WO2016151689A1 - Centrifugal compressor and supercharger comprising same - Google Patents

Centrifugal compressor and supercharger comprising same Download PDF

Info

Publication number
WO2016151689A1
WO2016151689A1 PCT/JP2015/058538 JP2015058538W WO2016151689A1 WO 2016151689 A1 WO2016151689 A1 WO 2016151689A1 JP 2015058538 W JP2015058538 W JP 2015058538W WO 2016151689 A1 WO2016151689 A1 WO 2016151689A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
impeller
suction
centrifugal compressor
side communication
Prior art date
Application number
PCT/JP2015/058538
Other languages
French (fr)
Japanese (ja)
Inventor
直志 神坂
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2017507155A priority Critical patent/JP6598388B2/en
Priority to CN201580077974.2A priority patent/CN107407291A/en
Priority to EP15886246.6A priority patent/EP3273068A4/en
Priority to US15/557,880 priority patent/US20180073515A1/en
Priority to PCT/JP2015/058538 priority patent/WO2016151689A1/en
Publication of WO2016151689A1 publication Critical patent/WO2016151689A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors

Definitions

  • the present invention relates to a centrifugal compressor and a supercharger including the same.
  • the centrifugal compressor includes a rotating shaft, an impeller attached to the outer periphery of the rotating shaft, and a housing that covers the impeller.
  • the impeller of the centrifugal compressor guides the gas flowing in from the front side in the axial direction to the outside in the radial direction.
  • a suction channel that guides gas to the front side in the axial direction of the impeller, an impeller chamber that communicates with the suction channel, and stores an impeller that communicates with the impeller chamber, and gas that is sent radially outward from the impeller flows into the housing. And a discharge flow path to be formed.
  • Patent Document 1 discloses a centrifugal compressor in which the operating range is expanded by moving the surge limit where surging occurs to the smaller flow side.
  • the housing of the centrifugal compressor is formed with a chamber that communicates the impeller chamber of the housing with the suction flow path, and a chamber that communicates the impeller chamber of the housing and the suction pipe connected to the suction flow path side of the housing. ing.
  • an object of the present invention is to provide a centrifugal compressor capable of expanding an operation region, and a supercharger including the centrifugal compressor.
  • a centrifugal compressor as one aspect according to the invention for achieving the above object is as follows: A rotation shaft that rotates about an axis; an impeller that is attached to an outer periphery of the rotation shaft; and a housing that covers the impeller.
  • the impeller includes a hub attached to the rotation shaft and the axis A plurality of the hubs are provided at intervals in the circumferential direction around the center, and by rotating integrally with the hub, the gas flowing in from the axial front side that is one side of the axial direction in which the axis extends extends to the diameter of the axis.
  • a blade that guides outward in the direction and the housing includes a suction channel that guides gas to the front side in the axial direction of the impeller, an impeller chamber that communicates with the suction channel and stores the impeller, and A discharge passage through which the gas sent to the radially outer side from the impeller communicates with the impeller chamber; and a component on the radially outer side from the impeller chamber that communicates with the impeller chamber.
  • An impeller side communication passage extending in a direction extending in a direction, a circulation passage communicating with the impeller side communication passage and extending in a direction including a component on the front side in the axial direction from the impeller side communication passage, the circulation passage and the suction flow
  • a suction side communication passage that communicates with the passage, and a suction side diameter dimension that is a dimension in a radial direction from the axis to a communication position with the suction side communication passage in the circulation channel is from the axis.
  • the flow path area of the circulation flow path is larger than the impeller side diameter dimension which is a radial dimension to the communication position with the impeller side communication path in the circulation flow path, and the flow path area of the circulation flow path at the communication position with the suction side communication path is It is larger than the flow path area of the circulation flow path at the communication position with the impeller side communication path.
  • the centrifugal compressor when the flow rate of the gas flowing into the suction passage is small, the pressure in the impeller chamber is higher than the pressure in the suction passage. For this reason, when a circulation channel or the like is formed in the compressor housing as in the centrifugal compressor, a part of the gas in the impeller chamber returns to the suction channel via the circulation channel or the like. As a result, the flow rate in the front portion in the axial direction from the impeller side communication path in the impeller chamber is increased. For this reason, surging can be suppressed in the centrifugal compressor. That is, in the centrifugal compressor, the surge limit line can be on the small flow rate side, and the operating range can be expanded.
  • the flow direction component of the gas flowing into the circulation flow path from the impeller chamber via the impeller side communication path includes a swirl component around the axis and the same direction as the impeller rotation direction. If the gas having this swirl component as a flow component returns to the impeller chamber through the circulation flow path, the suction side communication path, and the suction flow path, the angle of attack of the blade is reduced. For this reason, the discharge pressure is reduced, in other words, the pressure ratio is reduced.
  • the suction side diameter dimension of the circulation flow path is larger than the impeller side diameter dimension of the circulation flow path. Therefore, in the centrifugal compressor, the flow velocity of the swirl component of the gas at the communication position with the suction-side communication passage in the circulation flow path is set to the flow velocity of the swirl component of the gas at the communication position with the impeller-side communication passage in the circulation flow path. It can be made smaller than the flow rate.
  • the flow passage area of the circulation flow path at the communication position with the suction side communication path is larger than the flow passage area of the circulation flow path at the communication position with the impeller communication path. For this reason, in the centrifugal compressor, not only the flow rate of the axial component of the gas but also the flow rate of the swirl component at the communication position with the suction side communication path in the circulation channel can be reduced.
  • the flow velocity of the swirling component of the air flowing into the impeller chamber can be reduced.
  • the angle of attack of the blade is increased, and the pressure ratio can be increased. Therefore, in the centrifugal compressor, the surge limit line can be on the high pressure ratio side. For this reason, the operating range can be further expanded in the centrifugal compression region.
  • the housing is formed with a plurality of circulation channels arranged in a circumferential direction around the axis, and between the circulation channels adjacent in the circumferential direction.
  • the partition part which partitions off may be formed.
  • the flow rate of the swirl component of the gas in the circulation flow path can be suppressed due to the presence of the partition portion.
  • the suction flow path has a rotationally symmetric shape about the axis, and the flow path gradually increases toward the rear side in the axial direction, which is the other side of the axial direction.
  • a reduced diameter portion having a small area may be provided, and a communication port for the suction flow path in the suction side communication path may be formed on a surface defining the flow path in the reduced diameter portion.
  • the suction flow path has a reduced diameter portion that gradually decreases in the flow path area toward the rear side in the axial direction, air easily flows from the outside into the impeller chamber via the suction flow path. Further, in the centrifugal compressor, since the communication port of the suction side communication path is formed in the surface that defines the flow path in the reduced diameter portion, the gas in the suction side communication path is reduced by the static pressure reducing effect on this surface. Can be efficiently guided into the suction flow path.
  • the surface defining the flow path in the reduced diameter portion may form a curved surface that protrudes toward the axis.
  • the centrifugal compressor since a part of the surface defining the suction flow path forms a curved surface that protrudes toward the axis, that is, a bell mouth surface, gas from the outside passes through the suction flow path to the impeller chamber It becomes easy to flow into. Furthermore, in the centrifugal compressor, since the communication port of the suction side communication passage is formed in the bell mouth surface, the static pressure reducing effect on the bell mouth surface effectively allows the gas in the suction side communication passage to be efficiently discharged. It can be led into the suction channel.
  • the radial dimension from the axial line to the axially front edge of the communication port of the suction side communication path is the suction side diameter dimension. It may be smaller and larger than the impeller side diameter dimension.
  • the suction side communication path is folded back from the boundary between the circulation flow path and the suction side communication path, and then directed radially inward with respect to the axis line, the shaft It extends toward the axial rear side, which is the other side of the direction, and may communicate with the suction flow path.
  • the gas until a part of the gas in the impeller chamber returns to the suction flow path through the impeller side communication path, the circulation flow path, and the suction side communication path without increasing the axial dimension of the housing.
  • the flow path length can be increased.
  • the gas is likely to follow the wall surface of the axially extending flow path, and the gas swirl component is reduced. Therefore, in the centrifugal compressor, the angle of attack of the blade is increased, and the pressure ratio can be increased. For this reason, in the said centrifugal compressor, an operating range can be expanded more.
  • L is defined as an axial distance from a communication position with the suction-side communication path in the circulation flow path to a communication position with the impeller-side communication path in the circulation flow path.
  • Dimensions do as the equivalent diameter of the flow path area of the circulation flow path at the communication position with the suction side communication path, and di as the flow path area of the circulation flow path at the communication position with the impeller side communication path.
  • the spread angle 2 ⁇ is set to be less than 20 ° to suppress a decrease in the flow rate of the gas flowing through the circulation channel.
  • the axial dimension from the communication position with the suction-side communication path in the circulation channel to the communication position with the impeller-side communication path in the circulation channel is:
  • the impeller outer diameter which is the maximum outer diameter of the impeller may be 0.25 times or more.
  • the gas When the axial flow path length is long, the gas easily follows the wall surface of the axially extending flow path, and the swirl component of the gas is reduced. Therefore, in the centrifugal compressor, the axial dimension from the communication position with the suction-side communication path in the circulation channel to the communication position with the impeller-side communication path in the circulation channel is lengthened, and the swirl component of the gas is reduced. .
  • the supercharger as one aspect according to the invention for achieving the above object is as follows:
  • the turbine is a turbine rotating shaft that rotates about the axis, a turbine impeller that is attached to an outer periphery of the turbine rotating shaft, and the turbine impeller
  • the operating range of the centrifugal compressor can be expanded.
  • FIG. 1 is an overall cross-sectional view of a supercharger in a first embodiment according to the present invention. It is explanatory drawing for demonstrating a divergence angle.
  • 6 is a schematic cross-sectional view of a main part of a centrifugal compressor in Comparative Example 2.
  • FIG. It is a graph which shows the characteristic of each centrifugal compressor.
  • It is a typical principal part sectional view of the centrifugal compressor in a second embodiment concerning the present invention.
  • It is a typical principal part sectional view of the centrifugal compressor in a third embodiment concerning the present invention.
  • the turbocharger of the present embodiment includes a turbine 10 driven by exhaust gas EX from the engine, a centrifugal compressor 30 that compresses air A and sends it to the engine, a centrifugal compressor 30 and a turbine. 10 is provided.
  • the turbine 10 includes a cylindrical turbine rotating shaft 11 that rotates about an axis Ar, a turbine impeller 12 that is attached to the outer periphery of the turbine rotating shaft 11, and a turbine housing 19 that covers the turbine impeller 12.
  • the centrifugal compressor 30 includes a cylindrical compressor rotating shaft 31 that rotates about an axis Ar, a compressor impeller 32 that is attached to the outer periphery of the compressor rotating shaft 31, and a compressor housing that covers the compressor impeller 32. 40.
  • the connecting portion 20 includes a columnar connecting rotary shaft 21 that rotates about the axis Ar, a center housing 29 that covers the connecting rotary shaft 21, and a bearing 28 that rotatably supports the connecting rotary shaft 21.
  • the bearing 28 is fixed to the inner peripheral side of the center housing 29.
  • the axis line Ar of the compressor rotating shaft 31, the axis line Ar of the connecting rotating shaft 21, and the axis line Ar of the turbine rotating shaft 11 are located on the same axis line Ar, and are connected to each other in this order so as to rotate together and rotate the turbocharger. Make an axis.
  • the compressor housing 40, the center housing 29, and the turbine housing 19 are connected to each other to form a supercharger housing.
  • the direction in which the axis Ar extends is the axial direction Da
  • one side of the axial direction Da is the axial front side Daf
  • the other side of the axial direction Da is the axial rear side Dab.
  • the centrifugal compressor 30 is provided on the axially front side Daf with respect to the connecting part 20
  • the turbine 10 is provided on the axially rear side Dab with respect to the connecting part 20.
  • the radial direction with respect to the axis Ar is simply referred to as the radial direction Dr
  • the side farther from the axis Ar in the radial direction Dr is the radially outer Drro
  • the side closer to the axis Ar in the radial direction Dr is the radially inner Dri.
  • the circumferential direction around the axis Ar is simply referred to as a circumferential direction Dc.
  • the compressor impeller 32 is an open impeller.
  • the compressor impeller 32 includes a hub 33 that is mounted on the outer periphery of the compressor rotating shaft 31 and a plurality of blades 35 that are provided on the hub 33 at intervals in the circumferential direction Dc.
  • the shape of the hub 33 viewed from the axial direction Da is circular with the axis line Ar as the center, and the outer diameter gradually increases from the axial front side Daf to the axial rear side Dab. Further, the hub 33 has a position on the boundary line between the hub surface 34, which is the surface of the radially outer side Dro, and the meridional section, as it moves from the axial front side Daf to the axial rear side Dab.
  • the tangent is shaped so as to gradually face the radial direction Dr from a direction substantially parallel to the axis Ar.
  • the plurality of blades 35 are all provided on the hub surface 34.
  • the blade 35 projects in a direction including a directional component perpendicular to the hub surface 34, and extends along the hub surface 34 from the axial front side Daf of the hub surface 34 to the edge of the axial rear side Dab of the hub surface 34. Yes.
  • An edge of the blade 35 on the front side Daf in the axial direction forms a leading edge 36
  • an edge of the blade 35 on the rear side Dab in the axial direction facing the radially outer side Dro forms a trailing edge 37.
  • the tip of the blade 35 in the protruding direction with respect to the hub surface 34 forms a tip 38.
  • the tip 38 of the blade 35 faces the inner peripheral surface of the compressor housing 40.
  • the compressor housing 40 includes a suction passage 41 that guides air A to the axially front side Daf of the compressor impeller 32, an impeller chamber 45 that communicates with the suction passage 41 and houses the compressor impeller 32, and an impeller chamber 45. And a discharge passage 46 into which the gas sent from the compressor impeller 32 to the radially outer side Dro flows is formed.
  • the suction flow path 41 has a rotationally symmetric shape about the axis Ar. The air A from the suction passage 41 flows between the leading edges 36 of the plurality of blades 35 in the compressor impeller 32 and between the plurality of blades 35.
  • the discharge flow path 46 includes a diffuser portion 47 extending from the trailing edge 37 of the plurality of blades 35 to the radially outer side Dro, a scroll portion 48 extending in the circumferential direction Dc from the edge of the diffuser portion 47 on the radially outer side Dro, Have The air A from the discharge passage 46 flows into the engine cylinder from the intake manifold of the engine.
  • the compressor housing 40 further communicates with the impeller chamber 45, communicates with the impeller side communication passage 51 from the impeller chamber 45 in a direction including the radially outer component Dro, and communicates with the impeller side communication passage 51.
  • a plurality of circulation passages 52 extending in a direction including the component of the axial front side Daf from the passage 51, and a suction-side communication passage 55 communicating with the plurality of circulation passages 52 and the suction passage 41 are formed.
  • the impeller side communication passage 51 opens at an impeller chamber inner surface 45ip that faces the tip 38 of the compressor impeller 32 and faces the radially inner side Dri among the surfaces that define the impeller chamber 45 of the compressor housing 40. ing.
  • the opening is formed on the impeller chamber inner surface 45ip, at a position that is axially rearward Dab from the leading edge 36 of the compressor impeller 32 and axially forward Daf from the trailing edge 37 of the compressor impeller 32.
  • the impeller side communication passage 51 has an annular shape around the axis Ar.
  • the impeller side communication passage 51 extends from the impeller chamber 45 in a direction including the radially outer component Dro and extends 360 ° in the circumferential direction Dc centered on the axis Ar.
  • the opening formed in the impeller inner surface 45ip of the compressor impeller 32 side passage opens 360 ° in the circumferential direction Dc centering on the axis Ar.
  • the plurality of circulation channels 52 all extend from the radially outer side Dro end of the impeller side communication passage 51 in the direction including the axial front Daf component and spread in the circumferential direction Dc.
  • the plurality of circulation channels 52 are arranged in the circumferential direction Dc around the axis Ar.
  • the circulation channels 52 adjacent in the circumferential direction Dc are partitioned by struts (partitions) 62 of the compressor housing 40.
  • the suction side communication passage 55 extends from the axially front Daf end of each of the plurality of circulation flow paths 52 in a direction having a radially inner Dri component and communicates with the suction flow path 41. Similarly to the impeller side communication path 51, the suction side communication path 55 also has an annular shape around the axis Ar in the present embodiment.
  • the portion inside the radial direction Dri of the plurality of circulation channels 52 and the outside diameter Dro of the suction channel 41 forms a treatment cylinder 63.
  • the treatment cylinder 63 has a cylindrical shape around the axis Ar.
  • the edge of the treatment tube 63 on the front side Daf in the axial direction forms the edge of the rear side Dab in the axial direction of the suction side communication passage 55.
  • the edge of the treatment tube 63 in the axial rear side Dab forms the edge of the impeller side communication path 51 in the axial front side Daf.
  • the treatment tube 63 is connected to a housing body 61 that forms a radially outer portion Dro portion of the plurality of circulation channels 52 in the compressor housing 40 by a plurality of struts (partition portions) 62.
  • the communication position of the circulation flow path 52 with the impeller side communication path 51 is the inlet 53 of the circulation flow path 52
  • the communication position of the circulation flow path 52 with respect to the suction side communication path 55 is the outlet 54 of the circulation flow path 52.
  • the suction side diameter dimension Ro (hereinafter referred to as the outlet inner diameter) Ro, which is the dimension from the axis Ar to the edge of the radially inner side Dri of the outlet 54 of the circulation channel 52, is expressed by the following equation (1).
  • the impeller side diameter dimension (hereinafter referred to as the inlet inner diameter) Ri which is the dimension from the axis Ar to the edge of the radially inner side Dri of the outlet 54 of the circulation channel 52, is larger. Ro> Ri (1)
  • the flow area (hereinafter referred to as the outlet flow area) Ao at the outlet 54 of the circulation flow path 52 is the inlet 53 of the circulation flow path 52. It is larger than the flow area at Ai (referred to as the inlet flow area). Ao> Ai (2)
  • the flow path length L of the circulation flow path 52 which is the dimension in the axial direction Da from the inlet 53 to the outlet 54 in the circulation flow path 52, is expressed by the following formula (3). It is at least 0.25 times the outer diameter D2 of the impeller, which is the maximum diameter. L ⁇ 0.25 ⁇ D2 (3)
  • L in Formula (4) is the flow path length of the axial direction Da of the circulation flow path 52 as mentioned above.
  • do is an equivalent diameter with respect to the outlet flow passage area Ao
  • di is an equivalent diameter with respect to the inlet flow passage area Ai. That is, the divergence angle 2 ⁇ is assumed to be a simple diffuser having a conical flow path. In this case, a line segment connecting the edge at the inlet position of the flow path and the edge at the outlet position of the flow path, The angle is twice the angle ⁇ formed with the axis.
  • the equivalent diameter regarding a flow path area is a diameter of the circle of this flow path area.
  • a suction passage, an impeller chamber, and a discharge passage are formed in the compressor housing in the centrifugal compressor of Comparative Example 1.
  • the compressor housing in the centrifugal compressor of Comparative Example 1 is formed with the impeller side communication path 51, the circulation flow path 52, and the suction side communication path 55 of the compressor housing 40 in the centrifugal compressor 30 of the present embodiment. It has not been.
  • the compressor housing 40x in the centrifugal compressor 30x of Comparative Example 2 includes a suction passage 41 and an impeller chamber 45 as in the compressor housing 40 in the centrifugal compressor 30 of the present embodiment.
  • the discharge flow path 46, the impeller side communication path 51, the circulation flow path 52x, and the suction side communication path 55 are formed.
  • the outlet inner diameter Ro of the circulation flow path 52x and the impeller side diameter Ri of the circulation flow path 52x are equal.
  • the outlet channel area Ao of the circulation channel 52x is equal to the inlet channel area Ai of the circulation channel 52x.
  • the operating range of the centrifugal compressor 30 can be expanded as compared with Comparative Example 1.
  • the centrifugal compressors of Examples 1 to 4 are centrifugal compressors that satisfy the above-described formulas (1) to (4).
  • the flow path lengths L of the circulation flow paths in the centrifugal compressors of Examples 1 to 4 are different from each other as described later.
  • a plurality of curves drawn with solid lines are characteristic curves showing the relationship between the flow rate and the pressure ratio at different rotational speeds.
  • the flow of the air A that flows into the circulation flow paths 52 and 52x from the impeller chamber 45 through the impeller side communication passage 51 is a swirl component centered on the axis Ar and is the same as the rotation direction of the compressor impeller 32. Contains a directional component. If the air A having this swirl component as a flow component returns to the impeller chamber 45 via the circulation flow path 52x, the suction side communication path 55, and the suction flow path 41 in Comparative Example 2, the angle of attack of the blade 35 Therefore, the discharge pressure is reduced, in other words, the pressure ratio is reduced.
  • ci represents the flow velocity of the swirl component of the air A at the inlet 53 of the circulation flow path
  • co represents the flow velocity of the swirl component of the air A at the outlet 54 of the circulation flow path.
  • Ri represents the inlet inner diameter of the swirl flow path
  • Ro represents the outlet inner diameter of the circulation flow path 52.
  • the outlet channel area Ao of the circulation channel 52 is larger than the inlet channel area Ai of the circulation channel 52.
  • the flow velocity co of the swirl component of the air A at the outlet 54 of the circulation flow path 52 is further smaller than the flow velocity ci of the swirl component of the air A at the inlet 53 of the circulation flow path 52.
  • the flow velocity of the swirl component of the air A flowing into the impeller chamber 45 can be made smaller than that of the centrifugal compressor 30x of the comparative example 2.
  • Example 1 is a centrifugal compressor 30 in which the flow path length L of the circulation flow path 52 is 0.25 ⁇ D.
  • the second embodiment is a centrifugal compressor 30 in which the flow path length L of the circulation flow path 52 is 0.50 ⁇ D.
  • the third embodiment is a centrifugal compressor 30 in which the flow path length L of the circulation flow path 52 is 0.64 ⁇ D.
  • the fourth embodiment is a centrifugal compressor 30 in which the flow path length L of the circulation flow path 52 is 0.89 ⁇ D. That is, in Examples 1 to 4, the channel length L of Example 1 is the shortest, and the channel length L becomes longer as in Example 2, Example 3, and Example 4.
  • the surge limit line S1 of Example 1 is on the largest flow rate side, and the surge limit line becomes smaller in accordance with Examples 2, 3, and 4. Move to the flow rate side. That is, as the flow path length L of the circulation flow path 52 becomes longer, the surge limit line becomes a smaller flow rate side, and the operating range of the centrifugal compressor 30 can be expanded. This is because not only the velocity component in the axial direction Da of the flow of the air A but also the flow channel length L of the circulation channel 52 becomes longer due to the influence of friction between the circulation channel 52 and the air A, etc. This is because the swirl component is also reduced. Therefore, in this embodiment, the flow path length L of the circulation flow path 52 is set to 0.25 ⁇ D or more.
  • the outlet flow passage area Ao of the circulation passage 52 is made larger than the inlet passage area Ai of the circulation passage 52, and the flow rate of the air A in the circulation passage 52 is increased. It is small.
  • the rapid deceleration in the circulation channel 52 leads to the development of a boundary layer on the wall surface that defines the circulation channel 52. For this reason, the pressure loss of the gas passing through the circulation flow path 52 increases, and the flow rate of the gas flowing through the circulation flow path 52 decreases. Therefore, in the present embodiment, as described above using Expression (5), the spread angle 2 ⁇ is set to be less than 20 ° to suppress a decrease in the flow rate of the air A flowing through the circulation flow path 52. As can be understood from the equation (5), in order to reduce the spread angle 2 ⁇ , it is preferable that the flow path length of the circulation flow path 52 is long.
  • the flow path length L of the circulation flow path 52 is long both in terms of reducing the swirl component and in reducing the spread angle 2 ⁇ . From this viewpoint, the flow path length of the circulation flow path 52 is preferably 0.25 ⁇ D or more, and preferably 0.50 ⁇ D or more if possible. However, when the flow path length L of the circulation flow path 52 is increased, the compressor housing 40 is lengthened in the axial direction Da. For this reason, it is preferable to determine the flow length L of the circulation flow path 52 by comparing and considering the viewpoint of reducing the swivel component while reducing the spread angle and the viewpoint of increasing the length of the compressor housing 40.
  • the centrifugal compressor 30a of the present embodiment also has a compressor impeller 32 and a compressor housing 40a, similar to the centrifugal compressor 30 of the first embodiment.
  • the configuration of the compressor impeller 32 is the same as that of the first embodiment.
  • the compressor housing 40a of the present embodiment also has a suction flow path 41a, an impeller chamber 45, a discharge flow path 46, an impeller side communication path 51, and a plurality of A circulation flow path 52 and a suction side communication path 55a are formed.
  • the shape of the suction flow path 41a and the suction side communication path 55a in the compressor housing 40a of the present embodiment is different from that of the first embodiment.
  • the suction flow path 41a of the present embodiment has a rotationally symmetric shape about the axis Ar, and has a reduced diameter portion 42 that gradually decreases in flow path area from the axial front side Daf to the axial rear side Dab. Have.
  • the reduced diameter portion 42 has a bell mouth shape centered on the axis Ar. For this reason, the surface that defines the flow path in the reduced diameter portion 42 forms a smooth convex bell mouth surface 42f toward the radially inner side Dri that is closer to the axis Ar.
  • the communication port 55o for the suction flow path 41a in the suction side communication path 55a is formed in the bell mouth surface 42f that defines the flow path in the reduced diameter portion 42.
  • a portion of the axial rear side Dab with respect to the suction side communication path 55a is formed of a treatment tube 63a as in the first embodiment.
  • the suction side communication passage 55 a is formed with a housing body 61 and a bell mouth cap 65 at a portion on the axial front side Daf with reference to the suction side communication passage 55 a.
  • the inner peripheral surface of the treatment cylinder 63a of this embodiment forms a portion of the axial rear side Dab of the bell mouth surface 42f. For this reason, the flow path area defined by the inner peripheral surface of the treatment tube 63a gradually decreases in size from the axial front side Daf to the axial rear side Dab.
  • the bell mouth cap 65 has a rotationally symmetric shape about the axis Ar.
  • the bell mouth cap 65 is fixed to the axially front side Daf of the housing body 61 and to the radially inner side Dri.
  • the bell mouth cap 65 is fixed to the housing main body 61 with a space from the treatment tube 63a to the axially front side Daf.
  • a space between the treatment tube 63a and the bell mouth cap 65 serves as a suction side communication passage 55a.
  • the inner peripheral surface of the treatment tube 63a forms a portion on the axially front side Daf of the bell mouth surface 42f. For this reason, the flow path defined by the inner peripheral surface of the bell mouth cap 65 gradually decreases in the flow path area from the axial front side Daf to the axial rear side Dab.
  • the compressor housing 40a of the present embodiment also satisfies the relationships expressed by the equations (1) to (4). Furthermore, in this embodiment, the dimension from the axis Ar to the edge of the axial front side Daf at the communication port 55o of the suction side communication passage 55a, in other words, the radial inner side Dri of the bell mouth cap 65 from the axis Ar to the axial direction.
  • the dimension Rc to the edge of the front Daf is smaller than the outlet inner diameter Ro and larger than the inlet inner diameter Ri as shown in the following formula (6). Ro>Rc> Ri (6)
  • the flow path defined by the bell mouth surface 42f around the communication port 55o of the suction side communication passage 55a is directed toward the axial rear side Dab.
  • the diameter is smoothly reduced.
  • the compressor housing 40a of the present embodiment also satisfies the relations expressed by the equations (1) to (4), so that the swirl component of the air A flowing into the impeller chamber 45 is reduced.
  • the flow rate can be reduced, and the operating range of the centrifugal compressor 30a can be expanded.
  • the air A easily flows into the impeller chamber 45 from the outside through the suction channel 41a. Furthermore, in this embodiment, since the communication port 55o with respect to the suction flow path 41a in the suction side communication path 55a is formed in the bell mouth surface 42f, the suction side communication is achieved by the static pressure reducing effect on the bell mouth surface 42f. The air A in the passage 55a can be efficiently guided into the suction flow path 41a.
  • the flow rate of the air A flowing into the impeller chamber 45 through the suction flow passage 41a can be increased as compared with the first embodiment.
  • a surge limit line can be made into the smaller flow volume side than 1st embodiment, and the operating range of the centrifugal compressor 30a can be made wider.
  • the centrifugal compressor 30b of this embodiment also has a compressor impeller 32 and a compressor housing 40b, similar to the centrifugal compressors 30 and 30a of the first and second embodiments.
  • the configuration of the compressor impeller 32 is the same as in the first and second embodiments.
  • the compressor housing 40b of the present embodiment also has a suction passage 41b, an impeller chamber 45, a discharge passage 46, and an impeller.
  • a side communication path 51, a plurality of circulation channels 52, and a suction side communication path 55b are formed.
  • the shape of the suction flow path 41b and the suction side communication path 55b in the compressor housing 40b of the present embodiment is different from that of the first embodiment.
  • the suction flow path 41b of the present embodiment includes a reduced diameter portion 42b and a straight body portion 43b that are rotationally symmetric about the axis Ar.
  • a flow path area becomes small gradually as it goes to the axial direction rear side Dab from the axial direction front side Daf.
  • the reduced diameter portion 42b has a bell mouth shape centered on the axis Ar.
  • the surface that defines the flow path in the reduced diameter portion 42b forms a smooth convex bell mouth surface 42bf toward the radially inner side Dri that is closer to the axis Ar.
  • the straight body portion 43b has the same flow path area at each position in the axial direction Da. For this reason, the surface that defines the flow path in the straight body portion 43b forms a cylindrical inner peripheral surface 43bg centered on the axis Ar.
  • the communication port 55o for the suction flow path 41b in the suction side communication path 55b is formed in a cylindrical inner peripheral surface 43bg that defines the flow path in the straight body portion 43b.
  • a portion of the axial rear side Dab with respect to the suction side communication path 55b is formed of a treatment cylinder 63b as in the first and second embodiments.
  • the suction side communication passage 55b is formed by a housing main body 61 and a bell mouth cap 65b at a portion on the axial front side Daf with reference to the suction side communication passage 55b.
  • the bell mouth cap 65b is fixed to the axially front Daf of the housing main body 61 and to the radially inner Dri thereof.
  • the bell mouth cap 65b is also fixed to the housing body 61 with a space from the treatment tube 63b to the axially front side Daf.
  • the space between the treatment tube 63b and the bell mouth cap 65b is a suction side communication passage 55b.
  • the suction side communication path 55b is folded back from the boundary between the circulation flow path 52 and the suction side communication path 55b, and then extends toward the axial rear side Dab while facing the radial inner side Dri with respect to the axis Ar. It communicates with 41b.
  • the treatment tube 63b of the present embodiment has a reduced inner diameter surface 63bf whose inner diameter is gradually reduced toward the axial rear side Dab, and a cylindrical inner peripheral surface 63bg whose inner diameter is constant in the axial direction Da. Is formed.
  • the cylindrical inner peripheral surface 63bg is formed from the edge of the axially rear side Dab of the reduced diameter inner peripheral surface 63bf.
  • the bell mouth cap 65b is formed with a bell mouth surface 65bf whose inner diameter is gradually reduced toward the axial rear side Dab, and a cylindrical inner peripheral surface 65bg whose inner diameter is constant in the axial direction Da.
  • the cylindrical inner peripheral surface 65bg is formed from an edge of the axial rear side Dab of the bell mouth surface 65bf. Further, the bell mouth cap 65b is formed with a reduced-diameter outer peripheral surface 65bh whose outer diameter is gradually reduced toward the axial rear side Dab.
  • the suction side communication passage 55b is formed between the reduced diameter inner peripheral surface 63bf of the treatment tube 63b and the reduced diameter outer peripheral surface 65bh of the bell mouth cap 65b.
  • the cylindrical inner peripheral surface 43bg that defines the flow path in the straight body portion 43b is formed by the cylindrical inner peripheral surface 63bg of the treatment tube 63b and the cylindrical inner peripheral surface 65bg of the bell mouth cap 65b.
  • the compressor housing 40b of the present embodiment also satisfies the relationships shown in the equations (1) to (4), like the compressor housings 40 and 40a of the above embodiments. For this reason, similarly to the compressor housing 40 of the first embodiment, the compressor housing 40b of the present embodiment can reduce the flow velocity of the swirling component of the air A flowing into the impeller chamber 45, and the centrifugal compressor 30b The operating range can be expanded.
  • the suction side communication passage 55b extends from the boundary between the circulation flow path 52 and the suction side communication path 55b and then extends toward the axial rear side Dab to communicate with the suction flow path 41b. Therefore, the flow path length until a part of the air A in the impeller chamber 45 returns to the suction flow path 41b becomes longer. For this reason, similarly to the case where the flow path length L of the circulation flow path 52 is increased, the flow velocity of the swirl component of the air A flowing into the impeller chamber 45 can be reduced.
  • the suction side communication passage 55b extends from the boundary between the circulation flow path 52 and the suction side communication passage 55b and then extends toward the axial rear side Dab, so that the axial direction of the compressor housing 40b It is possible to increase the flow path length until a part of the air A in the impeller chamber 45 returns to the suction flow path 41b while suppressing an increase in length to Da.
  • the centrifugal compressor 30c of the present embodiment is a combination of the structure of the centrifugal compressor 30a of the second embodiment and the structure of the centrifugal compressor 30b of the third embodiment. That is, this embodiment adopts the configuration of the suction side communication path in the third embodiment, and the communication port for the suction flow path in this suction side communication is the bell mouth surface of the suction side flow path as in the second embodiment. Is formed.
  • the suction flow path 41c of the present embodiment also has a reduced diameter portion 42c and a straight body portion 43c that are rotationally symmetric about the axis Ar as in the third embodiment.
  • a flow path area becomes small gradually as it goes to the axial direction rear side Dab from the axial direction front side Daf.
  • the reduced diameter portion 42c has a bell mouth shape centered on the axis Ar.
  • the surface defining the flow path in the reduced diameter portion 42c forms a smooth convex bell mouth surface 42cf toward the radially inner side Dri.
  • the straight body portion 43c has the same flow path area at each position in the axial direction Da.
  • the surface that defines the flow path in the straight body portion 43c forms a cylindrical inner peripheral surface 43cg with the axis line Ar as the center.
  • the communication port 55o with respect to the suction flow path 41c in the suction side communication path 55c is formed in the bell mouth surface 42cf in the reduced diameter portion 42c.
  • a portion of the axial rear side Dab with respect to the suction side communication path 55c is formed by the treatment cylinder 63c as in the above embodiments.
  • the suction side communication passage 55c is formed with a housing main body 61 and a bell mouth cap 65c at the axially front side Daf with reference to the suction side communication passage 55c.
  • the bell mouth cap 65c is fixed to the axially front Daf of the housing body 61 and to the radially inner Dri thereof.
  • the bell mouth cap 65c is also fixed to the housing main body 61 with a space from the treatment tube 63c to the axially front side Daf.
  • a suction side communication passage 55c is formed between the treatment tube 63c and the bell mouth cap 65c.
  • the suction side communication passage 55c is turned from the boundary between the circulation flow path 52 and the suction side communication passage 55c, and then toward the radially inner side Dri with respect to the axis Ar, toward the axial rear side Dab. And communicates with the suction channel 41c.
  • the treatment tube 63c of the present embodiment has a reduced inner diameter surface 63cf whose inner diameter is gradually reduced toward the axial rear side Dab, and a cylindrical inner peripheral surface 63cg whose inner diameter is constant in the axial direction Da. Is formed.
  • the cylindrical inner peripheral surface 63cg is formed from the edge of the axially rear side Dab of the reduced diameter inner peripheral surface 63cf.
  • the bell mouth cap 65c is formed with a bell mouth surface 65cf whose inner diameter is gradually reduced toward the rear side Dab in the axial direction. Further, the bell mouth cap 65c is formed with a reduced-diameter outer peripheral surface 65ch whose outer diameter is gradually reduced toward the rear side Dab in the axial direction.
  • a portion of the axial rear side Dab in the reduced diameter inner peripheral surface 63cf of the treatment tube 63c forms a bell mouth surface 63cf.
  • the bell mouth surface 63cff of the treatment tube 63c is located on a virtual bell mouth surface obtained by extending the bell mouth surface 65cf of the bell mouth cap 65c to the rear side Dab in the axial direction.
  • the suction side communication passage 55c is formed between a portion of the reduced diameter inner peripheral surface 63cf of the treatment tube 63c excluding the bell mouth surface 63cf and a reduced diameter outer peripheral surface 65ch of the bell mouth cap 65c.
  • the bell mouth surface 42cf in the reduced diameter portion 42c of the suction channel 41c is formed by the bell mouth surface 65cf of the bell mouth cap 65c and the bell mouth surface 63cf of the treatment tube 63c.
  • the compressor housing 40c of the present embodiment also satisfies the relationships expressed by the equations (1) to (4), like the compressor housings 40, 40a, and 40b of the above embodiments. Further, in the present embodiment, as in the second embodiment, the dimension Rc from the axis Ar to the edge of the bell mouth cap 65c on the radially inner side Dri and the axially front side Daf is smaller than the outlet inner diameter Ro and the inlet inner diameter. Greater than Ri.
  • the suction side communication path 55c of the present embodiment is folded back from the boundary between the circulation flow path 52 and the suction side communication path 55c and then extends toward the axial rear side Dab, and the suction flow path 41c. Communicated with. For this reason, in the present embodiment, as in the third embodiment, while the length of the compressor housing 40c in the axial direction Da is suppressed, a part of the air A in the impeller chamber 45 returns to the suction flow path 41c. The channel length can be increased.
  • the communication port 55o with respect to the suction flow path 41c in the suction side communication path 55c of this embodiment is formed in the bell mouth surface 42cf in the reduced diameter part 42c similarly to 2nd embodiment.
  • compressor housings 40b and 40c of the third embodiment and the present embodiment both satisfy the relationship represented by the formula (3).
  • the compressor housings 40b and 40c of the third embodiment and the present embodiment do not have to satisfy the relationship represented by the expression (3).
  • centrifugal compressor of each of the above embodiments is a centrifugal compressor provided in the supercharger, but the centrifugal compressor according to the present invention may not be provided in the supercharger.
  • the operating range of the centrifugal compressor can be expanded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

