WO2016157511A1 - Low noise amplifier, and ultrasonic probe and diagnostic device using same - Google Patents

Low noise amplifier, and ultrasonic probe and diagnostic device using same Download PDF

Info

Publication number
WO2016157511A1
WO2016157511A1 PCT/JP2015/060540 JP2015060540W WO2016157511A1 WO 2016157511 A1 WO2016157511 A1 WO 2016157511A1 JP 2015060540 W JP2015060540 W JP 2015060540W WO 2016157511 A1 WO2016157511 A1 WO 2016157511A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transistor
circuit
differential
transistors
Prior art date
Application number
PCT/JP2015/060540
Other languages
French (fr)
Japanese (ja)
Inventor
中村 洋平
梶山 新也
五十嵐 豊
崇秀 寺田
山脇 大造
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/060540 priority Critical patent/WO2016157511A1/en
Publication of WO2016157511A1 publication Critical patent/WO2016157511A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers

Definitions

  • the present invention relates to a receiving amplifier that is mounted on an electronic circuit, particularly an ultrasonic probe that is a component of an ultrasonic diagnostic apparatus, and amplifies an electric signal from a piezoelectric vibrator.
  • a medical ultrasonic diagnostic apparatus that inspects the inside of a human body by transmitting an ultrasonic wave into the human body and receiving a signal reflected from a component inside the body is known.
  • the received ultrasonic signal is converted from sound pressure to an electrical signal by a transducer array composed of a plurality of piezoelectric vibrators (transducers), and the reception delay amount in the array is adjusted. It is known to adjust the focus point.
  • a method of delaying a received signal there are a method such as an analog beamformer that delays an analog signal as it is, and a digital beamformer that performs analog-digital conversion and performs delay addition in the state of a digital signal.
  • an analog beamformer As an example of an analog beamformer, a method of delaying an analog voltage output by sequentially sampling an input voltage by a plurality of parallel sampling circuits and delaying a read timing is known. Even in the case of analog-digital conversion, it is common to digitize after holding the analog voltage once using a sample hold circuit.
  • a low noise amplifier (LNA) is installed between the delay adder circuit and the transducer, and is used to amplify an input signal and drive a delay adder circuit in the subsequent stage.
  • the received signal converted by the transducer exists from a weak signal reflected from the deepest part of the human body to a relatively large signal reflected from the vicinity of the body surface.
  • the LNA since the LNA transmits the weakest signal at the deepest part to the subsequent circuit with a sufficient S / N ratio, the LNA is required to have a low intrinsic noise and a sufficient gain, and the signal from the vicinity of the body surface. A wide dynamic range that does not saturate even when a signal is received is required. In addition, since a large number of receiving circuits are required corresponding to the transducer array, it is also required to reduce the circuit area and power consumption.
  • the output impedance of the LNA is lowered,
  • the on-resistance needs to be lowered.
  • the sampling switch is NMOS, it is desirable that the output voltage of the LNA operate in a low range in order to reduce the on-resistance.
  • the use of NMOS as the LNA amplification MOS is more advantageous than the use of PMOS from the viewpoint of area and mutual conductance.
  • the center voltage of the output signal may be increased, and it is desirable to perform a DC level shift that lowers the center voltage.
  • the second stage source follower current is supplied to the first stage differential amplifier. Reuse even with differential amplifiers.
  • the current can be reused without using a special capacitance or inductance element, an increase in power consumption can be prevented, and the amount of current flowing in the first stage amplifier circuit can be reduced without reducing the LNA. It is possible to add a source follower circuit to the output of. Therefore, it is possible to reduce the output impedance and the on-resistance of the sampling switch while maintaining the amplification gain and noise performance of the first stage of the LNA, which were the initial problems.
  • a transducer that performs both electro-acoustic and acoustic-electrical conversion is configured, a vibrator having a first terminal connected to the ground (reference potential point), and a second of the vibrator.
  • This is an ultrasonic diagnostic apparatus having a transmitter connected to the terminal and a receiver connected to the second terminal of the transducer.
  • the receiver has a differential output amplifier having a single-ended input connected to the second terminal of the transducer via a duplex switch.
  • FIG. 6 is a diagram illustrating Example 1; FIG. 6 is a diagram for explaining an operation related to a differential amplifier portion of the first embodiment.
  • FIG. 3 is a diagram for explaining an operation related to the source follower circuit according to the first embodiment.
  • FIG. 6 is a diagram illustrating Example 2.
  • FIG. 6 is a diagram illustrating Example 3;
  • FIG. 6 is a diagram illustrating a sampling mechanism according to a third embodiment.
  • FIG. 6 is a diagram illustrating a sampling switch according to a third embodiment.
  • FIG. 10 is a diagram for explaining the operation of the third embodiment.
  • FIG. 6 is a diagram illustrating Example 4;
  • FIG. 6 is a diagram illustrating Example 5;
  • FIG. 10 is a diagram illustrating a configuration of a subarray according to a fifth embodiment.
  • FIG. 1 shows an embodiment of an amplifier circuit according to the first embodiment.
  • the transistor is assumed to be a MOSFET, but there is no problem even if a bipolar transistor is used instead.
  • the gate terminal, the source terminal, and the drain terminal of the transistor described below are respectively a base terminal, What is necessary is just to replace as an emitter terminal and a collector terminal.
  • the usage of the NMOS transistors and PMOS transistors described in the following embodiments is complementary, and it can be obtained in advance that the same effect can be obtained by replacing all NMOS with PMOS and PMOS with NMOS. It should be noted.
  • the source terminals of the transistors 101 and 102 and the drain terminals of the transistors 103 and 105 are all connected to the common node A by wiring, and the drain terminals of the transistors 101 and 102 are connected to the drain terminals of the transistors 101 and 102, respectively.
  • a load circuit 105 is connected.
  • current sources 106 and 107 are connected to the source terminals of the transistors 103 and 104, respectively.
  • the gate terminal of the transistor 101 is connected to the positive input terminal inp, and the gate terminal of the transistor 102 is connected to the negative input terminal inn.
  • the source terminal of the transistor 103 is connected to the positive output terminal outp, and the source terminal of the transistor 104 is connected to the negative output terminal outn.
  • the load circuit 105 is connected to a positive power source 108, and the current sources 106 and 107 are connected to a negative power source 109.
  • the negative power source 109 may be grounded.
  • the direct current sum of the current sources 106 and 107 biasing the 103 and 104 flows through the node A as a direct current. Therefore, when the node A is viewed from the transistors 101 and 102 side, it can be seen that the circuit operates as an equivalent circuit as shown in FIG.
  • the resistor 203 has impedances 103 and 104 viewed from the 101 and 102 sides in FIG. 1, and the equivalent circuit in FIG. 2 operates as a differential amplifier having outp1 and outn1 as output terminals.
  • the transistor 303 operates as a source follower circuit biased by the current source 306 and the voltage source 302 with respect to the input signal to the input terminal inp2.
  • the transistors 103 and 104 and the current sources 106 and 107 in FIG. 1 can operate as a differential source follower circuit.
  • two circuits of the differential amplifier and the source follower circuit operate by the pair of current sources 106 and 107.
  • Non-patent Document 1 in which current reuse is performed between a differential amplifier and a source follower circuit, an alternating current component is inserted by inserting an inductance component into a direct current path shared by the first stage transistor and the next stage transistor. Is prevented from being transmitted.
  • the inductance value necessary to block the AC component becomes very large, from several hundred uH to several mH, and such a huge inductance component is formed in the integrated circuit. Difficult to do.
  • the common terminal of the differential amplifiers uses the drain terminal of the source follower as a DC bias point.
  • the drain terminal of the source follower By using it as a source terminal, no special capacitance or inductance component is required, and the current reuse of the differential amplifier and the source follower circuit is realized, and the circuit is mounted with high density in the integrated circuit. It becomes possible to do.
  • FIG. 4 shows an embodiment of an amplifier circuit according to the second embodiment.
  • the current source 410 is connected to the common node A and the negative power source 409, and the current source 411 is connected to the common node A and the positive power source 408. Yes.
  • the current source 410 and the current source 411 may be present, or both may be present.
  • the current value of 410 is I1
  • the current value of 411 is I2.
  • ISC + I2 I1 + 2 * ISF
  • ISC and ISF can be freely set by appropriately selecting I1 and I2 (however, ISC, ISF, I1 and I2 are all current values of 0 or more). This allows you to increase the ISF to reduce the output impedance of the source follower, but when individual design events occur, such as when you want to reduce the gain of the differential amplifier, design each block independently. Can be done.
  • FIG. 5 shows an embodiment of a two-stage amplifier according to the third embodiment.
  • the drain terminals of the transistors 501 and 502 constituting the differential amplifier are connected to the gate terminals of the transistors 503 and 504 constituting the source follower circuit, respectively.
  • the output nodes of the source follower are connected to sampling switches 510 and 511, respectively, and a sampling capacitor 512 is connected to the outputs of the sampling switches 510 and 511. Both sampling switches 510 and 511 are controlled by a control signal ⁇ .
  • FIG. 6 shows the transient response on the time axis of the voltage across the control signal and sampling capacity.
  • a waveform 601 is a time waveform of the voltage Vc [V] across the sampling capacitor
  • a waveform 602 is a time waveform of a control signal for turning on and off the sampling switch.
  • the control signal 602 changes from Voff [V] to Von [V].
  • the charging and discharging of the sampling capacitor 512 starts from the moment of transition, and Vc ideally approaches the input voltage V0.
  • the control signal ⁇ transitions to Voff [V] at a finite time T [seconds], and the sampling period is terminated. At this time, the difference ⁇ V [V] between the input voltage V0 and the sampling capacitance voltage Vc appears as an error in the output.
  • the output impedance of the LNA is Ro [ohm]
  • the output impedance of the sampling switch is Ron [ohm]
  • the capacitance value of the sampling capacitor is Cs [F]
  • Vc when viewed from the output end of the LNA is a primary transient response.
  • the transfer function Z (j ⁇ ) is expressed by Equation 1.
  • j is an imaginary unit
  • is each frequency of the input signal.
  • ⁇ c [rad] is a constant represented by Equation 2.
  • CMOS switch using a PMOS transistor 701 and an NMOS transistor 702 can be used as shown in FIG.
  • the two terminals other than the gate terminals 701 and 702 are connected to either the input terminal or the output terminal, respectively, and the control signal ⁇ is input to the gate 702, and a signal obtained by logically inverting the control signal ⁇ is 701. It is input to the gate.
  • an NMOS transistor only switch has a high on-resistance when the input voltage is high, and a PMOS transistor alone has a high on-resistance when the input voltage is low.
  • both the MOS transistors 701 and 702 have high on-resistance in the vicinity of the center of the positive and negative power supplies. As shown in FIG. 4, a region having a high on-resistance is generated.
  • FIG. 8 shows the relationship between the signal of each node and the on-resistance of the sampling switch in this embodiment.
  • 801 is a signal input to inp1 in FIG. 5, 802 and 803 are signals observed at nodes P1 and N1, respectively, and 804 and 805 are signals observed at nodes P2 and N2.
  • the signals of P1 and N1 ideally pass through the source follower circuit, the common mode voltage is shifted, and the AC component is output as it is.
  • the output signals 804 and 805 can be output in a region with a low on-resistance as indicated by 806 in the right diagram of FIG. 8, and it is not necessary to use a PMOS transistor for the sampling switch.
  • the first-stage differential amplifier and the latter-stage source follower operate in a state where the bias current sources 506 and 507 are shared, and the power is reduced compared to the case where each has a current source independently. It is possible.
  • FIG. 9 shows an embodiment of a two-stage amplifier according to the fourth embodiment.
  • resistors 911 and 912, transistors 913 and 914, and a common mode feedback circuit 905 are connected as an example of the load circuit of the transistors 101 and 102 in the first embodiment.
  • the nodes to which the transistors 901 and 902 are connected are referred to as a node P1 and a node N1, respectively.
  • the resistors 911 and 912 share a node on one side, and the unshared side is connected to the node P1 and the node N1, respectively.
  • Transistors 913 and 914 have drain terminals connected to node P1 and node N1, respectively, gate terminals connected to a common node, and source terminals connected to a positive power supply 908.
  • the node shared by the resistors 911 and 912 is connected to the input of the common mode feedback circuit 905, and the output of the common mode feedback circuit 905 is input to the gate terminals of the transistors 913 and 914.
  • the nodes P1 and N1 are connected to the capacitors 915 and 916, respectively.
  • the terminals of the capacitors 915 and 916 that are not connected to the nodes P1 and N1 are connected to the gate terminals of the transistors 903 and 904, respectively.
  • resistors 917 and 918 are connected to the gate terminals of the transistors 903 and 904, respectively, and terminals on the opposite side of 917 and 918 are connected to power supplies 919 and 920, respectively.
  • the common voltage of P1 and N1 is applied to the common node of both companies.
  • the common mode feedback circuit 905 inputs the common voltage of the P1 and N1 nodes to the common mode feedback circuit 905 and performs feedback connection to the gates of 913 and 914, so that the common mode feedback circuit 905 has an appropriate common voltage for P1 and N1.
  • the gate voltages of the transistors 913 and 914 are automatically searched.
  • Capacitors 915 and 916 separate the output node of the differential amplifier and the input node of the source follower circuit in a DC manner, and the DC bias point of the input node of the source follower circuit is determined by the output voltage values of the voltage sources 919 and 920. .
  • FIG. 10 shows an embodiment of an ultrasonic diagnostic apparatus according to the fifth embodiment.
  • FIG. 10 shows a system configuration diagram of an ultrasonic diagnostic apparatus to which the present invention is applied.
  • an ultrasonic diagnostic apparatus capable of obtaining a three-dimensional stereoscopic image has been developed, and inspection efficiency can be improved by obtaining a tomographic image by specifying an arbitrary cross section from the three-dimensional stereoscopic image.
  • the transducers in the ultrasonic probe For three-dimensional imaging, it is necessary to change the transducers in the ultrasonic probe from the conventional one-dimensional array to the two-dimensional array, and the number of transducers is 2 compared to the conventional ultrasonic probe. Increases to the power.
  • the received signal with the number reduced by phasing addition in the ultrasonic probe is reduced. It must be transferred to the main unit via a cable.
  • FIG. 10 shows an ultrasonic probe having a two-dimensional array transducer and a system configuration.
  • a transmission / reception circuit 1002 is arranged for each transducer 1001, and reception outputs are added by an addition circuit 1003 and sent to an AFE (analog front end) 1004 of the main unit.
  • a grouping unit of transducer channels to be added is called a subarray 1005.
  • Each subarray 1005 has a subarray control logic circuit 1006 for controlling the subarray.
  • the subarray is implemented by a configuration in which a plurality of transducers 1001 are connected to an IC 1007 (indicated by a dotted line) including a plurality of subarrays 1005 including a transmission / reception circuit 1002, an adder circuit 1003, and a subarray control logic circuit 1006.
  • the processor 1009 in the main body device 1008 sends a control signal to the control logic circuit 1010 of the IC 1007 in the ultrasonic probe 1000, and the IC control logic circuit 1010 controls transmission / reception switching and the like accordingly.
  • the transmission / reception switching can be controlled collectively by the subarray 1005 to reduce the number of control signals in the IC control logic circuit and IC.
  • a sub-array control logic circuit 1006 can be arranged for each sub-array, and control can be hierarchized to control each transmission / reception circuit 1002 independently from the sub-array control logic circuit 1006 with fine granularity.
  • FIG. 11 shows the configuration in the subarray 1005.
  • the transmission / reception circuit 1002 per transducer is composed of a high voltage MOS, and generates a high voltage signal to drive the transducer 1001.
  • the transmission circuit 1100 is turned off during transmission, protects the LNA from the high voltage signal, and is turned on during reception.
  • a transmission / reception separation switch 1101 for passing an electrical signal from the vibrator, a low-pressure reception LNA 1102, a beam forming by delaying the transmission signal, and a delay circuit 1103 for delaying the reception signal to perform phasing.
  • the received signals phased by the minute delay circuit 1103 are added by the adder circuit 1003 and transferred to the main unit.
  • a gain control logic circuit 1104 is prepared for each column of the transducer array, and the LNA gain is independently controlled for each column. As a result, it is possible to control to lower the LNA gain in units of columns as going to the left and right outside of the array. Also in this example, parts other than the vibrator 1001 are integrated as an IC.
  • the reception LNA 1102 includes a differential amplifier that amplifies the single-ended input from the vibrator described in the first to fifth embodiments, and outputs a differential signal.
  • an LNA that amplifies an electric signal from an ultrasonic transducer constituting a transducer that performs both electro-acoustic and acoustic-electric conversion, and performs single-ended-differential conversion.
  • the current can be reused without using a special capacitor or inductance element, so that an increase in power consumption can be prevented and the source follower can be added to the output of the LNA without reducing the amount of current flowing through the first stage amplifier circuit. It is possible to add a circuit.
  • the differential amplification type LNA since the differential amplification type LNA is used, the influence of the power supply noise wraparound from the digital circuit to the analog circuit can be reduced by a high power supply voltage fluctuation rejection ratio, so that analog / digital mixed mounting of the integrated circuit becomes possible.
  • Complex control logic of ultrasonic beam forming, focusing, and phasing can be integrated on one chip together with analog circuits for transmission and reception, and the mounting space and cost of the ultrasonic probe and the main unit can be reduced.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Bias current source 307 ... Negative power supply, 401 ... Transistor, 402 ... Transition 403 ... transistor 404 ... transistor 405 ... load circuit 406 ... bias current source 407 ... bias current source 408 ... positive power source 409 ... negative power source 410, current source, 411, current source, 501 ... transistor, 502 ... transistor, 503 ... transistor, 504 ... transistor, 505 ... load circuit, 506 ... Bias current source, 507 ... Bias current source, 508 ... Positive power supply, 509 ... Negative power supply, 510 ... Sampling switch, 511 ... Sampling switch, 512 ...
  • Sampling capacity 601 ... ⁇ Sampling capacity terminal complete voltage waveform, 602 ... Sampling switch control 701 ... PMOS transistor, 702 ... NMOS transistor, 703 ... On resistance of CMOS switch, 801 ... Input signal, 802 ... Negative output signal of differential amplifier, 803 ... Positive output signal of differential amplifier, 804 ... LNA negative output signal, 805 ... LNA positive output signal, 806 ... On-resistance of CMOS switch, 901 ... Transistor, 902 ... Transistor, 903 ... Transistor, 904 ... Transistor, 905 ... Common mode feedback circuit, 906 ... Bias current source, 907 ... Bias current source, 908 ...

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Power Engineering (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Amplifiers (AREA)

Abstract

The LNA has a sampling switch as a load. A method to reduce the ON-resistance of the sampling switch is to connect a source follower circuit to the output stage to lower the common voltage of output signals while lowering the output impedance, but this method leads to a problem regarding increase in power consumption. In order to solve this problem, a common node of a differential transistor pair constituting a differential amplifier at the first stage of the LNA is connected to a node shared by drain terminals of transistors constituting a differential source follower at the second stage. Thus, the source follower current at the second stage is reused by the differential amplifier at the first stage.

Description

低雑音増幅器、それを用いた超音波探触子および診断装置Low noise amplifier, ultrasonic probe and diagnostic device using the same
 本発明は電子回路、特に、超音波診断装置の構成要素である超音波探触子に搭載されて、圧電体の振動子からの電気信号を増幅するための受信増幅器に関する。 The present invention relates to a receiving amplifier that is mounted on an electronic circuit, particularly an ultrasonic probe that is a component of an ultrasonic diagnostic apparatus, and amplifies an electric signal from a piezoelectric vibrator.
 人体内に超音波を送信し、体内の構成要素から反射される信号を受信することで、人体の内部を検査する医療用超音波診断装置が知られている。このような超音波装置においては受信した超音波信号を複数の圧電体振動子(トランスデューサー)からなるトランスデューサーアレイによって音圧から電気信号に変換し、アレイ内の受信遅延量を調整することで、フォーカス点を調整することが知られている。受信した信号を遅延する方式としてはアナログ信号のまま遅延するアナログビームフォーマーや、アナログデジタル変換を行ってデジタル信号の状態で遅延加算を行うデジタルビームフォーマーなどの方式がある。アナログビームフォーマーの一例としては、複数の並列されたサンプリング回路によって入力電圧を順次サンプリングし、読みだすタイミングを遅らせることで出力されるアナログ電圧を遅延させる方式などが知られている。また、アナログデジタル変換をする場合でも、一度サンプルホールド回路を用いてアナログ電圧を保持した上でデジタル化することが一般的である。低雑音増幅器(LNA)はこれらの遅延加算回路とトランスデューサーの間に設置され、入力信号を増幅し、後段の遅延加算回路を駆動することに使用される。トランスデューサーによって変換された受信信号は人体の最深部から反射する微弱な信号から、体表近傍から反射する比較的大きい信号まで存在する。従って、LNAは最深部の微弱な信号を十分なS/N比をもって後段の回路へ伝達するため、固有の雑音が少なく、十分な利得を有することが求められ、なおかつ、体表近傍からの信号を受信しても飽和しないような幅広いダイナミックレンジが求められる。また、トランスデューサーアレイに対応して多数の受信回路が必要となるため、回路面積や消費電力を抑えることも要求される。 2. Description of the Related Art A medical ultrasonic diagnostic apparatus that inspects the inside of a human body by transmitting an ultrasonic wave into the human body and receiving a signal reflected from a component inside the body is known. In such an ultrasonic device, the received ultrasonic signal is converted from sound pressure to an electrical signal by a transducer array composed of a plurality of piezoelectric vibrators (transducers), and the reception delay amount in the array is adjusted. It is known to adjust the focus point. As a method of delaying a received signal, there are a method such as an analog beamformer that delays an analog signal as it is, and a digital beamformer that performs analog-digital conversion and performs delay addition in the state of a digital signal. As an example of an analog beamformer, a method of delaying an analog voltage output by sequentially sampling an input voltage by a plurality of parallel sampling circuits and delaying a read timing is known. Even in the case of analog-digital conversion, it is common to digitize after holding the analog voltage once using a sample hold circuit. A low noise amplifier (LNA) is installed between the delay adder circuit and the transducer, and is used to amplify an input signal and drive a delay adder circuit in the subsequent stage. The received signal converted by the transducer exists from a weak signal reflected from the deepest part of the human body to a relatively large signal reflected from the vicinity of the body surface. Therefore, since the LNA transmits the weakest signal at the deepest part to the subsequent circuit with a sufficient S / N ratio, the LNA is required to have a low intrinsic noise and a sufficient gain, and the signal from the vicinity of the body surface. A wide dynamic range that does not saturate even when a signal is received is required. In addition, since a large number of receiving circuits are required corresponding to the transducer array, it is also required to reduce the circuit area and power consumption.
特開2012-070282JP2012-070282
 超音波診断装置など、受信用LNAの後段に電圧をサンプリングする回路を有する装置においては、サンプリングレートに対して十分な速度でサンプリング容量を充電するために、LNAの出力インピーダンスを低く、サンプリングスイッチのオン抵抗を低くする必要がある。サンプリングスイッチがNMOSの場合、オン抵抗を低くするにはLNAの出力電圧は低い範囲で動作することが望ましい。一方で、信号の増幅という観点からは、LNAの増幅用MOSとしてNMOSを使用すると、PMOSを使用するよりも面積と相互コンダクタンスの観点から有利である。このような場合は出力信号の中心電圧が高めに出てしまう場合があり、中心電圧を低くする直流レベルシフトが行えると望ましい。LNAの出力段にソースフォロア回路をもつことで、これらの要求を満たすことができるが、消費電力が増えてしまうことが課題である。 In an apparatus having a circuit that samples a voltage at a subsequent stage of the receiving LNA, such as an ultrasonic diagnostic apparatus, in order to charge the sampling capacitor at a sufficient speed with respect to the sampling rate, the output impedance of the LNA is lowered, The on-resistance needs to be lowered. When the sampling switch is NMOS, it is desirable that the output voltage of the LNA operate in a low range in order to reduce the on-resistance. On the other hand, from the viewpoint of signal amplification, the use of NMOS as the LNA amplification MOS is more advantageous than the use of PMOS from the viewpoint of area and mutual conductance. In such a case, the center voltage of the output signal may be increased, and it is desirable to perform a DC level shift that lowers the center voltage. By having a source follower circuit in the output stage of the LNA, these requirements can be satisfied, but the problem is that the power consumption increases.
 LNA初段の差動増幅器を構成する差動のMOS対の共通ノードを二段目の差動ソースフォロアを構成するMOSの共通ドレイン端子に接続することで、二段目のソースフォロア電流を初段の差動増幅器でも再利用する。 By connecting the common node of the differential MOS pair constituting the differential amplifier of the LNA first stage to the common drain terminal of the MOS constituting the second stage differential source follower, the second stage source follower current is supplied to the first stage differential amplifier. Reuse even with differential amplifiers.
 前述の手段によれば、特別な容量やインダクタンス素子を使用せずに、電流の再利用が可能であるため、消費電力の増大を防ぎ、初段の増幅回路に流す電流量を減らさずに、LNAの出力にソースフォロア回路を付加することが可能である。従って、当初の課題であった、LNA初段の増幅利得、雑音性能を維持しつつ、出力インピーダンス及び、サンプリングスイッチのオン抵抗を低減することが可能になる。 According to the above-described means, since the current can be reused without using a special capacitance or inductance element, an increase in power consumption can be prevented, and the amount of current flowing in the first stage amplifier circuit can be reduced without reducing the LNA. It is possible to add a source follower circuit to the output of. Therefore, it is possible to reduce the output impedance and the on-resistance of the sampling switch while maintaining the amplification gain and noise performance of the first stage of the LNA, which were the initial problems.
 本発明の他の側面は、電気-音響と音響-電気の両方の変換を行うトランスデューサを構成し、第1の端子がグラウンド(基準電位点)に接続される振動子と、振動子の第2の端子に接続される送信器と、振動子の第2の端子に接続される受信器を有する超音波診断装置である。受信器は、振動子の第2の端子に送受分離スイッチを介して接続されるシングルエンド入力を有する差動出力の増幅器を有する。 According to another aspect of the present invention, a transducer that performs both electro-acoustic and acoustic-electrical conversion is configured, a vibrator having a first terminal connected to the ground (reference potential point), and a second of the vibrator. This is an ultrasonic diagnostic apparatus having a transmitter connected to the terminal and a receiver connected to the second terminal of the transducer. The receiver has a differential output amplifier having a single-ended input connected to the second terminal of the transducer via a duplex switch.
実施例1を説明する図。FIG. 6 is a diagram illustrating Example 1; 実施例1の差動アンプ部分に関する動作を説明する図。FIG. 6 is a diagram for explaining an operation related to a differential amplifier portion of the first embodiment. 実施例1のソースフォロア回路に関する動作を説明する図。FIG. 3 is a diagram for explaining an operation related to the source follower circuit according to the first embodiment. 実施例2を説明する図。FIG. 6 is a diagram illustrating Example 2. 実施例3を説明する図。FIG. 6 is a diagram illustrating Example 3; 実施例3のサンプリング機構を説明する図。FIG. 6 is a diagram illustrating a sampling mechanism according to a third embodiment. 実施例3のサンプリングスイッチを説明する図。FIG. 6 is a diagram illustrating a sampling switch according to a third embodiment. 実施例3の動作を説明する図。FIG. 10 is a diagram for explaining the operation of the third embodiment. 実施例4を説明する図。FIG. 6 is a diagram illustrating Example 4; 実施例5を説明する図。FIG. 6 is a diagram illustrating Example 5; 実施例5のサブアレイの構成を説明する図。FIG. 10 is a diagram illustrating a configuration of a subarray according to a fifth embodiment.
 図1に第1の実施例にかかる増幅回路の実施形態を示す。 FIG. 1 shows an embodiment of an amplifier circuit according to the first embodiment.
 以下ではトランジスタをMOSFETと仮定して記載しているが、バイポーラトランジスタを代わりに用いても問題なく、その場合は、以下に記載するトランジスタのゲート端子、ソース端子、ドレイン端子をそれぞれ、ベース端子、エミッタ端子、コレクタ端子として置き換えればよい。また、以下の実施例に記載されているNMOSトランジスタ、PMOSトランジスタの用法に関しては相補的であり、全てのNMOSをPMOSに、PMOSをNMOSに置き換えて考えることで同様の効果が得られることをあらかじめ記載しておく。 In the following description, the transistor is assumed to be a MOSFET, but there is no problem even if a bipolar transistor is used instead. In that case, the gate terminal, the source terminal, and the drain terminal of the transistor described below are respectively a base terminal, What is necessary is just to replace as an emitter terminal and a collector terminal. In addition, the usage of the NMOS transistors and PMOS transistors described in the following embodiments is complementary, and it can be obtained in advance that the same effect can be obtained by replacing all NMOS with PMOS and PMOS with NMOS. It should be noted.
 本実施例の場合、トランジスタ101、102のそれぞれのソース端子と、トランジスタ103、105のそれぞれのドレイン端子が、全て配線によって共通ノードAに接続されており、トランジスタ101、102のドレイン端子にはそれぞれ負荷回路105が接続されている。
また、トランジスタ103、104のソース端子にはそれぞれ電流源106、107が接続されている。
In this embodiment, the source terminals of the transistors 101 and 102 and the drain terminals of the transistors 103 and 105 are all connected to the common node A by wiring, and the drain terminals of the transistors 101 and 102 are connected to the drain terminals of the transistors 101 and 102, respectively. A load circuit 105 is connected.
Further, current sources 106 and 107 are connected to the source terminals of the transistors 103 and 104, respectively.
 トランジスタ101のゲート端子は正入力端子inpへ接続され、トランジスタ102のゲート端子は負入力端子innへ接続されている。
また、トランジスタ103のソース端子は正出力端子outpに接続され、トランジスタ104のソース端子は負出力端子outnに接続されている。負荷回路105は正電源108に接続されており、電流源106、107は負電源109に接続されている。負電源109は接地としても良い。
The gate terminal of the transistor 101 is connected to the positive input terminal inp, and the gate terminal of the transistor 102 is connected to the negative input terminal inn.
The source terminal of the transistor 103 is connected to the positive output terminal outp, and the source terminal of the transistor 104 is connected to the negative output terminal outn. The load circuit 105 is connected to a positive power source 108, and the current sources 106 and 107 are connected to a negative power source 109. The negative power source 109 may be grounded.
 以下では前述の回路の動作について述べる。 The following describes the operation of the above circuit.
 トランジスタ103、104に差動信号が入力されている場合、inp2、inn2に入力される信号に関連して発生する電流はノードAにおいて差動間で打ち消しあうため、ノードAにおける交流電圧信号に影響を与えない。 When differential signals are input to the transistors 103 and 104, the current generated in association with the signals input to inp2 and inn2 cancels between the differentials at the node A, so that the AC voltage signal at the node A is affected. Not give.
 一方、103、104をバイアスしている電流源106、107の直流電流和がノードAを直流電流として流れる。従って、トランジスタ101、102側からノードAをみると図2のような等価回路として動作することが分かる。 On the other hand, the direct current sum of the current sources 106 and 107 biasing the 103 and 104 flows through the node A as a direct current. Therefore, when the node A is viewed from the transistors 101 and 102 side, it can be seen that the circuit operates as an equivalent circuit as shown in FIG.
 ここで、抵抗203は図1において101、102側からみた103,104のインピーダンスであり、図2の等価回路はoutp1、outn1を出力端子とした差動増幅器として動作する。 Here, the resistor 203 has impedances 103 and 104 viewed from the 101 and 102 sides in FIG. 1, and the equivalent circuit in FIG. 2 operates as a differential amplifier having outp1 and outn1 as output terminals.
 次に図1のノードAにおける交流電圧がトランジスタ103、104の出力に与える影響について述べる。ノードAに対して、トランジスタ101、102の代わりに、図3のような交流信号源301が接続されていると考えると、交流信号源301の影響はoutp2、outn2ノードにコモンモード電圧として等しく現れるため、差動間でキャンセルされる。 Next, the influence of the AC voltage at the node A in FIG. 1 on the outputs of the transistors 103 and 104 will be described. Assuming that the AC signal source 301 as shown in FIG. 3 is connected to the node A instead of the transistors 101 and 102, the influence of the AC signal source 301 appears equally as a common mode voltage at the outp2 and outn2 nodes. Therefore, it is canceled between differentials.
 また、交流信号源301を除外して考えた場合、トランジスタ303は入力端子inp2への入力信号に対して、電流源306、電圧源302によってバイアスされたソースフォロア回路として動作する。また、304、305,302に関しても同様である。従って、図1におけるトランジスタ103、104および、電流源106、107は差動のソースフォロア回路として動作することが可能である。 Further, when the AC signal source 301 is excluded, the transistor 303 operates as a source follower circuit biased by the current source 306 and the voltage source 302 with respect to the input signal to the input terminal inp2. The same applies to 304, 305, and 302. Therefore, the transistors 103 and 104 and the current sources 106 and 107 in FIG. 1 can operate as a differential source follower circuit.
 以上のように、図1の接続関係においては一組の電流源106、107によって、差動増幅器とソースフォロア回路の二つの回路が動作する。 As described above, in the connection relationship of FIG. 1, two circuits of the differential amplifier and the source follower circuit operate by the pair of current sources 106 and 107.
 以下では本実施例の効果について述べる。 In the following, the effect of this embodiment will be described.
 差動増幅器と差動のソースフォロアを有する回路を構成する場合は、それぞれに独立した電流源をもつことが一般的である。このとき、それぞれの電流源に流れる電流をISC[A]、ISF[A]とすれば合計で(ISC+2*ISF)[A]の電流量が必要となる。
一方で、本実施例においてはISF[A]がソースフォロアを構成するトランジスタを介して、差動増幅器のトランジスタをバイアスするため、差動増幅器を2*ISF[A]でバイアスして動作するように設計すれば、合計で2*ISF[A]の電流で二つの回路を動作させることが可能となり、ISC[A]分の消費電力を削減することが可能である。
When configuring a circuit having a differential amplifier and a differential source follower, it is common to have independent current sources for each. At this time, if the currents flowing through the respective current sources are ISC [A] and ISF [A], a total amount of current (ISC + 2 * ISF) [A] is required.
On the other hand, in this embodiment, since the ISF [A] biases the transistor of the differential amplifier via the transistor constituting the source follower, the differential amplifier is operated by biasing with 2 * ISF [A]. In this case, two circuits can be operated with a current of 2 * ISF [A] in total, and power consumption corresponding to ISC [A] can be reduced.
 このように、ある回路ブロックの電流を他の回路ブロックのバイアス電流として利用するカレントリユース(current reuse)の概念は、たとえば[特許文献1]に開示されているように、ソース接地回路の電流を次段のソース接地回路に利用する例などがあげられる。 In this way, the concept of current reuse that uses the current of one circuit block as the bias current of another circuit block is, for example, as disclosed in [Patent Document 1]. For example, it is used for the source grounding circuit of the next stage.
 しかしながら、開示されている事例では次段のトランジスタにおけるソース端子を接地(直流電圧)としてみせるために、特別な容量素子を必要としている。 However, in the disclosed example, a special capacitive element is required to show the source terminal of the next stage transistor as ground (DC voltage).
 交流成分を打ち消すために必要な容量値を確保するためには、集積回路内に比較的大きな占有面積を必要とするため、集積回路内に多数の素子を実装する用途においては実現が難しい。 In order to secure a capacitance value necessary for canceling the AC component, a relatively large occupied area is required in the integrated circuit, so that it is difficult to realize in applications where a large number of elements are mounted in the integrated circuit.
 また、差動増幅器とソースフォロア回路間でカレントリユースを行っている[非特許文献1]においては初段のトランジスタと次段のトランジスタが共有する直流パスに、インダクタンス成分を挿入することで、交流成分が伝わることを防いでいる。 Further, in [Non-patent Document 1] in which current reuse is performed between a differential amplifier and a source follower circuit, an alternating current component is inserted by inserting an inductance component into a direct current path shared by the first stage transistor and the next stage transistor. Is prevented from being transmitted.
 しかしながら、たとえば数MHz以下の周波数帯では、交流成分を遮断するのに必要なインダクタンス値が数百uH~数mHと非常に大きくなってしまい、集積回路内にそのような巨大なインダクタンス成分を形成することは難しい。 However, in a frequency band of several MHz or less, for example, the inductance value necessary to block the AC component becomes very large, from several hundred uH to several mH, and such a huge inductance component is formed in the integrated circuit. Difficult to do.
 本実施例では、差動のソースフォロア回路において、ソースフォロア回路を構成するトランジスタのドレイン端子が交流信号としては打ち消しあうことに着目し、ソースフォロアのドレイン端子を直流バイアス点として差動増幅器の共通ソース端子に使用することで、特別な容量やインダクタンス成分を必要とせず、差動増幅器とソースフォロア回路のカレントリユースを実現している点が特徴であり、集積回路内に高密度で回路を実装することが可能となる。 In this embodiment, in the differential source follower circuit, paying attention to the fact that the drain terminals of the transistors constituting the source follower circuit cancel each other out as an AC signal, the common terminal of the differential amplifiers uses the drain terminal of the source follower as a DC bias point. By using it as a source terminal, no special capacitance or inductance component is required, and the current reuse of the differential amplifier and the source follower circuit is realized, and the circuit is mounted with high density in the integrated circuit. It becomes possible to do.
 図4に第2の実施例にかかる増幅回路の実施形態を示す。 FIG. 4 shows an embodiment of an amplifier circuit according to the second embodiment.
 第二の実施例においては第一の実施例に加えて、共通ノードAと負電源409に接続された電流源410および、共通ノードAと正電源408に接続された電流源411から構成されている。ここで電流源410と電流源411はどちらか片方だけが存在する構成でもよく、両方が存在する構成でもよい。ここで、410の電流値をI1、411の電流値をI2とする。 In the second embodiment, in addition to the first embodiment, the current source 410 is connected to the common node A and the negative power source 409, and the current source 411 is connected to the common node A and the positive power source 408. Yes. Here, only one of the current source 410 and the current source 411 may be present, or both may be present. Here, the current value of 410 is I1, and the current value of 411 is I2.
 以下では本実施例の効果について述べる。 In the following, the effect of this embodiment will be described.
 実施例1ではソースフォロアを構成するトランジスタ103,104と差動増幅器を構成するトランジスタ101、102はそれぞれ共通のバイアス電流源106、107によってバイアスされるため、それぞれのバイアス電流を独立に設定することができない。すなわち差動増幅器のバイアス電流をISC、ソースフォロアの片側のバイアス電流をISFとすればISC=2*ISFの関係として制約を受ける。 In the first embodiment, since the transistors 103 and 104 constituting the source follower and the transistors 101 and 102 constituting the differential amplifier are biased by the common bias current sources 106 and 107, respectively, the respective bias currents are set independently. I can't. In other words, if the bias current of the differential amplifier is ISC and the bias current on one side of the source follower is ISF, the relationship is ISC = 2 * ISF.
 そこで、実施例2の構成にしたがえば、ISC+I2=I1+2*ISFとなるため、I1とI2を適切に選択することで、ISC、ISFを自由に設定することができる(ただし、ISC、ISF、I1、I2は全て0以上の電流値)。これにより、ソースフォロアの出力インピーダンスを下げるためにISFを増やしたいが、差動増幅器のゲインは小さくしておきたい場合など、個別の設計事由が発生した際に、それぞれのブロックを独立に設計を行うことが可能となる。 Therefore, according to the configuration of the second embodiment, since ISC + I2 = I1 + 2 * ISF, ISC and ISF can be freely set by appropriately selecting I1 and I2 (however, ISC, ISF, I1 and I2 are all current values of 0 or more). This allows you to increase the ISF to reduce the output impedance of the source follower, but when individual design events occur, such as when you want to reduce the gain of the differential amplifier, design each block independently. Can be done.
 図5に第3の実施例にかかる2段増幅器の実施形態を示す。 FIG. 5 shows an embodiment of a two-stage amplifier according to the third embodiment.
 第3の実施例においては第1の実施例に加えて、差動増幅器を構成するトランジスタ501、502のドレイン端子がそれぞれ、ソースフォロア回路を構成するトランジスタ503、504のゲート端子に接続されている。また、ソースフォロアの出力ノードはそれぞれサンプリングスイッチ510、511に接続され、サンプリングスイッチ510,511の出力にはサンプリング容量512が接続されている。サンプリングスイッチ510、511はどちらも制御信号φによって制御される。 In the third embodiment, in addition to the first embodiment, the drain terminals of the transistors 501 and 502 constituting the differential amplifier are connected to the gate terminals of the transistors 503 and 504 constituting the source follower circuit, respectively. . The output nodes of the source follower are connected to sampling switches 510 and 511, respectively, and a sampling capacitor 512 is connected to the outputs of the sampling switches 510 and 511. Both sampling switches 510 and 511 are controlled by a control signal φ.
 以下では、本実施例の動作に関して記述する。 The following describes the operation of this embodiment.
 図6は制御信号とサンプリング容量の両端電圧の時間軸における過渡応答を示したものである。波形601はサンプリング容量の両端電圧Vc[V]の時間波形であり、波形602はサンプリングスイッチをオンオフする制御信号の時間波形である。時刻0秒において、サンプリング容量の両端電圧が0[V]であり、ソースフォロア回路が出力している差動電圧をV0[V]とすると制御信号602がVoff[V]からVon[V]に遷移した瞬間からサンプリング容量512の充放電が始まり、Vcは理想的には入力電圧V0に近づいていく。 Fig. 6 shows the transient response on the time axis of the voltage across the control signal and sampling capacity. A waveform 601 is a time waveform of the voltage Vc [V] across the sampling capacitor, and a waveform 602 is a time waveform of a control signal for turning on and off the sampling switch. At time 0 seconds, when the voltage across the sampling capacitor is 0 [V] and the differential voltage output from the source follower circuit is V0 [V], the control signal 602 changes from Voff [V] to Von [V]. The charging and discharging of the sampling capacitor 512 starts from the moment of transition, and Vc ideally approaches the input voltage V0.
 制御信号φは有限の時間T[秒]でVoff[V]に遷移し、サンプリング期間は打ち切られる。このとき、入力電圧V0とサンプリング容量電圧Vcの差ΔV[V]が誤差となって出力に現れる。ここでLNAの出力インピーダンスをRo[ohm]、サンプリングスイッチの出力インピーダンスをRon[ohm]、サンプリング容量の容量値をCs[F]とすると、LNAの出力端からみたときのVcは一次の過渡応答となり、その伝達関数Z(jω)は数1で表わされる。
The control signal φ transitions to Voff [V] at a finite time T [seconds], and the sampling period is terminated. At this time, the difference ΔV [V] between the input voltage V0 and the sampling capacitance voltage Vc appears as an error in the output. Here, when the output impedance of the LNA is Ro [ohm], the output impedance of the sampling switch is Ron [ohm], and the capacitance value of the sampling capacitor is Cs [F], Vc when viewed from the output end of the LNA is a primary transient response. The transfer function Z (jω) is expressed by Equation 1.
(数1)
Z(jω)=1/(1+jω/ω_C )  

 ここでjは虚数単位であり、ωは入力信号の各周波数である。また、ωc[rad]は数2で表わされる定数である。
(Equation 1)
Z (jω) = 1 / (1 + jω / ω_C)

Here, j is an imaginary unit, and ω is each frequency of the input signal. Further, ωc [rad] is a constant represented by Equation 2.
(数2)
ω_C=1/(2π(R_O+R_ON ) C_S )

 従って、Vcの時間応答は数3のように表わすことができる。
(Equation 2)
ω_C = 1 / (2π (R_O + R_ON) C_S)

Therefore, the time response of Vc can be expressed as Equation 3.
(数3)
V_C (t)=V_0 (1-e^(-ω_C (t-t_1 ) ) )

 これより、誤差ΔVを求めると、数4のようになる。
(Equation 3)
V_C (t) = V_0 (1-e ^ (-ω_C (t-t_1))))

From this, the error ΔV is obtained as shown in Equation 4.
(数4)
ΔV=V_0-V_C (t_2 )   =V_0-V_0 (1-e^(-ω_C (t-t_1 ) ) )=e^(-ω_C T)

 従って、与えられたサンプリング期間T[秒]に対して、所望の誤差よりもΔVが十分小さくなるように、数2に基づいてωcを設計すればよい。前述の数式は、Ro、Ronが小さいほど誤差ΔVも小さくなることを示している。
(Equation 4)
ΔV = V_0−V_C (t_2) = V_0−V_0 (1-e ^ (− ω_C (t−t_1))) = e ^ (− ω_C T)

Therefore, ωc may be designed based on Equation 2 so that ΔV is sufficiently smaller than a desired error for a given sampling period T [seconds]. The above formula shows that the error ΔV decreases as Ro and Ron decrease.
 次に、LNAの出力電圧範囲とスイッチ抵抗Ronの関係について述べる。 Next, the relationship between the output voltage range of the LNA and the switch resistance Ron will be described.
 サンプリングスイッチをトランジスタで実現する場合、図7のようにPMOSトランジスタ701、NMOSトランジスタ702を使用したCMOSスイッチを使用することが可能である。701、702のゲート端子以外の二つの端子はそれぞれ入力端子、もしくは出力端子のどちらかに接続されており、制御信号φが702のゲートに入力され、制御信号φが論理反転された信号が701のゲートに入力されている。 When the sampling switch is realized by a transistor, a CMOS switch using a PMOS transistor 701 and an NMOS transistor 702 can be used as shown in FIG. The two terminals other than the gate terminals 701 and 702 are connected to either the input terminal or the output terminal, respectively, and the control signal φ is input to the gate 702, and a signal obtained by logically inverting the control signal φ is 701. It is input to the gate.
 冒頭で述べたように、NMOSトランジスタのみのスイッチは入力電圧が高くなるとオン抵抗が高くなり、PMOSトランジスタのみの場合は入力電圧が低くなるとオン抵抗が高くなる。 As described at the beginning, an NMOS transistor only switch has a high on-resistance when the input voltage is high, and a PMOS transistor alone has a high on-resistance when the input voltage is low.
 そこで、図7(a)のようにNMOS,PMOS両方を使用することで、入力電圧の高い領域、低い領域の両方において、オン抵抗を低くする方法が一般的に知られている。 Therefore, it is generally known to use both NMOS and PMOS as shown in FIG. 7A to reduce the on-resistance in both the high and low input voltage regions.
 しかし、半導体プロセスの仕様によっては閾値の高いトランジスタしか用いることができない場合があり、その場合、正負電源の中心付近で701、702のどちらのMOSもオン抵抗が高くなるため、図7(b)に示されるようにオン抵抗が高い領域が発生する。 However, depending on the specifications of the semiconductor process, only a transistor with a high threshold can be used. In this case, both the MOS transistors 701 and 702 have high on-resistance in the vicinity of the center of the positive and negative power supplies. As shown in FIG. 4, a region having a high on-resistance is generated.
 図8は本実施例における各ノードの信号と、サンプリングスイッチのオン抵抗の関係を示したものである。 FIG. 8 shows the relationship between the signal of each node and the on-resistance of the sampling switch in this embodiment.
 801は図5のinp1に入力される信号であり、802、803はそれぞれノードP1,N1において観測される信号、804、805はノードP2、N2において観測される信号である。 801 is a signal input to inp1 in FIG. 5, 802 and 803 are signals observed at nodes P1 and N1, respectively, and 804 and 805 are signals observed at nodes P2 and N2.
 P1、N1の信号は理想的にはソースフォロア回路を通して、コモンモード電圧がシフトされ、交流成分はそのまま出力される。 The signals of P1 and N1 ideally pass through the source follower circuit, the common mode voltage is shifted, and the AC component is output as it is.
 これにより、図8右図の806に示すように出力信号804,805はオン抵抗の低い領域で信号を出力することが可能であり、サンプリングスイッチにPMOSトランジスタを使用する必要もなくなる。 As a result, the output signals 804 and 805 can be output in a region with a low on-resistance as indicated by 806 in the right diagram of FIG. 8, and it is not necessary to use a PMOS transistor for the sampling switch.
 本実施例においては、トランジスタ501、502に対となる差動の交流信号が入力された場合でも、入力端子の片側のみに交流信号が入力された場合でも、501、502のドレイン端子には差動の交流信号が出力される。 In the present embodiment, even when a differential AC signal as a pair is input to the transistors 501 and 502 or when an AC signal is input to only one side of the input terminal, there is no difference between the drain terminals of 501 and 502. Dynamic AC signal is output.
 従って、第1の実施例と同様に初段の差動増幅器と後段のソースフォロアがバイアス電流源506、507を共有した状態で動作し、それぞれ独立に電流源を持つ場合に比べて電力を削減することが可能である。 Therefore, as in the first embodiment, the first-stage differential amplifier and the latter-stage source follower operate in a state where the bias current sources 506 and 507 are shared, and the power is reduced compared to the case where each has a current source independently. It is possible.
 図9に第4の実施例にかかる2段増幅器の実施形態を示す。 FIG. 9 shows an embodiment of a two-stage amplifier according to the fourth embodiment.
 第4の実施例においては、第1の実施例における、トランジスタ101、102の負荷回路の一例として、抵抗911、912、トランジスタ913、914、コモンモードフィードバック回路905が接続されている。 In the fourth embodiment, resistors 911 and 912, transistors 913 and 914, and a common mode feedback circuit 905 are connected as an example of the load circuit of the transistors 101 and 102 in the first embodiment.
 本実施例ではトランジスタ901、902がそれぞれ接続されているノードをノードP1、ノードN1とする。抵抗911、912はそれぞれ片側のノードを共有し、共有していない側はそれぞれノードP1、ノードN1に接続されている。トランジスタ913、914はそのドレイン端子がそれぞれノードP1、ノードN1に接続され、ゲート端子が互いに共通のノードへ接続され、ソース端子はともに正電源908に接続されている。抵抗911、912が共有しているノードは、コモンモードフィードバック回路905の入力に接続され、コモンモードフィードバック回路905の出力はトランジスタ913、914のゲート端子に入力されている。また、ノードP1,N1はそれぞれ、容量915、916に接続され、容量915、916のノードP1、N1に接続されていない側の端子はそれぞれトランジスタ903、904のゲート端子へ接続されている。 In this embodiment, the nodes to which the transistors 901 and 902 are connected are referred to as a node P1 and a node N1, respectively. The resistors 911 and 912 share a node on one side, and the unshared side is connected to the node P1 and the node N1, respectively. Transistors 913 and 914 have drain terminals connected to node P1 and node N1, respectively, gate terminals connected to a common node, and source terminals connected to a positive power supply 908. The node shared by the resistors 911 and 912 is connected to the input of the common mode feedback circuit 905, and the output of the common mode feedback circuit 905 is input to the gate terminals of the transistors 913 and 914. The nodes P1 and N1 are connected to the capacitors 915 and 916, respectively. The terminals of the capacitors 915 and 916 that are not connected to the nodes P1 and N1 are connected to the gate terminals of the transistors 903 and 904, respectively.
 またトランジスタ903、904のゲート端子には抵抗917、918がそれぞれ接続され、917,918の反対側の端子はそれぞれ電源919、920に接続されている。 Further, resistors 917 and 918 are connected to the gate terminals of the transistors 903 and 904, respectively, and terminals on the opposite side of 917 and 918 are connected to power supplies 919 and 920, respectively.
 以下では本実施例の動作について述べる。 The operation of this embodiment is described below.
 第4の実施例において、トランジスタ913、914のバイアス電圧を適切に設定する必要があるが、抵抗911、912を同じ抵抗値とした場合、両社の共通ノードには、P1,N1のコモン電圧が現れることを利用し、コモンモードフィードバック回路905へP1,N1ノードのコモン電圧を入力し、913、914のゲートへフィードバック接続を行うことで、コモンモードフィードバック回路905はP1,N1が適切なコモン電圧になるようなトランジスタ913、914のゲート電圧を自動的に探索する。 In the fourth embodiment, it is necessary to appropriately set the bias voltages of the transistors 913 and 914. When the resistors 911 and 912 have the same resistance value, the common voltage of P1 and N1 is applied to the common node of both companies. The common mode feedback circuit 905 inputs the common voltage of the P1 and N1 nodes to the common mode feedback circuit 905 and performs feedback connection to the gates of 913 and 914, so that the common mode feedback circuit 905 has an appropriate common voltage for P1 and N1. The gate voltages of the transistors 913 and 914 are automatically searched.
 容量915、916は差動増幅器の出力ノードとソースフォロア回路の入力ノードを直流的に分離し、電圧源919,920の出力電圧値によってソースフォロア回路の入力ノードの直流バイアス点が定められている。 Capacitors 915 and 916 separate the output node of the differential amplifier and the input node of the source follower circuit in a DC manner, and the DC bias point of the input node of the source follower circuit is determined by the output voltage values of the voltage sources 919 and 920. .
 図10に第5の実施例にかかる超音波診断装置の実施形態を示す。 FIG. 10 shows an embodiment of an ultrasonic diagnostic apparatus according to the fifth embodiment.
 図10にはこの発明が適用される超音波診断装置のシステム構成図が示されている。近年、3次元立体画像を得られる超音波診断装置が開発されてきており、3次元立体画像から任意の断面を特定して断層像を得ることで、検査効率を向上させることが出来る。3次元の撮像のためには、超音波探触子内の振動子を、従来の1次元配列から2次元配列とする必要があり、振動子数が従来の超音波探触子に対して2乗で増加する。この場合に、超音波探触子と本体装置を接続するケーブルの本数を2乗で増やすことは不可能であるため、超音波探触子内で整相加算して本数を減らした受信信号を本体装置にケーブルを介して転送する必要がある。 FIG. 10 shows a system configuration diagram of an ultrasonic diagnostic apparatus to which the present invention is applied. In recent years, an ultrasonic diagnostic apparatus capable of obtaining a three-dimensional stereoscopic image has been developed, and inspection efficiency can be improved by obtaining a tomographic image by specifying an arbitrary cross section from the three-dimensional stereoscopic image. For three-dimensional imaging, it is necessary to change the transducers in the ultrasonic probe from the conventional one-dimensional array to the two-dimensional array, and the number of transducers is 2 compared to the conventional ultrasonic probe. Increases to the power. In this case, since it is impossible to increase the number of cables connecting the ultrasonic probe and the main unit by the square, the received signal with the number reduced by phasing addition in the ultrasonic probe is reduced. It must be transferred to the main unit via a cable.
 図10は2次元アレイ振動子を持つ超音波探触子とシステム構成を示している。超音波探触子1000内には各振動子1001に対して送受信回路1002が配置され、受信出力は加算回路1003により加算されて本体装置のAFE(アナログフロントエンド)1004に送られる。加算される振動子チャネルのグルーピング単位をサブアレイ1005と呼ぶ。各サブアレイ1005は、サブアレイを制御するためのサブアレイ制御論理回路1006を有する。サブアレイの実装は、送受信回路1002、加算回路1003、サブアレイ制御論理回路1006からなるサブアレイ1005を複数含むIC1007(点線で範囲を示す)に、複数の振動子1001が接続される構成となる。 FIG. 10 shows an ultrasonic probe having a two-dimensional array transducer and a system configuration. In the ultrasonic probe 1000, a transmission / reception circuit 1002 is arranged for each transducer 1001, and reception outputs are added by an addition circuit 1003 and sent to an AFE (analog front end) 1004 of the main unit. A grouping unit of transducer channels to be added is called a subarray 1005. Each subarray 1005 has a subarray control logic circuit 1006 for controlling the subarray. The subarray is implemented by a configuration in which a plurality of transducers 1001 are connected to an IC 1007 (indicated by a dotted line) including a plurality of subarrays 1005 including a transmission / reception circuit 1002, an adder circuit 1003, and a subarray control logic circuit 1006.
 本体装置1008内のプロセッサ1009は超音波探触子1000内IC1007の制御論理回路1010に制御信号を送り、IC制御論理回路1010はこれに応じて送受信の切換等の制御を行う。たとえば送受信切換は、サブアレイ1005一括で制御してIC制御論理回路やIC内の制御信号本数を削減することができる。あるいは図10のようにサブアレイ毎にサブアレイ制御論理回路1006を配置し、制御を階層化してサブアレイ制御論理回路1006から各送受信回路1002を独立に細粒度で制御することも可能である。 The processor 1009 in the main body device 1008 sends a control signal to the control logic circuit 1010 of the IC 1007 in the ultrasonic probe 1000, and the IC control logic circuit 1010 controls transmission / reception switching and the like accordingly. For example, the transmission / reception switching can be controlled collectively by the subarray 1005 to reduce the number of control signals in the IC control logic circuit and IC. Alternatively, as shown in FIG. 10, a sub-array control logic circuit 1006 can be arranged for each sub-array, and control can be hierarchized to control each transmission / reception circuit 1002 independently from the sub-array control logic circuit 1006 with fine granularity.
 図11にはサブアレイ1005内の構成が示されている。1振動子あたりの送受信回路1002には、高耐圧MOSで構成され、高圧信号を生成し振動子1001を駆動する送信回路1100、送信時にはオフ状態となり高圧信号からLNAを保護し、受信時にはオン状態となり振動子からの電気信号を通過させる送受分離スイッチ1101、低圧系の受信LNA1102、送信信号を遅延させビームフォーミングを行い、さらには受信信号を遅延させて整相を行う微小遅延回路1103が含まれる。微小遅延回路1103で整相された受信信号は加算回路1003で加算されて本体装置に転送される。図11では、制御の一例として、利得制御論理回路1104を振動子アレイの列毎に用意し、LNA利得を列毎に独立制御している。これにより、アレイの左右外側に行くに従い、列単位でLNA利得を下げるという制御が可能となる。この例でも、振動子1001以外の部分がICとして集積回路化される。 FIG. 11 shows the configuration in the subarray 1005. The transmission / reception circuit 1002 per transducer is composed of a high voltage MOS, and generates a high voltage signal to drive the transducer 1001. The transmission circuit 1100 is turned off during transmission, protects the LNA from the high voltage signal, and is turned on during reception. And a transmission / reception separation switch 1101 for passing an electrical signal from the vibrator, a low-pressure reception LNA 1102, a beam forming by delaying the transmission signal, and a delay circuit 1103 for delaying the reception signal to perform phasing. . The received signals phased by the minute delay circuit 1103 are added by the adder circuit 1003 and transferred to the main unit. In FIG. 11, as an example of control, a gain control logic circuit 1104 is prepared for each column of the transducer array, and the LNA gain is independently controlled for each column. As a result, it is possible to control to lower the LNA gain in units of columns as going to the left and right outside of the array. Also in this example, parts other than the vibrator 1001 are integrated as an IC.
 ここで、受信LNA1102は、実施例1~5で説明した振動子からのシングルエンド入力を増幅する差動増幅器を有し、差動信号を出力する。 Here, the reception LNA 1102 includes a differential amplifier that amplifies the single-ended input from the vibrator described in the first to fifth embodiments, and outputs a differential signal.
 上に述べた本発明の実施例によれば、電気-音響と音響-電気の両方の変換を行うトランスデューサを構成する超音波振動子からの電気信号を増幅し、シングルエンド-差動変換するLNAにおいて、特別な容量やインダクタンス素子を使用せずに、電流の再利用が可能であるため、消費電力の増大を防ぎ、初段の増幅回路に流す電流量を減らさずに、LNAの出力にソースフォロア回路を付加することが可能である。 According to the embodiment of the present invention described above, an LNA that amplifies an electric signal from an ultrasonic transducer constituting a transducer that performs both electro-acoustic and acoustic-electric conversion, and performs single-ended-differential conversion. In this case, the current can be reused without using a special capacitor or inductance element, so that an increase in power consumption can be prevented and the source follower can be added to the output of the LNA without reducing the amount of current flowing through the first stage amplifier circuit. It is possible to add a circuit.
 これにより、LNA初段の増幅利得、雑音性能を維持しつつ、出力インピーダンス及び、サンプリングスイッチのオン抵抗を低減することが可能となるため、LNAの電流、面積を増やさず、超音波診断装置の特にに生体深部の画質向上に寄与することができる。 This makes it possible to reduce the output impedance and the on-resistance of the sampling switch while maintaining the amplification gain and noise performance of the first stage of the LNA, so that the current and area of the LNA are not increased. In addition, it can contribute to the improvement of the image quality in the deep part of the living body.
 また、差動増幅型のLNAであるため、高い電源電圧変動除去比により、デジタル回路からのアナログ回路への電源雑音回り込みの影響を低減できることから、集積回路のアナログ/デジタル混載が可能となる。複雑な超音波ビームフォーミング、フォーカス、整相の制御論理を送信、受信のアナログ回路とともに1チップに集積することが出来、超音波探触子および本体装置の実装スペースやコストを低減できる。 Also, since the differential amplification type LNA is used, the influence of the power supply noise wraparound from the digital circuit to the analog circuit can be reduced by a high power supply voltage fluctuation rejection ratio, so that analog / digital mixed mounting of the integrated circuit becomes possible. Complex control logic of ultrasonic beam forming, focusing, and phasing can be integrated on one chip together with analog circuits for transmission and reception, and the mounting space and cost of the ultrasonic probe and the main unit can be reduced.
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.
 101・・・ トランジスタ、102・・・ トランジスタ、103・・・ トランジスタ、104・・・ トランジスタ、105・・・ 負荷回路、106・・・ バイアス電流源、107・・・ バイアス電流源、108・・・ 正電源、109・・・ 負電源、201・・・ トランジスタ、202・・・ トランジスタ、203・・・ 等価抵抗、204・・・ 等価電流源、205・・・ 負荷回路、206・・・ 正電源、207・・・ 負電源、301・・・ 等価交流信号源、302・・・ 等価直流バイアス、303・・・ トランジスタ、304・・・ トランジスタ、305・・・ バイアス電流源、306・・・ バイアス電流源、307・・・ 負電源、401・・・ トランジスタ、402・・・ トランジスタ、403・・・ トランジスタ、404・・・ トランジスタ、405・・・ 負荷回路、406・・・ バイアス電流源、407・・・ バイアス電流源、408・・・ 正電源、409・・・ 負電源、410・・・ 電流源、411・・・ 電流源、501・・・ トランジスタ、502・・・ トランジスタ、503・・・ トランジスタ、504・・・ トランジスタ、505・・・ 負荷回路、506・・・ バイアス電流源、507・・・ バイアス電流源、508・・・ 正電源、509・・・ 負電源、510・・・ サンプリングスイッチ、511・・・ サンプリングスイッチ、512・・・ サンプリング容量、601・・・ サンプリング容量の端子完電圧波形、602・・・ サンプリングスイッチの制御信号波形、701・・・ PMOSトランジスタ、702・・・ NMOSトランジスタ、703・・・ CMOSスイッチのオン抵抗、801・・・ 入力信号、802・・・ 差動アンプの負出力信号、803・・・ 差動アンプの正出力信号、804・・・ LNAの負出力信号、805・・・ LNAの正出力信号、806・・・ CMOSスイッチのオン抵抗、901・・・ トランジスタ、902・・・ トランジスタ、903・・・ トランジスタ、904・・・ トランジスタ、905・・・ コモンモードフィードバック回路、906・・・ バイアス電流源、907・・・ バイアス電流源、908・・・ 正電源、909・・・ 負電源、911・・・ 負荷抵抗、912・・・ 負荷抵抗、913・・・ トランジスタ、914・・・ トランジスタ、915・・・ 直流遮断容量、916・・・ 直流遮断容量、917・・・ 抵抗、918・・・ 抵抗、919・・・ 電源、920・・・ 電源、1000・・・超音波探触子、1001・・・振動子、1002・・・送受信回路、1003・・・加算回路、1004・・・アナログフロントエンド、1005・・・サブアレイ、1006・・・サブアレイ制御論理回路、1007・・・IC、1008・・・本体装置、1009・・・プロセッサ、1010・・・制御論理回路、1100・・・送信回路、1101・・・送受分離スイッチ、1102・・・受信LNA、1103・・・微小遅延回路、1104・・・利得制御論理回路 101 ... Transistor, 102 ... Transistor, 103 ... Transistor, 104 ... Transistor, 105 ... Load circuit, 106 ... Bias current source, 107 ... Bias current source, 108 ... -Positive power supply, 109 ... Negative power supply, 201 ... Transistor, 202 ... Transistor, 203 ... Equivalent resistance, 204 ... Equivalent current source, 205 ... Load circuit, 206 ... Positive Power source, 207 ... Negative power source, 301 ... Equivalent AC signal source, 302 ... Equivalent DC bias, 303 ... Transistor, 304 ... Transistor, 305 ... Bias current source, 306 ... Bias current source, 307 ... Negative power supply, 401 ... Transistor, 402 ... Transition 403 ... transistor 404 ... transistor 405 ... load circuit 406 ... bias current source 407 ... bias current source 408 ... positive power source 409 ... negative power source 410, current source, 411, current source, 501 ... transistor, 502 ... transistor, 503 ... transistor, 504 ... transistor, 505 ... load circuit, 506 ... Bias current source, 507 ... Bias current source, 508 ... Positive power supply, 509 ... Negative power supply, 510 ... Sampling switch, 511 ... Sampling switch, 512 ... Sampling capacity, 601 ...・ Sampling capacity terminal complete voltage waveform, 602 ... Sampling switch control 701 ... PMOS transistor, 702 ... NMOS transistor, 703 ... On resistance of CMOS switch, 801 ... Input signal, 802 ... Negative output signal of differential amplifier, 803 ... Positive output signal of differential amplifier, 804 ... LNA negative output signal, 805 ... LNA positive output signal, 806 ... On-resistance of CMOS switch, 901 ... Transistor, 902 ... Transistor, 903 ... Transistor, 904 ... Transistor, 905 ... Common mode feedback circuit, 906 ... Bias current source, 907 ... Bias current source, 908 ... Positive power supply, 909 ... Negative power supply 911 ... Load resistance, 912 ... Load resistance, 913 ... Transitions 914 ... transistor, 915 ... DC blocking capacity, 916 ... DC blocking capacity, 917 ... resistance, 918 ... resistance, 919 ... power supply, 920 ... power supply, 1000 ..Ultrasonic probe, 1001... Transducer, 1002... Transceiver circuit, 1003... Adder circuit, 1004... Analog front end, 1005. Circuit, 1007 ... IC, 1008 ... Main unit, 1009 ... Processor, 1010 ... Control logic circuit, 1100 ... Transmission circuit, 1101 ... Transmission / reception separation switch, 1102 ... Reception LNA DESCRIPTION OF SYMBOLS 1103 ... Minute delay circuit, 1104 ... Gain control logic circuit

Claims (16)

  1.  ソース端子が互いに結線されている2個1組のトランジスタ1およびトランジスタ2と、前記トランジスタ1とトランジスタ2のそれぞれのドレイン端子に接続された負荷回路からなる差動増幅器と、ドレイン端子が互いに結線されている2個1組のトランジスタ3およびトランジスタ4と、前記トランジスタ3とトランジスタ4にそれぞれ接続されている電流源1および電流源2からなる差動のソースフォロア回路において、前記トランジスタ1とトランジスタ2のそれぞれのソース端子が接続されているノードとトランジスタ3とトランジスタ4のそれぞれのドレイン端子が接続されているノードが同一であることを特徴とする低雑音増幅器。 A pair of two transistors 1 and 2 whose source terminals are connected to each other, a differential amplifier composed of a load circuit connected to the respective drain terminals of the transistors 1 and 2, and the drain terminals are connected to each other In a differential source follower circuit comprising a set of two transistors 3 and 4 and a current source 1 and a current source 2 connected to the transistors 3 and 4, respectively, the transistors 1 and 2 A low-noise amplifier characterized in that a node to which each source terminal is connected and a node to which each drain terminal of the transistors 3 and 4 is connected are the same.
  2.  請求項1に記載の低雑音増幅器において、前記差動増幅器を構成する2個1組のトランジスタ1のドレイン端子が前記差動のソースフォロア回路を構成するトランジスタ3のゲート端子に接続され、トランジスタ2のドレイン端子が前記差動のソースフォロア回路を構成するトランジスタ4のゲート端子に接続されていることを特徴とする低雑音増幅器。 2. The low noise amplifier according to claim 1, wherein drain terminals of a set of two transistors 1 constituting the differential amplifier are connected to a gate terminal of a transistor 3 constituting the differential source follower circuit. The drain terminal of the transistor is connected to the gate terminal of the transistor 4 constituting the differential source follower circuit.
  3.  請求項1に記載の低雑音増幅器において、前記差動増幅器を構成するトランジスタ1とトランジスタ2のそれぞれのソース端子が接続されているノードに、前記差動増幅器を構成する電流源とは異なる電流源が接続されていることを特徴とする低雑音増幅器。 2. The low noise amplifier according to claim 1, wherein a current source different from the current source constituting the differential amplifier is connected to a node to which the source terminals of the transistors 1 and 2 constituting the differential amplifier are connected. A low noise amplifier characterized by being connected.
  4.  請求項1に記載の低雑音増幅器において、入力端子と出力端子をもち、入力端子に入力される交流の電気信号と、入力端子に入力される直流電圧と同じか異なる直流電圧信号を足した信号を出力端子から出力する直流電圧シフト回路1の入力端子が前記差動増幅器を構成するトランジスタ1のドレイン端子に接続され、直流電圧シフト回路1と同じ機能を持つ直流電圧シフト回路2が前記差動増幅器を構成するトランジスタ2のドレイン端子に接続されていることを特徴とする低雑音増幅器。 2. The low noise amplifier according to claim 1, comprising an input terminal and an output terminal, and a signal obtained by adding an AC electrical signal input to the input terminal and a DC voltage signal that is the same as or different from the DC voltage input to the input terminal. The DC voltage shift circuit 1 is connected to the drain terminal of the transistor 1 constituting the differential amplifier, and the DC voltage shift circuit 2 having the same function as the DC voltage shift circuit 1 is connected to the differential terminal. A low noise amplifier characterized by being connected to a drain terminal of a transistor 2 constituting the amplifier.
  5.  請求項1に記載の低雑音増幅器において、前記差動増幅器を構成するトランジスタ1のドレイン端子に容量端子1-1と容量端子1-2をもつ容量素子1の容量端子1-1が接続され、前記容量素子1の容量端子1-2に直流電圧を与えるバイアス回路1と前記差動のソースフォロア回路を構成するトランジスタ3のゲート端子が接続され、前記差動増幅器を構成するトランジスタ2のドレイン端子に容量端子2-1と容量端子2-2をもつ容量素子2の容量端子2-1が接続され、容量素子2の容量端子2-2に直流電圧を与えるバイアス回路2と前記差動のソースフォロア回路を構成するトランジスタ4のゲート端子が接続されていることを特徴とする低雑音増幅器。 2. The low noise amplifier according to claim 1, wherein a capacitor terminal 1-1 of a capacitor element 1 having a capacitor terminal 1-1 and a capacitor terminal 1-2 is connected to a drain terminal of the transistor 1 constituting the differential amplifier. A bias circuit 1 that applies a DC voltage to the capacitance terminal 1-2 of the capacitive element 1 is connected to a gate terminal of the transistor 3 that constitutes the differential source follower circuit, and a drain terminal of the transistor 2 that constitutes the differential amplifier. Are connected to a capacitor terminal 2-1 of a capacitor element 2 having a capacitor terminal 2-1 and a capacitor terminal 2-2, and a bias circuit 2 for applying a DC voltage to the capacitor terminal 2-2 of the capacitor element 2 and the differential source A low-noise amplifier characterized in that the gate terminal of a transistor 4 constituting a follower circuit is connected.
  6.  請求項5に記載の低雑音増幅器において、前記バイアス回路1とバイアス回路2が端子1と端子2の端子を持つ抵抗素子と直流電圧を与える電源回路から構成されるバイアス回路であり、前記バイアス回路内の抵抗素子の端子1に前記バイアス回路内の電源回路が接続され、前記抵抗素子の端子2を出力としていることを特徴とする低雑音増幅器。 6. The low noise amplifier according to claim 5, wherein the bias circuit 1 and the bias circuit 2 are a bias circuit including a resistance element having a terminal 1 and a terminal 2 and a power supply circuit for supplying a DC voltage, A power supply circuit in the bias circuit is connected to a terminal 1 of the resistor element, and a terminal 2 of the resistor element is used as an output.
  7.  請求項1に記載の低雑音増幅器において、前記差動のソースフォロア回路を構成するトランジスタ3のソース端子に、入力電圧を保持するサンプル回路1の入力端子が接続され、前記差動のソースフォロア回路を構成するトランジスタ4のソース端子に入力電圧を保持するサンプル回路1の入力端子が接続されていることを特徴とする低雑音増幅器。 2. The low noise amplifier according to claim 1, wherein an input terminal of the sample circuit 1 holding an input voltage is connected to a source terminal of the transistor 3 constituting the differential source follower circuit, and the differential source follower circuit is provided. A low-noise amplifier characterized in that the input terminal of the sample circuit 1 that holds the input voltage is connected to the source terminal of the transistor 4 that constitutes the transistor.
  8.  音波振動子と、前記音波振動子からの電気信号を増幅する増幅器を搭載し、前記増幅器は、ソース端子が互いに結線されている2個1組のトランジスタ1およびトランジスタ2と、前記トランジスタ1とトランジスタ2のそれぞれのドレイン端子に接続された負荷回路からなる差動増幅器と、ドレイン端子が互いに結線されている2個1組のトランジスタ3およびトランジスタ4と、前記トランジスタ3とトランジスタ4にそれぞれ接続されている電流源1および電流源2からなる差動のソースフォロア回路において、前記トランジスタ1とトランジスタ2のそれぞれのソース端子が接続されているノードとトランジスタ3とトランジスタ4のそれぞれのドレイン端子が接続されているノードが同一であることを特徴とする超音波探触子。 A sound wave oscillator and an amplifier for amplifying an electric signal from the sound wave oscillator are mounted, and the amplifier includes a pair of transistors 1 and 2 whose source terminals are connected to each other, and the transistor 1 and the transistor A differential amplifier composed of a load circuit connected to each of the two drain terminals, a set of two transistors 3 and 4 whose drain terminals are connected to each other, and the transistor 3 and the transistor 4 respectively. In the differential source follower circuit composed of the current source 1 and the current source 2, the node to which the source terminals of the transistors 1 and 2 are connected and the drain terminals of the transistors 3 and 4 are connected. An ultrasonic probe characterized by having identical nodes.
  9.  請求項8に記載の超音波探触子において、前記差動増幅器を構成する2個1組のトランジスタ1のドレイン端子が前記差動のソースフォロア回路を構成するトランジスタ3のゲート端子に接続され、トランジスタ2のドレイン端子が前記差動のソースフォロア回路を構成するトランジスタ4のゲート端子に接続されていることを特徴とする超音波探触子。 The ultrasonic probe according to claim 8, wherein drain terminals of a set of two transistors 1 constituting the differential amplifier are connected to gate terminals of transistors 3 constituting the differential source follower circuit, An ultrasonic probe, wherein a drain terminal of the transistor 2 is connected to a gate terminal of the transistor 4 constituting the differential source follower circuit.
  10.  請求項8に記載の超音波探触子において、前記差動増幅器を構成するトランジスタ1とトランジスタ2のそれぞれのソース端子が接続されているノードに、前記差動増幅器を構成する電流源とは異なる電流源が接続されていることを特徴とする超音波探触子。 9. The ultrasonic probe according to claim 8, wherein a node connected to a source terminal of each of the transistors 1 and 2 constituting the differential amplifier is different from a current source constituting the differential amplifier. An ultrasonic probe, characterized in that a current source is connected.
  11.  請求項8に記載の超音波探触子において、入力端子と出力端子をもち、入力端子に入力される交流の電気信号と、入力端子に入力される直流電圧と同じか異なる直流電圧信号を足した信号を出力端子から出力する直流電圧シフト回路1の入力端子が前記差動増幅器を構成するトランジスタ1のドレイン端子に接続され、直流電圧シフト回路1と同じ機能を持つ直流電圧シフト回路2が前記差動増幅器を構成するトランジスタ2のドレイン端子に接続されていることを特徴とする超音波探触子。 9. The ultrasonic probe according to claim 8, comprising an input terminal and an output terminal, wherein an AC electrical signal input to the input terminal and a DC voltage signal that is the same as or different from the DC voltage input to the input terminal are added. The DC voltage shift circuit 1 is connected to the drain terminal of the transistor 1 constituting the differential amplifier, and the DC voltage shift circuit 2 having the same function as the DC voltage shift circuit 1 An ultrasonic probe connected to a drain terminal of a transistor 2 constituting a differential amplifier.
  12.  請求項8に記載の超音波探触子において、前記差動増幅器を構成するトランジスタ1のドレイン端子に容量端子1-1と容量端子1-2をもつ容量素子1の容量端子1-1が接続され、前記容量素子1の容量端子1-2に直流電圧を与えるバイアス回路1と前記差動のソースフォロア回路を構成するトランジスタ3のゲート端子が接続され、前記差動増幅器を構成するトランジスタ2のドレイン端子に容量端子2-1と容量端子2-2をもつ容量素子2の容量端子2-1が接続され、容量素子2の容量端子2-2に直流電圧を与えるバイアス回路2と前記差動のソースフォロア回路を構成するトランジスタ4のゲート端子が接続されていることを特徴とする超音波探触子。 9. The ultrasonic probe according to claim 8, wherein a capacitor terminal 1-1 of a capacitor element 1 having a capacitor terminal 1-1 and a capacitor terminal 1-2 is connected to a drain terminal of the transistor 1 constituting the differential amplifier. The bias circuit 1 for applying a DC voltage to the capacitance terminal 1-2 of the capacitive element 1 and the gate terminal of the transistor 3 constituting the differential source follower circuit are connected, and the transistor 2 constituting the differential amplifier is connected. The capacitance terminal 2-1 of the capacitive element 2 having the capacitive terminal 2-1 and the capacitive terminal 2-2 is connected to the drain terminal, and the bias circuit 2 for applying a DC voltage to the capacitive terminal 2-2 of the capacitive element 2 and the differential An ultrasonic probe, wherein a gate terminal of a transistor 4 constituting the source follower circuit is connected.
  13.  請求項12に記載の超音波探触子において、前記バイアス回路1とバイアス回路2が端子1と端子2の端子を持つ抵抗素子と直流電圧を与える電源回路から構成されるバイアス回路であり、前記バイアス回路内の抵抗素子の端子1に前記バイアス回路内の電源回路が接続され、前記抵抗素子の端子2を出力としていることを特徴とする超音波探触子。 13. The ultrasonic probe according to claim 12, wherein the bias circuit 1 and the bias circuit 2 are a bias circuit including a resistance element having a terminal 1 and a terminal 2 and a power supply circuit for applying a DC voltage, An ultrasonic probe, wherein a power supply circuit in the bias circuit is connected to a terminal 1 of a resistance element in the bias circuit, and a terminal 2 of the resistance element is used as an output.
  14.  請求項8に記載の低雑音増幅器において、前記差動のソースフォロア回路を構成するトランジスタ3のソース端子に、入力電圧を保持するサンプル回路1の入力端子が接続され、前記差動のソースフォロア回路を構成するトランジスタ4のソース端子に入力電圧を保持するサンプル回路1の入力端子が接続されていることを特徴とする超音波探触子。 9. The low noise amplifier according to claim 8, wherein an input terminal of the sample circuit 1 that holds an input voltage is connected to a source terminal of the transistor 3 that constitutes the differential source follower circuit, and the differential source follower circuit. An ultrasonic probe, characterized in that the input terminal of the sample circuit 1 that holds the input voltage is connected to the source terminal of the transistor 4 that constitutes the above.
  15.  電気-音響と音響-電気の両方の変換を行うトランスデューサを構成し、第1の端子がグラウンドに接続される振動子と、前記振動子の第2の端子に接続される送信器と、前記振動子の第2の端子に接続される受信器を有し、前記受信器は、ソース端子が互いに結線されている2個1組のトランジスタ1およびトランジスタ2と、前記トランジスタ1とトランジスタ2のそれぞれのドレイン端子に接続された負荷回路からなる差動増幅器と、ドレイン端子が互いに結線されている2個1組のトランジスタ3およびトランジスタ4と、前記トランジスタ3とトランジスタ4にそれぞれ接続されている電流源1および電流源2からなる差動のソースフォロア回路において、前記トランジスタ1とトランジスタ2のそれぞれのソース端子が接続されているノードとトランジスタ3とトランジスタ4のそれぞれのドレイン端子が接続されているノードが同一である増幅器を備えることを特徴とする超音波診断装置。 A transducer that performs both electro-acoustic and acoustic-electrical conversion, a vibrator having a first terminal connected to a ground, a transmitter connected to a second terminal of the vibrator, and the vibration A receiver connected to a second terminal of the child, the receiver comprising a set of two transistors 1 and 2 whose source terminals are connected to each other, and each of the transistors 1 and 2 A differential amplifier comprising a load circuit connected to the drain terminal; a set of two transistors 3 and 4 whose drain terminals are connected to each other; and a current source 1 connected to each of the transistors 3 and 4 In the differential source follower circuit comprising the current source 2 and the current source 2, the source terminals of the transistors 1 and 2 are connected to each other. And has a node the transistor 3 and the ultrasonic diagnostic apparatus nodes respective drain terminals of the transistor 4 is connected, characterized in that it comprises an amplifier is the same.
  16.  請求項15に記載の超音波診断装置において、前記振動子、送信器、受信器の組を複数備え、前記複数の送信器および受信器を単一のICに搭載したことを特徴とする超音波診断装置。
     
    The ultrasonic diagnostic apparatus according to claim 15, comprising a plurality of sets of the vibrator, transmitter, and receiver, wherein the plurality of transmitters and receivers are mounted on a single IC. Diagnostic device.
PCT/JP2015/060540 2015-04-03 2015-04-03 Low noise amplifier, and ultrasonic probe and diagnostic device using same WO2016157511A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060540 WO2016157511A1 (en) 2015-04-03 2015-04-03 Low noise amplifier, and ultrasonic probe and diagnostic device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060540 WO2016157511A1 (en) 2015-04-03 2015-04-03 Low noise amplifier, and ultrasonic probe and diagnostic device using same

Publications (1)

Publication Number Publication Date
WO2016157511A1 true WO2016157511A1 (en) 2016-10-06

Family

ID=57004159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060540 WO2016157511A1 (en) 2015-04-03 2015-04-03 Low noise amplifier, and ultrasonic probe and diagnostic device using same

Country Status (1)

Country Link
WO (1) WO2016157511A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137311A (en) * 1982-02-10 1983-08-15 Nec Corp Differential source follower circuit
JPH01137709A (en) * 1987-10-19 1989-05-30 Tektronix Inc Differential amplifier
JPH05226950A (en) * 1992-02-14 1993-09-03 Asahi Kasei Micro Syst Kk Full differential amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137311A (en) * 1982-02-10 1983-08-15 Nec Corp Differential source follower circuit
JPH01137709A (en) * 1987-10-19 1989-05-30 Tektronix Inc Differential amplifier
JPH05226950A (en) * 1992-02-14 1993-09-03 Asahi Kasei Micro Syst Kk Full differential amplifier

Similar Documents

Publication Publication Date Title
US11545946B2 (en) Amplifier with built in time gain compensation for ultrasound applications
JP5092009B2 (en) Low dropout linear regulator (LDO), method for providing LDO, and method for operating LDO
WO2018236799A1 (en) Single-ended trans-impedance amplifier (tia) for ultrasound device
US10637468B2 (en) Galvanically-isolated signaling between modules with step-up transformer
CN110769751A (en) Multi-stage transimpedance amplifier (TIA) for ultrasound device
US8248164B2 (en) Integrated circuit single ended-to-differential amplifier
JP2007006484A (en) Differential amplifier
CN101860332B (en) Amplifier circuit with reduced phase noise
JP2008199611A (en) Signal converter having compensation unit
US8536924B2 (en) High-impedance network
JP5239451B2 (en) Differential single phase converter circuit
EP2110947A1 (en) Variable gain RF amplifier
KR20220066428A (en) Device for actuating and reading a group of ultrasound transducers for ultrasound computer tomography, and ultrasound computer tomography machine
US9531341B2 (en) Method and apparatus for converting single-ended signals into differential signals
US6825708B1 (en) Apparatus and method for an offset-correcting sense amplifier
WO2016035205A1 (en) Amplifier, and ultrasound probe and diagnostic apparatus using same
WO2016157511A1 (en) Low noise amplifier, and ultrasonic probe and diagnostic device using same
US7847585B2 (en) Source follower with active inductance as a load
US7443207B2 (en) Differential output circuit with stable duty
Bharathi et al. Design of level shifter and output driver in HV transmitter IC for ultrasound medical imaging application
US7088163B1 (en) Circuit for multiplexing a tapped differential delay line to a single output
Yang et al. A low power analog front-end for ultrasound receiver
US20230018356A1 (en) Amplifier for a radio frequency receiver
JP5304087B2 (en) amplifier
Gu et al. Low-power area-efficient high-voltage linear amplifier for driving integrated 2-D ultrasound transducer array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP