WO2016143819A1 - Heterocyclic compound or salt thereof, and electronic device including same - Google Patents

Heterocyclic compound or salt thereof, and electronic device including same Download PDF

Info

Publication number
WO2016143819A1
WO2016143819A1 PCT/JP2016/057364 JP2016057364W WO2016143819A1 WO 2016143819 A1 WO2016143819 A1 WO 2016143819A1 JP 2016057364 W JP2016057364 W JP 2016057364W WO 2016143819 A1 WO2016143819 A1 WO 2016143819A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
compound
substituent
salt
Prior art date
Application number
PCT/JP2016/057364
Other languages
French (fr)
Japanese (ja)
Inventor
琢次 畠山
Original Assignee
学校法人関西学院
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, Jnc株式会社 filed Critical 学校法人関西学院
Priority to JP2017505377A priority Critical patent/JP6449434B2/en
Publication of WO2016143819A1 publication Critical patent/WO2016143819A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to a heterocyclic compound or a salt thereof, and an electronic device including these.
  • organic electroluminescence organic light emitting diodes
  • organic thin film solar cells organic thin film transistors (organic TFT)
  • ⁇ -NPD organic thin film transistors
  • rubrene ⁇ -conjugated compounds such as Alq3
  • Non-Patent Document 1 discloses a tetracene derivative (8a-bora-8,9-dioxabenzo [fg] tetracene) having a borate ester structure in the ring.
  • Non-Patent Document 1 does not disclose a derivative having a substituent introduced therein, nor does it describe any usefulness as a material for an electronic device.
  • An object of the present invention is to provide a novel heterocyclic compound containing a boron atom or a phosphorus atom or a salt thereof, and an electronic device containing them.
  • a heterocyclic compound having a structure represented by the following general formula or a salt thereof has excellent hole mobility and electron mobility.
  • the inventors have found that it is useful as an electronic device such as an organic light emitting element or an organic TFT.
  • the present invention has been completed based on such findings.
  • Item 1 A heterocyclic compound having a structure represented by the following general formula (1A ′) or a salt thereof (excluding 8a-bora-8,9-dioxabenzo [fg] tetracene).
  • Y and Z are the same or different and represent O, S, or N—R 1 .
  • R 1 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • the heteroaryl group which may have is shown.
  • Ring A, ring B and ring C are the same or different and each represents an aryl ring which may have a substituent or a heteroaryl ring which may have a substituent.
  • the heterocyclic compound represented by the general formula (1A ′) or a salt thereof has at least one hydrogen atom. At least one hydrogen atom in the heterocyclic compound represented by the general formula (1A ′) or a salt thereof may be replaced with a deuterium atom.
  • Item 2 A heterocyclic compound having a structure represented by the following general formula (1B ′) or a salt thereof.
  • Y and Z are the same or different and represent O, S, or N—R 1 .
  • R 1 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • the heteroaryl group which may have is shown.
  • Ring A represents a benzene ring.
  • Two rings B and two rings C are the same or different and each represents an aryl ring which may have a substituent or a heteroaryl ring which may have a substituent.
  • the heterocyclic compound represented by the general formula (1B ′) or a salt thereof has at least one hydrogen atom. At least one hydrogen atom in the heterocyclic compound represented by the general formula (1B ′) or a salt thereof may be replaced with a deuterium atom.
  • Item 3. Item 11. The heterocyclic compound or the salt thereof according to Item 1, having the structure represented by the following general formula (1A ′′) (except 8a-bora-8,9-dioxabenzo [fg] tetracene).
  • the heterocyclic compound represented by the general formula (1A ′′) or a salt thereof has at least one hydrogen atom. (At least one hydrogen atom in the heterocyclic compound represented by the general formula (1A ′′) or a salt thereof may be replaced with a deuterium atom.)
  • Item 5. The heterocyclic compound or a salt thereof according to Item 2, having a structure represented by the following general formula (1B ′′).
  • heterocyclic compound represented by the general formula (1B ′′) or a salt thereof has at least one hydrogen atom.
  • At least one hydrogen atom in the heterocyclic compound represented by the above general formula (1B ′′) or a salt thereof may be replaced with a deuterium atom.
  • R 1 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • the heteroaryl group which may have is shown.
  • R a , R b and R c are the same or different and are a halogen atom, a cyano group, a nitro group, an optionally substituted alkyl group, an optionally substituted cycloalkyl group or a substituted group.
  • n represents an integer of 0 to 3.
  • n represents 2, two R a may be the same or different.
  • m represents 3, three R a may be the same or different.
  • n and o are the same or different and represent an integer of 0 to 4.
  • n or o represents 2
  • two R b or two R c may be the same or different from each other.
  • n or o represents 3, three R b or R c may be the same or different from each other.
  • R b or R c may be the same or different from each other.
  • n is 2 or o is 2
  • 2 R a , 2 R b or 2 R c are bonded to each other to form a saturated or unsaturated carbocyclic ring, or a saturated or unsaturated heterocyclic ring May be formed, and these rings may have a substituent.
  • m represents 3 the following formula having three R a :
  • heterocyclic structure represented by these may be formed.
  • the heterocyclic compound represented by the general formula (1) or a salt thereof has at least one hydrogen atom.
  • At least one hydrogen atom in the heterocyclic compound represented by the general formula (1) or a salt thereof may be replaced with a deuterium atom.
  • R a , R b and R c are the same or different and are a halogen atom, a cyano group, a nitro group, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • the saturated or unsaturated carbocycle has an optionally substituted benzene ring, an optionally substituted naphthalene ring, or a saturated or unsaturated heterocyclic ring has a substituent.
  • Item 9 The heterocyclic compound or a salt thereof according to Item 5, which is a compound represented by the following general formula (1-C).
  • Item 10 An electronic device comprising the heterocyclic compound according to any one of Items 1 to 9 or a salt thereof. Item 11. Item 11. The electronic device according to Item 10, which is an organic light emitting device, an organic thin film transistor, or an organic thin film solar cell. Item 12. General formula (1A ′):
  • Y and Z are the same or different and represent O, S, or N—R 1 .
  • R 1 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • the heteroaryl group which may have is shown.
  • Ring A, ring B and ring C are the same or different and each represents an aryl ring which may have a substituent or a heteroaryl ring which may have a substituent.
  • the heterocyclic compound represented by the general formula (1A ′) or a salt thereof has at least one hydrogen atom. At least one hydrogen atom in the heterocyclic compound represented by the general formula (1A ′) or a salt thereof may be replaced with a deuterium atom.
  • a process comprising: reacting a compound represented by the above or a salt thereof with a lithium compound; and reacting the compound obtained in the process with a boron compound or a phosphorus compound.
  • Item 13 General formula (1A ′):
  • Y and Z are the same or different and represent O, S, or N—R 1 .
  • R 1 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • the heteroaryl group which may have is shown.
  • Ring A, ring B and ring C are the same or different and each represents an aryl ring which may have a substituent or a heteroaryl ring which may have a substituent.
  • the heterocyclic compound represented by the general formula (1A ′) or a salt thereof has at least one hydrogen atom. At least one hydrogen atom in the heterocyclic compound represented by the general formula (1A ′) or a salt thereof may be replaced with a deuterium atom.
  • R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent.
  • novel heterocyclic compound of the present invention a method for producing the compound, and its use will be described in detail below.
  • heterocyclic compound or salt thereof of the present invention has the following general formulas (1A ′), (1AA ′), (1B ′), (1A ′′), (1B ′′), (1a ′′) and A heterocyclic compound having a structure represented by (1b ′′) or a salt thereof, and the following general formulas (1), (1a), (1-A), (1-B), (1b), and (1 -C) or a salt thereof (excluding 8a-bora-8,9-dioxabenzo [fg] tetracene shown in the following Production Example 1) (hereinafter referred to as “the compound of the present invention”) It may also be referred to as “the heterocyclic compound of the present invention”).
  • the at least 1 hydrogen atom in the said heterocyclic compound or its salt of this invention may be replaced with the deuterium atom.
  • the heterocyclic compound of the present invention or a salt thereof does not include compounds such as hetero-element-substituted fullerenes, hetero-element-substituted graphenes, and hetero-element-substituted carbon nanotubes.
  • heterocyclic compound of the present invention or a salt thereof may be represented by the general formula (1A ′):
  • Ring A represents a benzene ring.
  • a salt thereof excluding 8a-bora-8,9-dioxabenzo [fg] tetracene
  • the heterocyclic compound having the structure represented by the general formula (1A ′′) or a salt thereof has three benzene rings, and each benzene ring is represented by ring A, ring B or ring as described below.
  • C When represented by C, it is a hetero compound having a structure represented by the following general formula (1a ′′) or a salt thereof.
  • the respective benzene rings may be replaced with heteroaryl rings.
  • the heteroaryl ring include later-described heteroaryl groups such as a thiophene ring, a thiazole ring, and a pyridine ring, and the heteroaryl ring may further have a substituent.
  • the substituent include a substituent in a heteroaryl group described later.
  • the heterocyclic compound having a structure represented by the above general formula (1B ′′) or a salt thereof has five benzene rings, and each benzene ring is represented by ring A, two rings B as described below.
  • a two-ring C is a hetero compound having a structure represented by the following general formula (1b ′′) or a salt thereof.
  • the respective benzene rings may be replaced with heteroaryl rings.
  • the heteroaryl ring include later-described heteroaryl groups such as a thiophene ring, a thiazole ring, and a pyridine ring, and the heteroaryl ring may further have a substituent.
  • the substituent include a substituent in a heteroaryl group described later.
  • heterocyclic compound having a structure represented by the above general formulas (1A ′), (1AA ′), (1A ′′), and (1a ′′) or a salt thereof for example, the following general formula Examples thereof include heterocyclic compounds represented by (1), (1a) and (1-A) or salts thereof.
  • Another preferred embodiment of the present invention is a heterocyclic compound represented by the following general formulas (1-A) and (1-B) or a salt thereof (provided that 8a-bora-8,9-dioxabenzo [ fg] except tetracene).
  • the heterocyclic compound represented by the general formula (1-B) or a salt thereof has five benzene rings, and each benzene ring is represented by ring A, two rings B, or When represented by two rings C, it is a hetero compound represented by the following general formula (1-b) or a salt thereof.
  • the heterocyclic compound represented by the general formula (1B ′), (1B ′′), (1b ′′), (1-B), or (1-b) or a salt thereof is represented by the general formula (1A Since it has two chemical structures represented by '), (1AA'), (1A "), (1a"), or (1-A), it can be simply referred to as "dimer". . Note that the above-mentioned “having two” means that the ring A portion is overlapped while the above (1A ′), (1AA ′), (1A ′′), (1a ′′), or (1-A It has two chemical structures represented by.
  • heterocyclic compound represented by the general formula (1A ′), (1AA ′), (1A ′′), (1a ′′), or (1-A) or a salt thereof can also be referred to as a “monomer”. .
  • one more preferred embodiment is a heterocyclic compound represented by the following general formulas (1-A1) to (1-A28) or a salt thereof: It is.
  • n1 and o1 each represents an integer of 0 to 6.
  • n2 and o2 each represents an integer of 0 to 8.
  • n3 and o3 each represents an integer of 0 to 4.
  • n4 and o4 each represents an integer of 0 to 6.
  • A represents O, S, or N—R 2 .
  • each R 2 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • heteroaryl group which may have a group is shown.
  • heterocyclic compounds of the present invention or salts thereof more preferred embodiments (dimers) include heterocyclic compounds represented by the following general formulas (1-B1) to (1-B21) or salts thereof: It is.
  • n1 and o1 each represents an integer of 0 to 6.
  • n2 and HAR2 each represents an integer of 0 to 8.
  • n3 and HAR3 each represents an integer of 0 to 4.
  • n4 and omb4 represent integers of 0 to 6.
  • alkyl group in the “optionally substituted alkyl group” is not particularly limited, and examples thereof include a linear alkyl group having 1 to 16 carbon atoms or a branched alkyl group having 3 to 12 carbon atoms. Groups.
  • the alkyl group is preferably a linear alkyl group having 1 to 12 carbon atoms, more preferably a methyl group, ethyl group, n-butyl group, n-hexyl group, n-octyl group, n-decyl group and n -Dodecyl group.
  • the alkyl group includes, for example, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, cycloalkyl group, aryl group (eg, phenyl group, naphthyl group, etc.), hetero It may have 1 to 6 substituents such as an aryl group, an alkoxy group, an aryloxy group, and a diarylamino group.
  • a halogen atom eg, fluorine atom, chlorine atom, bromine atom, iodine atom
  • cyano group cyano group
  • nitro group e.g, cycloalkyl group
  • aryl group eg, phenyl group, naphthyl group, etc.
  • hetero It may have 1 to 6 substituents such as an aryl group, an alkoxy group, an aryloxy group, and a diarylamino group.
  • the “optionally substituted alkyl group” is particularly preferably a trifluoromethyl group, a benzyl group, a diphenylmethyl group, or a triphenylmethyl group.
  • n- means normal, “s-” means secondary (sec-), “t-” means tertiary (tert-), and “i-” means iso.
  • the “cycloalkyl group” in the “cycloalkyl group optionally having substituent (s)” is not particularly limited, and examples thereof include cycloalkyl groups having 3 to 10 carbon atoms, specifically, cyclopropyl Group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like.
  • the cycloalkyl group is preferably a cycloalkyl group having 3 to 7 carbon atoms, more preferably a cycloalkyl group having 5 to 7 carbon atoms, and particularly preferably a cyclohexyl group.
  • the cycloalkyl group includes, for example, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), a cyano group, a nitro group, an alkyl group (an alkyl group having 1 to 6 carbon atoms), a cycloalkyl group, It may have 1 to 6 substituents such as an aryl group (eg, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group and the like.
  • a halogen atom eg, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • a cyano group e.g, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • a cyano group e.g
  • the “aryl group” in the “optionally substituted aryl group” is not particularly limited, and examples thereof include a monocyclic or bicyclic or higher aryl group, and specifically include a phenyl group and a naphthyl group. , Anthranyl group, phenanthryl group and the like.
  • the aryl group is preferably a monocyclic or bicyclic aryl group, and more preferably a phenyl group.
  • the aryl group includes, for example, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl group, aryl It may have 1 to 6 substituents such as a group (eg, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group and the like.
  • a halogen atom eg, fluorine atom, chlorine atom, bromine atom, iodine atom
  • cyano group eg, nitro group
  • alkyl group alkyl group having 1 to 6 carbon atoms
  • cycloalkyl group e.g., aryl It may have 1 to 6 substituents such as a group (eg, phenyl group, naphthyl
  • heteroaryl group in the “optionally substituted heteroaryl group” is not particularly limited, and examples thereof include a heteroaryl group containing at least one heteroatom such as a nitrogen atom, an oxygen atom, or a sulfur atom, Of these, a 1 to 4 ring heteroaryl group having 1 to 18 carbon atoms and having at least one heteroatom selected from the group consisting of a nitrogen atom, an oxygen atom, and a sulfur atom is preferable.
  • a group having the same structure as the “heterocycle” described later is mentioned, and among them, a furyl group, a thienyl group, a selenyl group, a pyrrolyl group, an imidazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group are preferable.
  • Isoxazolyl group triazolyl group, borolyl group, phosphoryl group, silolyl group, pyridyl group, pyrimidinyl group, triazinyl group, pyranyl group, indolyl group, isoindolyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, benzoxazolyl group, benzothiazolyl Group, benzoisoxazolyl group, benzoisothiazolyl group, benzofuryl group, benzothienyl group, benzopyranyl group, benzoimidazolyl group, benzoborolyl group, benzophosphoryl group, benzosilolyl group, benzoazaboryl group, carbazolyl group, India Dinyl group, acridinyl group, phenazinyl group, phenanthridinyl group, phenanthrolinyl group, phenoxazinyl group,
  • the heteroaryl group includes, for example, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), a cyano group, a nitro group, an alkyl group (an alkyl group having 1 to 6 carbon atoms), a cycloalkyl group, It may have 1 to 6 substituents such as an aryl group (eg, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group and the like.
  • a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • a cyano group for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • a cyano group for example, a fluorine atom
  • the heteroaryl group containing a nitrogen atom or a sulfur atom may be an N-oxide, sulfoxide or sulfone group.
  • These compounds can be prepared by known production methods (for example, Youssif, S., Recent trends in the chemistry of pyridine N-oxides Arkivoc, 2001, p.242-268.; Brown K. N. andEspenson J. H., Stepwise Oxidation of Thiophene and Its Derivatives by Hydrogen Peroxide Catalyzed by Methyltrioxorhenium (VII) Inorg. Chem., 1996, 35, p.7211-7216.).
  • a heteroaryl group-containing compound containing a nitrogen atom or a sulfur atom with an oxidizing agent such as aqueous hydrogen peroxide or m-CPBA, a heteroaryl group-containing compound containing an N-oxide, sulfoxide or sulfone group is obtained.
  • an oxidizing agent such as aqueous hydrogen peroxide or m-CPBA
  • alkoxy group optionally having substituent (s) is not particularly limited.
  • the alkoxy group includes a halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl group, aryl group ( For example, it may have 1 to 6 substituents such as a phenyl group, a naphthyl group, a heteroaryl group, an alkoxy group, an aryloxy group, a diarylamino group.
  • a halogen atom for example, fluorine atom, chlorine atom, bromine atom, iodine atom
  • cyano group for example, fluorine atom, chlorine atom, bromine atom, iodine atom
  • nitro group for example, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl group, aryl group ( For example, it may have 1 to 6 substituent
  • the “aryloxy group optionally having substituent (s)” is not particularly limited, and examples thereof include aryloxy groups having 6 to 10 carbon atoms such as phenoxy group and naphthyloxy group.
  • the aryloxy group is a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl group, aryl group It may have 1 to 6 substituents such as a heteroaryl group, an alkoxy group, an aryloxy group, a diarylamino group (for example, a phenyl group, a naphthyl group, etc.).
  • amino group optionally having substituent (s) is not particularly limited, and examples thereof include an amino group, N-alkylamino group, N-arylamino group, N, N-dialkylamino group, N, N— Examples thereof include a diarylamino group and an N-alkyl-N-arylamino group.
  • the “optionally substituted amino group” is preferably N- (1-naphthyl) N-phenylamino group, N- (2-naphthyl) N-phenylamino group and N, N-diphenyl.
  • alkyl or “aryl” in the N-alkylamino group, N-arylamino group, N, N-dialkylamino group, N, N-diarylamino group, and N-alkyl-N-arylamino group is as described above. And the same group as the “alkyl group” in the optionally substituted alkyl group or the “aryl group” in the optionally substituted aryl group.
  • substituent for example, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), cyano group, Nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl group, aryl group (for example, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group, etc.
  • the substituent may have 1 to 6 substituents.
  • the “saturated carbocycle” is not particularly limited, and examples thereof include monocyclic or bicyclic or more saturated carbocycles, and specifically include cyclopropane ring, cyclobutane ring, cyclo Pentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, cyclotridodecane ring, cyclotetradecane ring, cyclopentadecane ring, perhydropentalene ring, perhydroazulene Ring, perhydroindene ring, perhydronaphthalene ring, perhydroheptalene ring, spiro [4.4] nonane ring, spiro [4.5] decane ring, spiro [5.5] undecane ring,
  • a saturated carbocyclic ring having 3 to 10 carbon atoms is preferable, a cyclopentane ring or a cyclohexane ring is more preferable, and a cyclohexane ring is particularly preferable.
  • the saturated carbocycle includes, for example, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl group.
  • An aryl group (for example, a phenyl group, a naphthyl group, etc.), a heteroaryl group, an alkoxy group, an aryloxy group, a diarylamino group and the like, may have 1 to 6 substituents.
  • the “unsaturated carbocycle” is not particularly limited and includes, for example, a monocyclic or bicyclic or more carbocycle, and specifically includes a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, a cyclooctene ring.
  • the unsaturated carbocycle includes, for example, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl 1 to 6 substituents such as a group, an aryl group (eg, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group and the like may be included.
  • a halogen atom eg, fluorine atom, chlorine atom, bromine atom, iodine atom
  • cyano group e.g, cyano group, nitro group
  • alkyl group alkyl group having 1 to 6 carbon atoms
  • cycloalkyl 1 to 6 substituents such as a group, an aryl group (eg, phenyl group, naphth
  • the “saturated heterocycle” is not particularly limited and includes, for example, a monocyclic or bicyclic or higher saturated heterocycle, and specifically includes a pyrrolidine ring, a morpholine ring, a piperidine ring, 2- Examples include a piperazine ring, a 2-piperidone ring, a 2-bora-1,3-dioxolane ring, and a 1,3-thiazolidine ring.
  • a monocyclic or bicyclic saturated heterocyclic ring is preferable, and a pyrrolidine ring is more preferable.
  • the saturated heterocyclic ring includes, for example, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a cyano group, a nitro group, an alkyl group (an alkyl group having 1 to 6 carbon atoms), a cycloalkyl group.
  • a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
  • a cyano group for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
  • a cyano group for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
  • a cyano group for example, a fluorine atom, a chlorine atom,
  • the “unsaturated heterocycle” is not particularly limited, and examples thereof include furan ring, thiophene ring, selenophene ring, pyrrole ring, imidazole ring, thiazole ring, isothiazole ring, oxazole ring, isoxazole ring, triazole ring, and bolol.
  • each R 3 represents a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • the unsaturated heterocycle includes a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a cyano group, a nitro group, an alkyl group (an alkyl group having 1 to 6 carbon atoms), a cycloalkyl group, It may have 1 to 6 substituents such as an aryl group (eg, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group and the like.
  • a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
  • a cyano group for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
  • a cyano group for example,
  • each ring has no substituent, that is, substitution on each ring. It means that all of the positions are hydrogen atoms.
  • X is B, Y is O, and Z is O; X is B, Y is S, Z is S; X is B, Y is S, Z is O; X is B, Y is O, Z is S; X is B, Y is NR 1 , Z is NR 1 ; X is B, Y is NR 1 , Z is O; X is B, Y is O, Z is NR 1 ; X is B, Y is NR 1 , Z is S X is B, Y is S, Z is NR 1 ; X is P, Y is O, Z is O; X is P, Y is S, Z is S; X is P, Y is S, Z is O; X is P, Y is O, Z is S; X is P, Y is O, Z is S; X is P, Y is O, Z is S; X is P, Y is NR 1 , Z is NR 1 ; X is P,
  • Ring A is an aryl ring, Ring B is an aryl ring, and Ring C is an aryl ring; Ring A is a heteroaryl ring, Ring B is an aryl ring, and Ring C is an aryl ring; Ring A is an aryl ring, Ring B is a heteroaryl ring, and Ring C is an aryl ring; Ring A is an aryl ring, Ring B is an aryl ring, and Ring C is a heteroaryl ring; Ring A is a heteroaryl ring, Ring B is a heteroaryl ring, and Ring C is an aryl ring; Ring A is an aryl ring, Ring B is a heteroaryl ring, and Ring C is an aryl ring; Ring A is an aryl ring, Ring B is a heteroaryl ring, and Ring C is an aryl ring; Ring A is an aryl ring, Ring B is a heteroaryl ring, and Ring C is a heteroaryl
  • Ring A is a benzene ring, Ring B is an aryl ring, and Ring C is an aryl ring; Ring A is a benzene ring, Ring B is an aryl ring, and Ring C is a heteroaryl ring; Ring A is a benzene ring, Ring B is a heteroaryl ring, and Ring C is a heteroaryl ring,
  • Ring A is a benzene ring, Ring B is an aryl ring, and Ring C is an aryl ring; Ring A is a benzene ring, Ring B is a heteroaryl ring, and Ring C is a heteroaryl ring, More preferably, Ring A is a benzene ring, Ring B is a benzene ring, and Ring C is a benzene ring; Ring A is a benzene ring;
  • the “salt” of the compound of the present invention is not particularly limited, and examples thereof include alkali metal salts such as sodium salts and potassium salts; alkaline earth metal salts such as magnesium salts and calcium salts; dimethylamine salts and triethylamine salts. Examples include amine salts; inorganic acid salts such as hydrochloride, perchlorate, sulfate, and nitrate; organic acid salts such as acetate and methanesulfonate.
  • the salt of the compound of this invention can be manufactured in accordance with the manufacturing method of a normal salt, it is not limited to these methods.
  • the heterocyclic compound of the present invention or a salt thereof includes hydrates, hydrates and solvates thereof.
  • the heterocyclic compound of the present invention or a salt thereof includes a compound in which at least one hydrogen atom may be replaced with a deuterium atom.
  • a heterocyclic compound having a structure represented by the general formula (1A ′), (1AA ′), (1B ′), (1A ′′), (1B ′′), (1a ′′) and (1b ′′) of the present invention A heterocyclic compound having a structure represented by the general formula (1A ′), (1AA ′), (1B ′), (1A ′′), (1B ′′), (1a ′′) and (1b ′′) of the present invention;
  • the salts thereof and the heterocyclic compounds represented by the following general formulas (1), (1a), (1-A) and (1-B) or salts thereof can be produced according to the following production method.
  • heterocyclic compounds of the present invention or salts thereof, the production methods of the compounds represented by the above general formulas (1-A) and (1-B) are described below as representative examples. It is not limited.
  • the substituents R a , R b , R c , m, n, and o in the compounds represented by the general formulas (1-A) and (1-B) are omitted and described below.
  • the production method of Reaction Formula 1 includes Step 1A of reacting a compound represented by the general formula (2-A1) or (2-B1) or a salt thereof with a boron compound or a phosphorus compound.
  • Process 1A examples of the boron compound used in Step 1A include boron halide compounds such as BI 3 , BBr 3 , BCl 3 , and BF 3 . BBr 3 and BCl 3 are preferable, and BBr 3 is more preferable.
  • a boron compound can be used individually by 1 type, or can be used in combination of 2 or more type.
  • Examples of the phosphorus compound used in Step 1A include halides such as PF 3 , PCl 3 , PBr 3 , and PI 3 ; P (OMe) 3 , P (OEt) 3 , P (O—nPr) 3 , P (O— phosphorus alkoxy compounds such as iPr) 3 , P (O-nBu) 3 , P (O-iBu) 3 , P (O-sec-Bu) 3 , P (O-tert-Bu) 3 ; P (OPh) 3 , P (O-naphthyl) 3, etc .; P (OAc) 3 , P (O-trifluoroacetyl) 3 , P (O-propionyl) 3 , P (O-butyryl) 3 , P (O -Phosyloxy compounds such as 3 ; PCl (NMe 2 ) 2 , PCl (NEt 2 ) 2 , PCl (NPr 2 ) 2 , PCl
  • PCl 3 , PBr 3 , P (OEt) 3 and P (OAc) 3 are preferable, and PCl 3 and PBr 3 are more preferable.
  • a phosphorus compound can be used individually by 1 type, or can be used in combination of 2 or more type.
  • the amount of the boron compound or phosphorus compound used may be appropriately adjusted. For example, it is generally 1 to 10 moles, preferably 1 mole relative to 1 mole of the compound represented by the general formula (2-A1) or (2-B1). Is 1 to 6 mol, more preferably 1 to 4 mol.
  • Bronsted base such as NEt 3 , i-Pr 2 NEt, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, etc .
  • Bronsted bases such as NaBPh 4 , KBPh 4 , and BPh 3
  • Lewis acids such as AlBr 3 and AlCl 3 may be added.
  • Step 1A can be performed in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not adversely affect the present reaction.
  • the solvent used include chlorinated hydrocarbon solvents (eg, dichloromethane, chloroform, carbon tetrachloride), anhydrous ether solvents (anhydrous diethyl ether, anhydrous diisopropyl ether, anhydrous tetrahydrofuran (THF), anhydrous 1,4-dioxane, etc.
  • Aromatic hydrocarbon solvents eg, benzene, chlorobenzene, 1,4-chlorobenzene, 1,3-chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, t-butylbenzene, etc.
  • aliphatic hydrocarbons examples thereof include solvents (pentane, hexane, cyclohexane, petroleum ether, octane, decane, etc.).
  • a solvent can be used individually or in combination of 2 or more types.
  • chlorobenzene 1,2-dichlorobenzene, toluene, xylene, mesitylene, and tert-butylbenzene are preferable, and 1,2-dichlorobenzene is particularly preferable.
  • the amount of the solvent used may be appropriately adjusted. For example, it is generally 0.2 to 50 liters, preferably 1 to 1 mol of the compound represented by the general formula (2-A1) or (2-B1). ⁇ 10 liters.
  • the reaction temperature is usually ⁇ 78 ° C. to 200 ° C., preferably 0 ° C. to 200 ° C., more preferably 50 ° C. to 200 ° C.
  • the reaction time is usually 1 hour to 72 hours, preferably 1 hour to 48 hours, and more preferably 1 to 24 hours.
  • Step 1A may be performed in a sealed container.
  • a sealed container There is no restriction
  • Step 1A may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
  • reaction formula-2 Production method 2 (Production method 2) The production method of Reaction Formula-2 was obtained by reacting the compound represented by the general formula (2-A2) or (2-B2) or a salt thereof with a lithium compound (Step 2A), and Step 2A. A step of reacting the compound with a boron compound or a phosphorus compound (step 2B) is included.
  • R 4 represents a halogen atom.
  • Process 2A There is no restriction
  • a lithium compound can be used individually by 1 type, or can be used in combination of 2 or more type. Among these, it is preferable to use two or more lithium compounds, and it is more preferable to combine n-butyl lithium and phenyl lithium. When two or more kinds of lithium compounds are used, the order of addition may be set as appropriate.
  • phenyllithium can be added first and then n-butyllithium can be added.
  • n-butyllithium may be added first and then phenyllithium may be added, or two or more lithium compounds may be added together.
  • the amount of the lithium compound used may be appropriately adjusted. For example, it is generally 1 to 20 mol, preferably 1 to 1 mol per 1 mol of the compound represented by the general formula (2-A2) or (2-B2). The amount is 10 mol, more preferably 1 to 6 mol.
  • Step 2A can be performed in the presence of a solvent, and when a solvent is used, the solvent is not particularly limited as long as it does not adversely affect the present reaction.
  • the solvent to be used include anhydrous ether solvents (anhydrous diethyl ether, anhydrous diisopropyl ether, anhydrous tetrahydrofuran (THF), anhydrous 1,4-dioxane and the like), aromatic hydrocarbon solvents (for example, benzene, chlorobenzene, 1, 4 -Chlorobenzene, 1,3-chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, t-butylbenzene, etc.), aliphatic hydrocarbon solvents (pentane, hexane, cyclohexane, petroleum ether, octane, decane, etc.), etc.
  • anhydrous ether solvents anhydrous diethyl
  • a solvent can be used individually or in combination of 2 or more types.
  • THF, 1,4-dioxane, toluene, xylene, chlorobenzene and 1,2-dichlorobenzene are preferable, and THF and toluene are particularly preferable.
  • the amount of the solvent used may be appropriately adjusted. For example, it is generally 0.2 to 50 liters, preferably 1 to 1 mol of the compound represented by the general formula (2-A2) or (2-B2). ⁇ 10 liters.
  • the reaction temperature is usually -78 ° C to 200 ° C, preferably -78 ° C to 100 ° C, more preferably -78 ° C to 50 ° C.
  • the reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
  • boron compound used in Step 2B examples include boron halide compounds such as BI 3 , BBr 3 , BCl 3 , and BF 3 .
  • BBr 3 and BCl 3 are preferable, and BBr 3 is more preferable.
  • a boron compound can be used individually by 1 type, or can be used in combination of 2 or more type.
  • Examples of the phosphorus compound used in Step 2B include halides such as PF 3 , PCl 3 , PBr 3 , and PI 3 ; P (OMe) 3 , P (OEt) 3 , P (O—nPr) 3 , P (O— phosphorus alkoxy compounds such as iPr) 3 , P (O-nBu) 3 , P (O-iBu) 3 , P (O-sec-Bu) 3 , P (O-tert-Bu) 3 ; P (OPh) 3 , P (O-naphthyl) 3, etc .; P (OAc) 3 , P (O-trifluoroacetyl) 3 , P (O-propionyl) 3 , P (O-butyryl) 3 , P (O -Phosyloxy compounds such as 3 ; PCl (NMe 2 ) 2 , PCl (NEt 2 ) 2 , PCl (NPr 2 ) 2 , PCl
  • PCl 3 , PBr 3 , P (OEt) 3 , and P (OAc) 3 are preferable, and PCl 3 and PBr 3 are more preferable.
  • a phosphorus compound can be used individually by 1 type, or can be used in combination of 2 or more type.
  • the amount of the boron compound or phosphorus compound used may be appropriately adjusted. For example, it is generally 1 to 10 moles, preferably 1 mole relative to 1 mole of the compound represented by the general formula (2-A2) or (2-B2). Is 1 to 6 mol, more preferably 1 to 4 mol.
  • the solvent used in Step 2A can be used as the solvent in Step 2B, and the amount described in Step 2A can also be used.
  • the reaction temperature is usually -78 ° C to 200 ° C, preferably -78 ° C to 100 ° C, more preferably -78 ° C to 50 ° C.
  • the reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
  • Steps 2A and 2B may be performed in a sealed container.
  • a sealed container There is no restriction
  • Steps 2A and 2B may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
  • Production method of Reaction formula-3 (Production method 3)
  • the production method of Reaction Formula 3 includes a step (Step 3A) of reacting a compound represented by the general formula (2-A3) or (2-B3) or a salt thereof with a boron compound or a phosphorus compound. .
  • R 5 and R 6 each represents an alkyl group which may have a substituent.
  • R 5 and R 6 each represents an alkyl group which may have a substituent.
  • boron compound used in Step 3A examples include boron halide compounds such as BI 3 , BBr 3 , BCl 3 , and BF 3 .
  • BBr 3 and BCl 3 are preferable, and BBr 3 is more preferable.
  • a boron compound can be used individually by 1 type, or can be used in combination of 2 or more type.
  • Examples of the phosphorus compound used in Step 3A include halides such as PF 3 , PCl 3 , PBr 3 , and PI 3 ; P (OMe) 3 , P (OEt) 3 , P (O—nPr) 3 , P (O— phosphorus alkoxy compounds such as iPr) 3 , P (O-nBu) 3 , P (O-iBu) 3 , P (O-sec-Bu) 3 , P (O-tert-Bu) 3 ; P (OPh) 3 , P (O-naphthyl) 3, etc .; P (OAc) 3 , P (O-trifluoroacetyl) 3 , P (O-propionyl) 3 , P (O-butyryl) 3 , P (O -Phosyloxy compounds such as 3 ; PCl (NMe 2 ) 2 , PCl (NEt 2 ) 2 , PCl (NPr 2 ) 2 , PCl
  • PCl 3 , PBr 3 , P (OEt) 3 and P (OAc) 3 are preferable, and PCl 3 and PBr 3 are more preferable.
  • a phosphorus compound can be used individually by 1 type, or can be used in combination of 2 or more type.
  • the amount of the boron compound or phosphorus compound used may be appropriately adjusted. For example, it is generally 1 to 10 moles, preferably 1 mole relative to 1 mole of the compound represented by the general formula (2-A3) or (2-B3). Is 1 to 6 mol, more preferably 1 to 4 mol.
  • Bronsted base such as NEt 3 , i-Pr 2 NEt, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, etc .
  • Bronsted bases such as NaBPh 4 , KBPh 4 and BPh 3
  • Lewis acids such as AlBr 3 and AlCl 3 may be added.
  • Step 3A can be performed in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not adversely affect the present reaction.
  • the solvent used include chlorinated hydrocarbon solvents (eg, dichloromethane, chloroform, carbon tetrachloride), anhydrous ethers (anhydrous diethyl ether, anhydrous diisopropyl ether, anhydrous tetrahydrofuran (THF), anhydrous 1,4-dioxane, etc.)
  • Aromatic hydrocarbons eg, benzene, chlorobenzene, 1,4-chlorobenzene, 1,3-chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, t-butylbenzene, etc.
  • aliphatic hydrocarbons e
  • Hexane Hexane
  • cyclohexane petroleum ether
  • octane decan
  • a solvent can be used individually or in combination of 2 or more types.
  • chlorobenzene, 1,4-chlorobenzene, 1,3-chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, and t-butylbenzene are preferable, and chlorobenzene and 1,2-dichlorobenzene are particularly preferable.
  • the amount of the solvent used may be appropriately adjusted. For example, it is generally 0.2 to 50 liters, preferably 1 to 1 mol of the compound represented by the general formula (2-A3) or (2-B3). ⁇ 10 liters.
  • the reaction temperature is usually 0 ° C. to 250 ° C., preferably 100 ° C. to 250 ° C., more preferably 100 ° C. to 200 ° C.
  • the reaction time is usually 1 hour to 48 hours, preferably 1 hour to 24 hours, and more preferably 1 to 12 hours.
  • Step 3A may be performed in a sealed container.
  • a sealed container There is no restriction
  • Step 3A may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
  • Production method of Reaction formula 4 (Production method 4)
  • the production method of Reaction Formula-4 is obtained in the step of reacting the compound represented by the general formula (2-A4) or (2-B4) or a salt thereof with a lithium compound (Step 4A), and Step 4A.
  • R 4 represents a halogen atom.
  • R 5 and R 6 each represents an alkyl group which may have a substituent.
  • R 4 represents a halogen atom.
  • R 5 and R 6 each represents an alkyl group which may have a substituent.
  • Step 4A The lithium compound used in Step 4A is not particularly limited, and examples thereof include methyl lithium, n-butyl lithium, s-butyl lithium, t-butyl lithium, phenyl lithium, and metallic lithium. Preferred are n-butyllithium, s-butyllithium, t-butyllithium, and metallic lithium, and more preferred are n-butyllithium and t-butyllithium.
  • a lithium compound can be used individually by 1 type, or can be used in combination of 2 or more type.
  • the amount of the lithium compound used may be appropriately adjusted. For example, it is generally 1 to 10 mol, preferably 1 to 1 mol per 1 mol of the compound represented by the general formula (2-A4) or (2-B4). 6 mol, more preferably 1 to 4 mol.
  • Step 4A can be performed in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not adversely affect the present reaction.
  • the solvent used include anhydrous ether (anhydrous diethyl ether, anhydrous diisopropyl ether, anhydrous tetrahydrofuran (THF), anhydrous 1,4-dioxane, etc.), aromatic hydrocarbons (eg, benzene, chlorobenzene, 1,4-chlorobenzene).
  • a solvent can be used individually or in combination of 2 or more types.
  • benzene, chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, and t-butylbenzene are preferable, and chlorobenzene, 1,2-dichlorobenzene, toluene, and xylene are particularly preferable.
  • the amount of the solvent used may be appropriately adjusted. For example, it is generally 0.2 to 50 liters, preferably 1 to 1 mol of the compound represented by the general formula (2-A4) or (2-B4). ⁇ 10 liters.
  • the reaction temperature is usually -78 ° C to 150 ° C, preferably -78 ° C to 100 ° C, more preferably -78 ° C to 50 ° C.
  • the reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
  • boron compound used in Step 4B examples include boron halide compounds such as BI 3 , BBr 3 , BCl 3 , and BF 3 .
  • BBr 3 and BCl 3 are preferable, and BBr 3 is more preferable.
  • a boron compound can be used individually by 1 type, or can be used in combination of 2 or more type.
  • Examples of the phosphorus compound used in Step 4B include halides such as PF 3 , PCl 3 , PBr 3 , and PI 3 ; P (OMe) 3 , P (OEt) 3 , P (O—nPr) 3 , P (O— phosphorus alkoxy compounds such as iPr) 3 , P (O-nBu) 3 , P (O-iBu) 3 , P (O-sec-Bu) 3 , P (O-tert-Bu) 3 ; P (OPh) 3 , P (O-naphthyl) 3, etc .; P (OAc) 3 , P (O-trifluoroacetyl) 3 , P (O-propionyl) 3 , P (O-butyryl) 3 , P (O -Phosyloxy compounds such as 3 ; PCl (NMe 2 ) 2 , PCl (NEt 2 ) 2 , PCl (NPr 2 ) 2 , PCl
  • PCl 3 , PBr 3 , P (OEt) 3 and P (OAc) 3 are preferable, and PCl 3 and PBr 3 are more preferable.
  • a phosphorus compound can be used individually by 1 type, or can be used in combination of 2 or more type.
  • PCl 3 , PBr 3 , P (OEt)) 3 and P (OAc)) 3 are preferable, and PCl 3 and PBr 3 are more preferable.
  • the amount of the boron compound or phosphorus compound used may be appropriately adjusted. For example, it is generally 1 to 10 mol, preferably 1 mol relative to 1 mol of the compound represented by the general formula (2-A4) or (2-B4). Is 1 to 6 mol, more preferably 1 to 4 mol.
  • a Lewis acid such as AlBr 3 or AlCl 3 may be added.
  • the solvent used in Step 4A can be used as the solvent in Step 4B, and the amount described in Step 4A can also be used.
  • the reaction temperature is usually ⁇ 78 to 150 ° C., preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 40 ° C. to 100 ° C.
  • the reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
  • Steps 4A and 4B may be performed in a sealed container.
  • a sealed container There is no restriction
  • Steps 4A and 4B may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
  • heterocyclic compound represented by the general formula (1-AP) or (1-BP) in which X is P or a salt thereof is represented by the general formula (1-APO) or (1-BPO) in which X is P ⁇ O. (Conversion 2).
  • heterocyclic compound represented by the general formula (1-AP) or (1-BP) or a salt thereof in which X is P is represented by the general formula (1-APS) or (1- BPS) or a salt thereof (Conversion 3).
  • the compound represented by the general formula (1-AP) or (1-BP) is a compound represented by the general formula (1-APS) or (1-BPS) and known compounds such as triethylphosphine, arylsilane, and alkylsilane. It can be produced by reacting with a reducing agent.
  • oxidizing agent examples include metachloroperbenzoic acid (m-CPBA), hydrogen peroxide water, and the like. Of these, m-CPBA is preferable.
  • the amount of the oxidizing agent used may be appropriately adjusted. For example, it is generally 1 to 10 mol, preferably 1 to 6 mol, more preferably 1 to 4 mol, relative to 1 mol of the compound obtained in Step 2B. is there.
  • the solvent used in the step 2A can be used, and the amount used can be the amount described in the step 2A.
  • the reaction temperature is usually ⁇ 78 ° C. to 100 ° C., preferably ⁇ 40 ° C. to 100 ° C., more preferably 0 ° C. to 50 ° C.
  • the reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
  • sulfurizing agent examples include sulfur, Lawesson's reagent, and the like. Sulfur is preferable.
  • the amount of the sulfiding agent used may be appropriately adjusted. For example, it is generally 1 to 10 mol, preferably 1 to 6 mol, more preferably 1 to 4 mol, relative to 1 mol of the compound obtained in Step 2C. is there.
  • the solvent used in Step 2A can be used, and the amount used thereof can be the amount described in Step 2A.
  • the reaction temperature is usually ⁇ 78 ° C. to 100 ° C., preferably ⁇ 40 ° C. to 100 ° C., more preferably 0 ° C. to 50 ° C.
  • the reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
  • reaction 1, conversion 2, and conversion 3 may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
  • the target compound of the present invention can be taken out of the resulting reaction mixture using a conventional purification method such as distillation, filtration, and centrifugation.
  • a method for producing a compound having a substituent on the aromatic ring or heterocyclic ring may be a raw material compound having a substituent (general formula (2-A1), (2- A2), (2-A3), (2-A4), (2-B1), (2-B2), (2-B3) and (2-B4)))
  • the compounds represented by the general formulas (1-A1), (1-A2), (1- A3), (1-A4), (1-B1), (1-B2), (1-B3) and a compound represented by (1-B4) are substituted with a general synthetic method. It can also be introduced later.
  • a compound having a halogen group on an aromatic ring or a heterocycle can be produced by reacting a raw material compound and a halogenating agent.
  • halogenating agent examples include iodine, iodine monochloride, N-iodosuccinimide, 1,3-diiodo-5,5-dimethylhydantoin, bromine, N-bromosuccinimide, dibromoisocyanuric acid, 1,3-dibromo-5, 5-dimethylhydantoin, chlorine, N-chlorosuccinimide, fluorine, 1-fluoro-2,6-dichloropyridinium tetrafluoroborate, 2,6-dichloro-1-fluoropyridinium trifluoromethanesulfonate, 1-fluoropyridinium tetra Examples thereof include fluoroborate.
  • the amount of the halogen agent to be used may be appropriately adjusted. For example, it is generally 1 to 20 mol, preferably 1 to 10 mol, more preferably 1 to 6 mol, relative to 1 mol of the compound.
  • the solvent used in Step 2A can be used, and the amount used thereof can be the amount described in Step 2A.
  • the reaction temperature is usually ⁇ 78 ° C. to 100 ° C., preferably ⁇ 40 ° C. to 100 ° C., more preferably 0 ° C. to 50 ° C.
  • the reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
  • the reaction may be performed in a sealed container.
  • a sealed container There is no restriction
  • the reaction may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
  • the heterocyclic compound of the present invention can be taken out of the resulting reaction mixture using a conventional purification method such as distillation, filtration, and centrifugation.
  • heterocyclic compound of the present invention having a halogen group on the aromatic ring or heterocyclic ring obtained here is prepared by known production methods (for example, A. V. Ushkov, V. V. Grushin, J. Am. Chem . Soc. 2011, 133, 10999.; A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020 .; J.Huang, S. P. Nolan , J. Am. Chem. Soc. 1999, 121, 9889 .; R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461 .; D. S. Surry, S. L.
  • the halogen group has a cyano group, an alkyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. May be converted to a heteroaryl group which may be substituted or an amino group which may have a substituent.
  • the heterocyclic compound of the present invention or a salt thereof includes a compound in which at least one hydrogen atom may be replaced by a deuterium atom.
  • a compound is a raw material in which a desired position is deuterated. Can be synthesized in the same manner as described above.
  • a compound in which at least one hydrogen atom in the heterocyclic compound of the present invention or a salt thereof is deuterated can be produced according to a known deuteration reaction (for example, JP-A-6-312949).
  • organometallic reagent such as a Grignard reagent
  • the electronic device of the present invention contains at least one compound among the compounds of the present invention.
  • Examples of the electronic device of the present invention include an organic light emitting element, an organic thin film transistor, an organic thin film solar cell, a polymer memory, and a capacitor. Among these, it is preferable to use them for organic light emitting devices, organic thin film transistors, and organic thin film solar cells.
  • the electronic device of the present invention may be an electronic device including an anode, a cathode, and a layer (organic compound layer) containing an organic compound, and the organic compound layer is a layer containing the compound of the present invention.
  • Organic Light Emitting Element examples include organic electroluminescence (organic EL) and organic light emitting diode (organic LED).
  • the organic light-emitting device of the present invention comprises at least a pair of electrodes composed of an anode (anode) and a cathode (cathode), and a layer (organic compound layer) containing at least one organic compound sandwiched between the pair of electrodes.
  • at least one layer containing the organic compound contains at least one compound of the compound of the present invention or a salt thereof.
  • the organic light emitting device of the present invention may contain at least one compound of the present invention in the light emitting layer among the layers containing the organic compound.
  • the host or guest is preferably the compound of the present invention.
  • the guest in the present invention is a compound that emits light in response to recombination of holes and electrons in the light emitting region of the organic EL element, and is included in the substance (host) that forms the light emitting region. It is.
  • the compound of the present invention has high charge mobility, can be blended in the hole transport layer as a hole transport material, and is also effective for use in the electron transport layer as an electron transport material.
  • the content is preferably 50% by weight or less, more preferably 0.1% by weight or more and 30% by weight or less based on the total amount of the light emitting layer. Yes, and particularly preferably 0.1 wt% or more and 15 wt% or less.
  • the guest when the compound of the present invention is used as a host compound, the guest is not particularly limited, and the compounds described below can be appropriately used depending on the desired emission color.
  • a hole transporting compound, an electron transporting compound and the like can be doped together and used.
  • the compound of the present invention may be used only in the light emitting layer, but if necessary, other than the light emitting layer, for example, a hole injection layer, a hole transport layer, a hole barrier layer, an electron injection layer
  • a hole injection layer for example, a hole injection layer, a hole transport layer, a hole barrier layer, an electron injection layer
  • the compound of the present invention can also be used for an electron transport layer, an electron barrier layer, and the like.
  • the compound of the present invention can be formed between the anode and the cathode by a vacuum deposition method or a solution coating method.
  • the thickness of the organic layer is thinner than 10 ⁇ m, preferably 0.5 ⁇ m or less, more preferably 0.01 to 0.5 ⁇ m.
  • the layer containing the compound of the present invention and the layer containing another organic compound can generally be formed into a thin film by a vacuum deposition method or a coating method by dissolving in a suitable solvent. it can.
  • the film when a film is formed by a coating method, the film can be formed in combination with an appropriate binder resin.
  • the binder resin is not particularly limited and can be selected from a wide range of binder resins.
  • binder resins polyvinyl carbazole resin, polycarbonate resin, polyester resin, polyarylate resin, polystyrene resin, acrylic resin, methacrylic resin, butyral resin.
  • examples thereof include polyvinyl acetal resin, diallyl phthalate resin, phenol resin, epoxy resin, silicone resin, polysulfone resin, urea resin and the like. These may be used alone or in combination as a copolymer polymer.
  • the anode material is not particularly limited.
  • simple metals such as gold, platinum, nickel, palladium, cobalt, selenium, vanadium or alloys thereof, tin oxide, zinc oxide, indium tin oxide (ITO), indium zinc oxide
  • ITO indium tin oxide
  • a metal oxide such as can be used.
  • conductive polymers such as polyaniline, polypyrrole, polythiophene, and polyphenylene sulfide can also be used. These electrode materials may be used alone or in combination.
  • the cathode material is not particularly limited, and can be used as a single metal or a plurality of alloys such as lithium, sodium, potassium, cesium, calcium, magnesium, aluminum, indium, silver, lead, tin, and chromium.
  • a metal oxide such as indium tin oxide (ITO) can also be used.
  • the cathode may have a single layer structure or a multilayer structure.
  • the substrate used in the present invention is not particularly limited, and for example, an opaque substrate such as a metal substrate or a ceramic substrate, or a transparent substrate such as glass, quartz, or a plastic sheet is used. It is also possible to control the color light by using a color filter film, a fluorescent color conversion filter film, a dielectric reflection film or the like on the substrate.
  • a protective layer or a sealing layer can be provided for the purpose of preventing contact with oxygen, moisture and the like on the prepared element.
  • protective layers include diamond thin films, inorganic material films such as metal oxides and metal nitrides, polymer films such as fluororesins, polyparaxylene, polyethylene, silicone resins, and polystyrene resins; and photocurable resins and the like. Can be mentioned. Further, it is possible to cover glass, a gas-impermeable film, a metal, etc., and to package the element itself with an appropriate sealing resin.
  • the compound of the present invention can be used as the organic semiconductor material, and can be used as a composition for forming an organic semiconductor layer containing the compound of the present invention and an organic solvent.
  • the organic solvent is not particularly limited, and organic solvents that are usually used in the art can be used.
  • the composition preferably includes about 0.1 to 10% by weight of an organic semiconductor material and about 90 to 99.9% by weight of an organic solvent.
  • the present invention further provides an organic semiconductor thin film that can be formed using the semiconductor layer forming composition.
  • the thin film can be formed by coating the substrate forming composition of the present invention on the substrate.
  • the substrate is not particularly limited as long as the purpose is not impaired.
  • glass substrate silicon wafer; ITO glass; quartz; silica-coated substrate; alumina-coated substrate; polyethylene naphthalate, polyethylene terephthalate, polycarbonate
  • a plastic substrate such as polyvinyl alcohol, polyacrylate, polyimide, polynorbornene, or polyethersulfone can be appropriately selected and used by those skilled in the art depending on the application.
  • a normal room temperature wet process can be used without limitation, but preferably spin coating, dip coating, dip coating, roll coating, screen coating (screen coating).
  • the organic semiconductor thin film of the present invention can have a thickness of about 300 to 2,000 mm, but is not limited thereto.
  • the organic semiconductor thin film according to the present invention can be manufactured by a simple room temperature wet process, and exhibits excellent electrical characteristics that simultaneously improve the charge density between molecules and satisfy high charge mobility and low cutoff leakage current. Therefore, the organic semiconductor thin film of the present invention can be effectively applied to various organic electronic devices.
  • the present invention further provides an electronic device including an organic semiconductor thin film as a semiconductor layer.
  • the present invention is particularly suitable for use in organic thin film transistors (organic TFTs).
  • the organic TFT includes a substrate, a gate electrode, an organic insulating layer, a semiconductor layer, and a source / drain electrode, and the semiconductor layer can include an organic semiconductor thin film formed from the organic semiconductor material according to the present invention.
  • the organic thin film transistor of the present invention may have a generally known bottom contact type, top contact type, or top gate type structure, and may have a modified structure within a range that does not impair the object of the present invention. it can.
  • the substrate of the organic thin film transistor of the present invention is not particularly limited as long as it is a commonly used substrate, specifically, a glass substrate, a silica substrate, and for example, polyethylene naphthalate, polyethylene terephthalate, polycarbonate, polyvinyl alcohol, polyacrylate, Plastic substrates such as polyimide, polynorbornene, and polyethersulfone can be used.
  • gate electrode As the gate electrode, source and drain electrodes, commonly used metals can be used. Specifically, gold (Au), silver (Ag), aluminum (Al), nickel (Ni), indium tin oxide (ITO) Molybdenum / tungsten (Mo / W) or the like can be used, but is not limited thereto.
  • the thicknesses of the gate electrode, source and drain electrodes are preferably in the range of about 500 to 2,000 mm, but are not necessarily limited thereto.
  • a generally used insulator having a large dielectric constant can be used.
  • organic insulators such as polyimide, benzenecyclobutene (BCB), parylene, polyacrylate, polyvinyl alcohol and polyvinylphenol are used.
  • the present invention is not limited to these.
  • the thickness such as polyimi
  • Organic thin-film solar cell is not particularly limited as long as a portion containing the above compound exists between a pair of electrodes. Specifically, a structure having the following configuration on a stable insulating substrate can be given. (1) Lower electrode / p layer / n layer / upper electrode (2) Lower electrode / buffer layer / p layer / n layer / upper electrode (3) Lower electrode / p layer / n layer / buffer layer / upper electrode (4 ) Lower electrode / buffer layer / p layer / n layer / buffer layer / upper electrode (5) Lower electrode / buffer layer / p layer / i layer (or mixed layer of p and n materials) / n layer / buffer layer / Upper electrode (6) Lower electrode / buffer layer / p layer / n layer / buffer layer / intermediate electrode / buffer layer / p layer / n layer / buffer layer / upper electrode (7) lower electrode / buffer layer / p layer /
  • the member containing the material of this invention may contain the other component collectively.
  • the well-known member or material used with an organic thin film solar cell can be used.
  • the material of the present invention has high mobility, it is suitable as a material used for the p layer / i layer / n layer.
  • the material of the present invention is used for the p layer / i layer / n layer of the device structures (2) to (7).
  • Lower electrode, upper electrode The material of the lower electrode and the upper electrode is not particularly limited, and a known conductive material can be used.
  • a metal such as tin-doped indium oxide (ITO), gold (Au), osmium (Os), palladium (Pd) can be used as the electrode connected to the p layer, and silver as the electrode connected to the n layer.
  • ITO tin-doped indium oxide
  • Au gold
  • Os osmium
  • Pd palladium
  • silver silver
  • Al aluminum
  • Al indium
  • In calcium
  • Pt platinum
  • metals such as lithium (Li), etc .
  • binary metal systems such as Mg: Ag, Mg: In and Al: Li
  • the electrode example material connected with the said p layer can be used.
  • the solar cell In order to obtain highly efficient photoelectric conversion characteristics, it is desirable that at least one surface of the solar cell be sufficiently transparent to the sunlight spectrum.
  • the transparent electrode is formed using a known conductive material so as to ensure predetermined translucency by a method such as vapor deposition or sputtering.
  • the light transmittance of the electrode on the light receiving surface is preferably 10% or more.
  • one of the electrode portions includes a metal having a high work function, and the other includes a metal having a low work function.
  • a compound having a function as an electron acceptor is preferable.
  • fullerene derivatives such as C60 and C70, carbon nanotubes, perylene derivatives, polycyclic quinones, quinacridones, etc., such as CN-poly (phenylene-vinylene), MEH-CN-PPV, and -CN groups in polymer systems or CF 3 group-containing polymers, poly (fluorene) derivatives and the like.
  • a material having high electron mobility is preferred.
  • a material having a small electron affinity is preferable. Thus, a sufficient open-circuit voltage can be realized by combining materials having a small electron affinity as the n layer.
  • the inorganic semiconductor compound of an n-type characteristic can be mentioned.
  • doping semiconductors and compound semiconductors such as n-Si, GaAs, CdS, PbS, CdSe, InP, Nb 2 O 5 , WO 3 , Fe 2 O 3 ; titanium dioxide (TiO 2 ), titanium monoxide ( TiO), titanium oxide such as dititanium trioxide (Ti 2 O 3 ); and conductive oxides such as zinc oxide (ZnO) and tin oxide (SnO 2 ), and one or more of these May be used in combination.
  • titanium oxide particularly preferably titanium dioxide.
  • a compound having a function as a hole acceptor is preferable.
  • organic compounds N, N′-bis (3-tolyl) -N, N′-diphenylbenzidine (mTPD), N, N′-dinaphthyl-N, N′-diphenylbenzidine (NPD), 4, Amine compounds represented by 4 ′, 4 ′′ -tris (phenyl-3-tolylamino) triphenylamine (MTDATA), phthalocyanine (Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), titanyl phthalocyanine (TiOPc) ), Phthalocyanines such as octaethylporphyrin (OEP), platinum octaethylporphyrin (PtOEP), zinc tetraphenylporphyrin (ZnTPP), and the like, and polyhexylthiophene (P
  • the i layer may be formed by mixing with the p layer compound or the n layer compound, but the material of the present invention may be used alone as the i layer.
  • any of the above exemplary compounds can be used for the p layer or the n layer.
  • Buffer layer In general, organic thin film solar cells often have a thin total film thickness, so the upper electrode and the lower electrode are short-circuited, and the yield of cell fabrication is often reduced. In such a case, it is preferable to prevent this by laminating a buffer layer.
  • a compound having sufficiently high carrier mobility is preferable so that the short-circuit current does not decrease even when the film thickness is increased.
  • examples include bathocuproin (BCP) and aromatic cyclic acid anhydrides represented by NTCDA shown below for low molecular weight compounds, and poly (3,4-ethylenedioxy) thiophene for high molecular weight compounds.
  • BCP bathocuproin
  • NTCDA aromatic cyclic acid anhydrides
  • poly (3,4-ethylenedioxy) thiophene for high molecular weight compounds.
  • Known conductive polymers such as polystyrene sulfonate (PEDOT: PSS), polyaniline: camphorsulfonic acid (PANI: CSA), and the like.
  • the buffer layer may also be a layer having a role of preventing the excitons from diffusing to the electrode and being deactivated. Using the buffer layer as the exciton blocking layer in this way is effective for increasing the efficiency.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side. It can also be provided adjacent to the intermediate layer. Examples of the material having such a role include materials having a large energy gap. An example is BCP.
  • the inorganic semiconductor compounds exemplified as the material for the n layer may be used.
  • the inorganic semiconductor compound CdTe, p-Si, SiC, GaAs, NiO, WO 3 , MoO 3 , V 2 O 5 or the like can be used.
  • the substrate substrate preferably has mechanical and thermal strength and is transparent.
  • a glass substrate and a transparent resin film.
  • Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone.
  • the individual photoelectric conversion units of the laminated element can be separated by forming an electron-hole recombination zone by installing the intermediate electrode.
  • This layer serves to prevent the formation of a reverse heterojunction between the n layer of the front photoelectric conversion unit and the p layer of the rear photoelectric conversion unit.
  • the layer between the individual photoelectric conversion units provides a zone where electrons entering from the front photoelectric conversion unit and holes from the rear photoelectric conversion unit are recombined. Efficient recombination of electrons entering from the front photoelectric conversion unit and holes from the rear photoelectric conversion unit is necessary when a photo-induced current is to occur in the stacked device.
  • the material for forming the electron-hole recombination zone by the intermediate electrode is not particularly limited, and the material for forming the upper electrode and the lower electrode can be used.
  • the electron-hole recombination zone with the intermediate electrode comprises a thin metal layer.
  • the metal layer should be sufficiently thin and translucent so that light can reach the back photoelectric conversion unit (s).
  • the thickness of the metal layer is preferably thinner than about 20 mm. It is particularly preferable that the metal film has a thickness of about 5 mm.
  • These very thin metal films are not continuous films but rather are composed of isolated metal nanoparticles. Surprisingly, this very thin metal layer is not continuous, but it is still effective as an electron-hole recombination layer.
  • Preferred metals used for this layer include Ag, Li, LiF, Al, Ti, and Sn. Silver is a particularly preferred metal for this layer.
  • each layer of the organic thin film solar cell or the stacked organic thin film solar cell of the present invention is performed by a dry film forming method such as vacuum deposition, sputtering, plasma, ion plating, spin coating, dip coating, casting, roll coating, flow coating.
  • a wet film forming method such as an ink jet method can be applied.
  • the film thickness of each layer is not particularly limited, but is set to an appropriate film thickness. In general, it is known that the exciton diffusion length of an organic thin film is short. Therefore, if the film thickness is too thick, the exciton is deactivated before reaching the hetero interface between the p material and the n material. Lower. If the film thickness is too thin, pinholes and the like are generated, so that sufficient diode characteristics cannot be obtained, resulting in a decrease in conversion efficiency.
  • the normal film thickness is suitably in the range of 1 nm to 10 ⁇ m, but more preferably in the range of 5 nm to 0.2 ⁇ m.
  • a known resistance heating method is preferable, and for forming a mixed layer, for example, a film forming method by simultaneous vapor deposition from a plurality of evaporation sources is preferable. More preferably, the substrate temperature is controlled during film formation.
  • a material for forming each layer is dissolved or dispersed in an appropriate solvent to prepare a luminescent organic solution, and a thin film is formed.
  • Any solvent can be used as the solvent.
  • halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrachloroethane, trichloroethane, chlorobenzene, dichlorobenzene, chlorotoluene; ether solvents such as dibutyl ether, tetrahydrofuran, dioxane, anisole; methanol, ethanol Alcohol solvents such as propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol; hydrocarbon solvents such as benzene, toluene, xy
  • an appropriate resin or additive may be used for improving film formability and preventing pinholes in the film.
  • Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
  • examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • Second step Production of 9a, 19a-dibora-9,10,19,20-tetraoxotetrabenzo [a, f, j, o] perylene (compound 1-3)
  • the compound (2-4) contains 4 or 5 diastereomers.
  • Second step 9a, 19a-Dibora-9,10,19,20-tetraoxo-3,6,13,16-tetratertiarybutylbenzo [a, f, j, o] perylene (compound 1-4) Manufacturing
  • 1,3-dibromobenzene (3-5) (2.48 mL, 20.0 mmol), tris (dibenzylideneacetone) dipalladium (0) (0.378 g, 0.40 mmol), 1,3-bis ( Tetrahydrofuran solution of 2- (methylthiophenyl) magnesium bromide (4-5) in 2,6-diisopropylphenyl) imidazolium chloride (0.680 g, 1.60 mmol) and 1,4-dioxane (80 mL) under nitrogen atmosphere (51.2 mL, 0.863 M, 44.0 mmol) was added and stirred at room temperature for 50 hours.
  • 2,2 ′′ -dimethylthia-1,1 ′: 3 ′, 1 ′′ -terphenyl (2-5) (0.323 g, 1.00 mmol) and o-dichlorobenzene (4.0 mL) obtained in the first step ) was added boron tribromide (94.5 ⁇ L, 1.00 mmol) in a nitrogen atmosphere and heated in a stainless steel autoclave at 200 ° C. for 18 hours. Subsequently, triethylamine (0.418 mL, 3.00 mmol) was added thereto at room temperature, and then the solvent was distilled off under reduced pressure, followed by sublimation purification to obtain a crude product. The crude product was washed with hexane to obtain compound (1-5) as a white solid (0.632 g, yield 21%).
  • Second step Preparation of 8,9-dimethyl-8H, 9H-8,9-diaza-8a-borabenzo [fg] tetracene (compound 1-6)
  • phosphorus trichloride (1.83 mL, 20.9 mmol) was added at ⁇ 88 ° C., and the temperature was returned to room temperature over 1 hour.
  • metachloroperbenzoic acid m-CPBA
  • m-CPBA metachloroperbenzoic acid
  • Filtration through silica gel using ethyl acetate was performed, and the solvent was distilled off under reduced pressure to obtain a crude product.
  • the crude product was purified by sublimation to obtain 8a-oxophospha-8,9-dioxabenzo [fg] tetracene (compound 1-7) as a white powder (0.347 g, 38% yield).
  • Step 1 Preparation of 2,2 "-dimethoxy-5,5" -dioctyl-1,1 ': 3', 1 "-terphenyl (compound 2-8)
  • 1,3-dibromobenzene (3-5) (1.55 mL, 12.5 mmol), tris (dibenzylideneacetone) dipalladium (0) (0.284 g, 0.31 mmol), 1,3-bis (2, 6-Diisopropylphenyl) imidazolium chloride (0.531 g, 1.25 mmol) and 1,4-dioxane (65 mL) were added to a tetrahydrofuran solution of 2-methoxy-5-octylmagnesium bromide (3-8) under a nitrogen atmosphere ( 65 mL, 0.50 M) was added, and the mixture was heated and stirred with reflux for 14 hours.
  • 1,3-dibromobenzene 48.2 mL, 4.0 mmol
  • tris (dibenzylideneacetone) dipalladium (0) 55.0 mg, 0.060 mmol
  • 2-dicyclohexylphosphino-2 ′, 6′-dimethoxy Biphenyl 49.5 mg, 0.12 mmol
  • 3-methoxy-2-naphthalenylboronic acid (1.78 g, 8.8 mmol)
  • cesium carbonate (3.26 g, 10 mmol) at ⁇ 45 ° C. under a nitrogen atmosphere.
  • Toluene 40 mL was added, and the mixture was heated and stirred at 80 ° C. for 18 hours.
  • reaction solution was cooled to room temperature and passed through a silica gel short pass column (developing solution: toluene). After the solvent was distilled off under reduced pressure, the residue was further washed with hexane to obtain 1,3-bis (3-methoxynaphthalenyl) benzene (2-10) (1.24 g, yield 80%).
  • 1,3-dibromobenzene (1.81 mL, 0.015 mol), 3-methoxy-7-octyl-2-naphthalenylboronic acid (10.4 g, 0.033 mol), tris (dibenzylideneacetone) dipalladium ( 0) (0.206 g, 0.23 mmol), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl (0.186 g, 0.45 mmol), cesium carbonate (12.2 g, 0.037 mol) in nitrogen atmosphere Then, toluene (150 mL) was added at ⁇ 55 ° C., and the mixture was heated and stirred at 80 ° C. for 18 hours.
  • reaction solution was cooled to room temperature and passed through a silica gel short pass column (developing solution: toluene). After the solvent was distilled off under reduced pressure, purification was performed using gel permeation chromatography (developing solvent: toluene), and the solvent was distilled off under reduced pressure to obtain 1,3-bis (3-methoxy-7-octylnaphthalenyl). Benzene (2-12) (5.10 g, yield 55%) was obtained.
  • Second step Production of 6,15-dioctyl-10,11-dioxa-10a-borabenzo [hi] hexacene (compound 1-12)
  • the reaction solution was cooled to room temperature, and the solvent was distilled off under reduced pressure, followed by filtration using Florisil with toluene as a developing solvent.
  • the crude product obtained by distilling off the solvent under reduced pressure was washed with acetonitrile to obtain a compound represented by the formula (1-12) (53.0 mg, yield 22%) as a white solid.
  • Test Example 1 Measurement of carrier mobility of 9a, 19a-dibora-9,10,19,20-tetraoxotetrabenzo [a, f, j, o] perylene (compound 1-3)
  • a glass substrate (manufactured by Nippon Sheet Glass Co., Ltd.) of 26 mm ⁇ 28 mm ⁇ 0.5 mm was used as a transparent support substrate.
  • This transparent support substrate was mounted on a substrate holder of a commercially available vapor deposition apparatus at the same time as a metal mask for obtaining a lower aluminum electrode having a width of 2 mm.
  • a tungsten vapor deposition boat on which aluminum was placed was set in a vapor deposition apparatus.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 3 Pa or less, and the evaporation boat was heated to form a translucent lower aluminum electrode so as to have a film thickness of 10 nm.
  • the deposition rate was 0.5 to 1 nm / second.
  • a metal mask for forming an organic layer designed to cover the lower aluminum electrode is attached to the substrate holder, and the vapor deposition apparatus is mounted together with the molybdenum vapor deposition boat containing the compound 1-3 obtained in Example 2 Set.
  • the vacuum vessel was depressurized to 5 ⁇ 10 ⁇ 3 Pa or less, and the evaporation boat was heated to deposit compound 1-3.
  • the film thickness was 6 ⁇ m and the deposition rate was 1.5-2 nm / sec.
  • a metal mask for forming the upper aluminum electrode was mounted on the substrate holder, and set in a vapor deposition apparatus together with a tungsten vapor deposition boat on which aluminum was placed.
  • This metal mask is designed so that the overlapping area between the organic layers of the upper and lower aluminum electrodes is 4 mm 2 .
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 3 Pa or less, and the deposition boat was heated to form an upper aluminum electrode so as to have a film thickness of 50 nm.
  • the deposition rate was 0.5 to 1 nm / second.
  • the measurement of mobility was carried out using the Time-Of-Flight method.
  • the measurement was performed using a commercially available measuring device TOF-401 (manufactured by Sumitomo Heavy Industries Advanced Machinery Co., Ltd.).
  • a nitrogen gas laser was used as the excitation light source.
  • With a moderate voltage applied between the upper aluminum electrode and lower aluminum electrode light was irradiated from the translucent lower aluminum electrode side, and the transient photocurrent was observed to determine the mobility.
  • Test Example 2 Measurement of fluorescence spectrum, phosphorescence spectrum, and absolute PL quantum yield A dichloromethane solution (2 ⁇ 10 ⁇ 5 M) of the compound described in Table 1 below was obtained by using FluoroMax-4P ( Fluorescence spectrum was measured at room temperature using HORIBA. The results are shown in Table 1.
  • excitation singlet energy ( ⁇ E (S 1 -S 0 )) and excitation triplet energy ( ⁇ E (T 1 -S 0 )) are calculated from the maximum wavelengths of the fluorescence spectrum and the phosphorescence spectrum, respectively. Indicated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to provide a novel heterocyclic compound or a salt thereof, and an electronic device which includes the same. The present invention relates to a heterocyclic compound represented by general formula (1) or a salt thereof. (In general formula (1), X is a boron atom, Y and Z are the same and are oxygen atoms, Ra, Rb, and Rc are the same and are hydrogen atoms, and 8a-bora-8,9-dioxabenzo[fg]tetracene is excluded). (In general formula (1), X, Y, Z, Ra, Rb, Rc, m, n, and o are as defined in the specification.)

Description

ヘテロ環化合物又はその塩、及びこれらを含む電子デバイスHeterocyclic compounds or salts thereof, and electronic devices containing them
 本発明は、ヘテロ環化合物又はその塩、及びこれらを含む電子デバイスに関する。 The present invention relates to a heterocyclic compound or a salt thereof, and an electronic device including these.
 有機エレクトロルミネッセンス(有機EL)、有機発光ダイオード(有機LED)等の有機発光素子、有機薄膜太陽電池、有機薄膜トランジスタ(有機TFT)などの電子デバイスとして、これまでに下記のようなα-NPD、ルブレン、Alq3等のπ共役系化合物が用いられている。 As electronic devices such as organic electroluminescence (organic EL), organic light emitting diodes (organic LEDs), organic thin film solar cells, organic thin film transistors (organic TFT), α-NPD and rubrene as below Π-conjugated compounds such as Alq3 are used.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 しかしながら、今までに開発されてきた電子デバイスは、長時間の使用による経時変化、酸素を含む雰囲気気体による劣化等の耐久性の面で多くの問題があった。 However, the electronic devices that have been developed so far have many problems in terms of durability, such as changes over time due to long-term use and deterioration due to atmospheric gases containing oxygen.
 また、従来より更に高輝度の光出力又は高変換効率の電子デバイスが望まれている。 In addition, there is a demand for an electronic device with higher light output or higher conversion efficiency than ever before.
 そこで、本発明者らは、新規なπ共役系の化合物を創製することで、上記の問題点を解決することを試み、これまでに窒素原子と他のヘテロ原子又は金属原子を含む多環芳香族化合物を報告した(特許文献1)。さらに、新規な化学構造を有するπ共役系の化合物が切望されている。 Therefore, the present inventors tried to solve the above problems by creating a novel π-conjugated compound, and so far, a polycyclic aromatic compound containing a nitrogen atom and another heteroatom or metal atom. Group compounds have been reported (Patent Document 1). Furthermore, a π-conjugated compound having a novel chemical structure is highly desired.
 その中でも、ホウ素原子又はリン原子を有する複素環化合物は、ヘテロ元素化学の領域で多くの報告例が見られるが、多環芳香族化合物中にホウ素原子又はリン原子を導入された例は必ずしも多くはない。例えば、非特許文献1には、ホウ酸エステル構造を環内に有するテトラセン誘導体(8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセン)が開示されている。しかしながら、非特許文献1には置換基を導入した誘導体は開示されておらず、また電子デバイス用材料としての有用性に関しても全く記載されていない。 Among them, there are many reported examples of heterocyclic compounds having boron atoms or phosphorus atoms in the field of heteroelement chemistry, but there are always many examples in which boron atoms or phosphorus atoms are introduced into polycyclic aromatic compounds. There is no. For example, Non-Patent Document 1 discloses a tetracene derivative (8a-bora-8,9-dioxabenzo [fg] tetracene) having a borate ester structure in the ring. However, Non-Patent Document 1 does not disclose a derivative having a substituent introduced therein, nor does it describe any usefulness as a material for an electronic device.
国際公開第2012/121398号International Publication No. 2012/121398
 本発明は、ホウ素原子又はリン原子を含む新規なヘテロ環化合物又はその塩、及びこれらを含む電子デバイスを提供することを課題とする。 An object of the present invention is to provide a novel heterocyclic compound containing a boron atom or a phosphorus atom or a salt thereof, and an electronic device containing them.
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の一般式で表される構造を有するヘテロ環化合物又はその塩が、優れた正孔移動度及び電子移動度を有し、例えば、有機発光素子、有機TFT等の電子デバイスとして有用であるという知見を得た。本発明は、かかる知見に基づき完成されたものである。
項1.
下記一般式(1A’)で表される構造を有するヘテロ環化合物又はその塩(ただし、8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセンを除く)。
As a result of intensive studies to solve the above problems, the present inventors have found that a heterocyclic compound having a structure represented by the following general formula or a salt thereof has excellent hole mobility and electron mobility. For example, the inventors have found that it is useful as an electronic device such as an organic light emitting element or an organic TFT. The present invention has been completed based on such findings.
Item 1.
A heterocyclic compound having a structure represented by the following general formula (1A ′) or a salt thereof (excluding 8a-bora-8,9-dioxabenzo [fg] tetracene).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Xは、B、P、P=O、P=S、又はP=Seを示す。
Y及びZは、同一又は異なって、O、S、又はN-Rを示す。ここで、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示す。
環A、環B及び環Cは、同一又は異なって、置換基を有していてもよいアリール環、又は置換基を有していてもよいヘテロアリール環を示す。
ここで、上記一般式(1A’)で表されるヘテロ環化合物又はその塩は、少なくとも1つの水素原子を有している。
上記一般式(1A’)で表されるヘテロ環化合物又はその塩における少なくとも1つの水素原子は、重水素原子に置き換わっていてもよい。)
項2.
下記一般式(1B’)で表される構造を有するヘテロ環化合物又はその塩。
(In the formula, X represents B, P, P = O, P = S, or P = Se.
Y and Z are the same or different and represent O, S, or N—R 1 . Here, R 1 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. The heteroaryl group which may have is shown.
Ring A, ring B and ring C are the same or different and each represents an aryl ring which may have a substituent or a heteroaryl ring which may have a substituent.
Here, the heterocyclic compound represented by the general formula (1A ′) or a salt thereof has at least one hydrogen atom.
At least one hydrogen atom in the heterocyclic compound represented by the general formula (1A ′) or a salt thereof may be replaced with a deuterium atom. )
Item 2.
A heterocyclic compound having a structure represented by the following general formula (1B ′) or a salt thereof.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、Xは、B、P、P=O、P=S、又はP=Seを示す。
Y及びZは、同一又は異なって、O、S、又はN-Rを示す。ここで、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示す。
環Aは、ベンゼン環を示す。
2つの環B、及び2つの環Cは、同一又は異なって、置換基を有していてもよいアリール環、又は置換基を有していてもよいヘテロアリール環を示す。
ここで、上記一般式(1B’)で表されるヘテロ環化合物又はその塩は、少なくとも1つの水素原子を有している。
上記一般式(1B’)で表されるヘテロ環化合物又はその塩における少なくとも1つの水素原子は、重水素原子に置き換わっていてもよい。)
項3.
下記一般式(1A”)で表される構造を有する、項1に記載のヘテロ環化合物又はその塩(ただし、8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセンを除く)。
(In the formula, X represents B, P, P = O, P = S, or P = Se.
Y and Z are the same or different and represent O, S, or N—R 1 . Here, R 1 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. The heteroaryl group which may have is shown.
Ring A represents a benzene ring.
Two rings B and two rings C are the same or different and each represents an aryl ring which may have a substituent or a heteroaryl ring which may have a substituent.
Here, the heterocyclic compound represented by the general formula (1B ′) or a salt thereof has at least one hydrogen atom.
At least one hydrogen atom in the heterocyclic compound represented by the general formula (1B ′) or a salt thereof may be replaced with a deuterium atom. )
Item 3.
Item 11. The heterocyclic compound or the salt thereof according to Item 1, having the structure represented by the following general formula (1A ″) (except 8a-bora-8,9-dioxabenzo [fg] tetracene).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、X、Y、及びZは、前記と同じ。
ここで、上記一般式(1A”)で表されるヘテロ環化合物又はその塩は、少なくとも1つの水素原子を有している。
上記一般式(1A”)で表されるヘテロ環化合物又はその塩における少なくとも1つの水素原子は、重水素原子に置き換わっていてもよい。)
項4.
下記一般式(1B”)で表される構造を有する、項2に記載のヘテロ環化合物又はその塩。
(In the formula, X, Y, and Z are the same as described above.
Here, the heterocyclic compound represented by the general formula (1A ″) or a salt thereof has at least one hydrogen atom.
(At least one hydrogen atom in the heterocyclic compound represented by the general formula (1A ″) or a salt thereof may be replaced with a deuterium atom.)
Item 4.
Item 5. The heterocyclic compound or a salt thereof according to Item 2, having a structure represented by the following general formula (1B ″).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、X、Y、及びZは、前記と同じ。
ここで、上記一般式(1B”)で表されるヘテロ環化合物又はその塩は、少なくとも1つの水素原子を有している。
上記一般式(1B”)で表されるヘテロ環化合物又はその塩における少なくとも1つの水素原子は、重水素原子に置き換わっていてもよい。)
項5.
一般式(1):
(In the formula, X, Y, and Z are the same as described above.
Here, the heterocyclic compound represented by the general formula (1B ″) or a salt thereof has at least one hydrogen atom.
(At least one hydrogen atom in the heterocyclic compound represented by the above general formula (1B ″) or a salt thereof may be replaced with a deuterium atom.)
Item 5.
General formula (1):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中、Xは、B、P、P=O、P=S、又はP=Seを示す。
Y及びZは、同一又は異なって、O、S、又はN-Rを示す。ここで、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示す。
、R及びRcは、同一又は異なって、ハロゲン原子、シアノ基、ニトロ基、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、又は置換基を有していてもよいアミノ基を示す。
mは、0~3の整数を示す。mが2を示す場合、2つのRは、同一又は異なっていてもよい。mが3を示す場合、3つのRは、同一又は異なっていてもよい。
n及びoは、同一又は異なって、0~4の整数を示す。n又はoが2を示す場合、2つのR又は2つのRcは、各々、同一又は異なっていてもよい。n又はoが3を示す場合、3つのR又はRcは、各々、同一又は異なっていてもよい。n又はoが4を示す場合、4つのR又はRcは、各々、同一又は異なっていてもよい。
mが2、nが2又はoが2を示す場合、2つのR、2つのR又は2つのRcは、互いに結合して飽和若しくは不飽和の炭素環、又は飽和若しくは不飽和複素環を形成していてもよく、これらの環上には置換基を有していてもよい。
mが3を示す場合、3つのRを有する下記式:
[Wherein X represents B, P, P = O, P = S, or P = Se.
Y and Z are the same or different and represent O, S, or N—R 1 . Here, R 1 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. The heteroaryl group which may have is shown.
R a , R b and R c are the same or different and are a halogen atom, a cyano group, a nitro group, an optionally substituted alkyl group, an optionally substituted cycloalkyl group or a substituted group. An aryl group which may have a group, a heteroaryl group which may have a substituent, an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, or The amino group which may have a substituent is shown.
m represents an integer of 0 to 3. When m represents 2, two R a may be the same or different. When m represents 3, three R a may be the same or different.
n and o are the same or different and represent an integer of 0 to 4. When n or o represents 2, two R b or two R c may be the same or different from each other. When n or o represents 3, three R b or R c may be the same or different from each other. When n or o represents 4, four R b or R c may be the same or different from each other.
when m is 2, n is 2 or o is 2, 2 R a , 2 R b or 2 R c are bonded to each other to form a saturated or unsaturated carbocyclic ring, or a saturated or unsaturated heterocyclic ring May be formed, and these rings may have a substituent.
When m represents 3, the following formula having three R a :
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、Rは前記と同じ。波線は結合を示す。)
で表される構造は、一般式(A):
(In the formula, Ra is the same as described above. The wavy line indicates a bond.)
The structure represented by general formula (A):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、X、Y、Z、R、Rc、n及びoは、前記と同じ。波線は結合を示す。)
で表されるヘテロ環構造を形成していてもよい。
ここで、上記一般式(1)で表されるヘテロ環化合物又はその塩は、少なくとも1つの水素原子を有している。
上記一般式(1)で表されるヘテロ環化合物又はその塩における少なくとも1つの水素原子は、重水素原子に置き換わっていてもよい。]
で表されるヘテロ環化合物又はその塩(ただし、一般式(1)においてX=ホウ素原子、Y=Z=酸素原子、R=R=R=水素原子である、8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセンを除く)。
項6.
、R及びRcが、同一又は異なって、ハロゲン原子、シアノ基、ニトロ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、又は置換基を有していてもよいアミノ基である、項5に記載のヘテロ環化合物又はその塩。
項7.
前記飽和若しくは不飽和の炭素環が、置換基を有していてもよいベンゼン環若しくは置換基を有していてもよいナフタレン環、又は飽和若しくは不飽和複素環が、置換基を有していてもよいチオフェン環若しくは置換基を有していてもよいベンゾチオフェン環である、項5又は6に記載のヘテロ環化合物又はその塩。
項8.
下記一般式(1-B)で表される化合物である、項5に記載のヘテロ環化合物又はその塩。
(In the formula, X, Y, Z, R b , R c , n and o are the same as described above. The wavy line represents a bond.)
The heterocyclic structure represented by these may be formed.
Here, the heterocyclic compound represented by the general formula (1) or a salt thereof has at least one hydrogen atom.
At least one hydrogen atom in the heterocyclic compound represented by the general formula (1) or a salt thereof may be replaced with a deuterium atom. ]
Or a salt thereof represented by the formula (wherein, in the general formula (1), X = boron atom, Y = Z = oxygen atom, R a = R b = R c = hydrogen atom, 8a-bora-8 , 9-dioxabenzo [fg] tetracene).
Item 6.
R a , R b and R c are the same or different and are a halogen atom, a cyano group, a nitro group, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. Item 6. The heterocyclic compound or a salt thereof according to Item 5, which is a heteroaryl group optionally having a substituent, or an amino group optionally having a substituent.
Item 7.
The saturated or unsaturated carbocycle has an optionally substituted benzene ring, an optionally substituted naphthalene ring, or a saturated or unsaturated heterocyclic ring has a substituent. Item 7. The heterocyclic compound or a salt thereof according to Item 5 or 6, which is a thiophene ring or a benzothiophene ring optionally having a substituent.
Item 8.
Item 6. The heterocyclic compound or a salt thereof according to Item 5, which is a compound represented by the following general formula (1-B).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式中、X、Y、Z、R、Rc、n及びoは、上記項5と同じ。]
項9.
下記一般式(1-C)で表される化合物である、項5に記載のヘテロ環化合物又はその塩。
[Wherein, X, Y, Z, R b , R c , n and o are the same as in item 5 above. ]
Item 9.
Item 6. The heterocyclic compound or a salt thereof according to Item 5, which is a compound represented by the following general formula (1-C).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式中n及びoは、上記項5と同じ。]
項10.
項1~9のいずれか一項に記載のヘテロ環化合物又はその塩を含む、電子デバイス。
項11.
有機発光素子、有機薄膜トランジスタ又は有機薄膜太陽電池である項10に記載の電子デバイス。
項12.
一般式(1A’):
[Wherein n and o are the same as in item 5 above. ]
Item 10.
Item 10. An electronic device comprising the heterocyclic compound according to any one of Items 1 to 9 or a salt thereof.
Item 11.
Item 11. The electronic device according to Item 10, which is an organic light emitting device, an organic thin film transistor, or an organic thin film solar cell.
Item 12.
General formula (1A ′):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、Xは、B、P、P=O、P=S、又はP=Seを示す。
Y及びZは、同一又は異なって、O、S、又はN-Rを示す。ここで、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示す。
環A、環B及び環Cは、同一又は異なって、置換基を有していてもよいアリール環、又は置換基を有していてもよいヘテロアリール環を示す。
ここで、上記一般式(1A’)で表されるヘテロ環化合物又はその塩は、少なくとも1つの水素原子を有している。
上記一般式(1A’)で表されるヘテロ環化合物又はその塩における少なくとも1つの水素原子は、重水素原子に置き換わっていてもよい。)
で表される構造を有するヘテロ環化合物又はその塩の製造方法であって、
一般式(2-A1’):
(In the formula, X represents B, P, P = O, P = S, or P = Se.
Y and Z are the same or different and represent O, S, or N—R 1 . Here, R 1 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. The heteroaryl group which may have is shown.
Ring A, ring B and ring C are the same or different and each represents an aryl ring which may have a substituent or a heteroaryl ring which may have a substituent.
Here, the heterocyclic compound represented by the general formula (1A ′) or a salt thereof has at least one hydrogen atom.
At least one hydrogen atom in the heterocyclic compound represented by the general formula (1A ′) or a salt thereof may be replaced with a deuterium atom. )
A method for producing a heterocyclic compound having a structure represented by the formula:
Formula (2-A1 ′):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、Y、Z、環A、環B及び環Cは、前記と同じ。
は、ハロゲン原子を示す。
及びRは、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基を示す。)
で表される化合物又はその塩と、リチウム化合物とを反応させる工程、及び
該工程で得られた化合物とホウ素化合物又はリン化合物とを反応させる工程を備える製造方法。
項13.
一般式(1A’):
(Wherein Y, Z, ring A, ring B and ring C are the same as described above.
R 4 represents a halogen atom.
R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent. )
A process comprising: reacting a compound represented by the above or a salt thereof with a lithium compound; and reacting the compound obtained in the process with a boron compound or a phosphorus compound.
Item 13.
General formula (1A ′):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式中、Xは、B、P、P=O、P=S、又はP=Seを示す。
Y及びZは、同一又は異なって、O、S、又はN-Rを示す。ここで、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示す。
環A、環B及び環Cは、同一又は異なって、置換基を有していてもよいアリール環、又は置換基を有していてもよいヘテロアリール環を示す。
ここで、上記一般式(1A’)で表されるヘテロ環化合物又はその塩は、少なくとも1つの水素原子を有している。
上記一般式(1A’)で表されるヘテロ環化合物又はその塩における少なくとも1つの水素原子は、重水素原子に置き換わっていてもよい。)
で表される構造を有するヘテロ環化合物又はその塩の製造方法であって、
一般式(2-A2’):
(In the formula, X represents B, P, P = O, P = S, or P = Se.
Y and Z are the same or different and represent O, S, or N—R 1 . Here, R 1 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. The heteroaryl group which may have is shown.
Ring A, ring B and ring C are the same or different and each represents an aryl ring which may have a substituent or a heteroaryl ring which may have a substituent.
Here, the heterocyclic compound represented by the general formula (1A ′) or a salt thereof has at least one hydrogen atom.
At least one hydrogen atom in the heterocyclic compound represented by the general formula (1A ′) or a salt thereof may be replaced with a deuterium atom. )
A method for producing a heterocyclic compound having a structure represented by the formula:
Formula (2-A2 ′):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、Y、Z、環A、環B及び環Cは、前記と同じ。
及びRは、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基を示す。)
で表される化合物又はその塩と、ホウ素化合物又はリン化合物とを反応させる工程を備える製造方法。
(Wherein Y, Z, ring A, ring B and ring C are the same as described above.
R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent. )
A manufacturing method provided with the process with which the compound or its salt represented by these, and a boron compound or a phosphorus compound are made to react.
 本発明によれば、特に、有機EL、有機発光ダイオード等の有機発光素子、有機薄膜トランジスタ、及び有機薄膜太陽電池に使用するのに適した新規なヘテロ環化合物又はその塩を提供できる。 According to the present invention, it is possible to provide a novel heterocyclic compound or a salt thereof suitable for use in organic light emitting devices such as organic EL and organic light emitting diodes, organic thin film transistors, and organic thin film solar cells.
 本発明の新規なヘテロ環化合物、当該化合物を製造する方法、及びその用途を以下詳細に説明する。 The novel heterocyclic compound of the present invention, a method for producing the compound, and its use will be described in detail below.
 本明細書中において、「含む」なる表現については、「含む」、「実質的にのみからなる」及び「のみからなる」という概念を含む。 In this specification, the expression “including” includes the concepts of “including”, “consisting essentially only”, and “consisting only”.
 1.ヘテロ環化合物又はその塩
 本発明のヘテロ環化合物又はその塩は、下記一般式(1A’)、(1AA’)、(1B’)、(1A”)、(1B”)、(1a”)及び(1b”)で表される構造を有するヘテロ環化合物又はその塩、並びに、下記一般式(1)、(1a)、(1-A)、(1-B)、(1b)、及び(1-C)で表されるヘテロ環化合物又はその塩(ただし、下記製造例1に示す8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセンを除く)である(以下、「本発明の化合物」又は「本発明のヘテロ環化合物」ということもある)。なお、本発明の上記ヘテロ環化合物又はその塩における少なくとも1つの水素原子は、重水素原子に置き換わっていてもよい。ただし、本発明のヘテロ環化合物又はその塩には、ヘテロ元素置換フラーレン、ヘテロ元素置換グラフェン、ヘテロ元素置換カーボンナノチューブ等の化合物は包含されない。
1. Heterocyclic compound or salt thereof The heterocyclic compound or salt thereof of the present invention has the following general formulas (1A ′), (1AA ′), (1B ′), (1A ″), (1B ″), (1a ″) and A heterocyclic compound having a structure represented by (1b ″) or a salt thereof, and the following general formulas (1), (1a), (1-A), (1-B), (1b), and (1 -C) or a salt thereof (excluding 8a-bora-8,9-dioxabenzo [fg] tetracene shown in the following Production Example 1) (hereinafter referred to as “the compound of the present invention”) It may also be referred to as “the heterocyclic compound of the present invention”). In addition, the at least 1 hydrogen atom in the said heterocyclic compound or its salt of this invention may be replaced with the deuterium atom. However, the heterocyclic compound of the present invention or a salt thereof does not include compounds such as hetero-element-substituted fullerenes, hetero-element-substituted graphenes, and hetero-element-substituted carbon nanotubes.
 具体的に、本発明のヘテロ環化合物又はその塩としては、一般式(1A’): Specifically, the heterocyclic compound of the present invention or a salt thereof may be represented by the general formula (1A ′):
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、X、Y、Z、環A、環B及び環Cは、前記と同じ。)
で表される構造を有するヘテロ環化合物又はその塩(ただし、8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセンを除く);
一般式(1AA’):
(Wherein, X, Y, Z, ring A, ring B and ring C are the same as described above.)
Or a salt thereof (excluding 8a-bora-8,9-dioxabenzo [fg] tetracene);
General formula (1AA ′):
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式中、X、Y、Z、環B及び環Cは、前記と同じ。環Aは、ベンゼン環を示す。)
で表される構造を有するヘテロ環化合物又はその塩(ただし、8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセンを除く);
 一般式(1B’):
(In the formula, X, Y, Z, ring B and ring C are the same as described above. Ring A represents a benzene ring.)
Or a salt thereof (excluding 8a-bora-8,9-dioxabenzo [fg] tetracene);
General formula (1B ′):
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、X、Y、Z、環A、2つの環B、及び2つの環Cは、前記と同じ。)
で表される構造を有するヘテロ環化合物又はその塩;
一般式(1A”):
(Wherein X, Y, Z, ring A, two rings B, and two rings C are the same as described above.)
A heterocyclic compound having a structure represented by the formula:
General formula (1A ″):
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、X、Y、及びZは、前記と同じ。)
で表される構造を有するヘテロ環化合物又はその塩(ただし、8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセンを除く);
一般式(1B”):
(Wherein X, Y and Z are the same as above)
Or a salt thereof (excluding 8a-bora-8,9-dioxabenzo [fg] tetracene);
General formula (1B ″):
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、X、Y、及びZは、前記と同じ。)
で表される構造を有するヘテロ環化合物又はその塩等が挙げられる。
(Wherein X, Y and Z are the same as above)
The heterocyclic compound which has a structure represented by this, its salt, etc. are mentioned.
 上記一般式(1A”)で表される構造を有するヘテロ環化合物又はその塩には、ベンゼン環が3つ記載されているが、各ベンゼン環を、下記のとおり、環A、環B又は環Cで表すと、下記のような一般式(1a”)で表される構造を有するヘテロ化合物又はその塩である。 The heterocyclic compound having the structure represented by the general formula (1A ″) or a salt thereof has three benzene rings, and each benzene ring is represented by ring A, ring B or ring as described below. When represented by C, it is a hetero compound having a structure represented by the following general formula (1a ″) or a salt thereof.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、X、Y及びZは、前記と同じ。)
 なお、環A、環B及び環Cは、それぞれのベンゼン環がヘテロアリール環に置き換わってもいてもよい。該ヘテロアリール環としては、チオフェン環、チアゾール環、ピリジン環等の後述するヘテロアリール基が挙げられ、該ヘテロアリール環はさらに置換基を有していてもよい。該置換基は、後述するヘテロアリール基における置換基を挙げることができる。
(Wherein X, Y and Z are the same as above)
In Ring A, Ring B, and Ring C, the respective benzene rings may be replaced with heteroaryl rings. Examples of the heteroaryl ring include later-described heteroaryl groups such as a thiophene ring, a thiazole ring, and a pyridine ring, and the heteroaryl ring may further have a substituent. Examples of the substituent include a substituent in a heteroaryl group described later.
 上記一般式(1B”)で表される構造を有するヘテロ環化合物又はその塩には、ベンゼン環が5つ記載されているが、各ベンゼン環を、下記のとおり、環A、2つの環B、又は2つの環Cで表すと、下記のような一般式(1b”)で表される構造を有するヘテロ化合物又はその塩である。 The heterocyclic compound having a structure represented by the above general formula (1B ″) or a salt thereof has five benzene rings, and each benzene ring is represented by ring A, two rings B as described below. Or a two-ring C is a hetero compound having a structure represented by the following general formula (1b ″) or a salt thereof.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式中、X、Y、及びZは、前記と同じ。)
 なお、環A、環B及び環Cは、それぞれのベンゼン環がヘテロアリール環に置き換わってもいてもよい。該ヘテロアリール環としては、チオフェン環、チアゾール環、ピリジン環等の後述するヘテロアリール基が挙げられ、該ヘテロアリール環はさらに置換基を有していてもよい。該置換基は、後述するヘテロアリール基における置換基を挙げることができる。
(Wherein X, Y and Z are the same as above)
In Ring A, Ring B, and Ring C, the respective benzene rings may be replaced with heteroaryl rings. Examples of the heteroaryl ring include later-described heteroaryl groups such as a thiophene ring, a thiazole ring, and a pyridine ring, and the heteroaryl ring may further have a substituent. Examples of the substituent include a substituent in a heteroaryl group described later.
 上記一般式(1A’)、(1AA’)、(1A”)、及び(1a”)で表される構造を有するヘテロ環化合物又はその塩の好ましい1つの実施形態としては、例えば、下記一般式(1)、(1a)、(1-A)で表されるヘテロ環化合物又はその塩等が挙げられる。 As one preferable embodiment of the heterocyclic compound having a structure represented by the above general formulas (1A ′), (1AA ′), (1A ″), and (1a ″) or a salt thereof, for example, the following general formula Examples thereof include heterocyclic compounds represented by (1), (1a) and (1-A) or salts thereof.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中、X、Y、Z、R、R、Rc、m、n及びoは、前記と同じ。)
 上記一般式(1)で表されるヘテロ環化合物又はその塩には、ベンゼン環が3つ記載されているが、各ベンゼン環を、下記のとおり、環A、環B又は環Cで表すと、下記のような一般式(1a)で表されるヘテロ化合物又はその塩である。
(In the formula, X, Y, Z, R a , R b , R c , m, n and o are the same as described above.)
In the heterocyclic compound represented by the general formula (1) or a salt thereof, three benzene rings are described. When each benzene ring is represented by ring A, ring B, or ring C, as described below, A hetero compound represented by the following general formula (1a) or a salt thereof.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式中、X、Y、Z、R、R、Rc、m、n及びoは、前記と同じ。)
 本発明の他の好ましい1つの実施形態としては、下記一般式(1-A)及び(1-B)で表されるヘテロ環化合物又はその塩(ただし、8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセンを除く)である。
(In the formula, X, Y, Z, R a , R b , R c , m, n and o are the same as described above.)
Another preferred embodiment of the present invention is a heterocyclic compound represented by the following general formulas (1-A) and (1-B) or a salt thereof (provided that 8a-bora-8,9-dioxabenzo [ fg] except tetracene).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式中、X、Y、Z、R、R、Rc、m、n及びoは、前記と同じ。)、及び (Wherein, X, Y, Z, R a , R b , R c , m, n and o are the same as above), and
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中、X、Y、Z、R、Rc、n及びoは、前記と同じ。)
 上記一般式(1-B)で表されるヘテロ環化合物又はその塩には、ベンゼン環が5つ記載されているが、各ベンゼン環を、下記のとおり、環A、2つの環B、又は2つの環Cで表すと、下記のような一般式(1-b)で表されるヘテロ化合物又はその塩である。
(In the formula, X, Y, Z, R b , R c , n and o are the same as described above.)
The heterocyclic compound represented by the general formula (1-B) or a salt thereof has five benzene rings, and each benzene ring is represented by ring A, two rings B, or When represented by two rings C, it is a hetero compound represented by the following general formula (1-b) or a salt thereof.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(式中、X、Y、Z、R、Rc、n及びoは、前記と同じ。)
 ここで、上記一般式(1B’)、(1B”)、(1b”)、(1-B)、又は(1-b)で表されるヘテロ環化合物又はその塩は、上記一般式(1A’)、(1AA’)、(1A”)、(1a”)、又は(1-A)で表される化学構造を2つ有していることから、単に「二量体」ということもできる。なお、上記「2つ有している」とは、上記環Aの部分は重複しながら、上記(1A’)、(1AA’)、(1A”)、(1a”)、又は(1-A)で表される化学構造を2つ有していることを意味している。
(In the formula, X, Y, Z, R b , R c , n and o are the same as described above.)
Here, the heterocyclic compound represented by the general formula (1B ′), (1B ″), (1b ″), (1-B), or (1-b) or a salt thereof is represented by the general formula (1A Since it has two chemical structures represented by '), (1AA'), (1A "), (1a"), or (1-A), it can be simply referred to as "dimer". . Note that the above-mentioned “having two” means that the ring A portion is overlapped while the above (1A ′), (1AA ′), (1A ″), (1a ″), or (1-A It has two chemical structures represented by.
 上記一般式(1A’)、(1AA’)、(1A”)、(1a”)、又は(1-A)で表されるヘテロ環化合物又はその塩は、「単量体」ということもできる。 The heterocyclic compound represented by the general formula (1A ′), (1AA ′), (1A ″), (1a ″), or (1-A) or a salt thereof can also be referred to as a “monomer”. .
 本発明のヘテロ環化合物又はその塩のうち、より好ましい1つの実施形態(単量体)としては、下記一般式(1-A1)~(1-A28)で表されるヘテロ環化合物又はその塩である。 Among the heterocyclic compounds of the present invention or salts thereof, one more preferred embodiment (monomer) is a heterocyclic compound represented by the following general formulas (1-A1) to (1-A28) or a salt thereof: It is.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000035
(式中、X、Y、Z、R、R、Rc、m、n及びoは、前記と同じ。
m1は、0~5の整数を示す。
n1及びo1は、0~6の整数を示す。
n2及びo2は、0~8の整数を示す。
n3及びo3は、0~4の整数を示す。
n4及びo4は、0~6の整数を示す。
Aは、O、S、又はN-Rを示す。ここで、Rは、各々、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を示す。)
 本発明のヘテロ環化合物又はその塩のうち、より好ましい1つの実施形態(二量体)としては、下記一般式(1-B1)~(1-B21)で表されるヘテロ環化合物又はその塩である。
Wherein X, Y, Z, R a , R b , R c , m, n and o are the same as described above.
m1 represents an integer of 0 to 5.
n1 and o1 each represents an integer of 0 to 6.
n2 and o2 each represents an integer of 0 to 8.
n3 and o3 each represents an integer of 0 to 4.
n4 and o4 each represents an integer of 0 to 6.
A represents O, S, or N—R 2 . Here, each R 2 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. The heteroaryl group which may have a group is shown. )
Of the heterocyclic compounds of the present invention or salts thereof, more preferred embodiments (dimers) include heterocyclic compounds represented by the following general formulas (1-B1) to (1-B21) or salts thereof: It is.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-I000040
Figure JPOXMLDOC01-appb-I000040
(式中、X、Y、Z、R、Rc、n、o及びAは、前記と同じ。
n1及びo1は、0~6の整数を示す。
n2及びо2は、0~8の整数を示す。
n3及びо3は、0~4の整数を示す。
n4及びо4は、0~6の整数を示す。)
 本明細書中において示される各基は、具体的に以下のとおりである。
(Wherein, X, Y, Z, R b , R c , n, o and A are the same as described above.
n1 and o1 each represents an integer of 0 to 6.
n2 and о2 each represents an integer of 0 to 8.
n3 and о3 each represents an integer of 0 to 4.
n4 and о4 represent integers of 0 to 6. )
Each group shown in the present specification is specifically as follows.
 「置換基を有していてもよいアルキル基」における「アルキル基」としては、特に制限はなく、例えば、炭素数1~16の直鎖状アルキル基又は炭素数3~12の分岐鎖状アルキル基が挙げられる。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基(以下、t-Buと称することもある)、n-ペンチル基、2-メチルブチル基、1-メチルブチル基、ネオペンチル基、1,2-ジメチルプロピル基、1,1-ジメチルプロピル基、n-ヘキシル基、4-メチルペンチル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、3,3-ジメチルブチル基、2,3-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、1,2-ジメチルブチル基、1,1-ジメチルブチル基、2-エチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、n-へプチル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、2,4-ジメチルペンチル基、n-オクチル基、2-エチルヘキシル基、2,5-ジメチルヘキシル基、2,4,4-トリメチルペンチル基、2,4-ジメチルヘキシル基、2,2,4-トリメチルペンチル基、t-オクチル基、n-ノニル基、3,5,5-トリメチルヘキシル基、n-デシル基、4-エチルオクチル基、4-エチル-4,5-ジメチルヘキシル基、n-ウンデシル基、n-ドデシル基、1,3,5,7-テトラメチルオクチル基、4-ブチルオクチル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基等が挙げられる。該アルキル基として好ましくは炭素数1~12の直鎖状アルキル基であり、より好ましくはメチル基、エチル基、n-ブチル基、n-ヘキシル基、n-オクチル基、n-デシル基及びn-ドデシル基である。該アルキル基は、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、シクロアルキル基、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基、アルコキシ基、アリールオキシ基、ジアリールアミノ基等の置換基を1~6個有していてもよい。 The “alkyl group” in the “optionally substituted alkyl group” is not particularly limited, and examples thereof include a linear alkyl group having 1 to 16 carbon atoms or a branched alkyl group having 3 to 12 carbon atoms. Groups. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group (hereinafter sometimes referred to as t-Bu), n -Pentyl group, 2-methylbutyl group, 1-methylbutyl group, neopentyl group, 1,2-dimethylpropyl group, 1,1-dimethylpropyl group, n-hexyl group, 4-methylpentyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 1,2-dimethylbutyl Group, 1,1-dimethylbutyl group, 2-ethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1-ethyl-2-methylpropyl group, n-heptyl group 2-methylhexyl group, 3-methylhexyl group, 4-methylhexyl group, 5-methylhexyl group, 2,4-dimethylpentyl group, n-octyl group, 2-ethylhexyl group, 2,5-dimethylhexyl group, 2,4,4-trimethylpentyl group, 2,4-dimethylhexyl group, 2,2,4-trimethylpentyl group, t-octyl group, n-nonyl group, 3,5,5-trimethylhexyl group, n- Decyl group, 4-ethyloctyl group, 4-ethyl-4,5-dimethylhexyl group, n-undecyl group, n-dodecyl group, 1,3,5,7-tetramethyloctyl group, 4-butyloctyl group, Examples include n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group and the like. The alkyl group is preferably a linear alkyl group having 1 to 12 carbon atoms, more preferably a methyl group, ethyl group, n-butyl group, n-hexyl group, n-octyl group, n-decyl group and n -Dodecyl group. The alkyl group includes, for example, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, cycloalkyl group, aryl group (eg, phenyl group, naphthyl group, etc.), hetero It may have 1 to 6 substituents such as an aryl group, an alkoxy group, an aryloxy group, and a diarylamino group.
 中でも、「置換基を有していてもよいアルキル基」としては、トリフルオロメチル基、ベンジル基、ジフェニルメチル基、トリフェニルメチル基が特に好ましい。 Among them, the “optionally substituted alkyl group” is particularly preferably a trifluoromethyl group, a benzyl group, a diphenylmethyl group, or a triphenylmethyl group.
 なお、本明細書において、「n-」はnormal、「s-」はsecondary(sec-)、「t-」はtertiary(tert-)、及び「i-」は、isoを意味する。 In this specification, “n-” means normal, “s-” means secondary (sec-), “t-” means tertiary (tert-), and “i-” means iso.
 「置換基を有していてもよいシクロアルキル基」における「シクロアルキル基」としては、特に制限はなく、例えば、炭素数3~10のシクロアルキル基が挙げられ、具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。該シクロアルキル基として好ましくは炭素数3~7シクロアルキル基であり、より好ましくは炭素数5~7シクロアルキル基であり、特に好ましくはシクロヘキシル基である。該シクロアルキル基は、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、アルキル基(炭素数1~6のアルキル基)、シクロアルキル基、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基、アルコキシ基、アリールオキシ基、ジアリールアミノ基等の置換基を1~6個有していてもよい。 The “cycloalkyl group” in the “cycloalkyl group optionally having substituent (s)” is not particularly limited, and examples thereof include cycloalkyl groups having 3 to 10 carbon atoms, specifically, cyclopropyl Group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like. The cycloalkyl group is preferably a cycloalkyl group having 3 to 7 carbon atoms, more preferably a cycloalkyl group having 5 to 7 carbon atoms, and particularly preferably a cyclohexyl group. The cycloalkyl group includes, for example, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), a cyano group, a nitro group, an alkyl group (an alkyl group having 1 to 6 carbon atoms), a cycloalkyl group, It may have 1 to 6 substituents such as an aryl group (eg, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group and the like.
 「置換されていてもよいアリール基」における「アリール基」としては、特に制限はなく、例えば、単環式又は二環式以上のアリール基が挙げられ、具体的には、フェニル基、ナフチル基、アンスラニル基、フェナンスリル基等が挙げられる。アリール基として好ましくは単環式又は二環式のアリール基であり、より好ましくはフェニル基である。該アリール基は、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、アルキル基(炭素数1~6のアルキル基)、シクロアルキル基、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基、アルコキシ基、アリールオキシ基、ジアリールアミノ基等の置換基を1~6個有していてもよい。 The “aryl group” in the “optionally substituted aryl group” is not particularly limited, and examples thereof include a monocyclic or bicyclic or higher aryl group, and specifically include a phenyl group and a naphthyl group. , Anthranyl group, phenanthryl group and the like. The aryl group is preferably a monocyclic or bicyclic aryl group, and more preferably a phenyl group. The aryl group includes, for example, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl group, aryl It may have 1 to 6 substituents such as a group (eg, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group and the like.
 「置換されていてもよいヘテロアリール基」における「ヘテロアリール基」としては、特に制限はなく、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも一個含むヘテロアリール基が挙げられ、中でも、窒素原子、酸素原子、及び硫黄原子からなる群より選ばれるヘテロ原子を少なくとも一個有する炭素数1~18の1~4環のヘテロアリール基が好ましい。具体的には、例えば、後述する「複素環」と同様の構造の基が挙げられ、中でも、好ましくはフリル基、チエニル基、セレニル基、ピロリル基、イミダゾリル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、トリアゾリル基、ボロリル基、ホスホリル基、シロリル基、ピリジル基、ピリミジニル基、トリアジニル基、ピラニル基、インドリル基、イソインドリル基、キノリル基、イソキノリル基、キノキサリニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾフリル基、ベンゾチエニル基、ベンゾピラニル基、ベンゾイミダゾリル基、ベンゾボロリル基、ベンゾホスホリル基、ベンゾシロリル基、ベンゾアザボリル基、カルバゾリル基、インドリジニル基、アクリジニル基、フェナジニル基、フェナントリジニル基、フェナントロリニル基、フェノキサジニル基、フェノチアジニル基、ベンゾセレニル基、ナフトフラニル基、ナフトオキサゾリル基、ナフトチアゾリル基、ナフトイソオキサゾリル基、ナフトイミダゾリル基、ナフトボロリル基、ナフトホスホリル基、ナフトシロリル基、ナフトアザボリニル基、ナフトピラニル基、ベンゾインドリル基、ベンゾイソインドリル基、ベンゾキノリニル基、ベンゾイソキノリニル基、ベンゾキノキサリニル基等であり、より好ましくはフリル基、チエニル基、ピロリル基、イミダゾリル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、トリアゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、ピラニル基、インドリル基、イソインドリル基、キノリル基、イソキノリル基、キノキサリニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾフリル基、ベンゾチエニル基、ベンゾピラニル基、ベンゾイミダゾリル基、カルバゾリル基、インドリジニル基、アクリジニル基、フェナジニル基、フェナントリジニル基、フェナントロリニル基、フェノキサジニル基、フェノチアジニル基、ナフトフラニル基、ナフトオキサゾリル基、ナフトチアゾリル基、ナフトイソオキサゾリル基、ナフトイミダゾリル基、ナフトピラニル基、ベンゾインドリル基、ベンゾイソインドリル基、ベンゾキノリニル基、ベンゾイソキノリニル基、ベンゾキノキサリニル基であり、特に好ましくはフリル基、チエニル基、ピロリル基、イミダゾリル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、トリアゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、ピラニル基、インドリル基、イソインドリル基、キノリル基、イソキノリル基、キノキサリニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾフリル基、ベンゾチエニル基、ベンゾピラニル基、ベンゾイミダゾリル基、カルバゾリル基、インドリジニル基、アクリジニル基、フェナジニル基、フェナントリジニル基、フェナントロリニル基、フェノキサジニル基、フェノチアジニル基である。該ヘテロアリール基は、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、アルキル基(炭素数1~6のアルキル基)、シクロアルキル基、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基、アルコキシ基、アリールオキシ基、ジアリールアミノ基等の置換基を1~6個有していてもよい。 The “heteroaryl group” in the “optionally substituted heteroaryl group” is not particularly limited, and examples thereof include a heteroaryl group containing at least one heteroatom such as a nitrogen atom, an oxygen atom, or a sulfur atom, Of these, a 1 to 4 ring heteroaryl group having 1 to 18 carbon atoms and having at least one heteroatom selected from the group consisting of a nitrogen atom, an oxygen atom, and a sulfur atom is preferable. Specifically, for example, a group having the same structure as the “heterocycle” described later is mentioned, and among them, a furyl group, a thienyl group, a selenyl group, a pyrrolyl group, an imidazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group are preferable. , Isoxazolyl group, triazolyl group, borolyl group, phosphoryl group, silolyl group, pyridyl group, pyrimidinyl group, triazinyl group, pyranyl group, indolyl group, isoindolyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, benzoxazolyl group, benzothiazolyl Group, benzoisoxazolyl group, benzoisothiazolyl group, benzofuryl group, benzothienyl group, benzopyranyl group, benzoimidazolyl group, benzoborolyl group, benzophosphoryl group, benzosilolyl group, benzoazaboryl group, carbazolyl group, India Dinyl group, acridinyl group, phenazinyl group, phenanthridinyl group, phenanthrolinyl group, phenoxazinyl group, phenothiazinyl group, benzoselenyl group, naphthofuranyl group, naphthoxazolyl group, naphthothiazolyl group, naphthisoxazolyl group, Naphthoimidazolyl group, naphthoborolyl group, naphthophosphoryl group, naphthosilyl group, naphthazaborinyl group, naphthopyranyl group, benzoindolyl group, benzoisoindolyl group, benzoquinolinyl group, benzoisoquinolinyl group, benzoquinoxalinyl group, etc. More preferably, furyl group, thienyl group, pyrrolyl group, imidazolyl group, thiazolyl group, isothiazolyl group, oxazolyl group, isoxazolyl group, triazolyl group, pyridyl group, pyrimidinyl group, triazinyl group, pyra Group, indolyl group, isoindolyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, benzoxazolyl group, benzothiazolyl group, benzoisoxazolyl group, benzoisothiazolyl group, benzofuryl group, benzothienyl group, benzopyranyl group, Benzimidazolyl, carbazolyl, indolizinyl, acridinyl, phenazinyl, phenanthridinyl, phenanthrolinyl, phenoxazinyl, phenothiazinyl, naphthofuranyl, naphthoxazolyl, naphthothiazolyl, naphthisoxazolyl Group, naphthimidazolyl group, naphthopyranyl group, benzoindolyl group, benzoisoindolyl group, benzoquinolinyl group, benzoisoquinolinyl group, benzoquinoxalinyl group, particularly preferably furyl group , Thienyl, pyrrolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, pyridyl, pyrimidinyl, triazinyl, pyranyl, indolyl, isoindolyl, quinolyl, isoquinolyl, quinoxalinyl Group, benzoxazolyl group, benzothiazolyl group, benzoisoxazolyl group, benzoisothiazolyl group, benzofuryl group, benzothienyl group, benzopyranyl group, benzoimidazolyl group, carbazolyl group, indolizinyl group, acridinyl group, phenazinyl group, phenazinyl group A nantridinyl group, a phenanthrolinyl group, a phenoxazinyl group, and a phenothiazinyl group. The heteroaryl group includes, for example, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), a cyano group, a nitro group, an alkyl group (an alkyl group having 1 to 6 carbon atoms), a cycloalkyl group, It may have 1 to 6 substituents such as an aryl group (eg, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group and the like.
 これらヘテロアリール基の中でも、窒素原子又は硫黄原子を含むヘテロアリール基は、N-オキシド、スルホキシド又はスルホン基であってもよい。これら化合物は、公知の製造方法(例えば、Youssif, S., Recent trends in the chemistry of pyridine N-oxides Arkivoc, 2001, p.242-268. ;Brown K. N. andEspenson J. H., Stepwise Oxidation of Thiophene and Its Derivatives by Hydrogen Peroxide Catalyzed by Methyltrioxorhenium(VII) Inorg. Chem., 1996, 35, p.7211-7216.)を参考にして製造することができる。例えば、窒素原子又は硫黄原子を含むヘテロアリール基含有化合物に、過酸化水素水、m-CPBA等の酸化剤を作用させることで、N-オキシド、スルホキシド又はスルホン基を含むヘテロアリール基含有化合物を製造することができる。 Among these heteroaryl groups, the heteroaryl group containing a nitrogen atom or a sulfur atom may be an N-oxide, sulfoxide or sulfone group. These compounds can be prepared by known production methods (for example, Youssif, S., Recent trends in the chemistry of pyridine N-oxides Arkivoc, 2001, p.242-268.; Brown K. N. andEspenson J. H., Stepwise Oxidation of Thiophene and Its Derivatives by Hydrogen Peroxide Catalyzed by Methyltrioxorhenium (VII) Inorg. Chem., 1996, 35, p.7211-7216.). For example, by reacting a heteroaryl group-containing compound containing a nitrogen atom or a sulfur atom with an oxidizing agent such as aqueous hydrogen peroxide or m-CPBA, a heteroaryl group-containing compound containing an N-oxide, sulfoxide or sulfone group is obtained. Can be manufactured.
 「置換基を有していてもよいアルコキシ基」としては、特に制限はなく、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、s-ブチルオキシ基、t-ブチルオキシ基、イソブチルオキシ基、n-ペンチルオキシ基、2,2-ジメチルプロピルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、2-メチルペンチルオキシ基、2-エチルヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基等の炭素数1~10のアルコキシ基等が挙げられる。該アルコキシ基は、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、アルキル基(炭素数1~6のアルキル基)、シクロアルキル基、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基、アルコキシ基、アリールオキシ基、ジアリールアミノ基等の置換基を1~6個有していてもよい。 The “alkoxy group optionally having substituent (s)” is not particularly limited. For example, methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, s-butyloxy group, t -Butyloxy group, isobutyloxy group, n-pentyloxy group, 2,2-dimethylpropyloxy group, cyclopentyloxy group, n-hexyloxy group, cyclohexyloxy group, 2-methylpentyloxy group, 2-ethylhexyloxy group, Examples thereof include an alkoxy group having 1 to 10 carbon atoms such as an n-heptyloxy group, an n-octyloxy group, an n-nonyloxy group and an n-decyloxy group. The alkoxy group includes a halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl group, aryl group ( For example, it may have 1 to 6 substituents such as a phenyl group, a naphthyl group, a heteroaryl group, an alkoxy group, an aryloxy group, a diarylamino group.
 「置換基を有していてもよいアリールオキシ基」としては、特に制限はなく、例えば、フェノキシ基、ナフチルオキシ基等の炭素数6~10のアリールオキシ基が挙げられる。該アリールオキシ基は、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、アルキル基(炭素数1~6のアルキル基)、シクロアルキル基、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基、アルコキシ基、アリールオキシ基、ジアリールアミノ基等の置換基を1~6個有していてもよい。 The “aryloxy group optionally having substituent (s)” is not particularly limited, and examples thereof include aryloxy groups having 6 to 10 carbon atoms such as phenoxy group and naphthyloxy group. The aryloxy group is a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl group, aryl group It may have 1 to 6 substituents such as a heteroaryl group, an alkoxy group, an aryloxy group, a diarylamino group (for example, a phenyl group, a naphthyl group, etc.).
 「置換基を有していてもよいアミノ基」としては、特に制限はなく、例えば、アミノ基、N-アルキルアミノ基、N-アリールアミノ基、N,N-ジアルキルアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基等が挙げられる。中でも、「置換基を有していてもよいアミノ基」としては好ましくはN-(1-ナフチル)N-フェニルアミノ基、N-(2-ナフチル)N-フェニルアミノ基及びN,N-ジフェニルアミノ基であり、より好ましくはN,N-ジフェニルアミノ基である。上記N-アルキルアミノ基、N-アリールアミノ基、N,N-ジアルキルアミノ基、N,N-ジアリールアミノ基、及びN-アルキル-N-アリールアミノ基における「アルキル」又は「アリール」は、上述した置換基を有していてもよいアルキル基における「アルキル基」又は置換基を有していてもよいアリール基における「アリール基」と同じ基が挙げられる。ここで、上記「置換基を有していてもよいアミノ基」における該「置換基」としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、アルキル基(炭素数1~6のアルキル基)、シクロアルキル基、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基、アルコキシ基、アリールオキシ基、ジアリールアミノ基等が挙げられ、該置換基は1~6個有していてもよい。 The “amino group optionally having substituent (s)” is not particularly limited, and examples thereof include an amino group, N-alkylamino group, N-arylamino group, N, N-dialkylamino group, N, N— Examples thereof include a diarylamino group and an N-alkyl-N-arylamino group. Among them, the “optionally substituted amino group” is preferably N- (1-naphthyl) N-phenylamino group, N- (2-naphthyl) N-phenylamino group and N, N-diphenyl. An amino group, more preferably an N, N-diphenylamino group. The “alkyl” or “aryl” in the N-alkylamino group, N-arylamino group, N, N-dialkylamino group, N, N-diarylamino group, and N-alkyl-N-arylamino group is as described above. And the same group as the “alkyl group” in the optionally substituted alkyl group or the “aryl group” in the optionally substituted aryl group. Here, as the “substituent” in the “amino group optionally having substituent (s)”, for example, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), cyano group, Nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl group, aryl group (for example, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group, etc. The substituent may have 1 to 6 substituents.
 mが2、nが2又はoが2を示す場合、2つのR、2つのR又は2つのRcは、互いに結合して飽和若しくは不飽和の炭素環、又は飽和若しくは不飽和複素環を形成していてもよく、これらの環上には置換基を有していてもよい。 when m is 2, n is 2 or o is 2, 2 R a , 2 R b or 2 R c are bonded to each other to form a saturated or unsaturated carbocyclic ring, or a saturated or unsaturated heterocyclic ring May be formed, and these rings may have a substituent.
 ここで、該「飽和の炭素環」としては、特に制限はなく、例えば、単環式又は二環式以上の飽和の炭素環が挙げられ、具体的には、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロウンデカン環、シクロドデカン環、シクロトリドデカン環、シクロテトラデカン環、シクロペンタデカン環、パーヒドロペンタレン環、パーヒドロアズレン環、パーヒドロインデン環、パーヒドロナフタレン環、パーヒドロヘプタレン環、スピロ[4.4]ノナン環、スピロ[4.5]デカン環、スピロ[5.5]ウンデカン環、ビシクロ[2.2.1]ヘプタン環、ビシクロ[3.1.1]ヘプタン環、ビシクロ[2.2.2]オクタン環、アダマンタン環、ノルアダマンタン環等が挙げられる。好ましくは炭素数3~10の飽和炭素環であり、より好ましくはシクロペンタン環、シクロヘキサン環であり、特に好ましくはシクロヘキサン環である。該飽和の炭素環は、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、アルキル基(炭素数1~6のアルキル基)、シクロアルキル基、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基、アルコキシ基、アリールオキシ基、ジアリールアミノ基等の置換基を1~6個有していてもよい。 Here, the “saturated carbocycle” is not particularly limited, and examples thereof include monocyclic or bicyclic or more saturated carbocycles, and specifically include cyclopropane ring, cyclobutane ring, cyclo Pentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, cyclotridodecane ring, cyclotetradecane ring, cyclopentadecane ring, perhydropentalene ring, perhydroazulene Ring, perhydroindene ring, perhydronaphthalene ring, perhydroheptalene ring, spiro [4.4] nonane ring, spiro [4.5] decane ring, spiro [5.5] undecane ring, bicyclo [2.2 .1] heptane ring, bicyclo [3.1.1] heptane ring, bicyclo [2.2.2] octane ring, ada Pentane ring, noradamantane ring, and the like. A saturated carbocyclic ring having 3 to 10 carbon atoms is preferable, a cyclopentane ring or a cyclohexane ring is more preferable, and a cyclohexane ring is particularly preferable. The saturated carbocycle includes, for example, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl group. , An aryl group (for example, a phenyl group, a naphthyl group, etc.), a heteroaryl group, an alkoxy group, an aryloxy group, a diarylamino group and the like, may have 1 to 6 substituents.
 該「不飽和の炭素環」としては、特に制限はなく、例えば、単環式又は二環式以上の炭素環が挙げられ、具体的には、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環、シクロペンタジエン環、シクロヘキサジエン環、シクロヘプタジエン環、シクロオクタジエン環、ベンゼン環、ペンタレン環、アズレン環、インデン環、インダン環、ナフタレン環、ジヒドロナフタレン、テトラヒドロナフタレン環、ヘプタレン環、ビフェニレン環、as-インダセン環、s-インダセン、アセナフチレン環、アセナフテン環、フルオレン環、フェナレン環、フェナントレン環、アントラセン環、ビシクロ[2.2.1]ヘプタ-2-エン環、ビシクロ[3.1.1]ヘプタ-2-エン環、ビシクロ[2.2.2]オクタ-2-エン環等が挙げられる。中でも、好ましくは単環式又は二環式のアリール基であり、より好ましくはベンゼン環、ナフタレン環である。該不飽和の炭素環は、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、アルキル基(炭素数1~6のアルキル基)、シクロアルキル基、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基、アルコキシ基、アリールオキシ基、ジアリールアミノ基等の置換基を1~6個有していてもよい。 The “unsaturated carbocycle” is not particularly limited and includes, for example, a monocyclic or bicyclic or more carbocycle, and specifically includes a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, a cyclooctene ring. , Cyclopentadiene ring, cyclohexadiene ring, cycloheptadiene ring, cyclooctadiene ring, benzene ring, pentalene ring, azulene ring, indene ring, indane ring, naphthalene ring, dihydronaphthalene, tetrahydronaphthalene ring, heptalene ring, biphenylene ring, as-indacene ring, s-indacene, acenaphthylene ring, acenaphthene ring, fluorene ring, phenalene ring, phenanthrene ring, anthracene ring, bicyclo [2.2.1] hept-2-ene ring, bicyclo [3.1.1] Hept-2-ene ring, bicyclo [2.2.2] octa- - ene ring, and the like. Among them, preferred is a monocyclic or bicyclic aryl group, and more preferred are a benzene ring and a naphthalene ring. The unsaturated carbocycle includes, for example, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, alkyl group (alkyl group having 1 to 6 carbon atoms), cycloalkyl 1 to 6 substituents such as a group, an aryl group (eg, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group and the like may be included.
 該「飽和の複素環」としては、特に制限はなく、例えば、単環式又は二環式以上の飽和の複素環が挙げられ、具体的には、ピロリジン環、モルホリン環、ピペリジン環、2-ピペラジン環、2-ピペリドン環、2-ボラ-1,3-ジオキソラン環、1,3-チアゾリジン環等が挙げられる。好ましくは単環式又は二環式の飽和の複素環であり、より好ましくはピロリジン環である。該飽和の複素環は、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、アルキル基(炭素数1~6のアルキル基)、シクロアルキル基、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基、アルコキシ基、アリールオキシ基、ジアリールアミノ基等の置換基を1~6個有していてもよい。 The “saturated heterocycle” is not particularly limited and includes, for example, a monocyclic or bicyclic or higher saturated heterocycle, and specifically includes a pyrrolidine ring, a morpholine ring, a piperidine ring, 2- Examples include a piperazine ring, a 2-piperidone ring, a 2-bora-1,3-dioxolane ring, and a 1,3-thiazolidine ring. A monocyclic or bicyclic saturated heterocyclic ring is preferable, and a pyrrolidine ring is more preferable. The saturated heterocyclic ring includes, for example, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a cyano group, a nitro group, an alkyl group (an alkyl group having 1 to 6 carbon atoms), a cycloalkyl group. , An aryl group (for example, a phenyl group, a naphthyl group, etc.), a heteroaryl group, an alkoxy group, an aryloxy group, a diarylamino group and the like, may have 1 to 6 substituents.
 「不飽和の複素環」としては、特に限定はなく、例えば、フラン環、チオフェン環、セレノフェン環、ピロール環、イミダゾール環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、トリアゾール環、ボロール環、ホスホール環、シロール環、アザボリン環、ピリジン環、ピリミジン環、トリアジン環、ピラン環、インドール環、イソインドール環、キノリン環、イソキノリン環、キノキサリン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾフラン環、ベンゾチオフェン環、ベンゾピラン環、ベンゾイミダゾール環、ベンゾボロール環、ベンゾホスホール環、ベンゾシロール環、ベンゾアザボリン環、カルバゾール環、インドリジン環、アクリジン環、フェナジン環、フェナントリジン環、フェナントロリン環、フェノキサジン環、フェノチアジン環、ベンゾセレノフェン環、ナフトフラン環、ナフトオキサゾール環、ナフトチアゾール環、ナフトイソオキサゾール環、ナフトイミダゾール環、ナフトボロール環、ナフトホスホール環、ナフトシロール環、ナフトアザボリン環、ナフトピラン環、ベンゾインドール環、ベンゾイソインドール環、ベンゾキノリン環、ベンゾイソキノリン環、ベンゾキノキサリン環、下記(x1)~(x9)の環、下記(y1)~(y9)の環等が挙げられる。 The “unsaturated heterocycle” is not particularly limited, and examples thereof include furan ring, thiophene ring, selenophene ring, pyrrole ring, imidazole ring, thiazole ring, isothiazole ring, oxazole ring, isoxazole ring, triazole ring, and bolol. Ring, phosphole ring, silole ring, azaborin ring, pyridine ring, pyrimidine ring, triazine ring, pyran ring, indole ring, isoindole ring, quinoline ring, isoquinoline ring, quinoxaline ring, benzoxazole ring, benzothiazole ring, benzoisoxazole Ring, benzoisothiazole ring, benzofuran ring, benzothiophene ring, benzopyran ring, benzimidazole ring, benzoborol ring, benzophosphole ring, benzosilole ring, benzoazaborine ring, carbazole ring, indolizine ring, acrizi Ring, phenazine ring, phenanthridine ring, phenanthroline ring, phenoxazine ring, phenothiazine ring, benzoselenophene ring, naphthofuran ring, naphthoxazole ring, naphthothiazole ring, naphthisoxazole ring, naphthimidazole ring, naphthoborol ring, naphthophos Hole ring, naphthosyl ring, naphthazaborine ring, naphthopyran ring, benzoindole ring, benzoisoindole ring, benzoquinoline ring, benzoisoquinoline ring, benzoquinoxaline ring, the following rings (x1) to (x9), the following (y1) to (y and a ring of y9).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 (式中Rは、各々、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を示す。)
 該不飽和の複素環は、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、アルキル基(炭素数1~6のアルキル基)、シクロアルキル基、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基、アルコキシ基、アリールオキシ基、ジアリールアミノ基等の置換基を1~6個有していてもよい。
(In the formula, each R 3 represents a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. A heteroaryl group which may have a group is shown.)
The unsaturated heterocycle includes a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a cyano group, a nitro group, an alkyl group (an alkyl group having 1 to 6 carbon atoms), a cycloalkyl group, It may have 1 to 6 substituents such as an aryl group (eg, phenyl group, naphthyl group, etc.), heteroaryl group, alkoxy group, aryloxy group, diarylamino group and the like.
 上記一般式(1)で表される化合物のうち、mが3を示す場合、3つのRを有する下記式: Of the compounds represented by the general formula (1), when m is 3, the following formula having three R a :
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(式中、Rは前記と同じ。波線は結合を示す。)
で表される構造は、一般式(A):
(In the formula, Ra is the same as described above. The wavy line indicates a bond.)
The structure represented by general formula (A):
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(式中、X、Y、Z、R、Rc、n及びoは、前記と同じ。波線は結合を示す。)
で表されるヘテロ環構造を形成していてもよい。
(In the formula, X, Y, Z, R b , R c , n and o are the same as described above. The wavy line represents a bond.)
The heterocyclic structure represented by these may be formed.
 m、m1、n、n1、n2、n3、n4、o、o1、o2、o3又はo4が0を示す場合とは、各環が置換基を有していないこと、つまり、各環上の置換位置の全てが水素原子であることを意味している。 When m, m1, n, n1, n2, n3, n4, o, o1, o2, o3, or o4 represents 0, each ring has no substituent, that is, substitution on each ring. It means that all of the positions are hydrogen atoms.
 本発明の化合物において、X、Y及びZの組合せとしては、特に制限はなく、例えば、XがB、YがO、ZがO;
XがB、YがS、ZがS;
XがB、YがS、ZがO;
XがB、YがO、ZがS;
XがB、YがN-R、ZがN-R
XがB、YがN-R、ZがO;
XがB、YがO、ZがN-R
XがB、YがN-R、ZがS
XがB、YがS、ZがN-R
XがP、YがO、ZがO;
XがP、YがS、ZがS;
XがP、YがS、ZがO;
XがP、YがO、ZがS;
XがP、YがN-R、ZがN-R
XがP、YがN-R、ZがO;
XがP、YがO、ZがN-R
XがP、YがN-R、ZがS
XがP、YがS、ZがN-R
XがP=O、YがO、ZがO;
XがP=O、YがS、ZがS;
XがP=O、YがS、ZがO;
XがP=O、YがO、ZがS;
XがP=O、YがN-R、ZがN-R
XがP=O、YがN-R、ZがO;
XがP=O、YがO、ZがN-R
XがP=O、YがN-R、ZがS
XがP=O、YがS、ZがN-R
XがP=S、YがO、ZがO;
XがP=S、YがS、ZがS;
XがP=S、YがS、ZがO;
XがP=S、YがO、ZがS;
XがP=S、YがN-R、ZがN-R
XがP=S、YがN-R、ZがO;
XがP=S、YがO、ZがN-R
XがP=S、YがN-R、ZがS
XがP=S、YがS、ZがN-R等が挙げられる。
好ましい組合せとしては、
XがB、YがO、ZがO;
XがB、YがS、ZがS;
XがB、YがN-R、ZがN-R
XがP、YがO、ZがO;
XがP、YがS、ZがS;
XがP、YがN-R、ZがN-R
XがP=O、YがO、ZがO;
XがP=O、YがS、ZがS;
XがP=O、YがN-R、ZがN-R
XがP=S、YがO、ZがO;
XがP=S、YがS、ZがS;
XがP=S、YがN-R、ZがN-Rである。
In the compound of the present invention, the combination of X, Y and Z is not particularly limited. For example, X is B, Y is O, and Z is O;
X is B, Y is S, Z is S;
X is B, Y is S, Z is O;
X is B, Y is O, Z is S;
X is B, Y is NR 1 , Z is NR 1 ;
X is B, Y is NR 1 , Z is O;
X is B, Y is O, Z is NR 1 ;
X is B, Y is NR 1 , Z is S
X is B, Y is S, Z is NR 1 ;
X is P, Y is O, Z is O;
X is P, Y is S, Z is S;
X is P, Y is S, Z is O;
X is P, Y is O, Z is S;
X is P, Y is NR 1 , Z is NR 1 ;
X is P, Y is NR 1 , Z is O;
X is P, Y is O, Z is NR 1 ;
X is P, Y is NR 1 , Z is S
X is P, Y is S, Z is NR 1 ;
X is P = O, Y is O, Z is O;
X is P = O, Y is S, Z is S;
X is P = O, Y is S, Z is O;
X is P = O, Y is O, Z is S;
X is P = O, Y is NR 1 , Z is NR 1 ;
X is P = O, Y is NR 1 , Z is O;
X is P = O, Y is O, Z is NR 1 ;
X is P = O, Y is NR 1 , Z is S
X is P = O, Y is S, Z is NR 1 ;
X is P = S, Y is O, Z is O;
X is P = S, Y is S, Z is S;
X is P = S, Y is S, Z is O;
X is P = S, Y is O, Z is S;
X is P = S, Y is NR 1 , Z is NR 1 ;
X is P = S, Y is NR 1 , Z is O;
X is P = S, Y is O, Z is NR 1 ;
X is P = S, Y is NR 1 , Z is S
X = P = S, Y = S, Z = NR 1 and the like.
Preferred combinations include
X is B, Y is O, Z is O;
X is B, Y is S, Z is S;
X is B, Y is NR 1 , Z is NR 1 ;
X is P, Y is O, Z is O;
X is P, Y is S, Z is S;
X is P, Y is NR 1 , Z is NR 1 ;
X is P = O, Y is O, Z is O;
X is P = O, Y is S, Z is S;
X is P = O, Y is NR 1 , Z is NR 1 ;
X is P = S, Y is O, Z is O;
X is P = S, Y is S, Z is S;
X is P = S, Y is NR 1 , and Z is NR 1 .
 本発明の化合物(単量体)において、環A、環B及び環Cの組合せとしては、特に制限はなく、例えば、
環Aがアリール環、環Bがアリール環、及び環Cがアリール環;
環Aがヘテロアリール環、環Bがアリール環、及び環Cがアリール環;
環Aがアリール環、環Bがヘテロアリール環、及び環Cがアリール環;
環Aがアリール環、環Bがアリール環、及び環Cがヘテロアリール環;
環Aがヘテロアリール環、環Bがヘテロアリール環、及び環Cがアリール環;
環Aがアリール環、環Bがヘテロアリール環、及び環Cがヘテロアリール環;
環Aがヘテロアリール環、環Bがアリール環、及び環Cがヘテロアリール環;
環Aがヘテロアリール環、環Bがヘテロアリール環、及び環Cがヘテロアリール環であり、
好ましくは、
環Aがアリール環、環Bがアリール環、及び環Cがアリール環;
環Aがアリール環、環Bがヘテロアリール環、及び環Cがアリール環;
環Aがアリール環、環Bがアリール環、及び環Cがヘテロアリール環;
環Aがアリール環、環Bがヘテロアリール環、及び環Cがヘテロアリール環
であり、
より好ましくは、
環Aがベンゼン環、環Bがアリール環、及び環Cがアリール環;
環Aがベンゼン環、環Bがヘテロアリール環、及び環Cがアリール環;
環Aがベンゼン環、環Bがアリール環、及び環Cがヘテロアリール環;
環Aがベンゼン環、環Bがヘテロアリール環、及び環Cがヘテロアリール環である。
In the compound (monomer) of the present invention, the combination of ring A, ring B and ring C is not particularly limited.
Ring A is an aryl ring, Ring B is an aryl ring, and Ring C is an aryl ring;
Ring A is a heteroaryl ring, Ring B is an aryl ring, and Ring C is an aryl ring;
Ring A is an aryl ring, Ring B is a heteroaryl ring, and Ring C is an aryl ring;
Ring A is an aryl ring, Ring B is an aryl ring, and Ring C is a heteroaryl ring;
Ring A is a heteroaryl ring, Ring B is a heteroaryl ring, and Ring C is an aryl ring;
Ring A is an aryl ring, Ring B is a heteroaryl ring, and Ring C is a heteroaryl ring;
Ring A is a heteroaryl ring, Ring B is an aryl ring, and Ring C is a heteroaryl ring;
Ring A is a heteroaryl ring, Ring B is a heteroaryl ring, and Ring C is a heteroaryl ring,
Preferably,
Ring A is an aryl ring, Ring B is an aryl ring, and Ring C is an aryl ring;
Ring A is an aryl ring, Ring B is a heteroaryl ring, and Ring C is an aryl ring;
Ring A is an aryl ring, Ring B is an aryl ring, and Ring C is a heteroaryl ring;
Ring A is an aryl ring, Ring B is a heteroaryl ring, and Ring C is a heteroaryl ring,
More preferably,
Ring A is a benzene ring, Ring B is an aryl ring, and Ring C is an aryl ring;
Ring A is a benzene ring, Ring B is a heteroaryl ring, and Ring C is an aryl ring;
Ring A is a benzene ring, Ring B is an aryl ring, and Ring C is a heteroaryl ring;
Ring A is a benzene ring, ring B is a heteroaryl ring, and ring C is a heteroaryl ring.
