WO2016157347A1 - Bearing current monitoring device and rotary electric machine - Google Patents

Bearing current monitoring device and rotary electric machine Download PDF

Info

Publication number
WO2016157347A1
WO2016157347A1 PCT/JP2015/059830 JP2015059830W WO2016157347A1 WO 2016157347 A1 WO2016157347 A1 WO 2016157347A1 JP 2015059830 W JP2015059830 W JP 2015059830W WO 2016157347 A1 WO2016157347 A1 WO 2016157347A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
bearing current
current monitoring
sensor
acoustic
Prior art date
Application number
PCT/JP2015/059830
Other languages
French (fr)
Japanese (ja)
Inventor
牧 晃司
哲司 加藤
智昭 蛭田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/059830 priority Critical patent/WO2016157347A1/en
Publication of WO2016157347A1 publication Critical patent/WO2016157347A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Definitions

  • the present invention relates to a deterioration diagnosis technique for a bearing of a rotating machine such as a motor or a generator, and more particularly to a bearing current monitoring device.
  • Patent Document 1 discloses a technique for detecting that the shaft voltage has been sharply reduced and estimating the bearing life by regarding it as a discharge generation signal.
  • this method requires additional equipment such as a brush to measure the shaft voltage, which is costly and has a problem in accuracy because the bearing current is estimated indirectly.
  • Patent Document 2 discloses a technique for measuring the bearing current by installing a magnetic field sensor in the vicinity of the bearing and detecting a change in the magnetic field caused by the bearing current.
  • the bearing current is weak and the flow path is indefinite, there is a problem in terms of sensitivity if only the magnetic field is measured as in this method.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to realize a highly accurate bearing deterioration diagnosis by highly sensitive bearing current monitoring.
  • the bearing current flowing due to the discharge phenomenon generated between the inner ring / outer ring and the rolling element is accompanied by the generation of discharge noise.
  • the bearing current is monitored with higher sensitivity by measuring both and the correlation.
  • both the magnetic field sensor and the acoustic sensor are of an optical fiber type, data can be transmitted with a single optical fiber.
  • a bearing current monitoring device of the present invention includes a magnetic field sensor that measures a circumferential magnetic field generated by a bearing current, an acoustic sensor that measures sound generated when the bearing current is generated, and the magnetic field.
  • a data processing device that extracts a synchronized signal by integrating the data measured by the sensor and the data measured by the acoustic sensor, and magnetic field data that transmits the data measured by the magnetic field sensor to the data processing device
  • a transmission means and an acoustic data transmission means for transmitting data measured by the acoustic sensor to the data processing device are provided.
  • the present invention is the bearing current monitoring device, wherein the magnetic field sensor has a maximum sensitivity to a circumferential magnetic field.
  • the present invention is the bearing current monitoring device, wherein the magnetic field sensor is installed on the lower side in the vertical direction with respect to the rotation axis.
  • the present invention is characterized in that, in the bearing current monitoring device, the magnetic field data transmission means, the acoustic data transmission means, or both include an optical fiber as a component.
  • the present invention is characterized in that, in the bearing current monitoring device, the magnetic field data transmission means, the acoustic data transmission means, or both include wireless communication as a component.
  • the present invention is the bearing current monitoring device, wherein the data processing device records the generation of a pulse signal synchronized between the data measured by the magnetic field sensor and the data measured by the acoustic sensor, and the magnetic field pulse. And the waveform information of acoustic pulses are recorded.
  • the present invention is characterized in that, in the bearing current monitoring device, the sensitivity portion of the magnetic field sensor is arranged so as to surround the outer periphery of the shaft.
  • the present invention is characterized in that, in the bearing current monitoring device, a sensor that converts magnetic field information into light using a magneto-optic effect and reads the magnetic field sensor.
  • the present invention is characterized in that, in the bearing current monitoring apparatus, a sensor that converts acoustic information into light by using a principle of a fiber Bragg grating (FBG) is used as the acoustic sensor.
  • FBG fiber Bragg grating
  • the present invention is characterized in that in the bearing current monitoring device, a single optical fiber is shared as the magnetic field data propagation means and the acoustic data propagation means.
  • the present invention includes a magnetic field sensor that measures a circumferential magnetic field generated by a bearing current, and an acoustic sensor that measures sound generated when the bearing current is generated. It is characterized by this.
  • the present invention is provided with a magnetic field sensor that measures a circumferential magnetic field generated by a bearing current and an acoustic sensor that measures sound generated when the bearing current is generated.
  • the housing is provided with a jig for this purpose.
  • the bearing current monitoring device and the rotating electrical machine of the present invention since the bearing current in the actual machine can be monitored with high sensitivity without processing around the bearing, a highly accurate bearing deterioration diagnosis can be realized. .
  • FIG. 1 is a configuration diagram of a bearing current monitoring apparatus according to a first embodiment of the present invention.
  • 3 is a data processing algorithm of the bearing current monitoring apparatus according to the first embodiment of the present invention.
  • FIG. 1 is a block diagram showing a first embodiment of a bearing current monitoring apparatus of the present invention.
