WO2016151781A1 - Processing nozzle, processing head, processing device - Google Patents

Processing nozzle, processing head, processing device Download PDF

Info

Publication number
WO2016151781A1
WO2016151781A1 PCT/JP2015/059003 JP2015059003W WO2016151781A1 WO 2016151781 A1 WO2016151781 A1 WO 2016151781A1 JP 2015059003 W JP2015059003 W JP 2015059003W WO 2016151781 A1 WO2016151781 A1 WO 2016151781A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
supply path
powder
nozzle
supply
Prior art date
Application number
PCT/JP2015/059003
Other languages
French (fr)
Japanese (ja)
Inventor
藤谷 泰之
小松 由尚
竜一 成田
Original Assignee
技術研究組合次世代3D積層造形技術総合開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 技術研究組合次世代3D積層造形技術総合開発機構 filed Critical 技術研究組合次世代3D積層造形技術総合開発機構
Priority to EP15886334.0A priority Critical patent/EP3159094B1/en
Priority to US15/119,350 priority patent/US20170050268A1/en
Priority to JP2016510887A priority patent/JP6092467B2/en
Priority to PCT/JP2015/059003 priority patent/WO2016151781A1/en
Publication of WO2016151781A1 publication Critical patent/WO2016151781A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/38Housings, e.g. machine housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/226Driving means for rotary motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a machining nozzle, a machining head, and a machining apparatus.
  • Patent Document 1 discloses a technique for supplying a plurality of types of powders while changing the distribution rate.
  • Table 1 discloses a technique for gradually changing the powder mixing ratio from the first layer to the fifth layer.
  • Paragraph 0058 discloses that the concentration position of the powder flow 4 discharged from the gap at the tip of the inner nozzle 31 and the outer nozzle 32 changes as the inner nozzle 31 moves up and down.
  • the powder is injected from only one supply path 41 in both the configuration of FIG. 5 and the configuration of FIG. That is, only one type of powder can be supplied at a time. For this reason, when a plurality of types of powders are to be supplied to the processed surface, they must be mixed and supplied in advance, causing segregation during the supply, and the desired composition cannot be realized.
  • An object of the present invention is to provide a technique for solving the above-described problems.
  • a processing nozzle comprises: A processing nozzle for injecting a powder material to a molten pool formed on a processing surface by laser light, An inner casing constituting an optical path through which the laser beam passes; An outer casing disposed through a gap as the first supply path of the inner casing and the powder material; With A second powder supply path and a third supply path having a diameter different from that of the second supply path are provided inside the outer casing.
  • a machining head comprises: It includes the processing nozzle described above and a focusing device for focusing the laser beam.
  • a processing apparatus includes: The above processing head; A material supply unit for supplying the powder material to the processing head; It is provided with.
  • a processing nozzle 100 as a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • the processing nozzle 100 is a nozzle for injecting the powder material 130 to the molten pool 151 formed on the processing surface 150 by the laser beam 110.
  • the processing nozzle 100 includes an inner casing 101 that constitutes an optical path 111 through which the laser light 110 passes, and an outer casing 102 that is disposed via a gap as the supply path 103 for the inner casing 101 and the powder material 130. It is equipped with.
  • powder supply paths 121 and 122 are further provided in the outer casing 102.
  • the powder supply paths 121 and 122 have different diameters.
  • three supply paths 121 and three supply paths 122 are provided.
  • the outer casing 102 has a cylindrical shape, and the supply path 121 and the supply path 122 are alternately provided in a circumferential shape inside the outer casing 102.
  • FIG. 2 is an end view showing the downstream end of the processing nozzle 100. As shown in FIG. 2, at the downstream end of the processing nozzle 100, an opening 201 of the optical path 111, an opening 203 of the supply path 103, an opening 221 of the supply path 121, and an opening 222 of the supply path 122 Is provided.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • the powder material 131 supplied from the ring-shaped supply path 103 forms a very thin flow in a ring shape and converges in a narrow range.
  • more powder material than the supply path 103 is supplied to the processing surface 150 from the six supply paths 121 and 122 arranged on the circumference.
  • the supply path 121 is formed to have a diameter larger than that of the supply path 122, and more powder material is supplied from the supply path 121 to the processing surface 150 than the supply path 122.
  • the powder material is supplied by changing the one used among these supply channels. For example, when performing high-definition modeling, the powder material is accurately supplied from one point toward the other using only the supply path 103.
  • Laminating a plurality of different materials means, for example, laminating an adhesion layer on copper (base material) and then laminating iron. Further, by supplying powders having the same material but different particle diameters using different supply paths, it is possible to perform modeling with accuracy and speed according to the modeling conditions.
  • the optical processing apparatus 400 provided with the processing nozzle 100 will be described with reference to FIG.
  • the optical processing apparatus 400 is an apparatus that generates a three-dimensional shaped object (or overlay welding) by melting a material with heat generated by collected light.
  • the optical processing apparatus 400 includes a light source 412, a stage 405, material storage devices 421 to 423, material supply units 424 to 426, a processing head 408, and a control unit 413.
  • a laser light source is used as the light source 412, but an LED, a halogen lamp, or a xenon lamp can be used. Further, for example, an electron beam may be used.
  • Stage 405 is an X stage, an XY stage, or an XYZ stage.
  • the material storage devices 421 to 423 supply a carrier gas containing a material to the processing nozzle 100 via the material supply units 424 to 426.
  • the material is particles such as metal particles and resin particles.
  • the carrier gas is an inert gas, and for example, argon gas, nitrogen gas, helium gas, or the like can be used.
  • the processing head 408 focuses the laser light from the light source 412 by an optical system including a lens or the like provided therein, and a processing nozzle 100 is attached to the downstream end thereof.
  • the controller 413 inputs modeling conditions such as fine writing / bold writing and the shape of the modeled object, and according to the input modeling conditions, the output value of the laser beam from the light source 412, the position and orientation of the processing head 408, the stage 405 While changing a position etc., the processing nozzle 100 is controlled and a powder spot shape is changed.
  • the controller 413 controls the material supply units 424 to 426 to control the type and amount of material injected from the nozzle 100.
  • FIG. 5 is a cross-sectional view for explaining the configuration of the machining nozzle 500 according to the present embodiment.
  • the processing nozzle 500 according to the present embodiment is different from the first embodiment in that it has flappers 501 and 502. Since other configurations and operations are the same as those of the first embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the flow of the powder material discharged from the supply paths 121 and 122 can be changed by the flappers 501 and 502. That is, the powder material discharged from the supply path 121 can be supplied to the powder spot 511, and the powder material discharged from the supply path 122 can be supplied to the powder spot 512.
  • each of the powder spots 511 and 512 has a lower temperature than the molten pool 151 of the processing surface 150. It has become.
  • the flappers 501 and 502 are controlled so that the respective powder materials are supplied to the powder spots 511 and 512 that match the melting temperature of each powder material.
  • FIG. 6 is a perspective view for explaining the configuration of the machining nozzle 600 according to the present embodiment.
  • the processing nozzle 600 according to the present embodiment is different from the first embodiment in that it includes a rotation unit 602 that rotates the outer casing 102 in the rotation direction 601 with respect to the inner casing 101. Since other configurations and operations are the same as those of the first embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the outer casing 102 can be rotated in accordance with the direction (scanning direction) 651 in which the molten pool 151 travels on the processing surface 150. That is, the arrangement of the supply paths 121 and 122 provided in the outer casing 102 with respect to the molten pool 151 can be changed according to the scanning direction 651. For example, when it is desired to supply a large amount of powder material in the scanning direction 651 of the molten pool 151, the outer casing 102 may be rotated 180 degrees from the state shown in FIG. That is, if two of the three supply passages 121 are arranged in front of the molten pool 151, the amount of powder material supplied to the front increases compared to the rear. Further, for example, when it is desired to supply a large amount of powder material to be supplied using the supply path 122 to the rear of the molten pool 151 in the scanning direction 651, the outer casing 102 is rotated 180 degrees from the state of FIG. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

Provided is a processing nozzle that simultaneously injects multiple types of powders. The processing nozzle is for injecting powder materials onto a molten pool formed by a laser beam on a processing surface, and comprises: an inner housing constituting a light path for the laser beam to pass through; and an outer housing arranged with the inner housing via a gap as a first supply channel for powder materials; wherein a second supply channel for powder materials and a third supply channel having a different diameter from the second supply channel are included inside the outer housing.

Description

加工ノズル、加工ヘッド、加工装置Processing nozzle, processing head, processing equipment
 本発明は、加工ノズル、加工ヘッド、加工装置に関する。 The present invention relates to a machining nozzle, a machining head, and a machining apparatus.
 上記技術分野において、特許文献1には、複数種のパウダを分配率を変えつつ供給する技術が開示されている。例えば表1には、1層目から5層目までで、パウダの混合比率を徐々に変化させる技術が開示されている。段落0058には、内ノズル31が上下移動することで、内ノズル31と外ノズル32との先端の隙間から吐出するパウダ流4の集中位置が変化することが開示されている。 In the above technical field, Patent Document 1 discloses a technique for supplying a plurality of types of powders while changing the distribution rate. For example, Table 1 discloses a technique for gradually changing the powder mixing ratio from the first layer to the fifth layer. Paragraph 0058 discloses that the concentration position of the powder flow 4 discharged from the gap at the tip of the inner nozzle 31 and the outer nozzle 32 changes as the inner nozzle 31 moves up and down.
特開2012-125772号公報JP 2012-124772 A
 しかしながら、上記文献に記載の技術では、図5の構成も図7の構成も、粉体は1つの供給路41のみから射出される。つまり、一度に供給できる粉体は1種類のみである。そのため、複数種類の粉体を加工面に供給しようとすると、事前に混合してから供給しなければならず、供給中に偏析が起こり、思った組成が実現できないという問題があった。 However, in the technique described in the above document, the powder is injected from only one supply path 41 in both the configuration of FIG. 5 and the configuration of FIG. That is, only one type of powder can be supplied at a time. For this reason, when a plurality of types of powders are to be supplied to the processed surface, they must be mixed and supplied in advance, causing segregation during the supply, and the desired composition cannot be realized.
 本発明の目的は、上述の課題を解決する技術を提供することにある。 An object of the present invention is to provide a technique for solving the above-described problems.
 上記目的を達成するため、本発明にかかる加工ノズルは、
 レーザ光によって加工面上に形成された溶融プールに対して粉体材料を射出するための加工ノズルであって、
 前記レーザ光が通過する光経路を構成する内側筐体と、
 前記内側筐体と粉体材料の第1供給路としての間隙を介して配置された外側筐体と、
 を備え、
 前記外側筐体内部に、粉体の第2供給路と、前記第2供給路と異なる径を有する第3供給路とを備えた。
In order to achieve the above object, a processing nozzle according to the present invention comprises:
A processing nozzle for injecting a powder material to a molten pool formed on a processing surface by laser light,
An inner casing constituting an optical path through which the laser beam passes;
An outer casing disposed through a gap as the first supply path of the inner casing and the powder material;
With
A second powder supply path and a third supply path having a diameter different from that of the second supply path are provided inside the outer casing.
 上記目的を達成するため、本発明にかかる加工ヘッドは、
 上述の加工ノズルと、前記レーザ光を集束させる集束装置と、を含むことを特徴とする。
In order to achieve the above object, a machining head according to the present invention comprises:
It includes the processing nozzle described above and a focusing device for focusing the laser beam.
 上記目的を達成するため、本発明にかかる加工装置は、
 上述の加工ヘッドと、
 前記加工ヘッドに前記粉体材料を供給する材料供給部と、
 を備えたことを特徴とする。
In order to achieve the above object, a processing apparatus according to the present invention includes:
The above processing head;
A material supply unit for supplying the powder material to the processing head;
It is provided with.
 本発明によれば、複数種類の粉体を同時に射出する加工ノズルを提供できる。 According to the present invention, it is possible to provide a processing nozzle that simultaneously injects a plurality of types of powders.
本発明の第1実施形態に係る加工ノズルの構成を示す斜視図である。It is a perspective view which shows the structure of the process nozzle which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る加工ノズルの構成を示す底面の端面図である。It is an end elevation of the bottom showing the composition of the processing nozzle concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る加工ノズルの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the process nozzle which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る加工装置の構成を示す概略図である。It is the schematic which shows the structure of the processing apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る加工ノズルの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the process nozzle which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る加工ノズルの構成を示す斜視図である。It is a perspective view which shows the structure of the process nozzle which concerns on 3rd Embodiment of this invention.
 以下に、図面を参照して、本発明の実施の形態について例示的に詳しく説明する。ただし、以下の実施の形態に記載されている構成要素はあくまで例示であり、本発明の技術範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the components described in the following embodiments are merely examples, and are not intended to limit the technical scope of the present invention only to them.
 [第1実施形態]
 本発明の第1実施形態としての加工ノズル100について、図1乃至図4を用いて説明する。加工ノズル100は、レーザ光110によって加工面150上に形成された溶融プール151に対して粉体材料130を射出するためのノズルである。
[First Embodiment]
A processing nozzle 100 as a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. The processing nozzle 100 is a nozzle for injecting the powder material 130 to the molten pool 151 formed on the processing surface 150 by the laser beam 110.
 加工ノズル100は、レーザ光110が通過する光経路111を構成する内側筐体101と、内側筐体101と粉体材料130の供給路103としての間隙を介して配置された外側筐体102と、を備えている。 The processing nozzle 100 includes an inner casing 101 that constitutes an optical path 111 through which the laser light 110 passes, and an outer casing 102 that is disposed via a gap as the supply path 103 for the inner casing 101 and the powder material 130. It is equipped with.
 外側筐体102内部には、さらに粉体の供給路121、122を備えている。粉体供給路121、122は、それぞれ異なる径を有する。ここでは供給路121及び供給路122は、それぞれ3つ設けられている。外側筐体102は、円筒形状であって、供給路121と供給路122とは、外側筐体102内部において、周状に、交互に設けられている。 In the outer casing 102, powder supply paths 121 and 122 are further provided. The powder supply paths 121 and 122 have different diameters. Here, three supply paths 121 and three supply paths 122 are provided. The outer casing 102 has a cylindrical shape, and the supply path 121 and the supply path 122 are alternately provided in a circumferential shape inside the outer casing 102.
 図2は、加工ノズル100の下流端を示す端面図である。図2に示すとおり、加工ノズル100の下流端には、光経路111の開口部201と、供給路103の開口部203と、供給路121の開口部221と、供給路122の開口部222とが設けられている。 FIG. 2 is an end view showing the downstream end of the processing nozzle 100. As shown in FIG. 2, at the downstream end of the processing nozzle 100, an opening 201 of the optical path 111, an opening 203 of the supply path 103, an opening 221 of the supply path 121, and an opening 222 of the supply path 122 Is provided.
 図3は、図1のA-A断面図である。図3に示すとおり、リング状の供給路103から供給される粉体材料131は、リング状に非常に細い流れを形成し、狭い範囲に集束する。一方、円周上に配置された6か所の供給路121、122からは、供給路103よりも多くの粉体材料が、加工面150に供給される。また、供給路121は、供給路122よりも径大に形成されており、供給路121からは供給路122よりも多くの粉体材料が、加工面150に供給される。 FIG. 3 is a cross-sectional view taken along the line AA in FIG. As shown in FIG. 3, the powder material 131 supplied from the ring-shaped supply path 103 forms a very thin flow in a ring shape and converges in a narrow range. On the other hand, more powder material than the supply path 103 is supplied to the processing surface 150 from the six supply paths 121 and 122 arranged on the circumference. The supply path 121 is formed to have a diameter larger than that of the supply path 122, and more powder material is supplied from the supply path 121 to the processing surface 150 than the supply path 122.
 造形精度及び造形速度に応じて、これらの供給路のうち、使用するものを変えて粉末材料を供給する。例えば、高精細の造形を行なう場合には、供給路103のみを用いて、周囲から一点に向けて的確な粉末材料の供給を行なう。 Depending on the modeling accuracy and modeling speed, the powder material is supplied by changing the one used among these supply channels. For example, when performing high-definition modeling, the powder material is accurately supplied from one point toward the other using only the supply path 103.
 一方、造形精度を維持しつつ高速造形を行なう場合には、供給路121を用いて、やや多量の粉体材料を加工面150に供給する。さらに、超高速造形を行なう場合には、供給路121及び供給路122の両方を用いて、より多量の粉体材料を加工面150に供給する。またさらに、超超高速造形を行なう場合には、全ての供給路103、121、122を用いて、粉体材料を加工面150に供給する。 On the other hand, when high-speed modeling is performed while maintaining modeling accuracy, a slightly larger amount of powder material is supplied to the processing surface 150 using the supply path 121. Further, when performing ultra-high speed modeling, a larger amount of powder material is supplied to the processing surface 150 using both the supply path 121 and the supply path 122. Furthermore, when performing ultra-high speed modeling, the powder material is supplied to the processing surface 150 using all the supply paths 103, 121, and 122.
 このように供給路を様々に組み合わせることにより、供給路103のみ、供給路121のみ、供給路122のみ、供給路103、121、供給路103、122、供給路121、122、供給路103、121、122という、7段階の粉体材料供給を行なうことができる。 By combining the supply paths in this manner, only the supply path 103, only the supply path 121, only the supply path 122, supply paths 103 and 121, supply paths 103 and 122, supply paths 121 and 122, supply paths 103 and 121 are provided. , 122 can be supplied in seven stages.
 また、例えば、TiAl合金を積層する場合、TiとAlとを別々の供給路に供給することで、材料の違いによる輸送効率の影響を無視することができ、設計値に準じた重量比率でTiAl合金を積層することが可能となる。 In addition, for example, when laminating TiAl alloys, by supplying Ti and Al to separate supply paths, the influence of transport efficiency due to the difference in materials can be ignored, and TiAl is weighted according to the design value. Alloys can be stacked.
 複数の異なる材料を積層する場合にも、材料毎に別々の供給路を用いることで、異なる材料を積層することが可能となる。複数の異なる材料を積層するとは、例えば、銅(基材)上に密着層を積層し、次に鉄を積層することなどをいう。また、材料は同じだが粒径の異なる粉体を、別々の供給路を用いて供給することにより、造形条件に応じた精度や速度で造形加工を行なうことができる。 Even when a plurality of different materials are laminated, different materials can be laminated by using different supply paths for each material. Laminating a plurality of different materials means, for example, laminating an adhesion layer on copper (base material) and then laminating iron. Further, by supplying powders having the same material but different particle diameters using different supply paths, it is possible to perform modeling with accuracy and speed according to the modeling conditions.
 加工ノズル100を備えた光加工装置400について、図4を用いて説明する。光加工装置400は、集光した光が生み出す熱で材料を溶融することにより三次元的な造形物(あるいは肉盛溶接)を生成する装置である。光加工装置400は、光源412、ステージ405、材料収容装置421~423、材料供給部424~426、加工ヘッド408および制御部413を備えている。 The optical processing apparatus 400 provided with the processing nozzle 100 will be described with reference to FIG. The optical processing apparatus 400 is an apparatus that generates a three-dimensional shaped object (or overlay welding) by melting a material with heat generated by collected light. The optical processing apparatus 400 includes a light source 412, a stage 405, material storage devices 421 to 423, material supply units 424 to 426, a processing head 408, and a control unit 413.
 光源412としては、ここではレーザ光源を用いることとするが、LED、ハロゲンランプ、キセノンランプを用いることができる。また、例えば電子ビームなどを用いてもよい。 Here, a laser light source is used as the light source 412, but an LED, a halogen lamp, or a xenon lamp can be used. Further, for example, an electron beam may be used.
 ステージ405は、Xステージ、あるいはXYステージ、あるいはXYZステージである。材料収容装置421~423は、加工ノズル100に対し、材料供給部424~426を介して材料を含むキャリアガスを供給する。例えば、材料は金属粒子、樹脂粒子などの粒子である。キャリアガスは、不活性ガスであり、例えばアルゴンガス、窒素ガス、ヘリウムガスなどを用いることができる。 Stage 405 is an X stage, an XY stage, or an XYZ stage. The material storage devices 421 to 423 supply a carrier gas containing a material to the processing nozzle 100 via the material supply units 424 to 426. For example, the material is particles such as metal particles and resin particles. The carrier gas is an inert gas, and for example, argon gas, nitrogen gas, helium gas, or the like can be used.
 加工ヘッド408は、内部に設けられたレンズ等からなる光学系によって光源412からのレーザ光を集束させ、その下流端には加工ノズル100が取り付けられている。 The processing head 408 focuses the laser light from the light source 412 by an optical system including a lens or the like provided therein, and a processing nozzle 100 is attached to the downstream end thereof.
 コントローラ413は、細書き/太書きや造形物の形状などの造形条件を入力し、入力した造形条件に応じて光源412からのレーザ光の出力値、加工ヘッド408の位置および向き、ステージ405の位置などを変更すると共に、加工ノズル100を制御し、粉体スポット形状を変化させる。また、コントローラ413は、材料供給部424~426を制御して、ノズル100から射出する材料の種類及び量を制御する。 The controller 413 inputs modeling conditions such as fine writing / bold writing and the shape of the modeled object, and according to the input modeling conditions, the output value of the laser beam from the light source 412, the position and orientation of the processing head 408, the stage 405 While changing a position etc., the processing nozzle 100 is controlled and a powder spot shape is changed. The controller 413 controls the material supply units 424 to 426 to control the type and amount of material injected from the nozzle 100.
 以上の構成によれば、複数種類の粉体を同時に射出する加工ノズルを提供できる。 According to the above configuration, it is possible to provide a processing nozzle that simultaneously injects a plurality of types of powder.
 [第2実施形態]
 次に本発明の第2実施形態に係る加工ノズル500について、図5を用いて説明する。図5は、本実施形態に係る加工ノズル500の構成を説明するための断面図である。本実施形態に係る加工ノズル500は、上記第1実施形態と比べると、フラッパ501、502を有する点で異なる。その他の構成及び動作は、第1実施形態と同様であるため、同じ構成及び動作については同じ符号を付してその詳しい説明を省略する。
[Second Embodiment]
Next, a processing nozzle 500 according to a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view for explaining the configuration of the machining nozzle 500 according to the present embodiment. The processing nozzle 500 according to the present embodiment is different from the first embodiment in that it has flappers 501 and 502. Since other configurations and operations are the same as those of the first embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
 フラッパ501、502により、供給路121、122から吐出された粉体材料の流れを変えることができる。すなわち、供給路121から吐出された粉体材料を、粉体スポット511に供給することができ、供給路122から吐出された粉体材料を、粉体スポット512に供給することができる。 The flow of the powder material discharged from the supply paths 121 and 122 can be changed by the flappers 501 and 502. That is, the powder material discharged from the supply path 121 can be supplied to the powder spot 511, and the powder material discharged from the supply path 122 can be supplied to the powder spot 512.
 レーザ光110は、一般的にレンズの構成により、加工面150が最も高温になるように構成されているため、粉体スポット511、512は、それぞれ、加工面150の溶融プール151よりも低温になっている。各粉体材料の溶融温度に合った粉体スポット511、512へ、それぞれの粉体材料を供給するように、フラッパ501、502を制御する。 Since the laser beam 110 is generally configured such that the processing surface 150 has the highest temperature due to the lens configuration, each of the powder spots 511 and 512 has a lower temperature than the molten pool 151 of the processing surface 150. It has become. The flappers 501 and 502 are controlled so that the respective powder materials are supplied to the powder spots 511 and 512 that match the melting temperature of each powder material.
 これにより、粉体材料を良い環境で供給することが可能となり、精度の良い造形を実現することができる。例えば異なる素材で複層造形を行なう場合にも、供給路103、121、122を使い分け、さらにフラッパ501、502の角度を調整することにより、各種の素材をその素材にあった環境で積層加工することができる。例えば、融点の低い粉体を加工面150のより上方に供給し、融点の高い粉体を、より加工面150の近くに供給することで、各粉体の溶融位置を変え、粉体の混合精度を向上させることができる。 This makes it possible to supply the powder material in a good environment, and realize accurate modeling. For example, even when multi-layer modeling is performed with different materials, various supply materials 103, 121, and 122 are properly used, and further, the angle of flappers 501 and 502 is adjusted so that various materials are laminated in an environment suitable for the materials. be able to. For example, by supplying a powder having a low melting point above the processing surface 150 and supplying a powder having a high melting point closer to the processing surface 150, the melting position of each powder is changed, and the powder is mixed. Accuracy can be improved.
 [第3実施形態]
 次に本発明の第3実施形態に係る加工ノズル600について、図6を用いて説明する。図6は、本実施形態に係る加工ノズル600の構成を説明するための斜視図である。本実施形態に係る加工ノズル600は、上記第1実施形態と比べると、内側筐体101に対して外側筐体102を回転方向601に回動させる回動部602を有する点で異なる。その他の構成及び動作は、第1実施形態と同様であるため、同じ構成及び動作については同じ符号を付してその詳しい説明を省略する。
[Third Embodiment]
Next, a processing nozzle 600 according to a third embodiment of the present invention will be described with reference to FIG. FIG. 6 is a perspective view for explaining the configuration of the machining nozzle 600 according to the present embodiment. The processing nozzle 600 according to the present embodiment is different from the first embodiment in that it includes a rotation unit 602 that rotates the outer casing 102 in the rotation direction 601 with respect to the inner casing 101. Since other configurations and operations are the same as those of the first embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態によれば、加工面150上を溶融プール151が進む方向(走査方向)651に合わせて、外側筐体102を回動することができる。つまり、外側筐体102に設けられた供給路121、122の溶融プール151に対する配置を、走査方向651に応じて変えることができる。例えば、溶融プール151の走査方向651前方に多くの粉体材料を供給したい場合、図6の状態から、180度、外側筐体102を回転させればよい。つまり、3つの供給路121の内、2つを、溶融プール151の前方に配置すれば、前方への粉体材料の供給量が後方に比べて多くなる。また例えば、供給路122を用いて供給する粉体材料を溶融プール151の走査方向651後方に多く供給したい場合にもやはり、図6の状態から、180度、外側筐体102を回転させればよい。 According to this embodiment, the outer casing 102 can be rotated in accordance with the direction (scanning direction) 651 in which the molten pool 151 travels on the processing surface 150. That is, the arrangement of the supply paths 121 and 122 provided in the outer casing 102 with respect to the molten pool 151 can be changed according to the scanning direction 651. For example, when it is desired to supply a large amount of powder material in the scanning direction 651 of the molten pool 151, the outer casing 102 may be rotated 180 degrees from the state shown in FIG. That is, if two of the three supply passages 121 are arranged in front of the molten pool 151, the amount of powder material supplied to the front increases compared to the rear. Further, for example, when it is desired to supply a large amount of powder material to be supplied using the supply path 122 to the rear of the molten pool 151 in the scanning direction 651, the outer casing 102 is rotated 180 degrees from the state of FIG. Good.
 以上、本実施形態によれば、造形条件に応じて、より細かく粉体供給を制御することが可能になり、粉体の効率的な利用及び造形精度の向上を図ることができる。 As mentioned above, according to this embodiment, it becomes possible to control powder supply more finely according to modeling conditions, and it can aim at efficient use of powder and improvement in modeling accuracy.
 [他の実施形態]
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
[Other Embodiments]
While the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. In addition, a system or an apparatus in which different features included in each embodiment are combined in any way is also included in the scope of the present invention.

Claims (6)

  1.  レーザ光によって加工面上に形成された溶融プールに対して粉体材料を射出するための加工ノズルであって、
     前記レーザ光が通過する光経路を構成する内側筐体と、
     前記内側筐体と粉体材料の第1供給路としての間隙を介して配置された外側筐体と、
     を備え、
     前記外側筐体内部に、粉体の第2供給路と、前記第2供給路と異なる径を有する第3供給路とを備えたことを特徴とする加工ノズル。
    A processing nozzle for injecting a powder material to a molten pool formed on a processing surface by laser light,
    An inner casing constituting an optical path through which the laser beam passes;
    An outer casing disposed through a gap as the first supply path of the inner casing and the powder material;
    With
    A processing nozzle comprising a second supply path for powder and a third supply path having a diameter different from that of the second supply path inside the outer casing.
  2.  前記外側筐体は、円筒形状であって、
     前記第2供給路と前記第3供給路とは、それぞれ少なくとも2つ備え、前記外側筐体内部において、周状に、交互に設けられたことを特徴とする請求項1に記載の加工ノズル。
    The outer casing has a cylindrical shape,
    The processing nozzle according to claim 1, wherein at least two of the second supply path and the third supply path are provided, and are provided alternately in a circumferential shape inside the outer casing.
  3.  前記外側筐体と前記加工面との間に、前記第1、第2粉体供給路から吐出された粉体材料の射出方向を変更するフラッパをさらに設けたことを特徴とする請求項1または2に記載の加工ノズル。 The flapper which changes the injection | pouring direction of the powder material discharged from the said 1st, 2nd powder supply path between the said outer side housing | casing and the said process surface is further provided. 2. The processing nozzle according to 2.
  4.  前記外側筐体を回転する回転手段をさらに備えたことを特徴とする請求項1、2または3に記載の加工ノズル。 The processing nozzle according to claim 1, 2, or 3, further comprising a rotating means for rotating the outer casing.
  5.  請求項1乃至4のいずれか1項に記載の加工ノズルと、
     前記レーザ光を集束させる集束装置と、
     を含むことを特徴とする加工ヘッド。
    The processing nozzle according to any one of claims 1 to 4,
    A focusing device for focusing the laser beam;
    A processing head comprising:
  6.  請求項5に記載の加工ヘッドと、
     前記加工ヘッドに前記粉体材料を供給する材料供給部と、
     を備えたことを特徴とする加工装置。
    A machining head according to claim 5;
    A material supply unit for supplying the powder material to the processing head;
    A processing apparatus comprising:
PCT/JP2015/059003 2015-03-24 2015-03-24 Processing nozzle, processing head, processing device WO2016151781A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15886334.0A EP3159094B1 (en) 2015-03-24 2015-03-24 Processing nozzle, processing head, processing device
US15/119,350 US20170050268A1 (en) 2015-03-24 2015-03-24 Processing nozzle, processing head, and machining apparatus
JP2016510887A JP6092467B2 (en) 2015-03-24 2015-03-24 Processing nozzle, processing head, processing equipment
PCT/JP2015/059003 WO2016151781A1 (en) 2015-03-24 2015-03-24 Processing nozzle, processing head, processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059003 WO2016151781A1 (en) 2015-03-24 2015-03-24 Processing nozzle, processing head, processing device

Publications (1)

Publication Number Publication Date
WO2016151781A1 true WO2016151781A1 (en) 2016-09-29

Family

ID=56978816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059003 WO2016151781A1 (en) 2015-03-24 2015-03-24 Processing nozzle, processing head, processing device

Country Status (4)

Country Link
US (1) US20170050268A1 (en)
EP (1) EP3159094B1 (en)
JP (1) JP6092467B2 (en)
WO (1) WO2016151781A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600103310A1 (en) * 2016-10-14 2018-04-14 Prima Ind Spa LASER OPERATING MACHINE FOR ADDITIVE PRODUCTION THROUGH LASER THERMAL TREATMENT, IN PARTICULAR FUSION, AND ITS PROCEDURE
JP6362797B1 (en) * 2016-12-28 2018-07-25 三菱電機株式会社 Method for producing alloy molded product
CN110355364A (en) * 2018-03-26 2019-10-22 技术研究组合次世代3D积层造形技术综合开发机构 Nozzle and stacking styling apparatus
WO2020250464A1 (en) * 2019-06-11 2020-12-17 三菱重工工作機械株式会社 Surface processing device and method, and 3d layering apparatus
JP2020199536A (en) * 2019-06-11 2020-12-17 三菱重工工作機械株式会社 Three-dimensional lamination device and method
WO2021020011A1 (en) * 2019-07-31 2021-02-04 技術研究組合次世代3D積層造形技術総合開発機構 Nozzle, and additive fabrication device
JP2023529229A (en) * 2020-06-15 2023-07-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for manufacturing friction damping body and apparatus for manufacturing friction damping body
JP7473719B1 (en) 2023-04-28 2024-04-23 シェンシー テクノロジー (シャンハイ) カンパニー リミテッド Apparatus and method for manufacturing alloy target material

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521386A (en) 2013-12-18 2015-06-24 Ibm Improvements in 3D printing
JP6801173B2 (en) * 2015-10-29 2020-12-16 セイコーエプソン株式会社 Manufacturing method of three-dimensional structure, its manufacturing equipment and its control program
US10150249B2 (en) * 2015-12-29 2018-12-11 Western Digital Technologies, Inc. Dual head extruder for three-dimensional additive printer
US10150239B2 (en) 2015-12-29 2018-12-11 Western Digital Technologies, Inc. Extruder for three-dimensional additive printer
CN109641388A (en) * 2016-07-29 2019-04-16 惠普发展公司有限责任合伙企业 Construct the laser fusing of material
CN107671981B (en) * 2017-10-20 2019-12-27 龙泉市金宏瓷业有限公司 Multi-stage control mechanism and control method for ceramic 3D printer nozzle
US10500788B2 (en) * 2017-11-07 2019-12-10 Thermwood Corporation Apparatus and methods for additive manufacturing at ambient temperature
CN107839055B (en) * 2017-11-20 2019-05-21 龙泉市金宏瓷业有限公司 Ceramic printer spray head
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
KR102205851B1 (en) * 2018-12-26 2021-01-20 한국해양대학교 산학협력단 three dimentional printer for metal porous with closed-cell pores and three dimentional printing method thereof
FR3091195B1 (en) * 2018-12-28 2022-10-14 Fives Machining 3D PRINTING HEAD BY POWDER SPRAYING
US11219951B2 (en) 2019-07-03 2022-01-11 Directed Metal 3D, S.L. Multi-mode laser device for metal manufacturing applications
DE102019124518A1 (en) * 2019-09-12 2021-03-18 Trumpf Laser- Und Systemtechnik Gmbh Material separation unit with multiple material focus zone and method for build-up welding
FR3118598B1 (en) * 2021-01-04 2023-06-23 Sotimeco LASER 3D PRINTING HEAD
DE102021122972A1 (en) 2021-09-06 2023-03-09 Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Körperschaft des öffentlichen Rechts Nozzle device and method for laser deposition welding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222869A (en) * 2006-02-22 2007-09-06 General Electric Co <Ge> Nozzle for laser net shape production process
JP2009505812A (en) * 2005-08-23 2009-02-12 ハードウェア プロプライエタリー リミテッド Powder discharge nozzle
JP2012125772A (en) * 2010-12-13 2012-07-05 Hitachi Ltd Laser processing head and overlay welding method
EP2502729A1 (en) * 2011-03-25 2012-09-26 BAE Systems Plc Additive layer manufacturing

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851604A (en) * 1971-05-18 1974-12-03 E Seifert Device for metering granular material
US4467171A (en) * 1982-09-30 1984-08-21 The United States Of America As Represented By The United States Department Of Energy Laser cutting nozzle
US5043548A (en) * 1989-02-08 1991-08-27 General Electric Company Axial flow laser plasma spraying
JPH04120259A (en) * 1990-09-10 1992-04-21 Agency Of Ind Science & Technol Method and device for producing equipment member by laser beam spraying
DE4120790A1 (en) * 1991-06-24 1993-01-14 Verkehrswesen Hochschule NOZZLE FOR TREATMENT OF METAL WORKPIECES
FR2685922B1 (en) * 1992-01-07 1995-03-24 Strasbourg Elec COAXIAL NOZZLE FOR SURFACE TREATMENT UNDER LASER IRRADIATION, WITH SUPPLY OF MATERIALS IN POWDER FORM.
US5477026A (en) * 1994-01-27 1995-12-19 Chromalloy Gas Turbine Corporation Laser/powdered metal cladding nozzle
US5837960A (en) * 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
US5961862A (en) * 1995-11-30 1999-10-05 The Regents Of The University Of California Deposition head for laser
EP0904173A1 (en) * 1996-04-29 1999-03-31 Westinghouse Electric Corporation Improved welding apparatus and method
US6046426A (en) * 1996-07-08 2000-04-04 Sandia Corporation Method and system for producing complex-shape objects
US5993554A (en) * 1998-01-22 1999-11-30 Optemec Design Company Multiple beams and nozzles to increase deposition rate
DE19909390C1 (en) * 1999-03-04 2000-11-09 Fraunhofer Ges Forschung Laser powder deposition head, useful for tool or component coating or repair, rapid prototyping or rapid tooling processes, has a radially symmetrical flow calming channel arrangement between a swirl chamber and an annular outlet gap
US6388227B1 (en) * 1999-07-15 2002-05-14 Plasma Laser Technologies Ltd. Combined laser and plasma-arc processing torch and method
DE19935274C1 (en) * 1999-07-27 2001-01-25 Fraunhofer Ges Forschung Apparatus for producing components made of a material combination has a suction and blowing device for removing material from the processing surface, and a feed device for a further material
US6534745B1 (en) * 1999-09-27 2003-03-18 Mathew T. J. Lowney Nozzle particularly suited to direct metal deposition
EP1234625A1 (en) * 2001-02-21 2002-08-28 Trumpf Werkzeugmaschinen GmbH + Co. KG Process and apparatus for producing a shaped body by selective laser sintering
US6894247B2 (en) * 2002-07-26 2005-05-17 Honeywell International, Inc. Powder feed splitter for hand-held laser powder fusion welding torch
JP4038724B2 (en) * 2003-06-30 2008-01-30 トヨタ自動車株式会社 Laser cladding processing apparatus and laser cladding processing method
ITTV20030155A1 (en) * 2003-12-05 2005-06-06 Lzh Laser Zentrum Hannover E V IMPROVED METHOD AND EQUIPMENT FOR THE SINTERIZATION OF INORGANIC MATERIALS AND PRODUCTS SO OBTAINED.
US7030337B2 (en) * 2003-12-19 2006-04-18 Honeywell International, Inc. Hand-held laser welding wand having removable filler media delivery extension tips
JP4299157B2 (en) * 2004-02-03 2009-07-22 トヨタ自動車株式会社 Powder metal overlay nozzle
EP1759791A1 (en) * 2005-09-05 2007-03-07 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Apparatus and method for building a three-dimensional article
US7458765B2 (en) * 2005-09-23 2008-12-02 Fraunhofer Usa Diamond hard coating of ferrous substrates
US8629368B2 (en) * 2006-01-30 2014-01-14 Dm3D Technology, Llc High-speed, ultra precision manufacturing station that combines direct metal deposition and EDM
DE102007043146B4 (en) * 2007-09-05 2013-06-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Processing head with integrated powder feed for build-up welding with laser radiation
WO2009077870A2 (en) * 2007-10-10 2009-06-25 Ronald Peter Whitfield Laser cladding device with an improved nozzle
US8800480B2 (en) * 2007-10-10 2014-08-12 Ronald Peter Whitfield Laser cladding device with an improved nozzle
US8505414B2 (en) * 2008-06-23 2013-08-13 Stanley Black & Decker, Inc. Method of manufacturing a blade
JP5292256B2 (en) * 2009-10-20 2013-09-18 株式会社日立製作所 Laser processing head and laser cladding method
GB2476835B (en) * 2010-01-12 2012-02-01 Rolls Royce Plc Spray nozzle
US8769833B2 (en) * 2010-09-10 2014-07-08 Stanley Black & Decker, Inc. Utility knife blade
WO2012131327A1 (en) * 2011-03-25 2012-10-04 Bae Systems Plc Additive layer manufacturing
EP2855078B1 (en) * 2012-05-25 2020-08-12 European Space Agency Multi-wire feeder method for alloy sample formation and additive manufacturing
US9174388B2 (en) * 2012-08-16 2015-11-03 Stratasys, Inc. Draw control for extrusion-based additive manufacturing systems
FR3008637B1 (en) * 2013-07-17 2015-08-14 Snecma PROTECTION CLOSURE FOR A PROJECTION NOZZLE DURING A RECHARGING PROCESS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505812A (en) * 2005-08-23 2009-02-12 ハードウェア プロプライエタリー リミテッド Powder discharge nozzle
JP2007222869A (en) * 2006-02-22 2007-09-06 General Electric Co <Ge> Nozzle for laser net shape production process
JP2012125772A (en) * 2010-12-13 2012-07-05 Hitachi Ltd Laser processing head and overlay welding method
EP2502729A1 (en) * 2011-03-25 2012-09-26 BAE Systems Plc Additive layer manufacturing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3159094A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600103310A1 (en) * 2016-10-14 2018-04-14 Prima Ind Spa LASER OPERATING MACHINE FOR ADDITIVE PRODUCTION THROUGH LASER THERMAL TREATMENT, IN PARTICULAR FUSION, AND ITS PROCEDURE
WO2018069808A1 (en) * 2016-10-14 2018-04-19 Prima Industrie S.P.A. Laser operating machine for additive manufacturing by laser thermal treatment, in particular by fusion, and corresponding method
JP6362797B1 (en) * 2016-12-28 2018-07-25 三菱電機株式会社 Method for producing alloy molded product
US10702919B2 (en) 2016-12-28 2020-07-07 Mitsubishi Electric Corporation Method for manufacturing alloy molded product
CN110355364A (en) * 2018-03-26 2019-10-22 技术研究组合次世代3D积层造形技术综合开发机构 Nozzle and stacking styling apparatus
JP2020199536A (en) * 2019-06-11 2020-12-17 三菱重工工作機械株式会社 Three-dimensional lamination device and method
WO2020250464A1 (en) * 2019-06-11 2020-12-17 三菱重工工作機械株式会社 Surface processing device and method, and 3d layering apparatus
WO2020250462A1 (en) * 2019-06-11 2020-12-17 三菱重工工作機械株式会社 Three-dimensional layering device and method
CN113365777A (en) * 2019-06-11 2021-09-07 三菱重工工作机械株式会社 Surface processing device, surface processing method, and three-dimensional laminating device
JP7274948B2 (en) 2019-06-11 2023-05-17 ニデックマシンツール株式会社 Three-dimensional lamination apparatus and method
WO2021020011A1 (en) * 2019-07-31 2021-02-04 技術研究組合次世代3D積層造形技術総合開発機構 Nozzle, and additive fabrication device
JP2021024111A (en) * 2019-07-31 2021-02-22 技術研究組合次世代3D積層造形技術総合開発機構 Nozzle and lamination molding apparatus
JP7184713B2 (en) 2019-07-31 2022-12-06 技術研究組合次世代3D積層造形技術総合開発機構 Nozzle and additive manufacturing equipment
JP2023529229A (en) * 2020-06-15 2023-07-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for manufacturing friction damping body and apparatus for manufacturing friction damping body
JP7473719B1 (en) 2023-04-28 2024-04-23 シェンシー テクノロジー (シャンハイ) カンパニー リミテッド Apparatus and method for manufacturing alloy target material

Also Published As

Publication number Publication date
JP6092467B2 (en) 2017-03-08
EP3159094B1 (en) 2019-05-08
US20170050268A1 (en) 2017-02-23
EP3159094A4 (en) 2018-03-14
JPWO2016151781A1 (en) 2017-04-27
EP3159094A1 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6092467B2 (en) Processing nozzle, processing head, processing equipment
Singh et al. A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition
US7358457B2 (en) Nozzle for laser net shape manufacturing
US10442001B2 (en) Rapid manufacturing method and device for the same comprising oppositely-directed protective gas streams parallel to the powder layer
JP6151436B2 (en) Three-dimensional additive manufacturing nozzle, optical processing head, and three-dimensional additive manufacturing device
JP6234551B2 (en) Processing nozzle, processing head, processing apparatus, control method thereof, and control program
JPWO2015141032A1 (en) Manufacturing method of layered objects
KR20150063400A (en) Powder nozzle for a laser powder welding device
US10220473B2 (en) Processing nozzle and optical machining apparatus
JP2005219060A (en) Powder metal overlay nozzle
JP2016128190A (en) Hot wire laser cladding process and materials used for the same
WO2012124289A1 (en) Laser cladding method
WO2018212193A1 (en) Additive manufacturing device and additive manufacturing method
US20220193782A1 (en) Material deposition unit with multiple material focal zones, and method for build-up welding
WO2018181334A1 (en) Modeling system and modeling method
WO2017209086A1 (en) Laser processing device
WO2020213051A1 (en) Shielding gas nozzle for metal molding, and laser metal molding device
JP2016074018A (en) Powder build-up nozzle
JP7362306B2 (en) Three-dimensional lamination apparatus and method
US20180178326A1 (en) Vacuum sls method for the additive manufacture of metallic components
Suder et al. Root stability in hybrid laser welding
JP6509483B2 (en) Melting equipment
Negi et al. Retrofitment of laser cladding system with CNC machine for hybrid layer manufacturing
Jayanth et al. Modeling Of Laser Based Direct Metal Deposition Process
JP6833755B2 (en) Manufacturing method of welding equipment and joining members

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016510887

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15119350

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886334

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015886334

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015886334

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE