WO2016157596A1 - Capsule endoscope guidance system and capsule endoscope guidance apparatus - Google Patents

Capsule endoscope guidance system and capsule endoscope guidance apparatus Download PDF

Info

Publication number
WO2016157596A1
WO2016157596A1 PCT/JP2015/081407 JP2015081407W WO2016157596A1 WO 2016157596 A1 WO2016157596 A1 WO 2016157596A1 JP 2015081407 W JP2015081407 W JP 2015081407W WO 2016157596 A1 WO2016157596 A1 WO 2016157596A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule endoscope
magnetic field
direction vector
optical axis
axis direction
Prior art date
Application number
PCT/JP2015/081407
Other languages
French (fr)
Japanese (ja)
Inventor
優輔 鈴木
河野 宏尚
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016557157A priority Critical patent/JPWO2016157596A1/en
Publication of WO2016157596A1 publication Critical patent/WO2016157596A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to a capsule endoscope guidance system and a capsule endoscope guidance apparatus that are introduced into a subject and move within the subject to acquire information on the subject.
  • a capsule endoscope having an imaging function and a wireless communication function inside a capsule casing that can be introduced into an organ of a subject such as a patient is known.
  • the capsule endoscope is introduced into the organ of the subject by oral ingestion or the like, and then moves inside the digestive tract by peristalsis or the like.
  • Such a capsule endoscope inside the subject displays an image inside the organ of the subject (hereinafter referred to as an in-vivo image) during a period from when the capsule endoscope is introduced into the subject's organ until it is discharged outside the subject. Images are sequentially taken, and the obtained in-vivo images are sequentially wirelessly transmitted to a receiving device outside the subject.
  • Patent Document 1 a guidance system for guiding the capsule endoscope in the subject by magnetic force.
  • a guidance system disclosed in Patent Document 1 that is, a capsule endoscope guidance system
  • a capsule endoscope containing a magnet magnetized in a radial direction is introduced into a subject, and a guidance magnetic field is generated.
  • the capsule endoscope is guided to a desired position in the subject.
  • Such a guidance system generally includes a display device that displays an in-vivo image captured by a capsule endoscope inside a subject, and a joystick for operating magnetic guidance of the capsule endoscope inside the subject. And the like.
  • a surgeon such as a doctor or a nurse magnetically guides the capsule endoscope in the subject with such a guidance system
  • a schematic image showing a schematic body shape of the subject and the outline of the capsule endoscope are shown.
  • the simulated image is displayed on the display device, and the operation device is operated with reference to the position of the simulated image of the capsule endoscope in the schematic image of the subject.
  • the surgeon visually recognizes the relative moving direction or rotational direction of the simulated image of the capsule endoscope with respect to the schematic image of the subject displayed on the display device, so that the inside of the capsule type inside the subject is inside. Understand the magnetic guidance direction of the endoscope.
  • the capsule endoscope disclosed in Patent Document 1 moves by magnetic induction with the optical axis direction of the capsule endoscope as the movement axis. Therefore, the image captured by the capsule endoscope is limited to a plane orthogonal to the moving direction, and the images that can be acquired are limited. On the other hand, for example, it may be possible to prevent the optical axis direction and the movement axis from becoming the same by attaching an image sensor to the side surface of the capsule endoscope. If the propulsion direction of the mold endoscope is changed, the optical axis direction is also changed, so that the images that can be acquired are limited. For this reason, there has been a demand for a technique that can acquire an image without limiting the optical axis direction to the propulsion direction.
  • the present invention has been made in view of the above, and a capsule endoscope guidance system and a capsule endoscope in which a capsule endoscope moving by magnetic guidance can acquire an image with a high degree of freedom.
  • An object is to provide a guidance device.
  • a capsule endoscope guidance system has a magnetic field response unit and an imaging unit that respond to a magnetic field applied from the outside, and is introduced into a subject. And a propulsion direction vector setting unit that sets a propulsion direction vector indicating the propulsion direction of the capsule endoscope based on position information specified in the in-vivo image captured by the imaging unit.
  • An optical axis direction vector setting unit that sets an optical axis direction vector indicating an optical axis direction with respect to the propulsion direction vector, based on at least the optical axis direction of the imaging unit and the propulsion direction vector, and the propulsion direction vector setting unit Based on the propulsion direction vector set by the optical axis direction vector setting unit and the optical axis direction vector set by the optical axis direction vector setting unit.
  • a magnetic field setting unit that sets an induced magnetic field to be applied; and the induced magnetic field set by the magnetic field setting unit is applied to the magnetic field response unit so that the posture of the capsule endoscope is set in the direction of the optical axis direction vector.
  • a magnetic field generator for propelling the capsule endoscope in a direction specified by the propulsion direction vector while maintaining the same.
  • the imaging unit intermittently captures an image
  • the magnetic field setting unit includes a plurality of images captured by the imaging unit. It is characterized in that an induction magnetic field for moving the capsule endoscope is set so as to include a part of each imaging region in two time-series images.
  • the capsule endoscope guidance system is characterized in that, in the above invention, the magnetic field setting unit sets the guidance magnetic field based on distance information between the imaging unit and a subject. To do.
  • the optical axis direction vector setting unit sets a plurality of optical axis direction vectors
  • the magnetic field setting unit includes the capsule endoscope.
  • the imaging unit of the mirror performs setting of the induced magnetic field such that imaging is performed using any one of the plurality of optical axis direction vectors set by the optical axis direction vector setting unit as the optical axis direction.
  • the optical axis direction vector setting unit sets two optical axis direction vectors
  • the magnetic field setting unit includes the imaging unit.
  • the induced magnetic field is set such that the optical axis direction moves between the two optical axis direction vectors set by the optical axis direction vector setting unit, and the imaging unit includes two optical axis direction vectors.
  • the imaging process is performed at a predetermined timing between the two.
  • the magnetic field setting unit sets the guidance magnetic field such that the optical axis direction vector rotates around the propulsion direction vector.
  • the capsule endoscope guidance system further includes an input unit that receives an input of angle information related to an angle of the optical axis direction vector with respect to the propulsion direction vector.
  • the unit sets the optical axis direction vector based on the angle information received by the input unit.
  • the propulsion direction vector setting unit sets a plurality of propulsion direction vectors
  • the magnetic field setting unit includes the propulsion direction vector and the optical axis.
  • the guiding magnetic field for propelling the capsule endoscope is set while changing the propulsion direction vector propelled by the capsule endoscope while maintaining a relative relationship with the direction vector.
  • the propulsion direction vector setting unit sets a plurality of the propulsion direction vectors based on a plurality of designated position information.
  • the capsule endoscope guidance apparatus has a magnetic field response unit that responds to a magnetic field applied from the outside and an imaging unit, and guides a capsule endoscope that is introduced into a subject.
  • a propulsion direction vector setting unit that sets a propulsion direction vector indicating a propulsion direction of the capsule endoscope based on position information designated in an in-vivo image captured by the imaging unit; Based on at least the optical axis direction of the imaging unit and the propulsion direction vector, an optical axis direction vector setting unit that sets an optical axis direction vector indicating an optical axis direction with respect to the propulsion direction vector, and a setting by the propulsion direction vector setting unit Based on the propulsion direction vector set and the optical axis direction vector set by the optical axis direction vector setting unit, the magnetic field response unit is marked.
  • a magnetic field setting unit for setting an induced magnetic field to be applied; and applying the induced magnetic field set by the magnetic field setting unit to the magnetic field response unit to maintain the posture of the capsule endoscope in the direction of the optical axis direction vector
  • a magnetic field generator for propelling the capsule endoscope in a direction specified by the propulsion direction vector is provided.
  • a capsule endoscope moving by magnetic induction can acquire an image with a high degree of freedom.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a capsule endoscope guidance system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of the capsule endoscope shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an example of a state where the capsule endoscope according to the first embodiment of the present invention floats in the liquid inside the subject.
  • FIG. 4 is a flowchart for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the first embodiment of the present invention.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a capsule endoscope guidance system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of the capsule endoscope shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an example of a
  • FIG. 6 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the first embodiment of the present invention.
  • FIG. 7 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the first embodiment of the present invention.
  • FIG. 8 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the modification of the first embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a magnetic guidance process performed by the capsule endoscope guidance system according to the modification of the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram illustrating an overall configuration of a capsule endoscope guidance system according to the second embodiment of the present invention.
  • FIG. 11 is a diagram illustrating magnetic guidance processing performed by the capsule endoscope guidance system according to the first modification of the second embodiment of the present invention.
  • FIG. 12 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the first modification of the second embodiment of the present invention.
  • FIG. 13 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the third embodiment of the present invention.
  • FIG. 14 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the third embodiment of the present invention.
  • FIG. 15 is a schematic diagram for explaining another example of the magnetic field generator of the capsule endoscope guidance system according to the present invention.
  • the capsule endoscope guidance system is a capsule using a capsule endoscope that is orally introduced into a subject and drifts in a liquid stored in the stomach of the subject.
  • a guidance system for a type endoscope will be described as an example.
  • the present invention is not limited to this.
  • An endoscope can be used. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.
  • FIG. 1 is a schematic diagram showing an overall configuration of a capsule endoscope guidance system according to a first embodiment of the present invention.
  • the capsule endoscope guidance system 1 according to the first embodiment is introduced into a body cavity in a subject by being swallowed from the mouth of the subject and communicates with an external device.
  • the capsule endoscope 10 that performs wireless communication between the capsule endoscope 10 that is a mirror, the magnetic field generator 2 that is provided around the subject and can generate a three-dimensional magnetic field, and the capsule endoscope 10 Receives and transmits a radio signal including an image captured, and transmits an operation signal to the capsule endoscope 10, a control unit 4 that controls each component of the capsule endoscope guidance system 1, and a capsule
  • the display unit 5 that displays and outputs an image captured by the type endoscope 10, instruction information that instructs various operations in the capsule endoscope guidance system 1, and the capsule endoscope 10 is guided magnetically.
  • Comprises an input unit 6 for the guiding instruction information is input, and a storage unit 7 for storing an image information captured by the capsule endoscope 10 for.
  • the capsule endoscope 10 is a capsule medical device that acquires an in-vivo image of a subject, and has an imaging function and a wireless communication function.
  • the capsule endoscope 10 is introduced into the organ of the subject together with a predetermined liquid by oral ingestion or the like, moves inside the digestive tract, and is finally discharged to the outside of the subject.
  • the capsule endoscope 10 sequentially captures in-vivo images with a subject and sequentially wirelessly transmits the obtained in-vivo images to the external transmission / reception unit 3.
  • the capsule endoscope 10 incorporates a magnetic material such as a permanent magnet.
  • the capsule endoscope 10 floats in a liquid introduced into the organ of the subject (for example, the stomach) and is magnetically guided by the external magnetic field generator 2.
  • the magnetic field generator 2 is for magnetically guiding the capsule endoscope 10 inside the subject.
  • the magnetic field generation unit 2 is realized using, for example, a plurality of coils and the like, and generates a magnetic field for guidance using electric power supplied by a power supply unit (not shown).
  • the magnetic field generator 2 applies the generated guidance magnetic field to the magnetic body inside the capsule endoscope 10 and magnetically captures the capsule endoscope 10 by the action of the guidance magnetic field.
  • the magnetic field generator 2 changes the magnetic field direction of the guiding magnetic field acting on the capsule endoscope 10 inside the subject, thereby changing the three-dimensional posture and position of the capsule endoscope 10 inside the subject. Control.
  • the transmission / reception unit 3 includes a plurality of antennas 3a, and receives image signals including in-vivo images of the subject from the capsule endoscope 10 via the plurality of antennas 3a.
  • the transmission / reception unit 3 sequentially receives wireless signals from the capsule endoscope 10 via the plurality of antennas 3a.
  • the transmission / reception unit 3 selects an antenna having the highest received electric field strength from the plurality of antennas 3a, and performs a demodulation process on the radio signal from the capsule endoscope 10 received through the selected antenna. Do.
  • the transmission / reception unit 3 extracts image data from the capsule endoscope 10, that is, in-vivo image data of the subject from the wireless signal.
  • the transmission / reception unit 3 transmits an image signal including the extracted in-vivo image data to the control unit 4.
  • the control unit 4 controls each operation of the magnetic field generation unit 2, the transmission / reception unit 3, the display unit 5, and the storage unit 7, and controls the input / output of signals between these components.
  • the control unit 4 controls the storage unit 7 so as to store the in-vivo image group of the subject acquired from the transmission / reception unit 3.
  • the control unit 4 sequentially acquires the image signals sequentially received by the transmission / reception unit 3, and based on the acquired image signals, generates an in-vivo image for display, and the in-vivo image sequentially received by the transmission / reception unit 3.
  • a magnetic field control unit 45 that controls the magnetic field generation unit 2 to guide the capsule endoscope 10 is provided.
  • the magnetic field control unit 45 controls the energization amount to the magnetic field generation unit 2 and performs a guidance magnetic field (guidance required for magnetic guidance of the capsule endoscope 10 according to the magnetic guidance direction and the magnetic guidance position based on the guidance instruction information.
  • the magnetic field generator 2 is controlled so as to generate a magnetic field.
  • the magnetic field control unit 45 includes a propulsion direction vector setting unit 46, an optical axis direction vector setting unit 47, and a magnetic field setting unit 48.
  • the propulsion direction vector setting unit 46 sets a propulsion direction vector based on information regarding the moving direction (propulsion direction) of the capsule endoscope 10 input from the input unit 6 described later.
  • the optical axis direction vector setting unit 47 sets a vector indicating the optical axis direction of the imaging unit 11 (described later) of the capsule endoscope 10 with respect to the propulsion direction vector as the optical axis direction vector.
  • the magnetic field setting unit 48 sets an induction magnetic field obtained by synthesizing each magnetic field according to the propulsion direction vector and the optical axis direction vector.
  • the magnetic field control unit 45 controls the magnetic field generation unit 2 so as to generate the induction magnetic field set by the magnetic field setting unit 48.
  • the magnetic field setting unit 48 is a physical parameter of the capsule endoscope 10 and includes parameters including the volume, mass, and magnetic moment of the capsule endoscope 10, and a physical parameter of the liquid,
  • the induction magnetic field is set in consideration of parameters including density.
  • the display unit 5 is realized by using various displays such as a liquid crystal display, and displays various information instructed to be displayed by the control unit 4. Specifically, the display unit 5 displays, for example, an in-vivo image group of the subject captured by the capsule endoscope 10 based on the control of the image display control unit 42 in the control unit 4. The display unit 5 displays a reduced image of the in-vivo image selected or marked by the input operation of the input unit 6 from the in-vivo image group, patient information of the subject, examination information, and the like.
  • the input unit 6 is realized by using an input device such as a keyboard and a mouse, a touch panel, a joystick, a button, and a switch.
  • the input unit 6 receives various information according to an input operation by a surgeon such as a doctor, and controls the received various information.
  • various information input to the control unit 4 by the input unit 6 include instruction information for instructing the control unit 4, patient information of the subject, examination information, and the like.
  • the patient information of the subject is specific information that identifies the subject, and includes, for example, the patient name, patient ID, date of birth, sex, age, and the like of the subject.
  • the examination information of the subject is specific information for identifying the examination in which the capsule endoscope 10 is introduced into the subject's digestive tract and the inside of the digestive tract is observed. is there.
  • the input unit 6 includes a propulsion direction input unit 61 that receives input of information specifying the propulsion direction in the propulsion direction vector set by the propulsion direction vector setting unit 46.
  • the propulsion direction input unit 61 receives information such as a point specified on the image displayed on the display unit 5 and inputs the received information to the control unit 4.
  • the storage unit 7 is realized by using a storage medium that stores information in a rewritable manner such as a flash memory or a hard disk.
  • the storage unit 7 stores various types of information instructed to be stored by the control unit 4, and sends the information instructed to be read out by the control unit 4 from the stored various types of information to the control unit 4.
  • various information stored in the storage unit 7 for example, input from each image data of the in-vivo image group of the subject imaged by the capsule endoscope 10 and each in-vivo image displayed on the display unit 5. Examples include in-vivo image data selected by the input operation of the unit 6, input information by the input unit 6 such as patient information of the subject, and the like.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of the capsule endoscope shown in FIG.
  • the capsule endoscope 10 captures images of subjects in different imaging directions from a capsule-type housing 12 that is an exterior formed in a size that can be easily introduced into the organ of a subject.
  • an imaging unit 11 The capsule endoscope 10 includes a wireless communication unit 16 that wirelessly transmits each image captured by the imaging unit 11, a control unit 17 that controls each component of the capsule endoscope 10, and a capsule.
  • a power supply unit 18 that supplies power to each component of the mold endoscope 10.
  • the capsule endoscope 10 includes a permanent magnet 19 (magnetic field response unit) for enabling magnetic guidance by the magnetic field generation unit 2.
  • the capsule-type housing 12 is an exterior case formed in a size that can be introduced into the organ of a subject, and is realized by closing both side opening ends of the cylindrical housing 12a with dome-shaped housings 12b and 12c. .
  • the dome-shaped casings 12b and 12c are dome-shaped optical members that are transparent to light in a predetermined wavelength band such as visible light.
  • the cylindrical housing 12a is a colored housing that is substantially opaque to visible light.
  • the capsule-type housing 12 formed by the cylindrical housing 12a and the dome-shaped housings 12b and 12c includes an imaging unit 11, a wireless communication unit 16, a control unit 17, a power supply unit 18, and a permanent unit.
  • the magnet 19 is contained in a liquid-tight manner.
  • the imaging unit 11 includes an illumination unit 13 such as an LED, an optical system 14 such as a condenser lens, and an imaging element 15 such as a CMOS image sensor or a CCD.
  • the illumination unit 13 emits illumination light such as white light to the imaging field of the imaging device 15 and illuminates the subject in the imaging field through the dome-shaped housing 12b.
  • the optical system 14 condenses the reflected light from the imaging field of view on the imaging surface of the imaging device 15 and forms a subject image in the imaging field of view on the imaging surface of the imaging device 15.
  • the imaging device 15 receives the reflected light from the imaging field through the imaging surface, performs photoelectric conversion processing on the received light signal, and captures a subject image in the imaging field, that is, an in-vivo image of the subject.
  • the optical axis of the imaging unit 11 is the capsule-type housing. It is substantially parallel or substantially coincident with the long axis La which is the central axis in the longitudinal direction of the body 12.
  • the wireless communication unit 16 includes an antenna 16a, and sequentially wirelessly transmits each image captured by the imaging unit 11 described above to the outside via the antenna 16a. Specifically, the wireless communication unit 16 acquires an image signal including the in-vivo image of the subject imaged by the imaging unit 11 from the control unit 17, performs a modulation process on the acquired image signal, and the like. A radio signal obtained by modulating an image signal is generated. The wireless communication unit 16 transmits this wireless signal to the external transmission / reception unit 3 via the antenna 16a.
  • the control unit 17 controls each operation of the imaging unit 11 and the wireless communication unit 16 that are components of the capsule endoscope 10, and controls input / output of signals between the components. Specifically, the control unit 17 causes the image sensor 15 to capture an image of a subject within the imaging field illuminated by the illumination unit 13.
  • the control unit 17 has a signal processing function for generating an image signal.
  • the control unit 17 acquires in-vivo image data from the image sensor 15 and performs predetermined signal processing on the in-vivo image data each time to generate an image signal including the in-vivo image data.
  • the control unit 17 controls the wireless communication unit 16 so as to sequentially wirelessly transmit the image signals to the outside along the time series.
  • the power supply unit 18 is a power storage unit such as a button-type battery or a capacitor, and is realized using a switch unit such as a magnetic switch.
  • the switch unit When the switch unit is configured by a magnetic switch, the power source unit 18 switches the power source on / off state by a magnetic field applied from the outside.
  • the power supply part 18 stops the electric power supply to each structure part of this capsule type endoscope 10 in an OFF state.
  • the permanent magnet 19 is for enabling magnetic guidance of the capsule endoscope 10 by the magnetic field generator 2.
  • the permanent magnet 19 is fixedly disposed inside the capsule housing 12 in a state of being fixed relatively to the imaging unit 11 described above. In this case, the permanent magnet 19 is magnetized in a known direction that is relatively fixed with respect to the vertical direction of each imaging surface of the imaging element 15.
  • FIG. 3 is a schematic diagram illustrating an example of a state in which the capsule endoscope floats in the liquid inside the subject, and illustrates the state of the capsule endoscope 10 in the liquid W introduced into the subject. It is a conceptual diagram for doing. However, in the example illustrated in FIG. 3, the case where the magnetic field for controlling the posture of the capsule endoscope 10 (direction in the long axis La direction) is not acting on the permanent magnet 19 is illustrated.
  • the capsule endoscope 10 illustrated in the first embodiment adjusts the specific gravity with respect to the liquid W, and as shown in FIG. 3, the capsule endoscope 10 passes through the liquid W in a state where a part is exposed to the outside from the liquid surface Ws. Drift.
  • the center of gravity G of the capsule endoscope 10 is shifted from the geometric center C of the capsule endoscope 10 along the long axis La (see FIG. 2) of the capsule endoscope 10.
  • the center of gravity G of the capsule endoscope 10 is adjusted at a position on the long axis La by adjusting the arrangement of the components of the capsule endoscope 10 such as the power supply unit 18 and the permanent magnet 19.
  • the position is set at a position deviating from the geometric center C of the capsule housing 12 toward the imaging unit 11.
  • the long axis La of the capsule endoscope 10 floating in the liquid W is parallel to the vertical direction (that is, the gravity direction Dg).
  • the capsule endoscope 10 can be floated in the liquid W in an upright state.
  • the upright posture is a posture in which the long axis La (a straight line connecting the geometric center C and the center of gravity G) of the capsule housing 12 and the vertical direction are substantially parallel.
  • the capsule endoscope 10 directs the imaging field of the imaging unit 11 vertically downward.
  • the long axis La of the capsule endoscope 10 is a central axis in the longitudinal direction of the capsule endoscope 10.
  • the liquid W is a liquid that is harmless to the human body, such as water or physiological saline.
  • the permanent magnet 19 is fixed inside the capsule casing 12 so that the magnetization direction has an inclination with respect to the long axis La of the capsule endoscope 10.
  • the permanent magnet 19 is fixed in the capsule housing 12 so that the magnetization direction is perpendicular to the long axis La.
  • the magnetization direction of the permanent magnet 19 and the capsule casing 12 A plane including the direction (deviation direction) in which the center of gravity G of the capsule endoscope 10 deviates from the geometric center C is a vertical plane with respect to the wavefront Ws.
  • the posture of the capsule endoscope 10 changes so that the magnetization direction is included in the vertical plane with respect to the magnetic field.
  • the permanent magnet 19 operates following a magnetic field applied from the outside. As a result, the magnetic guidance of the capsule endoscope 10 by the magnetic field generator 2 is realized.
  • the inclination of the long axis La of the capsule endoscope 10 with respect to the gravity direction Dg can be controlled by applying a magnetic field to the permanent magnet 19 of the capsule endoscope 10 from the outside.
  • the permanent magnet 19 By causing the permanent magnet 19 to act on a magnetic field in which the direction of the lines of magnetic force is at an angle with respect to the horizontal plane, the capsule endoscope 10 is moved in the direction of gravity Dg so that the magnetization direction of the permanent magnet 19 is substantially parallel to the lines of magnetic force. Can be tilted.
  • the display unit 5 displays the subject of the subject by the capsule endoscope 10 in a display mode in which the vertical direction of the subject in the in-vivo image accompanying the magnetic guidance of the capsule endoscope 10 and the vertical direction of the display screen are matched.
  • Display in-vivo images As a result, on the display screen of the display unit 5 (display screen M to be described later), an image captured by the element in the upper region of the imaging device 15 of the capsule endoscope 10 is displayed above the image corresponding to the imaging unit 11. It is displayed as follows. Since the magnetization direction of the permanent magnet 19 is parallel to the vertical direction of the imaging surface of the imaging element 15, the direction parallel to the magnetization direction of the permanent magnet 19 matches the vertical direction of the display screen of the display unit 5. It becomes.
  • FIG. 4 is a flowchart for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1. In the following description, it is assumed that each unit operates under the control of the control unit 4.
  • the image display control unit 42 performs control to display the in-vivo image generated by the image generation unit 41 on the display unit 5 (step S101). Thereby, the in-vivo image is displayed on the display unit 5.
  • FIG. 5 is a diagram illustrating a magnetic guidance process performed by the capsule endoscope guidance system 1 and is a diagram illustrating an example of the display screen M of the display unit 5. For example, the in-vivo image is displayed on the display unit 5 on the display screen M shown in FIG.
  • the control unit 4 determines whether or not information for specifying the propulsion direction has been input to the in-vivo image displayed on the display screen M (step S102). If information specifying the propulsion direction is not input (step S102: No), the control unit 4 repeatedly performs input confirmation of information. On the other hand, when it is judged that the information (position information) specifying the propulsion direction has been input (step S102: Yes), the control unit 4 proceeds to step S103.
  • “information for designating the propulsion direction” is a point designated on the in-vivo image (for example, designated point Q 1 shown in FIG. 5). In the first embodiment, the capsule endoscope 10 is propelled on a straight line connecting the set point of the capsule endoscope 10 and the designated point Q 1 .
  • the input of the designated point Q 1 is information received by the propulsion direction input unit 61, and is information that designates a point whose coordinates are designated by a mouse, a touch panel or the like as the designated point Q 1 .
  • the coordinates of the position indicated by the pointer on the display screen M are input as the designated points.
  • the coordinates are specified by the operator's finger or the operation member. The coordinates of the specified position are input as designated points.
  • the propulsion direction vector setting unit 46 sets the propulsion direction vector based on information specifying the propulsion direction.
  • FIG. 6 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1 and for explaining setting of the propulsion direction vector performed by the propulsion direction vector setting unit 46.
  • the propulsion direction vector setting unit 46 directs the direction of the line segment (axis) connecting the propulsion axis setting point Q c set in advance in the capsule endoscope 10 and the input designated point Q 1. It generates a propulsion direction vector V 1 showing the set as a propulsion direction vector indicating the propulsion direction.
  • the propulsion axis setting point Q c is set at a position that serves as a reference for the propulsion operation of the capsule endoscope 10, such as a position corresponding to the center of the permanent magnet 19.
  • the optical axis direction vector setting unit 47 sets the optical axis direction vector V 2 based on the propulsion direction vector V 1 set in step S103.
  • Optical axis direction vector V 2 is an imaging axis vector indicating the direction of the optical axis of the imaging unit 11 for propulsion direction vector V 1, a predetermined angle optical axis direction relative to the propulsion direction vector V 1 (hereinafter, displacement angle It is a vector that makes up.
  • the optical axis direction vector setting unit 47 sets the optical axis direction of the capsule endoscope 10 (corresponding to the long axis La in the first embodiment) in the in-vivo image displayed on the display screen M.
  • the angle is inclined at the displacement angle with respect to the propulsion direction vector V 1 .
  • the optical axis direction vector V 2 is generated and set as an optical axis direction vector indicating a displacement angle to be maintained when moving in the propulsion direction.
  • the magnetic field setting unit 48 uses the propulsion direction vector V 1 and the light An induced magnetic field is set by synthesizing the magnetic fields according to the axial vector V 2 (step S105).
  • the magnetic field corresponding to the propulsion direction vector V 1 is a gradient magnetic field for propelling the capsule endoscope 10.
  • the magnetic field control unit 45 After setting the induction magnetic field, the magnetic field control unit 45 applies the set induction magnetic field (step S106).
  • the induction magnetic field may be applied promptly after setting, or may be performed in response to an operation input from the input unit 6.
  • FIG. 7 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1 and for explaining the movement of the capsule endoscope 10 by the guidance magnetic field applied by the magnetic field control unit 45. .
  • the induction magnetic field set in step S105 is applied under the control of the magnetic field control unit 45, a three-dimensional induction magnetic field is generated around the subject (capsule endoscope 10). As a result, as shown in FIG.
  • the capsule endoscope 10 moves in the direction of the propulsion direction vector V 1 while maintaining the optical axis direction in the direction of the optical axis direction vector V 2 . Accordingly, the capsule endoscope is maintained while maintaining a state in which a direction different from the moving direction of the capsule endoscope 10 is captured (the relative direction between the propulsion direction vector V 1 and the optical axis direction vector V 2 ). 10 can be moved in the specified direction.
  • the magnetic field setting unit 48 moves the capsule endoscope 10 so that two imaging regions (imaging region R shown in FIG. 7) that are successively imaged include a part of the region.
  • Set the induction magnetic field In other words, among the plurality of images obtained by the capsule endoscope 10, the images of two frames that are continuous in time series include a part of the imaging regions of each other (overlapping images).
  • the magnetic field setting unit 48 calculates the moving speed of the capsule endoscope 10 based on distance information between the imaging unit 11 and the subject based on, for example, brightness information and focusing information in the image. As another example, the magnetic field setting unit 48 may calculate the moving speed of the capsule endoscope 10 based on the imaging frame rate and the field of view (view angle) of the imaging unit 11. Good.
  • the magnetic field control unit 45 determines whether or not to end the magnetic induction (step S107). For example, the magnetic field control unit 45 estimates whether or not the capsule endoscope 10 has moved a predetermined distance from the applied induced magnetic field (time or amount), or determines based on an operation input of the input unit 6. . Here, for example, when it is determined that the capsule endoscope 10 has moved a predetermined distance, the magnetic field control unit 45 determines that the guidance is to be ended (step S107: Yes), and stops the application of the guidance magnetic field. (Step S108). On the other hand, when it is determined that the capsule endoscope 10 has not moved the predetermined distance (step S107: No), the magnetic field control unit 45 continues to apply the induction magnetic field.
  • the current propulsion operation is terminated, and the propulsion direction vector and the optical axis direction vector corresponding to the new designated point are set.
  • the capsule endoscope 10 may be propelled according to the newly set propulsion direction vector and optical axis direction vector.
  • the propulsion direction vector setting unit 46 uses the capsule axis type based on the point designated on the in-vivo image and the preset propulsion axis setting point Q c .
  • a propulsion direction vector V 1 indicating the moving direction of the endoscope 10 is set, and the optical axis direction vector setting unit 47 maintains the optical axis with respect to the propulsion direction based on the propulsion direction vector V 1 and the optical axis direction.
  • An optical axis direction vector V 2 indicating the direction is set, and the magnetic field setting unit 48 sets an induced magnetic field corresponding to the propulsion direction vector V 1 and the optical axis direction vector V 2 , and the magnetic field control unit 45 sets the inside of the capsule type.
  • the optical axis direction (the optical axis direction vector V 2 ) can be changed depending on the designated point, and the optical axis direction and the propulsion direction are the same.
  • magnetic induction Can the capsule endoscope moves to acquire images with a high degree of freedom.
  • the center position of the visual field area is hardly changed, and the visual field area between frames is almost the same even if captured multiple times.
  • the propulsion direction and the optical axis direction are different, the visual field center changes and the visual field region between frames also changes when propelled. For this reason, according to the first embodiment, it is possible to perform a wider range of imaging processing by propelling the capsule endoscope 10.
  • Embodiment 1 (Modification of Embodiment 1) Then, the modification of Embodiment 1 of this invention is demonstrated.
  • 8 and 9 are diagrams for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1, and are diagrams illustrating an example of an image displayed on the display unit 5 when setting a propulsion direction vector.
  • the propulsion direction is designated on the in-vivo image displayed on the display screen M.
  • the display unit 5 is a three-dimensional image that models the inside of the subject. Is displayed, and the surgeon designates the propulsion direction on the three-dimensional model.
  • the display unit 5 displays a three-dimensional space image S including the position of the capsule endoscope 10.
  • the three-dimensional spatial image S is, for example, an image obtained by modeling an organ into which the capsule endoscope 10 is introduced, and corresponds to a three-dimensional model of the stomach in the first embodiment.
  • the three-dimensional space image S may be stored in advance in the storage unit 7 as a model of each organ, or may be generated for each subject.
  • the model image 100 of the capsule endoscope 10 is displayed in the three-dimensional space image S.
  • the model image 100 can be arranged in the three-dimensional space image S by detecting the position of the capsule endoscope 10 in the subject and reflecting the detected result in the three-dimensional space image S.
  • the position of the capsule endoscope 10 includes a plurality of antennas (for example, the antenna 3a), and the position of the capsule endoscope 10 is estimated from the reception intensity of each antenna in a jacket worn by the subject.
  • the surgeon instructs the propelling direction of the capsule endoscope 10 while confirming the three-dimensional space image S and the model image 100 displayed on the display unit 5.
  • the propulsion direction vector setting unit 46 performs the propulsion set in advance in the model image 100.
  • a propulsion direction vector V 1 is generated based on a line segment connecting the axis setting point Q c and the designated point Q 2 .
  • the optical axis direction vector V 2 is set and magnetic induction is performed.
  • FIG. 10 is a schematic diagram illustrating an overall configuration of a capsule endoscope guidance system according to the second embodiment of the present invention.
  • the optical axis direction is determined from the in-vivo image and the optical axis direction vector V 2 is set.
  • the displacement angle with respect to the propulsion direction vector V 1 is input. Input by the unit 6a.
  • the capsule endoscope guidance system 1a can input a displacement angle in addition to the propulsion direction input unit 61 instead of the input unit 6 of the capsule endoscope guidance system 1 described above.
  • An input unit 6 a further including a displacement angle input unit 62 is provided.
  • the displacement angle input unit 62 accepts input of information related to the angle formed by the optical axis direction vector V 2 with respect to the propulsion direction vector V 1 .
  • the displacement angle input unit 62 accepts an input of the angle between the propulsion direction vector V 1 in the plane passing through the long axis La of the propulsion direction vector V 1 and the capsule endoscope 10 as a displacement angle.
  • the angle (displacement angle) of the optical axis direction vector V 2 with respect to the propulsion direction vector V 1 is arbitrarily input by an input operation to the displacement angle input unit 62. Since the optical axis direction vector V 2 can be set regardless of the axial direction, gravity, buoyancy, etc., the imaging process in the subject is performed with a higher degree of freedom than in the first embodiment. be able to.
  • FIG. 11 is a diagram for explaining a magnetic guidance process performed by the capsule endoscope guidance system 1a according to the first modification of the second embodiment, in which the setting of the optical axis direction vector by the displacement angle input unit 62 is explained. It is a figure to do.
  • one optical axis direction vector is generated according to the input displacement angle.
  • a plurality of optical axis direction vectors are generated.
  • the displacement angle input unit 62 receives input of information regarding the angle formed by the optical axis direction vector V 2 with respect to the propulsion direction vector V 1 .
  • the optical axis direction vector setting unit 47 sets an optical axis direction vector V 2 corresponding to the optical axis direction and an optical axis direction vector V 3 corresponding to the input displacement angle.
  • the magnetic field setting unit 48 guides the optical axis direction of the capsule endoscope 10 to take the directions of the two optical axis direction vectors at a predetermined time interval.
  • the magnetic field is set so as to generate a magnetic field.
  • the capsule endoscope 10 performs a swing operation in which the optical axis direction moves between the two optical axis direction vectors while moving in the direction of the propulsion direction vector V 1 .
  • the predetermined time interval is, for example, a time interval according to the imaging timing.
  • FIG. 12 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1a according to the first modification of the second embodiment, and is a diagram for explaining the propulsion of the capsule endoscope 10.
  • the capsule endoscope 10 is in-vivo images in two imaging directions (optical axis directions) at each propulsion position while propelling at a predetermined interval under the control of the magnetic field control unit 45. Can be obtained.
  • the in-vivo images may be sequentially taken while changing the optical axis direction while propelling.
  • the optical axis direction optical axis direction vector
  • the optical axis direction (optical axis direction vector) is changed according to the imaging timing.
  • the optical axis direction (optical axis direction vector) is changed according to an operation input by the operator. It may be changed.
  • the optical axis direction vector setting unit 47 After setting the optical axis direction vector V 2 , an optical axis direction vector (for example, optical axis direction vector V 2 ′) symmetrical to the optical axis direction vector V 2 is set with respect to the propulsion direction vector V 1 .
  • an optical axis direction vector V 2 ′ that forms a predetermined angle (for example, 90 °) with respect to the optical axis direction vector V 2 set by input may be set.
  • a plurality of optical axis direction vectors are set in advance, and an efficient imaging pattern corresponding to the plurality of optical axis direction vectors (the capsule endoscope 10 has few overlapping imaging areas between frames so that there is no imaging omission). May be stored in the storage unit 7, and rotated and imaged with the set pattern using an input button or the like. Thereby, the amount of calculation is small, the leakage of the imaging region is suppressed, and the imaging process can be performed efficiently and with the power of the capsule endoscope 10 being suppressed.
  • the imaging timing may be when the optical axis direction coincides with either the optical axis direction vector V 2 or the optical axis direction vector V 3 (optical axis direction vector V 2 ′).
  • the timing at which the image is taken may also be the timing at which the optical axis direction coincides with the propulsion direction vector V 1 . Capturing timing as described above need not match one of the optical axis direction vector V 2 or the optical axis direction vector V 3, the optical axis is moved between the optical axis direction vector V 2 or the optical axis direction vector V 3
  • the timing may be a predetermined timing, and it is preferable to perform imaging at equal intermittent timing with respect to the timing when the capsule endoscope 10 swings.
  • the displacement angle input unit 62 together with the displacement angle, when there is an input of the rotational operation instruction, the magnetic field setting unit 48, the optical axis direction vector V 2, as well as promoting along the propulsion direction vector V 1, propulsion direction Magnetic field setting is performed so as to rotate around the vector V 1 .
  • the capsule endoscope 10 is propelled along the propulsion direction vector V 1 while rotating around the center of the permanent magnet, for example.
  • trajectory which the some imaging center according to an imaging timing makes makes spiral shape.
  • the second modification compared with the first modification of the second embodiment described above, it is possible to further reduce the non-imaging area and suppress oversight.
  • FIG. 13 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1 according to the third embodiment, and is a diagram for explaining setting of the propulsion direction vector by the propulsion direction input unit 61.
  • the propulsion direction vector V 1 is set according to one designated point input on the in-vivo image.
  • two propulsion direction vectors are set.
  • the capsule endoscope 10 alternately moves between the two propulsion direction vectors.
  • the propulsion direction vector setting unit 46 sets two propulsion direction vectors V 11 and V 12 corresponding to the designated points as shown in FIG. .
  • the magnetic field setting unit 48 sets a magnetic field that moves between the propulsion direction vectors for each predetermined propulsion distance (or time).
  • FIG. 14 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1 according to the third embodiment.
  • the capsule endoscope is propelled by the guidance magnetic field set by the magnetic field setting unit 48. It is a figure explaining 10 locus
  • the locus of the capsule endoscope 10 that is propelled by the induced magnetic field set by the magnetic field setting unit 48 is, for example, a locus L shown in FIG.
  • the locus through which the center of the permanent magnet 19 of the capsule endoscope 10 passes is defined as a locus L.
  • the capsule endoscope 10 may perform the imaging process by the imaging unit 11 at the timing of propelling on the respective propulsion direction vectors V 11 and V 12 , or may perform the imaging process at a predetermined time interval. Good.
  • two propulsion direction vectors are set, and the capsule endoscope 10 is propelled so as to move to the other propulsion direction vector at every predetermined propulsion distance. Can be scanned. Therefore, a wider range of imaging processing can be performed as compared with the first and second embodiments and the modifications described above.
  • the present invention should not be limited only to the above-described first to third embodiments, and each of the first to third embodiments and the modified examples. You may combine suitably.
  • the third embodiment and the second embodiment may be combined to perform scan shooting at an arbitrary angle, or the third embodiment and the first modification of the second embodiment may be combined and swung. It may be one that scans.
  • the capsule endoscope 10 has been described as being introduced into the stomach of the subject.
  • the capsule endoscope 10 can be used in an organ or a body cavity that can contain a liquid. It can be used as long as it is inside the organ to be guided.
  • this Embodiment mentioned above demonstrated as what provided one imaging part, you may provide two or more imaging parts. The number of imaging units can be arbitrarily designed depending on the organ to be observed.
  • the magnetic field generation unit 2 according to the capsule endoscope guidance systems 1 and 1a has been described as being realized by using a plurality of coils. It may be realized using a permanent magnet.
  • FIG. 15 is a schematic diagram for explaining another example of the magnetic field generator of the capsule endoscope guidance system according to the present invention.
  • the magnetic field generation unit is configured as a permanent magnet 2a which is configured by, for example, a bar magnet having a rectangular parallelepiped shape as illustrated in FIG.
  • the permanent magnet 2a adjusts the position and inclination angle (posture) of the permanent magnet 2a by, for example, moving the stage holding the permanent magnet 2a in the XY plane, or moving or rotating along the Z axis. To do.
  • the capsule endoscope 10 When magnetically guiding, the capsule endoscope 10 is guided by causing the magnetic field generated by the permanent magnet 2 a to act on the permanent magnet 19 in the capsule endoscope 10.
  • the position and posture of the capsule endoscope 10 are controlled by changing the position and posture of the permanent magnet 2a in a state where the permanent magnet 19 is attracted and restrained to a specific position of the magnetic field generated by the permanent magnet 2a. be able to.
  • the capsule endoscope 10 can be translated in the horizontal plane by moving the permanent magnet 2a in the horizontal plane.
  • the capsule endoscope 10 can be translated in the vertical direction by moving the permanent magnet 2a in the vertical direction and changing the distance from the capsule endoscope 10.
  • the inclination angle of the capsule endoscope 10 with respect to the vertical axis is increased. Can be changed.
  • the capsule endoscope 10 can be turned by rotating the permanent magnet 2a around the vertical axis passing through the geometric center of the permanent magnet 2a.
  • the capsule endoscope guidance system and the capsule endoscope guidance device according to the present invention are useful for acquiring an image with a high degree of freedom by the capsule endoscope moving by guidance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

The capsule endoscope guidance system according to the present invention is provided with: a capsule endoscope having a magnetic field response unit and an imaging unit; a propulsion direction vector setting unit for setting a propulsion direction vector indicating the direction of propulsion of the capsule endoscope on the basis of positional information specified for an in-vivo image of a subject; an optical axis direction vector setting unit for setting an optical axis direction vector indicating the direction of the optical axis with respect to the propulsion direction vector; a magnetic field setting unit for setting a guidance magnetic field to be applied to the magnetic field response unit on the basis of the propulsion direction vector and the optical axis direction vector; and a magnetic field generation unit that applies a magnetic field to the magnetic field response unit to propel the capsule endoscope in the direction specified by the propulsion direction vector while maintaining the orientation of the capsule endoscope in the direction of the optical axis direction vector.

Description

カプセル型内視鏡誘導システムおよびカプセル型内視鏡誘導装置Capsule type endoscope guidance system and capsule type endoscope guidance device
 本発明は、被検体に導入され、被検体内を移動して被検体の情報を取得するカプセル型内視鏡誘導システムおよびカプセル型内視鏡誘導装置に関する。 The present invention relates to a capsule endoscope guidance system and a capsule endoscope guidance apparatus that are introduced into a subject and move within the subject to acquire information on the subject.
 従来、患者等の被検体の臓器内部に導入可能なカプセル型筐体の内部に撮像機能および無線通信機能を備えたカプセル型内視鏡が知られている。カプセル型内視鏡は、経口摂取等によって被検体の臓器内部に導入され、その後、蠕動運動等によって消化管内部を移動する。かかる被検体内部のカプセル型内視鏡は、被検体の臓器内部に導入されてから被検体の外部に排出されるまでの期間、この被検体の臓器内部の画像(以下、体内画像という)を順次撮像し、得られた体内画像を被検体外部の受信装置に順次無線送信する。 Conventionally, a capsule endoscope having an imaging function and a wireless communication function inside a capsule casing that can be introduced into an organ of a subject such as a patient is known. The capsule endoscope is introduced into the organ of the subject by oral ingestion or the like, and then moves inside the digestive tract by peristalsis or the like. Such a capsule endoscope inside the subject displays an image inside the organ of the subject (hereinafter referred to as an in-vivo image) during a period from when the capsule endoscope is introduced into the subject's organ until it is discharged outside the subject. Images are sequentially taken, and the obtained in-vivo images are sequentially wirelessly transmitted to a receiving device outside the subject.
 近年、かかる被検体内のカプセル型内視鏡を磁力によって誘導する誘導システムが提案されている(特許文献1参照)。例えば、特許文献1に開示されている誘導システム(すなわちカプセル型内視鏡誘導システム)では、径方向に着磁する磁石を内蔵したカプセル型内視鏡を被検体内に導入し、誘導磁界をカプセル型内視鏡に印加することによって、このカプセル型内視鏡を被検体内の所望の位置に誘導する。 In recent years, a guidance system for guiding the capsule endoscope in the subject by magnetic force has been proposed (see Patent Document 1). For example, in a guidance system disclosed in Patent Document 1 (that is, a capsule endoscope guidance system), a capsule endoscope containing a magnet magnetized in a radial direction is introduced into a subject, and a guidance magnetic field is generated. By applying the capsule endoscope to the capsule endoscope, the capsule endoscope is guided to a desired position in the subject.
 このような誘導システムは、一般に、被検体内部のカプセル型内視鏡によって撮像された体内画像等を表示する表示装置と、被検体内部のカプセル型内視鏡の磁気誘導を操作するためのジョイスティック等の操作装置とを備える。医師または看護師等の術者は、かかる誘導システムによって被検体内のカプセル型内視鏡を磁気誘導する際、被検体の概略的な体形を示す模式画像とカプセル型内視鏡の外形を示す模擬画像とを表示装置に表示させ、この被検体の模式画像内におけるカプセル型内視鏡の模擬画像の位置などを参考にして操作装置を操作する。この場合、術者は、この表示装置に表示された被検体の模式画像に対するカプセル型内視鏡の模擬画像の相対的な移動方向または回転方向を視認することによって、被検体内部のカプセル型内視鏡の磁気誘導方向を理解できる。 Such a guidance system generally includes a display device that displays an in-vivo image captured by a capsule endoscope inside a subject, and a joystick for operating magnetic guidance of the capsule endoscope inside the subject. And the like. When a surgeon such as a doctor or a nurse magnetically guides the capsule endoscope in the subject with such a guidance system, a schematic image showing a schematic body shape of the subject and the outline of the capsule endoscope are shown. The simulated image is displayed on the display device, and the operation device is operated with reference to the position of the simulated image of the capsule endoscope in the schematic image of the subject. In this case, the surgeon visually recognizes the relative moving direction or rotational direction of the simulated image of the capsule endoscope with respect to the schematic image of the subject displayed on the display device, so that the inside of the capsule type inside the subject is inside. Understand the magnetic guidance direction of the endoscope.
特開2009-213613号公報JP 2009-213613 A
 ところで、特許文献1が開示するカプセル型内視鏡は、該カプセル型内視鏡の光軸方向を移動軸として磁気誘導により移動する。したがって、カプセル型内視鏡により撮像される画像は、移動方向と直交する平面に限定され、取得できる画像が制限されていた。これに対して、例えば撮像素子をカプセル型内視鏡の側面に付けるなどして、光軸方向と移動軸とが同じにならないようにすることが考えられるが、移動軸の向きを変えてカプセル型内視鏡の推進方向を変えると光軸方向も変わってしまうので取得できる画像が制限される。このため、光軸方向が推進方向に限定されずに画像を取得できる技術が望まれていた。 Incidentally, the capsule endoscope disclosed in Patent Document 1 moves by magnetic induction with the optical axis direction of the capsule endoscope as the movement axis. Therefore, the image captured by the capsule endoscope is limited to a plane orthogonal to the moving direction, and the images that can be acquired are limited. On the other hand, for example, it may be possible to prevent the optical axis direction and the movement axis from becoming the same by attaching an image sensor to the side surface of the capsule endoscope. If the propulsion direction of the mold endoscope is changed, the optical axis direction is also changed, so that the images that can be acquired are limited. For this reason, there has been a demand for a technique that can acquire an image without limiting the optical axis direction to the propulsion direction.
 本発明は、上記に鑑みてなされたものであって、磁気誘導により移動するカプセル型内視鏡が高い自由度で画像を取得することができるカプセル型内視鏡誘導システムおよびカプセル型内視鏡誘導装置を提供することを目的とする。 The present invention has been made in view of the above, and a capsule endoscope guidance system and a capsule endoscope in which a capsule endoscope moving by magnetic guidance can acquire an image with a high degree of freedom. An object is to provide a guidance device.
 上述した課題を解決し、目的を達成するために、本発明にかかるカプセル型内視鏡誘導システムは、外部から印加される磁界に応答する磁界応答部および撮像部を有し被検体内に導入されるカプセル型内視鏡と、前記撮像部が撮像した被検体内画像において指定された位置情報に基づいて前記カプセル型内視鏡の推進方向を示す推進方向ベクトルを設定する推進方向ベクトル設定部と、少なくとも前記撮像部の光軸方向および前記推進方向ベクトルに基づいて、前記推進方向ベクトルに対する光軸方向を示す光軸方向ベクトルを設定する光軸方向ベクトル設定部と、前記推進方向ベクトル設定部により設定された前記推進方向ベクトルと、前記光軸方向ベクトル設定部により設定された前記光軸方向ベクトルとをもとに、前記磁界応答部に印加する誘導磁界を設定する磁界設定部と、前記磁界設定部により設定された前記誘導磁界を前記磁界応答部に印加して、前記カプセル型内視鏡の姿勢を前記光軸方向ベクトルの方向に維持しつつ、前記カプセル型内視鏡を前記推進方向ベクトルで指定された方向に推進させる磁界発生部と、を備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, a capsule endoscope guidance system according to the present invention has a magnetic field response unit and an imaging unit that respond to a magnetic field applied from the outside, and is introduced into a subject. And a propulsion direction vector setting unit that sets a propulsion direction vector indicating the propulsion direction of the capsule endoscope based on position information specified in the in-vivo image captured by the imaging unit. An optical axis direction vector setting unit that sets an optical axis direction vector indicating an optical axis direction with respect to the propulsion direction vector, based on at least the optical axis direction of the imaging unit and the propulsion direction vector, and the propulsion direction vector setting unit Based on the propulsion direction vector set by the optical axis direction vector setting unit and the optical axis direction vector set by the optical axis direction vector setting unit. A magnetic field setting unit that sets an induced magnetic field to be applied; and the induced magnetic field set by the magnetic field setting unit is applied to the magnetic field response unit so that the posture of the capsule endoscope is set in the direction of the optical axis direction vector. And a magnetic field generator for propelling the capsule endoscope in a direction specified by the propulsion direction vector while maintaining the same.
 また、本発明にかかるカプセル型内視鏡誘導システムは、上記発明において、前記撮像部は、間欠的に画像を撮像し、前記磁界設定部は、前記撮像部が撮像した複数の画像のうち、時系列で連続した二つの画像において、互いの撮像領域の一部を含むように前記カプセル型内視鏡を移動させる誘導磁界の設定を行うことを特徴とする。 In the capsule endoscope guidance system according to the present invention, in the above invention, the imaging unit intermittently captures an image, and the magnetic field setting unit includes a plurality of images captured by the imaging unit. It is characterized in that an induction magnetic field for moving the capsule endoscope is set so as to include a part of each imaging region in two time-series images.
 また、本発明にかかるカプセル型内視鏡誘導システムは、上記発明において、前記磁界設定部は、前記撮像部と被写体との距離情報をもとに、前記誘導磁界の設定を行うことを特徴とする。 The capsule endoscope guidance system according to the present invention is characterized in that, in the above invention, the magnetic field setting unit sets the guidance magnetic field based on distance information between the imaging unit and a subject. To do.
 また、本発明にかかるカプセル型内視鏡誘導システムは、上記発明において、前記光軸方向ベクトル設定部は、複数の前記光軸方向ベクトルを設定し、前記磁界設定部は、前記カプセル型内視鏡の前記撮像部が、前記光軸方向ベクトル設定部により設定された複数の前記光軸方向ベクトルのいずれかを光軸方向として撮像するような前記誘導磁界の設定を行うことを特徴とする。 In the capsule endoscope guidance system according to the present invention, in the above invention, the optical axis direction vector setting unit sets a plurality of optical axis direction vectors, and the magnetic field setting unit includes the capsule endoscope. The imaging unit of the mirror performs setting of the induced magnetic field such that imaging is performed using any one of the plurality of optical axis direction vectors set by the optical axis direction vector setting unit as the optical axis direction.
 また、本発明にかかるカプセル型内視鏡誘導システムは、上記発明において、前記光軸方向ベクトル設定部は、二つの前記光軸方向ベクトルを設定し、前記磁界設定部は、前記撮像部の前記光軸方向が、前記光軸方向ベクトル設定部により設定された二つの前記光軸方向ベクトルの間を移動するような前記誘導磁界の設定を行い、前記撮像部は、二つの前記光軸方向ベクトルの間の所定のタイミングで撮像処理を行なうことを特徴とする。 In the capsule endoscope guidance system according to the present invention, in the above invention, the optical axis direction vector setting unit sets two optical axis direction vectors, and the magnetic field setting unit includes the imaging unit. The induced magnetic field is set such that the optical axis direction moves between the two optical axis direction vectors set by the optical axis direction vector setting unit, and the imaging unit includes two optical axis direction vectors. The imaging process is performed at a predetermined timing between the two.
 また、本発明にかかるカプセル型内視鏡誘導システムは、上記発明において、前記磁界設定部は、前記光軸方向ベクトルが、前記推進方向ベクトルのまわりに回転するような誘導磁界を設定することを特徴とする。 In the capsule endoscope guidance system according to the present invention as set forth in the invention described above, the magnetic field setting unit sets the guidance magnetic field such that the optical axis direction vector rotates around the propulsion direction vector. Features.
 また、本発明にかかるカプセル型内視鏡誘導システムは、上記発明において、前記推進方向ベクトルに対する前記光軸方向ベクトルの角度に関する角度情報の入力を受け付ける入力部をさらに備え、前記光軸方向ベクトル設定部は、前記入力部が受け付けた前記角度情報に基づき前記光軸方向ベクトルを設定することを特徴とする。 The capsule endoscope guidance system according to the present invention further includes an input unit that receives an input of angle information related to an angle of the optical axis direction vector with respect to the propulsion direction vector. The unit sets the optical axis direction vector based on the angle information received by the input unit.
 また、本発明にかかるカプセル型内視鏡誘導システムは、上記発明において、前記推進方向ベクトル設定部は、複数の推進方向ベクトルを設定し、前記磁界設定部は、前記推進方向ベクトルと前記光軸方向ベクトルとの相対的な関係を維持しつつ、前記カプセル型内視鏡が推進する推進方向ベクトルを変更しながら前記カプセル型内視鏡を推進させる前記誘導磁界を設定することを特徴とする。 In the capsule endoscope guidance system according to the present invention, the propulsion direction vector setting unit sets a plurality of propulsion direction vectors, and the magnetic field setting unit includes the propulsion direction vector and the optical axis. The guiding magnetic field for propelling the capsule endoscope is set while changing the propulsion direction vector propelled by the capsule endoscope while maintaining a relative relationship with the direction vector.
 また、本発明にかかるカプセル型内視鏡誘導システムは、上記発明において、前記推進方向ベクトル設定部は、指定された複数の位置情報に基づいて、複数の前記推進方向ベクトルを設定することを特徴とする。 In the capsule endoscope guidance system according to the present invention as set forth in the invention described above, the propulsion direction vector setting unit sets a plurality of the propulsion direction vectors based on a plurality of designated position information. And
 また、本発明にかかるカプセル型内視鏡誘導装置は、外部から印加される磁界に応答する磁界応答部および撮像部を有し被検体内に導入されるカプセル型内視鏡を誘導するカプセル型内視鏡誘導装置において、前記撮像部が撮像した被検体内画像において指定された位置情報に基づいて前記カプセル型内視鏡の推進方向を示す推進方向ベクトルを設定する推進方向ベクトル設定部と、少なくとも前記撮像部の光軸方向および前記推進方向ベクトルに基づいて、前記推進方向ベクトルに対する光軸方向を示す光軸方向ベクトルを設定する光軸方向ベクトル設定部と、前記推進方向ベクトル設定部により設定された前記推進方向ベクトルと、前記光軸方向ベクトル設定部により設定された前記光軸方向ベクトルとをもとに、前記磁界応答部に印加する誘導磁界を設定する磁界設定部と、前記磁界設定部により設定された前記誘導磁界を前記磁界応答部に印加して、前記カプセル型内視鏡の姿勢を前記光軸方向ベクトルの方向に維持しつつ、前記カプセル型内視鏡を前記推進方向ベクトルで指定された方向に推進させる磁界発生部と、を備えたことを特徴とする。 The capsule endoscope guidance apparatus according to the present invention has a magnetic field response unit that responds to a magnetic field applied from the outside and an imaging unit, and guides a capsule endoscope that is introduced into a subject. In the endoscope guidance device, a propulsion direction vector setting unit that sets a propulsion direction vector indicating a propulsion direction of the capsule endoscope based on position information designated in an in-vivo image captured by the imaging unit; Based on at least the optical axis direction of the imaging unit and the propulsion direction vector, an optical axis direction vector setting unit that sets an optical axis direction vector indicating an optical axis direction with respect to the propulsion direction vector, and a setting by the propulsion direction vector setting unit Based on the propulsion direction vector set and the optical axis direction vector set by the optical axis direction vector setting unit, the magnetic field response unit is marked. A magnetic field setting unit for setting an induced magnetic field to be applied; and applying the induced magnetic field set by the magnetic field setting unit to the magnetic field response unit to maintain the posture of the capsule endoscope in the direction of the optical axis direction vector However, a magnetic field generator for propelling the capsule endoscope in a direction specified by the propulsion direction vector is provided.
 本発明によれば、磁気誘導により移動するカプセル型内視鏡が高い自由度で画像を取得することができるという効果を奏する。 According to the present invention, there is an effect that a capsule endoscope moving by magnetic induction can acquire an image with a high degree of freedom.
図1は、本発明の実施の形態1にかかるカプセル型内視鏡誘導システムの全体構成を示す模式図である。FIG. 1 is a schematic diagram illustrating an overall configuration of a capsule endoscope guidance system according to a first embodiment of the present invention. 図2は、図1に示すカプセル型内視鏡の一構成例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing a configuration example of the capsule endoscope shown in FIG. 図3は、本発明の実施の形態1にかかるカプセル型内視鏡が被検体内部の液体中に浮揚した状態の一例を示す模式図である。FIG. 3 is a schematic diagram illustrating an example of a state where the capsule endoscope according to the first embodiment of the present invention floats in the liquid inside the subject. 図4は、本発明の実施の形態1にかかるカプセル型内視鏡誘導システムが行う磁気誘導処理を説明するフローチャートである。FIG. 4 is a flowchart for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the first embodiment of the present invention. 図5は、本発明の実施の形態1にかかるカプセル型内視鏡誘導システムが行う磁気誘導処理を説明する図である。FIG. 5 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the first embodiment of the present invention. 図6は、本発明の実施の形態1にかかるカプセル型内視鏡誘導システムが行う磁気誘導処理を説明する図である。FIG. 6 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the first embodiment of the present invention. 図7は、本発明の実施の形態1にかかるカプセル型内視鏡誘導システムが行う磁気誘導処理を説明する図である。FIG. 7 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the first embodiment of the present invention. 図8は、本発明の実施の形態1の変形例にかかるカプセル型内視鏡誘導システムが行う磁気誘導処理を説明する図である。FIG. 8 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the modification of the first embodiment of the present invention. 図9は、本発明の実施の形態1の変形例にかかるカプセル型内視鏡誘導システムが行う磁気誘導処理を説明する図である。FIG. 9 is a diagram illustrating a magnetic guidance process performed by the capsule endoscope guidance system according to the modification of the first embodiment of the present invention. 図10は、本発明の実施の形態2にかかるカプセル型内視鏡誘導システムの全体構成を示す模式図である。FIG. 10 is a schematic diagram illustrating an overall configuration of a capsule endoscope guidance system according to the second embodiment of the present invention. 図11は、本発明の実施の形態2の変形例1にかかるカプセル型内視鏡誘導システムが行う磁気誘導処理を説明する図である。FIG. 11 is a diagram illustrating magnetic guidance processing performed by the capsule endoscope guidance system according to the first modification of the second embodiment of the present invention. 図12は、本発明の実施の形態2の変形例1にかかるカプセル型内視鏡誘導システムが行う磁気誘導処理を説明する図である。FIG. 12 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the first modification of the second embodiment of the present invention. 図13は、本発明の実施の形態3にかかるカプセル型内視鏡誘導システムが行う磁気誘導処理を説明する図である。FIG. 13 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the third embodiment of the present invention. 図14は、本発明の実施の形態3にかかるカプセル型内視鏡誘導システムが行う磁気誘導処理を説明する図である。FIG. 14 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system according to the third embodiment of the present invention. 図15は、本発明にかかるカプセル型内視鏡誘導システムの磁界発生部の他の例を説明するための模式図である。FIG. 15 is a schematic diagram for explaining another example of the magnetic field generator of the capsule endoscope guidance system according to the present invention.
 以下に、本発明にかかる実施の形態であるカプセル型内視鏡誘導システムについて、被検体内に経口にて導入され、被検体の胃に蓄えた液中を漂うカプセル型内視鏡を用いるカプセル型内視鏡用誘導システムを例に説明する。ただし、これに限定されず、例えば被検体の食道から肛門にかけて管腔内を移動するカプセル型内視鏡や、肛門から等張液とともに導入されるカプセル型内視鏡など、種々のカプセル型内視鏡を用いることが可能である。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付している。 The capsule endoscope guidance system according to the embodiment of the present invention is a capsule using a capsule endoscope that is orally introduced into a subject and drifts in a liquid stored in the stomach of the subject. A guidance system for a type endoscope will be described as an example. However, the present invention is not limited to this. For example, a capsule endoscope that moves in the lumen from the esophagus of the subject to the anus, or a capsule endoscope that is introduced from the anus together with an isotonic solution, and various capsule-type endoscopes. An endoscope can be used. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.
(実施の形態1)
 まず、実施の形態1について説明する。図1は、この発明の実施の形態1にかかるカプセル型内視鏡誘導システムの全体構成を示す模式図である。図1に示すように、本実施の形態1におけるカプセル型内視鏡誘導システム1は、被検体の口から飲み込まれることによって被検体内の体腔内に導入され外部装置と通信するカプセル型内視鏡であるカプセル型内視鏡10と、被検体周囲に設けられ3次元の磁界を発生できる磁界発生部2と、カプセル型内視鏡10との間で無線通信を行ないカプセル型内視鏡10が撮像した画像を含む無線信号を受信するとともにカプセル型内視鏡10に対する操作信号を送信する送受信部3と、カプセル型内視鏡誘導システム1の各構成部位を制御する制御部4と、カプセル型内視鏡10によって撮像された画像を表示出力する表示部5と、カプセル型内視鏡誘導システム1における各種操作を指示する指示情報や、カプセル型内視鏡10を磁気で誘導するための誘導指示情報が入力される入力部6と、カプセル型内視鏡10によって撮像された画像情報などを記憶する記憶部7とを備える。
(Embodiment 1)
First, the first embodiment will be described. FIG. 1 is a schematic diagram showing an overall configuration of a capsule endoscope guidance system according to a first embodiment of the present invention. As shown in FIG. 1, the capsule endoscope guidance system 1 according to the first embodiment is introduced into a body cavity in a subject by being swallowed from the mouth of the subject and communicates with an external device. The capsule endoscope 10 that performs wireless communication between the capsule endoscope 10 that is a mirror, the magnetic field generator 2 that is provided around the subject and can generate a three-dimensional magnetic field, and the capsule endoscope 10 Receives and transmits a radio signal including an image captured, and transmits an operation signal to the capsule endoscope 10, a control unit 4 that controls each component of the capsule endoscope guidance system 1, and a capsule The display unit 5 that displays and outputs an image captured by the type endoscope 10, instruction information that instructs various operations in the capsule endoscope guidance system 1, and the capsule endoscope 10 is guided magnetically. Comprises an input unit 6 for the guiding instruction information is input, and a storage unit 7 for storing an image information captured by the capsule endoscope 10 for.
 カプセル型内視鏡10は、被検体の体内画像を取得するカプセル型の医療装置であり、撮像機能および無線通信機能を内蔵する。カプセル型内視鏡10は、経口摂取等によって所定の液体とともに被検体の臓器内部に導入された後、消化管内部を移動して、最終的に、被検体の外部に排出される。カプセル型内視鏡10は、被検体で体内画像を順次撮像し、得られた体内画像を外部の送受信部3に順次無線送信する。また、カプセル型内視鏡10は、永久磁石等の磁性体を内蔵する。かかるカプセル型内視鏡10は、被検体の臓器内部(例えば胃内部)に導入された液体中を漂い、外部の磁界発生部2によって磁気誘導される。 The capsule endoscope 10 is a capsule medical device that acquires an in-vivo image of a subject, and has an imaging function and a wireless communication function. The capsule endoscope 10 is introduced into the organ of the subject together with a predetermined liquid by oral ingestion or the like, moves inside the digestive tract, and is finally discharged to the outside of the subject. The capsule endoscope 10 sequentially captures in-vivo images with a subject and sequentially wirelessly transmits the obtained in-vivo images to the external transmission / reception unit 3. The capsule endoscope 10 incorporates a magnetic material such as a permanent magnet. The capsule endoscope 10 floats in a liquid introduced into the organ of the subject (for example, the stomach) and is magnetically guided by the external magnetic field generator 2.
 磁界発生部2は、被検体内部のカプセル型内視鏡10を磁気誘導するためのものである。磁界発生部2は、たとえば複数のコイル等を用いて実現され、図示しない電力供給部によって供給された電力を用いて誘導用磁界を発生する。磁界発生部2は、この発生した誘導用磁界をカプセル型内視鏡10内部の磁性体に印加し、この誘導用磁界の作用によってカプセル型内視鏡10を磁気的に捕捉する。磁界発生部2は、被検体内部のカプセル型内視鏡10に作用する誘導用磁界の磁界方向を変更することによって、被検体内部におけるカプセル型内視鏡10の3次元的な姿勢や位置を制御する。 The magnetic field generator 2 is for magnetically guiding the capsule endoscope 10 inside the subject. The magnetic field generation unit 2 is realized using, for example, a plurality of coils and the like, and generates a magnetic field for guidance using electric power supplied by a power supply unit (not shown). The magnetic field generator 2 applies the generated guidance magnetic field to the magnetic body inside the capsule endoscope 10 and magnetically captures the capsule endoscope 10 by the action of the guidance magnetic field. The magnetic field generator 2 changes the magnetic field direction of the guiding magnetic field acting on the capsule endoscope 10 inside the subject, thereby changing the three-dimensional posture and position of the capsule endoscope 10 inside the subject. Control.
 送受信部3は、複数のアンテナ3aを備え、これら複数のアンテナ3aを介してカプセル型内視鏡10から被検体の体内画像を含む画像信号を受信する。送受信部3は、これら複数のアンテナ3aを介してカプセル型内視鏡10からの無線信号を順次受信する。送受信部3は、これら複数のアンテナ3aの中から最も受信電界強度の高いアンテナを選択し、この選択したアンテナを介して受信したカプセル型内視鏡10からの無線信号に対して復調処理等を行う。これによって、送受信部3は、この無線信号からカプセル型内視鏡10による画像データ、すなわち被検体の体内画像データを抽出する。送受信部3は、この抽出した体内画像データを含む画像信号を制御部4に送信する。 The transmission / reception unit 3 includes a plurality of antennas 3a, and receives image signals including in-vivo images of the subject from the capsule endoscope 10 via the plurality of antennas 3a. The transmission / reception unit 3 sequentially receives wireless signals from the capsule endoscope 10 via the plurality of antennas 3a. The transmission / reception unit 3 selects an antenna having the highest received electric field strength from the plurality of antennas 3a, and performs a demodulation process on the radio signal from the capsule endoscope 10 received through the selected antenna. Do. As a result, the transmission / reception unit 3 extracts image data from the capsule endoscope 10, that is, in-vivo image data of the subject from the wireless signal. The transmission / reception unit 3 transmits an image signal including the extracted in-vivo image data to the control unit 4.
 制御部4は、磁界発生部2、送受信部3、表示部5、および記憶部7の各動作を制御し、かつ、これら各構成部間における信号の入出力を制御する。制御部4は、送受信部3から取得した被検体の体内画像群を記憶するように記憶部7を制御する。制御部4は、送受信部3が順次受信した画像信号を順次取得し、取得した画像信号をもとに、表示用の体内画像を生成する画像生成部41、送受信部3が順次受信した体内画像をリアルタイムに表示部5に表示させる画像表示制御部42およびカプセル型内視鏡10を誘導するために磁界発生部2を制御する磁界制御部45を備える。磁界制御部45は、磁界発生部2に対する通電量を制御し、誘導指示情報に基づく磁気誘導方向および磁気誘導位置に応じたカプセル型内視鏡10の磁気誘導に必要な誘導用の磁界(誘導磁界)を発生するように磁界発生部2を制御する。 The control unit 4 controls each operation of the magnetic field generation unit 2, the transmission / reception unit 3, the display unit 5, and the storage unit 7, and controls the input / output of signals between these components. The control unit 4 controls the storage unit 7 so as to store the in-vivo image group of the subject acquired from the transmission / reception unit 3. The control unit 4 sequentially acquires the image signals sequentially received by the transmission / reception unit 3, and based on the acquired image signals, generates an in-vivo image for display, and the in-vivo image sequentially received by the transmission / reception unit 3. Are displayed on the display unit 5 in real time, and a magnetic field control unit 45 that controls the magnetic field generation unit 2 to guide the capsule endoscope 10 is provided. The magnetic field control unit 45 controls the energization amount to the magnetic field generation unit 2 and performs a guidance magnetic field (guidance required for magnetic guidance of the capsule endoscope 10 according to the magnetic guidance direction and the magnetic guidance position based on the guidance instruction information. The magnetic field generator 2 is controlled so as to generate a magnetic field.
 磁界制御部45は、推進方向ベクトル設定部46と、光軸方向ベクトル設定部47と、磁界設定部48とを備える。推進方向ベクトル設定部46は、後述する入力部6から入力されたカプセル型内視鏡10の移動方向(推進方向)に関する情報に基づいて推進方向ベクトルを設定する。光軸方向ベクトル設定部47は、推進方向ベクトルに対するカプセル型内視鏡10の撮像部11(後述する)の光軸方向を示すベクトルを光軸方向ベクトルとして設定する。磁界設定部48は、推進方向ベクトルおよび光軸方向ベクトルに応じた各磁界を合成した誘導磁界を設定する。磁界制御部45は、磁界設定部48によって設定された誘導磁界を発生するように磁界発生部2を制御する。磁界設定部48は、カプセル型内視鏡10の物理的パラメータであって、カプセル型内視鏡10の体積、質量および磁気モーメントを含むパラメータや、液体の物理的パラメータであって、当該液体の密度を含むパラメータを考慮して誘導磁界を設定する。 The magnetic field control unit 45 includes a propulsion direction vector setting unit 46, an optical axis direction vector setting unit 47, and a magnetic field setting unit 48. The propulsion direction vector setting unit 46 sets a propulsion direction vector based on information regarding the moving direction (propulsion direction) of the capsule endoscope 10 input from the input unit 6 described later. The optical axis direction vector setting unit 47 sets a vector indicating the optical axis direction of the imaging unit 11 (described later) of the capsule endoscope 10 with respect to the propulsion direction vector as the optical axis direction vector. The magnetic field setting unit 48 sets an induction magnetic field obtained by synthesizing each magnetic field according to the propulsion direction vector and the optical axis direction vector. The magnetic field control unit 45 controls the magnetic field generation unit 2 so as to generate the induction magnetic field set by the magnetic field setting unit 48. The magnetic field setting unit 48 is a physical parameter of the capsule endoscope 10 and includes parameters including the volume, mass, and magnetic moment of the capsule endoscope 10, and a physical parameter of the liquid, The induction magnetic field is set in consideration of parameters including density.
 表示部5は、液晶ディスプレイ等の各種ディスプレイを用いて実現され、制御部4によって表示指示された各種情報を表示する。具体的には、表示部5は、制御部4における画像表示制御部42の制御に基づいて、例えば、カプセル型内視鏡10が撮像した被検体の体内画像群を表示する。また、表示部5は、体内画像群の中から入力部6の入力操作によって選択またはマーキングされた体内画像の縮小画像、被検体の患者情報および検査情報等を表示する。 The display unit 5 is realized by using various displays such as a liquid crystal display, and displays various information instructed to be displayed by the control unit 4. Specifically, the display unit 5 displays, for example, an in-vivo image group of the subject captured by the capsule endoscope 10 based on the control of the image display control unit 42 in the control unit 4. The display unit 5 displays a reduced image of the in-vivo image selected or marked by the input operation of the input unit 6 from the in-vivo image group, patient information of the subject, examination information, and the like.
 入力部6は、キーボードおよびマウス、タッチパネル、ジョイスティック、ボタンおよびスイッチ等の入力デバイスを用いて実現され、医師等の術者による入力操作に応じて各種情報を受け付けて、受け付けた各種情報を制御部4に入力する。入力部6によって制御部4に入力される各種情報として、例えば、制御部4に対して指示する指示情報、被検体の患者情報および検査情報等が挙げられる。なお、被検体の患者情報は、被検体を特定する特定情報であり、例えば、被検体の患者名、患者ID、生年月日、性別、年齢等である。また、被検体の検査情報は、被検体の消化管内部にカプセル型内視鏡10を導入して消化管内部を観察する検査を特定する特定情報であり、例えば、検査ID、検査日等である。 The input unit 6 is realized by using an input device such as a keyboard and a mouse, a touch panel, a joystick, a button, and a switch. The input unit 6 receives various information according to an input operation by a surgeon such as a doctor, and controls the received various information. 4 Examples of various information input to the control unit 4 by the input unit 6 include instruction information for instructing the control unit 4, patient information of the subject, examination information, and the like. The patient information of the subject is specific information that identifies the subject, and includes, for example, the patient name, patient ID, date of birth, sex, age, and the like of the subject. Further, the examination information of the subject is specific information for identifying the examination in which the capsule endoscope 10 is introduced into the subject's digestive tract and the inside of the digestive tract is observed. is there.
 入力部6は、推進方向ベクトル設定部46が設定する推進方向ベクトルにおける推進方向を指定する情報の入力を受け付ける推進方向入力部61を有する。推進方向入力部61は、例えば、表示部5に表示された画像上で指定された点等の情報を受け付けて、該受け付けた情報を制御部4に入力する。 The input unit 6 includes a propulsion direction input unit 61 that receives input of information specifying the propulsion direction in the propulsion direction vector set by the propulsion direction vector setting unit 46. For example, the propulsion direction input unit 61 receives information such as a point specified on the image displayed on the display unit 5 and inputs the received information to the control unit 4.
 記憶部7は、フラッシュメモリまたはハードディスク等の書き換え可能に情報を保存する記憶メディアを用いて実現される。記憶部7は、制御部4が記憶指示した各種情報を記憶し、記憶した各種情報の中から制御部4が読み出し指示した情報を制御部4に送出する。なお、かかる記憶部7が記憶する各種情報として、例えば、カプセル型内視鏡10によって撮像された被検体の体内画像群の各画像データ、表示部5に表示された各体内画像の中から入力部6の入力操作によって選択された体内画像のデータ、被検体の患者情報等の入力部6による入力情報等が挙げられる。 The storage unit 7 is realized by using a storage medium that stores information in a rewritable manner such as a flash memory or a hard disk. The storage unit 7 stores various types of information instructed to be stored by the control unit 4, and sends the information instructed to be read out by the control unit 4 from the stored various types of information to the control unit 4. As various information stored in the storage unit 7, for example, input from each image data of the in-vivo image group of the subject imaged by the capsule endoscope 10 and each in-vivo image displayed on the display unit 5. Examples include in-vivo image data selected by the input operation of the unit 6, input information by the input unit 6 such as patient information of the subject, and the like.
 つぎに、カプセル型内視鏡10について説明する。図2は、図1に示すカプセル型内視鏡の一構成例を示す断面模式図である。図2に示すように、カプセル型内視鏡10は、被検体の臓器内部に導入し易い大きさに形成された外装であるカプセル型筐体12と、互いに異なる撮像方向の被写体の画像を撮像する撮像部11とを備える。また、カプセル型内視鏡10は、撮像部11によって撮像された各画像を外部に無線送信する無線通信部16と、カプセル型内視鏡10の各構成部を制御する制御部17と、カプセル型内視鏡10の各構成部に電力を供給する電源部18とを備える。さらに、カプセル型内視鏡10は、磁界発生部2による磁気誘導を可能にするための永久磁石19(磁界応答部)を備える。 Next, the capsule endoscope 10 will be described. FIG. 2 is a schematic cross-sectional view showing a configuration example of the capsule endoscope shown in FIG. As shown in FIG. 2, the capsule endoscope 10 captures images of subjects in different imaging directions from a capsule-type housing 12 that is an exterior formed in a size that can be easily introduced into the organ of a subject. And an imaging unit 11. The capsule endoscope 10 includes a wireless communication unit 16 that wirelessly transmits each image captured by the imaging unit 11, a control unit 17 that controls each component of the capsule endoscope 10, and a capsule. And a power supply unit 18 that supplies power to each component of the mold endoscope 10. Furthermore, the capsule endoscope 10 includes a permanent magnet 19 (magnetic field response unit) for enabling magnetic guidance by the magnetic field generation unit 2.
 カプセル型筐体12は、被検体の臓器内部に導入可能な大きさに形成された外装ケースであり、筒状筐体12aの両側開口端をドーム形状筐体12b,12cによって塞いで実現される。ドーム形状筐体12b,12cは、可視光等の所定波長帯域の光に対して透明なドーム形状の光学部材である。筒状筐体12aは、可視光に対して略不透明な有色の筐体である。かかる筒状筐体12aおよびドーム形状筐体12b,12cによって形成されるカプセル型筐体12は、図2に示すように、撮像部11、無線通信部16、制御部17、電源部18および永久磁石19を液密に内包する。 The capsule-type housing 12 is an exterior case formed in a size that can be introduced into the organ of a subject, and is realized by closing both side opening ends of the cylindrical housing 12a with dome-shaped housings 12b and 12c. . The dome-shaped casings 12b and 12c are dome-shaped optical members that are transparent to light in a predetermined wavelength band such as visible light. The cylindrical housing 12a is a colored housing that is substantially opaque to visible light. As shown in FIG. 2, the capsule-type housing 12 formed by the cylindrical housing 12a and the dome-shaped housings 12b and 12c includes an imaging unit 11, a wireless communication unit 16, a control unit 17, a power supply unit 18, and a permanent unit. The magnet 19 is contained in a liquid-tight manner.
 撮像部11は、LED等の照明部13と、集光レンズ等の光学系14と、CMOSイメージセンサまたはCCD等の撮像素子15とを有する。照明部13は、撮像素子15の撮像視野に白色光等の照明光を発光して、ドーム形状筐体12b越しに撮像視野内の被写体を照明する。光学系14は、この撮像視野からの反射光を撮像素子15の撮像面に集光して、撮像素子15の撮像面に撮像視野の被写体画像を結像させる。撮像素子15は、この撮像視野からの反射光を、撮像面を介して受光し、この受光した光信号を光電変換処理して、撮像視野の被写体画像、すなわち被検体の体内画像を撮像する。なお、カプセル型内視鏡10が図2に示すように長軸La方向の一方の方向を撮像する一眼タイプのカプセル型内視鏡である場合、かかる撮像部11の光軸は、カプセル型筐体12の長手方向の中心軸である長軸Laと略平行あるいは略一致する。 The imaging unit 11 includes an illumination unit 13 such as an LED, an optical system 14 such as a condenser lens, and an imaging element 15 such as a CMOS image sensor or a CCD. The illumination unit 13 emits illumination light such as white light to the imaging field of the imaging device 15 and illuminates the subject in the imaging field through the dome-shaped housing 12b. The optical system 14 condenses the reflected light from the imaging field of view on the imaging surface of the imaging device 15 and forms a subject image in the imaging field of view on the imaging surface of the imaging device 15. The imaging device 15 receives the reflected light from the imaging field through the imaging surface, performs photoelectric conversion processing on the received light signal, and captures a subject image in the imaging field, that is, an in-vivo image of the subject. When the capsule endoscope 10 is a single-lens capsule endoscope that images one direction of the long axis La as shown in FIG. 2, the optical axis of the imaging unit 11 is the capsule-type housing. It is substantially parallel or substantially coincident with the long axis La which is the central axis in the longitudinal direction of the body 12.
 無線通信部16は、アンテナ16aを備え、上述した撮像部11によって撮像された各画像を、アンテナ16aを介して外部に順次無線送信する。具体的には、無線通信部16は、撮像部11が撮像した被検体の体内画像を含む画像信号を制御部17から取得し、この取得した画像信号に対して変調処理等を行って、この画像信号を変調した無線信号を生成する。無線通信部16は、この無線信号を、アンテナ16aを介して外部の送受信部3に送信する。 The wireless communication unit 16 includes an antenna 16a, and sequentially wirelessly transmits each image captured by the imaging unit 11 described above to the outside via the antenna 16a. Specifically, the wireless communication unit 16 acquires an image signal including the in-vivo image of the subject imaged by the imaging unit 11 from the control unit 17, performs a modulation process on the acquired image signal, and the like. A radio signal obtained by modulating an image signal is generated. The wireless communication unit 16 transmits this wireless signal to the external transmission / reception unit 3 via the antenna 16a.
 制御部17は、カプセル型内視鏡10の構成部である撮像部11および無線通信部16の各動作を制御し、かつ、かかる各構成部間における信号の入出力を制御する。具体的には、制御部17は、照明部13が照明した撮像視野内の被写体の画像を撮像素子15に撮像させる。また、制御部17は、画像信号を生成する信号処理機能を有する。制御部17は、撮像素子15から体内画像データを取得し、その都度、この体内画像データに対して所定の信号処理を行って、体内画像データを含む画像信号を生成する。制御部17は、かかる各画像信号を時系列に沿って外部に順次無線送信するように無線通信部16を制御する。 The control unit 17 controls each operation of the imaging unit 11 and the wireless communication unit 16 that are components of the capsule endoscope 10, and controls input / output of signals between the components. Specifically, the control unit 17 causes the image sensor 15 to capture an image of a subject within the imaging field illuminated by the illumination unit 13. The control unit 17 has a signal processing function for generating an image signal. The control unit 17 acquires in-vivo image data from the image sensor 15 and performs predetermined signal processing on the in-vivo image data each time to generate an image signal including the in-vivo image data. The control unit 17 controls the wireless communication unit 16 so as to sequentially wirelessly transmit the image signals to the outside along the time series.
 電源部18は、ボタン型電池等またはキャパシタ等の蓄電部であって、磁気スイッチ等のスイッチ部を用いて実現される。電源部18は、スイッチ部が磁気スイッチで構成されている場合、外部から印加された磁界によって電源のオンオフ状態を切り替え、オン状態の場合に蓄電部の電力をカプセル型内視鏡10の各構成部(撮像部11、無線通信部16および制御部17)に適宜供給する。また、電源部18は、オフ状態の場合、かかるカプセル型内視鏡10の各構成部への電力供給を停止する。 The power supply unit 18 is a power storage unit such as a button-type battery or a capacitor, and is realized using a switch unit such as a magnetic switch. When the switch unit is configured by a magnetic switch, the power source unit 18 switches the power source on / off state by a magnetic field applied from the outside. To the units (imaging unit 11, wireless communication unit 16, and control unit 17) as appropriate. Moreover, the power supply part 18 stops the electric power supply to each structure part of this capsule type endoscope 10 in an OFF state.
 永久磁石19は、磁界発生部2によるカプセル型内視鏡10の磁気誘導を可能にするためのものである。永久磁石19は、上述した撮像部11に対して相対的に固定された状態でカプセル型筐体12の内部に固定配置される。この場合、永久磁石19は、撮像素子15の各撮像面の上下方向に対して相対的に固定された既知の方向に磁化されている。 The permanent magnet 19 is for enabling magnetic guidance of the capsule endoscope 10 by the magnetic field generator 2. The permanent magnet 19 is fixedly disposed inside the capsule housing 12 in a state of being fixed relatively to the imaging unit 11 described above. In this case, the permanent magnet 19 is magnetized in a known direction that is relatively fixed with respect to the vertical direction of each imaging surface of the imaging element 15.
 ここで、被検体内に導入した液体W内におけるカプセル型内視鏡10の様子を、図3を用いて説明する。図3は、カプセル型内視鏡が被検体内部の液体中に浮揚した状態の一例を示す模式図であって、被検体内に導入した液体W内におけるカプセル型内視鏡10の様子を説明するための概念図である。ただし、図3に示す例では、カプセル型内視鏡10の姿勢(長軸La方向の向き)を制御するための磁界が永久磁石19に作用していない場合を例示している。 Here, the state of the capsule endoscope 10 in the liquid W introduced into the subject will be described with reference to FIG. FIG. 3 is a schematic diagram illustrating an example of a state in which the capsule endoscope floats in the liquid inside the subject, and illustrates the state of the capsule endoscope 10 in the liquid W introduced into the subject. It is a conceptual diagram for doing. However, in the example illustrated in FIG. 3, the case where the magnetic field for controlling the posture of the capsule endoscope 10 (direction in the long axis La direction) is not acting on the permanent magnet 19 is illustrated.
 本実施の形態1において例示するカプセル型内視鏡10は、液体Wに対する比重を調整することにより、図3に示すように、一部が液面Wsから外部に露出した状態で液体W中を漂う。この際、カプセル型内視鏡10の重心Gをカプセル型内視鏡10の幾何学的中心Cからカプセル型内視鏡10の長軸La(図2参照)に沿ってずらしておく。具体的には、カプセル型内視鏡10の重心Gは、電源部18および永久磁石19等のカプセル型内視鏡10の各構成部の配置を調整することによって、長軸La上の位置であってカプセル型筐体12の幾何学的中心Cから撮像部11側に外れた位置に設定される。これにより、液体W内を漂うカプセル型内視鏡10の長軸Laが、鉛直方向(すなわち重力方向Dg)と平行になる。言い換えれば、カプセル型内視鏡10を直立した状態で液体W内を漂わせることができる。なお、ここでいう直立姿勢は、カプセル型筐体12の長軸La(幾何学的中心Cと重心Gとを結ぶ直線)と鉛直方向とが略平行な状態となる姿勢である。カプセル型内視鏡10は、かかる直立姿勢において、鉛直下方に撮像部11の撮像視野を向ける。また、カプセル型内視鏡10の長軸Laとは、カプセル型内視鏡10の長手方向の中心軸である。また、液体Wは、水または生理食塩水等の人体に無害な液体である。 The capsule endoscope 10 illustrated in the first embodiment adjusts the specific gravity with respect to the liquid W, and as shown in FIG. 3, the capsule endoscope 10 passes through the liquid W in a state where a part is exposed to the outside from the liquid surface Ws. Drift. At this time, the center of gravity G of the capsule endoscope 10 is shifted from the geometric center C of the capsule endoscope 10 along the long axis La (see FIG. 2) of the capsule endoscope 10. Specifically, the center of gravity G of the capsule endoscope 10 is adjusted at a position on the long axis La by adjusting the arrangement of the components of the capsule endoscope 10 such as the power supply unit 18 and the permanent magnet 19. Thus, the position is set at a position deviating from the geometric center C of the capsule housing 12 toward the imaging unit 11. Thereby, the long axis La of the capsule endoscope 10 floating in the liquid W is parallel to the vertical direction (that is, the gravity direction Dg). In other words, the capsule endoscope 10 can be floated in the liquid W in an upright state. Here, the upright posture is a posture in which the long axis La (a straight line connecting the geometric center C and the center of gravity G) of the capsule housing 12 and the vertical direction are substantially parallel. In the upright posture, the capsule endoscope 10 directs the imaging field of the imaging unit 11 vertically downward. The long axis La of the capsule endoscope 10 is a central axis in the longitudinal direction of the capsule endoscope 10. The liquid W is a liquid that is harmless to the human body, such as water or physiological saline.
 永久磁石19は、その磁化方向がカプセル型内視鏡10の長軸Laに対して傾きを持つように、カプセル型筐体12内部に固定される。たとえば、磁化方向が長軸Laに垂直となるように永久磁石19がカプセル型筐体12内に固定される。この構成により、液体W内を漂う状態では、カプセル型内視鏡10内の永久磁石19の磁化方向はカプセル型内視鏡10の径方向と一致する。そして、カプセル型内視鏡10の姿勢(長軸La方向の向き)を制御するための磁界が永久磁石19に作用していない場合には、永久磁石19の磁化方向とカプセル型筐体12の幾何学的中心Cに対するカプセル型内視鏡10の重心Gの外れた方向(偏位方向)とを含む平面は、波面Wsに対して鉛直平面となる。このため、磁界印加時には、磁化方向が磁界に対する鉛直平面に含まれるようにカプセル型内視鏡10の姿勢が変化する。永久磁石19は、外部から印加された磁界に追従して動作し、この結果、磁界発生部2によるカプセル型内視鏡10の磁気誘導が実現する。 The permanent magnet 19 is fixed inside the capsule casing 12 so that the magnetization direction has an inclination with respect to the long axis La of the capsule endoscope 10. For example, the permanent magnet 19 is fixed in the capsule housing 12 so that the magnetization direction is perpendicular to the long axis La. With this configuration, in the state of floating in the liquid W, the magnetization direction of the permanent magnet 19 in the capsule endoscope 10 coincides with the radial direction of the capsule endoscope 10. When the magnetic field for controlling the posture of the capsule endoscope 10 (direction in the long axis La direction) is not acting on the permanent magnet 19, the magnetization direction of the permanent magnet 19 and the capsule casing 12 A plane including the direction (deviation direction) in which the center of gravity G of the capsule endoscope 10 deviates from the geometric center C is a vertical plane with respect to the wavefront Ws. For this reason, when a magnetic field is applied, the posture of the capsule endoscope 10 changes so that the magnetization direction is included in the vertical plane with respect to the magnetic field. The permanent magnet 19 operates following a magnetic field applied from the outside. As a result, the magnetic guidance of the capsule endoscope 10 by the magnetic field generator 2 is realized.
 また、重力方向Dgに対するカプセル型内視鏡10の長軸Laの傾きは、カプセル型内視鏡10の永久磁石19に外部から磁界を作用させることで制御することができる。磁力線の方向が水平面に対して角度を有する磁界を永久磁石19に作用させることで、永久磁石19の磁化方向がこの磁力線と略平行となるようにカプセル型内視鏡10を重力方向Dgに対して傾かせることが可能である。 Further, the inclination of the long axis La of the capsule endoscope 10 with respect to the gravity direction Dg can be controlled by applying a magnetic field to the permanent magnet 19 of the capsule endoscope 10 from the outside. By causing the permanent magnet 19 to act on a magnetic field in which the direction of the lines of magnetic force is at an angle with respect to the horizontal plane, the capsule endoscope 10 is moved in the direction of gravity Dg so that the magnetization direction of the permanent magnet 19 is substantially parallel to the lines of magnetic force. Can be tilted.
 また、表示部5は、カプセル型内視鏡10の磁気誘導に伴う体内画像内の被写体の上下方向と表示画面の上下方向とを一致させた表示態様でカプセル型内視鏡10による被検体の体内画像を表示する。この結果、表示部5の表示画面(後述する表示画面M)には、カプセル型内視鏡10の撮像素子15の上部領域の素子が撮像した画像が、撮像部11に対応する画像の上部になるように表示される。そして、永久磁石19の磁化方向が撮像素子15の撮像面の上下方向に対して平行であるため、永久磁石19の磁化方向と平行な方向が表示部5の表示画面の上下方向と一致することとなる。 In addition, the display unit 5 displays the subject of the subject by the capsule endoscope 10 in a display mode in which the vertical direction of the subject in the in-vivo image accompanying the magnetic guidance of the capsule endoscope 10 and the vertical direction of the display screen are matched. Display in-vivo images. As a result, on the display screen of the display unit 5 (display screen M to be described later), an image captured by the element in the upper region of the imaging device 15 of the capsule endoscope 10 is displayed above the image corresponding to the imaging unit 11. It is displayed as follows. Since the magnetization direction of the permanent magnet 19 is parallel to the vertical direction of the imaging surface of the imaging element 15, the direction parallel to the magnetization direction of the permanent magnet 19 matches the vertical direction of the display screen of the display unit 5. It becomes.
 続いて、本実施の形態にかかるカプセル型内視鏡誘導システム1が行うカプセル型内視鏡10の磁気誘導について、図4~図7を参照して説明する。図4は、カプセル型内視鏡誘導システム1が行う磁気誘導処理を説明するフローチャートである。以下の説明では、制御部4の制御のもと、各部が動作するものとして説明する。 Subsequently, magnetic guidance of the capsule endoscope 10 performed by the capsule endoscope guidance system 1 according to the present embodiment will be described with reference to FIGS. FIG. 4 is a flowchart for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1. In the following description, it is assumed that each unit operates under the control of the control unit 4.
 まず、画像表示制御部42が、画像生成部41が生成した体内画像を表示部5に表示させる制御を行う(ステップS101)。これにより、表示部5には、体内画像が表示される。図5は、カプセル型内視鏡誘導システム1が行う磁気誘導処理を説明する図であって、表示部5の表示画面Mの一例を示す図である。表示部5には、例えば、図5に示す表示画面Mに体内画像が表示される。 First, the image display control unit 42 performs control to display the in-vivo image generated by the image generation unit 41 on the display unit 5 (step S101). Thereby, the in-vivo image is displayed on the display unit 5. FIG. 5 is a diagram illustrating a magnetic guidance process performed by the capsule endoscope guidance system 1 and is a diagram illustrating an example of the display screen M of the display unit 5. For example, the in-vivo image is displayed on the display unit 5 on the display screen M shown in FIG.
 その後、制御部4は、表示画面Mに表示された体内画像に対して、推進方向を指定する情報が入力されたか否かを判断する(ステップS102)。制御部4は、推進方向を指定する情報が入力されていなければ(ステップS102:No)、情報の入力確認を繰り返し行う。これに対し、制御部4は、推進方向を指定する情報(位置情報)が入力されたと判断した場合(ステップS102:Yes)、ステップS103に移行する。ここで、「推進方向を指定する情報」とは、体内画像上で指定された点(例えば図5に示す指定点Q1)である。本実施の形態1では、カプセル型内視鏡10は、該カプセル型内視鏡10の設定点と指定点Q1とを結ぶ直線上を推進する。なお、指定点Q1の入力は、推進方向入力部61が受け付けた情報であって、マウス、タッチパネル等により座標が指定された点を指定点Q1とする情報である。マウスを用いて操作入力された場合は、表示画面M上のポインタが指し示す位置の座標が指定点として入力され、タッチパネルを用いて操作入力された場合は、術者の指や、操作部材により指定された位置の座標が指定点として入力される。 Thereafter, the control unit 4 determines whether or not information for specifying the propulsion direction has been input to the in-vivo image displayed on the display screen M (step S102). If information specifying the propulsion direction is not input (step S102: No), the control unit 4 repeatedly performs input confirmation of information. On the other hand, when it is judged that the information (position information) specifying the propulsion direction has been input (step S102: Yes), the control unit 4 proceeds to step S103. Here, “information for designating the propulsion direction” is a point designated on the in-vivo image (for example, designated point Q 1 shown in FIG. 5). In the first embodiment, the capsule endoscope 10 is propelled on a straight line connecting the set point of the capsule endoscope 10 and the designated point Q 1 . Note that the input of the designated point Q 1 is information received by the propulsion direction input unit 61, and is information that designates a point whose coordinates are designated by a mouse, a touch panel or the like as the designated point Q 1 . When the operation is input using the mouse, the coordinates of the position indicated by the pointer on the display screen M are input as the designated points. When the operation is input using the touch panel, the coordinates are specified by the operator's finger or the operation member. The coordinates of the specified position are input as designated points.
 ステップS103では、推進方向ベクトル設定部46が、推進方向を指定する情報に基づいて、推進方向ベクトルの設定を行う。図6は、カプセル型内視鏡誘導システム1が行う磁気誘導処理を説明する図であって、推進方向ベクトル設定部46が行う推進方向ベクトルの設定について説明する図である。具体的には、推進方向ベクトル設定部46は、カプセル型内視鏡10において予め設定されている推進軸設定点Qcと、入力された指定点Q1とを結ぶ線分(軸)の方向を示す推進方向ベクトルV1を生成し、推進方向を示す推進方向ベクトルとして設定する。推進軸設定点Qcは、例えば永久磁石19の中心に相当する位置など、カプセル型内視鏡10の推進動作の基準となるような位置に設定される。 In step S103, the propulsion direction vector setting unit 46 sets the propulsion direction vector based on information specifying the propulsion direction. FIG. 6 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1 and for explaining setting of the propulsion direction vector performed by the propulsion direction vector setting unit 46. Specifically, the propulsion direction vector setting unit 46 directs the direction of the line segment (axis) connecting the propulsion axis setting point Q c set in advance in the capsule endoscope 10 and the input designated point Q 1. It generates a propulsion direction vector V 1 showing the set as a propulsion direction vector indicating the propulsion direction. The propulsion axis setting point Q c is set at a position that serves as a reference for the propulsion operation of the capsule endoscope 10, such as a position corresponding to the center of the permanent magnet 19.
 その後、ステップS104では、光軸方向ベクトル設定部47が、ステップS103において設定された推進方向ベクトルV1をもとに、光軸方向ベクトルV2を設定する。光軸方向ベクトルV2は、推進方向ベクトルV1に対する撮像部11の光軸方向を示す撮像軸ベクトルであり、該光軸方向が推進方向ベクトルV1に対して所定の角度(以下、変位角ということもある)をなすベクトルである。具体的には、光軸方向ベクトル設定部47は、表示画面Mに表示された体内画像において、カプセル型内視鏡10の光軸方向(本実施の形態1では、長軸Laに相当)と、指定点Q1と推進軸設定点Qcとを結ぶ線分(すなわち推進方向ベクトルV1)とがなす角度(変位角)を求めた後、推進方向ベクトルV1に対して変位角で傾斜した光軸方向ベクトルV2を生成し、推進方向に移動した際に維持する変位角を示す光軸方向ベクトルとして設定する。 Thereafter, in step S104, the optical axis direction vector setting unit 47 sets the optical axis direction vector V 2 based on the propulsion direction vector V 1 set in step S103. Optical axis direction vector V 2 is an imaging axis vector indicating the direction of the optical axis of the imaging unit 11 for propulsion direction vector V 1, a predetermined angle optical axis direction relative to the propulsion direction vector V 1 (hereinafter, displacement angle It is a vector that makes up. Specifically, the optical axis direction vector setting unit 47 sets the optical axis direction of the capsule endoscope 10 (corresponding to the long axis La in the first embodiment) in the in-vivo image displayed on the display screen M. After obtaining the angle (displacement angle) formed by the line segment connecting the designated point Q 1 and the propulsion axis setting point Q c (that is, the propulsion direction vector V 1 ), the angle is inclined at the displacement angle with respect to the propulsion direction vector V 1 . The optical axis direction vector V 2 is generated and set as an optical axis direction vector indicating a displacement angle to be maintained when moving in the propulsion direction.
 推進方向ベクトル設定部46により推進方向ベクトルV1が設定され、光軸方向ベクトル設定部47により光軸方向ベクトルV2が設定されると、磁界設定部48が、この推進方向ベクトルV1および光軸方向ベクトルV2に応じた各磁界を合成した誘導磁界の設定を行う(ステップS105)。ここで、推進方向ベクトルV1に応じた磁界は、カプセル型内視鏡10を推進させるための勾配磁界である。 When the propulsion direction vector setting unit 46 sets the propulsion direction vector V 1 and the optical axis direction vector setting unit 47 sets the optical axis direction vector V 2 , the magnetic field setting unit 48 uses the propulsion direction vector V 1 and the light An induced magnetic field is set by synthesizing the magnetic fields according to the axial vector V 2 (step S105). Here, the magnetic field corresponding to the propulsion direction vector V 1 is a gradient magnetic field for propelling the capsule endoscope 10.
 誘導磁界の設定後、磁界制御部45は、設定された誘導磁界を印加する(ステップS106)。誘導磁界の印加は、設定後に速やかに行われるものであってもよいし、入力部6による操作入力に応じて行うものであってもよい。図7は、カプセル型内視鏡誘導システム1が行う磁気誘導処理を説明する図であって、磁界制御部45により印加された誘導磁界によるカプセル型内視鏡10の移動を説明する図である。磁界制御部45の制御のもと、ステップS105で設定された誘導磁界が印加されると、被検体(カプセル型内視鏡10)の周囲には3次元の誘導磁界が発生する。これにより、カプセル型内視鏡10は、図7に示すように、光軸方向を光軸方向ベクトルV2の方向に維持したまま、推進方向ベクトルV1の方向に移動する。これにより、カプセル型内視鏡10の移動方向とは異なる方向を撮像した状態(推進方向ベクトルV1と光軸方向ベクトルV2との相対的な方向)を維持しつつ、カプセル型内視鏡10を指定された方向に移動させることができる。 After setting the induction magnetic field, the magnetic field control unit 45 applies the set induction magnetic field (step S106). The induction magnetic field may be applied promptly after setting, or may be performed in response to an operation input from the input unit 6. FIG. 7 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1 and for explaining the movement of the capsule endoscope 10 by the guidance magnetic field applied by the magnetic field control unit 45. . When the induction magnetic field set in step S105 is applied under the control of the magnetic field control unit 45, a three-dimensional induction magnetic field is generated around the subject (capsule endoscope 10). As a result, as shown in FIG. 7, the capsule endoscope 10 moves in the direction of the propulsion direction vector V 1 while maintaining the optical axis direction in the direction of the optical axis direction vector V 2 . Accordingly, the capsule endoscope is maintained while maintaining a state in which a direction different from the moving direction of the capsule endoscope 10 is captured (the relative direction between the propulsion direction vector V 1 and the optical axis direction vector V 2 ). 10 can be moved in the specified direction.
 この際、磁界設定部48は、連続して撮像される二つの撮像領域(図7に示す撮像領域R)が、互いに領域の一部を含むようにカプセル型内視鏡10が移動するような誘導磁界の設定を行う。換言すれば、カプセル型内視鏡10により得られた複数の画像のうち、時系列で連続する二つのフレームの画像において、互いの撮像領域の一部(重複した像)が含まれている。磁界設定部48は、例えば、画像における明るさ情報や合焦情報などに基づく撮像部11と被写体との間の距離情報をもとに、カプセル型内視鏡10の移動速度を演算する。また、磁界設定部48は、その他の例として、撮像のフレームレートと、撮像部11の視野領域(画角)とに基づいて、カプセル型内視鏡10の移動速度を演算するようにしてもよい。 At this time, the magnetic field setting unit 48 moves the capsule endoscope 10 so that two imaging regions (imaging region R shown in FIG. 7) that are successively imaged include a part of the region. Set the induction magnetic field. In other words, among the plurality of images obtained by the capsule endoscope 10, the images of two frames that are continuous in time series include a part of the imaging regions of each other (overlapping images). The magnetic field setting unit 48 calculates the moving speed of the capsule endoscope 10 based on distance information between the imaging unit 11 and the subject based on, for example, brightness information and focusing information in the image. As another example, the magnetic field setting unit 48 may calculate the moving speed of the capsule endoscope 10 based on the imaging frame rate and the field of view (view angle) of the imaging unit 11. Good.
 その後、磁界制御部45は、磁気誘導を終了するか否かを判断する(ステップS107)。例えば、磁界制御部45は、カプセル型内視鏡10が所定の距離を移動したか否かを印加した誘導磁界(時間または量)から推定したり、入力部6の操作入力により判断したりする。ここで、磁界制御部45は、例えば、カプセル型内視鏡10が所定の距離を移動したと判断した場合は、誘導を終了すると判断し(ステップS107:Yes)、誘導磁界の印加を停止する(ステップS108)。一方、磁界制御部45は、カプセル型内視鏡10が所定の距離を移動していないと判断した場合は(ステップS107:No)、誘導磁界の印加を継続する。 Thereafter, the magnetic field control unit 45 determines whether or not to end the magnetic induction (step S107). For example, the magnetic field control unit 45 estimates whether or not the capsule endoscope 10 has moved a predetermined distance from the applied induced magnetic field (time or amount), or determines based on an operation input of the input unit 6. . Here, for example, when it is determined that the capsule endoscope 10 has moved a predetermined distance, the magnetic field control unit 45 determines that the guidance is to be ended (step S107: Yes), and stops the application of the guidance magnetic field. (Step S108). On the other hand, when it is determined that the capsule endoscope 10 has not moved the predetermined distance (step S107: No), the magnetic field control unit 45 continues to apply the induction magnetic field.
 なお、カプセル型内視鏡10の推進中に、新たな指定点が入力された場合は、現在の推進動作を終了して、新たな指定点に応じた推進方向ベクトル、および光軸方向ベクトルを設定し、該新たに設定した推進方向ベクトルおよび光軸方向ベクトルに応じてカプセル型内視鏡10を推進させるようにしてもよい。 When a new designated point is input during the propulsion of the capsule endoscope 10, the current propulsion operation is terminated, and the propulsion direction vector and the optical axis direction vector corresponding to the new designated point are set. The capsule endoscope 10 may be propelled according to the newly set propulsion direction vector and optical axis direction vector.
 上述した本実施の形態1によれば、推進方向ベクトル設定部46が、体内画像上で指定された点と、予め設定されている推進軸設定点Qcと、をもとに、カプセル型内視鏡10の移動方向を示す推進方向ベクトルV1を設定し、光軸方向ベクトル設定部47が、推進方向ベクトルV1と光軸方向とに基づいて、推進方向に対して維持される光軸方向を示す光軸方向ベクトルV2を設定し、磁界設定部48が、この推進方向ベクトルV1および光軸方向ベクトルV2に応じた誘導磁界を設定して、磁界制御部45によりカプセル型内視鏡10を磁気誘導するようにしたので、指定された点により、光軸方向(光軸方向ベクトルV2)を変化させることも可能であり、光軸方向と推進方向とが同じであるような従来の磁気誘導と比して、磁気誘導により移動するカプセル型内視鏡が高い自由度で画像を取得することができる。 According to the first embodiment described above, the propulsion direction vector setting unit 46 uses the capsule axis type based on the point designated on the in-vivo image and the preset propulsion axis setting point Q c . A propulsion direction vector V 1 indicating the moving direction of the endoscope 10 is set, and the optical axis direction vector setting unit 47 maintains the optical axis with respect to the propulsion direction based on the propulsion direction vector V 1 and the optical axis direction. An optical axis direction vector V 2 indicating the direction is set, and the magnetic field setting unit 48 sets an induced magnetic field corresponding to the propulsion direction vector V 1 and the optical axis direction vector V 2 , and the magnetic field control unit 45 sets the inside of the capsule type. Since the endoscope 10 is magnetically guided, the optical axis direction (the optical axis direction vector V 2 ) can be changed depending on the designated point, and the optical axis direction and the propulsion direction are the same. Compared to conventional magnetic induction, magnetic induction Can the capsule endoscope moves to acquire images with a high degree of freedom.
 また、従来のように、光軸方向と推進方向とが同じである場合は、視野領域の中心位置がほとんど変わらず、複数回撮像したとしてもフレーム間の視野領域は、ほぼ同一となるが、上述した本実施の形態1では、推進方向と光軸方向とが異なるため、推進すれば視野中心も変化し、フレーム間の視野領域も変化する。このため、本実施の形態1によれば、カプセル型内視鏡10を推進させることにより、一層広範囲な撮像処理を行なうことができる。 In addition, when the optical axis direction and the propulsion direction are the same as in the prior art, the center position of the visual field area is hardly changed, and the visual field area between frames is almost the same even if captured multiple times. In the first embodiment described above, since the propulsion direction and the optical axis direction are different, the visual field center changes and the visual field region between frames also changes when propelled. For this reason, according to the first embodiment, it is possible to perform a wider range of imaging processing by propelling the capsule endoscope 10.
(実施の形態1の変形例)
 続いて、本発明の実施の形態1の変形例について説明する。図8,9は、カプセル型内視鏡誘導システム1が行う磁気誘導処理を説明する図であって、推進方向ベクトルを設定する際に表示部5が表示する画像の一例を示す図である。上述した実施の形態1では、表示画面Mに表示された体内画像上で推進方向を指定するものとして説明したが、本変形例では、表示部5が、被検体内をモデル化した三次元画像を表示し、術者が該三次元モデル上で推進方向を指定する。
(Modification of Embodiment 1)
Then, the modification of Embodiment 1 of this invention is demonstrated. 8 and 9 are diagrams for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1, and are diagrams illustrating an example of an image displayed on the display unit 5 when setting a propulsion direction vector. In the first embodiment described above, the propulsion direction is designated on the in-vivo image displayed on the display screen M. However, in this modification, the display unit 5 is a three-dimensional image that models the inside of the subject. Is displayed, and the surgeon designates the propulsion direction on the three-dimensional model.
 図8,9に示すように、表示部5には、カプセル型内視鏡10の位置を含む三次元空間画像Sが表示される。この三次元空間画像Sは、例えば、カプセル型内視鏡10を導入する臓器をモデル化した画像であり、本実施の形態1では胃の三次元モデルに相当する。三次元空間画像Sは、予め各臓器のモデルとして記憶部7に記憶されているものであってもよいし、被検体ごとに生成するものであってもよい。 8 and 9, the display unit 5 displays a three-dimensional space image S including the position of the capsule endoscope 10. The three-dimensional spatial image S is, for example, an image obtained by modeling an organ into which the capsule endoscope 10 is introduced, and corresponds to a three-dimensional model of the stomach in the first embodiment. The three-dimensional space image S may be stored in advance in the storage unit 7 as a model of each organ, or may be generated for each subject.
 また、図8,9では、該三次元空間画像S内に、カプセル型内視鏡10のモデル画像100が表示されている。このモデル画像100は、被検体内におけるカプセル型内視鏡10の位置を検出し、検出した結果を三次元空間画像Sに反映することによって、三次元空間画像S内に配置することができる。 8 and 9, the model image 100 of the capsule endoscope 10 is displayed in the three-dimensional space image S. The model image 100 can be arranged in the three-dimensional space image S by detecting the position of the capsule endoscope 10 in the subject and reflecting the detected result in the three-dimensional space image S.
 ここで、カプセル型内視鏡10の位置は、複数のアンテナ(例えばアンテナ3a)を有し、被検体が着用するジャケットにおいて、各アンテナの受信強度からカプセル型内視鏡10の位置を推定する技術や、カプセル型内視鏡10が発生した位置検出用の磁界を、複数のセンスコイルを備えた外部の位置検出装置が検出して、カプセル型内視鏡10の位置を推定する技術などの公知の技術により検出することができる。 Here, the position of the capsule endoscope 10 includes a plurality of antennas (for example, the antenna 3a), and the position of the capsule endoscope 10 is estimated from the reception intensity of each antenna in a jacket worn by the subject. A technique for detecting the position detection magnetic field generated by the capsule endoscope 10 by an external position detection device having a plurality of sense coils and estimating the position of the capsule endoscope 10, etc. It can be detected by a known technique.
 術者は、表示部5に表示された三次元空間画像Sおよびモデル画像100を確認しながら、カプセル型内視鏡10の推進方向を指示する。例えば、術者は、マウス操作によるポイント指示、またはタッチパネルによる指示により、図8,9に示す指定点Q2を指示すると、推進方向ベクトル設定部46は、モデル画像100において予め設定されている推進軸設定点Qcと、指定された指定点Q2とを結ぶ線分をもとに、推進方向ベクトルV1を生成する。その後は、上述した実施の形態1と同様に、光軸方向ベクトルV2を設定し、磁気誘導を行う。 The surgeon instructs the propelling direction of the capsule endoscope 10 while confirming the three-dimensional space image S and the model image 100 displayed on the display unit 5. For example, when the surgeon designates the designated point Q 2 shown in FIGS. 8 and 9 by a point instruction by a mouse operation or an instruction by a touch panel, the propulsion direction vector setting unit 46 performs the propulsion set in advance in the model image 100. A propulsion direction vector V 1 is generated based on a line segment connecting the axis setting point Q c and the designated point Q 2 . Thereafter, similarly to the first embodiment described above, the optical axis direction vector V 2 is set and magnetic induction is performed.
 本変形例によれば、被検体内の三次元空間におけるカプセル型内視鏡10の位置を把握してカプセル型内視鏡10の推進方向を設定するようにしたので、上述した実施の形態1と比して、一段と直感的な推進方向の指定を行うことができる。 According to this modification, since the position of the capsule endoscope 10 in the three-dimensional space in the subject is grasped and the propulsion direction of the capsule endoscope 10 is set, the first embodiment described above. Compared with, it is possible to specify the propulsion direction more intuitively.
(実施の形態2)
 続いて、本発明の実施の形態2について説明する。図10は、本発明の実施の形態2にかかるカプセル型内視鏡誘導システムの全体構成を示す模式図である。上述した実施の形態1では、体内画像から光軸方向を判断して光軸方向ベクトルV2を設定するものとして説明したが、本実施の形態2では、推進方向ベクトルV1に対する変位角を入力部6aにより入力する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. FIG. 10 is a schematic diagram illustrating an overall configuration of a capsule endoscope guidance system according to the second embodiment of the present invention. In the first embodiment described above, the optical axis direction is determined from the in-vivo image and the optical axis direction vector V 2 is set. In the second embodiment, the displacement angle with respect to the propulsion direction vector V 1 is input. Input by the unit 6a.
 本実施の形態2にかかるカプセル型内視鏡誘導システム1aは、上述したカプセル型内視鏡誘導システム1の入力部6に代えて、推進方向入力部61に加えて、変位角を入力可能な変位角入力部62をさらに備えた入力部6aを備える。 The capsule endoscope guidance system 1a according to the second embodiment can input a displacement angle in addition to the propulsion direction input unit 61 instead of the input unit 6 of the capsule endoscope guidance system 1 described above. An input unit 6 a further including a displacement angle input unit 62 is provided.
 変位角入力部62は、推進方向ベクトルV1に対して光軸方向ベクトルV2がなす角度に関する情報の入力を受け付ける。例えば、変位角入力部62は、推進方向ベクトルV1およびカプセル型内視鏡10の長軸Laを通過する平面上における推進方向ベクトルV1とのなす角度を変位角として入力を受け付ける。 The displacement angle input unit 62 accepts input of information related to the angle formed by the optical axis direction vector V 2 with respect to the propulsion direction vector V 1 . For example, the displacement angle input unit 62 accepts an input of the angle between the propulsion direction vector V 1 in the plane passing through the long axis La of the propulsion direction vector V 1 and the capsule endoscope 10 as a displacement angle.
 上述した実施の形態2によれば、変位角入力部62への入力操作によって、推進方向ベクトルV1に対する光軸方向ベクトルV2の角度(変位角)を任意に入力するようにしたので、光軸方向や重力、浮力などによらずに、光軸方向ベクトルV2の設定を行なえるため、上述した実施の形態1と比して、一層高い自由度で、被検体内の撮像処理を行なうことができる。 According to the second embodiment described above, the angle (displacement angle) of the optical axis direction vector V 2 with respect to the propulsion direction vector V 1 is arbitrarily input by an input operation to the displacement angle input unit 62. Since the optical axis direction vector V 2 can be set regardless of the axial direction, gravity, buoyancy, etc., the imaging process in the subject is performed with a higher degree of freedom than in the first embodiment. be able to.
(実施の形態2の変形例1)
 続いて、本発明の実施の形態2の変形例1について説明する。図11は、本実施の形態2の変形例1にかかるカプセル型内視鏡誘導システム1aが行う磁気誘導処理を説明する図であって、変位角入力部62による光軸方向ベクトルの設定を説明する図である。上述した実施の形態2では、入力される変位角に応じて一つの光軸方向ベクトルを生成するものとして説明したが、本変形例1では、光軸方向および入力された変位角に応じて、複数の光軸方向ベクトルを生成する。
(Modification 1 of Embodiment 2)
Subsequently, a first modification of the second embodiment of the present invention will be described. FIG. 11 is a diagram for explaining a magnetic guidance process performed by the capsule endoscope guidance system 1a according to the first modification of the second embodiment, in which the setting of the optical axis direction vector by the displacement angle input unit 62 is explained. It is a figure to do. In the above-described second embodiment, it has been described that one optical axis direction vector is generated according to the input displacement angle. However, in the first modification, according to the optical axis direction and the input displacement angle, A plurality of optical axis direction vectors are generated.
 本変形例1では、変位角入力部62は、上述したように、推進方向ベクトルV1に対して光軸方向ベクトルV2がなす角度に関する情報の入力を受け付ける。ここで、光軸方向ベクトル設定部47が、光軸方向に応じた光軸方向ベクトルV2と、入力された変位角に応じた光軸方向ベクトルV3と、を設定する。 In the first modification, as described above, the displacement angle input unit 62 receives input of information regarding the angle formed by the optical axis direction vector V 2 with respect to the propulsion direction vector V 1 . Here, the optical axis direction vector setting unit 47 sets an optical axis direction vector V 2 corresponding to the optical axis direction and an optical axis direction vector V 3 corresponding to the input displacement angle.
 磁界設定部48は、二つの光軸方向ベクトルの設定が入力されると、カプセル型内視鏡10の光軸方向が、所定の時間間隔で二つの光軸方向ベクトルの方向をとるような誘導磁界を発生するように磁界設定を行う。この場合、カプセル型内視鏡10は、推進方向ベクトルV1の方向に移動しながら、光軸方向が二つの光軸方向ベクトル間を移動する首振り動作を行う。ここで、所定の時間間隔とは、例えば、撮像タイミングに応じた時間間隔である。 When the setting of the two optical axis direction vectors is input, the magnetic field setting unit 48 guides the optical axis direction of the capsule endoscope 10 to take the directions of the two optical axis direction vectors at a predetermined time interval. The magnetic field is set so as to generate a magnetic field. In this case, the capsule endoscope 10 performs a swing operation in which the optical axis direction moves between the two optical axis direction vectors while moving in the direction of the propulsion direction vector V 1 . Here, the predetermined time interval is, for example, a time interval according to the imaging timing.
 図12は、本実施の形態2の変形例1にかかるカプセル型内視鏡誘導システム1aが行う磁気誘導処理を説明する図であって、カプセル型内視鏡10の推進を説明する図である。図12に示すように、カプセル型内視鏡10は、磁界制御部45の制御のもと、所定の間隔で推進しながら、各推進位置において、二つの撮像方向(光軸方向)の体内画像を取得することができる。なお、推進しながら光軸方向を変えて体内画像を順次撮像するようにしてもよい。 FIG. 12 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1a according to the first modification of the second embodiment, and is a diagram for explaining the propulsion of the capsule endoscope 10. . As shown in FIG. 12, the capsule endoscope 10 is in-vivo images in two imaging directions (optical axis directions) at each propulsion position while propelling at a predetermined interval under the control of the magnetic field control unit 45. Can be obtained. The in-vivo images may be sequentially taken while changing the optical axis direction while propelling.
 本変形例1によれば、撮像タイミングに応じて光軸方向(光軸方向ベクトル)を変化させることで、カプセル型内視鏡10を推進させながら、異なる方向の体内画像を効率よく取得することができる。これにより、被検体内の観察範囲において、非撮像領域を少なくし、見落としを抑制するという効果を得ることができる。 According to the first modification, by changing the optical axis direction (optical axis direction vector) in accordance with the imaging timing, it is possible to efficiently acquire in-vivo images in different directions while propelling the capsule endoscope 10. Can do. Thereby, in the observation range in the subject, it is possible to obtain an effect of reducing the non-imaging area and suppressing oversight.
 なお、上述した変形例1では、撮像タイミングに応じて光軸方向(光軸方向ベクトル)を変化させるものとして説明したが、術者による操作入力に応じて光軸方向(光軸方向ベクトル)を変化させるものであってもよい。 In the first modification described above, the optical axis direction (optical axis direction vector) is changed according to the imaging timing. However, the optical axis direction (optical axis direction vector) is changed according to an operation input by the operator. It may be changed.
 なお、本変形例1において、変位角入力部62は、推進方向ベクトルV1に対して光軸方向ベクトルV2がなす角度に関する情報を一つのみ受け付けた場合、光軸方向ベクトル設定部47が、光軸方向ベクトルV2を設定後、推進方向ベクトルV1に対して光軸方向ベクトルV2と対称な光軸方向ベクトル(例えば光軸方向ベクトルV2’とする)を設定するようにしてもよいし、入力により設定された光軸方向ベクトルV2に対して所定の角度(例えば90°)をなす光軸方向ベクトルV2’を設定するようにしてもよい。 In the first modification, when the displacement angle input unit 62 receives only one piece of information about the angle formed by the optical axis direction vector V 2 with respect to the propulsion direction vector V 1 , the optical axis direction vector setting unit 47 After setting the optical axis direction vector V 2 , an optical axis direction vector (for example, optical axis direction vector V 2 ′) symmetrical to the optical axis direction vector V 2 is set with respect to the propulsion direction vector V 1 . Alternatively, an optical axis direction vector V 2 ′ that forms a predetermined angle (for example, 90 °) with respect to the optical axis direction vector V 2 set by input may be set.
 また、予め複数の光軸方向ベクトルを設定し、この複数の光軸方向ベクトルに応じた効率的な撮像パターン(フレーム間の重複撮像領域が少なく、撮像漏れがないようにカプセル型内視鏡10を回転させるパターン)を記憶部7に記憶し、入力ボタン等により該設定パターンで回転、撮像するようにしてもよい。これにより、演算量も少なく、撮像領域の漏れも抑制され、効率的かつ、カプセル型内視鏡10の電力を抑制した撮像処理を行なうことができる。 Also, a plurality of optical axis direction vectors are set in advance, and an efficient imaging pattern corresponding to the plurality of optical axis direction vectors (the capsule endoscope 10 has few overlapping imaging areas between frames so that there is no imaging omission). May be stored in the storage unit 7, and rotated and imaged with the set pattern using an input button or the like. Thereby, the amount of calculation is small, the leakage of the imaging region is suppressed, and the imaging process can be performed efficiently and with the power of the capsule endoscope 10 being suppressed.
 また、撮像タイミングは、光軸方向が光軸方向ベクトルV2または光軸方向ベクトルV3(光軸方向ベクトルV2’)のいずれかと一致する場合であってもよいし、その途中(例えば、光軸方向が推進方向ベクトルV1と一致するタイミング)でも撮像するようなタイミングであってもよい。上述した撮像タイミングは、光軸方向ベクトルV2または光軸方向ベクトルV3のいずれかと一致する必要はなく、光軸方向が光軸方向ベクトルV2または光軸方向ベクトルV3の間を移動する間の所定のタイミングであればよく、カプセル型内視鏡10が首振り動作をするタイミングに対して、均等な間欠タイミングで撮像を行うことが好ましい。 The imaging timing may be when the optical axis direction coincides with either the optical axis direction vector V 2 or the optical axis direction vector V 3 (optical axis direction vector V 2 ′). The timing at which the image is taken may also be the timing at which the optical axis direction coincides with the propulsion direction vector V 1 . Capturing timing as described above need not match one of the optical axis direction vector V 2 or the optical axis direction vector V 3, the optical axis is moved between the optical axis direction vector V 2 or the optical axis direction vector V 3 The timing may be a predetermined timing, and it is preferable to perform imaging at equal intermittent timing with respect to the timing when the capsule endoscope 10 swings.
(実施の形態2の変形例2)
 続いて、本発明の実施の形態2の変形例2について説明する。上述した実施の形態2では、入力される変位角に応じて一つの光軸方向ベクトルを生成するものとして説明したが、本変形例2では、変位角入力部62が、変位角に加えて、推進軸まわりの回転動作指示の入力を受け付けることにより、カプセル型内視鏡10を三次元的に誘導して、体内画像を取得する。
(Modification 2 of Embodiment 2)
Then, the modification 2 of Embodiment 2 of this invention is demonstrated. In the second embodiment described above, it has been described that one optical axis direction vector is generated according to the input displacement angle. However, in the second modification, the displacement angle input unit 62 includes the displacement angle, By accepting an input of a rotation operation instruction around the propulsion axis, the capsule endoscope 10 is guided three-dimensionally to acquire an in-vivo image.
 例えば、変位角入力部62から、変位角とともに、回転動作指示の入力があると、磁界設定部48は、光軸方向ベクトルV2が、推進方向ベクトルV1に沿って推進するとともに、推進方向ベクトルV1のまわりに回転するような磁界設定を行う。これにより、カプセル型内視鏡10は、例えば永久磁石の中心を軸として回転しながら推進方向ベクトルV1に沿って推進する。このため、撮像タイミングに応じた複数の撮像中心のなす軌跡は、螺旋状をなす。本変形例2によれば、上述した実施の形態2の変形例1と比して、一段と非撮像領域を少なくして見落としを抑制することができる。 For example, the displacement angle input unit 62, together with the displacement angle, when there is an input of the rotational operation instruction, the magnetic field setting unit 48, the optical axis direction vector V 2, as well as promoting along the propulsion direction vector V 1, propulsion direction Magnetic field setting is performed so as to rotate around the vector V 1 . Thereby, the capsule endoscope 10 is propelled along the propulsion direction vector V 1 while rotating around the center of the permanent magnet, for example. For this reason, the locus | trajectory which the some imaging center according to an imaging timing makes makes spiral shape. According to the second modification, compared with the first modification of the second embodiment described above, it is possible to further reduce the non-imaging area and suppress oversight.
(実施の形態3)
 続いて、本発明の実施の形態3について説明する。図13は、本実施の形態3にかかるカプセル型内視鏡誘導システム1が行う磁気誘導処理を説明する図であって、推進方向入力部61による推進方向ベクトルの設定を説明する図である。上述した実施の形態1では、体内画像上で入力された一つの指定点に応じて推進方向ベクトルV1を設定するものとして説明したが、本実施の形態3では、二つの推進方向ベクトルを設定し、カプセル型内視鏡10が、二つの推進方向ベクトル間を交互に移動する。
(Embodiment 3)
Subsequently, Embodiment 3 of the present invention will be described. FIG. 13 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1 according to the third embodiment, and is a diagram for explaining setting of the propulsion direction vector by the propulsion direction input unit 61. In the first embodiment described above, the propulsion direction vector V 1 is set according to one designated point input on the in-vivo image. However, in the third embodiment, two propulsion direction vectors are set. The capsule endoscope 10 alternately moves between the two propulsion direction vectors.
 例えば、図5において二つの指定点が入力されると、推進方向ベクトル設定部46は、図13に示すように、それぞれの指定点に応じた二つの推進方向ベクトルV11,V12を設定する。磁界設定部48は、磁界設定処理において、所定の推進距離(または時間)ごとに、推進方向ベクトル間を移動するような磁界の設定を行う。 For example, when two designated points are input in FIG. 5, the propulsion direction vector setting unit 46 sets two propulsion direction vectors V 11 and V 12 corresponding to the designated points as shown in FIG. . In the magnetic field setting process, the magnetic field setting unit 48 sets a magnetic field that moves between the propulsion direction vectors for each predetermined propulsion distance (or time).
 図14は、本実施の形態3にかかるカプセル型内視鏡誘導システム1が行う磁気誘導処理を説明する図であって、磁界設定部48により設定された誘導磁界によって推進するカプセル型内視鏡10の軌跡を説明する図である。磁界設定部48により設定された誘導磁界により推進するカプセル型内視鏡10の軌跡は、例えば、図14に示す軌跡Lのようになる。本実施の形態3では、カプセル型内視鏡10の永久磁石19の中心が通過する軌跡を軌跡Lとしている。なお、カプセル型内視鏡10は、各推進方向ベクトルV11,V12上を推進するタイミングで、撮像部11による撮像処理を行なってもよいし、所定の時間間隔で撮像処理を行なってもよい。 FIG. 14 is a diagram for explaining magnetic guidance processing performed by the capsule endoscope guidance system 1 according to the third embodiment. The capsule endoscope is propelled by the guidance magnetic field set by the magnetic field setting unit 48. It is a figure explaining 10 locus | trajectories. The locus of the capsule endoscope 10 that is propelled by the induced magnetic field set by the magnetic field setting unit 48 is, for example, a locus L shown in FIG. In the third embodiment, the locus through which the center of the permanent magnet 19 of the capsule endoscope 10 passes is defined as a locus L. Note that the capsule endoscope 10 may perform the imaging process by the imaging unit 11 at the timing of propelling on the respective propulsion direction vectors V 11 and V 12 , or may perform the imaging process at a predetermined time interval. Good.
 本実施の形態3によれば、二つの推進方向ベクトルを設定し、所定の推進距離ごとに他方の推進方向ベクトル側に移動するようにカプセル型内視鏡10を推進させるようにしたので、広範囲をスキャン撮影することができる。このため、上述した実施の形態1,2および変形例と比して、一層広範囲な撮像処理を行なうことができる。 According to the third embodiment, two propulsion direction vectors are set, and the capsule endoscope 10 is propelled so as to move to the other propulsion direction vector at every predetermined propulsion distance. Can be scanned. Therefore, a wider range of imaging processing can be performed as compared with the first and second embodiments and the modifications described above.
 ここまで、本発明を実施するための形態を説明してきたが、本発明は、上述した実施の形態1~3によってのみ限定されるべきものではなく、各実施の形態1~3および変形例を適宜組み合わせてもよい。例えば、実施の形態3と実施の形態2とを組み合わせて任意の角度でスキャン撮影するものであってもよいし、実施の形態3と実施の形態2の変形例1とを組み合わせて旋回させながらスキャン撮影するものであってもよい。 The embodiments for carrying out the present invention have been described so far. However, the present invention should not be limited only to the above-described first to third embodiments, and each of the first to third embodiments and the modified examples. You may combine suitably. For example, the third embodiment and the second embodiment may be combined to perform scan shooting at an arbitrary angle, or the third embodiment and the first modification of the second embodiment may be combined and swung. It may be one that scans.
 また、上述した実施の形態1~3では、カプセル型内視鏡10が、被検体の胃内部に導入されるものとして説明したが、胃内部のほか、液体を収容可能な臓器や体腔において磁気誘導を行う臓器の内部であれば使用することができる。また、上述した本実施の形態では、一つの撮像部を備えるものとして説明したが、撮像部を二つ以上備えたものであってもよい。撮像部の数は、観察対象の臓器等により任意に設計可能である。 In the first to third embodiments described above, the capsule endoscope 10 has been described as being introduced into the stomach of the subject. However, in addition to the stomach, the capsule endoscope 10 can be used in an organ or a body cavity that can contain a liquid. It can be used as long as it is inside the organ to be guided. Moreover, although this Embodiment mentioned above demonstrated as what provided one imaging part, you may provide two or more imaging parts. The number of imaging units can be arbitrarily designed depending on the organ to be observed.
 また、上述した実施の形態1~3では、カプセル型内視鏡誘導システム1,1aにかかる磁界発生部2が、複数のコイルを用いて実現されるものとして説明したが、これに限らず、永久磁石を用いて実現されるものであってもよい。図15は、本発明にかかるカプセル型内視鏡誘導システムの磁界発生部の他の例を説明するための模式図である。磁界発生部を、変形例として、図15に示すような、例えば直方体形状を有する棒磁石によって構成され、磁界の発生源である永久磁石2aとする。永久磁石2aは、例えば、該永久磁石2aを保持するステージをXY平面内で移動させたり、Z軸に沿って移動または回転させたりすることにより永久磁石2aの位置や傾斜角度(姿勢)を調節する。 In the first to third embodiments described above, the magnetic field generation unit 2 according to the capsule endoscope guidance systems 1 and 1a has been described as being realized by using a plurality of coils. It may be realized using a permanent magnet. FIG. 15 is a schematic diagram for explaining another example of the magnetic field generator of the capsule endoscope guidance system according to the present invention. As a modified example, the magnetic field generation unit is configured as a permanent magnet 2a which is configured by, for example, a bar magnet having a rectangular parallelepiped shape as illustrated in FIG. The permanent magnet 2a adjusts the position and inclination angle (posture) of the permanent magnet 2a by, for example, moving the stage holding the permanent magnet 2a in the XY plane, or moving or rotating along the Z axis. To do.
 磁気誘導する際は、永久磁石2aが発生する磁界を、カプセル型内視鏡10内の永久磁石19に作用させることにより、カプセル型内視鏡10を誘導する。この永久磁石2aが発生する磁界の特定の位置に永久磁石19を引き付けて拘束した状態で、永久磁石2aの位置や姿勢を変化させることにより、カプセル型内視鏡10の位置および姿勢を制御することができる。具体的には、永久磁石2aを水平面内において移動させることにより、カプセル型内視鏡10を水平面内において並進させることができる。また、永久磁石2aを鉛直方向に移動させ、カプセル型内視鏡10との距離を変化させることにより、カプセル型内視鏡10を鉛直方向において並進させることができる。また、永久磁石2aの幾何学的中心を通り、磁化方向と直交し、且つ水平面と平行なYc軸回りに永久磁石2aを回転させることにより、鉛直軸に対するカプセル型内視鏡10の傾斜角を変化させることができる。また、永久磁石2aの幾何学的中心を通る鉛直軸回りに永久磁石2aを回転させることにより、カプセル型内視鏡10を旋回させることができる。 When magnetically guiding, the capsule endoscope 10 is guided by causing the magnetic field generated by the permanent magnet 2 a to act on the permanent magnet 19 in the capsule endoscope 10. The position and posture of the capsule endoscope 10 are controlled by changing the position and posture of the permanent magnet 2a in a state where the permanent magnet 19 is attracted and restrained to a specific position of the magnetic field generated by the permanent magnet 2a. be able to. Specifically, the capsule endoscope 10 can be translated in the horizontal plane by moving the permanent magnet 2a in the horizontal plane. Further, the capsule endoscope 10 can be translated in the vertical direction by moving the permanent magnet 2a in the vertical direction and changing the distance from the capsule endoscope 10. In addition, by rotating the permanent magnet 2a around the Yc axis that passes through the geometric center of the permanent magnet 2a, is orthogonal to the magnetization direction, and is parallel to the horizontal plane, the inclination angle of the capsule endoscope 10 with respect to the vertical axis is increased. Can be changed. In addition, the capsule endoscope 10 can be turned by rotating the permanent magnet 2a around the vertical axis passing through the geometric center of the permanent magnet 2a.
 以上のように、本発明にかかるカプセル型内視鏡誘導システムおよびカプセル型内視鏡誘導装置は、誘導により移動するカプセル型内視鏡が高い自由度で画像を取得するのに有用である。 As described above, the capsule endoscope guidance system and the capsule endoscope guidance device according to the present invention are useful for acquiring an image with a high degree of freedom by the capsule endoscope moving by guidance.
 1,1a カプセル型内視鏡誘導システム
 2 磁界発生部
 3 送受信部
 4 制御部
 5 表示部
 6 入力部
 7 記憶部
 10 カプセル型内視鏡
 11 撮像部
 12 カプセル型筐体
 13 照明部
 14 光学系
 15 撮像素子
 16 無線通信部
 16a アンテナ
 17 制御部
 18 電源部
 19 永久磁石
 41 画像生成部
 42 画像表示制御部
 45 磁界制御部
 46 推進方向ベクトル設定部
 47 光軸方向ベクトル設定部
 48 磁界設定部
 61 推進方向入力部
 62 変位角入力部
DESCRIPTION OF SYMBOLS 1,1a Capsule-type endoscope guidance system 2 Magnetic field generation part 3 Transmission / reception part 4 Control part 5 Display part 6 Input part 7 Memory | storage part 10 Capsule-type endoscope 11 Imaging part 12 Capsule-type housing 13 Illumination part 14 Optical system 15 Image sensor 16 Wireless communication unit 16a Antenna 17 Control unit 18 Power supply unit 19 Permanent magnet 41 Image generation unit 42 Image display control unit 45 Magnetic field control unit 46 Propulsion direction vector setting unit 47 Optical axis direction vector setting unit 48 Magnetic field setting unit 61 Propulsion direction Input unit 62 Displacement angle input unit

Claims (10)

  1.  外部から印加される磁界に応答する磁界応答部および撮像部を有し被検体内に導入されるカプセル型内視鏡と、
     前記撮像部が撮像した被検体内画像において指定された位置情報に基づいて前記カプセル型内視鏡の推進方向を示す推進方向ベクトルを設定する推進方向ベクトル設定部と、
     少なくとも前記撮像部の光軸方向および前記推進方向ベクトルに基づいて、前記推進方向ベクトルに対する光軸方向を示す光軸方向ベクトルを設定する光軸方向ベクトル設定部と、
     前記推進方向ベクトル設定部により設定された前記推進方向ベクトルと、前記光軸方向ベクトル設定部により設定された前記光軸方向ベクトルとをもとに、前記磁界応答部に印加する誘導磁界を設定する磁界設定部と、
     前記磁界設定部により設定された前記誘導磁界を前記磁界応答部に印加して、前記カプセル型内視鏡の姿勢を前記光軸方向ベクトルの方向に維持しつつ、前記カプセル型内視鏡を前記推進方向ベクトルで指定された方向に推進させる磁界発生部と、
     を備えたことを特徴とするカプセル型内視鏡誘導システム。
    A capsule endoscope that has a magnetic field response unit that responds to a magnetic field applied from the outside and an imaging unit, and is introduced into the subject;
    A propulsion direction vector setting unit that sets a propulsion direction vector indicating the propulsion direction of the capsule endoscope based on position information specified in the in-vivo image captured by the imaging unit;
    An optical axis direction vector setting unit that sets an optical axis direction vector indicating an optical axis direction with respect to the propulsion direction vector based on at least the optical axis direction of the imaging unit and the propulsion direction vector;
    Based on the propulsion direction vector set by the propulsion direction vector setting unit and the optical axis direction vector set by the optical axis direction vector setting unit, an induction magnetic field to be applied to the magnetic field response unit is set. A magnetic field setting unit;
    Applying the induction magnetic field set by the magnetic field setting unit to the magnetic field response unit, maintaining the posture of the capsule endoscope in the direction of the optical axis direction vector, the capsule endoscope A magnetic field generator for propelling in the direction specified by the propulsion direction vector;
    A capsule endoscope guidance system comprising:
  2.  前記撮像部は、間欠的に画像を撮像し、
     前記磁界設定部は、前記撮像部が撮像した複数の画像のうち、時系列で連続した二つの画像において、互いの撮像領域の一部を含むように前記カプセル型内視鏡を移動させる誘導磁界の設定を行う
     ことを特徴とする請求項1に記載のカプセル型内視鏡誘導システム。
    The imaging unit intermittently captures images,
    The magnetic field setting unit is an induced magnetic field that moves the capsule endoscope so as to include a part of each imaging region in two consecutive images in time series among a plurality of images captured by the imaging unit. The capsule endoscope guidance system according to claim 1, wherein the setting is performed.
  3.  前記磁界設定部は、前記撮像部と被写体との距離情報をもとに、前記誘導磁界の設定を行う
     ことを特徴とする請求項2に記載のカプセル型内視鏡誘導システム。
    The capsule endoscope guidance system according to claim 2, wherein the magnetic field setting unit sets the guidance magnetic field based on distance information between the imaging unit and a subject.
  4.  前記光軸方向ベクトル設定部は、複数の前記光軸方向ベクトルを設定し、
     前記磁界設定部は、前記カプセル型内視鏡の前記撮像部が、前記光軸方向ベクトル設定部により設定された複数の前記光軸方向ベクトルのいずれかを光軸方向として撮像するような前記誘導磁界の設定を行う
     ことを特徴とする請求項1に記載のカプセル型内視鏡誘導システム。
    The optical axis direction vector setting unit sets a plurality of the optical axis direction vectors,
    The magnetic field setting unit is configured such that the imaging unit of the capsule endoscope captures one of the plurality of optical axis direction vectors set by the optical axis direction vector setting unit as an optical axis direction. The capsule endoscope guidance system according to claim 1, wherein a magnetic field is set.
  5.  前記光軸方向ベクトル設定部は、二つの前記光軸方向ベクトルを設定し、
     前記磁界設定部は、前記撮像部の前記光軸方向が、前記光軸方向ベクトル設定部により設定された二つの前記光軸方向ベクトルの間を移動するような前記誘導磁界の設定を行い、
     前記撮像部は、二つの前記光軸方向ベクトルの間の所定のタイミングで撮像処理を行なう
     ことを特徴とする請求項1に記載のカプセル型内視鏡誘導システム。
    The optical axis direction vector setting unit sets two optical axis direction vectors,
    The magnetic field setting unit performs setting of the induced magnetic field such that the optical axis direction of the imaging unit moves between the two optical axis direction vectors set by the optical axis direction vector setting unit,
    The capsule endoscope guidance system according to claim 1, wherein the imaging unit performs an imaging process at a predetermined timing between the two optical axis direction vectors.
  6.  前記磁界設定部は、前記光軸方向ベクトルが、前記推進方向ベクトルのまわりに回転するような誘導磁界を設定する
     ことを特徴とする請求項1に記載のカプセル型内視鏡誘導システム。
    The capsule endoscope guidance system according to claim 1, wherein the magnetic field setting unit sets a guidance magnetic field such that the optical axis direction vector rotates around the propulsion direction vector.
  7.  前記推進方向ベクトルに対する前記光軸方向ベクトルの角度に関する角度情報の入力を受け付ける入力部をさらに備え、
     前記光軸方向ベクトル設定部は、前記入力部が受け付けた前記角度情報に基づき前記光軸方向ベクトルを設定する
     ことを特徴とする請求項1に記載のカプセル型内視鏡誘導システム。
    An input unit that receives input of angle information related to an angle of the optical axis direction vector with respect to the propulsion direction vector;
    The capsule endoscope guidance system according to claim 1, wherein the optical axis direction vector setting unit sets the optical axis direction vector based on the angle information received by the input unit.
  8.  前記推進方向ベクトル設定部は、複数の推進方向ベクトルを設定し、
     前記磁界設定部は、前記推進方向ベクトルと前記光軸方向ベクトルとの相対的な関係を維持しつつ、前記カプセル型内視鏡が推進する推進方向ベクトルを変更しながら前記カプセル型内視鏡を推進させる前記誘導磁界を設定する
     ことを特徴とする請求項1に記載のカプセル型内視鏡誘導システム。
    The propulsion direction vector setting unit sets a plurality of propulsion direction vectors,
    The magnetic field setting unit changes the propulsion direction vector propelled by the capsule endoscope while maintaining the relative relationship between the propulsion direction vector and the optical axis direction vector. The capsule endoscope guidance system according to claim 1, wherein the guidance magnetic field to be propelled is set.
  9.  前記推進方向ベクトル設定部は、指定された複数の位置情報に基づいて、複数の前記推進方向ベクトルを設定する
     ことを特徴とする請求項8に記載のカプセル型内視鏡誘導システム。
    9. The capsule endoscope guidance system according to claim 8, wherein the propulsion direction vector setting unit sets a plurality of the propulsion direction vectors based on a plurality of designated position information.
  10.  外部から印加される磁界に応答する磁界応答部および撮像部を有し被検体内に導入されるカプセル型内視鏡を誘導するカプセル型内視鏡誘導装置において、
     前記撮像部が撮像した被検体内画像において指定された位置情報に基づいて前記カプセル型内視鏡の推進方向を示す推進方向ベクトルを設定する推進方向ベクトル設定部と、
     少なくとも前記撮像部の光軸方向および前記推進方向ベクトルに基づいて、前記推進方向ベクトルに対する光軸方向を示す光軸方向ベクトルを設定する光軸方向ベクトル設定部と、
     前記推進方向ベクトル設定部により設定された前記推進方向ベクトルと、前記光軸方向ベクトル設定部により設定された前記光軸方向ベクトルとをもとに、前記磁界応答部に印加する誘導磁界を設定する磁界設定部と、
     前記磁界設定部により設定された前記誘導磁界を前記磁界応答部に印加して、前記カプセル型内視鏡の姿勢を前記光軸方向ベクトルの方向に維持しつつ、前記カプセル型内視鏡を前記推進方向ベクトルで指定された方向に推進させる磁界発生部と、
     を備えたことを特徴とするカプセル型内視鏡誘導装置。
    In a capsule endoscope guidance apparatus for guiding a capsule endoscope that has a magnetic field response unit and an imaging unit that respond to a magnetic field applied from outside and is introduced into a subject.
    A propulsion direction vector setting unit that sets a propulsion direction vector indicating the propulsion direction of the capsule endoscope based on position information specified in the in-vivo image captured by the imaging unit;
    An optical axis direction vector setting unit that sets an optical axis direction vector indicating an optical axis direction with respect to the propulsion direction vector based on at least the optical axis direction of the imaging unit and the propulsion direction vector;
    Based on the propulsion direction vector set by the propulsion direction vector setting unit and the optical axis direction vector set by the optical axis direction vector setting unit, an induction magnetic field to be applied to the magnetic field response unit is set. A magnetic field setting unit;
    Applying the induction magnetic field set by the magnetic field setting unit to the magnetic field response unit, maintaining the posture of the capsule endoscope in the direction of the optical axis direction vector, the capsule endoscope A magnetic field generator for propelling in the direction specified by the propulsion direction vector;
    A capsule endoscope guidance device comprising:
PCT/JP2015/081407 2015-03-31 2015-11-06 Capsule endoscope guidance system and capsule endoscope guidance apparatus WO2016157596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016557157A JPWO2016157596A1 (en) 2015-03-31 2015-11-06 Capsule type endoscope guidance system and capsule type endoscope guidance device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015074116 2015-03-31
JP2015-074116 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016157596A1 true WO2016157596A1 (en) 2016-10-06

Family

ID=57006939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081407 WO2016157596A1 (en) 2015-03-31 2015-11-06 Capsule endoscope guidance system and capsule endoscope guidance apparatus

Country Status (2)

Country Link
JP (1) JPWO2016157596A1 (en)
WO (1) WO2016157596A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2632780C1 (en) * 2016-12-14 2017-10-09 Общество с ограниченной ответственностью "Фармаг" (ООО "Фармаг") Replacement magnetically controlled frame for active endoscopic capsule for carrying out examination of gastrointestinal tract
JP2022181146A (en) * 2021-05-25 2022-12-07 湖北大学 Method of operating all-posture measurement system for magnetic capsule endoscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099137A (en) * 2008-10-21 2010-05-06 Olympus Medical Systems Corp Capsule guide system
WO2011055579A1 (en) * 2009-11-09 2011-05-12 オリンパスメディカルシステムズ株式会社 Guiding system for capsule type medical device and method for guiding capsule type medical device
WO2011061977A1 (en) * 2009-11-19 2011-05-26 オリンパスメディカルシステムズ株式会社 Capsule medical device guidance system
WO2011118253A1 (en) * 2010-03-26 2011-09-29 オリンパスメディカルシステムズ株式会社 Capsule type medical device guidance system and method
JP2013075176A (en) * 2005-12-28 2013-04-25 Olympus Medical Systems Corp Casing
WO2013168681A1 (en) * 2012-05-07 2013-11-14 オリンパスメディカルシステムズ株式会社 Guidance device and capsule medical device guidance system
WO2013172312A1 (en) * 2012-05-14 2013-11-21 オリンパスメディカルシステムズ株式会社 Capsule therapy device and therapy system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314913B2 (en) * 2008-04-03 2013-10-16 オリンパスメディカルシステムズ株式会社 Capsule medical system
JP5363020B2 (en) * 2008-04-07 2013-12-11 オリンパスメディカルシステムズ株式会社 Capsule type medical device and medical system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075176A (en) * 2005-12-28 2013-04-25 Olympus Medical Systems Corp Casing
JP2010099137A (en) * 2008-10-21 2010-05-06 Olympus Medical Systems Corp Capsule guide system
WO2011055579A1 (en) * 2009-11-09 2011-05-12 オリンパスメディカルシステムズ株式会社 Guiding system for capsule type medical device and method for guiding capsule type medical device
WO2011061977A1 (en) * 2009-11-19 2011-05-26 オリンパスメディカルシステムズ株式会社 Capsule medical device guidance system
WO2011118253A1 (en) * 2010-03-26 2011-09-29 オリンパスメディカルシステムズ株式会社 Capsule type medical device guidance system and method
WO2013168681A1 (en) * 2012-05-07 2013-11-14 オリンパスメディカルシステムズ株式会社 Guidance device and capsule medical device guidance system
WO2013172312A1 (en) * 2012-05-14 2013-11-21 オリンパスメディカルシステムズ株式会社 Capsule therapy device and therapy system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2632780C1 (en) * 2016-12-14 2017-10-09 Общество с ограниченной ответственностью "Фармаг" (ООО "Фармаг") Replacement magnetically controlled frame for active endoscopic capsule for carrying out examination of gastrointestinal tract
JP2022181146A (en) * 2021-05-25 2022-12-07 湖北大学 Method of operating all-posture measurement system for magnetic capsule endoscope
JP7270284B2 (en) 2021-05-25 2023-05-10 湖北大学 Operation method of magnetic capsule endoscope full-posture measurement system

Also Published As

Publication number Publication date
JPWO2016157596A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5475207B1 (en) Guide device and capsule medical device guide system
JP4932971B2 (en) Capsule type medical device guidance system
EP2371263B1 (en) Guiding system for capsule type medical device and method for guiding capsule type medical device
JP4674276B1 (en) Capsule type medical device guidance system
EP2338402A1 (en) Capsular endoscopic system
JP6028132B1 (en) Guide device and capsule medical device guide system
JP5118775B2 (en) Capsule type medical device guidance system
US8460177B2 (en) Capsule medical device guidance system and method for guiding capsule medical device
US9931022B2 (en) Capsule medical device guidance system
JP6049951B2 (en) Capsule endoscope system
US8734329B2 (en) Capsule medical device guiding system and magnetic field generating device
JP6022112B2 (en) Capsule-type endoscope guidance system, guidance device, and method of operating guidance device
WO2016157596A1 (en) Capsule endoscope guidance system and capsule endoscope guidance apparatus
JP5948524B1 (en) Capsule type medical device guidance system
US20120022359A1 (en) Capsule medical device guidance system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016557157

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887738

Country of ref document: EP

Kind code of ref document: A1