  • the magnetic field sensor 1 and the acoustic sensor 2 are installed in the vicinity of the bearing 10.
  • the bearing current flows in the axial direction or the radial direction when considering the bearing as a starting point. Therefore, it is considered that the magnetic field generated by the bearing current is generated in the circumferential direction. Therefore, the magnetic field sensor 1 needs to be installed so as to have sensitivity to the circumferential magnetic field 6. In order to reduce noise, it is desirable that the direction of the maximum sensitivity of the magnetic field sensor 1 is the circumferential direction.
  • the magnetic field sensor 1 and the acoustic sensor 2 are installed on the surface of the casing 21 of the rotating electrical machine 20 to be diagnosed as shown in FIG.
  • the installation position may be any position up, down, left, or right with respect to the rotation shaft 22.
  • the distance between the inner ring 11 of the bearing and the rolling element 13 and the distance between the outer ring 12 and the rolling element 13 are relative to each other on the lower side in the vertical direction of the bearing. It is expected that the discharge is likely to occur. Therefore, it is desirable that the magnetic field sensor be installed on the lower side in the vertical direction of the bearing.
  • the magnetic field sensor 1 and the acoustic sensor 2 may be always installed, or when a diagnosis is performed by providing a jig for attaching the magnetic field sensor 1 and the acoustic sensor 2 to the housing 21. It may be installed only.
  • both the magnetic field data transmission means 4 and the acoustic data transmission means 5 are shown as wires such as electric cables and optical fibers, but the magnetic field data transmission means 4 or the acoustic data transmission means 5 or Both may include wireless communications as a component.
  • FIG. 3 shows processing by an algorithm in the data processing device 3.
  • Step 100 hereinafter referred to as S100.
  • the propagated magnetic field data and acoustic data are analyzed to search for a synchronized pulse signal as shown in FIG. 4 (S101 and S102). At that time, the influence of noise may be reduced by limiting the frequency band.
  • the synchronized pulse signal is regarded as evidence of discharge, and the occurrence is recorded (S103), and the waveform information of the magnetic field pulse and the waveform information of the acoustic pulse are recorded in the storage device (S104). This is because the progress of the electric corrosion of the bearing is considered to be determined by the energy and frequency of the discharge, and the waveform information of the magnetic field pulse and the waveform information of the acoustic pulse are associated with the energy of the discharge.
  • the bearing current monitoring device of the present invention it is possible to monitor and record the bearing current that causes the electric corrosion of the bearing with high sensitivity, so it is possible to realize a highly accurate bearing deterioration diagnosis.
  • FIG. 5 is a block diagram showing a second embodiment of the bearing current monitoring apparatus of the present invention. Unless otherwise specified, members having the same reference numerals as those in the first embodiment have the same configuration and effects. is there.
  • the magnetic field sensor 1 is of an optical fiber type, and converts magnetic field information into information on the polarization angle of light by a magneto-optic effect and reads it out.
  • the entire optical fiber is a sensitivity portion, and the sensitivity portion is installed so as to surround the outer periphery of the shaft. With this configuration, it is possible to cover a wide range of bearing current flowing directions.
  • the acoustic sensor 2 is also an optical fiber type. This is called a fiber Bragg grating (FBG) sensor, which reads out the optical fiber expansion and contraction by converting it into information on the wavelength of light.
  • FBG fiber Bragg grating
  • the magnetic field data transmission means 4 and the acoustic data transmission means 5 are also made of optical fibers, and are devices with excellent noise resistance.
  • FIG. 6 is a block diagram showing a third embodiment of the bearing current monitoring device of the present invention. Unless otherwise specified, members having the same reference numerals as those of the above-described embodiment have the same configuration and effects. .
  • the magnetic field data transmission means and the acoustic data transmission means are shared by a single optical fiber.
  • the magnetic field sensor 1 is an optical fiber type, and the entire optical fiber is a sensitivity part, and the sensitivity part is installed so as to surround the outer periphery of the shaft. Further, the FBG sensor of the acoustic sensor 2 is installed with the optical fiber portion directed in the radial direction.
  • the magnetic field sensor 1 and the acoustic sensor 2 use light of different wavelengths, such a configuration is possible. By doing in this way, the monitoring device cost and the cable laying cost can be reduced.
  • FIG. 7 is a block diagram showing a fourth embodiment of the bearing current monitoring apparatus of the present invention. Unless otherwise specified, members having the same reference numerals as those of the above-described embodiment have the same configuration and effects. .
  • a small and highly sensitive optical fiber type sensor is used as the magnetic field sensor 1.
  • the sensitivity portion becomes narrow, there are advantages such as being able to detect a weaker bearing current and improving ease of installation.
  • FIG. 8 is a block diagram showing a fifth embodiment of the bearing current monitoring apparatus of the present invention. Unless otherwise specified, members having the same reference numerals as those of the above-described embodiment have the same configuration and effects. .
  • the magnetic field data transmission means and the acoustic data transmission means are shared by a single optical fiber in the fourth embodiment.
  • the monitoring device cost and the cable laying cost can be reduced.
  • Magnetic field sensor 2 Acoustic sensor 3
  • Data processor 4 Magnetic field data transmission means 5
  • Acoustic data transmission means 6 Circumferential magnetic field 10
  • Bearing 11 Inner ring 12
  • Rolling element 20 Rotating electrical machine 21
  • Housing 22 Rotating shaft 23

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

The purpose of the present invention is to provide a bearing current monitoring device that monitors with high sensitivity the bearing current in an actual machine without processing of the bearing vicinity, and a rotary electric machine system provided with same. Provided are a bearing current monitoring device and a rotary electric machine system provided with same, the bearing current monitoring device being provided with a magnetic field sensor that measures the circumferential magnetic field produced by a bearing current, an acoustic sensor that measures the sound produced when the bearing current is generated, a data processing unit that processes in an integrated manner data measured by the magnetic field sensor and data measured by the acoustic sensor to extract a synchronized signal, a magnetic field data transmission means for transmitting the data measured by the magnetic field sensor to the data processing unit, and an acoustic data transmission means for transmitting the data measured by the acoustic sensor to the data processing unit.

Description

軸受電流監視装置、及び回転電機Bearing current monitoring device and rotating electric machine
 本発明は、モータや発電機といった回転機の軸受の劣化診断技術、特に軸受電流の監視装置に関するものである。 The present invention relates to a deterioration diagnosis technique for a bearing of a rotating machine such as a motor or a generator, and more particularly to a bearing current monitoring device.
 モータや発電機といった回転機が突発故障により停止すると、大きな損害が発生する。特に工場設備等に用いられる高圧モータの突発故障による停止は、生産設備の稼働率低下や生産計画の見直しを余儀なくされるなど、影響が大きい。高圧モータの故障原因としては、約40%が軸受の劣化であるとの調査結果がある。また省エネのため、インバータによる可変速駆動が高圧モータにまで普及傾向であり、軸受電食による軸受劣化加速という問題が発生している。この傾向はSiC(炭化ケイ素)などの新材料を用いた半導体デバイスの登場によって一層顕著になると見込まれている。そのため運転状態における高精度な軸受劣化診断を実現し、モータや発電機の突発故障を防止するニーズが高まっている。 If a rotating machine such as a motor or a generator stops due to a sudden failure, significant damage will occur. In particular, a stop due to a sudden failure of a high-voltage motor used in a factory facility or the like has a great impact, such as a reduction in the operating rate of the production facility and a review of the production plan. According to the survey results, about 40% of the causes of failure of high-voltage motors are bearing deterioration. In addition, in order to save energy, variable-speed driving by an inverter has been spread to high-voltage motors, and there has been a problem of accelerated bearing deterioration due to electric corrosion of bearings. This trend is expected to become even more pronounced with the advent of semiconductor devices using new materials such as SiC (silicon carbide). Therefore, there is an increasing need to realize highly accurate bearing deterioration diagnosis in the operating state and prevent sudden failure of motors and generators.
 軸受電食は、軸電圧が何らかの理由で高まり、軸受の転動体と内輪・外輪との間で放電が発生して軸受電流が流れることが繰り返されて生じる。そこで、例えば〔特許文献1〕では、軸電圧が急峻に低減したことを検出し、それを放電発生信号とみなして軸受寿命を推定する技術が開示されている。しかし本手法では軸電圧を計測するためにブラシ等の付加設備が必要になりコストがかかるほか、軸受電流を間接的に推定することになるため精度面で課題があった。 軸 受 Bearing corrosion is caused by the fact that the shaft voltage increases for some reason, and discharge is generated between the rolling elements of the bearing and the inner and outer rings, and the bearing current flows repeatedly. Thus, for example, [Patent Document 1] discloses a technique for detecting that the shaft voltage has been sharply reduced and estimating the bearing life by regarding it as a discharge generation signal. However, this method requires additional equipment such as a brush to measure the shaft voltage, which is costly and has a problem in accuracy because the bearing current is estimated indirectly.
 また〔特許文献2〕では、軸受近辺に磁界センサを設置し、軸受電流により生じる磁界の変化を検出することで、軸受電流を計測する技術が開示されている。しかしながら軸受電流は微弱かつ流路不定のため、本手法のように磁界を計測するだけでは、感度面で課題があった。 [Patent Document 2] discloses a technique for measuring the bearing current by installing a magnetic field sensor in the vicinity of the bearing and detecting a change in the magnetic field caused by the bearing current. However, since the bearing current is weak and the flow path is indefinite, there is a problem in terms of sensitivity if only the magnetic field is measured as in this method.
特開2001-289738号公報Japanese Patent Laid-Open No. 2001-289738 特開2011-39056号公報JP 2011-39056 A
 本発明は、上記のような従来技術が抱える問題を解決するためになされたものであり、高感度な軸受電流監視により、高精度な軸受劣化診断を実現することを目的とする。 The present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to realize a highly accurate bearing deterioration diagnosis by highly sensitive bearing current monitoring.
 本発明では、内輪・外輪と転動体との間で生じる放電現象で流れる軸受電流は放電音の発生を伴うことに着目し、軸受電流が作る磁界と、軸受電流が流れる際の放電に伴う音響とを共に計測して相関を取ることで、軸受電流をより高感度に監視する。さらに、磁界センサと音響センサを共に光ファイバ型とすれば、1本の光ファイバでデータ伝達できる。 In the present invention, attention is paid to the fact that the bearing current flowing due to the discharge phenomenon generated between the inner ring / outer ring and the rolling element is accompanied by the generation of discharge noise. The bearing current is monitored with higher sensitivity by measuring both and the correlation. Furthermore, if both the magnetic field sensor and the acoustic sensor are of an optical fiber type, data can be transmitted with a single optical fiber.
 上記課題を達成するために、本発明の軸受電流監視装置は、軸受電流により生じる周方向磁界を計測する磁界センサと、前記軸受電流が発生する際に生じる音響を計測する音響センサと、前記磁界センサにより計測されたデータと前記音響センサにより計測されたデータとを統合処理して同期した信号を抽出するデータ処理装置と、前記磁界センサにより計測されたデータを前記データ処理装置まで伝達する磁界データ伝達手段と、前記音響センサにより計測されたデータを前記データ処理装置まで伝達する音響データ伝達手段とを備えたことを特徴とするものである。 In order to achieve the above object, a bearing current monitoring device of the present invention includes a magnetic field sensor that measures a circumferential magnetic field generated by a bearing current, an acoustic sensor that measures sound generated when the bearing current is generated, and the magnetic field. A data processing device that extracts a synchronized signal by integrating the data measured by the sensor and the data measured by the acoustic sensor, and magnetic field data that transmits the data measured by the magnetic field sensor to the data processing device A transmission means and an acoustic data transmission means for transmitting data measured by the acoustic sensor to the data processing device are provided.
 更に、本発明は軸受電流監視装置において、前記磁界センサは、周方向磁界に最大感度を有することを特徴とするものである。 Furthermore, the present invention is the bearing current monitoring device, wherein the magnetic field sensor has a maximum sensitivity to a circumferential magnetic field.
 更に、本発明は軸受電流監視装置において、前記磁界センサは、回転軸に対して鉛直方向下側に設置されていることを特徴とするものである。 Furthermore, the present invention is the bearing current monitoring device, wherein the magnetic field sensor is installed on the lower side in the vertical direction with respect to the rotation axis.
 更に、本発明は軸受電流監視装置において、前記磁界データ伝達手段、または前記音響データ伝達手段、またはその両方が光ファイバを構成要素に含むことを特徴とするものである。 Furthermore, the present invention is characterized in that, in the bearing current monitoring device, the magnetic field data transmission means, the acoustic data transmission means, or both include an optical fiber as a component.
 更に、本発明は軸受電流監視装置において、前記磁界データ伝達手段、または前記音響データ伝達手段、またはその両方がワイヤレス通信を構成要素に含むことを特徴とするものである。 Furthermore, the present invention is characterized in that, in the bearing current monitoring device, the magnetic field data transmission means, the acoustic data transmission means, or both include wireless communication as a component.
 更に、本発明は軸受電流監視装置において、前記データ処理装置は前記磁界センサにより計測されたデータと前記音響センサにより計測されたデータとの間で同期したパルス信号の発生を記録すると共に、磁界パルスの波形情報や音響パルスの波形情報を記録することを特徴とするものである。 Furthermore, the present invention is the bearing current monitoring device, wherein the data processing device records the generation of a pulse signal synchronized between the data measured by the magnetic field sensor and the data measured by the acoustic sensor, and the magnetic field pulse. And the waveform information of acoustic pulses are recorded.
 更に、本発明は軸受電流監視装置において、前記磁界センサの感度部分を軸の外周を囲むように配置したことを特徴とするものである。 Furthermore, the present invention is characterized in that, in the bearing current monitoring device, the sensitivity portion of the magnetic field sensor is arranged so as to surround the outer periphery of the shaft.
 更に、本発明は軸受電流監視装置において、前記磁界センサとして、磁気光学効果を利用して磁界情報を光に変換して読み出すセンサを用いることを特徴とするものである。 Further, the present invention is characterized in that, in the bearing current monitoring device, a sensor that converts magnetic field information into light using a magneto-optic effect and reads the magnetic field sensor.
 更に、本発明は軸受電流監視装置において、前記音響センサとして、ファイバブラッググレーティング(FBG)の原理を利用して音響情報を光に変換して読み出すセンサを用いることを特徴とするものである。 Furthermore, the present invention is characterized in that, in the bearing current monitoring apparatus, a sensor that converts acoustic information into light by using a principle of a fiber Bragg grating (FBG) is used as the acoustic sensor.
 更に、本発明は軸受電流監視装置において、前記磁界データ伝搬手段と前記音響データ伝搬手段として、1本の光ファイバを共用することを特徴とするものである。 Furthermore, the present invention is characterized in that in the bearing current monitoring device, a single optical fiber is shared as the magnetic field data propagation means and the acoustic data propagation means.
 また、上記課題を達成するために、本発明は回転電機において、軸受電流により生じる周方向磁界を計測する磁界センサと、前記軸受電流が発生する際に生じる音響を計測する音響センサとを備えたことを特徴とするものである。 In order to achieve the above object, in the rotating electrical machine, the present invention includes a magnetic field sensor that measures a circumferential magnetic field generated by a bearing current, and an acoustic sensor that measures sound generated when the bearing current is generated. It is characterized by this.
 また、上記課題を達成するために、本発明は回転電機において、軸受電流により生じる周方向磁界を計測する磁界センサと、前記軸受電流が発生する際に生じる音響を計測する音響センサとを設置するための治具を筐体に備えたことを特徴とするものである。 In order to achieve the above object, in the rotating electrical machine, the present invention is provided with a magnetic field sensor that measures a circumferential magnetic field generated by a bearing current and an acoustic sensor that measures sound generated when the bearing current is generated. For this purpose, the housing is provided with a jig for this purpose.
 このように本発明の軸受電流監視装置、及び回転電機によれば、軸受周辺の加工なしで、実機での軸受電流を高感度に監視できるため、高精度な軸受劣化診断を実現することができる。 As described above, according to the bearing current monitoring device and the rotating electrical machine of the present invention, since the bearing current in the actual machine can be monitored with high sensitivity without processing around the bearing, a highly accurate bearing deterioration diagnosis can be realized. .
本発明の第1の実施例による軸受電流監視装置の構成図。1 is a configuration diagram of a bearing current monitoring apparatus according to a first embodiment of the present invention. 本発明の第1の実施例による軸受電流監視装置を備えた回転電機の概念図。The conceptual diagram of the rotary electric machine provided with the bearing current monitoring apparatus by 1st Example of this invention. 本発明の第1の実施例による軸受電流監視装置のデータ処理アルゴリズム。3 is a data processing algorithm of the bearing current monitoring apparatus according to the first embodiment of the present invention. 本発明の第1の実施例による軸受電流監視装置の同期パルス探索の概念図。The conceptual diagram of the synchronous pulse search of the bearing current monitoring apparatus by 1st Example of this invention. 本発明の第2の実施例による軸受電流監視装置の構成図。The block diagram of the bearing current monitoring apparatus by the 2nd Example of this invention. 本発明の第3の実施例による軸受電流監視装置の構成図。The block diagram of the bearing current monitoring apparatus by the 3rd Example of this invention. 本発明の第4の実施例による軸受電流監視装置の構成図。The block diagram of the bearing current monitoring apparatus by the 4th Example of this invention. 本発明の第5の実施例による軸受電流監視装置の構成図。The block diagram of the bearing current monitoring apparatus by the 5th Example of this invention.
 以下、本発明の実施例を、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の軸受電流監視装置の第1の実施例を示す構成図である。 FIG. 1 is a block diagram showing a first embodiment of a bearing current monitoring apparatus of the present invention.
 軸受10の近傍に、磁界センサ1と音響センサ2が設置されている。軸受電流は、軸受を起点に考えると、軸方向あるいは径方向に流れていく。そのため、軸受電流が作る磁界は、周方向に発生すると考えられる。そこで前記磁界センサ1は、周方向磁界6に感度を持つように設置されている必要がある。ノイズを低減するためには、前記磁界センサ1の最大感度の向きが周方向であることが望ましい。 The magnetic field sensor 1 and the acoustic sensor 2 are installed in the vicinity of the bearing 10. The bearing current flows in the axial direction or the radial direction when considering the bearing as a starting point. Therefore, it is considered that the magnetic field generated by the bearing current is generated in the circumferential direction. Therefore, the magnetic field sensor 1 needs to be installed so as to have sensitivity to the circumferential magnetic field 6. In order to reduce noise, it is desirable that the direction of the maximum sensitivity of the magnetic field sensor 1 is the circumferential direction.
 前記磁界センサ1及び前記音響センサ2は、図2に示すように、診断したい回転電機20の筐体21の表面に設置される。設置位置は、回転軸22に対して上下左右どの位置でも構わない。ただし前記回転電機が横置きされている場合は、回転子23の自重で、軸受の内輪11と転動体13の距離及び外輪12と転動体13の距離は、軸受の鉛直方向下側で相対的に狭くなっていると考えられ、放電が起きやすくなっていると期待される。そのため、前記磁界センサは、軸受の鉛直方向下側に設置されるのが望ましい。なお前記磁界センサ1及び前記音響センサ2は、常時設置してあってもよいし、筐体21に前記磁界センサ1及び前記音響センサ2を取り付けるための治具を設けて診断を実施するときにだけ設置するのでもよい。 The magnetic field sensor 1 and the acoustic sensor 2 are installed on the surface of the casing 21 of the rotating electrical machine 20 to be diagnosed as shown in FIG. The installation position may be any position up, down, left, or right with respect to the rotation shaft 22. However, when the rotating electrical machine is placed horizontally, the distance between the inner ring 11 of the bearing and the rolling element 13 and the distance between the outer ring 12 and the rolling element 13 are relative to each other on the lower side in the vertical direction of the bearing. It is expected that the discharge is likely to occur. Therefore, it is desirable that the magnetic field sensor be installed on the lower side in the vertical direction of the bearing. The magnetic field sensor 1 and the acoustic sensor 2 may be always installed, or when a diagnosis is performed by providing a jig for attaching the magnetic field sensor 1 and the acoustic sensor 2 to the housing 21. It may be installed only.
 前記磁界センサ1及び前記音響センサ2で計測されたデータは、各々のデータ伝達手段を通じてデータ処理装置3に送られる。図1では、磁界データ伝達手段4と音響データ伝達手段5は共に、電気ケーブルや光ファイバのような有線で示されているが、前記磁界データ伝達手段4、または前記音響データ伝達手段5、またはその両方が、ワイヤレス通信を構成要素に含んでいてもよい。 The data measured by the magnetic field sensor 1 and the acoustic sensor 2 are sent to the data processing device 3 through the respective data transmission means. In FIG. 1, both the magnetic field data transmission means 4 and the acoustic data transmission means 5 are shown as wires such as electric cables and optical fibers, but the magnetic field data transmission means 4 or the acoustic data transmission means 5 or Both may include wireless communications as a component.
 図3は、前記データ処理装置3でのアルゴリズムで処理を示したものである。最初に、前記磁界データ伝達手段4と前記音響データ伝達手段5のデータ伝搬時間の差が存在する場合は、その差を補正して、同一の放電イベントに伴う磁界信号と音響信号の同期が取れるようにする(ステップ100、以下、S100と称す)。次に、伝搬してきた磁界データと音響データを分析して、図4に示すように同期したパルス信号を探索する(S101及びS102)。その際、周波数帯域を限定することで、ノイズの影響を低減してもよい。 FIG. 3 shows processing by an algorithm in the data processing device 3. First, when there is a difference in data propagation time between the magnetic field data transmission unit 4 and the acoustic data transmission unit 5, the difference is corrected so that the magnetic field signal and the acoustic signal associated with the same discharge event can be synchronized. (Step 100, hereinafter referred to as S100). Next, the propagated magnetic field data and acoustic data are analyzed to search for a synchronized pulse signal as shown in FIG. 4 (S101 and S102). At that time, the influence of noise may be reduced by limiting the frequency band.
 最後に、同期したパルス信号を放電の証拠とみなして、発生を記録すると共に(S103)、磁界パルスの波形情報や音響パルスの波形情報を記憶装置に記録する(S104)。軸受電食の進行は放電のエネルギーと頻度で決定されると考えられ、磁界パルスの波形情報や音響パルスの波形情報は放電のエネルギーと関連付けられるためである。 Finally, the synchronized pulse signal is regarded as evidence of discharge, and the occurrence is recorded (S103), and the waveform information of the magnetic field pulse and the waveform information of the acoustic pulse are recorded in the storage device (S104). This is because the progress of the electric corrosion of the bearing is considered to be determined by the energy and frequency of the discharge, and the waveform information of the magnetic field pulse and the waveform information of the acoustic pulse are associated with the energy of the discharge.
 そして、対象となる全ての解析する磁界データと音響データを解析するように処理を繰り返す(S105)。 Then, the process is repeated so as to analyze all the magnetic field data and acoustic data to be analyzed (S105).
 以上により、本発明の軸受電流監視装置によれば、軸受電食の原因となる軸受電流を高感度に監視し記録することができるため、高精度な軸受劣化診断を実現することができる。 As described above, according to the bearing current monitoring device of the present invention, it is possible to monitor and record the bearing current that causes the electric corrosion of the bearing with high sensitivity, so it is possible to realize a highly accurate bearing deterioration diagnosis.
 図5は、本発明の軸受電流監視装置の第2の実施例を示す構成図であり、特に言及しない限りは第1の実施例と同じ符号の部材は、同一の構成、効果を備えるものである。 FIG. 5 is a block diagram showing a second embodiment of the bearing current monitoring apparatus of the present invention. Unless otherwise specified, members having the same reference numerals as those in the first embodiment have the same configuration and effects. is there.
 磁界センサ1は光ファイバ型であり、磁気光学効果により磁界情報を光の偏光角の情報に変換して読み出すものである。光ファイバ全体が感度部分となっており、その感度部分が軸の外周を囲むように設置されている。このような構成にすることで、軸受電流の流れる向きを幅広くカバーすることが可能となる。また本実施例では、音響センサ2も光ファイバ型とした例を示している。ファイバブラッググレーティング(FBG)センサと呼ばれるもので、音響による光ファイバの伸縮を、光の波長の情報に変換して読み出すものである。音響は軸受から径方向に伝搬すると考えられることから、前記音響センサの光ファイバ部分を径方向に向けるのが良いと考える。なお磁界データ伝達手段4及び音響データ伝達手段5も光ファイバで構成されており、耐ノイズ性に優れた装置となっている。 The magnetic field sensor 1 is of an optical fiber type, and converts magnetic field information into information on the polarization angle of light by a magneto-optic effect and reads it out. The entire optical fiber is a sensitivity portion, and the sensitivity portion is installed so as to surround the outer periphery of the shaft. With this configuration, it is possible to cover a wide range of bearing current flowing directions. In this embodiment, the acoustic sensor 2 is also an optical fiber type. This is called a fiber Bragg grating (FBG) sensor, which reads out the optical fiber expansion and contraction by converting it into information on the wavelength of light. Since sound is considered to propagate in the radial direction from the bearing, it is considered that the optical fiber portion of the acoustic sensor should be directed in the radial direction. The magnetic field data transmission means 4 and the acoustic data transmission means 5 are also made of optical fibers, and are devices with excellent noise resistance.
 図6は、本発明の軸受電流監視装置の第3の実施例を示す構成図であり、特に言及しない限りは前述の実施例と同じ符号の部材は、同一の構成、効果を備えるものである。 FIG. 6 is a block diagram showing a third embodiment of the bearing current monitoring device of the present invention. Unless otherwise specified, members having the same reference numerals as those of the above-described embodiment have the same configuration and effects. .
 本実施例では、磁界データ伝達手段と音響データ伝達手段を一本の光ファイバで共用する構成となっている。 In this embodiment, the magnetic field data transmission means and the acoustic data transmission means are shared by a single optical fiber.
 前述の第2の実施例と同様に磁界センサ1は光ファイバ型であり、光ファイバ全体が感度部分となっており、その感度部分が軸の外周を囲むように設置されている。また、音響センサ2のFBGセンサは光ファイバ部分を径方向に向けて設置されている。 As in the second embodiment described above, the magnetic field sensor 1 is an optical fiber type, and the entire optical fiber is a sensitivity part, and the sensitivity part is installed so as to surround the outer periphery of the shaft. Further, the FBG sensor of the acoustic sensor 2 is installed with the optical fiber portion directed in the radial direction.
 そして、磁界センサ1と音響センサ2とで、異なる波長の光を用いれば、このような構成が可能となる。このようにすることで、監視装置コスト及びケーブル敷設コストを低減することができる。 Further, if the magnetic field sensor 1 and the acoustic sensor 2 use light of different wavelengths, such a configuration is possible. By doing in this way, the monitoring device cost and the cable laying cost can be reduced.
 図7は、本発明の軸受電流監視装置の第4の実施例を示す構成図であり、特に言及しない限りは前述の実施例と同じ符号の部材は、同一の構成、効果を備えるものである。 FIG. 7 is a block diagram showing a fourth embodiment of the bearing current monitoring apparatus of the present invention. Unless otherwise specified, members having the same reference numerals as those of the above-described embodiment have the same configuration and effects. .
 本実施例では、磁界センサ1として、小型・高感度な光ファイバ型センサを用いている。感度部分が狭くなる課題はあるものの、より微弱な軸受電流を検知できるようになる、設置しやすさが向上する、などの長所がある。 In this embodiment, a small and highly sensitive optical fiber type sensor is used as the magnetic field sensor 1. Although there is a problem that the sensitivity portion becomes narrow, there are advantages such as being able to detect a weaker bearing current and improving ease of installation.
 図8は、本発明の軸受電流監視装置の第5の実施例を示す構成図であり、特に言及しない限りは前述の実施例と同じ符号の部材は、同一の構成、効果を備えるものである。 FIG. 8 is a block diagram showing a fifth embodiment of the bearing current monitoring apparatus of the present invention. Unless otherwise specified, members having the same reference numerals as those of the above-described embodiment have the same configuration and effects. .
 本実施例は、実施例4において、磁界データ伝達手段と音響データ伝達手段を一本の光ファイバで共用したものである。このような構成にすることで、監視装置コスト及びケーブル敷設コストを低減することができる。 In the present embodiment, the magnetic field data transmission means and the acoustic data transmission means are shared by a single optical fiber in the fourth embodiment. By adopting such a configuration, the monitoring device cost and the cable laying cost can be reduced.
 1         磁界センサ
  2           音響センサ
  3           データ処理装置
  4           磁界データ伝達手段
  5           音響データ伝達手段
  6           周方向磁界
  10          軸受
  11          内輪
  12          外輪
  13          転動体
  20          回転電機
  21          筐体
  22          回転軸
  23          回転子
  24          固定子
1 Magnetic field sensor 2 Acoustic sensor 3 Data processor 4 Magnetic field data transmission means 5 Acoustic data transmission means 6 Circumferential magnetic field 10 Bearing 11 Inner ring 12 Outer ring 13 Rolling element 20 Rotating electrical machine 21 Housing 22 Rotating shaft 23 Rotor 24 Stator

Claims (12)

  1. 軸受電流により生じる周方向磁界を計測する磁界センサと、
    前記軸受電流が発生する際に生じる音響を計測する音響センサと、
    前記磁界センサにより計測されたデータと前記音響センサにより計測されたデータとを統合処理して同期した信号を抽出するデータ処理装置と、
    前記磁界センサにより計測されたデータを前記データ処理装置まで伝達する磁界データ伝達手段と、
    前記音響センサにより計測されたデータを前記データ処理装置まで伝達する音響データ伝達手段とを備えたことを特徴とする軸受電流監視装置。
    A magnetic field sensor for measuring a circumferential magnetic field generated by a bearing current;
    An acoustic sensor for measuring the sound generated when the bearing current is generated;
    A data processing device for extracting a signal synchronized by integrating the data measured by the magnetic field sensor and the data measured by the acoustic sensor;
    Magnetic field data transmission means for transmitting data measured by the magnetic field sensor to the data processing device;
    A bearing current monitoring device comprising: acoustic data transmission means for transmitting data measured by the acoustic sensor to the data processing device.
  2. 請求項1の軸受電流監視装置において、
     前記磁界センサは、周方向磁界に最大感度を有することを特徴とする軸受電流監視装置。
    In the bearing current monitoring device of claim 1,
    The magnetic field sensor has a maximum sensitivity to a circumferential magnetic field, and is a bearing current monitoring device.
  3. 請求項1、又は請求項2の軸受電流監視装置において、
     前記磁界センサは、回転軸に対して鉛直方向下側に設置されていることを特徴とする軸受電流監視装置。
    In the bearing current monitoring device of claim 1 or claim 2,
    The said magnetic field sensor is installed in the perpendicular direction lower side with respect to the rotating shaft, The bearing current monitoring apparatus characterized by the above-mentioned.
  4.  請求項1から請求項3のうちの1つの軸受電流監視装置において、前記磁界データ伝達手段、または前記音響データ伝達手段、またはその両方が光ファイバを構成要素に含むことを特徴とする軸受電流監視装置。 4. The bearing current monitoring device according to claim 1, wherein the magnetic field data transmission means, the acoustic data transmission means, or both include an optical fiber as a component. apparatus.
  5. 請求項1から請求項4のうちの1つの軸受電流監視装置において、
     前記磁界データ伝達手段、または前記音響データ伝達手段、またはその両方がワイヤレス通信を構成要素に含むことを特徴とする軸受電流監視装置。
    In one bearing current monitoring apparatus in any one of Claims 1-4,
    The bearing current monitoring device, wherein the magnetic field data transmission unit, the acoustic data transmission unit, or both include wireless communication as a component.
  6. 請求項1から請求項5のうちの1つの軸受電流監視装置において、
     前記データ処理装置において、前記磁界センサにより計測されたデータと前記音響センサにより計測されたデータとの間で同期したパルス信号の発生を記録すると共に、磁界パルスの波形情報や音響パルスの波形情報を記録することを特徴とする軸受電流監視装置。
    In one bearing current monitoring apparatus in any one of Claims 1-5,
    In the data processing device, the generation of a pulse signal synchronized between the data measured by the magnetic field sensor and the data measured by the acoustic sensor is recorded, and the waveform information of the magnetic field pulse and the waveform information of the acoustic pulse are recorded. A bearing current monitoring device characterized by recording.
  7. 請求項1から請求項6のうちの1つの軸受電流監視装置において、
     前記磁界センサの感度部分を軸の外周を囲むように配置したことを特徴とする軸受電流監視装置。
    In one bearing current monitoring apparatus in any one of Claims 1-6,
    A bearing current monitoring device, wherein a sensitivity portion of the magnetic field sensor is arranged so as to surround an outer periphery of a shaft.
  8.  請求項1から請求項7のうちの1つの軸受電流監視装置において、前記磁界センサとして、磁気光学効果を利用して磁界情報を光に変換して読み出すセンサを用いることを特徴とする軸受電流監視装置。 8. The bearing current monitoring device according to claim 1, wherein a sensor for converting magnetic field information into light by using a magneto-optic effect is used as the magnetic field sensor. apparatus.
  9. 請求項1から請求項8のうちの1つの軸受電流監視装置において、
     前記音響センサとして、ファイバブラッググレーティング(FBG)の原理を利用して音響情報を光に変換して読み出すセンサを用いることを特徴とする軸受電流監視装置。
    In one bearing current monitoring apparatus in any one of Claims 1-8,
    A bearing current monitoring device using a sensor that converts acoustic information into light by using a principle of a fiber Bragg grating (FBG) as the acoustic sensor.
  10. 請求項1から請求項9のうちの1つの軸受電流監視装置において、
     前記磁界データ伝搬手段と前記音響データ伝搬手段として、1本の光ファイバを共用することを特徴とする軸受電流監視装置。
    In one bearing current monitoring apparatus in any one of Claims 1-9,
    A bearing current monitoring device characterized by sharing one optical fiber as the magnetic field data propagation means and the acoustic data propagation means.
  11.  軸受電流により生じる周方向磁界を計測する磁界センサと、前記軸受電流が発生する際に生じる音響を計測する音響センサとを備えたことを特徴とする回転電機。 A rotating electrical machine comprising: a magnetic field sensor that measures a circumferential magnetic field generated by a bearing current; and an acoustic sensor that measures sound generated when the bearing current is generated.
  12.  軸受電流により生じる周方向磁界を計測する磁界センサと、前記軸受電流が発生する際に生じる音響を計測する音響センサとを設置するための治具を筐体に備えたことを特徴とする回転電機。 A rotating electrical machine comprising a housing for mounting a magnetic field sensor for measuring a circumferential magnetic field generated by a bearing current and an acoustic sensor for measuring sound generated when the bearing current is generated .
PCT/JP2015/059830 2015-03-30 2015-03-30 Bearing current monitoring device and rotary electric machine WO2016157347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059830 WO2016157347A1 (en) 2015-03-30 2015-03-30 Bearing current monitoring device and rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059830 WO2016157347A1 (en) 2015-03-30 2015-03-30 Bearing current monitoring device and rotary electric machine

Publications (1)

Publication Number Publication Date
WO2016157347A1 true WO2016157347A1 (en) 2016-10-06

Family

ID=57003985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059830 WO2016157347A1 (en) 2015-03-30 2015-03-30 Bearing current monitoring device and rotary electric machine

Country Status (1)

Country Link
WO (1) WO2016157347A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019086123A1 (en) * 2017-11-03 2019-05-09 Abb Schweiz Ag Arrangement for monitoring antifriction bearing of rotating shaft of rotating electric machine
US11569712B2 (en) 2021-04-05 2023-01-31 General Electric Renovables Espana, S.L. System and method for detecting bearing insulation and ground brush health in a generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04307328A (en) * 1990-12-03 1992-10-29 Corning Inc Fiber-optic detecting cable
JP2000131351A (en) * 1998-10-26 2000-05-12 Hoya Corp Optical measuring apparatus
JP2006039911A (en) * 2004-07-27 2006-02-09 Ntn Corp Ic tag with an external input function/wireless sensor and bearing
JP2010060425A (en) * 2008-09-03 2010-03-18 Toshiba Corp Method and device for detecting erosion damage of turbine member
JP2011039056A (en) * 2009-08-17 2011-02-24 General Electric Co <Ge> Bearing state monitoring device and method
WO2013152797A1 (en) * 2012-04-12 2013-10-17 Siemens Aktiengesellschaft Sensor element with an acoustic emission sensor
JP5459970B2 (en) * 2008-03-19 2014-04-02 公益財団法人鉄道総合技術研究所 Structure monitoring system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04307328A (en) * 1990-12-03 1992-10-29 Corning Inc Fiber-optic detecting cable
JP2000131351A (en) * 1998-10-26 2000-05-12 Hoya Corp Optical measuring apparatus
JP2006039911A (en) * 2004-07-27 2006-02-09 Ntn Corp Ic tag with an external input function/wireless sensor and bearing
JP5459970B2 (en) * 2008-03-19 2014-04-02 公益財団法人鉄道総合技術研究所 Structure monitoring system
JP2010060425A (en) * 2008-09-03 2010-03-18 Toshiba Corp Method and device for detecting erosion damage of turbine member
JP2011039056A (en) * 2009-08-17 2011-02-24 General Electric Co <Ge> Bearing state monitoring device and method
WO2013152797A1 (en) * 2012-04-12 2013-10-17 Siemens Aktiengesellschaft Sensor element with an acoustic emission sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019086123A1 (en) * 2017-11-03 2019-05-09 Abb Schweiz Ag Arrangement for monitoring antifriction bearing of rotating shaft of rotating electric machine
US11781943B2 (en) 2017-11-03 2023-10-10 Abb Schweiz Ag Arrangement for monitoring antifriction bearing of rotating shaft of rotating electric machine
US11569712B2 (en) 2021-04-05 2023-01-31 General Electric Renovables Espana, S.L. System and method for detecting bearing insulation and ground brush health in a generator

Similar Documents

Publication Publication Date Title
JP6353694B2 (en) Deterioration diagnosis system
US10184986B2 (en) System for condition monitoring of electric machine, mobile phone and method thereof
RU2449454C2 (en) Method and device process control of rotating machines
CN103713261B (en) The detection system of a kind of induction motor air-gap eccentric fault and detection method
DK2702374T3 (en) Method for monitoring degaussing
JP5582063B2 (en) Power converter failure diagnosis method and failure diagnosis apparatus
KR101716510B1 (en) Visual inspection-based generator retention assembly tightness detection
US9551733B2 (en) Method and apparatus for detecting a current in a rotating system
Kunthong et al. IoT-based traction motor drive condition monitoring in electric vehicles: Part 1
US8674566B2 (en) Electrical machine with a device for monitoring an air gap between a rotor and a stator
WO2013136098A1 (en) Method for rotor winding damage detection in rotating alternating machines by differential measurement of magnetic field by using two measuring coils
WO2016157347A1 (en) Bearing current monitoring device and rotary electric machine
Irfan et al. An assessment on the non-invasive methods for condition monitoring of induction motors
JP6412144B2 (en) Insulation diagnostic system or rotating machine
US10910923B2 (en) Rotating electric machine and defect detection method for rotating electric machine
JP6994350B2 (en) Rotary machine and its diagnostic method
JP6698514B2 (en) Rotating electric machine and method for detecting abnormality of rotating electric machine
Bissonnette End-winding vibration monitoring and interpretation
Maughan Vibration detection instrumentation for turbine-generator stator endwindings
JP2009128103A (en) Abnormal vibration detector
JP2001349877A (en) Diagnostic system for rotary electric machine
US11742723B2 (en) Wedge tightness monitoring
WO2021059838A1 (en) Rotary electric machine and diagnostic device
WO2020217880A1 (en) Electric machine diagnosis method and diagnosis device, and rotating electric machine
Ewert et al. Online Monitoring-Early detection and diagnostics of initiating damage in turbogenerators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP