시예 1. 균주 선별
종균으로 사용한 슬러지는 중랑 하수처리장으로부터 채취하였다. 슬러지를 100 ℃에서 30 분 동안 열처리하여 포자 형성균을 제외한 미생물을 사멸시킨 후, 선택배지 양의 5 % (v/v)가 되게 배지에 접종하고, 37 ℃ 온도에서 150 rpm의 교반 속도로 2 주일 동안 배양하였다. 배양과정에서 초산 (acetic acid, C2), 프로피오닉산 (propionic acid, C3), 부티르산 (butyric acid, C4), 펜타노익산 (pentanoic acid, C5), 헥사노익산 (hexanoic acid, C6) 등의 유기산과 수소가 생성되었다. 생성된 유기산 중에서 헥사노익산을 최대로 생성하는 미생물을 수차례 계대배양하여 단일 콜로니를 획득하고, 이를 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans)으로 명명하였다. 해당 균주를 한국미생물보존센터에 기탁하였다 (기탁번호 KCCM 10991P).
실시예 2. 유전체 분석
유전체 분석은 마크로젠 (대한민국)에 의뢰하여 유전자 정보 파일을 입수한 후, VIM 에디터 (http://www.vim.org)와 벡터엔티아이 프로그램 (https://www.lifetechnologies.com/kr/ko/home/life-science/cloning/vector-nti-software.html) 및 아르테미스 (https://www.sanger.ac.uk/resources/software/artemis) 프로그램을 사용하여 유전자 정보를 확인하였으며, 확인된 모든 유전자 정보에서 E.C. number를 추출하여 KEGG Mapper (http://www.genome.jp/kegg/mapper.html)에 업로드함으로써 경로를 그렸다. 경로가 맵핑된 자료를 이용하여 다시 벡터엔티아이 프로그램에 삽입하여 플라스미드 및 유기산 생산 클러스터를 작성하였다.
도 54에는 상기 과정에 의해서 얻어진 카프로이시프로두센스 갈락티토리보란스의 전체 유전자 지도를 도시하였다. 유전체 분석 결과, 총 2516개의 암호화 서열, 62개의 tRNA 서열 및 12개의 rRNA 서열이 검색되었으며, 도 54에는 도시된 원의 최외곽으로부터 안쪽으로, 정방향 암호화 서열 (최외곽 청색), 역방향 암호화 서열 (최외곽으로부터 두 번째 청색), tRNA (최외곽으로부터 세 번째 적색) 및 rRNA (최외곽으로부터 네 번째 하늘색)가 도시되어 있고, 가장 안쪽 두 개의 동심원은 외부로부터 GC 함량 및 GC skew를 나타낸다. 도 54로부터, GC skew가 급격히 변화되는 지점이 복제 기점임을 유추할 수 있다.
도 55는 카프로이시프로두센스 갈락티토리보란스가 보유한 한 개의 플라스미드 지도를 나타낸다. 이러한 플라스미드에는 카프로이시프로두센스 갈락티토리보란스 균의 세포 분열과 관련된 유전자들인 Fts Z, W, L 가 포함되어 있으며, 포자 형성과 연관된 Spo VD가 함께 포함되어 있다. 또한, HtpG와 같은 스트레스 반응 유전자들도 포함되어 있다. 이러한 플라스미드의 역할은 스트레스를 받았을 때 플라스미드 안에 포함된 유전자들이 작동하여 세포 분열 또는 포자를 형성하게 하는 기능을 한다.
실시예 3. 본 발명에 따른 유전자를 보유한 미생물의 배양액에서 헥사노익산의 생성 확인
카프로이시프로두센스 갈락티토리보란스으로부터 헥사노익산을 생산하기 위한 최적 배지 조건으로는, 풍부한 복합 질소원이 요구되었으며, 동시에 낮은 산화환원 포텐셜이 요구되었다. 복합 질소원으로는 비프 추출물, 효모 추출물, 트립톤, 펩톤 등이 사용되었으며, 산화환원 포텐셜을 낮게 유지하기 위해서는 환원제인 Na2S 5H2O~9H2O 또는 Cystein HCl를 첨가하였다. 환원제인 Na2S 5H2O~9H2O 또는 씨스테인 HCl의 농도를 0.5 g/L 이상으로 배지에 첨가하면 카프로이시프로두센스 갈락티토리보란스에 독성이 나타나므로 0.5 g/L 이상 첨가하지 않았으며, 각 환원제들이 독성을 나타내지 않는 범위에서 두 가지 환원제를 혼합 사용함으로써 환원력을 증가시켰다. 씨스테인-HCl을 배지에 첨가하였을 때, 일반적으로 약 -100 mV의 산화환원 포텐셜을 얻을 수 있었으며, Na2S 5H2O~9H2O를 첨가하였을 때는 약 -500 mV의 산화환원 포텐셜을 얻을 수 있었다.
카프로이시프로두센스 갈락티토리보란스을 헥사노익산 생산배지 (조성: 염 용액 1 리터 당, 효모 추출물 15.5 g, 트립톤 10 g, FeSO4·7H2O 0.04 g, 소듐 아세테이트 0.85 g 및 소듐 부티레이트 6.5 g을 포함하고, 갈락티톨은 200 g 포함)에서 초기 pH 7.2에서 40 ℃의 온도로 설정된 진탕 배양기에서 120 rpm으로 배양하였다.
전술한 배양액에 포함된 헥사노익산을 올레일 알코올과 알라민 336 (9:1)의 혼합액인 추출용매를 사용하여 추출하였으며, 도 56에는 배양 시간에 따른 배양액의 O.D. 수치 변화, 배양액 중 헥사노익산 함량 및 부산물로서 부티르산 함량 변화를 도시하였다. 도 56을 참조하면 배양 약 12일 경과 후, 배양액 중 헥사노익산이 90 g/L의 높은 함량으로 포함됨을 알 수 있다.
기탁기관명 : 한국미생물보존센터(국외)
수탁번호 : KCCM10991P
수탁일자 : 20090216
본 발명에 따르면, C5-C8 유기산 생산에 관여하는 신규 유전자를 제공함으로써, 이를 이용하여 C5-C8 유기산을 향상된 생산 수율로 제공할 수 있다.
또한, 본 발명의 균주를 프룩토스를 포함하는 배지에서 배양하는 동안 외부에서 C2-C6 유기산을 첨가할 경우 C5-C8 유기산으로 선택적 전환생산이 가능하며, 이를 바이오 연료의 생산에 이용할 수 있다.
또한, 본 발명에 따른 헥사노익산 생산방법을 이용하면, 헥사노익산의 생산성을 획기적으로 향상시킬 수 있다.
또한, 본 발명에 따르면, 우수한 생산능으로 C4 및 C6 유기산을 동시생산하는 신규 균주의 배양 산물을 통해서 고에너지 화합물인 C8-C12 화합물 및 바이오연료를 생산해낼 수 있다.
또한, 본 발명에 따르면, 갈락티톨을 영양원으로 하여 최종적으로 헥사노익산을 생산하는데 관여하는 유전자를 제공함으로써, 이를 이용하여 헥사노익산, 더 나아가 주요 바이오 연료 성분 중 하나인 헥산올을 더욱 향상된 생산 수율로 제공할 수 있다.
Figure PCTKR2016004705-appb-I000011
Figure PCTKR2016004705-appb-I000012
Figure PCTKR2016004705-appb-I000013
Figure PCTKR2016004705-appb-I000014

Claims (20)

  1. 서열번호 1 내지 8로 이루어진 군으로부터 선택된 하나 이상의 염기서열을 포함하는, C5-C8 유기산 생합성에 관여하는 효소를 코딩하는 유전자.
  2. 제1항에 따른 유전자를 포함하는 벡터.
  3. 제2항에 있어서,
    상기 벡터는 서열번호 1 또는 서열번호 10으로 표시되는 유전자를 포함하는 제1 벡터; 및 서열번호 4로 표시되는 유전자를 포함하는 제2 벡터로 구성된 것을 특징으로 하는 벡터.
  4. 제3항에 있어서,
    상기 제2 벡터는 서열번호 2 내지 3 및 서열번호 5 내지 9로 표시되는 유전자 중에서 선택되는 1종 이상을 더 포함하는 것을 특징으로 하는 벡터.
  5. 제2항에 따른 벡터에 의해 형질전환된, C5-C8 유기산 생산능력을 가지는 미생물.
  6. 프룩토스를 포함하는 배지에서 배양시 C5-C8 유기산을 생산하는 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P).
  7. 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양액에 접종하여 배양하는 단계; 및
    상기 배양액으로부터 헥사노익산을 회수하는 단계를 포함하는 헥사노익산 생산방법.
  8. 제7항에 있어서,
    상기 배양액은 아세테이트와 부티레이트를 더 포함하는 것을 특징으로 하는 헥사노익산 생산방법.
  9. 제7항에 있어서,
    상기 배양액은 6 내지 18 g/L의 효모 추출물을 더 포함하는 것을 특징으로 하는 헥사노익산 생산방법.
  10. 제7항에 있어서,
    상기 배양하는 동안 pH를 6 내지 6.5로 유지하고, 상기 배양 후 헥사노익산을 회수하는 동안 pH를 4 내지 5로 유지하는 것을 특징으로 하는 헥사노익산 생산방법.
  11. 메가스페라 헥사노이카(Megasphaera hexanoica) 균주(KCCM11835P)를 배양액에 접종하여 배양하는 단계;
    상기 배양하는 동안 배양액에 올레일 알코올과 알라민 336의 혼합용매를 가하는 단계; 및
    상기 혼합용매를 제거하여 혼합용매 중의 헥사노익산을 수득하는 단계를 포함하는 헥사노익산 생산방법.
  12. 탄소원 배지 중에서 배양시 C4 유기산 및 C6 유기산의 동시 생산 능력을 갖는 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans) 균주 (KCCM10991P).
  13. a) 탄소원 배지 중에서 카프로이프로두센스 갈락티보란스 균주를 배양하여 C4 유기산 및 C6 유기산을 생산하는 단계;
    b) 상기 a) 단계의 생산물로부터 상기 C4 유기산 및 C6 유기산을 분리하는 단계;
    c) 상기 b) 단계로부터 분리된 C4 유기산 및 C6 유기산과 동일한 몰 수의 C4 알코올 및 C6 알코올을 첨가하여 혼합액을 제조하는 단계;
    d) 상기 c) 단계의 혼합액에 대해서 촉매 반응을 수행하여 C8-C12 화합물을 제조하는 단계; 및
    e) 상기 d) 단계로부터 제조된 C8-C12 화합물을 수소 기체와 반응시킴으로써 C4 알코올 및 C6 알코올을 생산하는 단계
    를 포함하는 바이오 연료의 제조방법.
  14. 아세틸-CoA를 출발 물질로 하여 헥사노익산을 생산하는 대사경로에 관여하는 효소들을 암호화하는 서열번호 36으로 표시되는 유전자.
  15. 제14항에 있어서, 상기 유전자는 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans) 균주 (기탁번호 KCCM 10991P)로부터 분리된 것을 특징으로 하는 유전자.
  16. 갈락티톨을 출발 물질로 하여 피루브산을 생산하는 대사경로에 관여하는 효소들을 암호화하는 서열번호 37로 표시되는 유전자.
  17. 제16항에 있어서, 상기 유전자는 카프로이시프로두센스 갈락티토리보란스 (Caproiciproducens galactitolivorans) 균주 (기탁번호 KCCM 10991P)로부터 분리된 것을 특징으로 하는 유전자.
  18. 서열번호 36으로 표시되는 유전자 및 서열번호 37로 표시되는 유전자를 포함하는 벡터에 의해서 형질전환된 미생물.
  19. 갈락티톨을 포함하는 탄소원 배지 중에서 제18항에 따른 미생물 균주를 배양하여 헥사노익산을 생산하는 단계를 포함하는 헥사노익산의 제조방법.
  20. a) 갈락티톨을 포함하는 탄소원 배지 중에서 제18항에 따른 미생물 균주를 배양하여 헥사노익산을 생산하는 단계;
    b) 상기 a) 단계의 생산물로부터 상기 헥사노익산을 분리하는 단계;
    c) 상기 b) 단계로부터 분리된 헥사노익산에 동일한 몰 수의 헥산올을 첨가하여 혼합액을 제조하는 단계;
    d) 상기 c) 단계의 혼합액에 대해서 촉매 반응을 수행하여 C12 화합물을 제조하는 단계; 및
    e) 상기 d) 단계로부터 제조된 C12 화합물을 수소 기체와 반응시킴으로써 헥산올을 생산하는 단계
    를 포함하는 헥산올의 제조방법.
PCT/KR2016/004705 2015-05-06 2016-05-04 C5-c8 유기산 생산에 관여하는 신규한 유전자, 균주 및 이를 이용한 바이오 연료의 제조방법 WO2016178513A1 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR1020150063131A KR20160131239A (ko) 2015-05-06 2015-05-06 헥사노익산 생산에 관여하는 신규 유전자, 상기 유전자로 형질전환된 미생물, 이를 이용한 헥사노익산 제조방법, 및 이를 이용한 헥산올의 제조방법
KR10-2015-0063131 2015-05-06
KR1020150063414A KR101766955B1 (ko) 2015-05-06 2015-05-06 C5-c8 유기산 생산에 관여하는 신규 유전자, 상기 유전자를 포함하는 벡터, 상기 벡터로 형질전환된 미생물, 및 이를 이용한 c5-c8 유기산 생산방법
KR1020150063129A KR20160131237A (ko) 2015-05-06 2015-05-06 C5-c8 유기산을 생산하는 신규 균주 및 이를 이용하여 c5-c8 유기산을 생산하는 방법
KR1020150063130A KR20160131238A (ko) 2015-05-06 2015-05-06 C4 및 c6 유기산 생산능을 갖는 신규 균주 및 상기 신규 균주를 이용한 바이오 연료의 제조방법
KR10-2015-0063129 2015-05-06
KR10-2015-0063130 2015-05-06
KR10-2015-0063414 2015-05-06
KR1020150063128A KR101745084B1 (ko) 2015-05-06 2015-05-06 메가스페라 헥사노이카 균주를 이용하여 헥사노익산을 생산하는 방법
KR10-2015-0063128 2015-05-06

Publications (1)

Publication Number Publication Date
WO2016178513A1 true WO2016178513A1 (ko) 2016-11-10

Family

ID=57218193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004705 WO2016178513A1 (ko) 2015-05-06 2016-05-04 C5-c8 유기산 생산에 관여하는 신규한 유전자, 균주 및 이를 이용한 바이오 연료의 제조방법

Country Status (1)

Country Link
WO (1) WO2016178513A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180059375A (ko) * 2016-11-25 2018-06-04 한양대학교 산학협력단 폐바이오매스 및 메가스파에라 헥사노이카 균주를 이용하여 헥사노익산을 생산하는 방법
KR20180059376A (ko) * 2016-11-25 2018-06-04 한양대학교 산학협력단 메가스파에라 헥사노이카 유래 Acyl CoA transferase를 활용한 C3-C8 알코올의 선택적 생산 방법
KR20180061050A (ko) * 2016-11-28 2018-06-07 한양대학교 산학협력단 메가스파에라 엘스데니 균주와 메가스파에라 헥사노이카 균주를 공동 배양하여 c4-c6 유기산을 생산하는 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090004238A (ko) * 2007-07-06 2009-01-12 한국과학기술연구원 부티르산의 화학 촉매 반응에 의한 부탄올 제조방법
KR20130087298A (ko) * 2012-01-27 2013-08-06 한국과학기술연구원 인시츄 추출 발효를 이용하여 헥사노산을 생산하는 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090004238A (ko) * 2007-07-06 2009-01-12 한국과학기술연구원 부티르산의 화학 촉매 반응에 의한 부탄올 제조방법
KR20130087298A (ko) * 2012-01-27 2013-08-06 한국과학기술연구원 인시츄 추출 발효를 이용하여 헥사노산을 생산하는 방법

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI [O] 26 April 2011 (2011-04-26), "[Clostridium] cellulosi genome assembly DG5, chromosome : I", XP055326912, retrieved from ncbi Database accession no. LM995447.1 *
DATABASE NCBI [O] 26 April 2011 (2011-04-26), JEON: "Clostridium sp. BS-1 16S ribosomal RNA gene, partial sequence", XP055326909, retrieved from ncbi Database accession no. FJ805840.2 *
DATABASE NCBI [O] 27 February 2015 (2015-02-27), MARX,H.: "Megasphaera elsdenii strain DSM 20460 draft genome", XP055326907, retrieved from ncbi Database accession no. HE576794.1 *
DATABASE NCBI [O] 6 December 2008 (2008-12-06), TOH: "Sodalis glossinidius str. 'morsitans' DNA, complete genome", XP055326914, retrieved from ncbi Database accession no. AP 008232.1 *
JEON, BYOUNG SEUNG ET AL.: "Production of Hexanoic Acid from D-galactitol by a Newly Isolated Clostridium sp. BS-1", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 88, no. 5, 2010, pages 1161 - 1167, XP019841815 *
JEON, BYUNG - SEUNG ET AL.: "High Hexanoic Acid Production by Megasphaera BS-4 with Sodium Acetate and Butyrate", 32ND SYMPOSIUM ON BIOTECHNOLOGY FOR FUELS AND CHEMICALS, 2010 *
PARK, SEONG HUN: "Biorefinery", BT NEWS, vol. 20, no. 2, 2013, pages 43 - 47 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180059375A (ko) * 2016-11-25 2018-06-04 한양대학교 산학협력단 폐바이오매스 및 메가스파에라 헥사노이카 균주를 이용하여 헥사노익산을 생산하는 방법
KR20180059376A (ko) * 2016-11-25 2018-06-04 한양대학교 산학협력단 메가스파에라 헥사노이카 유래 Acyl CoA transferase를 활용한 C3-C8 알코올의 선택적 생산 방법
KR101990212B1 (ko) 2016-11-25 2019-06-17 한양대학교 산학협력단 메가스파에라 헥사노이카 유래 Acyl CoA transferase를 활용한 C3-C8 알코올의 선택적 생산 방법
KR101990211B1 (ko) * 2016-11-25 2019-06-17 한양대학교 산학협력단 폐바이오매스 및 메가스파에라 헥사노이카 균주를 이용하여 헥사노익산을 생산하는 방법
KR20180061050A (ko) * 2016-11-28 2018-06-07 한양대학교 산학협력단 메가스파에라 엘스데니 균주와 메가스파에라 헥사노이카 균주를 공동 배양하여 c4-c6 유기산을 생산하는 방법
KR102012643B1 (ko) * 2016-11-28 2019-08-28 한양대학교 산학협력단 메가스파에라 엘스데니 균주와 메가스파에라 헥사노이카 균주를 공동 배양하여 c4-c6 유기산을 생산하는 방법

Similar Documents

Publication Publication Date Title
WO2009125924A2 (ko) 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
WO2016178513A1 (ko) C5-c8 유기산 생산에 관여하는 신규한 유전자, 균주 및 이를 이용한 바이오 연료의 제조방법
WO2013119020A1 (ko) 에탄-1, 2-디올 생산 미생물 및 이를 이용한 에탄-1, 2-디올 생산 방법
WO2012053794A2 (en) Microorganism producing o-phosphoserine and method of producing l-cysteine or derivatives thereof from o-phosphoserine using the same
WO2010064764A1 (en) Method of preparing piceatannol using bacterial cytochrome p450 and composition therefor
WO2011025203A2 (en) Novel preparation method of human metabolites of simvastatin or lovastatin using bacterial cytochrome p450 and composition therefor
WO2012018226A2 (ko) 카다베린 고생성능을 가지는 변이 미생물 및 이를 이용한 카다베린의 제조방법
WO2015199396A1 (ko) O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법
WO2011155799A2 (ko) 탄화수소 생성능을 가지는 변이 미생물 및 이를 이용한 탄화수소의 제조방법
WO2011037414A2 (ko) 알코올 생성능이 증가된 재조합 변이 미생물 및 이를 이용한 알코올의 제조방법
WO2014148754A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2018131898A2 (ko) 메틸로모나스 속 dh-1 균주의 신규한 용도
WO2015163682A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2011037415A2 (ko) 부탄올 생성능이 증가된 재조합 미생물 및 이를 이용한 부탄올의 제조방법
WO2013085361A2 (ko) 4-하이드록시부티릭산 고생성능을 가지는 변이 미생물 및 이를 이용한 4-하이드록시부티릭산의 제조방법
WO2012176981A1 (en) Enhanced heterologous protein production in kluyveromyces marxianus
WO2020226341A1 (ko) L-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산을 생산하는 방법
CA2253977C (en) Process for the preparation of amino alcohols and derivatives thereof
WO2018182361A1 (ko) CRISPR/Cas 시스템과 재조합 효소 및 단일가닥 올리고디옥시리보핵산을 이용한 코리네박테리움 변이균주 제조방법
WO2021054545A1 (ko) 7-adca 제조를 위한 데아세트옥시세팔로스포린 c의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주
CN111662858A (zh) Hgms2菌株突变体在制备4-雄甾烯-3,17-二酮(4-ad)中的应用
WO2016013844A1 (ko) 페닐아세틸 호모세린 락톤 유도체의 생산 방법
WO2018208120A2 (ko) 바이오매스에서 유래한 탄소원의 고성능 대사를 위한 신규 미생물 균주
WO2015060649A1 (ko) O-숙시닐호모세린 생산 미생물 및 이를 이용한 o-숙시닐호모세린의 생산방법
WO2019117612A1 (ko) 대사공학적으로 조작된 미생물을 이용한 헴의 세포외 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789619

Country of ref document: EP

Kind code of ref document: A1