A housing (40) has formed therein an impeller side communicating path (51) extending from an impeller chamber (45) in a direction containing a radial outward (Dro) component, a circulating channel (52) extending from the impeller side communicating path (51) in a direction containing an axial front Daf component, and an intake side communicating path (55) communicating with the circulating channel (52) and an intake channel (41) that guides gas into the impeller chamber (45). The radial measurement (Ri) from an axial line (Ar) to a communication position with the intake side communicating path (55) in the circulating channel (52) is larger than the radial measurement (Ro) from the axial line (Ar) to a communication position with the impeller side communicating path (51) in the circulating channel (52). The channel area (Ao) of the circulating path (52) at the communication position with the intake side communicating path (55) is larger than the channel area (Ai) of the circulating channel (52) in the communication position with the impeller side communicating path (51).

Description

遠心圧縮機、及びこれを備える過給機Centrifugal compressor and supercharger equipped with the same
 本発明は、遠心圧縮機、及びこれを備える過給機に関する。 The present invention relates to a centrifugal compressor and a supercharger including the same.
 遠心圧縮機は、回転軸と、回転軸の外周に取り付けられているインペラと、このインペラを覆うハウジングと、を備えている。遠心圧縮機のインペラは、軸方向前側から流入した気体を径方向外側に導く。ハウジングには、インペラの軸方向前側に気体を導く吸込流路と、吸込流路と連通しインペラが収納されるインペラ室と、インペラ室と連通しインペラから径方向外側に送られた気体が流入する吐出流路と、が形成されている。 The centrifugal compressor includes a rotating shaft, an impeller attached to the outer periphery of the rotating shaft, and a housing that covers the impeller. The impeller of the centrifugal compressor guides the gas flowing in from the front side in the axial direction to the outside in the radial direction. A suction channel that guides gas to the front side in the axial direction of the impeller, an impeller chamber that communicates with the suction channel, and stores an impeller that communicates with the impeller chamber, and gas that is sent radially outward from the impeller flows into the housing. And a discharge flow path to be formed.
 このような遠心圧縮機では、ハウジング内を流れる気体の流量が少なくなると、気体の流れ方向に気体が激しく振動するサージングと呼ばれる現象が発生する。このため、遠心圧縮機では、このサージングを抑える方法が各種検討されている。 In such a centrifugal compressor, when the flow rate of the gas flowing in the housing is reduced, a phenomenon called surging in which the gas vibrates vigorously in the gas flow direction occurs. For this reason, various methods for suppressing this surging have been studied for centrifugal compressors.
 そこで、例えば、以下の特許文献1には、サージングが発生するサージ限界をより小流側移動させることで、作動領域が広がる遠心圧縮機が開示されている。この遠心圧縮機のハウジングには、ハウジングのインペラ室と吸込流路とを連通させるチャンバや、ハウジングのインペラ室とハウジングの吸込流路側に接続されている吸入管とを連通されるチャンバが形成されている。このようにハウジングにチャンバを形成すると、吸込流路からインペラ室を介して吐出流路へ流れる気体の流量が少ないときでも、インペラ室内の気体の一部がチャンバ及び吸込流路を経てインペラ室に戻ることで、インペラ室の上流側部分での気体の流量が増え、サージングを抑えることができる。 Therefore, for example, the following Patent Document 1 discloses a centrifugal compressor in which the operating range is expanded by moving the surge limit where surging occurs to the smaller flow side. The housing of the centrifugal compressor is formed with a chamber that communicates the impeller chamber of the housing with the suction flow path, and a chamber that communicates the impeller chamber of the housing and the suction pipe connected to the suction flow path side of the housing. ing. By forming the chamber in the housing in this way, even when the flow rate of the gas flowing from the suction flow path to the discharge flow path through the impeller chamber is small, a part of the gas in the impeller chamber passes through the chamber and the suction flow path to the impeller chamber. By returning, the gas flow rate in the upstream portion of the impeller chamber increases, and surging can be suppressed.
日本国特許第3006215号公報Japanese Patent No. 3006215
 上記特許文献1に記載の技術では、遠心圧縮機の作動領域を拡大することができる。しかしながら、遠心圧縮機では、より作動領域の拡大が望まれている。 In the technique described in Patent Document 1, the operating range of the centrifugal compressor can be expanded. However, in the centrifugal compressor, it is desired to expand the operating range.
 そこで、本発明は、作動領域を拡大することができる遠心圧縮機、及びこれを備える過給機を提供することを目的とする。 Therefore, an object of the present invention is to provide a centrifugal compressor capable of expanding an operation region, and a supercharger including the centrifugal compressor.
 上記目的を達成するための発明に係る一態様としての遠心圧縮機は、
 軸線を中心として回転する回転軸と、前記回転軸の外周に取り付けられているインペラと、前記インペラを覆うハウジングと、を備え、前記インペラは、前記回転軸に装着されるハブと、前記軸線を中心とする周方向に間隔をあけて前記ハブに複数設けられ、前記ハブと一体回転するすることで、前記軸線が延びる軸方向の一方側である軸方向前側から流入した気体を前記軸線に対する径方向外側に案内するブレードと、を有し、前記ハウジングには、前記インペラの前記軸方向前側に気体を導く吸込流路と、前記吸込流路と連通し前記インペラが収納されるインペラ室と、前記インペラ室と連通し前記インペラから前記径方向外側に送られた気体が流入する吐出流路と、前記インペラ室と連通し前記インペラ室から前記径方向外側の成分を含む方向に向かって延びるインペラ側連通路と、前記インペラ側連通路と連通し前記インペラ側連通路から前記軸方向前側の成分を含む方向の延びる循環流路と、前記循環流路と前記吸込流路とに連通する吸込側連通路と、が形成され、前記軸線から前記循環流路における前記吸込側連通路との連通位置までの径方向の寸法である吸込側径寸法が、前記軸線から前記循環流路における前記インペラ側連通路との連通位置までの径方向の寸法であるインペラ側径寸法より大きく、且つ前記吸込側連通路との連通位置における前記循環流路の流路面積が、前記インペラ側連通路との連通位置における前記循環流路の流路面積より大きい。
A centrifugal compressor as one aspect according to the invention for achieving the above object is as follows:
A rotation shaft that rotates about an axis; an impeller that is attached to an outer periphery of the rotation shaft; and a housing that covers the impeller. The impeller includes a hub attached to the rotation shaft and the axis A plurality of the hubs are provided at intervals in the circumferential direction around the center, and by rotating integrally with the hub, the gas flowing in from the axial front side that is one side of the axial direction in which the axis extends extends to the diameter of the axis. A blade that guides outward in the direction, and the housing includes a suction channel that guides gas to the front side in the axial direction of the impeller, an impeller chamber that communicates with the suction channel and stores the impeller, and A discharge passage through which the gas sent to the radially outer side from the impeller communicates with the impeller chamber; and a component on the radially outer side from the impeller chamber that communicates with the impeller chamber. An impeller side communication passage extending in a direction extending in a direction, a circulation passage communicating with the impeller side communication passage and extending in a direction including a component on the front side in the axial direction from the impeller side communication passage, the circulation passage and the suction flow A suction side communication passage that communicates with the passage, and a suction side diameter dimension that is a dimension in a radial direction from the axis to a communication position with the suction side communication passage in the circulation channel is from the axis. The flow path area of the circulation flow path is larger than the impeller side diameter dimension which is a radial dimension to the communication position with the impeller side communication path in the circulation flow path, and the flow path area of the circulation flow path at the communication position with the suction side communication path is It is larger than the flow path area of the circulation flow path at the communication position with the impeller side communication path.
 遠心圧縮機では、吸込流路に流入する気体の流量が少ない場合、インペラ室内の圧力は、吸込流路内の圧力より高くなる。このため、当該遠心圧縮機のように、圧縮機ハウジングに循環流路等が形成されていると、インペラ室内の気体の一部が循環流路等を介して吸込流路に戻る。この結果、インペラ室内でインペラ側連通路より軸方向前側の部分の流量が多くなる。このため、当該遠心圧縮機では、サージングを抑えることができる。すなわち、当該遠心圧縮機では、サージ限界線を小流量側にすることができ、作動範囲を広げることができる。 In the centrifugal compressor, when the flow rate of the gas flowing into the suction passage is small, the pressure in the impeller chamber is higher than the pressure in the suction passage. For this reason, when a circulation channel or the like is formed in the compressor housing as in the centrifugal compressor, a part of the gas in the impeller chamber returns to the suction channel via the circulation channel or the like. As a result, the flow rate in the front portion in the axial direction from the impeller side communication path in the impeller chamber is increased. For this reason, surging can be suppressed in the centrifugal compressor. That is, in the centrifugal compressor, the surge limit line can be on the small flow rate side, and the operating range can be expanded.
 インペラ室からインペラ側連通路を介して循環流路に流入した気体の流れ方向成分には、軸線を中心とした旋回成分であってインペラの回転方向と同じ方向の成分を含んでいる。仮に、流れの成分としてこの旋回成分を有する気体が、循環流路、吸込側連通路、吸込流路を経て、インペラ室に戻ると、ブレードの迎え角が小さくなる。このため、吐出圧が小さくなる、言い換えると圧力比が小さくなる。 The flow direction component of the gas flowing into the circulation flow path from the impeller chamber via the impeller side communication path includes a swirl component around the axis and the same direction as the impeller rotation direction. If the gas having this swirl component as a flow component returns to the impeller chamber through the circulation flow path, the suction side communication path, and the suction flow path, the angle of attack of the blade is reduced. For this reason, the discharge pressure is reduced, in other words, the pressure ratio is reduced.
 当該遠心圧縮機では、循環流路の吸込側径寸法が循環流路のインペラ側径寸法より大きい。このため、当該遠心圧縮機では、循環流路における吸込側連通路との連通位置での気体の旋回成分の流速を、循環流路におけるインペラ側連通路との連通位置での気体の旋回成分の流速より小さくすることができる。 In the centrifugal compressor, the suction side diameter dimension of the circulation flow path is larger than the impeller side diameter dimension of the circulation flow path. Therefore, in the centrifugal compressor, the flow velocity of the swirl component of the gas at the communication position with the suction-side communication passage in the circulation flow path is set to the flow velocity of the swirl component of the gas at the communication position with the impeller-side communication passage in the circulation flow path. It can be made smaller than the flow rate.
 また、当該遠心圧縮機では、吸込側連通路との連通位置における循環流路の流路面積がインペラ側連通路との連通位置における循環流路の流路面積より大きい。このため、当該遠心圧縮機では、循環流路における吸込側連通路との連通位置での気体の軸方向成分の流速みならず、旋回成分の流速を小さくすることができる。 Further, in the centrifugal compressor, the flow passage area of the circulation flow path at the communication position with the suction side communication path is larger than the flow passage area of the circulation flow path at the communication position with the impeller communication path. For this reason, in the centrifugal compressor, not only the flow rate of the axial component of the gas but also the flow rate of the swirl component at the communication position with the suction side communication path in the circulation channel can be reduced.
 以上のように、当該遠心圧縮機では、インペラ室に流入する空気の旋回成分の流速を小さくすることができる。この結果、当該遠心圧縮機では、ブレードの迎え角が大きくなって、圧力比を大きくすることができる。よって、当該遠心圧縮機では、サージ限界線を高圧力比側にすることができる。このため、当該遠心圧縮域では、作動範囲をより広げることができる。 As described above, in the centrifugal compressor, the flow velocity of the swirling component of the air flowing into the impeller chamber can be reduced. As a result, in the centrifugal compressor, the angle of attack of the blade is increased, and the pressure ratio can be increased. Therefore, in the centrifugal compressor, the surge limit line can be on the high pressure ratio side. For this reason, the operating range can be further expanded in the centrifugal compression region.
 ここで、前記遠心圧縮機において、前記ハウジングには、前記軸線を中心とした周方向に並ぶ複数の前記循環流路が形成されていると共に、前記周方向で隣接する前記循環流路の相互間を仕切る仕切部が形成されていてもよい。 Here, in the centrifugal compressor, the housing is formed with a plurality of circulation channels arranged in a circumferential direction around the axis, and between the circulation channels adjacent in the circumferential direction. The partition part which partitions off may be formed.
 当該遠心圧縮機では、仕切部の存在により、循環流路内における気体の旋回成分の流速を抑えることができる。 In the centrifugal compressor, the flow rate of the swirl component of the gas in the circulation flow path can be suppressed due to the presence of the partition portion.
 以上のいずれかの前記遠心圧縮機において、前記吸込流路は、前記軸線を中心として回転対称な形状を成し、前記軸方向の他方側である軸方向後側に向かうに連れて次第に流路面積が小さくなる縮径部を有し、前記吸込側連通路における前記吸込流路に対する連通口は、前記縮径部における流路を画定する面に形成されていてもよい。 In any one of the above centrifugal compressors, the suction flow path has a rotationally symmetric shape about the axis, and the flow path gradually increases toward the rear side in the axial direction, which is the other side of the axial direction. A reduced diameter portion having a small area may be provided, and a communication port for the suction flow path in the suction side communication path may be formed on a surface defining the flow path in the reduced diameter portion.
 当該遠心圧縮機では、吸込流路が軸方向後側に向かうに連れて次第に流路面積が小さくなる縮径部を有するため、外部から空気が吸込流路を経てインペラ室に流入し易くなる。さらに、当該遠心圧縮機では、縮径部における流路を画定する面中に吸込側連通路の連通口が形成されているため、この面における静圧低減効果により、吸込側連通路内の気体を効率的に吸込流路内に導くことができる。 In the centrifugal compressor, since the suction flow path has a reduced diameter portion that gradually decreases in the flow path area toward the rear side in the axial direction, air easily flows from the outside into the impeller chamber via the suction flow path. Further, in the centrifugal compressor, since the communication port of the suction side communication path is formed in the surface that defines the flow path in the reduced diameter portion, the gas in the suction side communication path is reduced by the static pressure reducing effect on this surface. Can be efficiently guided into the suction flow path.
 この結果、当該遠心圧縮機では、吸込流路を経てインペラ室に流入する気体の流量を増加させることができる。このため、当該遠心圧縮機では、サージ限界線をより小流量側にすることができ、作動範囲をより広くすることができる。 As a result, in the centrifugal compressor, the flow rate of the gas flowing into the impeller chamber through the suction channel can be increased. For this reason, in the said centrifugal compressor, a surge limit line can be made into the small flow volume side, and an operation range can be made wider.
 また、前記縮径部を有する前記遠心圧縮機において、前記縮径部における流路を画定する面は、前記軸線に近づく側に凸となる曲面を成していてもよい。 Further, in the centrifugal compressor having the reduced diameter portion, the surface defining the flow path in the reduced diameter portion may form a curved surface that protrudes toward the axis.
 当該遠心圧縮機では、吸込流路を画定する面の一部が軸線に近づく側に凸となる曲面、つまり、ベルマウス面を成しているため、外部から気体が吸込流路を経てインペラ室に流入し易くなる。さらに、当該遠心圧縮機では、ベルマウス面中に、吸込側連通路の連通口が形成されているため、このベルマウス面における静圧低減効果により、吸込側連通路内の気体を効率的に吸込流路内に導くことができる。 In the centrifugal compressor, since a part of the surface defining the suction flow path forms a curved surface that protrudes toward the axis, that is, a bell mouth surface, gas from the outside passes through the suction flow path to the impeller chamber It becomes easy to flow into. Furthermore, in the centrifugal compressor, since the communication port of the suction side communication passage is formed in the bell mouth surface, the static pressure reducing effect on the bell mouth surface effectively allows the gas in the suction side communication passage to be efficiently discharged. It can be led into the suction channel.
 また、前記縮径部を有する、いずれかの前記遠心圧縮機において、前記軸線から前記吸込側連通路の前記連通口における前記軸方向前側の縁までの径方向の寸法は、前記吸込側径寸法より小さく且つ前記インペラ側径寸法より大きくてもよい。 In any one of the centrifugal compressors having the reduced diameter portion, the radial dimension from the axial line to the axially front edge of the communication port of the suction side communication path is the suction side diameter dimension. It may be smaller and larger than the impeller side diameter dimension.
 また、以上のいずれかの前記遠心圧縮機において、前記吸込側連通路は、前記循環流路と前記吸込側連通路との境から折り返してから、前記軸線に対する径方向内側に向かいつつ、前記軸方向の他方側である軸方向後側に向かって延びて、前記吸込流路と連通していてもよい。 Further, in any one of the above centrifugal compressors, the suction side communication path is folded back from the boundary between the circulation flow path and the suction side communication path, and then directed radially inward with respect to the axis line, the shaft It extends toward the axial rear side, which is the other side of the direction, and may communicate with the suction flow path.
 当該遠心圧縮機では、ハウジングの軸方向の寸法を長くすることなく、インペラ室の気体の一部がインペラ側連通路、循環流路及び吸込側連通路を経て、吸込流路に戻るまでの気体の流路長を長くすることができる。軸方向の流路長が長くなると、軸方向に延びる流路の壁面に気体が沿い易くなり、気体の旋回成分が小さくなる。よって、当該遠心圧縮機では、ブレードの迎え角が大きくなり、圧力比を大きくすることができる。このため、当該遠心圧縮機では、作動範囲をより広げることができる。 In the centrifugal compressor, the gas until a part of the gas in the impeller chamber returns to the suction flow path through the impeller side communication path, the circulation flow path, and the suction side communication path without increasing the axial dimension of the housing. The flow path length can be increased. When the axial flow path length is increased, the gas is likely to follow the wall surface of the axially extending flow path, and the gas swirl component is reduced. Therefore, in the centrifugal compressor, the angle of attack of the blade is increased, and the pressure ratio can be increased. For this reason, in the said centrifugal compressor, an operating range can be expanded more.
 また、以上のいずれかの前記遠心圧縮機において、Lを、前記循環流路における前記吸込側連通路との連通位置から前記循環流路における前記インペラ側連通路との連通位置までの軸方向の寸法とし、doを、前記吸込側連通路との連通位置における前記循環流路の流路面積に関する等価直径とし、diを、前記インペラ側連通路との連通位置における前記循環流路の流路面積に関する等価直径とした場合、以下の式で規定される広がり角2θは、20°未満である。
  2θ = 2×tan((do-di)/2L)
In any one of the above centrifugal compressors, L is defined as an axial distance from a communication position with the suction-side communication path in the circulation flow path to a communication position with the impeller-side communication path in the circulation flow path. Dimensions, do as the equivalent diameter of the flow path area of the circulation flow path at the communication position with the suction side communication path, and di as the flow path area of the circulation flow path at the communication position with the impeller side communication path In the case of the equivalent diameter, the spread angle 2θ defined by the following formula is less than 20 °.
2θ = 2 × tan ((do-di) / 2L)
 循環流路内での流速の急激な減速は、循環流路を画定する壁面での境界層の発達を招く。このため、循環流路を通る気体の圧力損失が増大して、循環流路を流れる気体の流量が減少する。そこで、当該遠心圧縮機では、広がり角2θを20°未満にして、循環流路を流れる気体の流量減少を抑える。 The rapid deceleration of the flow velocity in the circulation channel leads to the development of a boundary layer on the wall that defines the circulation channel. For this reason, the pressure loss of the gas passing through the circulation channel increases, and the flow rate of the gas flowing through the circulation channel decreases. Therefore, in the centrifugal compressor, the spread angle 2θ is set to be less than 20 ° to suppress a decrease in the flow rate of the gas flowing through the circulation channel.
 また、以上のいずれかの前記遠心圧縮機において、前記循環流路における前記吸込側連通路との連通位置から前記循環流路における前記インペラ側連通路との連通位置までの軸方向の寸法は、前記インペラの最大外径であるインペラ外径の0.25倍以上であってもよい。 In any of the above centrifugal compressors, the axial dimension from the communication position with the suction-side communication path in the circulation channel to the communication position with the impeller-side communication path in the circulation channel is: The impeller outer diameter which is the maximum outer diameter of the impeller may be 0.25 times or more.
 軸方向の流路長が長くなると、軸方向に延びる流路の壁面に気体が沿い易くなり、気体の旋回成分が小さくなる。そこで、当該遠心圧縮機では、循環流路における吸込側連通路との連通位置から循環流路におけるインペラ側連通路との連通位置までの軸方向の寸法を長くし、気体の旋回成分を小さくする。 When the axial flow path length is long, the gas easily follows the wall surface of the axially extending flow path, and the swirl component of the gas is reduced. Therefore, in the centrifugal compressor, the axial dimension from the communication position with the suction-side communication path in the circulation channel to the communication position with the impeller-side communication path in the circulation channel is lengthened, and the swirl component of the gas is reduced. .
 上記目的を達成するための発明に係る一態様としての過給機は、
 以上のいずれかの前記遠心圧縮機と、タービンとを備え、前記タービンは、前記軸線を中心として回転するタービン回転軸と、前記タービン回転軸の外周に取り付けられているタービンインペラと、前記タービンインペラを覆うタービンハウジングと、を有し、前記タービン回転軸と前記遠心圧縮機の前記回転軸とは、同一の軸線上に位置して互いに連結されて一体回転し、過給機回転軸を成す。
The supercharger as one aspect according to the invention for achieving the above object is as follows:
One of the above centrifugal compressors and a turbine are provided, and the turbine is a turbine rotating shaft that rotates about the axis, a turbine impeller that is attached to an outer periphery of the turbine rotating shaft, and the turbine impeller A turbine housing covering the turbine, and the turbine rotating shaft and the rotating shaft of the centrifugal compressor are connected to each other on the same axis and are connected together to form a supercharger rotating shaft.
 本発明の一態様では、遠心圧縮機の作動範囲を拡大することができる。 In one embodiment of the present invention, the operating range of the centrifugal compressor can be expanded.
本発明に係る第一実施形態における遠心圧縮機の模式的な要部断面図である。It is a typical principal part sectional view of the centrifugal compressor in a first embodiment concerning the present invention. 本発明に係る第一実施形態における過給機の全体断面図である。1 is an overall cross-sectional view of a supercharger in a first embodiment according to the present invention. 広がり角を説明するための説明図である。It is explanatory drawing for demonstrating a divergence angle. 比較例2における遠心圧縮機の模式的な要部断面図である。6 is a schematic cross-sectional view of a main part of a centrifugal compressor in Comparative Example 2. FIG. 各遠心圧縮機の特性を示すグラフである。It is a graph which shows the characteristic of each centrifugal compressor. 本発明に係る第二実施形態における遠心圧縮機の模式的な要部断面図である。It is a typical principal part sectional view of the centrifugal compressor in a second embodiment concerning the present invention. 本発明に係る第三実施形態における遠心圧縮機の模式的な要部断面図である。It is a typical principal part sectional view of the centrifugal compressor in a third embodiment concerning the present invention. 本発明に係る第四実施形態における遠心圧縮機の模式的な要部断面図である。It is a typical principal part sectional view of the centrifugal compressor in a fourth embodiment concerning the present invention.
 以下、本発明に係る各種実施形態について、図面を用いて説明する。 Hereinafter, various embodiments according to the present invention will be described with reference to the drawings.
 「遠心圧縮機及び過給機の第一実施形態」
 遠心圧縮機及び過給機の第一実施形態について、図1~図5を用いて説明する。
“First Embodiment of Centrifugal Compressor and Supercharger”
A first embodiment of a centrifugal compressor and a supercharger will be described with reference to FIGS.
 本実施形態の過給機は、図2に示すように、エンジンからの排気ガスEXで駆動するタービン10と、空気Aを圧縮してエンジンに送り込む遠心圧縮機30と、遠心圧縮機30とタービン10とを連結する連結部20と、を備える。 As shown in FIG. 2, the turbocharger of the present embodiment includes a turbine 10 driven by exhaust gas EX from the engine, a centrifugal compressor 30 that compresses air A and sends it to the engine, a centrifugal compressor 30 and a turbine. 10 is provided.
 タービン10は、軸線Arを中心として回転する円柱状のタービン回転軸11と、タービン回転軸11の外周に取り付けられているタービンインペラ12と、タービンインペラ12を覆おうタービンハウジング19と、を有する。 The turbine 10 includes a cylindrical turbine rotating shaft 11 that rotates about an axis Ar, a turbine impeller 12 that is attached to the outer periphery of the turbine rotating shaft 11, and a turbine housing 19 that covers the turbine impeller 12.
 遠心圧縮機30は、軸線Arを中心として回転する円柱状の圧縮機回転軸31と、圧縮機回転軸31の外周に取り付けられている圧縮機インペラ32と、圧縮機インペラ32を覆う圧縮機ハウジング40と、を有する。 The centrifugal compressor 30 includes a cylindrical compressor rotating shaft 31 that rotates about an axis Ar, a compressor impeller 32 that is attached to the outer periphery of the compressor rotating shaft 31, and a compressor housing that covers the compressor impeller 32. 40.
 連結部20は、軸線Arを中心として回転する円柱状の連結回転軸21と、連結回転軸21を覆うセンターハウジング29と、連結回転軸21を回転可能に支持する軸受28と、を有する。軸受28は、センターハウジング29の内周側に固定されている。 The connecting portion 20 includes a columnar connecting rotary shaft 21 that rotates about the axis Ar, a center housing 29 that covers the connecting rotary shaft 21, and a bearing 28 that rotatably supports the connecting rotary shaft 21. The bearing 28 is fixed to the inner peripheral side of the center housing 29.
 圧縮機回転軸31の軸線Arと連結回転軸21の軸線Arとタービン回転軸11の軸線Arとは、同一軸線Ar上に位置し、この順序で互いに連結されて一体回転し、過給機回転軸を成す。また、圧縮機ハウジング40とセンターハウジング29とタービンハウジング19は、互いに連結されて過給機ハウジングを成す。 The axis line Ar of the compressor rotating shaft 31, the axis line Ar of the connecting rotating shaft 21, and the axis line Ar of the turbine rotating shaft 11 are located on the same axis line Ar, and are connected to each other in this order so as to rotate together and rotate the turbocharger. Make an axis. The compressor housing 40, the center housing 29, and the turbine housing 19 are connected to each other to form a supercharger housing.
 ここで、軸線Arが延びる方向を軸方向Daとし、この軸方向Daの一方側を軸方向前側Daf、この軸方向Daの他方側を軸方向後側Dabとする。本実施形態では、連結部20に対して遠心圧縮機30が軸方向前側Dafに設けられ、連結部20に対して軸方向後側Dabにタービン10が設けられている。また、軸線Arに対する径方向を単に径方向Drとし、径方向Drで軸線Arから遠ざかる側を径方向外側Dro、径方向Drで軸線Arに近づく側を径方向内側Driとする。また、軸線Arを中心とした周方向を単に周方向Dcとする。 Here, the direction in which the axis Ar extends is the axial direction Da, one side of the axial direction Da is the axial front side Daf, and the other side of the axial direction Da is the axial rear side Dab. In the present embodiment, the centrifugal compressor 30 is provided on the axially front side Daf with respect to the connecting part 20, and the turbine 10 is provided on the axially rear side Dab with respect to the connecting part 20. In addition, the radial direction with respect to the axis Ar is simply referred to as the radial direction Dr, the side farther from the axis Ar in the radial direction Dr is the radially outer Drro, and the side closer to the axis Ar in the radial direction Dr is the radially inner Dri. Further, the circumferential direction around the axis Ar is simply referred to as a circumferential direction Dc.
 圧縮機インペラ32は、オープンインペラである。この圧縮機インペラ32は、圧縮機回転軸31の外周に装着されるハブ33と、周方向Dcに間隔をあけてハブ33に設けられている複数のブレード35と、を有する。 The compressor impeller 32 is an open impeller. The compressor impeller 32 includes a hub 33 that is mounted on the outer periphery of the compressor rotating shaft 31 and a plurality of blades 35 that are provided on the hub 33 at intervals in the circumferential direction Dc.
 ハブ33は、軸方向Daから見た形状が軸線Arを中心として円形を成し、軸方向前側Dafから軸方向後側Dabに向かうに連れて、その外径が次第に大きくなっている。さらに、このハブ33は、径方向外側Droの表面であるハブ面34と子午断面との境界線上の各位置が、軸方向前側Dafから軸方向後側Dabに向かうに連れて、各位置での接線が、軸線Arとほほ平行な方向から次第に径方向Drに向く形状になっている。 The shape of the hub 33 viewed from the axial direction Da is circular with the axis line Ar as the center, and the outer diameter gradually increases from the axial front side Daf to the axial rear side Dab. Further, the hub 33 has a position on the boundary line between the hub surface 34, which is the surface of the radially outer side Dro, and the meridional section, as it moves from the axial front side Daf to the axial rear side Dab. The tangent is shaped so as to gradually face the radial direction Dr from a direction substantially parallel to the axis Ar.
 複数のブレード35は、いずれも、ハブ面34に設けられている。ブレード35は、ハブ面34に対して垂直な方向成分を含む方向に突出し、ハブ面34に沿って、ハブ面34の軸方向前側Dafからハブ面34の軸方向後側Dabの縁まで延びている。このブレード35の軸方向前側Dafの縁がリーディングエッジ36を成し、このブレード35の軸方向後側Dabで径方向外側Droを向いている縁がトレーリングエッジ37を成す。また、このブレード35で、ハブ面34に対する突出方向の先端がチップ38を成す。このブレード35のチップ38は、圧縮機ハウジング40の内周面と対向している。 The plurality of blades 35 are all provided on the hub surface 34. The blade 35 projects in a direction including a directional component perpendicular to the hub surface 34, and extends along the hub surface 34 from the axial front side Daf of the hub surface 34 to the edge of the axial rear side Dab of the hub surface 34. Yes. An edge of the blade 35 on the front side Daf in the axial direction forms a leading edge 36, and an edge of the blade 35 on the rear side Dab in the axial direction facing the radially outer side Dro forms a trailing edge 37. Further, the tip of the blade 35 in the protruding direction with respect to the hub surface 34 forms a tip 38. The tip 38 of the blade 35 faces the inner peripheral surface of the compressor housing 40.
 圧縮機ハウジング40には、圧縮機インペラ32の軸方向前側Dafに空気Aを導く吸込流路41と、吸込流路41と連通し圧縮機インペラ32が収納されるインペラ室45と、インペラ室45と連通し圧縮機インペラ32から径方向外側Droに送られた気体が流入する吐出流路46と、が形成されている。吸込流路41は、軸線Arを中心として回転対称な形状を成している。吸込流路41からの空気Aは、圧縮機インペラ32における複数のブレード35のリーディングエッジ36の相互間から複数のブレード35の相互間に流入する。吐出流路46は、複数のブレード35のトレーリングエッジ37から径方向外側Droに広がるディフューザ部47と、ディフューザ部47の径方向外側Droの縁から周方向Dcの延びているスクロール部48と、を有する。この吐出流路46からの空気Aは、エンジンの吸気マニホールドからエンジンのシリンダ内に流入する。 The compressor housing 40 includes a suction passage 41 that guides air A to the axially front side Daf of the compressor impeller 32, an impeller chamber 45 that communicates with the suction passage 41 and houses the compressor impeller 32, and an impeller chamber 45. And a discharge passage 46 into which the gas sent from the compressor impeller 32 to the radially outer side Dro flows is formed. The suction flow path 41 has a rotationally symmetric shape about the axis Ar. The air A from the suction passage 41 flows between the leading edges 36 of the plurality of blades 35 in the compressor impeller 32 and between the plurality of blades 35. The discharge flow path 46 includes a diffuser portion 47 extending from the trailing edge 37 of the plurality of blades 35 to the radially outer side Dro, a scroll portion 48 extending in the circumferential direction Dc from the edge of the diffuser portion 47 on the radially outer side Dro, Have The air A from the discharge passage 46 flows into the engine cylinder from the intake manifold of the engine.
 圧縮機ハウジング40には、さらに、インペラ室45と連通しインペラ室45から径方向外側Droの成分を含む方向に向かって延びるインペラ側連通路51と、インペラ側連通路51と連通しインペラ側連通路51から軸方向前側Dafの成分を含む方向の延びる複数の循環流路52と、複数の循環流路52と吸込流路41とに連通する吸込側連通路55と、が形成されている。 The compressor housing 40 further communicates with the impeller chamber 45, communicates with the impeller side communication passage 51 from the impeller chamber 45 in a direction including the radially outer component Dro, and communicates with the impeller side communication passage 51. A plurality of circulation passages 52 extending in a direction including the component of the axial front side Daf from the passage 51, and a suction-side communication passage 55 communicating with the plurality of circulation passages 52 and the suction passage 41 are formed.
 インペラ側連通路51は、圧縮機ハウジング40のインペラ室45を画定する面のうち、径方向内側Driを向いて、圧縮機インペラ32のチップ38と対向する面であるインペラ室内面45ipで開口している。この開口は、このインペラ室内面45ipであって、圧縮機インペラ32のリーディングエッジ36よりも軸方向後側Dabであって圧縮機インペラ32のトレーリングエッジ37よりも軸方向前側Dafの位置に形成されている。インペラ側連通路51は、本実施形態では、軸線Arを中心として環状を成している。すなわち、インペラ側連通路51は、インペラ室45から径方向外側Droの成分を含む方向に延びていると共に、軸線Arを中心とする周方向Dcに360°広がっている。このため、この圧縮機インペラ32側通路のインペラ室内面45ipに形成されている開口は、軸線Arを中心とする周方向Dcに360°開口している。 The impeller side communication passage 51 opens at an impeller chamber inner surface 45ip that faces the tip 38 of the compressor impeller 32 and faces the radially inner side Dri among the surfaces that define the impeller chamber 45 of the compressor housing 40. ing. The opening is formed on the impeller chamber inner surface 45ip, at a position that is axially rearward Dab from the leading edge 36 of the compressor impeller 32 and axially forward Daf from the trailing edge 37 of the compressor impeller 32. Has been. In the present embodiment, the impeller side communication passage 51 has an annular shape around the axis Ar. In other words, the impeller side communication passage 51 extends from the impeller chamber 45 in a direction including the radially outer component Dro and extends 360 ° in the circumferential direction Dc centered on the axis Ar. For this reason, the opening formed in the impeller inner surface 45ip of the compressor impeller 32 side passage opens 360 ° in the circumferential direction Dc centering on the axis Ar.
 複数の循環流路52は、いずれも、インペラ側連通路51の径方向外側Dro端から軸方向前側Dafの成分を含む方向に延びていると共に、周方向Dcに広がっている。複数の循環流路52は、軸線Arを中心とした周方向Dcに並んでいる。周方向Dcで隣接する循環流路52の相互間は、圧縮機ハウジング40のストラット(仕切部)62で仕切られている。 The plurality of circulation channels 52 all extend from the radially outer side Dro end of the impeller side communication passage 51 in the direction including the axial front Daf component and spread in the circumferential direction Dc. The plurality of circulation channels 52 are arranged in the circumferential direction Dc around the axis Ar. The circulation channels 52 adjacent in the circumferential direction Dc are partitioned by struts (partitions) 62 of the compressor housing 40.
 吸込側連通路55は、複数の循環流路52のそれぞれの軸方向前側Daf端から径方向内側Dri成分を有する方向に延びて、吸込流路41と連通している。吸込側連通路55も、インペラ側連通路51同様、本実施形態では、軸線Arを中心として環状を成している。 The suction side communication passage 55 extends from the axially front Daf end of each of the plurality of circulation flow paths 52 in a direction having a radially inner Dri component and communicates with the suction flow path 41. Similarly to the impeller side communication path 51, the suction side communication path 55 also has an annular shape around the axis Ar in the present embodiment.
 圧縮機ハウジング40中で、複数の循環流路52の径方向内側Driであって吸込流路41の径方向外側Droの部分は、トリートメント筒63を成す。このトリートメント筒63は、軸線Arを中心として筒状を成している。このトリートメント筒63の軸方向前側Dafの縁は、吸込側連通路55の軸方向後側Dabの縁を形成する。また、このトリートメント筒63の軸方向後側Dabの縁は、インペラ側連通路51の軸方向前側Dafの縁を成す。このトリートメント筒63は、圧縮機ハウジング40中で複数の循環流路52の径方向外側Droの部分を形成するハウジング本体61に、複数のストラット(仕切部)62で連結されている。 In the compressor housing 40, the portion inside the radial direction Dri of the plurality of circulation channels 52 and the outside diameter Dro of the suction channel 41 forms a treatment cylinder 63. The treatment cylinder 63 has a cylindrical shape around the axis Ar. The edge of the treatment tube 63 on the front side Daf in the axial direction forms the edge of the rear side Dab in the axial direction of the suction side communication passage 55. The edge of the treatment tube 63 in the axial rear side Dab forms the edge of the impeller side communication path 51 in the axial front side Daf. The treatment tube 63 is connected to a housing body 61 that forms a radially outer portion Dro portion of the plurality of circulation channels 52 in the compressor housing 40 by a plurality of struts (partition portions) 62.
 次に、図1を用いて、本実施形態における圧縮機ハウジング40の各部の寸法について説明する。 Next, the dimensions of each part of the compressor housing 40 in this embodiment will be described with reference to FIG.
 ここで、循環流路52におけるインペラ側連通路51との連通位置を循環流路52の入口53とし、循環流路52における吸込側連通路55に対する連通位置を循環流路52の出口54とする。本実施形態では、軸線Arから循環流路52の出口54の径方向内側Driの縁までの寸法である吸込側径寸法(以下、出口内径とする)Roは、以下の式(1)に示すように、軸線Arから循環流路52の出口54の径方向内側Driの縁までの寸法であるインペラ側径寸法(以下、入口内径とする)Riより大きい。
  Ro > Ri ・・・・・・・・・・・・・(1)
Here, the communication position of the circulation flow path 52 with the impeller side communication path 51 is the inlet 53 of the circulation flow path 52, and the communication position of the circulation flow path 52 with respect to the suction side communication path 55 is the outlet 54 of the circulation flow path 52. . In the present embodiment, the suction side diameter dimension Ro (hereinafter referred to as the outlet inner diameter) Ro, which is the dimension from the axis Ar to the edge of the radially inner side Dri of the outlet 54 of the circulation channel 52, is expressed by the following equation (1). As described above, the impeller side diameter dimension (hereinafter referred to as the inlet inner diameter) Ri, which is the dimension from the axis Ar to the edge of the radially inner side Dri of the outlet 54 of the circulation channel 52, is larger.
Ro> Ri (1)
 本実施形態では、以下の式(2)に示すように、この循環流路52の出口54での流路面積(以下、出口流路面積とする)Aoは、この循環流路52の入口53での流路面積(入口流路面積とする)Aiより大きい。
  Ao > Ai ・・・・・・・・・・・・・(2)
In the present embodiment, as shown in the following formula (2), the flow area (hereinafter referred to as the outlet flow area) Ao at the outlet 54 of the circulation flow path 52 is the inlet 53 of the circulation flow path 52. It is larger than the flow area at Ai (referred to as the inlet flow area).
Ao> Ai (2)
 本実施形態では、循環流路52における入口53から出口54までの軸方向Daの寸法である循環流路52の流路長Lは、以下の式(3)に示すように、圧縮機インペラ32の最大径であるインペラ外径D2の0.25倍以上である。
  L ≧ 0.25×D2 ・・・・・・・・・(3)
In the present embodiment, the flow path length L of the circulation flow path 52, which is the dimension in the axial direction Da from the inlet 53 to the outlet 54 in the circulation flow path 52, is expressed by the following formula (3). It is at least 0.25 times the outer diameter D2 of the impeller, which is the maximum diameter.
L ≧ 0.25 × D2 (3)
 また、本実施形態では、以下の式(4)で表される循環流路52の広がり角2θが20°未満である。
 2θ = 2×tan((do-di)/2L) < 20° ・・(4)
In the present embodiment, the divergence angle 2θ of the circulation channel 52 represented by the following formula (4) is less than 20 °.
2θ = 2 × tan ((do-di) / 2L) <20 ° (4)
 なお、式(4)中のLは、前述したように、循環流路52の軸方向Daの流路長である。また、doは、図3に示すように、面積が出口流路面積Aoに関する等価直径であり、diは面積が入口流路面積Aiに関する等価直径である。すなわち、この広がり角2θとは、流路が円錐状の単純なディフューザと想定し、この場合における、流路の入口位置における縁と流路の出口位置における縁とを結ぶ線分と、円錐の軸との成す角θの2倍の角のことである。なお、流路面積に関する等価直径とは、この流路面積の円の直径のことである。 In addition, L in Formula (4) is the flow path length of the axial direction Da of the circulation flow path 52 as mentioned above. Further, as shown in FIG. 3, do is an equivalent diameter with respect to the outlet flow passage area Ao, and di is an equivalent diameter with respect to the inlet flow passage area Ai. That is, the divergence angle 2θ is assumed to be a simple diffuser having a conical flow path. In this case, a line segment connecting the edge at the inlet position of the flow path and the edge at the outlet position of the flow path, The angle is twice the angle θ formed with the axis. In addition, the equivalent diameter regarding a flow path area is a diameter of the circle of this flow path area.
 次に、本実施形態の作用効果を説明するため、遠心圧縮機の比較例1,2について説明する。 Next, Comparative Examples 1 and 2 of the centrifugal compressor will be described in order to explain the operational effects of the present embodiment.
 比較例1の遠心圧縮機におけるの圧縮機ハウジングには、本実施形態の遠心圧縮機30における圧縮機ハウジング40と同様、吸込流路、インペラ室、及び吐出流路が形成されている。しかしながら、比較例1の遠心圧縮機におけるの圧縮機ハウジングには、本実施形態の遠心圧縮機30における圧縮機ハウジング40のインペラ側連通路51、循環流路52、及び吸込側連通路55が形成されていない。 As in the compressor housing 40 in the centrifugal compressor 30 of the present embodiment, a suction passage, an impeller chamber, and a discharge passage are formed in the compressor housing in the centrifugal compressor of Comparative Example 1. However, the compressor housing in the centrifugal compressor of Comparative Example 1 is formed with the impeller side communication path 51, the circulation flow path 52, and the suction side communication path 55 of the compressor housing 40 in the centrifugal compressor 30 of the present embodiment. It has not been.
 また、図4に示すように、比較例2の遠心圧縮機30xにおけるの圧縮機ハウジング40xには、本実施形態の遠心圧縮機30における圧縮機ハウジング40と同様、吸込流路41、インペラ室45、吐出流路46、さらに、インペラ側連通路51、循環流路52x、及び吸込側連通路55が形成されている。 As shown in FIG. 4, the compressor housing 40x in the centrifugal compressor 30x of Comparative Example 2 includes a suction passage 41 and an impeller chamber 45 as in the compressor housing 40 in the centrifugal compressor 30 of the present embodiment. The discharge flow path 46, the impeller side communication path 51, the circulation flow path 52x, and the suction side communication path 55 are formed.
 但し、比較例2では、循環流路52xの出口内径Roと循環流路52xのインペラ側径寸法Riとが等しい。比較例2では、循環流路52xの出口流路面積Aoと循環流路52xの入口流路面積Aiとが等しい。 However, in Comparative Example 2, the outlet inner diameter Ro of the circulation flow path 52x and the impeller side diameter Ri of the circulation flow path 52x are equal. In Comparative Example 2, the outlet channel area Ao of the circulation channel 52x is equal to the inlet channel area Ai of the circulation channel 52x.
 遠心圧縮機では、吸込流路に流入する気体の流量が少ない場合、この吸込流路内の圧力は、インペラ室内の圧力より低くなる。このため、本実施形態や比較例2のように、圧縮機ハウジング40,40xに循環流路52,52x等が形成されていると、インペラ室45内の気体の一部が循環流路52,52x等を介して吸込流路41に戻る。この結果、インペラ室45内でインペラ側連通路51より軸方向前側Dafの部分の流量が多くなる。 In the centrifugal compressor, when the flow rate of the gas flowing into the suction passage is small, the pressure in the suction passage is lower than the pressure in the impeller chamber. For this reason, when the circulation passages 52, 52x and the like are formed in the compressor housings 40, 40x as in the present embodiment and the comparative example 2, a part of the gas in the impeller chamber 45 is circulated in the circulation passages 52, 52x. It returns to the suction flow path 41 via 52x etc. As a result, in the impeller chamber 45, the flow rate of the portion on the axially front side Daf from the impeller side communication passage 51 increases.
 本実施形態や比較例2では、吸込流路41に流入する気体の流量が少ない場合、吐出流路46を流れる気体の流量も少ないものの、インペラ室45内でインペラ側連通路51より軸方向前側Dafの部分の流量が、吸込流路41に流入する気体の流量よりも多くなり、サージングを抑えることができる。よって、図5に示すように、本実施形態の各種形態である実施例1~4や比較例2のサージ限界線S1~S4,Sx2は、比較例1のサージ限界線Sx1よりも小流量側になる。このため、本実施形態の各種形態である実施例1~4や比較例2では、比較例1よりも、遠心圧縮機30の作動範囲を広げることができる。なお、実施例1~4の遠心圧縮機は、前述の式(1)~式(4)を満たす遠心圧縮機である。但し、実施例1~4の遠心圧縮機における循環流路の流路長Lは、後述するように、相互に異なっている。また、図5中、実線で描かれている複数の曲線は、互いに異なる回転数のときにおける流量と圧力比との関係を示す特性曲線である。 In the present embodiment and Comparative Example 2, when the flow rate of the gas flowing into the suction flow channel 41 is small, the flow rate of the gas flowing through the discharge flow channel 46 is small, but the front side in the axial direction from the impeller side communication passage 51 in the impeller chamber 45. The flow rate of the Daf portion is larger than the flow rate of the gas flowing into the suction flow path 41, and surging can be suppressed. Therefore, as shown in FIG. 5, the surge limit lines S1 to S4 and Sx2 of Examples 1 to 4 and Comparative Example 2 which are various forms of the present embodiment are smaller than the surge limit line Sx1 of Comparative Example 1. become. For this reason, in Examples 1 to 4 and Comparative Example 2 which are various forms of the present embodiment, the operating range of the centrifugal compressor 30 can be expanded as compared with Comparative Example 1. The centrifugal compressors of Examples 1 to 4 are centrifugal compressors that satisfy the above-described formulas (1) to (4). However, the flow path lengths L of the circulation flow paths in the centrifugal compressors of Examples 1 to 4 are different from each other as described later. Further, in FIG. 5, a plurality of curves drawn with solid lines are characteristic curves showing the relationship between the flow rate and the pressure ratio at different rotational speeds.
 ところで、インペラ室45からインペラ側連通路51を介して循環流路52,52xに流入した空気Aの流れには、軸線Arを中心とした旋回成分であって圧縮機インペラ32の回転方向と同じ方向の成分を含んでいる。仮に、流れの成分としてこの旋回成分を有する空気Aが、比較例2において、循環流路52x、吸込側連通路55、吸込流路41を経て、インペラ室45に戻ると、ブレード35の迎え角が小さくなるため、吐出圧が小さくなる、言い換えると圧力比が小さくなる。 By the way, the flow of the air A that flows into the circulation flow paths 52 and 52x from the impeller chamber 45 through the impeller side communication passage 51 is a swirl component centered on the axis Ar and is the same as the rotation direction of the compressor impeller 32. Contains a directional component. If the air A having this swirl component as a flow component returns to the impeller chamber 45 via the circulation flow path 52x, the suction side communication path 55, and the suction flow path 41 in Comparative Example 2, the angle of attack of the blade 35 Therefore, the discharge pressure is reduced, in other words, the pressure ratio is reduced.
 軸線Arを中心として旋回する気体に外力が加わらない場合、以下の式(5)が成り立つ。
  ci×Ri = co×Ro・・・・・・・(5)
 なお、式(5)中、ciが循環流路の入口53における空気Aの旋回成分の流速を示し、coが循環流路の出口54における空気Aの旋回成分の流速を示す。また、式(5)中、Riが旋回流路の入口内径を示し、Roが循環流路52の出口内径を示す。
When no external force is applied to the gas swirling around the axis Ar, the following equation (5) is established.
ci × Ri = co × Ro (5)
In equation (5), ci represents the flow velocity of the swirl component of the air A at the inlet 53 of the circulation flow path, and co represents the flow velocity of the swirl component of the air A at the outlet 54 of the circulation flow path. In Equation (5), Ri represents the inlet inner diameter of the swirl flow path, and Ro represents the outlet inner diameter of the circulation flow path 52.
 このため、本実施形態のように、循環流路52の出口内径Roがこの循環流路52の入口内径Riより大きいと、循環流路52の出口54における空気Aの旋回成分の流速coが循環流路52の入口53における空気Aの旋回成分の流速ciよりも小さくなる。 For this reason, when the outlet inner diameter Ro of the circulation channel 52 is larger than the inlet inner diameter Ri of the circulation channel 52 as in the present embodiment, the flow velocity co of the swirl component of the air A at the outlet 54 of the circulation channel 52 circulates. It becomes smaller than the flow velocity ci of the swirling component of the air A at the inlet 53 of the flow path 52.
 また、本実施形態では、循環流路52の出口流路面積Aoがこの循環流路52の入口流路面積Aiより大きい。このため、本実施形態では、循環流路52の出口54における空気Aの旋回成分の流速coが循環流路52の入口53における空気Aの旋回成分の流速ciよりもさらに小さくなる。 In the present embodiment, the outlet channel area Ao of the circulation channel 52 is larger than the inlet channel area Ai of the circulation channel 52. For this reason, in this embodiment, the flow velocity co of the swirl component of the air A at the outlet 54 of the circulation flow path 52 is further smaller than the flow velocity ci of the swirl component of the air A at the inlet 53 of the circulation flow path 52.
 よって、本実施形態の遠心圧縮機30では、比較例2の遠心圧縮機30xよりも、インペラ室45に流入する空気Aの旋回成分の流速を小さくすることができる。 Therefore, in the centrifugal compressor 30 of this embodiment, the flow velocity of the swirl component of the air A flowing into the impeller chamber 45 can be made smaller than that of the centrifugal compressor 30x of the comparative example 2.
 本実施形態の各種形態である実施例1~4のうち、実施例1は、循環流路52の流路長Lが0.25×Dの遠心圧縮機30である。実施例2は、循環流路52の流路長Lが0.50×Dの遠心圧縮機30である。実施例3は、循環流路52の流路長Lが0.64×Dの遠心圧縮機30である。実施例4は、循環流路52の流路長Lが0.89×Dの遠心圧縮機30である。すなわち、実施例1~4中で、実施例1の流路長Lが最も短く、実施例2、実施例3、実施例4になるに従って流路長Lが長くなる。 Among Examples 1 to 4 which are various forms of the present embodiment, Example 1 is a centrifugal compressor 30 in which the flow path length L of the circulation flow path 52 is 0.25 × D. The second embodiment is a centrifugal compressor 30 in which the flow path length L of the circulation flow path 52 is 0.50 × D. The third embodiment is a centrifugal compressor 30 in which the flow path length L of the circulation flow path 52 is 0.64 × D. The fourth embodiment is a centrifugal compressor 30 in which the flow path length L of the circulation flow path 52 is 0.89 × D. That is, in Examples 1 to 4, the channel length L of Example 1 is the shortest, and the channel length L becomes longer as in Example 2, Example 3, and Example 4.
 図5に示すように、実施例1~4中で、実施例1のサージ限界線S1が最も大流量側にあり、実施例2、実施例3、実施例4になるに従ってサージ限界線が小流量側に移動する。すなわち、循環流路52の流路長Lが長くなるに連れて、サージ限界線が小流量側になり、遠心圧縮機30の作動範囲を広げることができる。これは、循環流路52と空気Aとの摩擦等の影響により、循環流路52の流路長Lが長くなるに連れて、空気Aの流れのうち、軸方向Daの速度成分のみならず、旋回成分も小さくなるためである。そこで、本実施形態では、循環流路52の流路長Lを0.25×D以上にしている。 As shown in FIG. 5, in Examples 1 to 4, the surge limit line S1 of Example 1 is on the largest flow rate side, and the surge limit line becomes smaller in accordance with Examples 2, 3, and 4. Move to the flow rate side. That is, as the flow path length L of the circulation flow path 52 becomes longer, the surge limit line becomes a smaller flow rate side, and the operating range of the centrifugal compressor 30 can be expanded. This is because not only the velocity component in the axial direction Da of the flow of the air A but also the flow channel length L of the circulation channel 52 becomes longer due to the influence of friction between the circulation channel 52 and the air A, etc. This is because the swirl component is also reduced. Therefore, in this embodiment, the flow path length L of the circulation flow path 52 is set to 0.25 × D or more.
 ところで、本実施形態では、前述したように、循環流路52の出口流路面積Aoをこの循環流路52の入口流路面積Aiより大きくして、循環流路52内の空気Aの流速を小さくしている。しかしながら、循環流路52内での急激な減速は、循環流路52を画定する壁面での境界層の発達を招く。このため、循環流路52を通る気体の圧力損失が増大して、循環流路52を流れる気体の流量が減少する。そこで、本実施形態では、式(5)を用いて前述したように、広がり角2θを20°未満にして、循環流路52を流れる空気Aの流量減少を抑えている。この式(5)からも理解できるように、広がり角2θを小さくするためには、循環流路52の流路長は長い方が好ましい。 By the way, in the present embodiment, as described above, the outlet flow passage area Ao of the circulation passage 52 is made larger than the inlet passage area Ai of the circulation passage 52, and the flow rate of the air A in the circulation passage 52 is increased. It is small. However, the rapid deceleration in the circulation channel 52 leads to the development of a boundary layer on the wall surface that defines the circulation channel 52. For this reason, the pressure loss of the gas passing through the circulation flow path 52 increases, and the flow rate of the gas flowing through the circulation flow path 52 decreases. Therefore, in the present embodiment, as described above using Expression (5), the spread angle 2θ is set to be less than 20 ° to suppress a decrease in the flow rate of the air A flowing through the circulation flow path 52. As can be understood from the equation (5), in order to reduce the spread angle 2θ, it is preferable that the flow path length of the circulation flow path 52 is long.
 すなわち、循環流路52の流路長Lは、旋回成分を少なくする意味でも、広がり角2θを小さくする意味でも、長い方が好ましい。この観点から、循環流路52の流路長は、0.25×D以上、可能であるならば、0.50×D以上が望ましい。但し、循環流路52の流路長Lが長くなると、圧縮機ハウジング40の軸方向Daへの長大化を招く。このため、旋回成分を少なくしつつ広がり角を小さくする観点と、圧縮機ハウジング40の長大化の観点とを比較考量して、循環流路52の流量長Lを定めることが好ましい。 That is, it is preferable that the flow path length L of the circulation flow path 52 is long both in terms of reducing the swirl component and in reducing the spread angle 2θ. From this viewpoint, the flow path length of the circulation flow path 52 is preferably 0.25 × D or more, and preferably 0.50 × D or more if possible. However, when the flow path length L of the circulation flow path 52 is increased, the compressor housing 40 is lengthened in the axial direction Da. For this reason, it is preferable to determine the flow length L of the circulation flow path 52 by comparing and considering the viewpoint of reducing the swivel component while reducing the spread angle and the viewpoint of increasing the length of the compressor housing 40.
 「遠心圧縮機の第二実施形態」
 遠心圧縮機の第二実施形態について、図6を用いて説明する。
“Second Embodiment of Centrifugal Compressor”
A second embodiment of the centrifugal compressor will be described with reference to FIG.
 本実施形態の遠心圧縮機30aも、第一実施形態の遠心圧縮機30と同様、圧縮機インペラ32及び圧縮機ハウジング40aを有する。圧縮機インペラ32の構成は、第一実施形態と同様である。 The centrifugal compressor 30a of the present embodiment also has a compressor impeller 32 and a compressor housing 40a, similar to the centrifugal compressor 30 of the first embodiment. The configuration of the compressor impeller 32 is the same as that of the first embodiment.
 本実施形態の圧縮機ハウジング40aにも、第一実施形態の遠心圧縮機30における圧縮機ハウジング40と同様、吸込流路41a、インペラ室45、吐出流路46、インペラ側連通路51、複数の循環流路52、及び吸込側連通路55aが形成されている。但し、本実施形態の圧縮機ハウジング40aにおける吸込流路41a及び吸込側連通路55aの形状が第一実施形態と異なる。 Similarly to the compressor housing 40 in the centrifugal compressor 30 of the first embodiment, the compressor housing 40a of the present embodiment also has a suction flow path 41a, an impeller chamber 45, a discharge flow path 46, an impeller side communication path 51, and a plurality of A circulation flow path 52 and a suction side communication path 55a are formed. However, the shape of the suction flow path 41a and the suction side communication path 55a in the compressor housing 40a of the present embodiment is different from that of the first embodiment.
 本実施形態の吸込流路41aは、軸線Arを中心として回転対称な形状を成し、軸方向前側Dafから軸方向後側Dabに向かうに連れて次第に流路面積が小さくなる縮径部42を有する。この縮径部42は、軸線Arを中心としたベルマウス形状を成している。このため、この縮径部42における流路を画定する面は、軸線Arに近づく側である径方向内側Driに向かって滑らかな凸状のベルマウス面42fを成している。 The suction flow path 41a of the present embodiment has a rotationally symmetric shape about the axis Ar, and has a reduced diameter portion 42 that gradually decreases in flow path area from the axial front side Daf to the axial rear side Dab. Have. The reduced diameter portion 42 has a bell mouth shape centered on the axis Ar. For this reason, the surface that defines the flow path in the reduced diameter portion 42 forms a smooth convex bell mouth surface 42f toward the radially inner side Dri that is closer to the axis Ar.
 吸込側連通路55aにおける吸込流路41aに対する連通口55oは、縮径部42における流路を画定するベルマウス面42fに形成されている。この吸込側連通路55aは、吸込側連通路55aを基準にして軸方向後側Dabの部分が、第一実施形態と同様、トリートメント筒63aで形成されている。また、この吸込側連通路55aは、吸込側連通路55aを基準にして軸方向前側Dafの部分が、ハウジング本体61とベルマウスキャップ65で形成されている。 The communication port 55o for the suction flow path 41a in the suction side communication path 55a is formed in the bell mouth surface 42f that defines the flow path in the reduced diameter portion 42. In the suction side communication path 55a, a portion of the axial rear side Dab with respect to the suction side communication path 55a is formed of a treatment tube 63a as in the first embodiment. In addition, the suction side communication passage 55 a is formed with a housing body 61 and a bell mouth cap 65 at a portion on the axial front side Daf with reference to the suction side communication passage 55 a.
 本実施形態のトリートメント筒63aの内周面は、ベルマウス面42fの軸方向後側Dabの部分を形成する。このため、トリートメント筒63aの内周面で画定される流路は、軸方向前側Dafから軸方向後側Dabに向かうに連れて次第に流路面積が小さくなる。 The inner peripheral surface of the treatment cylinder 63a of this embodiment forms a portion of the axial rear side Dab of the bell mouth surface 42f. For this reason, the flow path area defined by the inner peripheral surface of the treatment tube 63a gradually decreases in size from the axial front side Daf to the axial rear side Dab.
 ベルマウスキャップ65は、軸線Arを中心として回転対称な形状を成している。このベルマウスキャップ65は、ハウジング本体61の軸方向前側Dafであってその径方向内側Driに固定されている。このベルマウスキャップ65は、トリートメント筒63aから軸方向前側Dafに間隔をあけて、ハウジング本体61に固定されている。このトリートメント筒63aとベルマウスキャップ65との間が吸込側連通路55aになる。トリートメント筒63aの内周面は、ベルマウス面42fの軸方向前側Dafの部分を形成する。このため、ベルマウスキャップ65の内周面で画定される流路は、軸方向前側Dafから軸方向後側Dabに向かうに連れて次第に流路面積が小さくなる。 The bell mouth cap 65 has a rotationally symmetric shape about the axis Ar. The bell mouth cap 65 is fixed to the axially front side Daf of the housing body 61 and to the radially inner side Dri. The bell mouth cap 65 is fixed to the housing main body 61 with a space from the treatment tube 63a to the axially front side Daf. A space between the treatment tube 63a and the bell mouth cap 65 serves as a suction side communication passage 55a. The inner peripheral surface of the treatment tube 63a forms a portion on the axially front side Daf of the bell mouth surface 42f. For this reason, the flow path defined by the inner peripheral surface of the bell mouth cap 65 gradually decreases in the flow path area from the axial front side Daf to the axial rear side Dab.
 本実施形態の圧縮機ハウジング40aも、第一実施形態の圧縮機ハウジング40と同様、式(1)~式(4)に示す関係を満たす。さらに、本実施形態では、軸線Arから吸込側連通路55aの連通口55oにおける軸方向前側Dafの縁までの寸法、言い換えると、軸線Arからベルマウスキャップ65の径方向内側Driであって軸方向前側Dafの縁までの寸法Rcは、以下の式(6)に示すように、出口内径Roより小さく、且つ入口内径Riより大きい。
  Ro > Rc> Ri ・・・・・・・・・・(6)
Similarly to the compressor housing 40 of the first embodiment, the compressor housing 40a of the present embodiment also satisfies the relationships expressed by the equations (1) to (4). Furthermore, in this embodiment, the dimension from the axis Ar to the edge of the axial front side Daf at the communication port 55o of the suction side communication passage 55a, in other words, the radial inner side Dri of the bell mouth cap 65 from the axis Ar to the axial direction. The dimension Rc to the edge of the front Daf is smaller than the outlet inner diameter Ro and larger than the inlet inner diameter Ri as shown in the following formula (6).
Ro>Rc> Ri (6)
 このため、本実施形態では、この式(6)を満たすため、吸込側連通路55aの連通口55o周りにおけるベルマウス面42fで画定される流路は、軸方向後側Dabに向かうに連れて滑らかに縮径されている。 For this reason, in this embodiment, in order to satisfy this formula (6), the flow path defined by the bell mouth surface 42f around the communication port 55o of the suction side communication passage 55a is directed toward the axial rear side Dab. The diameter is smoothly reduced.
 本実施形態の圧縮機ハウジング40aも、第一実施形態の圧縮機ハウジング40と同様、式(1)~式(4)に示す関係を満たすので、インペラ室45に流入する空気Aの旋回成分の流速を小さくすることができ、遠心圧縮機30aの作動範囲を広げることができる。 Similarly to the compressor housing 40 of the first embodiment, the compressor housing 40a of the present embodiment also satisfies the relations expressed by the equations (1) to (4), so that the swirl component of the air A flowing into the impeller chamber 45 is reduced. The flow rate can be reduced, and the operating range of the centrifugal compressor 30a can be expanded.
 また、本実施形態の吸込流路41aを画定する面の一部がベルマウス面42fを成しているため、外部から空気Aが吸込流路41aを経てインペラ室45に流入し易くなる。さらに、本実施形態では、ベルマウス面42f中に、吸込側連通路55aにおける吸込流路41aに対する連通口55oが形成されているため、このベルマウス面42fにおける静圧低減効果により、吸込側連通路55a内の空気Aを効率的に吸込流路41a内に導くことができる。 In addition, since a part of the surface defining the suction channel 41a of the present embodiment forms the bell mouth surface 42f, the air A easily flows into the impeller chamber 45 from the outside through the suction channel 41a. Furthermore, in this embodiment, since the communication port 55o with respect to the suction flow path 41a in the suction side communication path 55a is formed in the bell mouth surface 42f, the suction side communication is achieved by the static pressure reducing effect on the bell mouth surface 42f. The air A in the passage 55a can be efficiently guided into the suction flow path 41a.
 この結果、本実施形態では、第一実施形態よりも、吸込流路41aを経てインペラ室45に流入する空気Aの流量を増加させることができる。このため、本実施形態では、第一実施形態よりも、サージ限界線をより小流量側にすることができ、遠心圧縮機30aの作動範囲をより広くすることができる。 As a result, in this embodiment, the flow rate of the air A flowing into the impeller chamber 45 through the suction flow passage 41a can be increased as compared with the first embodiment. For this reason, in this embodiment, a surge limit line can be made into the smaller flow volume side than 1st embodiment, and the operating range of the centrifugal compressor 30a can be made wider.
 「遠心圧縮機の第三実施形態」
 遠心圧縮機の第三実施形態について、図7を用いて説明する。
"Third embodiment of centrifugal compressor"
A third embodiment of the centrifugal compressor will be described with reference to FIG.
 本実施形態の遠心圧縮機30bも、第一及び第二実施形態の遠心圧縮機30,30aと同様、圧縮機インペラ32及び圧縮機ハウジング40bを有する。圧縮機インペラ32の構成は、第一及び第二実施形態と同様である。 The centrifugal compressor 30b of this embodiment also has a compressor impeller 32 and a compressor housing 40b, similar to the centrifugal compressors 30 and 30a of the first and second embodiments. The configuration of the compressor impeller 32 is the same as in the first and second embodiments.
 本実施形態の圧縮機ハウジング40bにも、第一及び第二実施形態の遠心圧縮機30,30aにおける圧縮機ハウジング40,40aと同様、吸込流路41b、インペラ室45、吐出流路46、インペラ側連通路51、複数の循環流路52、及び吸込側連通路55bが形成されている。但し、本実施形態の圧縮機ハウジング40bにおける吸込流路41b及び吸込側連通路55bの形状が第一実施形態と異なる。 Similarly to the compressor housings 40 and 40a in the centrifugal compressors 30 and 30a of the first and second embodiments, the compressor housing 40b of the present embodiment also has a suction passage 41b, an impeller chamber 45, a discharge passage 46, and an impeller. A side communication path 51, a plurality of circulation channels 52, and a suction side communication path 55b are formed. However, the shape of the suction flow path 41b and the suction side communication path 55b in the compressor housing 40b of the present embodiment is different from that of the first embodiment.
 本実施形態の吸込流路41bは、軸線Arを中心として回転対称な形状を成す縮径部42b及び直胴部43bとを有する。縮径部42bは、軸方向前側Dafから軸方向後側Dabに向かうに連れて次第に流路面積が小さくなる。この縮径部42bは、軸線Arを中心としたベルマウス形状を成している。このため、この縮径部42bにおける流路を画定する面は、軸線Arに近づく側である径方向内側Driに向かって滑らかな凸状のベルマウス面42bfを成している。直胴部43bは、軸方向Daでの各位置での流路面積が同じである。このため、直胴部43bにおける流路を画定する面は、軸線Arを中心とした円筒の内周面43bgを成している。 The suction flow path 41b of the present embodiment includes a reduced diameter portion 42b and a straight body portion 43b that are rotationally symmetric about the axis Ar. As for the diameter-reduced part 42b, a flow path area becomes small gradually as it goes to the axial direction rear side Dab from the axial direction front side Daf. The reduced diameter portion 42b has a bell mouth shape centered on the axis Ar. For this reason, the surface that defines the flow path in the reduced diameter portion 42b forms a smooth convex bell mouth surface 42bf toward the radially inner side Dri that is closer to the axis Ar. The straight body portion 43b has the same flow path area at each position in the axial direction Da. For this reason, the surface that defines the flow path in the straight body portion 43b forms a cylindrical inner peripheral surface 43bg centered on the axis Ar.
 吸込側連通路55bにおける吸込流路41bに対する連通口55oは、直胴部43bにおける流路を画定する円筒内周面43bgに形成されている。この吸込側連通路55bは、吸込側連通路55bを基準にして軸方向後側Dabの部分が、第一及び第二実施形態と同様、トリートメント筒63bで形成されている。また、この吸込側連通路55bは、吸込側連通路55bを基準にして軸方向前側Dafの部分が、ハウジング本体61とベルマウスキャップ65bとで形成されている。ベルマウスキャップ65bは、第二実施形態と同様、ハウジング本体61の軸方向前側Dafであってその径方向内側Driに固定されている。このベルマウスキャップ65bも、トリートメント筒63bから軸方向前側Dafに間隔をあけて、ハウジング本体61に固定されている。このトリートメント筒63bとベルマウスキャップ65bとの間が吸込側連通路55bになる。 The communication port 55o for the suction flow path 41b in the suction side communication path 55b is formed in a cylindrical inner peripheral surface 43bg that defines the flow path in the straight body portion 43b. In the suction side communication path 55b, a portion of the axial rear side Dab with respect to the suction side communication path 55b is formed of a treatment cylinder 63b as in the first and second embodiments. Further, the suction side communication passage 55b is formed by a housing main body 61 and a bell mouth cap 65b at a portion on the axial front side Daf with reference to the suction side communication passage 55b. As in the second embodiment, the bell mouth cap 65b is fixed to the axially front Daf of the housing main body 61 and to the radially inner Dri thereof. The bell mouth cap 65b is also fixed to the housing body 61 with a space from the treatment tube 63b to the axially front side Daf. The space between the treatment tube 63b and the bell mouth cap 65b is a suction side communication passage 55b.
 この吸込側連通路55bは、循環流路52と吸込側連通路55bとの境から折り返してから、軸線Arに対する径方向内側Driに向かいつつ軸方向後側Dabに向かって延びて、吸込流路41bと連通している。 The suction side communication path 55b is folded back from the boundary between the circulation flow path 52 and the suction side communication path 55b, and then extends toward the axial rear side Dab while facing the radial inner side Dri with respect to the axis Ar. It communicates with 41b.
 本実施形態のトリートメント筒63bには、内径が軸方向後側Dabに向かうに連れて次第に縮径される縮径内周面63bfと、内径が軸方向Daで一定の円筒内周面63bgとが形成されている。この円筒内周面63bgは、縮径内周面63bfの軸方向後側Dabの縁から形成されている。ベルマウスキャップ65bには、内径が軸方向後側Dabに向かうに連れて次第に縮径されるベルマウス面65bfと、内径が軸方向Daで一定の円筒内周面65bgとが形成されている。この円筒内周面65bgは、ベルマウス面65bfの軸方向後側Dabの縁から形成されている。さらに、ベルマウスキャップ65bには、外径が軸方向後側Dabに向かうに連れて次第に縮径される縮径外周面65bhが形成されている。 The treatment tube 63b of the present embodiment has a reduced inner diameter surface 63bf whose inner diameter is gradually reduced toward the axial rear side Dab, and a cylindrical inner peripheral surface 63bg whose inner diameter is constant in the axial direction Da. Is formed. The cylindrical inner peripheral surface 63bg is formed from the edge of the axially rear side Dab of the reduced diameter inner peripheral surface 63bf. The bell mouth cap 65b is formed with a bell mouth surface 65bf whose inner diameter is gradually reduced toward the axial rear side Dab, and a cylindrical inner peripheral surface 65bg whose inner diameter is constant in the axial direction Da. The cylindrical inner peripheral surface 65bg is formed from an edge of the axial rear side Dab of the bell mouth surface 65bf. Further, the bell mouth cap 65b is formed with a reduced-diameter outer peripheral surface 65bh whose outer diameter is gradually reduced toward the axial rear side Dab.
 吸込側連通路55bは、トリートメント筒63bの縮径内周面63bfとベルマウスキャップ65bの縮径外周面65bhとの間に形成されている。直胴部43bにおける流路を画定する円筒内周面43bgは、トリートメント筒63bの円筒内周面63bgとベルマウスキャップ65bの円筒内周面65bgとで形成されている。 The suction side communication passage 55b is formed between the reduced diameter inner peripheral surface 63bf of the treatment tube 63b and the reduced diameter outer peripheral surface 65bh of the bell mouth cap 65b. The cylindrical inner peripheral surface 43bg that defines the flow path in the straight body portion 43b is formed by the cylindrical inner peripheral surface 63bg of the treatment tube 63b and the cylindrical inner peripheral surface 65bg of the bell mouth cap 65b.
 本実施形態の圧縮機ハウジング40bも、以上の各実施形態の圧縮機ハウジング40,40aと同様、式(1)~式(4)に示す関係を満たす。このため、本実施形態の圧縮機ハウジング40bも、第一実施形態の圧縮機ハウジング40と同様、インペラ室45に流入する空気Aの旋回成分の流速を小さくすることができ、遠心圧縮機30bの作動範囲を広げることができる。 The compressor housing 40b of the present embodiment also satisfies the relationships shown in the equations (1) to (4), like the compressor housings 40 and 40a of the above embodiments. For this reason, similarly to the compressor housing 40 of the first embodiment, the compressor housing 40b of the present embodiment can reduce the flow velocity of the swirling component of the air A flowing into the impeller chamber 45, and the centrifugal compressor 30b The operating range can be expanded.
 また、本実施形態では、吸込側連通路55bが循環流路52と吸込側連通路55bとの境から折り返してから軸方向後側Dabに向かって延びて、吸込流路41bと連通しているので、インペラ室45内の空気Aの一部が吸込流路41bに戻るまでの流路長が長くなる。このため、循環流路52の流路長Lを長くした場合と同様に、インペラ室45に流入する空気Aの旋回成分の流速を小さくすることができる。しかも、本実施形態では、吸込側連通路55bが循環流路52と吸込側連通路55bとの境から折り返してから軸方向後側Dabに向かって延びているので、圧縮機ハウジング40bの軸方向Daへの長大化を抑えつつ、インペラ室45内の空気Aの一部が吸込流路41bに戻るまでの流路長を長くすることができる。 In the present embodiment, the suction side communication passage 55b extends from the boundary between the circulation flow path 52 and the suction side communication path 55b and then extends toward the axial rear side Dab to communicate with the suction flow path 41b. Therefore, the flow path length until a part of the air A in the impeller chamber 45 returns to the suction flow path 41b becomes longer. For this reason, similarly to the case where the flow path length L of the circulation flow path 52 is increased, the flow velocity of the swirl component of the air A flowing into the impeller chamber 45 can be reduced. Moreover, in this embodiment, the suction side communication passage 55b extends from the boundary between the circulation flow path 52 and the suction side communication passage 55b and then extends toward the axial rear side Dab, so that the axial direction of the compressor housing 40b It is possible to increase the flow path length until a part of the air A in the impeller chamber 45 returns to the suction flow path 41b while suppressing an increase in length to Da.
 「遠心圧縮機の第四実施形態」
 遠心圧縮機の第四実施形態について、図8を用いて説明する。
"Fourth embodiment of centrifugal compressor"
A fourth embodiment of the centrifugal compressor will be described with reference to FIG.
 本実施形態の遠心圧縮機30cは、第二実施形態の遠心圧縮機30aの構造と第三実施形態の遠心圧縮機30bの構造とを組み合わせたものである。すなわち、本実施形態は、第三実施形態における吸込側連通路の構成を採用しつつ、この吸込側連通における吸込流路に対する連通口を第二実施形態ように、吸込側流路のベルマウス面に形成したものである。 The centrifugal compressor 30c of the present embodiment is a combination of the structure of the centrifugal compressor 30a of the second embodiment and the structure of the centrifugal compressor 30b of the third embodiment. That is, this embodiment adopts the configuration of the suction side communication path in the third embodiment, and the communication port for the suction flow path in this suction side communication is the bell mouth surface of the suction side flow path as in the second embodiment. Is formed.
 本実施形態の吸込流路41cも、第三実施形態と同様、軸線Arを中心として回転対称な形状を成す縮径部42c及び直胴部43cとを有する。縮径部42cは、軸方向前側Dafから軸方向後側Dabに向かうに連れて次第に流路面積が小さくなる。この縮径部42cは、軸線Arを中心としたベルマウス形状を成している。このため、この縮径部42cにおける流路を画定する面は、径方向内側Driに向かって滑らかな凸状のベルマウス面42cfを成している。直胴部43cは、軸方向Daでの各位置での流路面積が同じである。このため、直胴部43cにおける流路を画定する面は、軸線Arを中心とした円筒の内周面43cgを成している。 The suction flow path 41c of the present embodiment also has a reduced diameter portion 42c and a straight body portion 43c that are rotationally symmetric about the axis Ar as in the third embodiment. As for the diameter-reduced part 42c, a flow path area becomes small gradually as it goes to the axial direction rear side Dab from the axial direction front side Daf. The reduced diameter portion 42c has a bell mouth shape centered on the axis Ar. For this reason, the surface defining the flow path in the reduced diameter portion 42c forms a smooth convex bell mouth surface 42cf toward the radially inner side Dri. The straight body portion 43c has the same flow path area at each position in the axial direction Da. For this reason, the surface that defines the flow path in the straight body portion 43c forms a cylindrical inner peripheral surface 43cg with the axis line Ar as the center.
 吸込側連通路55cにおける吸込流路41cに対する連通口55oは、縮径部42cにおけるベルマウス面42cfに形成されている。この吸込側連通路55cは、吸込側連通路55cを基準にして軸方向後側Dabの部分が、以上の各実施形態と同様、トリートメント筒63cで形成されている。また、この吸込側連通路55cは、吸込側連通路55cを基準にして軸方向前側Dafの部分が、ハウジング本体61とベルマウスキャップ65cとで形成されている。ベルマウスキャップ65cは、第二及び第三実施形態と同様、ハウジング本体61の軸方向前側Dafであってその径方向内側Driに固定されている。このベルマウスキャップ65cも、トリートメント筒63cから軸方向前側Dafに間隔をあけて、ハウジング本体61に固定されている。このトリートメント筒63cとベルマウスキャップ65cとの間が吸込側連通路55cになる。 The communication port 55o with respect to the suction flow path 41c in the suction side communication path 55c is formed in the bell mouth surface 42cf in the reduced diameter portion 42c. In the suction side communication path 55c, a portion of the axial rear side Dab with respect to the suction side communication path 55c is formed by the treatment cylinder 63c as in the above embodiments. Further, the suction side communication passage 55c is formed with a housing main body 61 and a bell mouth cap 65c at the axially front side Daf with reference to the suction side communication passage 55c. As in the second and third embodiments, the bell mouth cap 65c is fixed to the axially front Daf of the housing body 61 and to the radially inner Dri thereof. The bell mouth cap 65c is also fixed to the housing main body 61 with a space from the treatment tube 63c to the axially front side Daf. A suction side communication passage 55c is formed between the treatment tube 63c and the bell mouth cap 65c.
 この吸込側連通路55cは、第三実施形態と同様、循環流路52と吸込側連通路55cとの境から折り返してから、軸線Arに対する径方向内側Driに向かいつつ軸方向後側Dabに向かって延びて、吸込流路41cと連通している。 As in the third embodiment, the suction side communication passage 55c is turned from the boundary between the circulation flow path 52 and the suction side communication passage 55c, and then toward the radially inner side Dri with respect to the axis Ar, toward the axial rear side Dab. And communicates with the suction channel 41c.
 本実施形態のトリートメント筒63cには、内径が軸方向後側Dabに向かうに連れて次第に縮径される縮径内周面63cfと、内径が軸方向Daで一定の円筒内周面63cgとが形成されている。この円筒内周面63cgは、縮径内周面63cfの軸方向後側Dabの縁から形成されている。ベルマウスキャップ65cには、内径が軸方向後側Dabに向かうに連れて次第に縮径されるベルマウス面65cfが形成されている。さらに、ベルマウスキャップ65cには、外径が軸方向後側Dabに向かうに連れて次第に縮径される縮径外周面65chが形成されている。トリートメント筒63cの縮径内周面63cf内における軸方向後側Dabの部分は、ベルマウス面63cffを成している。このトリートメント筒63cのベルマウス面63cffは、ベルマウスキャップ65cのベルマウス面65cfを軸方向後側Dabに延長した仮想ベルマウス面上に位置している。 The treatment tube 63c of the present embodiment has a reduced inner diameter surface 63cf whose inner diameter is gradually reduced toward the axial rear side Dab, and a cylindrical inner peripheral surface 63cg whose inner diameter is constant in the axial direction Da. Is formed. The cylindrical inner peripheral surface 63cg is formed from the edge of the axially rear side Dab of the reduced diameter inner peripheral surface 63cf. The bell mouth cap 65c is formed with a bell mouth surface 65cf whose inner diameter is gradually reduced toward the rear side Dab in the axial direction. Further, the bell mouth cap 65c is formed with a reduced-diameter outer peripheral surface 65ch whose outer diameter is gradually reduced toward the rear side Dab in the axial direction. A portion of the axial rear side Dab in the reduced diameter inner peripheral surface 63cf of the treatment tube 63c forms a bell mouth surface 63cf. The bell mouth surface 63cff of the treatment tube 63c is located on a virtual bell mouth surface obtained by extending the bell mouth surface 65cf of the bell mouth cap 65c to the rear side Dab in the axial direction.
 吸込側連通路55cは、トリートメント筒63cの縮径内周面63cfのうちベルマウス面63cffを除く部分とベルマウスキャップ65cの縮径外周面65chとの間に形成されている。吸込流路41cの縮径部42cにおけるベルマウス面42cfは、ベルマウスキャップ65cのベルマウス面65cfとトリートメント筒63cのベルマウス面63cffで形成されている。 The suction side communication passage 55c is formed between a portion of the reduced diameter inner peripheral surface 63cf of the treatment tube 63c excluding the bell mouth surface 63cf and a reduced diameter outer peripheral surface 65ch of the bell mouth cap 65c. The bell mouth surface 42cf in the reduced diameter portion 42c of the suction channel 41c is formed by the bell mouth surface 65cf of the bell mouth cap 65c and the bell mouth surface 63cf of the treatment tube 63c.
 本実施形態の圧縮機ハウジング40cも、以上の各実施形態の圧縮機ハウジング40,40a,40bと同様、式(1)~式(4)に示す関係を満たす。さらに、本実施形態では、第二実施形態と同様、軸線Arからベルマウスキャップ65cの径方向内側Driであって軸方向前側Dafの縁までの寸法Rcは、出口内径Roより小さく、且つ入口内径Riより大きい。 The compressor housing 40c of the present embodiment also satisfies the relationships expressed by the equations (1) to (4), like the compressor housings 40, 40a, and 40b of the above embodiments. Further, in the present embodiment, as in the second embodiment, the dimension Rc from the axis Ar to the edge of the bell mouth cap 65c on the radially inner side Dri and the axially front side Daf is smaller than the outlet inner diameter Ro and the inlet inner diameter. Greater than Ri.
 本実施形態の吸込側連通路55cは、第三実施形態と同様、循環流路52と吸込側連通路55cとの境から折り返してから軸方向後側Dabに向かって延びて、吸込流路41cと連通している。このため、本実施形態では、第三実施形態と同様、圧縮機ハウジング40cの軸方向Daへの長大化を抑えつつ、インペラ室45内の空気Aの一部が吸込流路41cに戻るまでの流路長を長くすることができる。 As in the third embodiment, the suction side communication path 55c of the present embodiment is folded back from the boundary between the circulation flow path 52 and the suction side communication path 55c and then extends toward the axial rear side Dab, and the suction flow path 41c. Communicated with. For this reason, in the present embodiment, as in the third embodiment, while the length of the compressor housing 40c in the axial direction Da is suppressed, a part of the air A in the impeller chamber 45 returns to the suction flow path 41c. The channel length can be increased.
 また、本実施形態の吸込側連通路55cにおける吸込流路41cに対する連通口55oは、第二実施形態と同様、縮径部42cにおけるベルマウス面42cfに形成されている。このため、本実施形態では、第二実施形態と同様、外部から空気Aが吸込流路41cを経てインペラ室45に流入し易くなる上に、ベルマウス面42cfにおける静圧低減効果により、吸込側連通路55c内の空気Aを効率的に吸込流路41c内に導くことができる。 Moreover, the communication port 55o with respect to the suction flow path 41c in the suction side communication path 55c of this embodiment is formed in the bell mouth surface 42cf in the reduced diameter part 42c similarly to 2nd embodiment. For this reason, in the present embodiment, as in the second embodiment, air A easily flows from the outside into the impeller chamber 45 through the suction flow path 41c, and the static pressure reduction effect on the bell mouth surface 42cf allows the suction side The air A in the communication path 55c can be efficiently guided into the suction flow path 41c.
 なお、上記第三実施形態及び本実施形態の圧縮機ハウジング40b,40cは、いずれも、式(3)に示す関係を満たす。しかしながら、上記第三実施形態及び本実施形態の圧縮機ハウジング40b,40cでは、式(3)に示す関係を満たさなくてもよい。 Note that the compressor housings 40b and 40c of the third embodiment and the present embodiment both satisfy the relationship represented by the formula (3). However, the compressor housings 40b and 40c of the third embodiment and the present embodiment do not have to satisfy the relationship represented by the expression (3).
 また、以上の各実施形態の遠心圧縮機は、過給機に設けられる遠心圧縮機であるが、本発明に係る遠心圧縮機は、過給機に設けられるものでなくてよい。 Further, the centrifugal compressor of each of the above embodiments is a centrifugal compressor provided in the supercharger, but the centrifugal compressor according to the present invention may not be provided in the supercharger.
 本発明の一態様では、遠心圧縮機の作動範囲を拡大することができる。 In one embodiment of the present invention, the operating range of the centrifugal compressor can be expanded.
 10:タービン、11:タービン回転軸、12:タービンインペラ、19:タービンハウジング、20:連結部、21:連結回転軸、29:センターハウジング、30,30a,30b,30c,30x:遠心圧縮機、31:圧縮機回転軸、32:圧縮機インペラ、33:ハブ、35:ブレード、40,40a,40b,40c,40x:圧縮機ハウジング、41,41a,41b,41c:吸込流路、42,42b,42c:縮径部、42f,42bf,42cf:ベルマウス面、43b,43c:直胴部、43bg:円筒内周面、45:インペラ室、46:吐出流路、51:インペラ側連通路、52:循環流路、55,55a,55b,55c:吸込側連通路、55o:連通口、61:ハウジング本体、62:ストラット(仕切部)、63,63a,63b,63c:トリートメント筒、65,65b,65c:ベルマウスキャップ、Ar:軸線、Da:軸方向、Dab:軸方向後側、Daf:軸方向前側、Dc:周方向、Dr:径方向、Dri:径方向内側、Dro:径方向外側 10: turbine, 11: turbine rotating shaft, 12: turbine impeller, 19: turbine housing, 20: connecting portion, 21: connecting rotating shaft, 29: center housing, 30, 30a, 30b, 30c, 30x: centrifugal compressor, 31: Compressor rotating shaft, 32: Compressor impeller, 33: Hub, 35: Blade, 40, 40a, 40b, 40c, 40x: Compressor housing, 41, 41a, 41b, 41c: Suction flow path, 42, 42b 42c: reduced diameter portion, 42f, 42bf, 42cf: bell mouth surface, 43b, 43c: straight body portion, 43bg: cylindrical inner peripheral surface, 45: impeller chamber, 46: discharge flow path, 51: impeller side communication passage, 52: circulation flow path, 55, 55a, 55b, 55c: suction side communication path, 55o: communication port, 61: housing body, 62: strut (partition part), 63, 63a, 63b, 63c: treatment tube, 65, 65b, 65c: bell mouth cap, Ar: axial line, Da: axial direction, Dab: axial rear side, Daf: axial front side, Dc: circumferential direction, Dr: radial direction , Dri: radially inner side, Dro: radially outer side

Claims (9)

  1.  軸線を中心として回転する回転軸と、
     前記回転軸の外周に取り付けられているインペラと、
     前記インペラを覆うハウジングと、
     を備え、
     前記インペラは、前記回転軸に装着されるハブと、前記軸線を中心とする周方向に間隔をあけて前記ハブに複数設けられ、前記ハブと一体回転するすることで、前記軸線が延びる軸方向の一方側である軸方向前側から流入した気体を前記軸線に対する径方向外側に案内するブレードと、を有し、
     前記ハウジングには、前記インペラの前記軸方向前側に気体を導く吸込流路と、前記吸込流路と連通し前記インペラが収納されるインペラ室と、前記インペラ室と連通し前記インペラから前記径方向外側に送られた気体が流入する吐出流路と、前記インペラ室と連通し前記インペラ室から前記径方向外側の成分を含む方向に向かって延びるインペラ側連通路と、前記インペラ側連通路と連通し前記インペラ側連通路から前記軸方向前側の成分を含む方向の延びる循環流路と、前記循環流路と前記吸込流路とに連通する吸込側連通路と、が形成され、
     前記軸線から前記循環流路における前記吸込側連通路との連通位置までの径方向の寸法である吸込側径寸法が、前記軸線から前記循環流路における前記インペラ側連通路との連通位置までの径方向の寸法であるインペラ側径寸法より大きく、且つ前記吸込側連通路との連通位置における前記循環流路の流路面積が、前記インペラ側連通路との連通位置における前記循環流路の流路面積より大きい、
     遠心圧縮機。
    A rotation axis that rotates about an axis;
    An impeller attached to the outer periphery of the rotating shaft;
    A housing covering the impeller;
    With
    The impeller includes a hub mounted on the rotating shaft, and a plurality of the impellers are provided in the hub at intervals in a circumferential direction around the axis, and the shaft extends in an axial direction by rotating integrally with the hub. A blade that guides the gas flowing in from the axial front side that is one side of
    The housing includes a suction flow path that guides gas to the front side in the axial direction of the impeller, an impeller chamber that communicates with the suction flow path, and stores the impeller, and communicates with the impeller chamber from the impeller in the radial direction. A discharge passage through which gas sent to the outside flows, an impeller side communication passage that communicates with the impeller chamber and extends from the impeller chamber in a direction including the radially outer component, and communicates with the impeller side communication passage A circulation flow path extending in a direction including the component on the front side in the axial direction from the impeller side communication path, and a suction side communication path communicating with the circulation flow path and the suction flow path are formed,
    The suction-side diameter dimension, which is a dimension in the radial direction from the axis to the communication position with the suction-side communication path in the circulation flow path, is from the axis to the communication position with the impeller-side communication path in the circulation flow path. It is larger than the impeller side diameter dimension that is a radial dimension, and the flow passage area of the circulation flow path at the communication position with the suction side communication path is the flow of the circulation flow path at the communication position with the impeller side communication path. Larger than the road area,
    Centrifugal compressor.
  2.  請求項1に記載の遠心圧縮機において、
     前記ハウジングには、前記軸線を中心とした周方向に並ぶ複数の前記循環流路が形成されていると共に、前記周方向で隣接する前記循環流路の相互間を仕切る仕切部が形成されている、
     遠心圧縮機。
    The centrifugal compressor according to claim 1,
    The housing is formed with a plurality of circulation channels arranged in the circumferential direction with the axis as the center, and a partition for partitioning the circulation channels adjacent in the circumferential direction is formed. ,
    Centrifugal compressor.
  3.  請求項1又は2に記載の遠心圧縮機において、
     前記吸込流路は、前記軸線を中心として回転対称な形状を成し、前記軸方向の他方側である軸方向後側に向かうに連れて次第に流路面積が小さくなる縮径部を有し、
     前記吸込側連通路における前記吸込流路に対する連通口は、前記縮径部における流路を画定する面に形成されている、
     遠心圧縮機。
    The centrifugal compressor according to claim 1 or 2,
    The suction flow path has a shape that is rotationally symmetric about the axis, and has a reduced diameter portion that gradually decreases in flow path area toward the rear side in the axial direction, which is the other side of the axial direction.
    The communication port for the suction flow path in the suction side communication path is formed on a surface that defines the flow path in the reduced diameter portion,
    Centrifugal compressor.
  4.  請求項3に記載の遠心圧縮機において、
     前記縮径部における流路を画定する面は、前記軸線に近づく側に凸となる曲面を成している、
     遠心圧縮機。
    The centrifugal compressor according to claim 3,
    The surface that defines the flow path in the reduced diameter portion forms a curved surface that is convex toward the axis.
    Centrifugal compressor.
  5.  請求項3又は4のいずれか一項に記載の遠心圧縮機において、
     前記軸線から前記吸込側連通路の前記連通口における前記軸方向前側の縁までの径方向の寸法は、前記吸込側径寸法より小さく且つ前記インペラ側径寸法より大きい、
     遠心圧縮機。
    The centrifugal compressor according to any one of claims 3 and 4,
    The dimension in the radial direction from the axial line to the front edge in the axial direction at the communication port of the suction side communication path is smaller than the suction side diameter dimension and larger than the impeller side diameter dimension,
    Centrifugal compressor.
  6.  請求項1から5のいずれか一項に記載の遠心圧縮機において、
     前記吸込側連通路は、前記循環流路と前記吸込側連通路との境から折り返してから、前記軸線に対する径方向内側に向かいつつ、前記軸方向の他方側である軸方向後側に向かって延びて、前記吸込流路と連通している、
     遠心圧縮機。
    The centrifugal compressor according to any one of claims 1 to 5,
    The suction side communication path is folded back from the boundary between the circulation channel and the suction side communication path, and then toward the radially inner side with respect to the axis, toward the axial rear side that is the other side of the axial direction. Extends and communicates with the suction flow path,
    Centrifugal compressor.
  7.  請求項1から6のいずれか一項に記載の遠心圧縮機において、
     Lを、前記循環流路における前記吸込側連通路との連通位置から前記循環流路における前記インペラ側連通路との連通位置までの軸方向の寸法とし、
     doを、前記吸込側連通路との連通位置における前記循環流路の流路面積に関する等価直径とし、
     diを、前記インペラ側連通路との連通位置における前記循環流路の流路面積に関する等価直径とした場合、
     以下の式で規定される広がり角2θは、20°未満である、
      2θ = 2×tan((do-di)/2L)
     遠心圧縮機。
    The centrifugal compressor according to any one of claims 1 to 6,
    L is an axial dimension from a communication position with the suction-side communication path in the circulation flow path to a communication position with the impeller-side communication path in the circulation flow path,
    do is defined as an equivalent diameter related to the flow area of the circulation flow path at the communication position with the suction side communication path,
    When di is an equivalent diameter related to the flow area of the circulation flow path at the communication position with the impeller side communication path,
    The divergence angle 2θ defined by the following equation is less than 20 °.
    2θ = 2 × tan ((do-di) / 2L)
    Centrifugal compressor.
  8.  請求項1から7のいずれか一項に記載の遠心圧縮機において、
     前記循環流路における前記吸込側連通路との連通位置から前記循環流路における前記インペラ側連通路との連通位置までの軸方向の寸法は、前記インペラの最大外径であるインペラ外径の0.25倍以上である、
     遠心圧縮機。
    The centrifugal compressor according to any one of claims 1 to 7,
    The axial dimension from the communication position with the suction-side communication path in the circulation flow path to the communication position with the impeller-side communication path in the circulation flow path is 0 of the outer diameter of the impeller, which is the maximum outer diameter of the impeller. .25 times or more,
    Centrifugal compressor.
  9.  請求項1から8のいずれか一項に記載の遠心圧縮機と、
     タービンとを備え、
     前記タービンは、
     前記軸線を中心として回転するタービン回転軸と、
     前記タービン回転軸の外周に取り付けられているタービンインペラと、
     前記タービンインペラを覆うタービンハウジングと、
     を有し、
     前記タービン回転軸と前記遠心圧縮機の前記回転軸とは、同一の軸線上に位置して互いに連結されて一体回転し、過給機回転軸を成す、
     過給機。
    The centrifugal compressor according to any one of claims 1 to 8,
    A turbine,
    The turbine is
    A turbine rotating shaft that rotates about the axis;
    A turbine impeller attached to the outer periphery of the turbine rotating shaft;
    A turbine housing covering the turbine impeller;
    Have
    The turbine rotating shaft and the rotating shaft of the centrifugal compressor are located on the same axis and are connected to each other to rotate integrally to form a turbocharger rotating shaft.
    Turbocharger.
PCT/JP2015/058538 2015-03-20 2015-03-20 Centrifugal compressor and supercharger comprising same WO2016151689A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017507155A JP6598388B2 (en) 2015-03-20 2015-03-20 Centrifugal compressor and supercharger equipped with the same
CN201580077974.2A CN107407291A (en) 2015-03-20 2015-03-20 Centrifugal compressor and the booster for possessing the centrifugal compressor
EP15886246.6A EP3273068A4 (en) 2015-03-20 2015-03-20 Centrifugal compressor and supercharger comprising same
US15/557,880 US20180073515A1 (en) 2015-03-20 2015-03-20 Centrifugal compressor and supercharger comprising same
PCT/JP2015/058538 WO2016151689A1 (en) 2015-03-20 2015-03-20 Centrifugal compressor and supercharger comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058538 WO2016151689A1 (en) 2015-03-20 2015-03-20 Centrifugal compressor and supercharger comprising same

Publications (1)

Publication Number Publication Date
WO2016151689A1 true WO2016151689A1 (en) 2016-09-29

Family

ID=56978470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058538 WO2016151689A1 (en) 2015-03-20 2015-03-20 Centrifugal compressor and supercharger comprising same

Country Status (5)

Country Link
US (1) US20180073515A1 (en)
EP (1) EP3273068A4 (en)
JP (1) JP6598388B2 (en)
CN (1) CN107407291A (en)
WO (1) WO2016151689A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1751495A1 (en) * 2017-12-05 2019-06-06 Scania Cv Ab Compressor Housing, Turbocharger, and Related Devices
CN110121599A (en) * 2017-02-08 2019-08-13 三菱重工发动机和增压器株式会社 Centrifugal compressor, turbocharger

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015211270A1 (en) * 2015-06-18 2016-12-22 Bayerische Motoren Werke Aktiengesellschaft Turbocharger for a motor vehicle
EP3205883A1 (en) * 2016-02-09 2017-08-16 Siemens Aktiengesellschaft Rotor for a centrifugal turbocompressor
DE102017127421A1 (en) * 2017-11-21 2019-05-23 Man Energy Solutions Se centrifugal compressors
DE102018102704A1 (en) * 2018-02-07 2019-08-08 Man Energy Solutions Se centrifugal compressors
US10745139B2 (en) * 2018-06-27 2020-08-18 Hamilton Sundstrand Corporation Simultaneous dual engine bleed thermal management system
WO2020012866A1 (en) * 2018-07-12 2020-01-16 株式会社デンソー Centrifugal blower
JP7361214B2 (en) * 2020-05-21 2023-10-13 三菱重工エンジン&ターボチャージャ株式会社 Compressor housing and centrifugal compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070269308A1 (en) * 2006-05-22 2007-11-22 Wood Terry G Engine intake air compressor having multiple inlets and method
JP2009068372A (en) * 2007-09-11 2009-04-02 Ihi Corp Centrifugal compressor
JP2012154200A (en) * 2011-01-24 2012-08-16 Ihi Corp Centrifugal compressor and method of manufacturing centrifugal compressor
US20140093354A1 (en) * 2011-05-10 2014-04-03 Borgwarner Inc. Compressor of an exhaust-gas turbocharger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ610700A0 (en) * 2000-03-08 2000-03-30 Crown Limited Automatic table game
US7499742B2 (en) * 2001-09-26 2009-03-03 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US7775759B2 (en) * 2003-12-24 2010-08-17 Honeywell International Inc. Centrifugal compressor with surge control, and associated method
US6945748B2 (en) * 2004-01-22 2005-09-20 Electro-Motive Diesel, Inc. Centrifugal compressor with channel ring defined inlet recirculation channel
US7600721B2 (en) * 2007-07-23 2009-10-13 Panduit Corp. Network cable bundling tool
US8272832B2 (en) * 2008-04-17 2012-09-25 Honeywell International Inc. Centrifugal compressor with surge control, and associated method
CN102996507A (en) * 2012-12-21 2013-03-27 中国北车集团大连机车研究所有限公司 Internally circulating device of centrifugal air compressor
US10267214B2 (en) * 2014-09-29 2019-04-23 Progress Rail Locomotive Inc. Compressor inlet recirculation system for a turbocharger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070269308A1 (en) * 2006-05-22 2007-11-22 Wood Terry G Engine intake air compressor having multiple inlets and method
JP2009068372A (en) * 2007-09-11 2009-04-02 Ihi Corp Centrifugal compressor
JP2012154200A (en) * 2011-01-24 2012-08-16 Ihi Corp Centrifugal compressor and method of manufacturing centrifugal compressor
US20140093354A1 (en) * 2011-05-10 2014-04-03 Borgwarner Inc. Compressor of an exhaust-gas turbocharger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3273068A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121599A (en) * 2017-02-08 2019-08-13 三菱重工发动机和增压器株式会社 Centrifugal compressor, turbocharger
SE1751495A1 (en) * 2017-12-05 2019-06-06 Scania Cv Ab Compressor Housing, Turbocharger, and Related Devices

Also Published As

Publication number Publication date
EP3273068A1 (en) 2018-01-24
US20180073515A1 (en) 2018-03-15
JP6598388B2 (en) 2019-10-30
EP3273068A4 (en) 2018-11-07
CN107407291A (en) 2017-11-28
JPWO2016151689A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6598388B2 (en) Centrifugal compressor and supercharger equipped with the same
US9163642B2 (en) Impeller and rotary machine
KR101743376B1 (en) Centrifugal compressor
JP7220097B2 (en) Centrifugal compressor and turbocharger
US10443606B2 (en) Side-channel blower for an internal combustion engine
WO2013008599A1 (en) Centrifugal compressor
RU2019106858A (en) REFRIGERATION SYSTEM WITH DIAGONAL COMPRESSOR
JP2017203427A (en) Turbocharger
WO2017145777A1 (en) Compressor impeller and turbocharger
WO2014122819A1 (en) Centrifugal compressor
JP6763804B2 (en) Centrifugal compressor
JP6005256B2 (en) Impeller and axial flow blower using the same
JP6357830B2 (en) Compressor impeller, centrifugal compressor, and supercharger
JP2018135815A (en) Centrifugal rotary machine
JP2005282578A (en) Vortex flow fan
JP2017075557A (en) Intake structure of compressor
JP6800609B2 (en) Centrifugal compressor, turbocharger
JPWO2018179112A1 (en) Compressor scroll shape and turbocharger
WO2018198808A1 (en) Centrifugal compressor
JP2009068373A (en) Centrifugal compressor
JP6935312B2 (en) Multi-stage centrifugal compressor
WO2018101021A1 (en) Diffuser, discharge flow path, and centrifugal turbo machine
JP6642258B2 (en) Supercharger
JP2017057779A (en) Turbo charger
WO2022107519A1 (en) Centrifugal compressor and supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507155

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015886246

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15557880

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE