WO2016158084A1 - Process for producing diene-based polymer - Google Patents

Process for producing diene-based polymer Download PDF

Info

Publication number
WO2016158084A1
WO2016158084A1 PCT/JP2016/055036 JP2016055036W WO2016158084A1 WO 2016158084 A1 WO2016158084 A1 WO 2016158084A1 JP 2016055036 W JP2016055036 W JP 2016055036W WO 2016158084 A1 WO2016158084 A1 WO 2016158084A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
tank
solution
diene
monomer
Prior art date
Application number
PCT/JP2016/055036
Other languages
French (fr)
Japanese (ja)
Inventor
北村 隆
誠 野瀬
和也 吉並
山下 博司
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2016550283A priority Critical patent/JP6098859B2/en
Priority to KR1020167023441A priority patent/KR101855605B1/en
Priority to CN201680015915.7A priority patent/CN107428853B/en
Publication of WO2016158084A1 publication Critical patent/WO2016158084A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds

Definitions

  • the present invention relates to a method for producing a diene polymer capable of obtaining a high yield.
  • the polymerization reaction of a diene monomer is an exothermic reaction
  • temperature control is important in the production of a diene polymer. If the temperature cannot be controlled within the predetermined temperature range, the reaction yield decreases. Furthermore, there is a possibility that desired physical properties cannot be obtained in the diene polymer.
  • the polymerization temperature within a predetermined range (for example, Patent Document 1).
  • a predetermined range for example, Patent Document 1
  • the temperature of the monomer solution is controlled before being supplied to the polymerization tank.
  • a predetermined polymerization temperature is reached (sensible heat effect).
  • the temperature controls there is a method of supplying a refrigerant called brine to the periphery of the polymerization tank.
  • These cooling methods can control the temperature of the polymerization solution in the polymerization tank, improve the reaction rate, and improve the yield.
  • cooling with brine is from the outside of the polymerization tank, even if the polymerization solution can be sufficiently cooled on the wall of the polymerization tank, there is a possibility that the cooling inside the polymerization tank may be insufficient. If the temperature of the polymerization solution is not uniform, a homogeneous polymer may not be obtained. Thus, there is a problem that cooling with brine is insufficient.
  • a plurality of polymerization tanks may be arranged in series for the purpose of increasing the production amount or obtaining a polymer having complicated physical properties.
  • the temperature of the monomer solution before supplying the first tank can be controlled (cooled, sometimes heated) by a heat exchanger.
  • the polymerization temperature is controlled to a predetermined temperature (sensible heat effect).
  • the polymerization solution is at a predetermined temperature in the first tank polymerization tank, and it is not easy to cool the polymer solution before supplying it to the second and subsequent polymerization tanks.
  • an object of the present invention is to provide a method for producing a diene polymer capable of obtaining a high yield by appropriate cooling.
  • an object of the present invention is to provide a method for producing a diene polymer that can obtain a high yield by appropriate cooling of a polymerization tank other than the initial tank.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a diene polymer capable of eliminating a shortage of monomers and obtaining a high yield in a polymerization tank other than the initial tank. To do.
  • the present invention is a method for producing a diene polymer by supplying a diene monomer solution as a raw material to a polymerization tank.
  • the diene monomer or the diene monomer solution having a temperature lower than that of the polymerization solution inside the polymerization tank is supplied to the polymerization tank separately from the raw material supply.
  • the present invention is a method for producing a diene polymer through a plurality of polymerization tanks.
  • the diene monomer or the diene monomer solution having a temperature lower than that of the polymerization solution inside the polymerization tank is supplied to any polymerization tank other than the initial tank polymerization tank.
  • the diene polymer is polybutadiene and the diene monomer is butadiene.
  • the said invention is the same molecular weight in this initial stage polymerization tank and this polymerization tank.
  • the monomer concentration of the diene monomer solution is 30 wt% to 70 wt%, and the temperature difference between the polymerization solution inside the polymerization tank and the diene monomer solution is 30 ° C. to 100 ° C.,
  • the supply amount of the diene monomer solution is 5% to 20% of the main flow rate.
  • a polymer having a lower molecular weight is polymerized than in the initial tank polymerization tank, and the high molecular weight polymer and the low molecular weight polymer are mixed at a weight ratio of 2: 8 to 8: 2.
  • the monomer concentration of the diene monomer solution is 65 wt% to 75 wt%
  • the temperature difference between the polymerization solution inside the polymerization tank and the diene monomer solution is 40 to 105 ° C.
  • the supply amount of the diene monomer solution is 5 to 20% of the main flow rate.
  • a medium molecular weight polymer is polymerized in the initial tank polymerization tank, a plastic resin is polymerized in the polymerization tank, and both are mixed.
  • the monomer concentration of the diene monomer solution is 100 wt% (monomer)
  • the temperature difference between the polymerization solution inside the polymerization tank and the diene monomer is 50 ° C. to 90 ° C.
  • the supply amount of the diene monomer is 5 to 20% of the main flow rate.
  • the said invention has a 1st process, a 2nd process, and a 3rd process.
  • the high molecular weight polymer is polymerized in the first tank polymerization tank of the first process, the polymerization solution is supplied to a polymerization tank other than the first tank of the first process, and the low molecular weight polymer is polymerized in the polymerization tank.
  • the medium molecular weight polymer is polymerized in the initial tank polymerization tank of the second process, the polymerization solution is supplied to a polymerization tank other than the initial tank of the second process, and the plastic resin is polymerized in the polymerization tank.
  • the product of the first step and the product of the second step are mixed.
  • the monomer concentration of the diene monomer solution is 30 wt% to 50 wt%
  • the temperature difference between the polymerization solution inside the polymerization tank and the diene monomer solution is 40 to 105 ° C.
  • the supply amount of the diene monomer solution is 5 to 20% of the main flow rate.
  • the monomer concentration of the diene monomer solution is 100 wt% (monomer)
  • the temperature difference between the polymerization solution inside the polymerization tank and the diene monomer is 35 ° C. to 90 ° C.
  • the supply amount of the diene monomer is 5 to 20% of the main flow rate.
  • the present invention can obtain a high yield by appropriate cooling.
  • a high yield can be obtained by appropriate cooling of the polymerization tank other than the initial tank.
  • the present invention can solve the shortage of monomers in a polymerization tank other than the first tank, and can obtain a high yield.
  • a diene monomer solution is supplied as a raw material to a polymerization tank to produce a diene polymer.
  • a polymerization monomer adjusting solution consisting of a diene monomer solution is continuously supplied. Add water in the water dissolution tank. Next, an organoaluminum compound is added as a promoter in an aging tank. The monomer solution is controlled to a predetermined temperature via a heat exchanger, and a transition metal catalyst and a molecular weight regulator are added in a polymerization tank to carry out polymerization.
  • a mixed solution of an anti-aging agent and a reaction stop agent is added to stop the polymerization.
  • the polymer solution obtained by these is dried with a hot air drier to obtain a polymer product.
  • a series of flow from the raw material to the product is defined as a main flow path, and a flow rate of the polymerized monomer adjustment solution supplied to the main flow path is defined as a main flow rate.
  • the temperature of the polymerization solution in the polymerization tank is controlled.
  • the temperature of the monomer solution is controlled (cooled, sometimes heated) through a heat exchanger and supplied to the polymerization tank.
  • a refrigerant called brine is supplied around the polymerization tank.
  • the diene monomer or the diene monomer solution at a lower temperature than the polymerization solution inside the polymerization tank is supplied to the polymerization tank separately from the raw material supply (separate from the main flow path) Cool the polymerization solution.
  • a diene monomer or a diene monomer solution having a temperature lower than the polymerization solution in the polymerization tank in the second and subsequent polymerization tanks is separated from the main flow path. Supply and cool the polymerization solution inside the polymerization tank.
  • examples of the diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and the like. These may be used singly or in combination of two or more, and may be used by copolymerizing with other dienes such as 1,3-hexadiene. Of these, 1,3-butadiene is preferred.
  • Solvents include aromatic hydrocarbons such as toluene, benzene and xylene, aliphatic hydrocarbons such as n-hexane, butane, heptane and pentane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, 1-butene, cis Examples include olefinic hydrocarbons such as C4 fractions such as -2-butene and trans-2-butene, hydrocarbon solvents such as mineral spirits, solvent naphtha, and kerosene, and halogenated hydrocarbon solvents such as methylene chloride. It is done.
  • cyclohexane or a mixture of cis-2-butene and trans-2-butene is preferably used.
  • the metal catalyst examples include a zirconium-based catalyst, a hafnium-based catalyst, a chromium-based catalyst, an iron-based catalyst, a tungsten-based catalyst, a randomoid-based catalyst, an actinoid-based catalyst, and a lithium-based catalyst.
  • a metal catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Transition metal catalyst examples include a cobalt catalyst, a nickel catalyst, a neodymium catalyst, a vanadium catalyst, a titanium catalyst, and a gadolinium catalyst. Among these, a cobalt catalyst or a nickel catalyst is preferable, and a cobalt catalyst is more preferable.
  • a transition metal catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Cobalt catalysts include cobalt halide salts such as cobalt chloride and cobalt bromide; inorganic acid cobalt salts such as cobalt sulfate and cobalt nitrate; cobalt octaate, cobalt octylate, cobalt naphthenate, cobalt acetate, cobalt malonate, etc. And cobalt complexes such as bisacetylacetonate cobalt, trisacetylacetonate cobalt, acetoacetic acid ethyl ester cobalt, cobalt salt pyridine complex, cobalt salt picoline complex, and cobalt salt ethyl alcohol complex. Of these, cobalt octaate is preferable.
  • the amount of the cobalt-based catalyst added is usually preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 4 mol of the cobalt-based catalyst with respect to 1 mol of the diene monomer, and preferably 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 5 mol. Particularly preferred.
  • Organoaluminum cocatalyst is used with a transition metal catalyst.
  • the addition amount of the organoaluminum cocatalyst is preferably in the range of 50 to 2000 mol per 1 mol of the transition metal catalyst.
  • Organic aluminum includes halogen-containing organic aluminum compounds and halogen-free organic aluminum compounds, which may be used in combination.
  • non-halogenated organoaluminum compounds include organoaluminum hydrides such as trialkylaluminum, dialkylaluminum hydride, and alkylaluminum sesquihydride.
  • organoaluminum hydrides such as trialkylaluminum, dialkylaluminum hydride, and alkylaluminum sesquihydride.
  • Trialkylaluminum is preferred, and triethylaluminum (TEA) is more preferred.
  • halogenated organoaluminum examples include dialkylaluminum chloride, dialkylaluminum bromide, alkylaluminum dichloride, alkylaluminum dibromide, alkylaluminum sesquichloride, and alkylaluminum sesquibromide. Of these, organoaluminum chloride is preferable, and diethylaluminum chloride (DEAC) is more preferable.
  • ⁇ Molecular weight regulator for example, non-conjugated dienes such as cyclooctadiene, allene, methylallene (1,2-butadiene), or ⁇ -olefins such as ethylene, propylene, butene-1 can be used. . In order to further suppress the formation of gel during polymerization, a known gelation inhibitor can be used.
  • Typical anti-aging agents are phenol-based 2,6-di-t-butyl-p-cresol (BHT), phosphorus-based trinonylphenyl phosphite (TNP), and sulfur-based 4.6-bis (octylthio). Methyl) -o-cresol, dilauryl-3,3′-thiodipropionate (TPL), and the like.
  • reaction terminator As a reaction terminator, a large amount of a polar solvent such as water or an alcohol such as methanol or ethanol is added to the polymerization solution.
  • a polar solvent such as water or an alcohol such as methanol or ethanol
  • Macromolecules, medium molecules, and low molecules are defined according to the molecular weight of the polymer.
  • a polymer having a Mooney viscosity (hereinafter referred to as ML) greatly exceeding 40 or having a molecular weight that is too high to be measured with an ML viscometer is defined as a polymer.
  • ⁇ Diene polymer> There are various types of diene polymers, and the basic production method is common as described in the above outline, but the production process differs slightly depending on each grade. Along with this, the cooling method is also different. The general grade, bimodal grade, resin rubber composite polybutadiene grade, and multimodal grade will be described.
  • FIG. 1 is a conceptual diagram of a general grade manufacturing process. Specific numerical values will be described in Examples.
  • the first tank (R1) and the final tank (R2) produce a polymer having the same physical properties (medium molecule).
  • the polymerization solution is supplied to the final tank (R2).
  • the activity peak of the Cis reaction is around 70 to 75 ° C., and when it exceeds 80 ° C., the deactivation of the catalyst increases. Therefore, the polymerization temperature is set to 60-80 ° C.
  • the polymerization temperature in the first tank (R1) is 60 to 80 ° C., and the sensible heat effect as in the first tank (R1) cannot be expected in the final tank (R2). Moreover, cooling with brine alone is not sufficient. Cooling is required in the final tank (R2).
  • the monomer is consumed in the first tank (R1), and the amount of monomer is insufficient in the final tank (R2).
  • a diene monomer solution having a temperature lower than the polymerization solution inside the polymerization tank is supplied to the final tank (R2) separately from the main flow path (apart from the raw material supply), and the polymerization solution inside the polymerization tank is cooled. .
  • the monomer concentration of the diene monomer solution supplied separately is 30 wt% to 70 wt%, which is higher than the raw material.
  • the temperature difference between the polymerization solution in the final tank (R2) and the diene monomer solution supplied separately is suitably 30 ° C to 100 ° C, and preferably 55 ° C to 90 ° C.
  • the temperature of the diene monomer solution supplied separately is -20 ° C to 30 ° C.
  • the supply amount of the diene monomer solution supplied separately is 5% to 20% of the main flow rate.
  • the polymerization temperature in the final tank (R2) can be uniformly controlled to 60 to 80 ° C.
  • the monomer is consumed by the polymerization in the first tank (R1), but the monomer is replenished in the final tank (R2).
  • FIG. 2 is a conceptual diagram of a bimodal grade manufacturing process. Specific numerical values will be described in Examples.
  • the bimodal grade is a diene polymer (for example, polybutadiene) having different molecular weight (high molecular weight and low molecular weight) physical properties. Specifically, the behavior of bimodal molecular weight distribution is shown. A high molecular weight polymer is produced in the first tank (R1), and when a predetermined polymerization rate is reached, the polymerization solution is supplied to the final tank (R2), and a low molecular weight polymer is produced in the final tank (R2).
  • the weight ratio of high molecular weight to low molecular weight is set to 2: 8 to 8: 2. Preferably, it is 3: 7 to 7: 3, more preferably 4: 6 to 6: 4. Since the polymerization rate is relatively high in the final tank (R2), it is necessary to react more than the general grade.
  • the reaction rate in the final tank (R2) (reaction heat: 330 Kcal / kg-BR) is large, and cooling is required compared to the general grade. In addition, more monomer replenishment is required.
  • a diene monomer solution having a temperature lower than that of the polymerization solution inside the polymerization tank is supplied to the final tank (R2) separately from the main flow path, and the polymerization solution inside the polymerization tank is cooled.
  • the monomer concentration of the diene monomer solution supplied separately is 65 wt% to 75 wt%, which is higher than the raw material. Also, the concentration is higher than that of the general grade.
  • the temperature difference between the polymerization solution in the final tank (R2) and the separately supplied diene monomer solution is suitably 40 ° C to 105 ° C, preferably 73 ° C to 95 ° C.
  • the temperature of the diene monomer solution supplied separately is suitably ⁇ 20 ° C. to 20 ° C., more preferably ⁇ 20 ° C. to 15 ° C.
  • the supply amount of the diene monomer solution supplied separately is suitably 5% to 20% of the main flow rate, and preferably 10% to 20%. 13% to 17% is more preferable.
  • the polymerization temperature in the final tank (R2) can be uniformly controlled to 65 to 85 ° C.
  • the monomer is consumed by the polymerization in the first tank (R1), but the monomer is replenished in the final tank (R2).
  • FIG. 3 is a conceptual diagram of a process for producing a resin rubber composite polybutadiene grade. Specific numerical values will be described in Examples.
  • Resin rubber composite polybutadiene grade is a grade in which a high cis-diene polymer (rubber) and a highly crystalline syndiotactic diene polymer (resin) are combined by continuous polymerization technology, and is a kind of special polymer alloy.
  • the highly crystalline syndiotactic diene polymer is a highly crystalline syndiotactic diene polymer resin (for example, highly crystalline syndiotactic polybutadiene resin (SPB)).
  • the highly crystalline syndiotactic diene polymer resin may contain trans polybutadiene.
  • a medium molecular weight polymer is produced in the first tank (R1) using a transition metal catalyst.
  • the polymerization solution is supplied to the final tank (R2).
  • a syndiotactic diene polymer resin is produced using a catalyst obtained from carbon sulfide.
  • the syndio reaction which is a reaction of a highly crystalline syndiotactic diene polymer resin (for example, a highly crystalline syndiotactic polybutadiene resin (SPB)), is less likely to react than the Cis reaction and has a low polymerization temperature.
  • the activity peak is low at around 45 ° C.
  • the molecular weight decreases and the physical properties deteriorate.
  • the sensible heat effect cannot be expected due to the heat generated by the polymerization reaction in the first tank (R1). Therefore, cooling is more necessary in the final tank (R2).
  • the syndio reaction is less reactive than the Cis reaction and requires more monomers.
  • a diene monomer having a temperature lower than that of the polymerization solution inside the polymerization tank is supplied to the final tank (R2) separately from the main flow path, and the polymerization solution inside the polymerization tank is cooled.
  • the monomer concentration of the diene monomer solution supplied separately is 100 wt%. That is, a monomer is supplied. Or the monomer solution according to this may be sufficient.
  • the temperature difference between the polymerization solution in the final tank (R2) and the separately supplied diene monomer is suitably 50 ° C to 90 ° C, and preferably 55 ° C to 87 ° C.
  • the temperature of the diene monomer supplied separately is suitably ⁇ 20 ° C. to 0 ° C., more preferably ⁇ 20 ° C. to ⁇ 5 ° C.
  • the supply amount of the diene monomer supplied separately is suitably 5% to 20% of the main flow rate, and preferably 10 to 20%. 11 to 15% is more preferable.
  • the polymerization temperature in the final tank (R2) can be uniformly controlled to 50 to 70 ° C.
  • the monomer is consumed by the polymerization in the first tank (R1), but the monomer is replenished in the final tank (R2).
  • FIG. 4 is a conceptual diagram of an example manufacturing process of a multimodal grade. Specific numerical values will be described in Examples.
  • the multimodal grade is a diene polymer having a plurality of different molecular weights.
  • it has the physical properties of the bimodal grade and the resin rubber composite polybutadiene grade.
  • the multimodal grade is manufactured through the first step (bimodal grade), the second step (resin rubber composite polybutadiene grade), and the third step (mixing).
  • a high molecular weight polymer is polymerized in the first tank (R1-1), the polymerization solution is supplied to the final tank (R2-1), and a low molecular weight polymer is produced in the final tank (R2-1). To do.
  • the medium molecular weight polymer is polymerized in the first tank (R1-2), the polymerization solution is supplied to the final tank (R2-2), and the syndiotactic diene-based polymer in the final tank (R2-2). A resin is produced.
  • the product of the first step and the product of the second step are mixed to produce a multimodal grade diene polymer.
  • a diene monomer solution having a temperature lower than that of the polymerization solution inside the polymerization tank is supplied to the final tank (R2-1) separately from the main flow path, and the polymerization solution inside the polymerization tank is cooled.
  • the monomer concentration of the diene monomer solution supplied separately is suitably 30 wt% to 50 wt%, preferably 35 to 50 wt%, more preferably 38 to 46 wt%. It is.
  • the temperature difference between the polymerization solution in the final tank (R2-1) and the separately supplied diene monomer solution is suitably 40 ° C to 105 ° C, preferably 55 ° C to 95 ° C.
  • the temperature of the diene monomer solution supplied separately is suitably ⁇ 20 ° C. to 20 ° C.
  • the supply amount of the diene monomer solution supplied separately is suitably 5% to 20% of the main flow rate, and preferably 10% to 20%. 11% to 15% is more preferable.
  • the polymerization temperature in the final tank (R2-1) can be uniformly controlled to 60 to 85 ° C.
  • the monomer is consumed by the polymerization in the first tank (R1-1), but the monomer is replenished in the final tank (R2-1).
  • the monomer concentration of the diene monomer solution supplied separately is 100 wt%. That is, a monomer is supplied. Or the monomer solution according to this may be sufficient.
  • the temperature difference between the polymerization solution inside the final tank (R2-2) and the separately supplied diene monomer is suitably 35 ° C to 90 ° C, preferably 40 ° C to 86 ° C.
  • the temperature of the diene monomer supplied separately is -20 ° C to 25 ° C.
  • the supply amount of the diene monomer supplied separately is suitably 5% to 20% of the main flow rate, and preferably 10% to 20%. 10 to 14% is more preferable.
  • the polymerization temperature in the final tank (R2-2) can be uniformly controlled to 55 to 70 ° C.
  • the monomer is consumed by the polymerization in the first tank (R2-1), but the monomer is replenished in the final tank (R2-2).
  • temperature control and monomer replenishment can be realized in a balanced manner in both the final tank (R2-1) and the final tank (R2-2).
  • a high yield can be obtained in the product.
  • desired physical properties can be obtained.
  • FIG. 5 shows a modification in which the production of general grade is performed in a series of three series polymerization tanks (R1 to R3).
  • a diene monomer solution having a temperature lower than that of the polymerization solution is supplied to the second tank (R2) and the third tank (R3) separately from the main flow path, and the polymerization solution inside the polymerization tank is cooled.
  • the concentration of the diene monomer solution separately supplied to the second tank (R2) is 30 wt% to 70 wt%, which is higher than the raw material.
  • the temperature difference between the polymerization solution inside the second tank (R2) and the separately supplied diene monomer solution is suitably 30 to 100 ° C. 55 to 90 ° C is preferable.
  • the temperature of the diene monomer solution supplied separately is suitably ⁇ 20 to 30 ° C.
  • the amount of diene monomer solution supplied separately to the second tank (R2) is 5 to 20% of the main flow rate.
  • the polymerization temperature can be uniformly controlled to 60 to 80 ° C. in the second tank (R2).
  • the concentration of the diene monomer solution separately supplied to the third tank (R3) is suitably 30 wt% to 70 wt%, more preferably 36 wt% to 60 wt%, and a higher concentration than the raw material.
  • the temperature difference between the polymerization solution in the third tank (R3) and the separately supplied diene monomer solution is suitably 30 to 100 ° C., preferably 55 to 90 ° C.
  • the temperature of the diene monomer solution supplied separately is suitably ⁇ 20 to 30 ° C.
  • the supply amount of the diene monomer solution separately supplied to the third tank (R3) is suitably 5 to 20% of the main flow rate, preferably 5 to 15%, more preferably 5 to 8%.
  • the polymerization temperature can be uniformly controlled to 60 to 80 ° C. in the third tank (R3).
  • a trimodal grade may be produced via a series of three series polymerization tanks.
  • the trimodal grade is a diene polymer having different physical properties (high molecular weight, medium molecular weight and low molecular weight).
  • a high molecular weight polymer is produced in the first tank, a medium molecular weight polymer is produced in the second tank, and a low molecular weight polymer is produced in the final tank.
  • Fig. 6 shows a modification of the general grade.
  • the present invention has a remarkable effect when it is intended for a polymerization tank other than the initial tank polymerization tank, but it can also be applied to the case of only one tank.
  • the monomer concentration of the diene monomer solution supplied separately is suitably 30 wt% to 70 wt%, more preferably 36 wt% to 46 wt%, and the monomer concentration is equal to or higher than that of the raw material.
  • the temperature difference between the polymerization solution inside the polymerization tank and the diene monomer solution supplied separately is suitably 30 ° C. to 100 ° C., preferably 55 ° C. to 90 ° C.
  • the temperature of the diene monomer solution supplied separately is -20 ° C to 30 ° C.
  • the supply amount of the diene monomer solution supplied separately is 5% to 20% of the main flow rate.
  • the polymerization temperature in the polymerization tank can be uniformly controlled to 60 to 80 ° C.
  • FIG. 7 shows another modification.
  • the present invention has a remarkable effect when the polymerization tanks are arranged in series, but can also be applied in the case of parallel arrangement.
  • Example 1 General grade> Based on FIG. 1, a general grade embodiment will be described. Unimodal (medium molecular weight) polybutadiene is produced.
  • a polymerization monomer adjusting solution consisting of 38 wt% of 1,3 butadiene as a monomer, 37 wt% of butene as a solvent and 25 wt% of cyclohexane is continuously supplied as a raw material.
  • the temperature of the first tank (R1) is controlled to a predetermined polymerization temperature by temperature control (sensible heat effect) by the heat exchanger and cooling by brine.
  • the polymerization monomer adjusting solution used for cooling is defined as cold shot CS.
  • CS is supplied from the same tank as the polymerization monomer adjustment solution.
  • a monomer shot of 1,3 butadiene 100 wt% is defined as a monomer shot.
  • Example 1-1 8% CS of the main flow rate and MS of 5% of the main flow rate were mixed, and the monomer solution having a monomer concentration of 62 wt% was cooled to -16 ° C. at 13% of the main flow rate, and the final tank (R2) To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 85 ° C.
  • Example 1-2 8% CS of the main flow rate and MS of the main flow rate of 5% were mixed, and the monomer solution having a monomer concentration of 62 wt% was cooled to -12 ° C. at 13% of the main flow rate, and the final tank (R2) To supply.
  • the final tank (R2) In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 74 ° C.
  • Example 1-3 5% CS of the main flow rate and MS of 2% of the main flow rate are mixed, and the monomer solution with a monomer concentration of 54 wt% is cooled to ⁇ 12 ° C. at 7% of the main flow rate, and the final tank (R2) To supply.
  • the final tank (R2) In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 85 ° C.
  • Example 1-4 In Example 1-4, 8% CS of the main flow rate and MS of the main flow rate of 2% were mixed, and the monomer solution having a monomer concentration of 49 wt% was cooled to 10% of the main flow rate to 5 ° C. and placed in the final tank (R2). Supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 74 ° C.
  • Example 1-5 7% CS of the main flow rate and MS of the main flow rate of 8% were mixed, and the monomer solution with a monomer concentration of 69 wt% was cooled to -16 ° C. at 15% of the main flow rate, and the final tank (R2) To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 90 ° C.
  • Example 1-6 15% CS of the main flow rate is cooled to ⁇ 16 ° C. and supplied to the final tank (R2). In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 90 ° C.
  • Table 1 shows a comparison between Example 1 (Examples 1-1 to 1-6) and Comparative Example 1 in which the low-temperature monomer solution was not supplied.
  • Example 1-1 the yield is 93.4% (Example 1-1 is taken as 100%), and a sufficient yield cannot be obtained. Further, the cis bond content does not satisfy the allowable range, and desired physical properties cannot be obtained.
  • Example 1 a high yield can be obtained and desired physical properties can be obtained.
  • Bimodal grade> An example of a bimodal grade will be described with reference to FIG. Produces bimodal (high molecular weight and low molecular weight) polybutadiene. The weight ratio of high molecular weight to low molecular weight is 1: 1.
  • a polymerization monomer adjusting solution consisting of 36 wt% of 1,3 butadiene as a monomer and 32 wt% of butene as a solvent and 32 wt% of cyclohexane is continuously supplied as a raw material.
  • High molecular weight polymer is produced in the first tank (R1).
  • the initial tank (R1) is controlled to a predetermined polymerization temperature by temperature control (sensible heat effect) by the heat exchanger and cooling by brine.
  • Example 2-1 CS having a main flow rate of 7% and MS having a main flow rate of 8% were mixed, and the monomer solution having a monomer concentration of 70 wt% was cooled to -19 ° C at 15% of the main flow rate, and the final tank (R2) To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 93 ° C.
  • Example 2-2 CS having a main flow rate of 7% and MS having a main flow rate of 8% are mixed, and the monomer solution having a monomer concentration of 70 wt% is cooled to ⁇ 10 ° C. at 15% of the main flow rate, and the final tank (R2) To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization temperature and the separately supplied monomer solution is 85 ° C.
  • Example 2-3 CS with a main flow rate of 7% and MS with a main flow rate of 6% are mixed, and a monomer solution with a monomer concentration of 65 wt% is cooled to 13% of the main flow rate at 0 ° C. to the final tank (R2). Supply.
  • the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization temperature and the separately supplied monomer solution is 75 ° C.
  • Example 2-4 CS having a main flow rate of 7% and MS having a main flow rate of 10% were mixed, and the monomer solution having a monomer concentration of 74 wt% was cooled to -19 ° C. at 17% of the main flow rate, and the final tank (R2). To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization temperature and the separately supplied monomer solution is 93 ° C.
  • Table 2 shows a comparison between Example 2 (Examples 2-1 to 2-4) and Comparative Example 2 in which the low-temperature monomer solution was not supplied.
  • Example 2 the yield is 83.8% (Example 2-1 is taken as 100%), and a sufficient yield cannot be obtained. Further, the cis bond content does not satisfy the allowable range, and desired physical properties cannot be obtained.
  • Example 2 a high yield is obtained and desired physical properties are obtained.
  • FIG. 8A is a comparison between the theoretical value and the actually measured value in Example 2.
  • FIG. 8B is a comparison between the theoretical value and the actual measurement value in Comparative Example 2.
  • the horizontal axis is the retention time (minutes), the retention time for polymers is short, and the retention time for low molecules is long.
  • the vertical axis is the amount of polymer of the corresponding molecular weight.
  • the peak on the low molecular side is higher than the peak on the high molecular side (more polymer amount).
  • the peak value on the low molecule side is lower than the theoretical value.
  • the peak on the low molecular side is lower than the peak on the high molecular side. This is because the yield of the final tank (R2) is reduced. As a result, in Comparative Example 2, a desired molecular weight distribution cannot be obtained.
  • Example 2 the actual measurement values of Example 2 are almost the same as the theoretical values. That is, a desired molecular weight distribution is obtained.
  • Example 3 Resin rubber composite polybutadiene grade> An example of a resin rubber composite polybutadiene grade will be described with reference to FIG. A polymer alloy of high cis-polybutadiene (rubber) and highly crystalline syndiotactic polybutadiene resin (plastic) is produced.
  • a polymerization monomer adjustment solution consisting of 1,3 butadiene 40 wt% as a monomer and butene: 35 wt% and cyclohexane 25 wt% as a solvent is continuously fed as a raw material.
  • the temperature of the first tank (R1) is controlled to a predetermined polymerization temperature by temperature control (sensible heat effect) by the heat exchanger and cooling by brine.
  • Example 3-1 MS with a main flow rate of 13% is cooled to -19 ° C. and supplied to the final tank (R2).
  • the final tank (R2) In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 80 ° C.
  • Example 3-2 MS with a main flow rate of 11% is cooled to ⁇ 10 ° C. and supplied to the final tank (R2).
  • the final tank (R2) In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 70 ° C.
  • Example 3-3 MS with a main flow rate of 15% is cooled to 0 ° C. and supplied to the final tank (R2).
  • the final tank (R2) In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 55 ° C.
  • Example 3-4 MS with a main flow rate of 15% is cooled to ⁇ 18 ° C. and supplied to the final tank (R2).
  • the final tank (R2) In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 87 ° C.
  • Table 3 shows a comparison between Example 3 (Examples 3-1 to 3-4) and Comparative Example 3 in which the low-temperature monomer solution was not supplied.
  • ⁇ sp / C is an index related to the viscosity measurement of the syndio reaction, and indicates the amount of SPB generated in the VCR or the molecular weight of the syndio reaction. If the molecular weight of SPB is small, the reinforcing effect is small and the product quality cannot be maintained. In Comparative Example 3, the allowable range is not satisfied and desired physical properties cannot be obtained.
  • HI wt% (insoluble in n-hexane) indicates the amount of SPB in the VCR and is an index of the amount of SPB produced. If the amount of SPB is small, the reinforcing effect is small and the product quality cannot be maintained. In Comparative Example 3, the allowable range is not satisfied and desired physical properties cannot be obtained.
  • Example 3 a high yield is obtained and desired physical properties are obtained.
  • Example 4 Multimodal grade> Based on FIG. 4, an example of a multimodal grade will be described. As an example, a polymer product containing polybutadiene having a distribution of high molecular weight, medium molecular weight and low molecular weight and SPB will be described.
  • a polymerization monomer adjusting solution consisting of 43 wt% of 1,3 butadiene as a monomer and 32 wt% of butene: 25 wt% of cyclohexane as a solvent is continuously supplied as a raw material. After passing through the water dissolution tank and the aging tank, 64% of the raw material is supplied to the first step and 36% of the raw material is supplied to the second step.
  • the initial tank (R1-1) is controlled to a predetermined polymerization temperature.
  • Example 4-1 CS with a main flow rate of 13% is cooled to ⁇ 20 ° C. and supplied to the final tank (R2-1). Along with cooling with brine, the final tank (R2-1) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 93 ° C.
  • a medium molecular weight polymer is produced in the first tank R1-2.
  • the initial tank (R1-2) is controlled to a predetermined polymerization temperature.
  • Example 4-1 the main flow rate of 12% MS is cooled to -17 ° C. and supplied to the final tank (R2-2). In combination with cooling with brine, the final tank (R2-2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 80 ° C.
  • Example 4-2 CS having a main flow rate of 11% is cooled to 0 ° C. and supplied to the final tank (R2-1) in the first step. Along with cooling with brine, the final tank (R2-1) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 77 ° C.
  • Example 4-2 in the second step, MS with a main flow rate of 10% is cooled to 25 ° C. and supplied to the final tank (R2-2). In combination with cooling with brine, the final tank (R2-2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 35 ° C.
  • Example 4-3 in the first step, CS with a main flow rate of 11% is cooled to ⁇ 5 ° C. and supplied to the final tank (R2-1). Along with cooling with brine, the final tank (R2-1) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 65 ° C.
  • Example 4-3 in the second step, MS with a main flow rate of 10% is cooled to 25 ° C. and supplied to the final tank (R2-2). In combination with cooling with brine, the final tank (R2-2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 35 ° C.
  • Example 4-4 CS having a main flow rate of 15% is cooled to ⁇ 19 ° C. and supplied to the final tank (R2-1) in the first step. Along with cooling with brine, the final tank (R2-1) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 99 ° C.
  • Example 4-4 in the second step, MS with a main flow rate of 11% is cooled to 15 ° C. and supplied to the final tank (R2-2). In combination with cooling with brine, the final tank (R2-2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 40 ° C.
  • Example 4-5 CS having a main flow rate of 15% is cooled to ⁇ 19 ° C. and supplied to the final tank (R2-1) in the first step. Along with cooling with brine, the final tank (R2-1) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 99 ° C.
  • Example 4-5 in the second step, MS with a main flow rate of 14% is cooled to ⁇ 7 ° C. and supplied to the final tank (R2-2). In combination with cooling with brine, the final tank (R2-2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 67 ° C.
  • Table 4 shows a comparison between Example 4 (Examples 4-1 to 4-5) and Comparative Example 4 in which the low-temperature monomer solution was not supplied.
  • Example 4 the yield is 56.6% (Example 4-1 is taken as 100%), and a sufficient yield cannot be obtained. Further, the cis bond content does not satisfy the allowable range, and desired physical properties cannot be obtained.
  • Example 4 a high yield is obtained, and the cis bond content, HI, and ⁇ sp / C are all included in the allowable ranges, and desired physical properties are obtained.
  • Example 5 Modification> Based on FIG. 5, the Example of a series triple polymerization tank is demonstrated. Unimodal (medium molecular weight) polybutadiene is produced. It is a modification of a general grade.
  • a polymerization monomer adjustment solution consisting of 36 wt% of 1,3 butadiene as a monomer, 39 wt% of butene as a solvent and 25 wt% of cyclohexane is continuously supplied as a raw material.
  • the first tank (R1) is controlled to a predetermined polymerization temperature by temperature control (sensible heat effect) by the heat exchanger and cooling by brine.
  • Example 5 In Example 5, 8% CS of the main flow rate and MS of the main flow rate of 5% were mixed, and the monomer solution with a monomer concentration of 59 wt% was cooled to ⁇ 12 ° C. at 13% of the main flow rate and placed in the second tank (R2). Supply. In combination with cooling with brine, the second tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 84 ° C.
  • 3% CS of the main flow rate and MS of 2% of the main flow rate are mixed, and the monomer solution having a monomer concentration of 60 wt% is cooled to ⁇ 12 ° C. at 5% of the main flow rate and supplied to the third tank (R3).
  • the third tank (R3) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 86 ° C.
  • Table 5 shows a comparison between Example 5 and Comparative Example 5 in which the low-temperature monomer solution was not supplied.
  • Example 5 the yield is 92% (Example 5 is 100%), and a sufficient yield cannot be obtained. Further, the cis bond content does not satisfy the allowable range, and desired physical properties cannot be obtained.
  • Example 5 a high yield is obtained and desired physical properties are obtained.
  • Example 6 Modification> Based on FIG. 6, the Example of a single tank is demonstrated. In the polymerization tank (R0), monomodal (medium molecular weight) polybutadiene is produced. It is a modification of a general grade.
  • a polymerization monomer adjustment solution consisting of 36 wt% of 1,3 butadiene as a monomer, 39 wt% of butene as a solvent and 25 wt% of cyclohexane is continuously supplied as a raw material.
  • the polymerization tank (R0) is controlled to a predetermined polymerization temperature by separately supplying the monomer solution.
  • Example 6-1 18% CS of the main flow rate is cooled to ⁇ 13 ° C. and supplied to the polymerization tank (R0). Along with cooling with brine, the polymerization tank (R0) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 85 ° C.
  • Example 6-2 14% CS of the main flow rate is cooled to ⁇ 10 ° C. and supplied to the polymerization tank (R0). Along with cooling with brine, the polymerization tank (R0) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 83 ° C.
  • Example 6-3 12% CS of the main flow rate is cooled to ⁇ 12 ° C. and supplied to the polymerization tank (R0). Along with cooling with brine, the polymerization tank (R0) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 83 ° C.
  • Table 6 shows a comparison between Example 6 and Comparative Example 6 in which the low-temperature monomer solution was not supplied.
  • Example 6 the yield is 95% (Example 6-1 is 100%), and a sufficient yield cannot be obtained. Further, the cis bond content does not satisfy the allowable range, and desired physical properties cannot be obtained.
  • Example 6 a high yield is obtained and desired physical properties are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention is capable of attaining a high yield in production of a diene-based polymer. A diene-based-monomer solution is supplied as a starting material to a polymerization tank to produce a diene-based polymer. To the polymerization tank, a diene-based monomer or diene-based-monomer solution which has a lower temperature than the polymerization solution inside the polymerization tank is supplied separately from the supply of the starting material. In particular, in the case where a plurality of polymerization tanks are serially disposed, the lower-temperature diene-based monomer or diene-based-monomer solution is supplied to any of the polymerization tanks other than the first polymerization tank.

Description

ジエン系ポリマーの製造方法Method for producing diene polymer
 本発明は、高い収率を得ることのできるジエン系ポリマーの製造方法に関するものである。 The present invention relates to a method for producing a diene polymer capable of obtaining a high yield.
 一般に、ジエン系モノマーの重合反応は発熱反応であるため、ジエン系ポリマーの製造において、温度制御が重要になる。所定の温度範囲に制御できない場合、反応収率が低下する。さらに、ジエン系ポリマーにおいて所望の物性が得られないおそれもある。 Generally, since the polymerization reaction of a diene monomer is an exothermic reaction, temperature control is important in the production of a diene polymer. If the temperature cannot be controlled within the predetermined temperature range, the reaction yield decreases. Furthermore, there is a possibility that desired physical properties cannot be obtained in the diene polymer.
 そのため、ジエン系ポリマーの製造では、重合温度を所定範囲にする事を製造要件としている(たとえば特許文献1)。たとえば、重合反応による発熱を考慮して、重合槽に供給する前に、モノマー溶液の温度を制御する。発熱反応を経て、所定の重合温度となる(顕熱効果)。さらに、温度制御の一つとして、ブラインと呼ばれる冷媒を重合槽の周囲に供給する方法がある。 Therefore, in the production of a diene polymer, it is a production requirement to set the polymerization temperature within a predetermined range (for example, Patent Document 1). For example, in consideration of heat generated by the polymerization reaction, the temperature of the monomer solution is controlled before being supplied to the polymerization tank. Through an exothermic reaction, a predetermined polymerization temperature is reached (sensible heat effect). Furthermore, as one of the temperature controls, there is a method of supplying a refrigerant called brine to the periphery of the polymerization tank.
 これらの冷却方法により、重合槽内の重合溶液の温度を制御し、反応速度を向上させ、収率を向上させることができる。 These cooling methods can control the temperature of the polymerization solution in the polymerization tank, improve the reaction rate, and improve the yield.
特開2006-274010号公報JP 2006-274010 A
 しかしながら、ブラインによる冷却は、重合槽外部からの冷却であるため、重合槽壁面では重合溶液を充分に冷却できても、重合槽内部では冷却不充分になるおそれがある。重合溶液の温度が不均一であると均質なポリマーが得られないおそれもある。このように、ブラインによる冷却では不十分であるという問題がある。 However, since cooling with brine is from the outside of the polymerization tank, even if the polymerization solution can be sufficiently cooled on the wall of the polymerization tank, there is a possibility that the cooling inside the polymerization tank may be insufficient. If the temperature of the polymerization solution is not uniform, a homogeneous polymer may not be obtained. Thus, there is a problem that cooling with brine is insufficient.
 ところで、生産量を上げるため、または、複雑な物性を有するポリマーを得るため等の理由から、複数の重合槽を直列に配置することがある。 Incidentally, a plurality of polymerization tanks may be arranged in series for the purpose of increasing the production amount or obtaining a polymer having complicated physical properties.
 このとき、初槽重合槽においては、初槽供給前のモノマー溶液の温度を熱交換器により制御(冷却、場合によっては加温)することができる。発熱による温度上昇を考慮して、重合温度を所定温度に制御する(顕熱効果)。 At this time, in the first tank polymerization tank, the temperature of the monomer solution before supplying the first tank can be controlled (cooled, sometimes heated) by a heat exchanger. In consideration of temperature rise due to heat generation, the polymerization temperature is controlled to a predetermined temperature (sensible heat effect).
 しかしながら、初槽重合槽にて重合溶液は所定温度になっており、2槽目以降の重合槽への供給前に、ポリマー溶液を冷却することは容易ではない。 However, the polymerization solution is at a predetermined temperature in the first tank polymerization tank, and it is not easy to cool the polymer solution before supplying it to the second and subsequent polymerization tanks.
 さらに、この時点でのポリマー溶液において、モノマーの一部はポリマーになっており、粘度が高くなっている。熱交換器により冷却しようとすれば熱交換器が詰まるおそれがある。したがって、熱交換器による冷却は難しい。 Furthermore, in the polymer solution at this point, a part of the monomer is a polymer and the viscosity is high. If it is attempted to cool by the heat exchanger, the heat exchanger may be clogged. Therefore, cooling with a heat exchanger is difficult.
 このように、特に初槽以外の重合槽では、冷却が難しいという問題がある。言い換えると、顕熱効果が期待できないという問題がある。 Thus, there is a problem that cooling is difficult particularly in the polymerization tanks other than the first tank. In other words, there is a problem that a sensible heat effect cannot be expected.
 一方、初槽重合槽を経てモノマー溶液の一部はポリマーになっており、2槽目以降の重合槽ではモノマーの量が不充分となり、収率が低下するおそれがあるという問題がある。 On the other hand, a part of the monomer solution has become a polymer after passing through the first tank polymerization tank, and there is a problem that the amount of monomer becomes insufficient in the second and subsequent tanks and the yield may be lowered.
 本発明は、上記問題点に鑑みてなされたものであり、適切な冷却により、高い収率を得ることのできるジエン系ポリマーの製造方法することを目的とする。特に、初槽以外の重合槽の、適切な冷却により、高い収率を得ることのできるジエン系ポリマーの製造方法することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for producing a diene polymer capable of obtaining a high yield by appropriate cooling. In particular, an object of the present invention is to provide a method for producing a diene polymer that can obtain a high yield by appropriate cooling of a polymerization tank other than the initial tank.
 本発明は、上記問題点に鑑みてなされたものであり、初槽以外の重合槽にて、モノマー不足を解消し、高い収率を得ることのできるジエン系ポリマーの製造方法することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a diene polymer capable of eliminating a shortage of monomers and obtaining a high yield in a polymerization tank other than the initial tank. To do.
 本発明は、原料としてジエン系モノマー溶液を重合槽に供給してジエン系ポリマーを製造する方法である。該重合槽に、該重合槽内部の重合溶液より低温の該ジエン系モノマー、又は、該ジエン系モノマー溶液を原料供給とは別に供給する。 The present invention is a method for producing a diene polymer by supplying a diene monomer solution as a raw material to a polymerization tank. The diene monomer or the diene monomer solution having a temperature lower than that of the polymerization solution inside the polymerization tank is supplied to the polymerization tank separately from the raw material supply.
 本発明は、複数の重合槽を経てジエン系ポリマーを製造する方法である。初槽重合槽以外のいずれかの重合槽に、該重合槽内部の重合溶液より低温の該ジエン系モノマー、又は、該ジエン系モノマー溶液を供給する。 The present invention is a method for producing a diene polymer through a plurality of polymerization tanks. The diene monomer or the diene monomer solution having a temperature lower than that of the polymerization solution inside the polymerization tank is supplied to any polymerization tank other than the initial tank polymerization tank.
 上記発明において、該ジエン系ポリマーがポリブタジエンであり、該ジエン系モノマーがブタジエンである。 In the above invention, the diene polymer is polybutadiene and the diene monomer is butadiene.
 上記発明において、該初槽重合槽と該重合槽とにおいて、同じ分子量である。
 該ジエン系モノマー溶液のモノマー濃度は、30wt%~70wt%であり、該重合槽内部の重合溶液と、該ジエン系モノマー溶液との温度差は、30℃~100℃であり、
 該ジエン系モノマー溶液の供給量は、メイン流量の5%~20%である。
In the said invention, it is the same molecular weight in this initial stage polymerization tank and this polymerization tank.
The monomer concentration of the diene monomer solution is 30 wt% to 70 wt%, and the temperature difference between the polymerization solution inside the polymerization tank and the diene monomer solution is 30 ° C. to 100 ° C.,
The supply amount of the diene monomer solution is 5% to 20% of the main flow rate.
 上記発明において、該重合槽において、該初槽重合槽に比べてより低分子量のポリマーを重合し、高分子量ポリマーと低分子量ポリマーとを2:8~8:2の重量比となるように混合する。
 該ジエン系モノマー溶液のモノマー濃度は、65wt%~75wt%であり、
 該重合槽内部の重合溶液と、該ジエン系モノマー溶液との温度差は、40~105℃であり、
 該ジエン系モノマー溶液の供給量は、メイン流量の5~20%である。
In the above invention, in the polymerization tank, a polymer having a lower molecular weight is polymerized than in the initial tank polymerization tank, and the high molecular weight polymer and the low molecular weight polymer are mixed at a weight ratio of 2: 8 to 8: 2. To do.
The monomer concentration of the diene monomer solution is 65 wt% to 75 wt%,
The temperature difference between the polymerization solution inside the polymerization tank and the diene monomer solution is 40 to 105 ° C.,
The supply amount of the diene monomer solution is 5 to 20% of the main flow rate.
 上記発明において、該初槽重合槽において中分子量のポリマーを重合し、該重合槽においてプラスチック樹脂を重合し、両者を混合する。
 該ジエン系モノマー溶液のモノマー濃度は、100wt%(モノマー)であり、
 該重合槽内部の重合溶液と、該ジエン系モノマーとの温度差は、50℃~90℃であり、
 該ジエン系モノマーの供給量は、メイン流量の5~20%である。
In the above invention, a medium molecular weight polymer is polymerized in the initial tank polymerization tank, a plastic resin is polymerized in the polymerization tank, and both are mixed.
The monomer concentration of the diene monomer solution is 100 wt% (monomer),
The temperature difference between the polymerization solution inside the polymerization tank and the diene monomer is 50 ° C. to 90 ° C.,
The supply amount of the diene monomer is 5 to 20% of the main flow rate.
 上記発明において、第1工程と第2工程と第3工程とを有する。
 第1工程では、第1工程の初槽重合槽において高分子量のポリマーを重合し、第1工程の初槽以外の重合槽に該重合溶液を供給し、該重合槽において低分子のポリマーを重合する。
 第2工程では、第2工程の初槽重合槽において中分子量のポリマーを重合し、第2工程の初槽以外の重合槽に該重合溶液を供給し、該重合槽においてプラスチック樹脂を重合する。
 第3工程では、第1工程の製造物と第2工程の製造物とを混合する。
 該第1工程では、
 該ジエン系モノマー溶液のモノマー濃度は、30wt%~50wt%であり、
 該重合槽内部の重合溶液と、該ジエン系モノマー溶液との温度差は、40~105℃であり、
 該ジエン系モノマー溶液の供給量は、メイン流量の5~20%である。
 該第2工程では、
 該ジエン系モノマー溶液のモノマー濃度は、100wt%(モノマー)であり、
 該重合槽内部の重合溶液と、該ジエン系モノマーとの温度差は、35℃~90℃であり、
 該ジエン系モノマーの供給量は、メイン流量の5~20%である。
In the said invention, it has a 1st process, a 2nd process, and a 3rd process.
In the first step, the high molecular weight polymer is polymerized in the first tank polymerization tank of the first process, the polymerization solution is supplied to a polymerization tank other than the first tank of the first process, and the low molecular weight polymer is polymerized in the polymerization tank. To do.
In the second step, the medium molecular weight polymer is polymerized in the initial tank polymerization tank of the second process, the polymerization solution is supplied to a polymerization tank other than the initial tank of the second process, and the plastic resin is polymerized in the polymerization tank.
In the third step, the product of the first step and the product of the second step are mixed.
In the first step,
The monomer concentration of the diene monomer solution is 30 wt% to 50 wt%,
The temperature difference between the polymerization solution inside the polymerization tank and the diene monomer solution is 40 to 105 ° C.,
The supply amount of the diene monomer solution is 5 to 20% of the main flow rate.
In the second step,
The monomer concentration of the diene monomer solution is 100 wt% (monomer),
The temperature difference between the polymerization solution inside the polymerization tank and the diene monomer is 35 ° C. to 90 ° C.,
The supply amount of the diene monomer is 5 to 20% of the main flow rate.
 本発明は、適切な冷却により、高い収率を得ることができる。特に、初槽以外の重合槽の適切な冷却により、高い収率を得ることができる。 The present invention can obtain a high yield by appropriate cooling. In particular, a high yield can be obtained by appropriate cooling of the polymerization tank other than the initial tank.
 本発明は、初槽以外の重合槽にて、モノマー不足を解消し、高い収率を得ることができる。 The present invention can solve the shortage of monomers in a polymerization tank other than the first tank, and can obtain a high yield.
一般グレードの製造プロセスの概念図である。It is a conceptual diagram of the manufacturing process of a general grade. 二峰性グレードの製造プロセスの概念図である。It is a conceptual diagram of the manufacturing process of a bimodal grade. 樹脂ゴム複合ポリブタジエングレードの製造プロセスの概念図である。It is a conceptual diagram of the manufacturing process of resin rubber compound polybutadiene grade. 多峰性グレードの製造プロセスの概念図である。It is a conceptual diagram of the manufacturing process of a multimodal grade. 重合槽の3連直列配置の概念図である。It is a conceptual diagram of the triple series arrangement | positioning of a superposition | polymerization tank. 重合槽の単独配置の概念図である。It is a conceptual diagram of the independent arrangement | positioning of a superposition | polymerization tank. 重合槽の並列配置の概念図である。It is a conceptual diagram of the parallel arrangement | positioning of a superposition | polymerization tank. 二峰性グレードにおける分子量分布について説明する図である。It is a figure explaining molecular weight distribution in a bimodal grade.
<概要> <Overview>
 本発明では、原料としてジエン系モノマー溶液を重合槽に供給してジエン系ポリマーを製造する。 In the present invention, a diene monomer solution is supplied as a raw material to a polymerization tank to produce a diene polymer.
 ジエン系モノマー溶液からなる重合モノマー調整溶液を連続的に供給する。水溶解槽にて水を添加する。次いで、熟成槽にて助触媒として、有機アルミニウム化合物を添加する。熱交換器を介してモノマー溶液を所定温度に制御し、重合槽にて遷移金属触媒および分子量調節剤を添加し、重合を行う。 A polymerization monomer adjusting solution consisting of a diene monomer solution is continuously supplied. Add water in the water dissolution tank. Next, an organoaluminum compound is added as a promoter in an aging tank. The monomer solution is controlled to a predetermined temperature via a heat exchanger, and a transition metal catalyst and a molecular weight regulator are added in a polymerization tank to carry out polymerization.
 ついで、反応停止槽にて、老化防止剤と反応停止剤の混合溶液を添加し、重合を停止させる。これらによって得られたポリマー溶液は、熱風乾燥機で乾燥され、ポリマー製品が得られる。本明細書では、上記原料から製品までの一連の流れをメイン流路とし、メイン流路に供給される重合モノマー調整溶液流量をメイン流量とする。 Next, in the reaction stop tank, a mixed solution of an anti-aging agent and a reaction stop agent is added to stop the polymerization. The polymer solution obtained by these is dried with a hot air drier to obtain a polymer product. In this specification, a series of flow from the raw material to the product is defined as a main flow path, and a flow rate of the polymerized monomer adjustment solution supplied to the main flow path is defined as a main flow rate.
 本発明では、重合槽内の重合溶液の温度を制御する。重合反応による発熱を考慮し、熱交換器を介してモノマー溶液の温度を制御(冷却、場合によっては加温)して、重合槽に供給する。さらに、ブラインと呼ばれる冷媒を重合槽の周囲に供給する。 In the present invention, the temperature of the polymerization solution in the polymerization tank is controlled. In consideration of the heat generated by the polymerization reaction, the temperature of the monomer solution is controlled (cooled, sometimes heated) through a heat exchanger and supplied to the polymerization tank. Further, a refrigerant called brine is supplied around the polymerization tank.
 併せて、重合槽に、該重合槽内部の重合溶液より低温の該ジエン系モノマー、又は、該ジエン系モノマー溶液を原料供給とは別に(メイン流路とは別に)供給して、重合槽内部の重合溶液を冷却する。 In addition, the diene monomer or the diene monomer solution at a lower temperature than the polymerization solution inside the polymerization tank is supplied to the polymerization tank separately from the raw material supply (separate from the main flow path) Cool the polymerization solution.
 特に、複数の重合槽が直列に配置されている場合、2槽目以降の重合槽に重合槽内部の重合溶液より低温のジエン系モノマー、又は、ジエン系モノマー溶液を、メイン流路とは別に供給し、重合槽内部の重合溶液を冷却する。 In particular, when a plurality of polymerization tanks are arranged in series, a diene monomer or a diene monomer solution having a temperature lower than the polymerization solution in the polymerization tank in the second and subsequent polymerization tanks is separated from the main flow path. Supply and cool the polymerization solution inside the polymerization tank.
 <ジエン系モノマー>
 本実施形態において、ジエン系モノマーとしては、例えば、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン等が挙げられる。これらは、1種単独で用いても、2種以上を混合してもよく、さらに1,3-ヘキサジエンなど他のジエンと共重合して用いてもよい。中でも好ましいのは、1,3-ブタジエンである。
<Diene monomer>
In the present embodiment, examples of the diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and the like. These may be used singly or in combination of two or more, and may be used by copolymerizing with other dienes such as 1,3-hexadiene. Of these, 1,3-butadiene is preferred.
 <溶媒>
 溶媒としては、トルエン、ベンゼン、キシレン等の芳香族系炭化水素、n-ヘキサン、ブタン、ヘプタン、ペンタン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン等の脂環式炭化水素、1-ブテン、シス-2-ブテン、トランス-2-ブテン等のC4留分などのオレフィン系炭化水素、ミネラルスピリット、ソルベントナフサ、ケロシン等の炭化水素系溶媒や、塩化メチレン等のハロゲン化炭化水素系溶媒等が挙げられる。
<Solvent>
Solvents include aromatic hydrocarbons such as toluene, benzene and xylene, aliphatic hydrocarbons such as n-hexane, butane, heptane and pentane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, 1-butene, cis Examples include olefinic hydrocarbons such as C4 fractions such as -2-butene and trans-2-butene, hydrocarbon solvents such as mineral spirits, solvent naphtha, and kerosene, and halogenated hydrocarbon solvents such as methylene chloride. It is done.
 中でも、シクロヘキサン、あるいは、シス-2-ブテンとトランス-2-ブテンとの混合物などが好適に用いられる。 Of these, cyclohexane or a mixture of cis-2-butene and trans-2-butene is preferably used.
 金属触媒としては、ジルコニウム系触媒、ハフニウム系触媒、クロム系触媒、鉄系触媒、タングステン系触媒、ランダノイド系触媒、アクチノイド系触媒、リチウム系触媒が挙げられる。金属触媒は、1種を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the metal catalyst include a zirconium-based catalyst, a hafnium-based catalyst, a chromium-based catalyst, an iron-based catalyst, a tungsten-based catalyst, a randomoid-based catalyst, an actinoid-based catalyst, and a lithium-based catalyst. A metal catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
 <遷移金属触媒>
 遷移金属触媒としては、コバルト系触媒、ニッケル系触媒、ネオジウム系触媒、バナジウム系触媒、チタン系触媒、ガドリニウム系触媒が挙げられる。中でも、コバルト系触媒又はニッケル系触媒が好ましく、コバルト系触媒がより好ましい。遷移金属触媒は、1種を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
<Transition metal catalyst>
Examples of the transition metal catalyst include a cobalt catalyst, a nickel catalyst, a neodymium catalyst, a vanadium catalyst, a titanium catalyst, and a gadolinium catalyst. Among these, a cobalt catalyst or a nickel catalyst is preferable, and a cobalt catalyst is more preferable. A transition metal catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
 コバルト系触媒としては、塩化コバルト、臭化コバルト等のハロゲン化コバルト塩;硫酸コバルト、硝酸コバルト等の無機酸コバルト塩;コバルトオクタエート、オクチル酸コバルト、ナフテン酸コバルト、酢酸コバルト、マロン酸コバルト等の有機酸コバルト塩;ビスアセチルアセトネートコバルト、トリスアセチルアセトネートコバルト、アセト酢酸エチルエステルコバルト、コバルト塩のピリジン錯体、コバルト塩のピコリン錯体、コバルト塩のエチルアルコール錯体等のコバルト錯体が挙げられる。中でも、コバルトオクタエートが好ましい。 Cobalt catalysts include cobalt halide salts such as cobalt chloride and cobalt bromide; inorganic acid cobalt salts such as cobalt sulfate and cobalt nitrate; cobalt octaate, cobalt octylate, cobalt naphthenate, cobalt acetate, cobalt malonate, etc. And cobalt complexes such as bisacetylacetonate cobalt, trisacetylacetonate cobalt, acetoacetic acid ethyl ester cobalt, cobalt salt pyridine complex, cobalt salt picoline complex, and cobalt salt ethyl alcohol complex. Of these, cobalt octaate is preferable.
 コバルト系触媒の添加量は、ジエン系モノマー1モルに対し、通常、コバルト系触媒が1×10-7~1×10-4モルが好ましく、1×10-6~1×10-5モルが特に好ましい。 The amount of the cobalt-based catalyst added is usually preferably 1 × 10 −7 to 1 × 10 −4 mol of the cobalt-based catalyst with respect to 1 mol of the diene monomer, and preferably 1 × 10 −6 to 1 × 10 −5 mol. Particularly preferred.
 <有機アルミニウム助触媒>
 遷移金属触媒とともに有機アルミニウム助触媒を用いる。有機アルミニウム助触媒の添加量は、遷移金属触媒1モルに対し、50~2000モルの範囲が好ましい。
<Organic aluminum promoter>
An organoaluminum cocatalyst is used with a transition metal catalyst. The addition amount of the organoaluminum cocatalyst is preferably in the range of 50 to 2000 mol per 1 mol of the transition metal catalyst.
 有機アルミニウムには、ハロゲンを含む有機アルミニウム化合物とハロゲンを含まない有機アルミニウム化合物とがあり、併用してもよい。 Organic aluminum includes halogen-containing organic aluminum compounds and halogen-free organic aluminum compounds, which may be used in combination.
 非ハロゲン化有機アルミニウム化合物としては、トリアルキルアルミニウム、ジアルキルアルミニウムハイドライド、アルキルアルミニウムセスキハイドライド等の水素化有機アルミニウムが挙げられる。トリアルキルアルミニウムが好ましく、トリエチルアルミニウム(TEA)がより好ましい。 Examples of non-halogenated organoaluminum compounds include organoaluminum hydrides such as trialkylaluminum, dialkylaluminum hydride, and alkylaluminum sesquihydride. Trialkylaluminum is preferred, and triethylaluminum (TEA) is more preferred.
 ハロゲン化有機アルミニウムとしては、ジアルキルアルミニウムクロライド、ジアルキルアルミニウムブロマイド、アルキルアルミニウムジクロライド、アルキルアルミニウムジブロマイド、アルキルアルミニウムセスキクロライド、アルキルアルミニウムセスキブロマイドが挙げられる。なかでも、塩化有機アルミニウムが好ましく、ジエチルアルミニウムクロライド(DEAC)がより好ましい。 Examples of the halogenated organoaluminum include dialkylaluminum chloride, dialkylaluminum bromide, alkylaluminum dichloride, alkylaluminum dibromide, alkylaluminum sesquichloride, and alkylaluminum sesquibromide. Of these, organoaluminum chloride is preferable, and diethylaluminum chloride (DEAC) is more preferable.
 <分子量調節剤>
 分子量調節剤としては、例えば、シクロオクタジエン,アレン,メチルアレン(1,2-ブタジエン)などの非共役ジエン類,又はエチレン,プロピレン,ブテン-1などのα-オレフィン類を使用することができる。又重合時のゲルの生成を更に抑制するために公知のゲル化防止剤を使用することができる。
<Molecular weight regulator>
As the molecular weight regulator, for example, non-conjugated dienes such as cyclooctadiene, allene, methylallene (1,2-butadiene), or α-olefins such as ethylene, propylene, butene-1 can be used. . In order to further suppress the formation of gel during polymerization, a known gelation inhibitor can be used.
 <老化防止剤>
 老化防止剤の代表としてはフェノール系の2,6-ジ-t-ブチル-p-クレゾール(BHT),リン系のトリノニルフェニルフォスファイト(TNP),硫黄系の4.6-ビス(オクチルチオメチル)-o-クレゾール、ジラウリル-3,3’-チオジプロピオネート(TPL)などが挙げられる。
<Anti-aging agent>
Typical anti-aging agents are phenol-based 2,6-di-t-butyl-p-cresol (BHT), phosphorus-based trinonylphenyl phosphite (TNP), and sulfur-based 4.6-bis (octylthio). Methyl) -o-cresol, dilauryl-3,3′-thiodipropionate (TPL), and the like.
 <反応停止剤>
 反応停止剤として、重合溶液にメタノール,エタノールなどのアルコール,水などの極性溶媒を大量する。
<Reaction terminator>
As a reaction terminator, a large amount of a polar solvent such as water or an alcohol such as methanol or ethanol is added to the polymerization solution.
 <分子量>
 ポリマーの分子量に応じて高分子、中分子、低分子を定義する。ムーニー粘度(以下ML)40を大きく上回るもの、または、ML粘度計で測れないほど分子量が高いものを高分子とする。ML=40付近のものを中分子とする。ML=40を大きく下回るもの、または、ML粘度計で測れないほど分子量が低いものを低分子とする。
<Molecular weight>
Macromolecules, medium molecules, and low molecules are defined according to the molecular weight of the polymer. A polymer having a Mooney viscosity (hereinafter referred to as ML) greatly exceeding 40 or having a molecular weight that is too high to be measured with an ML viscometer is defined as a polymer. A thing around ML = 40 is defined as a medium molecule. Those having a molecular weight much lower than ML = 40 or those having a molecular weight that is too low to be measured with an ML viscometer are defined as low molecules.
 <ジエン系ポリマー>
 ジエン系ポリマーには種々あり、基本的な製法は上記概要で述べたとおり共通するが、各グレードにより製造プロセスが若干異なる。これに伴い、冷却方法も異なる。一般グレード、二峰性グレード、樹脂ゴム複合ポリブタジエングレード、多峰性グレードについて説明する。
<Diene polymer>
There are various types of diene polymers, and the basic production method is common as described in the above outline, but the production process differs slightly depending on each grade. Along with this, the cooling method is also different. The general grade, bimodal grade, resin rubber composite polybutadiene grade, and multimodal grade will be described.
 <一般グレード>
 図1は、一般グレードの製造プロセスの概念図である。なお、具体的な数値については、実施例にて説明する。
<General grade>
FIG. 1 is a conceptual diagram of a general grade manufacturing process. Specific numerical values will be described in Examples.
 一般グレードは、遷移金属触媒による高シス構造(シスの割合が95%以上)を持ったジエン系ポリマー(たとえばポリブタジエン)である。具体的には、単峰性の分子量分布の挙動を示す。初槽(R1)と終槽(R2)は同じ物性(中分子)のポリマーを製造する。初槽(R1)にて所定の重合率になると、重合溶液を終槽(R2)に供給する。 General grade is a diene polymer (for example, polybutadiene) having a high cis structure (cis ratio is 95% or more) by a transition metal catalyst. Specifically, it shows the behavior of a unimodal molecular weight distribution. The first tank (R1) and the final tank (R2) produce a polymer having the same physical properties (medium molecule). When a predetermined polymerization rate is reached in the first tank (R1), the polymerization solution is supplied to the final tank (R2).
 ところで、本グレードでは、Cis反応の活性ピーク70~75℃前後であり、80℃を超えると触媒の失活が大きくなる。したがって、重合温度を60~80℃に設定する。 By the way, in this grade, the activity peak of the Cis reaction is around 70 to 75 ° C., and when it exceeds 80 ° C., the deactivation of the catalyst increases. Therefore, the polymerization temperature is set to 60-80 ° C.
 このとき、初槽(R1)での重合温度は60~80℃であり、終槽(R2)では初槽(R1)のような顕熱効果を期待できない。またブラインによる冷却だけでは不充分である。終槽(R2)では冷却が必要となる。 At this time, the polymerization temperature in the first tank (R1) is 60 to 80 ° C., and the sensible heat effect as in the first tank (R1) cannot be expected in the final tank (R2). Moreover, cooling with brine alone is not sufficient. Cooling is required in the final tank (R2).
 また、初槽(R1)でモノマーが消費されており、終槽(R2)ではモノマーの量が不充分となる。 In addition, the monomer is consumed in the first tank (R1), and the amount of monomer is insufficient in the final tank (R2).
 これに対し、終槽(R2)に重合槽内部の重合溶液より低温のジエン系モノマー溶液を、メイン流路とは別に(原料供給とは別に)供給し、重合槽内部の重合溶液を冷却する。 On the other hand, a diene monomer solution having a temperature lower than the polymerization solution inside the polymerization tank is supplied to the final tank (R2) separately from the main flow path (apart from the raw material supply), and the polymerization solution inside the polymerization tank is cooled. .
 別供給するジエン系モノマー溶液のモノマー濃度は、30wt%~70wt%であり、原材料より高濃度である。 The monomer concentration of the diene monomer solution supplied separately is 30 wt% to 70 wt%, which is higher than the raw material.
 終槽(R2)内部の重合溶液と、別供給するジエン系モノマー溶液との温度差は、30℃~100℃が適当であり、55℃~90℃が好ましい。別供給するジエン系モノマー溶液の温度は、-20℃~30℃である。 The temperature difference between the polymerization solution in the final tank (R2) and the diene monomer solution supplied separately is suitably 30 ° C to 100 ° C, and preferably 55 ° C to 90 ° C. The temperature of the diene monomer solution supplied separately is -20 ° C to 30 ° C.
 別供給するジエン系モノマー溶液の供給量は、メイン流量の5%~20%である。 The supply amount of the diene monomer solution supplied separately is 5% to 20% of the main flow rate.
 これにより、終槽(R2)での重合温度を60~80℃に均質に制御できる。 Thereby, the polymerization temperature in the final tank (R2) can be uniformly controlled to 60 to 80 ° C.
 また、初槽(R1)での重合によりモノマーが消費されるが、終槽(R2)ではモノマーが補充される。 In addition, the monomer is consumed by the polymerization in the first tank (R1), but the monomer is replenished in the final tank (R2).
 このように、終槽(R2)において温度制御とモノマー補充をバランスよく実現できる。その結果、高い収率を得ることができる。 Thus, temperature control and monomer replenishment can be realized in a balanced manner in the final tank (R2). As a result, a high yield can be obtained.
 <二峰性グレード>
 図2は、二峰性グレードの製造プロセスの概念図である。なお、具体的な数値については、実施例にて説明する。
<Bimodal grade>
FIG. 2 is a conceptual diagram of a bimodal grade manufacturing process. Specific numerical values will be described in Examples.
 二峰性グレードは、分子量の異なる(高分子量と低分子量)物性を持ったジエン系ポリマー(たとえばポリブタジエン)である。具体的には、二峰性の分子量分布の挙動を示す。初槽(R1)において高分子量のポリマーを製造し、所定の重合率になると重合溶液を終槽(R2)に供給し、終槽(R2)にて低分子のポリマーを製造する。 The bimodal grade is a diene polymer (for example, polybutadiene) having different molecular weight (high molecular weight and low molecular weight) physical properties. Specifically, the behavior of bimodal molecular weight distribution is shown. A high molecular weight polymer is produced in the first tank (R1), and when a predetermined polymerization rate is reached, the polymerization solution is supplied to the final tank (R2), and a low molecular weight polymer is produced in the final tank (R2).
 一般には高分子量と低分子量の重量割合を2:8~8:2とする。好ましくは、3:7~7:3であり、より好ましくは4:6~6:4である。終槽(R2)では重合率が比較的高くなるため、一般グレードに比べ、より多く反応させる必要がある。終槽(R2)での反応割合(反応熱 330Kcal/kg-BR)が大きく、一般グレードに比べ、冷却がより必要となる。また、モノマー補充もより必要となる。 Generally, the weight ratio of high molecular weight to low molecular weight is set to 2: 8 to 8: 2. Preferably, it is 3: 7 to 7: 3, more preferably 4: 6 to 6: 4. Since the polymerization rate is relatively high in the final tank (R2), it is necessary to react more than the general grade. The reaction rate in the final tank (R2) (reaction heat: 330 Kcal / kg-BR) is large, and cooling is required compared to the general grade. In addition, more monomer replenishment is required.
 これに対し、終槽(R2)に重合槽内部の重合溶液より低温のジエン系モノマー溶液を、メイン流路とは別に供給し、重合槽内部の重合溶液を冷却する。 In contrast, a diene monomer solution having a temperature lower than that of the polymerization solution inside the polymerization tank is supplied to the final tank (R2) separately from the main flow path, and the polymerization solution inside the polymerization tank is cooled.
 別供給するジエン系モノマー溶液のモノマー濃度は、65wt%~75wt%であり、原材料より高濃度である。また、一般グレードに比べても高濃度である。 The monomer concentration of the diene monomer solution supplied separately is 65 wt% to 75 wt%, which is higher than the raw material. Also, the concentration is higher than that of the general grade.
 終槽(R2)内部の重合溶液と、別供給するジエン系モノマー溶液との温度差は、40℃~105℃が適当であり、73℃~95℃が好ましい。別供給するジエン系モノマー溶液の温度は、-20℃~20℃が適しており、-20℃~15℃がより好ましい。 The temperature difference between the polymerization solution in the final tank (R2) and the separately supplied diene monomer solution is suitably 40 ° C to 105 ° C, preferably 73 ° C to 95 ° C. The temperature of the diene monomer solution supplied separately is suitably −20 ° C. to 20 ° C., more preferably −20 ° C. to 15 ° C.
 別供給するジエン系モノマー溶液の供給量は、メイン流量の5%~20%が適当であり、10%~20%が好ましい。13%~17%がより好ましい。 The supply amount of the diene monomer solution supplied separately is suitably 5% to 20% of the main flow rate, and preferably 10% to 20%. 13% to 17% is more preferable.
 これにより、終槽(R2)での重合温度を65~85℃に均質に制御できる。 Thereby, the polymerization temperature in the final tank (R2) can be uniformly controlled to 65 to 85 ° C.
 また、初槽(R1)での重合によりモノマーが消費されるが、終槽(R2)ではモノマーが補充される。 In addition, the monomer is consumed by the polymerization in the first tank (R1), but the monomer is replenished in the final tank (R2).
 このように、終槽(R2)において温度制御とモノマー補充をバランスよく実現できる。その結果、高い収率を得ることができる。また、所望の物性が得られる。 Thus, temperature control and monomer replenishment can be realized in a balanced manner in the final tank (R2). As a result, a high yield can be obtained. Moreover, desired physical properties can be obtained.
 <樹脂ゴム複合ポリブタジエングレード>
 図3は、樹脂ゴム複合ポリブタジエングレードの製造プロセスの概念図である。なお、具体的な数値については、実施例にて説明する。
<Resin rubber composite polybutadiene grade>
FIG. 3 is a conceptual diagram of a process for producing a resin rubber composite polybutadiene grade. Specific numerical values will be described in Examples.
 樹脂ゴム複合ポリブタジエングレードは、高シス・ジエン系ポリマー(ゴム)と高結晶性シンジオタクチックジエン系ポリマー(樹脂)を連続重合技術で複合化したグレードであり、特殊なポリマーアロイの一種である。 Resin rubber composite polybutadiene grade is a grade in which a high cis-diene polymer (rubber) and a highly crystalline syndiotactic diene polymer (resin) are combined by continuous polymerization technology, and is a kind of special polymer alloy.
 特に、高結晶性シンジオタクチックジエン系ポリマー(樹脂)とは、高結晶性シンジオタクチックジエン系ポリマー樹脂(たとえば高結晶性シンジオタクチックポリブタジエン樹脂(SPB))である。高結晶性シンジオタクチックジエン系ポリマー樹脂には、トランスポリブタジエンが含まれる場合もある。 In particular, the highly crystalline syndiotactic diene polymer (resin) is a highly crystalline syndiotactic diene polymer resin (for example, highly crystalline syndiotactic polybutadiene resin (SPB)). The highly crystalline syndiotactic diene polymer resin may contain trans polybutadiene.
 初槽(R1)において遷移金属触媒を用いて中分子量のポリマーを製造し、所定の重合率になると重合溶液を終槽(R2)に供給し、終槽(R2)にて有機アルミニウム化合物とニ硫化炭素とから得られる触媒を用いてシンジオタクチックジエン系ポリマー樹脂を製造する。 A medium molecular weight polymer is produced in the first tank (R1) using a transition metal catalyst. When a predetermined polymerization rate is reached, the polymerization solution is supplied to the final tank (R2). A syndiotactic diene polymer resin is produced using a catalyst obtained from carbon sulfide.
 高結晶性シンジオタクチックジエン系ポリマー樹脂(たとえば高結晶性シンジオタクチックポリブタジエン樹脂(SPB))の反応である、シンジオ反応は、Cis反応より反応しにくく、重合温度も低い。活性ピークが45℃付近と低い。高温で重合すると分子量が低下し物性劣化してしまう。一方で、初槽(R1)での重合反応による発熱のため、顕熱効果を期待できない。したがって、終槽(R2)では冷却がより必要となる。 The syndio reaction, which is a reaction of a highly crystalline syndiotactic diene polymer resin (for example, a highly crystalline syndiotactic polybutadiene resin (SPB)), is less likely to react than the Cis reaction and has a low polymerization temperature. The activity peak is low at around 45 ° C. When polymerized at high temperature, the molecular weight decreases and the physical properties deteriorate. On the other hand, the sensible heat effect cannot be expected due to the heat generated by the polymerization reaction in the first tank (R1). Therefore, cooling is more necessary in the final tank (R2).
 また、シンジオ反応は、Cis反応より反応しにくく、より多くのモノマーを必要とする。 Also, the syndio reaction is less reactive than the Cis reaction and requires more monomers.
 これに対し、終槽(R2)に重合槽内部の重合溶液より低温のジエン系モノマーを、メイン流路とは別に供給し、重合槽内部の重合溶液を冷却する。 In contrast, a diene monomer having a temperature lower than that of the polymerization solution inside the polymerization tank is supplied to the final tank (R2) separately from the main flow path, and the polymerization solution inside the polymerization tank is cooled.
 別供給するジエン系モノマー溶液のモノマー濃度は、100wt%である。すなわち、モノマーを供給する。または、これに準ずるモノマー溶液でもよい。 The monomer concentration of the diene monomer solution supplied separately is 100 wt%. That is, a monomer is supplied. Or the monomer solution according to this may be sufficient.
 終槽(R2)内部の重合溶液と、別供給するジエン系モノマーとの温度差は、50℃~90℃が適当であり、55℃~87℃が好ましい。別供給するジエン系モノマーの温度は、-20℃~0℃が適しており、-20℃~-5℃がより好ましい。 The temperature difference between the polymerization solution in the final tank (R2) and the separately supplied diene monomer is suitably 50 ° C to 90 ° C, and preferably 55 ° C to 87 ° C. The temperature of the diene monomer supplied separately is suitably −20 ° C. to 0 ° C., more preferably −20 ° C. to −5 ° C.
 別供給するジエン系モノマーの供給量は、メイン流量の5%~20%が適当であり、10~20%が好ましい。11~15%がより好ましい。 The supply amount of the diene monomer supplied separately is suitably 5% to 20% of the main flow rate, and preferably 10 to 20%. 11 to 15% is more preferable.
 これにより、終槽(R2)での重合温度を50~70℃に均質に制御できる。 Thereby, the polymerization temperature in the final tank (R2) can be uniformly controlled to 50 to 70 ° C.
 また、初槽(R1)での重合によりモノマーが消費されるが、終槽(R2)ではモノマーが補充される。 In addition, the monomer is consumed by the polymerization in the first tank (R1), but the monomer is replenished in the final tank (R2).
 このように、終槽(R2)において温度制御とモノマー補充をバランスよく実現できる。その結果、高い収率を得ることができる。また、所望の物性が得られる。 Thus, temperature control and monomer replenishment can be realized in a balanced manner in the final tank (R2). As a result, a high yield can be obtained. Moreover, desired physical properties can be obtained.
 <多峰性グレード>
 図4は、多峰性グレードの一例の製造プロセスの概念図である。なお、具体的な数値については、実施例にて説明する。
<Multimodal grade>
FIG. 4 is a conceptual diagram of an example manufacturing process of a multimodal grade. Specific numerical values will be described in Examples.
 多峰性グレードは、複数の異なる分子量を持ったジエン系ポリマーである。たとえば、上記二峰性グレードと樹脂ゴム複合ポリブタジエングレードとの物性を併せ持つ。 The multimodal grade is a diene polymer having a plurality of different molecular weights. For example, it has the physical properties of the bimodal grade and the resin rubber composite polybutadiene grade.
 多峰性グレードは、第1工程(二峰性グレード)と、第2工程(樹脂ゴム複合ポリブタジエングレード)と、第3工程(混合)を経て製造される。 The multimodal grade is manufactured through the first step (bimodal grade), the second step (resin rubber composite polybutadiene grade), and the third step (mixing).
 第1工程では、初槽(R1-1)において高分子量のポリマーを重合し、重合溶液を終槽(R2-1)に供給し、終槽(R2-1)にて低分子のポリマーを製造する。 In the first step, a high molecular weight polymer is polymerized in the first tank (R1-1), the polymerization solution is supplied to the final tank (R2-1), and a low molecular weight polymer is produced in the final tank (R2-1). To do.
 第2工程では、初槽(R1-2)において中分子量のポリマーを重合し、重合溶液を終槽(R2-2)に供給し、終槽(R2-2)にてシンジオタクチックジエン系ポリマー樹脂を製造する。 In the second step, the medium molecular weight polymer is polymerized in the first tank (R1-2), the polymerization solution is supplied to the final tank (R2-2), and the syndiotactic diene-based polymer in the final tank (R2-2). A resin is produced.
 第3工程では、第1工程の製造物と第2工程の製造物とを混合し、多峰性グレードのジエン系ポリマーを製造する。 In the third step, the product of the first step and the product of the second step are mixed to produce a multimodal grade diene polymer.
 第1工程において、終槽(R2-1)にて冷却およびモノマー補充が必要となることは、二峰性グレードと同様である。 In the first step, cooling and monomer replenishment are required in the final tank (R2-1), as in the bimodal grade.
 これに対し、終槽(R2-1)に重合槽内部の重合溶液より低温のジエン系モノマー溶液を、メイン流路とは別に供給し、重合槽内部の重合溶液を冷却する。 In contrast, a diene monomer solution having a temperature lower than that of the polymerization solution inside the polymerization tank is supplied to the final tank (R2-1) separately from the main flow path, and the polymerization solution inside the polymerization tank is cooled.
 別供給するジエン系モノマー溶液のモノマー濃度は、30wt%~50wt%が適当であり、35~50wt%が好ましく、38~46wt%がより好ましい。
である。
The monomer concentration of the diene monomer solution supplied separately is suitably 30 wt% to 50 wt%, preferably 35 to 50 wt%, more preferably 38 to 46 wt%.
It is.
 終槽(R2-1)内部の重合溶液と、別供給するジエン系モノマー溶液との温度差は、40℃~105℃が適当であり、55℃~95℃が好ましい。別供給するジエン系モノマー溶液の温度は、-20℃~20℃が適している。 The temperature difference between the polymerization solution in the final tank (R2-1) and the separately supplied diene monomer solution is suitably 40 ° C to 105 ° C, preferably 55 ° C to 95 ° C. The temperature of the diene monomer solution supplied separately is suitably −20 ° C. to 20 ° C.
 別供給するジエン系モノマー溶液の供給量は、メイン流量の5%~20%が適当であり、10%~20%が好ましい。11%~15%がより好ましい。 The supply amount of the diene monomer solution supplied separately is suitably 5% to 20% of the main flow rate, and preferably 10% to 20%. 11% to 15% is more preferable.
 これにより、終槽(R2-1)での重合温度を60~85℃に均質に制御できる。 Thereby, the polymerization temperature in the final tank (R2-1) can be uniformly controlled to 60 to 85 ° C.
 また、初槽(R1-1)での重合によりモノマーが消費されるが、終槽(R2-1)ではモノマーが補充される。 In addition, the monomer is consumed by the polymerization in the first tank (R1-1), but the monomer is replenished in the final tank (R2-1).
 第2工程において、終槽(R2-2)にて冷却およびモノマー補充が必要となることは、樹脂ゴム複合ポリブタジエングレードと同様である。 In the second step, it is necessary to cool and replenish the monomer in the final tank (R2-2), similar to the resin rubber composite polybutadiene grade.
 別供給するジエン系モノマー溶液のモノマー濃度は、100wt%である。すなわち、モノマーを供給する。または、これに準ずるモノマー溶液でもよい。 The monomer concentration of the diene monomer solution supplied separately is 100 wt%. That is, a monomer is supplied. Or the monomer solution according to this may be sufficient.
 終槽(R2-2)内部の重合溶液と、別供給するジエン系モノマーとの温度差は、35℃~90℃が適当であり、40℃~86℃が好ましい。別供給するジエン系モノマーの温度は、-20℃~25℃である。 The temperature difference between the polymerization solution inside the final tank (R2-2) and the separately supplied diene monomer is suitably 35 ° C to 90 ° C, preferably 40 ° C to 86 ° C. The temperature of the diene monomer supplied separately is -20 ° C to 25 ° C.
 別供給するジエン系モノマーの供給量は、メイン流量の5%~20%が適当であり、10%~20%が好ましい。10~14%がより好ましい。 The supply amount of the diene monomer supplied separately is suitably 5% to 20% of the main flow rate, and preferably 10% to 20%. 10 to 14% is more preferable.
 これにより、終槽(R2-2)での重合温度を55~70℃に均質に制御できる。 Thereby, the polymerization temperature in the final tank (R2-2) can be uniformly controlled to 55 to 70 ° C.
 また、初槽(R2-1)での重合によりモノマーが消費されるが、終槽(R2-2)ではモノマーが補充される。 In addition, the monomer is consumed by the polymerization in the first tank (R2-1), but the monomer is replenished in the final tank (R2-2).
 このように、終槽(R2-1)においても終槽(R2-2)においても、温度制御とモノマー補充をバランスよく実現できる。その結果、製品において高い収率を得ることができる。また、所望の物性が得られる。 Thus, temperature control and monomer replenishment can be realized in a balanced manner in both the final tank (R2-1) and the final tank (R2-2). As a result, a high yield can be obtained in the product. Moreover, desired physical properties can be obtained.
 <変形例>
 ジエン系ポリマーの例として4つのグレードおよび製造プロセスを説明したが、種々の変形が可能である。
<Modification>
Although four grades and manufacturing processes have been described as examples of diene-based polymers, various variations are possible.
 図5は、一般グレードの製造を直列3連の重合槽(R1~R3)で行う変形例である。 FIG. 5 shows a modification in which the production of general grade is performed in a series of three series polymerization tanks (R1 to R3).
 第2槽(R2)および第3槽(R3)に、重合溶液より低温のジエン系モノマー溶液を、メイン流路とは別に供給し、重合槽内部の重合溶液を冷却する。 A diene monomer solution having a temperature lower than that of the polymerization solution is supplied to the second tank (R2) and the third tank (R3) separately from the main flow path, and the polymerization solution inside the polymerization tank is cooled.
 第2槽(R2)に別供給するジエン系モノマー溶液の濃度は、30wt%~70wt%であり、原材料より高濃度である。 The concentration of the diene monomer solution separately supplied to the second tank (R2) is 30 wt% to 70 wt%, which is higher than the raw material.
 第2槽(R2)内部の重合溶液と、別供給するジエン系モノマー溶液との温度差は30~100℃が適当であり。55~90℃が好ましい。別供給するジエン系モノマー溶液の温度は-20~30℃が適している。 The temperature difference between the polymerization solution inside the second tank (R2) and the separately supplied diene monomer solution is suitably 30 to 100 ° C. 55 to 90 ° C is preferable. The temperature of the diene monomer solution supplied separately is suitably −20 to 30 ° C.
 第2槽(R2)に別供給するジエン系モノマー溶液の供給量は、メイン流量の5~20%である。 The amount of diene monomer solution supplied separately to the second tank (R2) is 5 to 20% of the main flow rate.
 これにより、第2槽(R2)でも重合温度を60~80℃に均質に制御できる。 Thereby, the polymerization temperature can be uniformly controlled to 60 to 80 ° C. in the second tank (R2).
 また、第3槽(R3)に別供給するジエン系モノマー溶液の濃度は30wt%~70wt%が適当であり、36wt%~60wt%がより好ましく、原材料より高濃度である。 Also, the concentration of the diene monomer solution separately supplied to the third tank (R3) is suitably 30 wt% to 70 wt%, more preferably 36 wt% to 60 wt%, and a higher concentration than the raw material.
 第3槽(R3)内部の重合溶液と、別供給するジエン系モノマー溶液との温度差は30~100℃が適当であり、55~90℃が好ましい。別供給するジエン系モノマー溶液の温度は-20~30℃が適している。 The temperature difference between the polymerization solution in the third tank (R3) and the separately supplied diene monomer solution is suitably 30 to 100 ° C., preferably 55 to 90 ° C. The temperature of the diene monomer solution supplied separately is suitably −20 to 30 ° C.
 第3槽(R3)に別供給するジエン系モノマー溶液の供給量は、メイン流量の5~20%が適当であり、5~15%が好ましく、5~8%がより好ましい。 The supply amount of the diene monomer solution separately supplied to the third tank (R3) is suitably 5 to 20% of the main flow rate, preferably 5 to 15%, more preferably 5 to 8%.
 これにより、第3槽(R3)でも重合温度を60~80℃に均質に制御できる。 Thereby, the polymerization temperature can be uniformly controlled to 60 to 80 ° C. in the third tank (R3).
 なお、直列3連の重合槽を介して、三峰性グレードを製造してもよい。三峰性グレードは、分子量の異なる(高分子量と中分子量と低分子量)物性を持つジエン系ポリマーである。初槽において高分子量のポリマーを製造し、第2槽において中分子量のポリマーを製造し、終槽にて低分子のポリマーを製造する。 A trimodal grade may be produced via a series of three series polymerization tanks. The trimodal grade is a diene polymer having different physical properties (high molecular weight, medium molecular weight and low molecular weight). A high molecular weight polymer is produced in the first tank, a medium molecular weight polymer is produced in the second tank, and a low molecular weight polymer is produced in the final tank.
 図6は、一般グレードの変形例である。本発明は、初槽重合槽以外の重合槽を対象とする場合、顕著な効果を奏するが、1槽のみの場合でも適用できる。 Fig. 6 shows a modification of the general grade. The present invention has a remarkable effect when it is intended for a polymerization tank other than the initial tank polymerization tank, but it can also be applied to the case of only one tank.
 1槽のみの場合でも、ブラインによる冷却では不十分であるという問題があり、これを解決できる。また、熱交換器の適用が難しい場合にも、適用できる。 Even in the case of only one tank, there is a problem that cooling with brine is insufficient, and this can be solved. It can also be applied when it is difficult to apply a heat exchanger.
 一般グレードのために、前記一般グレードの条件と変更は生じない。 ∙ Due to the general grade, the conditions and changes of the general grade do not occur.
 別供給するジエン系モノマー溶液のモノマー濃度は、30wt%~70wt%が適当であり、36wt%~46wt%がより好ましく、モノマー濃度は原材料と同等若しくは高濃度である。 The monomer concentration of the diene monomer solution supplied separately is suitably 30 wt% to 70 wt%, more preferably 36 wt% to 46 wt%, and the monomer concentration is equal to or higher than that of the raw material.
 重合槽内部の重合溶液と、別供給するジエン系モノマー溶液との温度差は、30℃~100℃が適当であり、55℃~90℃が好ましい。別供給するジエン系モノマー溶液の温度は、-20℃~30℃である。 The temperature difference between the polymerization solution inside the polymerization tank and the diene monomer solution supplied separately is suitably 30 ° C. to 100 ° C., preferably 55 ° C. to 90 ° C. The temperature of the diene monomer solution supplied separately is -20 ° C to 30 ° C.
 別供給するジエン系モノマー溶液の供給量は、メイン流量の5%~20%である。 The supply amount of the diene monomer solution supplied separately is 5% to 20% of the main flow rate.
 これにより、重合槽での重合温度を60~80℃に均質に制御できる。 Thereby, the polymerization temperature in the polymerization tank can be uniformly controlled to 60 to 80 ° C.
 このように、重合槽において、温度制御とモノマー補充をバランスよく実現できる。その結果、高い収率を得ることが出来る。 Thus, temperature control and monomer replenishment can be realized in a good balance in the polymerization tank. As a result, a high yield can be obtained.
 図7は、別の変形例である。本発明は、重合槽が直列に配置されている場合、顕著な効果を奏するが、並列配置の場合でも適用できる。 FIG. 7 shows another modification. The present invention has a remarkable effect when the polymerization tanks are arranged in series, but can also be applied in the case of parallel arrangement.
 同一原料を複数の重合槽に供給する場合であって、1つの重合槽のみ冷却する場合に、当該重合槽のみに重合溶液より低温のジエン系モノマー溶液を、メイン流路とは別に供給し、重合槽内部の重合溶液を冷却する。更には、並列配置の3つの重合槽を全て冷却する場合に、当該重合槽にそれぞれ重合溶液より低温のジエン系モノマー溶液をメイン流路とは別に供給し、重合槽内部の重合溶液を冷却する場合もある。 When the same raw material is supplied to a plurality of polymerization tanks, and only one polymerization tank is cooled, a diene monomer solution having a temperature lower than the polymerization solution is supplied only to the polymerization tank, separately from the main flow path, The polymerization solution inside the polymerization tank is cooled. Furthermore, when all three polymerization tanks arranged in parallel are cooled, a diene monomer solution having a temperature lower than the polymerization solution is supplied to the polymerization tank separately from the main flow path, and the polymerization solution inside the polymerization tank is cooled. In some cases.
 図1~4とともに、各グレードの実施例を説明し、比較例(本発明適用せず)との比較を介して本願発明の効果を検証する。 Examples with each grade will be described with reference to FIGS. 1 to 4, and the effects of the present invention will be verified through comparison with comparative examples (not applying the present invention).
 <実施例1:一般グレード>
 図1に基づいて、一般グレードの実施例を説明する。単峰性(中分子量)のポリブタジエンを製造する。
<Example 1: General grade>
Based on FIG. 1, a general grade embodiment will be described. Unimodal (medium molecular weight) polybutadiene is produced.
 モノマーとして1,3ブタジエン38wt%および溶媒としてブテン:37wt%、シクロヘキサン25wt%からなる重合モノマー調整溶液を原料として、連続的に供給する。 A polymerization monomer adjusting solution consisting of 38 wt% of 1,3 butadiene as a monomer, 37 wt% of butene as a solvent and 25 wt% of cyclohexane is continuously supplied as a raw material.
 熱交換器による温度制御(顕熱効果)およびブラインによる冷却により、初槽(R1)では所定の重合温度に制御される。 The temperature of the first tank (R1) is controlled to a predetermined polymerization temperature by temperature control (sensible heat effect) by the heat exchanger and cooling by brine.
 ここで、冷却に用いる重合モノマー調整溶液をコールドショットCSと定義する。CSは重合モノマー調整溶液と同一のタンクより供給される。一方、1,3ブタジエン100wt%のモノマーをモノマーショットと定義する。 Here, the polymerization monomer adjusting solution used for cooling is defined as cold shot CS. CS is supplied from the same tank as the polymerization monomer adjustment solution. On the other hand, a monomer shot of 1,3 butadiene 100 wt% is defined as a monomer shot.
 実施例1-1では、メイン流量の8%CSおよびメイン流量5%のMSを混合し、モノマー濃度62wt%のモノマー溶液をメイン流量の13%、-16℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、85℃である。 In Example 1-1, 8% CS of the main flow rate and MS of 5% of the main flow rate were mixed, and the monomer solution having a monomer concentration of 62 wt% was cooled to -16 ° C. at 13% of the main flow rate, and the final tank (R2) To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 85 ° C.
 実施例1-2では、メイン流量の8%CSおよびメイン流量5%のMSを混合し、モノマー濃度62wt%のモノマー溶液をメイン流量の13%、-12℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、74℃である。 In Example 1-2, 8% CS of the main flow rate and MS of the main flow rate of 5% were mixed, and the monomer solution having a monomer concentration of 62 wt% was cooled to -12 ° C. at 13% of the main flow rate, and the final tank (R2) To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 74 ° C.
 実施例1-3では、メイン流量の5%CSおよびメイン流量2%のMSを混合し、モノマー濃度54wt%のモノマー溶液をメイン流量の7%、-12℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、85℃である。 In Example 1-3, 5% CS of the main flow rate and MS of 2% of the main flow rate are mixed, and the monomer solution with a monomer concentration of 54 wt% is cooled to −12 ° C. at 7% of the main flow rate, and the final tank (R2) To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 85 ° C.
 実施例1-4では、メイン流量の8%CSおよびメイン流量2%のMSを混合し、モノマー濃度49wt%のモノマー溶液をメイン流量の10%、5℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、74℃である。 In Example 1-4, 8% CS of the main flow rate and MS of the main flow rate of 2% were mixed, and the monomer solution having a monomer concentration of 49 wt% was cooled to 10% of the main flow rate to 5 ° C. and placed in the final tank (R2). Supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 74 ° C.
 実施例1-5では、メイン流量の7%CSおよびメイン流量8%のMSを混合し、モノマー濃度69wt%のモノマー溶液をメイン流量の15%、-16℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、90℃である。 In Example 1-5, 7% CS of the main flow rate and MS of the main flow rate of 8% were mixed, and the monomer solution with a monomer concentration of 69 wt% was cooled to -16 ° C. at 15% of the main flow rate, and the final tank (R2) To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 90 ° C.
 実施例1-6では、メイン流量の15%CSを-16℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、90℃である。 In Example 1-6, 15% CS of the main flow rate is cooled to −16 ° C. and supplied to the final tank (R2). In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 90 ° C.
 表1に、実施例1(実施例1-1~1-6)と低温モノマー溶液未供給である比較例1との比較を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows a comparison between Example 1 (Examples 1-1 to 1-6) and Comparative Example 1 in which the low-temperature monomer solution was not supplied.
Figure JPOXMLDOC01-appb-T000001
 比較例1では、収率は93.4%(実施例1-1を100%とする)となり、充分な収率が得られない。また、シス結合含量も許容範囲を満たさず、所望の物性が得られない。 In Comparative Example 1, the yield is 93.4% (Example 1-1 is taken as 100%), and a sufficient yield cannot be obtained. Further, the cis bond content does not satisfy the allowable range, and desired physical properties cannot be obtained.
 実施例1では、高い収率が得られるとともに、所望の物性が得られる。 In Example 1, a high yield can be obtained and desired physical properties can be obtained.
 <実施例2:二峰性グレード>
 図2に基づいて、二峰性グレードの実施例を説明する。二峰性(高分子量と低分子量)のポリブタジエンを製造する。高分子量と低分子量の重量割合を1:1とする。
<Example 2: Bimodal grade>
An example of a bimodal grade will be described with reference to FIG. Produces bimodal (high molecular weight and low molecular weight) polybutadiene. The weight ratio of high molecular weight to low molecular weight is 1: 1.
 モノマーとして1,3ブタジエン36wt%および溶媒としてブテン:32wt%、シクロヘキサン32wt%からなる重合モノマー調整溶液を原料として、連続的に供給する。 A polymerization monomer adjusting solution consisting of 36 wt% of 1,3 butadiene as a monomer and 32 wt% of butene as a solvent and 32 wt% of cyclohexane is continuously supplied as a raw material.
 初槽(R1)において高分子量のポリマーを製造する。熱交換器による温度制御(顕熱効果)およびブラインによる冷却により、初槽(R1)では所定の重合温度に制御される。 High molecular weight polymer is produced in the first tank (R1). The initial tank (R1) is controlled to a predetermined polymerization temperature by temperature control (sensible heat effect) by the heat exchanger and cooling by brine.
 実施例2-1では、メイン流量7%のCSおよびメイン流量8%のMSを混合し、モノマー濃度70wt%のモノマー溶液をメイン流量の15%、-19℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、93℃である。 In Example 2-1, CS having a main flow rate of 7% and MS having a main flow rate of 8% were mixed, and the monomer solution having a monomer concentration of 70 wt% was cooled to -19 ° C at 15% of the main flow rate, and the final tank (R2) To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 93 ° C.
 実施例2-2では、メイン流量7%のCSおよびメイン流量8%のMSを混合し、モノマー濃度70wt%のモノマー溶液をメイン流量の15%、-10℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。この時、重合温度と別供給するモノマー溶液との温度差は、85℃である。 In Example 2-2, CS having a main flow rate of 7% and MS having a main flow rate of 8% are mixed, and the monomer solution having a monomer concentration of 70 wt% is cooled to −10 ° C. at 15% of the main flow rate, and the final tank (R2) To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization temperature and the separately supplied monomer solution is 85 ° C.
 実施例2-3では、メイン流量7%のCSおよびメイン流量6%のMSを混合し、モノマー濃度65wt%のモノマー溶液をメイン流量の13%、0℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。この時、重合温度と別供給するモノマー溶液との温度差は、75℃である。 In Example 2-3, CS with a main flow rate of 7% and MS with a main flow rate of 6% are mixed, and a monomer solution with a monomer concentration of 65 wt% is cooled to 13% of the main flow rate at 0 ° C. to the final tank (R2). Supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization temperature and the separately supplied monomer solution is 75 ° C.
 実施例2-4では、メイン流量7%のCSおよびメイン流量10%のMSを混合し、モノマー濃度74wt%のモノマー溶液をメイン流量の17%、-19℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。この時、重合温度と別供給するモノマー溶液との温度差は、93℃である。 In Example 2-4, CS having a main flow rate of 7% and MS having a main flow rate of 10% were mixed, and the monomer solution having a monomer concentration of 74 wt% was cooled to -19 ° C. at 17% of the main flow rate, and the final tank (R2). To supply. In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization temperature and the separately supplied monomer solution is 93 ° C.
 表2に、実施例2(実施例2-1~2-4)と低温モノマー溶液未供給である比較例2との比較を示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows a comparison between Example 2 (Examples 2-1 to 2-4) and Comparative Example 2 in which the low-temperature monomer solution was not supplied.
Figure JPOXMLDOC01-appb-T000002
 比較例2では、収率は83.8%(実施例2-1を100%とする)となり、充分な収率が得られない。また、シス結合含量も許容範囲を満たさず、所望の物性が得られない。 In Comparative Example 2, the yield is 83.8% (Example 2-1 is taken as 100%), and a sufficient yield cannot be obtained. Further, the cis bond content does not satisfy the allowable range, and desired physical properties cannot be obtained.
 実施例2では、高い収率が得られるとともに、所望の物性が得られる。 In Example 2, a high yield is obtained and desired physical properties are obtained.
 さらに、分子量分布について検討する。図8Aは、実施例2における理論値と実測値の比較である。図8Bは、比較例2における理論値と実測値の比較である。 Furthermore, the molecular weight distribution will be examined. FIG. 8A is a comparison between the theoretical value and the actually measured value in Example 2. FIG. 8B is a comparison between the theoretical value and the actual measurement value in Comparative Example 2.
 横軸は保持時間(分)であり、高分子は保持時間が短く、低分子は保持時間が長い。縦軸は対応する分子量のポリマーの量である。 The horizontal axis is the retention time (minutes), the retention time for polymers is short, and the retention time for low molecules is long. The vertical axis is the amount of polymer of the corresponding molecular weight.
 理論値では、低分子側のピークは高分子側ピークより高くなる(より多くのポリマー量になる)。一方、比較例2の実測値では、低分子側のピーク値が理論値よりも低くなっている。低分子側のピークは高分子側ピークより低くなる。これは、終槽(R2)の収率が低下しているためである。その結果、比較例2では所望の分子量分布が得られない。 Theoretically, the peak on the low molecular side is higher than the peak on the high molecular side (more polymer amount). On the other hand, in the measured value of Comparative Example 2, the peak value on the low molecule side is lower than the theoretical value. The peak on the low molecular side is lower than the peak on the high molecular side. This is because the yield of the final tank (R2) is reduced. As a result, in Comparative Example 2, a desired molecular weight distribution cannot be obtained.
 これに対し、実施例2の実測値は、理論値とほぼ一致する。すなわち、所望の分子量分布が得られる。 On the other hand, the actual measurement values of Example 2 are almost the same as the theoretical values. That is, a desired molecular weight distribution is obtained.
 <実施例3:樹脂ゴム複合ポリブタジエングレード>
 図3に基づいて、樹脂ゴム複合ポリブタジエングレードの実施例を説明する。高シス-ポリブタジエン(ゴム)と高結晶性シンジオタクチックポリブタジエン樹脂(プラスチック)とのポリマーアロイを製造する。
<Example 3: Resin rubber composite polybutadiene grade>
An example of a resin rubber composite polybutadiene grade will be described with reference to FIG. A polymer alloy of high cis-polybutadiene (rubber) and highly crystalline syndiotactic polybutadiene resin (plastic) is produced.
 モノマーとして1,3ブタジエン40wt%および溶媒として、ブテン:35wt%、シクロヘキサン25wt%からなる重合モノマー調整溶液を原料として、連続的に供給する。 A polymerization monomer adjustment solution consisting of 1,3 butadiene 40 wt% as a monomer and butene: 35 wt% and cyclohexane 25 wt% as a solvent is continuously fed as a raw material.
 熱交換器による温度制御(顕熱効果)およびブラインによる冷却により、初槽(R1)では所定の重合温度に制御される。 The temperature of the first tank (R1) is controlled to a predetermined polymerization temperature by temperature control (sensible heat effect) by the heat exchanger and cooling by brine.
 実施例3-1では、メイン流量13%のMSを-19℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマーとの温度差は、80℃である。 In Example 3-1, MS with a main flow rate of 13% is cooled to -19 ° C. and supplied to the final tank (R2). In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 80 ° C.
 実施例3-2では、メイン流量11%のMSを-10℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマーとの温度差は、70℃である。 In Example 3-2, MS with a main flow rate of 11% is cooled to −10 ° C. and supplied to the final tank (R2). In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 70 ° C.
 実施例3-3では、メイン流量15%のMSを0℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマーとの温度差は、55℃である。 In Example 3-3, MS with a main flow rate of 15% is cooled to 0 ° C. and supplied to the final tank (R2). In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 55 ° C.
 実施例3-4では、メイン流量15%のMSを-18℃に冷却して終槽(R2)に供給する。ブラインによる冷却と併せて、終槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマーとの温度差は、87℃である。 In Example 3-4, MS with a main flow rate of 15% is cooled to −18 ° C. and supplied to the final tank (R2). In combination with cooling with brine, the final tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 87 ° C.
 表3に、実施例3(実施例3-1~3-4)と低温モノマー溶液未供給である比較例3との比較を示す。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows a comparison between Example 3 (Examples 3-1 to 3-4) and Comparative Example 3 in which the low-temperature monomer solution was not supplied.
Figure JPOXMLDOC01-appb-T000003
 比較例3では、収率は56.6%(実施例3-1を100%とする)となり、充分な収率が得られない。 In Comparative Example 3, the yield is 56.6% (Example 3-1 is taken as 100%), and a sufficient yield cannot be obtained.
 ηsp/Cは、シンジオ反応の粘度測定に係る指標であり、VCR中のSPB生成量またはシンジオ反応の分子量を示す。SPBの分子量が小さいと補強効果が小さくなり、製品の品質を維持できない。比較例3では、許容範囲を満たさず、所望の物性が得られない。 Ηsp / C is an index related to the viscosity measurement of the syndio reaction, and indicates the amount of SPB generated in the VCR or the molecular weight of the syndio reaction. If the molecular weight of SPB is small, the reinforcing effect is small and the product quality cannot be maintained. In Comparative Example 3, the allowable range is not satisfied and desired physical properties cannot be obtained.
 HI(wt%)(n-ヘキサン不溶解分)はVCR中のSPB量を示し、SPBの生成量の指標である。SPB量が少ないと補強効果が小さくなり、製品の品質を維持できない。比較例3では、許容範囲を満たさず、所望の物性が得られない。 HI (wt%) (insoluble in n-hexane) indicates the amount of SPB in the VCR and is an index of the amount of SPB produced. If the amount of SPB is small, the reinforcing effect is small and the product quality cannot be maintained. In Comparative Example 3, the allowable range is not satisfied and desired physical properties cannot be obtained.
 実施例3では、高い収率が得られるとともに、所望の物性が得られる。 In Example 3, a high yield is obtained and desired physical properties are obtained.
 <実施例4:多峰性グレード>
 図4に基づいて、多峰性グレードの実施例を説明する。一例として、高分子量と中分子量と低分子量との分布を持つポリブタジエンと、SPBとを含むポリマー製品について説明する。
<Example 4: Multimodal grade>
Based on FIG. 4, an example of a multimodal grade will be described. As an example, a polymer product containing polybutadiene having a distribution of high molecular weight, medium molecular weight and low molecular weight and SPB will be described.
 モノマーとして1,3ブタジエン43wt%および溶媒として、ブテン:32wt%、シクロヘキサン25wt%からなる重合モノマー調整溶液を原料として、連続的に供給する。水溶解槽、熟成槽を経て、原料の64%を第1工程に、原料の36%を第2工程に供給する。 A polymerization monomer adjusting solution consisting of 43 wt% of 1,3 butadiene as a monomer and 32 wt% of butene: 25 wt% of cyclohexane as a solvent is continuously supplied as a raw material. After passing through the water dissolution tank and the aging tank, 64% of the raw material is supplied to the first step and 36% of the raw material is supplied to the second step.
 第1工程において、初槽(R1-1)において高分子量のポリマーを製造する。熱交換器による温度制御(顕熱効果)およびブラインによる冷却により、初槽(R1-1)では所定の重合温度に制御される。 In the first step, a high molecular weight polymer is produced in the first tank (R1-1). By the temperature control (sensible heat effect) by the heat exchanger and cooling by the brine, the initial tank (R1-1) is controlled to a predetermined polymerization temperature.
 実施例4-1では、メイン流量13%のCSを-20℃に冷却して終槽(R2-1)に供給する。ブラインによる冷却と併せて、終槽(R2-1)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、93℃である。 In Example 4-1, CS with a main flow rate of 13% is cooled to −20 ° C. and supplied to the final tank (R2-1). Along with cooling with brine, the final tank (R2-1) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 93 ° C.
 第2工程において、初槽R1-2において、中分子量のポリマーを製造する。熱交換器による温度制御(顕熱効果)およびブラインによる冷却により、初槽(R1-2)では所定の重合温度に制御される。 In the second step, a medium molecular weight polymer is produced in the first tank R1-2. By the temperature control (sensible heat effect) by the heat exchanger and cooling by the brine, the initial tank (R1-2) is controlled to a predetermined polymerization temperature.
 実施例4-1では、メイン流量12%のMSを-17℃に冷却して終槽(R2-2)に供給する。ブラインによる冷却と併せて、終槽(R2-2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマーとの温度差は、80℃である。 In Example 4-1, the main flow rate of 12% MS is cooled to -17 ° C. and supplied to the final tank (R2-2). In combination with cooling with brine, the final tank (R2-2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 80 ° C.
 第1工程の製造物と第2工程の製造物とを混合し、多峰性グレードのジエン系ポリマーを製造する。 1) The product of the first step and the product of the second step are mixed to produce a multimodal grade diene polymer.
 実施例4-2では、第1工程において、メイン流量11%のCSを0℃に冷却して終槽(R2-1)に供給する。ブラインによる冷却と併せて、終槽(R2-1)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、77℃である。 In Example 4-2, CS having a main flow rate of 11% is cooled to 0 ° C. and supplied to the final tank (R2-1) in the first step. Along with cooling with brine, the final tank (R2-1) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 77 ° C.
 実施例4-2では、第2工程において、メイン流量10%のMSを25℃に冷却して終槽(R2-2)に供給する。ブラインによる冷却と併せて、終槽(R2-2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマーとの温度差は、35℃である。 In Example 4-2, in the second step, MS with a main flow rate of 10% is cooled to 25 ° C. and supplied to the final tank (R2-2). In combination with cooling with brine, the final tank (R2-2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 35 ° C.
 実施例4-3では、第1工程において、メイン流量11%のCSを-5℃に冷却して終槽(R2-1)に供給する。ブラインによる冷却と併せて、終槽(R2-1)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、65℃である。 In Example 4-3, in the first step, CS with a main flow rate of 11% is cooled to −5 ° C. and supplied to the final tank (R2-1). Along with cooling with brine, the final tank (R2-1) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 65 ° C.
 実施例4-3では、第2工程において、メイン流量10%のMSを25℃に冷却して終槽(R2-2)に供給する。ブラインによる冷却と併せて、終槽(R2-2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマーとの温度差は、35℃である。 In Example 4-3, in the second step, MS with a main flow rate of 10% is cooled to 25 ° C. and supplied to the final tank (R2-2). In combination with cooling with brine, the final tank (R2-2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 35 ° C.
 実施例4-4では、第1工程において、メイン流量15%のCSを-19℃に冷却して終槽(R2-1)に供給する。ブラインによる冷却と併せて、終槽(R2-1)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、99℃である。 In Example 4-4, CS having a main flow rate of 15% is cooled to −19 ° C. and supplied to the final tank (R2-1) in the first step. Along with cooling with brine, the final tank (R2-1) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 99 ° C.
 実施例4-4では、第2工程において、メイン流量11%のMSを15℃に冷却して終槽(R2-2)に供給する。ブラインによる冷却と併せて、終槽(R2-2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマーとの温度差は、40℃である。 In Example 4-4, in the second step, MS with a main flow rate of 11% is cooled to 15 ° C. and supplied to the final tank (R2-2). In combination with cooling with brine, the final tank (R2-2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 40 ° C.
 実施例4-5では、第1工程において、メイン流量15%のCSを-19℃に冷却して終槽(R2-1)に供給する。ブラインによる冷却と併せて、終槽(R2-1)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、99℃である。 In Example 4-5, CS having a main flow rate of 15% is cooled to −19 ° C. and supplied to the final tank (R2-1) in the first step. Along with cooling with brine, the final tank (R2-1) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 99 ° C.
 実施例4-5では、第2工程において、メイン流量14%のMSを-7℃に冷却して終槽(R2-2)に供給する。ブラインによる冷却と併せて、終槽(R2-2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマーとの温度差は、67℃である。 In Example 4-5, in the second step, MS with a main flow rate of 14% is cooled to −7 ° C. and supplied to the final tank (R2-2). In combination with cooling with brine, the final tank (R2-2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer is 67 ° C.
 表4に、実施例4(実施例4-1~4-5)と低温モノマー溶液未供給である比較例4との比較を示す。
Figure JPOXMLDOC01-appb-T000004
Table 4 shows a comparison between Example 4 (Examples 4-1 to 4-5) and Comparative Example 4 in which the low-temperature monomer solution was not supplied.
Figure JPOXMLDOC01-appb-T000004
 比較例4では、収率は56.6%(実施例4-1を100%とする)となり、充分な収率が得られない。また、シス結合含量も許容範囲を満たさず、所望の物性が得られない。 In Comparative Example 4, the yield is 56.6% (Example 4-1 is taken as 100%), and a sufficient yield cannot be obtained. Further, the cis bond content does not satisfy the allowable range, and desired physical properties cannot be obtained.
 さらに、比較例4では、HI(wt%)(n-ヘキサン不溶解分)およびηsp/Cは許容範囲を満たさず、SPBによる補強効果が期待できない。 Furthermore, in Comparative Example 4, HI (wt%) (n-hexane insoluble matter) and ηsp / C do not satisfy the allowable range, and the reinforcing effect by SPB cannot be expected.
 実施例4では、高い収率が得られるとともに、シス結合含量、HI、ηsp/C全て許容範囲に含まれ、所望の物性が得られる。
 <実施例5:変形例>
 図5に基づいて、直列3連重合槽の実施例を説明する。単峰性(中分子量)のポリブタジエンを製造する。一般グレードの変形例である。
In Example 4, a high yield is obtained, and the cis bond content, HI, and ηsp / C are all included in the allowable ranges, and desired physical properties are obtained.
<Example 5: Modification>
Based on FIG. 5, the Example of a series triple polymerization tank is demonstrated. Unimodal (medium molecular weight) polybutadiene is produced. It is a modification of a general grade.
 モノマーとして1,3ブタジエン36wt%および溶媒としてブテン:39wt%、シクロヘキサン25wt%からなる重合モノマー調整溶液を原料として、連続的に供給する。 A polymerization monomer adjustment solution consisting of 36 wt% of 1,3 butadiene as a monomer, 39 wt% of butene as a solvent and 25 wt% of cyclohexane is continuously supplied as a raw material.
 熱交換器による温度制御(顕熱効果)およびブラインによる冷却により、第1槽(R1)では所定の重合温度に制御される。 The first tank (R1) is controlled to a predetermined polymerization temperature by temperature control (sensible heat effect) by the heat exchanger and cooling by brine.
 実施例5では、メイン流量の8%CSおよびメイン流量5%のMSを混合し、モノマー濃度59wt%のモノマー溶液をメイン流量の13%、-12℃に冷却して第2槽(R2)に供給する。ブラインによる冷却と併せて、第2槽(R2)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、84℃である。 In Example 5, 8% CS of the main flow rate and MS of the main flow rate of 5% were mixed, and the monomer solution with a monomer concentration of 59 wt% was cooled to −12 ° C. at 13% of the main flow rate and placed in the second tank (R2). Supply. In combination with cooling with brine, the second tank (R2) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 84 ° C.
 さらに、メイン流量の3%CSおよびメイン流量2%のMSを混合し、モノマー濃度60wt%のモノマー溶液をメイン流量の5%、-12℃に冷却して第3槽(R3)に供給する。ブラインによる冷却と併せて、第3槽(R3)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、86℃である。 Further, 3% CS of the main flow rate and MS of 2% of the main flow rate are mixed, and the monomer solution having a monomer concentration of 60 wt% is cooled to −12 ° C. at 5% of the main flow rate and supplied to the third tank (R3). In combination with cooling with brine, the third tank (R3) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 86 ° C.
 表5に、実施例5と低温モノマー溶液未供給である比較例5との比較を示す。
Figure JPOXMLDOC01-appb-T000005
Table 5 shows a comparison between Example 5 and Comparative Example 5 in which the low-temperature monomer solution was not supplied.
Figure JPOXMLDOC01-appb-T000005
 比較例5では、収率は92%(実施例5を100%とする)となり、充分な収率が得られない。また、シス結合含量も許容範囲を満たさず、所望の物性が得られない。 In Comparative Example 5, the yield is 92% (Example 5 is 100%), and a sufficient yield cannot be obtained. Further, the cis bond content does not satisfy the allowable range, and desired physical properties cannot be obtained.
 実施例5では、高い収率が得られるとともに、所望の物性が得られる。
 <実施例6:変形例>
 図6に基づいて、単槽の実施例を説明する。重合槽(R0)において、単峰性(中分子量)のポリブタジエンを製造する。一般グレードの変形例である。
In Example 5, a high yield is obtained and desired physical properties are obtained.
<Example 6: Modification>
Based on FIG. 6, the Example of a single tank is demonstrated. In the polymerization tank (R0), monomodal (medium molecular weight) polybutadiene is produced. It is a modification of a general grade.
 モノマーとして1,3ブタジエン36wt%および溶媒としてブテン:39wt%、シクロヘキサン25wt%からなる重合モノマー調整溶液を原料として、連続的に供給する。 A polymerization monomer adjustment solution consisting of 36 wt% of 1,3 butadiene as a monomer, 39 wt% of butene as a solvent and 25 wt% of cyclohexane is continuously supplied as a raw material.
 熱交換器による温度制御(顕熱効果)およびブラインによる冷却に加えて、モノマー溶液の別供給により、重合槽(R0)では所定の重合温度に制御される。 In addition to temperature control by the heat exchanger (sensible heat effect) and cooling by brine, the polymerization tank (R0) is controlled to a predetermined polymerization temperature by separately supplying the monomer solution.
 実施例6-1では、メイン流量の18%CSを-13℃に冷却して重合槽(R0)に供給する。ブラインによる冷却と併せて、重合槽(R0)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、85℃である。 In Example 6-1, 18% CS of the main flow rate is cooled to −13 ° C. and supplied to the polymerization tank (R0). Along with cooling with brine, the polymerization tank (R0) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 85 ° C.
 実施例6-2では、メイン流量の14%CSを-10℃に冷却して重合槽(R0)に供給する。ブラインによる冷却と併せて、重合槽(R0)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、83℃である。 In Example 6-2, 14% CS of the main flow rate is cooled to −10 ° C. and supplied to the polymerization tank (R0). Along with cooling with brine, the polymerization tank (R0) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 83 ° C.
 実施例6-3では、メイン流量の12%CSを-12℃に冷却して重合槽(R0)に供給する。ブラインによる冷却と併せて、重合槽(R0)では所定の重合温度に制御される。このとき、重合溶液と別供給するモノマー溶液との温度差は、83℃である。 In Example 6-3, 12% CS of the main flow rate is cooled to −12 ° C. and supplied to the polymerization tank (R0). Along with cooling with brine, the polymerization tank (R0) is controlled to a predetermined polymerization temperature. At this time, the temperature difference between the polymerization solution and the separately supplied monomer solution is 83 ° C.
 表6に、実施例6と低温モノマー溶液未供給である比較例6との比較を示す。
Figure JPOXMLDOC01-appb-T000006
Table 6 shows a comparison between Example 6 and Comparative Example 6 in which the low-temperature monomer solution was not supplied.
Figure JPOXMLDOC01-appb-T000006
 比較例6では、収率は95%(実施例6-1を100%とする)となり、充分な収率が得られない。また、シス結合含量も許容範囲を満たさず、所望の物性が得られない。 In Comparative Example 6, the yield is 95% (Example 6-1 is 100%), and a sufficient yield cannot be obtained. Further, the cis bond content does not satisfy the allowable range, and desired physical properties cannot be obtained.
 実施例6では、高い収率が得られるとともに、所望の物性が得られる。 In Example 6, a high yield is obtained and desired physical properties are obtained.

Claims (8)

  1.  原料としてジエン系モノマー溶液を重合槽に供給してジエン系ポリマーを製造する方法であって、
     該重合槽に、該重合槽内部の重合溶液より低温の該ジエン系モノマー、又は、該ジエン系モノマー溶液を原料供給とは別に供給する
     ことを特徴とするジエン系ポリマーの製造方法。
    A method for producing a diene polymer by supplying a diene monomer solution to a polymerization tank as a raw material,
    A method for producing a diene polymer, characterized in that the diene monomer or the diene monomer solution at a lower temperature than the polymerization solution inside the polymerization tank is supplied to the polymerization tank separately from the raw material supply.
  2.  複数の重合槽を経てジエン系ポリマーを製造する方法であって、
     初槽重合槽以外のいずれかの重合槽に、
     該重合槽内部の重合溶液より低温の該ジエン系モノマー、又は、該ジエン系モノマー溶液を 供給する
     ことを特徴とするジエン系ポリマーの製造方法。
    A method for producing a diene polymer through a plurality of polymerization vessels,
    In any polymerization tank other than the first tank polymerization tank,
    A method for producing a diene polymer, comprising supplying the diene monomer or the diene monomer solution at a lower temperature than the polymerization solution inside the polymerization tank.
  3.  該ジエン系ポリマーがポリブタジエンである
    ことを特徴とする請求項1又は請求項2記載のジエン系ポリマーの製造方法。
    The method for producing a diene polymer according to claim 1 or 2, wherein the diene polymer is polybutadiene.
  4.  該ジエン系モノマーがブタジエンである
    ことを特徴とする請求項1又は請求項2記載のジエン系ポリマーの製造方法。
    The method for producing a diene polymer according to claim 1 or 2, wherein the diene monomer is butadiene.
  5.  該初槽重合槽と該重合槽とにおいて、同じ分子量であり、
     該ジエン系モノマー溶液のモノマー濃度は、30wt%~70wt%であり、
    該重合槽内部の重合溶液と、該ジエン系モノマー溶液との温度差は、30℃~100℃であり、
     該ジエン系モノマー溶液の供給量は、メイン流量の5%~20%である
     ことを特徴とする請求項2記載のジエン系ポリマーの製造方法。
    In the initial tank polymerization tank and the polymerization tank, the same molecular weight,
    The monomer concentration of the diene monomer solution is 30 wt% to 70 wt%,
    The temperature difference between the polymerization solution inside the polymerization tank and the diene monomer solution is 30 ° C. to 100 ° C.,
    The method for producing a diene polymer according to claim 2, wherein the supply amount of the diene monomer solution is 5% to 20% of the main flow rate.
  6.  該重合槽において、該初槽重合槽に比べてより低分子量のポリマーを重合し、高分子量ポリマーと低分子量ポリマーとを2:8~8:2の重量比となるように混合し、
     該ジエン系モノマー溶液のモノマー濃度は、65wt%~75wt%であり、
     該重合槽内部の重合溶液と、該ジエン系モノマー溶液との温度差は、40~105℃であり、
     該ジエン系モノマー溶液の供給量は、メイン流量の5~20%である
     ことを特徴とする請求項2記載のジエン系ポリマーの製造方法。
    In the polymerization tank, a polymer having a lower molecular weight than that in the initial tank polymerization tank is polymerized, and the high molecular weight polymer and the low molecular weight polymer are mixed so as to have a weight ratio of 2: 8 to 8: 2.
    The monomer concentration of the diene monomer solution is 65 wt% to 75 wt%,
    The temperature difference between the polymerization solution inside the polymerization tank and the diene monomer solution is 40 to 105 ° C.,
    The method for producing a diene polymer according to claim 2, wherein the supply amount of the diene monomer solution is 5 to 20% of the main flow rate.
  7.  該初槽重合槽において中分子量のポリマーを重合し、該重合槽においてプラスチック樹脂を重合し、両者を混合し、
     該ジエン系モノマー溶液のモノマー濃度は、100wt%(モノマー)であり、
     該重合槽内部の重合溶液と、該ジエン系モノマーとの温度差は、50℃~90℃であり、
     該ジエン系モノマーの供給量は、メイン流量の5~20%である
     ことを特徴とする請求項2記載のジエン系ポリマーの製造方法。
    Polymerize a medium molecular weight polymer in the initial tank polymerization tank, polymerize a plastic resin in the polymerization tank, mix both,
    The monomer concentration of the diene monomer solution is 100 wt% (monomer),
    The temperature difference between the polymerization solution inside the polymerization tank and the diene monomer is 50 ° C. to 90 ° C.,
    The method for producing a diene polymer according to claim 2, wherein the supply amount of the diene monomer is 5 to 20% of the main flow rate.
  8.  第1工程では、第1工程の初槽重合槽において高分子量のポリマーを重合し、第1工程の初槽以外の重合槽に該重合溶液を供給し、該重合槽において低分子のポリマーを重合し、
     第2工程では、第2工程の初槽重合槽において中分子量のポリマーを重合し、第2工程の初槽以外の重合槽に該重合溶液を供給し、該重合槽においてプラスチック樹脂を重合し、
     第3工程では、第1工程の製造物と第2工程の製造物とを混合し、
     該第1工程では、
     該ジエン系モノマー溶液のモノマー濃度は、30wt%~50wt%であり、
     該重合槽内部の重合溶液と、該ジエン系モノマー溶液との温度差は、40~105℃であり、
     該ジエン系モノマー溶液の供給量は、メイン流量の5~20%であり、
     該第2工程では、
     該ジエン系モノマー溶液のモノマー濃度は、100wt%(モノマー)であり、
     該重合槽内部の重合溶液と、該ジエン系モノマーとの温度差は、35℃~90℃であり、
     該ジエン系モノマーの供給量は、メイン流量の5~20%である
     ことを特徴とする請求項2記載のジエン系ポリマーの製造方法。
    In the first step, the high molecular weight polymer is polymerized in the first tank polymerization tank of the first process, the polymerization solution is supplied to a polymerization tank other than the first tank of the first process, and the low molecular weight polymer is polymerized in the polymerization tank. And
    In the second step, the medium molecular weight polymer is polymerized in the initial tank polymerization tank of the second process, the polymerization solution is supplied to a polymerization tank other than the first tank of the second process, and the plastic resin is polymerized in the polymerization tank,
    In the third step, the product of the first step and the product of the second step are mixed,
    In the first step,
    The monomer concentration of the diene monomer solution is 30 wt% to 50 wt%,
    The temperature difference between the polymerization solution inside the polymerization tank and the diene monomer solution is 40 to 105 ° C.,
    The supply amount of the diene monomer solution is 5 to 20% of the main flow rate,
    In the second step,
    The monomer concentration of the diene monomer solution is 100 wt% (monomer),
    The temperature difference between the polymerization solution inside the polymerization tank and the diene monomer is 35 ° C. to 90 ° C.,
    The method for producing a diene polymer according to claim 2, wherein the supply amount of the diene monomer is 5 to 20% of the main flow rate.
PCT/JP2016/055036 2015-03-30 2016-02-22 Process for producing diene-based polymer WO2016158084A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016550283A JP6098859B2 (en) 2015-03-30 2016-02-22 Method for producing diene polymer
KR1020167023441A KR101855605B1 (en) 2015-03-30 2016-02-22 Diene-based polymer production method
CN201680015915.7A CN107428853B (en) 2015-03-30 2016-02-22 The manufacturing method of diolefinic polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070096 2015-03-30
JP2015-070096 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158084A1 true WO2016158084A1 (en) 2016-10-06

Family

ID=57004499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055036 WO2016158084A1 (en) 2015-03-30 2016-02-22 Process for producing diene-based polymer

Country Status (5)

Country Link
JP (2) JP6098859B2 (en)
KR (1) KR101855605B1 (en)
CN (1) CN107428853B (en)
TW (1) TWI625338B (en)
WO (1) WO2016158084A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002965A (en) * 2016-07-07 2018-01-11 株式会社ブリヂストン Manufacturing method of polymer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154820A (en) * 1990-10-19 1992-05-27 Ube Ind Ltd Polymerization for polybutadiene
JP2004522839A (en) * 2001-02-07 2004-07-29 バイエル アクチェンゲゼルシャフト Continuous production of elastomers
JP2007023232A (en) * 2005-07-21 2007-02-01 Ube Ind Ltd METHOD FOR PRODUCING NEW VINYL cis-POLYBUTADIENE RUBBER
JP2007063391A (en) * 2005-08-31 2007-03-15 Ube Ind Ltd Manufacturing process of modified butadiene rubber
JP2012102248A (en) * 2010-11-10 2012-05-31 Japan Elastomer Co Ltd Modified conjugated diene copolymer, method for producing the same, and modified conjugated diene copolymer composition
JP2012201856A (en) * 2011-03-28 2012-10-22 Nippon Zeon Co Ltd Method for producing latex for dip molding, latex for dip molding, dip molding composition, and dip-molded product
WO2013146253A1 (en) * 2012-03-27 2013-10-03 株式会社クラレ Method for manufacturing vinyl polymer
JP2014189720A (en) * 2013-03-28 2014-10-06 Sumitomo Chemical Co Ltd Method for producing conjugated diene-based polymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051566A (en) * 1990-12-26 1991-05-22 中国石油化工总公司锦州石油化工公司 The method of butadiene bulk polymerization and copolymerization
CA2291699A1 (en) * 1997-08-27 1999-03-04 The Dow Chemical Company Syndiotactic vinylaromatic polymerization using multiple reactors in series
JP4895521B2 (en) 2005-03-29 2012-03-14 旭化成ケミカルズ株式会社 Process for producing modified conjugated diene polymer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154820A (en) * 1990-10-19 1992-05-27 Ube Ind Ltd Polymerization for polybutadiene
JP2004522839A (en) * 2001-02-07 2004-07-29 バイエル アクチェンゲゼルシャフト Continuous production of elastomers
JP2007023232A (en) * 2005-07-21 2007-02-01 Ube Ind Ltd METHOD FOR PRODUCING NEW VINYL cis-POLYBUTADIENE RUBBER
JP2007063391A (en) * 2005-08-31 2007-03-15 Ube Ind Ltd Manufacturing process of modified butadiene rubber
JP2012102248A (en) * 2010-11-10 2012-05-31 Japan Elastomer Co Ltd Modified conjugated diene copolymer, method for producing the same, and modified conjugated diene copolymer composition
JP2012201856A (en) * 2011-03-28 2012-10-22 Nippon Zeon Co Ltd Method for producing latex for dip molding, latex for dip molding, dip molding composition, and dip-molded product
WO2013146253A1 (en) * 2012-03-27 2013-10-03 株式会社クラレ Method for manufacturing vinyl polymer
JP2014189720A (en) * 2013-03-28 2014-10-06 Sumitomo Chemical Co Ltd Method for producing conjugated diene-based polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002965A (en) * 2016-07-07 2018-01-11 株式会社ブリヂストン Manufacturing method of polymer
WO2018008318A1 (en) * 2016-07-07 2018-01-11 株式会社ブリヂストン Method for producing polymer

Also Published As

Publication number Publication date
JPWO2016158084A1 (en) 2017-04-27
JP2017088905A (en) 2017-05-25
TWI625338B (en) 2018-06-01
CN107428853A (en) 2017-12-01
TW201638115A (en) 2016-11-01
KR101855605B1 (en) 2018-06-08
CN107428853B (en) 2018-11-30
JP6098859B2 (en) 2017-03-22
KR20170124434A (en) 2017-11-10
JP6429043B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
Niu et al. Trans-1, 4-stereospecific copolymerization of isoprene and butadiene catalyzed by TiCl4/MgCl2 type Ziegler-Natta catalyst II. Copolymerization Kinetics and Mechanism
US9051407B2 (en) Polybutadiene grafted isoprene rubber, processes for preparing polybutadiene grafted isoprene rubber, mixed compositions and vulcanized forms thereof
CN105102491A (en) Supported donor modified ziegler-natta catalysts
JP6429043B2 (en) Method for producing diene polymer
Srivastava et al. Role of catalysis in sustainable production of synthetic elastomers
CN106478850A (en) Preparation method and ethylene rolymerization catalyst for the catalytic component of vinyl polymerization
JP2011184570A (en) Method for producing vinyl-cis-polybutadiene rubber, and vinyl-cis-polybutadiene rubber
JP5962139B2 (en) Method for producing diene rubber
CN107286292A (en) A kind of preparation method of random distribution high-phenylethylene medium vinyl content solution polymerized butadiene styrene rubber
JP5447709B2 (en) Method for producing vinyl cis-polybutadiene
Li et al. m-Cresol-substituted triethyl aluminum/MoCl 5/TBP catalytic system for coordination polymerization of butadiene
Liu et al. Novel butadiene/isoprene copolymer with predominant 1, 2/3, 4-units: A tough thermoplastic elastomer material with superior dynamic mechanical properties
CN104530282A (en) Preparation method of random 1, 2-polybutadiene
CN105732868B (en) The continuous solution polymerization method and rare-earth isoprene rubber and vulcanization rubber of rare-earth isoprene rubber
Xu et al. Study on catalytic behavior of iron-based catalyst with IITP as electron donor in the polymerization of butadiene
CN106046227A (en) Method for adjusting modular weight distribution of low-cis polyisoprene rubber
CN107573458B (en) A method of preparing polymer
JP6269867B2 (en) Method for producing diene rubber
CN112812205B (en) Catalyst component for olefin polymerization reaction, catalyst and preparation method and application thereof
JP5699974B2 (en) Method for producing diene rubber
JP5699973B2 (en) Method for producing diene rubber
JP2000072823A (en) Polybutadiene and its production
JP5682765B2 (en) Method for producing diene rubber
WO2020054707A1 (en) Rubber composition and tire
JP2016117911A (en) Manufacturing method of diene rubber

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016550283

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167023441

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771968

Country of ref document: EP

Kind code of ref document: A1