 本発明の化合物(二量体)において、環A、2つの環B、及び2つの環Cの組合せとしては、特に制限はなく、例えば、
環Aがベンゼン環、環Bがアリール環、及び環Cがアリール環;
環Aがベンゼン環、環Bがアリール環、及び環Cがヘテロアリール環;
環Aがベンゼン環、環Bがヘテロアリール環、及び環Cがヘテロアリール環であり、
好ましくは、
環Aがベンゼン環、環Bがアリール環、及び環Cがアリール環;
環Aがベンゼン環、環Bがヘテロアリール環、及び環Cがヘテロアリール環であり、
より好ましくは、
環Aがベンゼン環、環Bがベンゼン環、及び環Cがベンゼン環;
環Aがベンゼン環、環Bがナフタレン環、及び環Cがナフタレン環;
環Aがベンゼン環、環Bがピリジン環、及び環Cがピリジン環;
環Aがベンゼン環、環Bがキノリン環、及び環Cがキノリン環;
環Aがベンゼン環、環Bがチオフェン環、及び環Cがチオフェン環;
環Aがベンゼン環、環Bがベンゾチオフェン環、及び環Cがベンゾチオフェン環である。
In the compound of the present invention (dimer), the combination of ring A, two rings B, and two rings C is not particularly limited.
Ring A is a benzene ring, Ring B is an aryl ring, and Ring C is an aryl ring;
Ring A is a benzene ring, Ring B is an aryl ring, and Ring C is a heteroaryl ring;
Ring A is a benzene ring, Ring B is a heteroaryl ring, and Ring C is a heteroaryl ring,
Preferably,
Ring A is a benzene ring, Ring B is an aryl ring, and Ring C is an aryl ring;
Ring A is a benzene ring, Ring B is a heteroaryl ring, and Ring C is a heteroaryl ring,
More preferably,
Ring A is a benzene ring, Ring B is a benzene ring, and Ring C is a benzene ring;
Ring A is a benzene ring, Ring B is a naphthalene ring, and Ring C is a naphthalene ring;
Ring A is a benzene ring, Ring B is a pyridine ring, and Ring C is a pyridine ring;
Ring A is a benzene ring, Ring B is a quinoline ring, and Ring C is a quinoline ring;
Ring A is a benzene ring, Ring B is a thiophene ring, and Ring C is a thiophene ring;
Ring A is a benzene ring, ring B is a benzothiophene ring, and ring C is a benzothiophene ring.
 本発明の化合物の「塩」としては、特に制限はなく、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩等のアルカリ土類金属塩;ジメチルアミン塩、トリエチルアミン塩等のアミン塩;塩酸塩、過塩素酸塩、硫酸塩、硝酸塩等の無機酸塩;酢酸塩、メタンスルホン酸塩等の有機酸塩などが挙げられる。本発明の化合物の塩は、通常の塩の製造方法に従って製造することができるが、これらの方法に限定されるものではない。 The “salt” of the compound of the present invention is not particularly limited, and examples thereof include alkali metal salts such as sodium salts and potassium salts; alkaline earth metal salts such as magnesium salts and calcium salts; dimethylamine salts and triethylamine salts. Examples include amine salts; inorganic acid salts such as hydrochloride, perchlorate, sulfate, and nitrate; organic acid salts such as acetate and methanesulfonate. Although the salt of the compound of this invention can be manufactured in accordance with the manufacturing method of a normal salt, it is not limited to these methods.
 本発明のヘテロ環化合物又はその塩には、その含水物、水和物及び溶媒和物も包含される。 The heterocyclic compound of the present invention or a salt thereof includes hydrates, hydrates and solvates thereof.
 本発明のヘテロ環化合物又はその塩には、水素原子の少なくとも1つが重水素原子に置き換わっていてもよい化合物が含まれる。 The heterocyclic compound of the present invention or a salt thereof includes a compound in which at least one hydrogen atom may be replaced with a deuterium atom.
 2.本発明のヘテロ環化合物又はその塩の製造方法
 本発明のヘテロ環化合物又はその塩の製造方法について説明する。本発明の一般式(1A’)、(1AA’)、(1B’)、(1A”)、(1B”)、(1a”)及び(1b”)で表される構造を有するヘテロ環化合物又はその塩、並びに、下記一般式(1)、(1a)、(1-A)及び(1-B)で表されるヘテロ環化合物又はその塩は、下記の製造方法に従い製造することができる。
2. Production method of heterocyclic compound of the present invention or a salt thereof The production method of heterocyclic compound of the present invention or a salt thereof will be described. A heterocyclic compound having a structure represented by the general formula (1A ′), (1AA ′), (1B ′), (1A ″), (1B ″), (1a ″) and (1b ″) of the present invention; The salts thereof and the heterocyclic compounds represented by the following general formulas (1), (1a), (1-A) and (1-B) or salts thereof can be produced according to the following production method.
 具体的には、例えば、一般式(1A’): Specifically, for example, the general formula (1A ′):
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[式中、X、Y、Z、環A、環B、及び環Cは、前記と同じ]で表される構造を有するヘテロ環化合物又はその塩は、一般式(2-A1’): [Wherein X, Y, Z, ring A, ring B, and ring C are the same as those described above] a heterocyclic compound having a structure represented by the general formula (2-A1 ′):
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(式中、Y、Z、環A、環B、環C、R、R及びRは、前記と同じ。)
で表される化合物と、リチウム化合物とを反応させる工程、及び
該工程で得られた化合物とホウ素化合物又はリン化合物とを反応させる工程を含む方法(方法1);
一般式(2-A2’):
(In the formula, Y, Z, ring A, ring B, ring C, R 4 , R 5 and R 6 are the same as above.)
A method comprising reacting a compound represented by formula (I) with a lithium compound, and reacting the compound obtained in the step with a boron compound or a phosphorus compound (method 1);
Formula (2-A2 ′):
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
(式中、Y、Z、環A、環B、環C、R及びRは、前記と同じ。)
で表される化合物又はその塩と、ホウ素化合物又はリン化合物とを反応させる工程を含む方法(方法2)等で製造することができる。
(In the formula, Y, Z, ring A, ring B, ring C, R 5 and R 6 are the same as described above.)
It can manufacture by the method (method 2) etc. including the process with which the compound or its salt represented by these, and a boron compound or a phosphorus compound are made to react.
 さらに具体的に、本発明のヘテロ環化合物又はその塩のうち、上記一般式(1-A)及び(1-B)で表される化合物の製造方法を代表例として以下記載するが、これらに限定されるものではない。 More specifically, among the heterocyclic compounds of the present invention or salts thereof, the production methods of the compounds represented by the above general formulas (1-A) and (1-B) are described below as representative examples. It is not limited.
 本発明の一般式(1-A)で表されるヘテロ環化合物又はその塩(以下、「化合物(1-A)」ともいう。)及び一般式(1-B)で表されるヘテロ環化合物又はその塩(以下、「化合物(1-B)」ともいう。)は、例えば、下記反応式-1、反応式-2、反応式-3、反応式-4又は反応式-5に従い合成することができる。一般式(1-A)及び(1-B)で表される化合物における置換基R、R、Rc、m、n及びoは省略して以下に記載する。 The heterocyclic compound represented by the general formula (1-A) of the present invention or a salt thereof (hereinafter also referred to as “compound (1-A)”) and the heterocyclic compound represented by the general formula (1-B) Alternatively, a salt thereof (hereinafter, also referred to as “compound (1-B)”) is synthesized, for example, according to the following reaction formula-1, reaction formula-2, reaction formula-3, reaction formula-4, or reaction formula-5. be able to. The substituents R a , R b , R c , m, n, and o in the compounds represented by the general formulas (1-A) and (1-B) are omitted and described below.
 2-1.反応式-1の製造方法(製法1)
 反応式-1の製造方法は、一般式(2-A1)若しくは(2-B1)で表される化合物又はその塩と、ホウ素化合物又はリン化合物とを反応させる工程1Aを含んでいる。
2-1. Production method of reaction formula-1 (Production method 1)
The production method of Reaction Formula 1 includes Step 1A of reacting a compound represented by the general formula (2-A1) or (2-B1) or a salt thereof with a boron compound or a phosphorus compound.
 <反応式-1> <Reaction Formula-1>
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
(式中、X、Y及びZは、前記と同じ。) (Wherein X, Y and Z are the same as above)
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
(式中、X、Y及びZは、前記と同じ。)
 工程1A
 工程1Aで用いられるホウ素化合物としては、BI、BBr、BCl、BF等のハロゲン化ホウ素化合物が挙げられる。好ましくは、BBr、BClであり、より好ましくは、BBrである。ホウ素化合物は、1種単独で用いることができ、又は2種以上を組み合わせて用いることができる。
(Wherein X, Y and Z are the same as above)
Process 1A
Examples of the boron compound used in Step 1A include boron halide compounds such as BI 3 , BBr 3 , BCl 3 , and BF 3 . BBr 3 and BCl 3 are preferable, and BBr 3 is more preferable. A boron compound can be used individually by 1 type, or can be used in combination of 2 or more type.
 工程1Aで用いられるリン化合物としては、PF、PCl、PBr、PI等のハロゲン化物;P(OMe)、P(OEt)、P(O-nPr)、P(O-iPr)、P(O-nBu)、P(O-iBu)、P(O-sec-Bu)、P(O-tert-Bu)等のリンアルコキシ化合物;P(OPh)、P(O-ナフチル)等のリンアリールオキシ化合物;P(OAc)、P(O-トリフルオロアセチル)、P(O-プロピオニル)、P(O-ブチリル)、P(O-ベンゾイル)等のリンアシルオキシ化合物;PCl(NMe、PCl(NEt、PCl(NPr、PCl(NBu2、PBr(NMe、PBr(NEt、PBr(NPr、PBr(NBu等のリンハロアミノ化合物などが挙げられる。中でも好ましくはPCl、PBr、P(OEt)、P(OAc)であり、より好ましくはPCl、PBrである。これらリン化合物に代えて、リン原子上に硫黄を有するP(=S)Cl、P(=S)Br等の化合物;リン原子上に酸素を有するP(=O)Cl、P(=O)Br等の化合物を用いることでき、これらリン化合物によって、XがP=Sであるヘテロ環化合物又はその塩及びXがP=Oであるヘテロ環化合物又はその塩を合成することができる。リン化合物は、1種単独で用いることができ、又は2種以上を組み合わせて用いることができる。 Examples of the phosphorus compound used in Step 1A include halides such as PF 3 , PCl 3 , PBr 3 , and PI 3 ; P (OMe) 3 , P (OEt) 3 , P (O—nPr) 3 , P (O— phosphorus alkoxy compounds such as iPr) 3 , P (O-nBu) 3 , P (O-iBu) 3 , P (O-sec-Bu) 3 , P (O-tert-Bu) 3 ; P (OPh) 3 , P (O-naphthyl) 3, etc .; P (OAc) 3 , P (O-trifluoroacetyl) 3 , P (O-propionyl) 3 , P (O-butyryl) 3 , P (O -Phosyloxy compounds such as 3 ; PCl (NMe 2 ) 2 , PCl (NEt 2 ) 2 , PCl (NPr 2 ) 2 , PCl (NBu 2 ) 2, PBr (NMe 2 ) 2 , PBr (NEt 2 ) 2, PBr ( Pr 2) 2, PBr (NBu 2) such Rinharoamino compounds such 2. Among them, PCl 3 , PBr 3 , P (OEt) 3 and P (OAc) 3 are preferable, and PCl 3 and PBr 3 are more preferable. Instead of these phosphorus compounds, compounds such as P (= S) Cl 3 and P (= S) Br 3 having sulfur on the phosphorus atom; P (═O) Cl 3 and P (having oxygen on the phosphorus atom, P ( A compound such as ═O) Br 3 can be used, and by these phosphorus compounds, a heterocyclic compound or a salt thereof in which X is P═S and a heterocyclic compound or a salt thereof in which X is P═O can be synthesized. it can. A phosphorus compound can be used individually by 1 type, or can be used in combination of 2 or more type.
 ホウ素化合物又はリン化合物の使用量としては、適宜調節すればよく、例えば、一般式(2-A1)若しくは(2-B1)で表される化合物1モルに対して、一般に1~10モル、好ましくは1~6モル、より好ましくは1~4モルである。 The amount of the boron compound or phosphorus compound used may be appropriately adjusted. For example, it is generally 1 to 10 moles, preferably 1 mole relative to 1 mole of the compound represented by the general formula (2-A1) or (2-B1). Is 1 to 6 mol, more preferably 1 to 4 mol.
 工程1Aの反応促進のためには、NEt、i-PrNEt、2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチルピペリジン等のブレンステッド塩基;NaBPh、KBPh、BPh等のブレンステッド塩基;AlBr、AlCl等のルイス酸などを添加してもよい。 For promoting the reaction in Step 1A, Bronsted base such as NEt 3 , i-Pr 2 NEt, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, etc .; Bronsted bases such as NaBPh 4 , KBPh 4 , and BPh 3 ; Lewis acids such as AlBr 3 and AlCl 3 may be added.
 工程1Aは、溶媒の存在下で行うことができ、溶媒を用いる場合、その溶媒としては、本反応に悪影響を与えない溶媒であれば特に限定はない。用いられる溶媒としては、例えば、塩素系炭化水素溶媒(例えば、ジクロロメタン、クロロホルム、四塩化炭素)、無水エーテル溶媒(無水ジエチルエーテル、無水ジイソプロピルエーテル、無水テトラヒドロフラン(THF)、無水1,4-ジオキサン等)、芳香族炭化水素溶媒(例えば、ベンゼン、クロロベンゼン、1,4-クロロベンゼン、1,3-クロロベンゼン、1,2-ジクロロベンゼン、トルエン、キシレン、メシチレン、t-ブチルベンゼン等)、脂肪族炭化水素溶媒(ペンタン、ヘキサン、シクロヘキサン、石油エーテル、オクタン、デカン等)等が挙げられる。溶媒は、単独又は2種以上を組み合わせて用いることができる。これら溶媒のうち、クロロベンゼン、1,2-ジクロロベンゼン、トルエン、キシレン、メシチレン、tert-ブチルベンゼンが好ましく、特に1,2-ジクロロベンゼンが好ましい。 Step 1A can be performed in the presence of a solvent. When a solvent is used, the solvent is not particularly limited as long as it does not adversely affect the present reaction. Examples of the solvent used include chlorinated hydrocarbon solvents (eg, dichloromethane, chloroform, carbon tetrachloride), anhydrous ether solvents (anhydrous diethyl ether, anhydrous diisopropyl ether, anhydrous tetrahydrofuran (THF), anhydrous 1,4-dioxane, etc. ), Aromatic hydrocarbon solvents (eg, benzene, chlorobenzene, 1,4-chlorobenzene, 1,3-chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, t-butylbenzene, etc.), aliphatic hydrocarbons Examples thereof include solvents (pentane, hexane, cyclohexane, petroleum ether, octane, decane, etc.). A solvent can be used individually or in combination of 2 or more types. Of these solvents, chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, and tert-butylbenzene are preferable, and 1,2-dichlorobenzene is particularly preferable.
 溶媒の使用量としては、適宜調節すればよく、例えば、一般式(2-A1)若しくは(2-B1)で表される化合物1モルに対して、一般に0.2~50リットル、好ましくは1~10リットルである。 The amount of the solvent used may be appropriately adjusted. For example, it is generally 0.2 to 50 liters, preferably 1 to 1 mol of the compound represented by the general formula (2-A1) or (2-B1). ~ 10 liters.
 反応温度は、通常-78℃~200℃であり、好ましくは0℃~200℃であり、より好ましくは50℃~200℃である。 The reaction temperature is usually −78 ° C. to 200 ° C., preferably 0 ° C. to 200 ° C., more preferably 50 ° C. to 200 ° C.
 反応時間は、通常1時間~72時間であり、好ましくは1時間~48時間であり、より好ましくは1~24時間である。 The reaction time is usually 1 hour to 72 hours, preferably 1 hour to 48 hours, and more preferably 1 to 24 hours.
 工程1Aは、密閉容器中で行ってもよい。その容器としては、特に制限はなく、ステンレス製密閉容器、耐圧仕様のガラス製密閉容器等が挙げられる。 Step 1A may be performed in a sealed container. There is no restriction | limiting in particular as the container, A stainless steel airtight container, a pressure-resistant specification glass airtight container, etc. are mentioned.
 工程1Aは、窒素、アルゴン等の不活性ガスの雰囲気下で行ってもよい。反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。 Step 1A may be performed in an atmosphere of an inert gas such as nitrogen or argon. The reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
 反応終了後、得られる反応混合物から、過剰のホウ素化合物又はリン化合物、ブレンステッド塩基、ルイス酸、反応により生じる塩、未反応の原料化合物等を、蒸留、ろ過、遠心分離等の通常の分離方法により除去し、目的とする一般式(1-A)若しくは(1-B)で表される化合物を取り出すことができる。 After completion of the reaction, from the resulting reaction mixture, excess boron compound or phosphorus compound, Bronsted base, Lewis acid, salt generated by the reaction, unreacted raw material compound, etc., ordinary separation methods such as distillation, filtration, centrifugation, etc. The target compound represented by the general formula (1-A) or (1-B) can be taken out.
 2-2.反応式-2の製造方法(製法2)
 反応式-2の製造方法は、一般式(2-A2)若しくは(2-B2)で表される化合物又はその塩とリチウム化合物とを反応させる工程(工程2A)、及び工程2Aで得られた化合物とホウ素化合物又はリン化合物とを反応させる工程(工程2B)を含んでいる。
2-2. Production method of reaction formula-2 (Production method 2)
The production method of Reaction Formula-2 was obtained by reacting the compound represented by the general formula (2-A2) or (2-B2) or a salt thereof with a lithium compound (Step 2A), and Step 2A. A step of reacting the compound with a boron compound or a phosphorus compound (step 2B) is included.
 <反応式-2> <Reaction Formula-2>
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(式中、X、Y及びZは、前記と同じ。Rは、ハロゲン原子を示す。) (In the formula, X, Y and Z are the same as described above. R 4 represents a halogen atom.)
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(式中、X、Y及びZは、前記と同じ。Rは、ハロゲン原子を示す。)
 工程2A
 工程2Aで用いられるリチウム化合物としては、特に制限はなく、例えば、アルキルリチウム、アリールリチウム、水素化リチウム等が挙げられる。好ましくは、アルキルリチウム、アリールリチウムであり、より好ましくは、n-ブチルリチウム、フェニルリチウムである。リチウム化合物は、1種単独で用いることができ、又は2種以上を組み合わせて用いることができる。中でも、2種以上のリチウム化合物を使用することが好ましく、n-ブチルリチウムとフェニルリチウムとを組み合わせることがより好ましい。2種以上のリチウム化合物を使用する場合は、その添加順序は適宜設定すればよく、例えば、最初にフェニルリチウムを添加し、次にn-ブチルリチウムを添加することができる。なお、この反対に最初にn-ブチルリチウムを添加し、次にフェニルリチウムを添加してもよく、2種以上のリチウム化合物を一緒に添加してもよい。
(In the formula, X, Y and Z are the same as described above. R 4 represents a halogen atom.)
Process 2A
There is no restriction | limiting in particular as a lithium compound used at the process 2A, For example, alkyl lithium, aryl lithium, lithium hydride etc. are mentioned. Alkyl lithium and aryl lithium are preferable, and n-butyl lithium and phenyl lithium are more preferable. A lithium compound can be used individually by 1 type, or can be used in combination of 2 or more type. Among these, it is preferable to use two or more lithium compounds, and it is more preferable to combine n-butyl lithium and phenyl lithium. When two or more kinds of lithium compounds are used, the order of addition may be set as appropriate. For example, phenyllithium can be added first and then n-butyllithium can be added. On the contrary, n-butyllithium may be added first and then phenyllithium may be added, or two or more lithium compounds may be added together.
 リチウム化合物の使用量としては、適宜調節すればよく、例えば、一般式(2-A2)若しくは(2-B2)で表される化合物1モルに対して、一般に1~20モル、好ましくは1~10モル、より好ましくは1~6モルである。 The amount of the lithium compound used may be appropriately adjusted. For example, it is generally 1 to 20 mol, preferably 1 to 1 mol per 1 mol of the compound represented by the general formula (2-A2) or (2-B2). The amount is 10 mol, more preferably 1 to 6 mol.
 工程2Aは、溶媒の存在下で行うことができ、溶媒を用いる場合、その溶媒としては、本反応に悪影響を与えない溶媒であれば特に限定はない。用いられる溶媒としては、例えば、無水エーテル溶媒(無水ジエチルエーテル、無水ジイソプロピルエーテル、無水テトラヒドロフラン(THF)、無水1,4-ジオキサン等)、芳香族炭化水素溶媒(例えば、ベンゼン、クロロベンゼン、1,4-クロロベンゼン、1,3-クロロベンゼン、1,2-ジクロロベンゼン、トルエン、キシレン、メシチレン、t-ブチルベンゼン等)、脂肪族炭化水素溶媒(ペンタン、ヘキサン、シクロヘキサン、石油エーテル、オクタン、デカン等)等が挙げられる。溶媒は、単独又は2種以上を組み合わせて用いることができる。これら溶媒のうち、THF、1,4-ジオキサン、トルエン、キシレン、クロロベンゼン、1,2-ジクロロベンゼンが好ましく、特にTHF、トルエンが好ましい。 Step 2A can be performed in the presence of a solvent, and when a solvent is used, the solvent is not particularly limited as long as it does not adversely affect the present reaction. Examples of the solvent to be used include anhydrous ether solvents (anhydrous diethyl ether, anhydrous diisopropyl ether, anhydrous tetrahydrofuran (THF), anhydrous 1,4-dioxane and the like), aromatic hydrocarbon solvents (for example, benzene, chlorobenzene, 1, 4 -Chlorobenzene, 1,3-chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, t-butylbenzene, etc.), aliphatic hydrocarbon solvents (pentane, hexane, cyclohexane, petroleum ether, octane, decane, etc.), etc. Is mentioned. A solvent can be used individually or in combination of 2 or more types. Of these solvents, THF, 1,4-dioxane, toluene, xylene, chlorobenzene and 1,2-dichlorobenzene are preferable, and THF and toluene are particularly preferable.
 溶媒の使用量としては、適宜調節すればよく、例えば、一般式(2-A2)若しくは(2-B2)で表される化合物1モルに対して、一般に0.2~50リットル、好ましくは1~10リットルである。 The amount of the solvent used may be appropriately adjusted. For example, it is generally 0.2 to 50 liters, preferably 1 to 1 mol of the compound represented by the general formula (2-A2) or (2-B2). ~ 10 liters.
 反応温度は、通常-78℃~200℃であり、好ましくは-78℃~100℃であり、より好ましくは-78℃~50℃である。 The reaction temperature is usually -78 ° C to 200 ° C, preferably -78 ° C to 100 ° C, more preferably -78 ° C to 50 ° C.
 反応時間は、通常1時間~48時間であり、好ましくは1時間~24時間であり、より好ましくは1~12時間である。 The reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
 工程2B
 工程2Bで用いられるホウ素化合物としては、BI、BBr、BCl、BF等のハロゲン化ホウ素化合物が挙げられる。好ましくは、BBr、BClであり、より好ましくは、BBrである。ホウ素化合物は、1種単独で用いることができ、又は2種以上を組み合わせて用いることができる。
Process 2B
Examples of the boron compound used in Step 2B include boron halide compounds such as BI 3 , BBr 3 , BCl 3 , and BF 3 . BBr 3 and BCl 3 are preferable, and BBr 3 is more preferable. A boron compound can be used individually by 1 type, or can be used in combination of 2 or more type.
 工程2Bで用いられるリン化合物としては、PF、PCl、PBr、PI等のハロゲン化物;P(OMe)、P(OEt)、P(O-nPr)、P(O-iPr)、P(O-nBu)、P(O-iBu)、P(O-sec-Bu)、P(O-tert-Bu)等のリンアルコキシ化合物;P(OPh)、P(O-ナフチル)等のリンアリールオキシ化合物;P(OAc)、P(O-トリフルオロアセチル)、P(O-プロピオニル)、P(O-ブチリル)、P(O-ベンゾイル)等のリンアシルオキシ化合物;PCl(NMe、PCl(NEt、PCl(NPr、PCl(NBu2、PBr(NMe、PBr(NEt、PBr(NPr、PBr(NBu等のリンハロアミノ化合物などが挙げられる。中でも好ましくは、PCl、PBr、P(OEt)、P(OAc)であり、より好ましくは、PCl、PBrである。これらリン化合物に代えて、リン原子上に硫黄を有するP(=S)Cl、P(=S)Br等の化合物、リン原子上に酸素を有するP(=O)Cl、P(=O)Br等の化合物を用いることで、XがP=Sであるヘテロ環化合物又はその塩及びXがP=Oであるヘテロ環化合物又はその塩を合成することができる。リン化合物は、1種単独で用いることができ、又は2種以上を組み合わせて用いることができる。 Examples of the phosphorus compound used in Step 2B include halides such as PF 3 , PCl 3 , PBr 3 , and PI 3 ; P (OMe) 3 , P (OEt) 3 , P (O—nPr) 3 , P (O— phosphorus alkoxy compounds such as iPr) 3 , P (O-nBu) 3 , P (O-iBu) 3 , P (O-sec-Bu) 3 , P (O-tert-Bu) 3 ; P (OPh) 3 , P (O-naphthyl) 3, etc .; P (OAc) 3 , P (O-trifluoroacetyl) 3 , P (O-propionyl) 3 , P (O-butyryl) 3 , P (O -Phosyloxy compounds such as 3 ; PCl (NMe 2 ) 2 , PCl (NEt 2 ) 2 , PCl (NPr 2 ) 2 , PCl (NBu 2 ) 2, PBr (NMe 2 ) 2 , PBr (NEt 2 ) 2, PBr ( Pr 2) 2, PBr (NBu 2) such Rinharoamino compounds such 2. Among them, PCl 3 , PBr 3 , P (OEt) 3 , and P (OAc) 3 are preferable, and PCl 3 and PBr 3 are more preferable. Instead of these phosphorus compounds, compounds such as P (= S) Cl 3 and P (= S) Br 3 having sulfur on the phosphorus atom, P (= O) Cl 3 and P (having oxygen on the phosphorus atom, P ( By using a compound such as ═O) Br 3 , a heterocyclic compound or a salt thereof in which X is P═S and a heterocyclic compound or a salt thereof in which X is P═O can be synthesized. A phosphorus compound can be used individually by 1 type, or can be used in combination of 2 or more type.
 ホウ素化合物又はリン化合物の使用量としては、適宜調節すればよく、例えば、一般式(2-A2)若しくは(2-B2)で表される化合物1モルに対して、一般に1~10モル、好ましくは1~6モル、より好ましくは1~4モルである。 The amount of the boron compound or phosphorus compound used may be appropriately adjusted. For example, it is generally 1 to 10 moles, preferably 1 mole relative to 1 mole of the compound represented by the general formula (2-A2) or (2-B2). Is 1 to 6 mol, more preferably 1 to 4 mol.
 工程2Bの溶媒は、工程2Aで用いた溶媒を使用でき、その使用量も工程2Aに記載した量を用いることができる。 The solvent used in Step 2A can be used as the solvent in Step 2B, and the amount described in Step 2A can also be used.
 反応温度は、通常-78℃~200℃であり、好ましくは-78℃~100℃であり、より好ましくは-78℃~50℃である。 The reaction temperature is usually -78 ° C to 200 ° C, preferably -78 ° C to 100 ° C, more preferably -78 ° C to 50 ° C.
 反応時間は、通常1時間~48時間であり、好ましくは1時間~24時間であり、より好ましくは1~12時間である。 The reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
 工程2A及び2Bは、密閉容器中で行ってもよい。その容器としては、特に制限はなく、ステンレス製密閉容器、耐圧仕様のガラス製密閉容器等が挙げられる。 Steps 2A and 2B may be performed in a sealed container. There is no restriction | limiting in particular as the container, A stainless steel airtight container, a pressure-resistant specification glass airtight container, etc. are mentioned.
 工程2A及び2Bは、窒素、アルゴン等の不活性ガスの雰囲気下で行ってもよい。反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。 Steps 2A and 2B may be performed in an atmosphere of an inert gas such as nitrogen or argon. The reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
 反応終了後、得られる反応混合物から、過剰のホウ素化合物又はリン化合物、ルイス酸、反応により生じる塩、未反応の原料化合物等を、蒸留、ろ過、遠心分離等の通常の分離方法により除去し、目的とする一般式(1-A)若しくは(1-B)で表される化合物を取り出すことができる。 After completion of the reaction, excess boron compound or phosphorus compound, Lewis acid, salt produced by the reaction, unreacted raw material compound, etc. are removed from the resulting reaction mixture by a usual separation method such as distillation, filtration, centrifugation, The target compound represented by the general formula (1-A) or (1-B) can be taken out.
 2-3.反応式-3の製造方法(製法3)
 反応式-3の製造方法は、一般式(2-A3)若しくは(2-B3)で表される化合物又はその塩と、ホウ素化合物又はリン化合物とを反応させる工程(工程3A)を含んでいる。
2-3. Production method of Reaction formula-3 (Production method 3)
The production method of Reaction Formula 3 includes a step (Step 3A) of reacting a compound represented by the general formula (2-A3) or (2-B3) or a salt thereof with a boron compound or a phosphorus compound. .
 <反応式-3> <Reaction Formula-3>
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
(式中、X、Y及びZは、前記と同じ。R及びRは、それぞれ置換基を有していてもよいアルキル基を示す。) (In the formula, X, Y and Z are the same as above. R 5 and R 6 each represents an alkyl group which may have a substituent.)
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
(式中、X、Y及びZは、前記と同じ。R及びRは、それぞれ置換基を有していてもよいアルキル基を示す。) (In the formula, X, Y and Z are the same as above. R 5 and R 6 each represents an alkyl group which may have a substituent.)
 工程3A
 工程3Aで用いられるホウ素化合物としては、BI、BBr、BCl、BF等のハロゲン化ホウ素化合物などが挙げられる。好ましくは、BBr、BClであり、より好ましくは、BBrである。ホウ素化合物は、1種単独で用いることができ、又は2種以上を組み合わせて用いることができる。
Process 3A
Examples of the boron compound used in Step 3A include boron halide compounds such as BI 3 , BBr 3 , BCl 3 , and BF 3 . BBr 3 and BCl 3 are preferable, and BBr 3 is more preferable. A boron compound can be used individually by 1 type, or can be used in combination of 2 or more type.
 工程3Aで用いられるリン化合物としては、PF、PCl、PBr、PI等のハロゲン化物;P(OMe)、P(OEt)、P(O-nPr)、P(O-iPr)、P(O-nBu)、P(O-iBu)、P(O-sec-Bu)、P(O-tert-Bu)等のリンアルコキシ化合物;P(OPh)、P(O-ナフチル)等のリンアリールオキシ化合物;P(OAc)、P(O-トリフルオロアセチル)、P(O-プロピオニル)、P(O-ブチリル)、P(O-ベンゾイル)等のリンアシルオキシ化合物;PCl(NMe、PCl(NEt、PCl(NPr、PCl(NBu2、PBr(NMe、PBr(NEt、PBr(NPr、PBr(NBu等のリンハロアミノ化合物などが挙げられる。中でも好ましくはPCl、PBr、P(OEt)、P(OAc)であり、より好ましくはPCl、PBrである。これらリン化合物に代えて、リン原子上に硫黄を有するP(=S)Cl、P(=S)Br等の化合物、リン原子上に酸素を有するP(=O)Cl、P(=O)Brなどの化合物を用いることで、XがP=Sであるヘテロ環化合物又はその塩及びXがP=Oであるヘテロ環化合物又はその塩を合成することができる。リン化合物は、1種単独で用いることができ、又は2種以上を組み合わせて用いることができる。 Examples of the phosphorus compound used in Step 3A include halides such as PF 3 , PCl 3 , PBr 3 , and PI 3 ; P (OMe) 3 , P (OEt) 3 , P (O—nPr) 3 , P (O— phosphorus alkoxy compounds such as iPr) 3 , P (O-nBu) 3 , P (O-iBu) 3 , P (O-sec-Bu) 3 , P (O-tert-Bu) 3 ; P (OPh) 3 , P (O-naphthyl) 3, etc .; P (OAc) 3 , P (O-trifluoroacetyl) 3 , P (O-propionyl) 3 , P (O-butyryl) 3 , P (O -Phosyloxy compounds such as 3 ; PCl (NMe 2 ) 2 , PCl (NEt 2 ) 2 , PCl (NPr 2 ) 2 , PCl (NBu 2 ) 2, PBr (NMe 2 ) 2 , PBr (NEt 2 ) 2, PBr ( Pr 2) 2, PBr (NBu 2) such Rinharoamino compounds such 2. Among them, PCl 3 , PBr 3 , P (OEt) 3 and P (OAc) 3 are preferable, and PCl 3 and PBr 3 are more preferable. Instead of these phosphorus compounds, compounds such as P (= S) Cl 3 and P (= S) Br 3 having sulfur on the phosphorus atom, P (= O) Cl 3 and P (having oxygen on the phosphorus atom, P ( By using a compound such as ═O) Br 3 , a heterocyclic compound or a salt thereof in which X is P═S and a heterocyclic compound or a salt in which X is P═O can be synthesized. A phosphorus compound can be used individually by 1 type, or can be used in combination of 2 or more type.
 ホウ素化合物又はリン化合物の使用量としては、適宜調節すればよく、例えば、一般式(2-A3)若しくは(2-B3)で表される化合物1モルに対して、一般に1~10モル、好ましくは1~6モル、より好ましくは1~4モルである。 The amount of the boron compound or phosphorus compound used may be appropriately adjusted. For example, it is generally 1 to 10 moles, preferably 1 mole relative to 1 mole of the compound represented by the general formula (2-A3) or (2-B3). Is 1 to 6 mol, more preferably 1 to 4 mol.
 工程3Aの反応促進のためには、NEt、i-PrNEt、2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチルピペリジン等のブレンステッド塩基;NaBPh、KBPh、BPh等のブレンステッド塩基;AlBr、AlCl等のルイス酸を添加してもよい。 For promoting the reaction in Step 3A, Bronsted base such as NEt 3 , i-Pr 2 NEt, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, etc .; Bronsted bases such as NaBPh 4 , KBPh 4 and BPh 3 ; Lewis acids such as AlBr 3 and AlCl 3 may be added.
 工程3Aは、溶媒の存在下で行うことができ、溶媒を用いる場合、その溶媒としては、本反応に悪影響を与えない溶媒であれば特に限定はない。用いられる溶媒としては、例えば、塩素系炭化水素溶媒(例えば、ジクロロメタン、クロロホルム、四塩化炭素)、無水エーテル(無水ジエチルエーテル、無水ジイソプロピルエーテル、無水テトラヒドロフラン(THF)、無水1,4-ジオキサン等)、芳香族炭化水素(例えば、ベンゼン、クロロベンゼン、1,4-クロロベンゼン、1,3-クロロベンゼン、1,2-ジクロロベンゼン、トルエン、キシレン、メシチレン、t-ブチルベンゼン等)、脂肪族炭化水素(ペンタン、ヘキサン、シクロヘキサン、石油エーテル、オクタン、デカン等)等が挙げられる。溶媒は、単独又は2種以上を組み合わせて用いることができる。これら溶媒のうち、クロロベンゼン、1,4-クロロベンゼン、1,3-クロロベンゼン、1,2-ジクロロベンゼン、トルエン、キシレン、メシチレン、t-ブチルベンゼンが好ましく、特にクロロベンゼン、1,2-ジクロロベンゼンが好ましい。 Step 3A can be performed in the presence of a solvent. When a solvent is used, the solvent is not particularly limited as long as it does not adversely affect the present reaction. Examples of the solvent used include chlorinated hydrocarbon solvents (eg, dichloromethane, chloroform, carbon tetrachloride), anhydrous ethers (anhydrous diethyl ether, anhydrous diisopropyl ether, anhydrous tetrahydrofuran (THF), anhydrous 1,4-dioxane, etc.) Aromatic hydrocarbons (eg, benzene, chlorobenzene, 1,4-chlorobenzene, 1,3-chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, t-butylbenzene, etc.), aliphatic hydrocarbons (pentane) Hexane, cyclohexane, petroleum ether, octane, decane, etc.). A solvent can be used individually or in combination of 2 or more types. Of these solvents, chlorobenzene, 1,4-chlorobenzene, 1,3-chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, and t-butylbenzene are preferable, and chlorobenzene and 1,2-dichlorobenzene are particularly preferable. .
 溶媒の使用量としては、適宜調節すればよく、例えば、一般式(2-A3)若しくは(2-B3)で表される化合物1モルに対して、一般に0.2~50リットル、好ましくは1~10リットルである。 The amount of the solvent used may be appropriately adjusted. For example, it is generally 0.2 to 50 liters, preferably 1 to 1 mol of the compound represented by the general formula (2-A3) or (2-B3). ~ 10 liters.
 反応温度は、通常0℃~250℃であり、好ましくは100℃~250℃であり、より好ましくは100℃~200℃である。反応時間は、通常1時間~48時間であり、好ましくは1時間~24時間であり、より好ましくは1~12時間である。 The reaction temperature is usually 0 ° C. to 250 ° C., preferably 100 ° C. to 250 ° C., more preferably 100 ° C. to 200 ° C. The reaction time is usually 1 hour to 48 hours, preferably 1 hour to 24 hours, and more preferably 1 to 12 hours.
 工程3Aは、密閉容器中で行ってもよい。その容器としては、特に制限はなく、ステンレス製密閉容器、耐圧仕様のガラス製密閉容器等が挙げられる。 Step 3A may be performed in a sealed container. There is no restriction | limiting in particular as the container, A stainless steel airtight container, a pressure-resistant specification glass airtight container, etc. are mentioned.
 工程3Aは、窒素、アルゴン等の不活性ガスの雰囲気下で行ってもよい。反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。 Step 3A may be performed in an atmosphere of an inert gas such as nitrogen or argon. The reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
 反応終了後、得られる反応混合物から、過剰のホウ素化合物又はリン化合物、ブレンステッド塩基、ルイス酸、反応により生じる塩、未反応の原料化合物等を、蒸留、ろ過、遠心分離等の通常の分離方法により除去し、目的とする一般式(1-A)若しくは(1-B)で表される化合物を取り出すことができる。 After completion of the reaction, from the resulting reaction mixture, excess boron compound or phosphorus compound, Bronsted base, Lewis acid, salt generated by the reaction, unreacted raw material compound, etc., ordinary separation methods such as distillation, filtration, centrifugation, etc. The target compound represented by the general formula (1-A) or (1-B) can be taken out.
 2-4.反応式-4の製造方法(製法4)
 反応式-4の製造方法は、一般式(2-A4)若しくは(2-B4)で表される化合物又はその塩と、リチウム化合物とを反応させる工程(工程4A)、及び工程4Aで得られた化合物とホウ素化合物とを反応させる工程(工程4B)を含んでいる。
2-4. Production method of Reaction formula 4 (Production method 4)
The production method of Reaction Formula-4 is obtained in the step of reacting the compound represented by the general formula (2-A4) or (2-B4) or a salt thereof with a lithium compound (Step 4A), and Step 4A. A step of reacting the compound with the boron compound (step 4B).
 <反応式-4> <Reaction Formula-4>
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
(式中、X、Y及びZは、前記と同じ。Rは、ハロゲン原子を示す。R及びRは、それぞれ置換基を有していてもよいアルキル基を示す。) (In the formula, X, Y and Z are the same as above. R 4 represents a halogen atom. R 5 and R 6 each represents an alkyl group which may have a substituent.)
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
(式中、X、Y及びZは、前記と同じ。Rは、ハロゲン原子を示す。R及びRは、それぞれ置換基を有していてもよいアルキル基を示す。) (In the formula, X, Y and Z are the same as above. R 4 represents a halogen atom. R 5 and R 6 each represents an alkyl group which may have a substituent.)
 工程4A
 工程4Aで用いられるリチウム化合物としては、特に制限はなく、例えば、メチルリチウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、フェニルリチウム、金属リチウム等が挙げられる。好ましくはn-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、金属リチウムであり、より好ましくは、n-ブチルリチウム、t-ブチルリチウムである。リチウム化合物は、1種単独で用いることができ、又は2種以上を組み合わせて用いることができる。
Step 4A
The lithium compound used in Step 4A is not particularly limited, and examples thereof include methyl lithium, n-butyl lithium, s-butyl lithium, t-butyl lithium, phenyl lithium, and metallic lithium. Preferred are n-butyllithium, s-butyllithium, t-butyllithium, and metallic lithium, and more preferred are n-butyllithium and t-butyllithium. A lithium compound can be used individually by 1 type, or can be used in combination of 2 or more type.
 リチウム化合物の使用量としては、適宜調節すればよく、例えば、一般式(2-A4)若しくは(2-B4)で表される化合物1モルに対して、一般に1~10モル、好ましくは1~6モル、より好ましくは1~4モルである。 The amount of the lithium compound used may be appropriately adjusted. For example, it is generally 1 to 10 mol, preferably 1 to 1 mol per 1 mol of the compound represented by the general formula (2-A4) or (2-B4). 6 mol, more preferably 1 to 4 mol.
 工程4Aは、溶媒の存在下で行うことができ、溶媒を用いる場合、その溶媒としては、本反応に悪影響を与えない溶媒であれば特に限定はない。用いられる溶媒としては、例えば、無水エーテル(無水ジエチルエーテル、無水ジイソプロピルエーテル、無水テトラヒドロフラン(THF)、無水1,4-ジオキサン等)、芳香族炭化水素(例えば、ベンゼン、クロロベンゼン、1,4-クロロベンゼン、1,3-クロロベンゼン、1,2-ジクロロベンゼン、トルエン、キシレン、メシチレン、t-ブチルベンゼン等)、脂肪族炭化水素(ペンタン、ヘキサン、シクロヘキサン、石油エーテル、オクタン、デカン等)等が挙げられる。溶媒は、単独又は2種以上を組み合わせて用いることができる。これら溶媒のうち、ベンゼン、クロロベンゼン、1,2-ジクロロベンゼン、トルエン、キシレン、メシチレン、t-ブチルベンゼンが好ましく、特にクロロベンゼン、1,2-ジクロロベンゼン、トルエン、キシレンが好ましい。 Step 4A can be performed in the presence of a solvent. When a solvent is used, the solvent is not particularly limited as long as it does not adversely affect the present reaction. Examples of the solvent used include anhydrous ether (anhydrous diethyl ether, anhydrous diisopropyl ether, anhydrous tetrahydrofuran (THF), anhydrous 1,4-dioxane, etc.), aromatic hydrocarbons (eg, benzene, chlorobenzene, 1,4-chlorobenzene). 1,3-chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, t-butylbenzene, etc.), aliphatic hydrocarbons (pentane, hexane, cyclohexane, petroleum ether, octane, decane, etc.) . A solvent can be used individually or in combination of 2 or more types. Of these solvents, benzene, chlorobenzene, 1,2-dichlorobenzene, toluene, xylene, mesitylene, and t-butylbenzene are preferable, and chlorobenzene, 1,2-dichlorobenzene, toluene, and xylene are particularly preferable.
 溶媒の使用量としては、適宜調節すればよく、例えば、一般式(2-A4)若しくは(2-B4)で表される化合物1モルに対して、一般に0.2~50リットル、好ましくは1~10リットルである。 The amount of the solvent used may be appropriately adjusted. For example, it is generally 0.2 to 50 liters, preferably 1 to 1 mol of the compound represented by the general formula (2-A4) or (2-B4). ~ 10 liters.
 反応温度は、通常-78℃~150℃であり、好ましくは-78℃~100℃であり、より好ましくは-78℃~50℃である。 The reaction temperature is usually -78 ° C to 150 ° C, preferably -78 ° C to 100 ° C, more preferably -78 ° C to 50 ° C.
 反応時間は、通常1時間~48時間であり、好ましくは1時間~24時間であり、より好ましくは1~12時間である。 The reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
 工程4B
 工程4Bで用いられるホウ素化合物としては、BI、BBr、BCl、BF等のハロゲン化ホウ素化合物が挙げられる。好ましくは、BBr、BClであり、より好ましくは、BBrである。ホウ素化合物は、1種単独で用いることができ、又は2種以上を組み合わせて用いることができる。
Process 4B
Examples of the boron compound used in Step 4B include boron halide compounds such as BI 3 , BBr 3 , BCl 3 , and BF 3 . BBr 3 and BCl 3 are preferable, and BBr 3 is more preferable. A boron compound can be used individually by 1 type, or can be used in combination of 2 or more type.
 工程4Bで用いられるリン化合物としては、PF、PCl、PBr、PI等のハロゲン化物;P(OMe)、P(OEt)、P(O-nPr)、P(O-iPr)、P(O-nBu)、P(O-iBu)、P(O-sec-Bu)、P(O-tert-Bu)等のリンアルコキシ化合物;P(OPh)、P(O-ナフチル)等のリンアリールオキシ化合物;P(OAc)、P(O-トリフルオロアセチル)、P(O-プロピオニル)、P(O-ブチリル)、P(O-ベンゾイル)等のリンアシルオキシ化合物;PCl(NMe、PCl(NEt、PCl(NPr、PCl(NBu2、PBr(NMe、PBr(NEt、PBr(NPr、PBr(NBu等のリンハロアミノ化合物などが挙げられる。中でも好ましくはPCl、PBr、P(OEt)、P(OAc)であり、より好ましくはPCl、PBrである。リン化合物は、1種単独で用いることができ、又は2種以上を組み合わせて用いることができる。中でも好ましくはPCl、PBr、P(OEt))、P(OAc))であり、より好ましくはPCl、PBrである。これらリン化合物に代えて、リン原子上に硫黄を有するP(=S)Cl、P(=S)Br等の化合物、リン原子上に酸素を有するP(=O)Cl、P(=O)Br等の化合物などを用いることで、XがP=Sであるヘテロ環化合物又はその塩、及びXがP=Oであるヘテロ環化合物又はその塩を合成することができる。 Examples of the phosphorus compound used in Step 4B include halides such as PF 3 , PCl 3 , PBr 3 , and PI 3 ; P (OMe) 3 , P (OEt) 3 , P (O—nPr) 3 , P (O— phosphorus alkoxy compounds such as iPr) 3 , P (O-nBu) 3 , P (O-iBu) 3 , P (O-sec-Bu) 3 , P (O-tert-Bu) 3 ; P (OPh) 3 , P (O-naphthyl) 3, etc .; P (OAc) 3 , P (O-trifluoroacetyl) 3 , P (O-propionyl) 3 , P (O-butyryl) 3 , P (O -Phosyloxy compounds such as 3 ; PCl (NMe 2 ) 2 , PCl (NEt 2 ) 2 , PCl (NPr 2 ) 2 , PCl (NBu 2 ) 2, PBr (NMe 2 ) 2 , PBr (NEt 2 ) 2, PBr ( Pr 2) 2, PBr (NBu 2) such Rinharoamino compounds such 2. Among them, PCl 3 , PBr 3 , P (OEt) 3 and P (OAc) 3 are preferable, and PCl 3 and PBr 3 are more preferable. A phosphorus compound can be used individually by 1 type, or can be used in combination of 2 or more type. Among them, PCl 3 , PBr 3 , P (OEt)) 3 and P (OAc)) 3 are preferable, and PCl 3 and PBr 3 are more preferable. Instead of these phosphorus compounds, compounds such as P (= S) Cl 3 and P (= S) Br 3 having sulfur on the phosphorus atom, P (= O) Cl 3 and P (having oxygen on the phosphorus atom, P ( By using a compound such as ═O) Br 3 , a heterocyclic compound or a salt thereof in which X is P═S, and a heterocyclic compound or a salt in which X is P═O can be synthesized.
 ホウ素化合物又はリン化合物の使用量としては、適宜調節すればよく、例えば、一般式(2-A4)若しくは(2-B4)で表される化合物1モルに対して、一般に1~10モル、好ましくは1~6モル、より好ましくは1~4モルである。 The amount of the boron compound or phosphorus compound used may be appropriately adjusted. For example, it is generally 1 to 10 mol, preferably 1 mol relative to 1 mol of the compound represented by the general formula (2-A4) or (2-B4). Is 1 to 6 mol, more preferably 1 to 4 mol.
 工程4Bの反応促進のためには、AlBr、AlCl等のルイス酸を添加してもよい。 In order to promote the reaction in Step 4B, a Lewis acid such as AlBr 3 or AlCl 3 may be added.
 工程4Bの溶媒は、工程4Aで用いた溶媒を使用でき、その使用量も工程4Aに記載した量を用いることができる。 The solvent used in Step 4A can be used as the solvent in Step 4B, and the amount described in Step 4A can also be used.
 反応温度は、通常-78~150℃であり、好ましくは-78℃~100℃であり、より好ましくは-40℃~100℃である。 The reaction temperature is usually −78 to 150 ° C., preferably −78 ° C. to 100 ° C., more preferably −40 ° C. to 100 ° C.
 反応時間は、通常1時間~48時間であり、好ましくは1時間~24時間であり、より好ましくは1~12時間である。 The reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
 工程4A及び4Bは、密閉容器中で行ってもよい。その容器としては、特に制限はなく、ステンレス製密閉容器、耐圧仕様のガラス製密閉容器等が挙げられる。 Steps 4A and 4B may be performed in a sealed container. There is no restriction | limiting in particular as the container, A stainless steel airtight container, a pressure-resistant specification glass airtight container, etc. are mentioned.
 工程4A及び4Bは、窒素、アルゴン等の不活性ガスの雰囲気下で行ってもよい。反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。 Steps 4A and 4B may be performed in an atmosphere of an inert gas such as nitrogen or argon. The reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
 反応終了後、得られる反応混合物から、過剰のホウ素化合物又はリン化合物、ルイス酸、反応により生じる塩、未反応の原料化合物等を、蒸留、ろ過、遠心分離等の通常の分離方法により除去し、目的とする一般式(1-A)若しくは(1-B)で表される化合物を取り出すことができる。 After completion of the reaction, excess boron compound or phosphorus compound, Lewis acid, salt produced by the reaction, unreacted raw material compound, etc. are removed from the resulting reaction mixture by a usual separation method such as distillation, filtration, centrifugation, The target compound represented by the general formula (1-A) or (1-B) can be taken out.
 2-5.変換反応(製法5)
 本発明のヘテロ環化合物又はその塩のうち、XがP=Sである下記一般式(1-APS)又は(1-BPS)で表されるヘテロ環化合物又はその塩は、XがPである一般式(1-AP)又は(1-BP)で表されるヘテロ環化合物又はその塩へ変換することができる(変換1)。
2-5. Conversion reaction (Production method 5)
Among the heterocyclic compounds or salts thereof according to the present invention, X is P in the heterocyclic compound or salt thereof represented by the following general formula (1-APS) or (1-BPS) wherein X = P = S It can be converted to a heterocyclic compound represented by the general formula (1-AP) or (1-BP) or a salt thereof (Conversion 1).
 XがPである一般式(1-AP)又は(1-BP)で表されるヘテロ環化合物又はその塩は、XがP=Oである一般式(1-APO)又は(1-BPO)で表されるヘテロ環化合物又はその塩へ変換することができる(変換2)。 The heterocyclic compound represented by the general formula (1-AP) or (1-BP) in which X is P or a salt thereof is represented by the general formula (1-APO) or (1-BPO) in which X is P═O. (Conversion 2).
 そして、XがPである一般式(1-AP)又は(1-BP)で表されるヘテロ環化合物又はその塩は、XがP=Sである一般式(1-APS)又は(1-BPS)で表されるヘテロ環化合物又はその塩へ変換することができる(変換3)。 The heterocyclic compound represented by the general formula (1-AP) or (1-BP) or a salt thereof in which X is P is represented by the general formula (1-APS) or (1- BPS) or a salt thereof (Conversion 3).
 これらの変換方法としては、以下の反応式-5に従い行うことができる。
<反応式-5>
These conversion methods can be carried out according to the following reaction formula-5.
<Reaction Formula-5>
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
(式中、Y及びZは、前記と同じ。) (In the formula, Y and Z are the same as above.)
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
(式中、Y及びZは、前記と同じ。)
 2-5-1.一般式(1-AP)又は(1-BP)で表される化合物への変換方法(変換1)
 一般式(1-AP)又は(1-BP)で表される化合物は、一般式(1-APS)又は(1-BPS)で表される化合物とトリエチルホスフィン、アリールシラン、アルキルシラン等の公知の還元剤とを反応させことで製造することができる。該変換方法は、P=Sを有する化合物をPを有する化合物に変換する通常の方法に従って製造することができるが、これらの方法に限定されるものではない。
(In the formula, Y and Z are the same as above.)
2-5-1. Method of conversion to compound represented by general formula (1-AP) or (1-BP) (Conversion 1)
The compound represented by the general formula (1-AP) or (1-BP) is a compound represented by the general formula (1-APS) or (1-BPS) and known compounds such as triethylphosphine, arylsilane, and alkylsilane. It can be produced by reacting with a reducing agent. The conversion method can be produced according to a usual method for converting a compound having P = S to a compound having P, but is not limited to these methods.
 2-5-2.一般式(1-APO)又は(1-BPO)で表される化合物への変換方法(変換2)
 一般式(1-APO)又は(1-BPO)で表される化合物(XがP=Oである化合物)は、例えば、一般式(1-AP)又は(1-BP)で表される化合物(XがPである化合物)と酸化剤とを反応させる工程によって製造できる。
2-5-2. Method for conversion to compound represented by general formula (1-APO) or (1-BPO) (Conversion 2)
The compound represented by the general formula (1-APO) or (1-BPO) (the compound in which X is P═O) is, for example, a compound represented by the general formula (1-AP) or (1-BP) It can be produced by a step of reacting (a compound in which X is P) and an oxidizing agent.
 酸化剤としては、メタクロロ過安息香酸(m-CPBA)、過酸化水素水等が挙げられる。中でも、好ましくは、m-CPBAである。 Examples of the oxidizing agent include metachloroperbenzoic acid (m-CPBA), hydrogen peroxide water, and the like. Of these, m-CPBA is preferable.
 酸化剤の使用量としては、適宜調節すればよく、例えば、工程2Bで得られた化合物1モルに対して、一般に1~10モル、好ましくは1~6モル、より好ましくは1~4モルである。 The amount of the oxidizing agent used may be appropriately adjusted. For example, it is generally 1 to 10 mol, preferably 1 to 6 mol, more preferably 1 to 4 mol, relative to 1 mol of the compound obtained in Step 2B. is there.
 該変換2の反応における溶媒は、例えば、工程2Aで用いた溶媒を使用でき、その使用量も工程2Aに記載した量を用いることができる。 As the solvent in the reaction of the conversion 2, for example, the solvent used in the step 2A can be used, and the amount used can be the amount described in the step 2A.
 反応温度は、通常-78℃~100℃であり、好ましくは-40℃~100℃であり、より好ましくは0℃~50℃である。 The reaction temperature is usually −78 ° C. to 100 ° C., preferably −40 ° C. to 100 ° C., more preferably 0 ° C. to 50 ° C.
 反応時間は、通常1時間~48時間であり、好ましくは1時間~24時間であり、より好ましくは1~12時間である。 The reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
 2-5-3.一般式(1-APS)又は(1-BPS)で表される化合物への変換方法(変換3)
 一般式(1-APS)又は(1-BPS)で表される化合物(XがP=Sである化合物)は、例えば、一般式(1-AP)又は(1-BP)で表される化合物(XがPである化合物)と硫化剤とを反応させる工程によって製造できる。
2-5-3. Method for conversion to compound represented by general formula (1-APS) or (1-BPS) (Conversion 3)
The compound represented by the general formula (1-APS) or (1-BPS) (compound in which X is P = S) is, for example, a compound represented by the general formula (1-AP) or (1-BP) It can be produced by a step of reacting (a compound in which X is P) and a sulfurizing agent.
 硫化剤としては、硫黄、Lawesson’s(ローソン)試薬等が挙げられる。好ましくは、硫黄である。 Examples of the sulfurizing agent include sulfur, Lawesson's reagent, and the like. Sulfur is preferable.
 硫化剤の使用量としては、適宜調節すればよく、例えば、工程2Cで得られた化合物1モルに対して、一般に1~10モル、好ましくは1~6モル、より好ましくは1~4モルである。 The amount of the sulfiding agent used may be appropriately adjusted. For example, it is generally 1 to 10 mol, preferably 1 to 6 mol, more preferably 1 to 4 mol, relative to 1 mol of the compound obtained in Step 2C. is there.
 該変換3の反応における溶媒は、例えば、工程2Aで用いた溶媒を使用でき、その使用量も工程2Aに記載した量を用いることができる。 As the solvent in the reaction of the conversion 3, for example, the solvent used in Step 2A can be used, and the amount used thereof can be the amount described in Step 2A.
 反応温度は、通常-78℃~100℃であり、好ましくは-40℃~100℃であり、より好ましくは0℃~50℃である。 The reaction temperature is usually −78 ° C. to 100 ° C., preferably −40 ° C. to 100 ° C., more preferably 0 ° C. to 50 ° C.
 反応時間は、通常1時間~48時間であり、好ましくは1時間~24時間であり、より好ましくは1~12時間である。 The reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
 これら変換1、変換2及び変換3の反応は、密閉容器中で行ってもよい。その容器としては、特に制限はなく、ステンレス製密閉容器、耐圧仕様のガラス製密閉容器等が挙げられる。 These reactions of conversion 1, conversion 2 and conversion 3 may be performed in a sealed container. There is no restriction | limiting in particular as the container, A stainless steel airtight container, a pressure-resistant specification glass airtight container, etc. are mentioned.
 これら変換1、変換2及び変換3の反応は、窒素、アルゴン等の不活性ガスの雰囲気下で行ってもよい。反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。 These reactions of conversion 1, conversion 2, and conversion 3 may be performed in an atmosphere of an inert gas such as nitrogen or argon. The reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
 上記各変換反応の終了後、得られる反応混合物を、蒸留、ろ過、遠心分離等の通常の精製方法を用いて、目的とする本発明の化合物を取り出すことができる。 After completion of each of the above conversion reactions, the target compound of the present invention can be taken out of the resulting reaction mixture using a conventional purification method such as distillation, filtration, and centrifugation.
 2-6.置換基の導入(製法6)
 本発明のヘテロ環化合物又はその塩のうち、芳香環又はヘテロ環上に置換基を有する化合物を製造する方法としては、予め置換基を有する原料化合物(一般式(2-A1)、(2-A2)、(2-A3)、(2-A4)、(2-B1)、(2-B2)、(2-B3)及び(2-B4)で表される化合物)を用いて、製造してもよいし、又は上記2-1、2-2、2-3、2-4及び2-5で示した方法に従い製造した一般式(1-A1)、(1-A2)、(1-A3)、(1-A4)、(1-B1)、(1-B2)、(1-B3)及び(1-B4)で表される化合物に対して、一般的な合成手法によって置換基を後から導入することもできる。例えば、芳香環又はヘテロ環上にハロゲン基を有する化合物は、原料化合物及びハロゲン化剤を反応させることで製造できる。
2-6. Introduction of substituents (Production method 6)
Among the heterocyclic compounds or salts thereof of the present invention, a method for producing a compound having a substituent on the aromatic ring or heterocyclic ring may be a raw material compound having a substituent (general formula (2-A1), (2- A2), (2-A3), (2-A4), (2-B1), (2-B2), (2-B3) and (2-B4))) Or the compounds represented by the general formulas (1-A1), (1-A2), (1- A3), (1-A4), (1-B1), (1-B2), (1-B3) and a compound represented by (1-B4) are substituted with a general synthetic method. It can also be introduced later. For example, a compound having a halogen group on an aromatic ring or a heterocycle can be produced by reacting a raw material compound and a halogenating agent.
 該ハロゲン化剤としては、ヨウ素、一塩化ヨウ素、N-ヨードスクシンイミド、1,3-ジヨード-5,5-ジメチルヒダントイン、臭素、N-ブロモスクシンイミド、ジブロモイソシアヌル酸、1,3-ジブロモ-5,5-ジメチルヒダントイン、塩素、N-クロロスクシンイミド、フッ素、1-フルオロ-2,6-ジクロロピリジニウムテトラフルオロボラ―ト、2,6-ジクロロ-1-フルオロピリジニウムトリフルオロメタンスルホナート、1-フルオロピリジニウムテトラフルオロボラート等が挙げられる。 Examples of the halogenating agent include iodine, iodine monochloride, N-iodosuccinimide, 1,3-diiodo-5,5-dimethylhydantoin, bromine, N-bromosuccinimide, dibromoisocyanuric acid, 1,3-dibromo-5, 5-dimethylhydantoin, chlorine, N-chlorosuccinimide, fluorine, 1-fluoro-2,6-dichloropyridinium tetrafluoroborate, 2,6-dichloro-1-fluoropyridinium trifluoromethanesulfonate, 1-fluoropyridinium tetra Examples thereof include fluoroborate.
 ハロゲン剤の使用量としては、適宜調節すればよく、例えば、化合物1モルに対して、一般に1~20モル、好ましくは1~10モル、より好ましくは1~6モルである。 The amount of the halogen agent to be used may be appropriately adjusted. For example, it is generally 1 to 20 mol, preferably 1 to 10 mol, more preferably 1 to 6 mol, relative to 1 mol of the compound.
 該ハロゲン化反応における溶媒は、例えば、工程2Aで用いた溶媒を使用でき、その使用量も工程2Aに記載した量を用いることができる。 As the solvent in the halogenation reaction, for example, the solvent used in Step 2A can be used, and the amount used thereof can be the amount described in Step 2A.
 反応温度は、通常-78℃~100℃であり、好ましくは-40℃~100℃であり、より好ましくは0℃~50℃である。 The reaction temperature is usually −78 ° C. to 100 ° C., preferably −40 ° C. to 100 ° C., more preferably 0 ° C. to 50 ° C.
 反応時間は、通常1時間~48時間であり、好ましくは1時間~24時間であり、より好ましくは1~12時間である。 The reaction time is usually 1 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
 該反応は、密閉容器中で行ってもよい。その容器としては、特に制限はなく、ステンレス製密閉容器、耐圧仕様のガラス製密閉容器等が挙げられる。 The reaction may be performed in a sealed container. There is no restriction | limiting in particular as the container, A stainless steel airtight container, a pressure-resistant specification glass airtight container, etc. are mentioned.
 該反応は、窒素、アルゴン等の不活性ガスの雰囲気下で行ってもよい。反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。 The reaction may be performed in an atmosphere of an inert gas such as nitrogen or argon. The reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or may be performed under pressure.
 上記各変換反応の終了後、得られる反応混合物を、蒸留、ろ過、遠心分離等の通常の精製方法を用いて、本発明のヘテロ環化合物を取り出すことができる。 After completion of each conversion reaction, the heterocyclic compound of the present invention can be taken out of the resulting reaction mixture using a conventional purification method such as distillation, filtration, and centrifugation.
 更に、ここで得られた芳香環又はヘテロ環上にハロゲン基を有する本発明のヘテロ環化合物は、公知の製造方法(例えば、A. V. Ushkov, V. V. Grushin, J. Am. Chem. Soc. 2011, 133, 10999.;A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020.; J.Huang, S. P. Nolan, J. Am. Chem. Soc. 1999, 121, 9889.; R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461.; D. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27.; G, Evano, N, Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054.; Monnier, F.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48, 6954.)に従い、そのハロゲン基を、シアノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、又は置換基を有していてもよいアミノ基等に変換することができる。 Furthermore, the heterocyclic compound of the present invention having a halogen group on the aromatic ring or heterocyclic ring obtained here is prepared by known production methods (for example, A. V. Ushkov, V. V. Grushin, J. Am. Chem . Soc. 2011, 133, 10999.; A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020 .; J.Huang, S. P. Nolan , J. Am. Chem. Soc. 1999, 121, 9889 .; R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461 .; D. S. Surry, S. L. Buchwald Chem. Sci. 2011, 2, 27 .; G, Evano, N, Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054 .; Monnier, F .; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48, 6954.) The halogen group has a cyano group, an alkyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. May be converted to a heteroaryl group which may be substituted or an amino group which may have a substituent.
 なお、本発明のヘテロ環化合物又はその塩には、水素原子の少なくとも1つが重水素原子に置き換わっていてもよい化合物が含まれるが、このような化合物は所望の箇所が重水素化された原料を用いることで、上記と同様に合成することができる。あるいは、公知の重水素化反応(例えば、特開平6-312949)に従い、本発明のヘテロ環化合物又はその塩における少なくとも1つの水素原子が重水素化された化合物を製造することができる。 The heterocyclic compound of the present invention or a salt thereof includes a compound in which at least one hydrogen atom may be replaced by a deuterium atom. Such a compound is a raw material in which a desired position is deuterated. Can be synthesized in the same manner as described above. Alternatively, a compound in which at least one hydrogen atom in the heterocyclic compound of the present invention or a salt thereof is deuterated can be produced according to a known deuteration reaction (for example, JP-A-6-312949).
 3.原料化合物の製造
 原料化合物である一般式(2-A1)、(2-A2)、(2-A3)、(2-A4)(2-B1)、(2-B2)、(2-B3)及び(2-B4)で表される化合物は、公知の製造方法(例えば、A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020.; J.Huang, S. P. Nolan, J. Am. Chem. Soc. 1999, 121, 9889.; R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461.; T. Hatakeyama,S.Hashimoto, K. Ishizuka, M. Nakamura, J. Am. Chem. Soc. 2009, 131, 11949.; K. Harada, H. Hart, F. C.-J. Du, J. Org. Chem. 1985, 50, 5524.; A. Saednya, H. Hart, Synthesis 1996, 1455.)に従い製造することができ、その製造方法は特に制限はない。
3. Production of raw material compounds General formulas (2-A1), (2-A2), (2-A3), (2-A4) (2-B1), (2-B2), (2-B3) And a compound represented by (2-B4) can be produced by known production methods (for example, AF Littke, C. Dai, GC Fu, J. Am. Chem. Soc. 2000, 122, 4020 .; J. Huang, SP Nolan, J. Am. Chem. Soc. 1999, 121, 9889 .; R. Martin, SL Buchwald, Acc. Chem. Res. 2008, 41, 1461 .; T. Hatakeyama, S. Hashimoto, K. Ishizuka, M Nakamura, J. Am. Chem. Soc. 2009, 131, 11949 .; K. Harada, H. Hart, FC-J. Du, J. Org. Chem. 1985, 50, 5524 .; A. Saednya, H Hart, Synthesis 1996, 1455.), and the production method is not particularly limited.
 例えば、後述の実施例に記載するとおり、グリニャール試薬等の有機金属試薬を用いて製造することができる。 For example, as described in Examples below, it can be produced using an organometallic reagent such as a Grignard reagent.
 4.用途
 本発明の電子デバイスは、上記本発明の化合物のうち、少なくとも1種の化合物を含んでいる。
4). Use The electronic device of the present invention contains at least one compound among the compounds of the present invention.
 本発明の電子デバイスとしては、有機発光素子、有機薄膜トランジスタ、有機薄膜太陽電池、ポリマーメモリ、キャパシタ等が挙げられる。中でも、好ましくは、有機発光素子、有機薄膜トランジスタ、及び有機薄膜太陽電池に用いることが適している。 Examples of the electronic device of the present invention include an organic light emitting element, an organic thin film transistor, an organic thin film solar cell, a polymer memory, and a capacitor. Among these, it is preferable to use them for organic light emitting devices, organic thin film transistors, and organic thin film solar cells.
 特に本発明の電子デバイスは、アノード、カソード、及び有機化合物を含有する層(有機化合物層)を含む電子デバイスであってもよく、該有機化合物層は、本発明の化合物を含有する層である。 In particular, the electronic device of the present invention may be an electronic device including an anode, a cathode, and a layer (organic compound layer) containing an organic compound, and the organic compound layer is a layer containing the compound of the present invention. .
 4-1.有機発光素子
 有機発光素子としては、有機エレクトロルミネッセンス(有機EL)、有機発光ダイオード(有機LED)等が挙げられる。
4-1. Organic Light Emitting Element Examples of the organic light emitting element include organic electroluminescence (organic EL) and organic light emitting diode (organic LED).
 本発明の有機発光素子は、アノード(陽極)及びカソード(陰極)からなる少なくとも一対の電極と、該一対の電極間に挟持された少なくとも一層の有機化合物を含有する層(有機化合物層)からなる有機発光素子において、前記有機化合物を含有する層の少なくとも一層が、本発明の化合物又はその塩のうち、少なくとも一種の化合物を含有することを特徴とする。 The organic light-emitting device of the present invention comprises at least a pair of electrodes composed of an anode (anode) and a cathode (cathode), and a layer (organic compound layer) containing at least one organic compound sandwiched between the pair of electrodes. In the organic light-emitting device, at least one layer containing the organic compound contains at least one compound of the compound of the present invention or a salt thereof.
 1つの好ましい実施形態において、本発明の有機発光素子は、有機化合物を含有する層のうち、発光層に本発明の化合物の少なくとも一種を含有することができる。また、発光層がホストとゲストの2つ以上の化合物からなる有機発光素子において、該ホスト又はゲストが本発明の化合物であることが好ましい。なお、本発明におけるゲストとは、有機EL素子の発光領域において、正孔と電子の再結合に応答して光を発する化合物のことであり、発光領域を形成する物質(ホスト)に含有させるものである。 In one preferred embodiment, the organic light emitting device of the present invention may contain at least one compound of the present invention in the light emitting layer among the layers containing the organic compound. Moreover, in the organic light emitting device in which the light emitting layer is composed of two or more compounds of a host and a guest, the host or guest is preferably the compound of the present invention. The guest in the present invention is a compound that emits light in response to recombination of holes and electrons in the light emitting region of the organic EL element, and is included in the substance (host) that forms the light emitting region. It is.
 別の実施形態において、本発明の化合物は、電荷移動度が高く、正孔輸送材料として正孔輸送層に配合することができ、電子輸送材料として電子輸送層に使用することも有効である。 In another embodiment, the compound of the present invention has high charge mobility, can be blended in the hole transport layer as a hole transport material, and is also effective for use in the electron transport layer as an electron transport material.
 本発明の化合物を、ゲストとして用いる場合の含有量としては、発光層全体の量に対して、50重量%以下であることが好ましく、更に好ましくは、0.1重量%以上30重量%以下であり、特に好ましくは、0.1重量%以上15重量%以下である。 When the compound of the present invention is used as a guest, the content is preferably 50% by weight or less, more preferably 0.1% by weight or more and 30% by weight or less based on the total amount of the light emitting layer. Yes, and particularly preferably 0.1 wt% or more and 15 wt% or less.
 一方、本発明の化合物をホスト化合物として用いる場合、ゲストに特に制限はなく、所望する発光色等によって、後述する化合物等を適宜用いることができる。また、必要に応じてゲスト以外に、ホール輸送性化合物、電子輸送性化合物等を一緒にドープして使用することもできる。 On the other hand, when the compound of the present invention is used as a host compound, the guest is not particularly limited, and the compounds described below can be appropriately used depending on the desired emission color. In addition to the guest, if necessary, a hole transporting compound, an electron transporting compound and the like can be doped together and used.
 有機化合物層として、発光層のみに本発明の化合物を用いてもよいが、必要に応じて、発光層以外に、例えば、正孔注入層、正孔輸送層、正孔障壁層、電子注入層、電子輸送層、電子障壁層等にも本発明の化合物を用いることができる。 As the organic compound layer, the compound of the present invention may be used only in the light emitting layer, but if necessary, other than the light emitting layer, for example, a hole injection layer, a hole transport layer, a hole barrier layer, an electron injection layer The compound of the present invention can also be used for an electron transport layer, an electron barrier layer, and the like.
 本発明の有機発光素子は、本発明の化合物を真空蒸着法又は溶液塗布法により陽極及び陰極の間に形成させることができる。その有機層の厚みは10μmより薄く、好ましくは0.5μm以下、より好ましくは0.01以上0.5μm以下の厚みに薄膜化することが好ましい。 In the organic light emitting device of the present invention, the compound of the present invention can be formed between the anode and the cathode by a vacuum deposition method or a solution coating method. The thickness of the organic layer is thinner than 10 μm, preferably 0.5 μm or less, more preferably 0.01 to 0.5 μm.
 本発明の有機発光素子において、本発明の化合物を含有する層及び他の有機化合物を含有する層は、一般には真空蒸着法あるいは、適当な溶媒に溶解させて塗布法により薄膜を形成させることができる。特に、塗布法で成膜する場合は、適当な結着樹脂と組み合わせて膜を形成させることもできる。 In the organic light-emitting device of the present invention, the layer containing the compound of the present invention and the layer containing another organic compound can generally be formed into a thin film by a vacuum deposition method or a coating method by dissolving in a suitable solvent. it can. In particular, when a film is formed by a coating method, the film can be formed in combination with an appropriate binder resin.
 上記結着樹脂としては、特に制限はなく、広範囲な結着性樹脂より選択でき、例えば、ポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ブチラール樹脂、ポリビニルアセタール樹脂、ジアリルフタレート樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ポリスルホン樹脂、尿素樹脂等が挙げられる。これらは、単独又は共重合体ポリマーとして1種又は2種以上混合してもよい。 The binder resin is not particularly limited and can be selected from a wide range of binder resins. For example, polyvinyl carbazole resin, polycarbonate resin, polyester resin, polyarylate resin, polystyrene resin, acrylic resin, methacrylic resin, butyral resin, Examples thereof include polyvinyl acetal resin, diallyl phthalate resin, phenol resin, epoxy resin, silicone resin, polysulfone resin, urea resin and the like. These may be used alone or in combination as a copolymer polymer.
 陽極材料としては、特に制限はなく、例えば、金、白金、ニッケル、パラジウム、コバルト、セレン、バナジウム等の金属単体あるいはこれらの合金、酸化錫、酸化亜鉛、酸化錫インジウム(ITO)、酸化亜鉛インジウム等の金属酸化物が使用できる。また、ポリアニリン、ポリピロール、ポリチオフェン、ポリフェニレンスルフィド等の導電性ポリマーも使用できる。これらの電極物質は単独で用いてもよく、複数併用することもできる。 The anode material is not particularly limited. For example, simple metals such as gold, platinum, nickel, palladium, cobalt, selenium, vanadium or alloys thereof, tin oxide, zinc oxide, indium tin oxide (ITO), indium zinc oxide A metal oxide such as can be used. In addition, conductive polymers such as polyaniline, polypyrrole, polythiophene, and polyphenylene sulfide can also be used. These electrode materials may be used alone or in combination.
 陰極材料としては、特に制限はなく、例えば、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウム、アルミニウム、インジウム、銀、鉛、錫、クロム等の金属単体あるいは複数の合金として用いることができる。酸化錫インジウム(ITO)等の金属酸化物の利用も可能である。また、陰極は一層構成でもよく、多層構成をとることもできる。 The cathode material is not particularly limited, and can be used as a single metal or a plurality of alloys such as lithium, sodium, potassium, cesium, calcium, magnesium, aluminum, indium, silver, lead, tin, and chromium. A metal oxide such as indium tin oxide (ITO) can also be used. Further, the cathode may have a single layer structure or a multilayer structure.
 本発明で用いる基板としては、特に制限はなく、例えば、金属製基板、セラミックス製基板等の不透明性基板、ガラス、石英、プラスチックシート等の透明性基板が用いられる。また、基板にカラーフィルター膜、蛍光色変換フィルター膜、誘電体反射膜等を用いて発色光をコントロールする事も可能である。 The substrate used in the present invention is not particularly limited, and for example, an opaque substrate such as a metal substrate or a ceramic substrate, or a transparent substrate such as glass, quartz, or a plastic sheet is used. It is also possible to control the color light by using a color filter film, a fluorescent color conversion filter film, a dielectric reflection film or the like on the substrate.
 なお、作成した素子に対して、酸素、水分等との接触を防止する目的で保護層あるいは封止層を設けることもできる。保護層としては、ダイヤモンド薄膜、金属酸化物、金属窒化物等の無機材料膜、フッ素樹脂、ポリパラキシレン、ポリエチレン、シリコーン樹脂、ポリスチレン樹脂等の高分子膜;さらには、光硬化性樹脂等が挙げられる。また、ガラス、気体不透過性フィルム、金属等をカバーし、適当な封止樹脂により素子自体をパッケージングすることもできる。 In addition, a protective layer or a sealing layer can be provided for the purpose of preventing contact with oxygen, moisture and the like on the prepared element. Examples of protective layers include diamond thin films, inorganic material films such as metal oxides and metal nitrides, polymer films such as fluororesins, polyparaxylene, polyethylene, silicone resins, and polystyrene resins; and photocurable resins and the like. Can be mentioned. Further, it is possible to cover glass, a gas-impermeable film, a metal, etc., and to package the element itself with an appropriate sealing resin.
 4-2.有機半導体材料
 本発明の化合物は、前記有機半導体材料としても使用でき、本発明の化合物と有機溶媒を含む有機半導体層形成用組成物として使用することができる。
4-2. Organic Semiconductor Material The compound of the present invention can be used as the organic semiconductor material, and can be used as a composition for forming an organic semiconductor layer containing the compound of the present invention and an organic solvent.
 前記有機溶媒としては、特に制限はなく、当該分野において通常使用される有機溶媒を用いることができ、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、イソブチルアルコール及びジアセトンアルコールを含むアルコール;アセトン、メチルエチルケトン及びメチルイソブチルケトンを含むケトン;エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、へキシレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,2-ヘキサンジオール及び1,6-へキサンジオールを含むグリコール;エチレングリコールモノメチルエーテル及びトリエチレングリコールモノエチルエーテルを含むグリコールエーテル;プロピレングリコールモノメチルエーテルアセテート(PGMEA)を含むグリコールエーテルアセテート;エチルアセテート、ブトキシエトキシエチルアセテート(butoxyethoxy ethyl acetate)、ブチルカルビトールアセテート(BCA)及びジヒドロテルピネオールアセテート(dihydroterpineol acetate;DHTA)を含むアセテート;テルピネオール;トリメチルペンタンジオールモノイソブチレート(Trimethyl pentanediol monoisobutyrate;TEXANOL)、ジクロロエテン(DCE);クロロベンゼン;及びN-メチル-2-ピロリドン(NMP)等が挙げられる。該有機溶媒はそれぞれ単独で又は2種以上混合して使用することができる。 The organic solvent is not particularly limited, and organic solvents that are usually used in the art can be used. For example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl Alcohols including alcohol, t-butyl alcohol, isobutyl alcohol and diacetone alcohol; ketones including acetone, methyl ethyl ketone and methyl isobutyl ketone; ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, hexylene glycol, 1,3 -Propanediol, 1,4-butanediol, 1,2,4-butanetriol, 1,5-pentanediol, 1,2-hexanediol and 1,6-hexane Glycols including all; glycol ethers including ethylene glycol monomethyl ether and triethylene glycol monoethyl ether; glycol ether acetates including propylene glycol monomethyl ether acetate (PGMEA); ethyl acetate, butoxyethoxyethyl acetate, butyl carb Acetate including tall acetate (BCA) and dihydroterpineol acetate (DHTA); terpineol; trimethylpentanediol monoisobutyrate (TEXANOL), dichloroethene (DCE); chlorobenzene; and N-methyl-2 -Pyrrolidone (NMP) and the like. These organic solvents can be used alone or in admixture of two or more.
 前記組成物は、有機半導体材料0.1~10重量%程度及び有機溶媒90~99.9重量%程度を含むことが好ましい。 The composition preferably includes about 0.1 to 10% by weight of an organic semiconductor material and about 90 to 99.9% by weight of an organic solvent.
 本発明は、さらに前記半導体層形成用組成物を用いて形成することができる有機半導体薄膜を提供するものである。この際、前記薄膜は、本発明の半導体層形成用組成物を基板上にコートさせて形成することができる。 The present invention further provides an organic semiconductor thin film that can be formed using the semiconductor layer forming composition. At this time, the thin film can be formed by coating the substrate forming composition of the present invention on the substrate.
 基板としては、目的を阻害しない限り特に限定されるものではないが、例えば、ガラス基板;シリコンウェハー;ITOガラス;石英(quartz);シリカ塗布基板;アルミナ塗布基板;ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリカーボネート、ポリビニルアルコール、ポリアクリレート、ポリイミド、ポリノルボルネン、ポリエーテルスルホン等のプラスチック基板などを用途に応じて当業者が適切に選択して使用することができる。 The substrate is not particularly limited as long as the purpose is not impaired. For example, glass substrate; silicon wafer; ITO glass; quartz; silica-coated substrate; alumina-coated substrate; polyethylene naphthalate, polyethylene terephthalate, polycarbonate A plastic substrate such as polyvinyl alcohol, polyacrylate, polyimide, polynorbornene, or polyethersulfone can be appropriately selected and used by those skilled in the art depending on the application.
 前記コーティング方法としては、通常の常温湿式工程を限定なしに使用することができるが、好ましくは、スピンコーティング(spin coating)、ディップコーティング(dip coating)、ロールコーティング(roll coating)、スクリーンコーティング(screen coating)、噴霧コーティング(spray coating)、スピンキャスティング(spin casting)、フローコーティング(flow coating)、スクリーン印刷(screen printing)、インクジェッティング(ink-jetting)、ドロップキャスティング(drop casting)等を使用することができる。 As the coating method, a normal room temperature wet process can be used without limitation, but preferably spin coating, dip coating, dip coating, roll coating, screen coating (screen coating). Use coating, spray coating, spin casting, flow coating, screen printing, screen-printing, ink-jetting, drop-casting, etc. Can do.
 本発明の有機半導体薄膜は、約300~2,000Å程度の膜厚とすることができるが、これらに限定されない。 The organic semiconductor thin film of the present invention can have a thickness of about 300 to 2,000 mm, but is not limited thereto.
 本発明に係る有機半導体薄膜は、簡単な常温湿式工程で製造可能であり、分子間のパッキング密度が向上して高い電荷移動度及び低い遮断漏れ電流を同時に満足する優れた電気的特性を示す。したがって、前記本発明の有機半導体薄膜は、各種有機電子素子に効果的に適用できる。 The organic semiconductor thin film according to the present invention can be manufactured by a simple room temperature wet process, and exhibits excellent electrical characteristics that simultaneously improve the charge density between molecules and satisfy high charge mobility and low cutoff leakage current. Therefore, the organic semiconductor thin film of the present invention can be effectively applied to various organic electronic devices.
 本発明は、さらに有機半導体薄膜を半導体層として含む電子デバイスを提供する。 The present invention further provides an electronic device including an organic semiconductor thin film as a semiconductor layer.
 本発明の電子デバイスの中でも、特に、本発明は、有機薄膜トランジスタ(有機TFT)に用いることが適している。 Among the electronic devices of the present invention, the present invention is particularly suitable for use in organic thin film transistors (organic TFTs).
 有機TFTとしては、基板、ゲート電極、有機絶縁層、半導体層及びソース/ドレイン電極を含み、前記半導体層として、本発明に係る有機半導体材料から形成された有機半導体薄膜を含むことができる。 The organic TFT includes a substrate, a gate electrode, an organic insulating layer, a semiconductor layer, and a source / drain electrode, and the semiconductor layer can include an organic semiconductor thin film formed from the organic semiconductor material according to the present invention.
 本発明の有機薄膜トランジスタは、一般に知られているボトムコンタクト型、トップコンタクト型、又はトップゲート型の構造を持つことができ、本発明の目的を阻害しない範囲内において変形された構造を持つことができる。 The organic thin film transistor of the present invention may have a generally known bottom contact type, top contact type, or top gate type structure, and may have a modified structure within a range that does not impair the object of the present invention. it can.
 本発明の有機薄膜トランジスタの基板としては、通常用いられる基板であれば特に限定はなく、具体的には、ガラス基板、シリカ基板、並びに例えばポリエチレンナフタレート、ポリエチレンテレフタレート、ポリカーボネート、ポリビニルアルコール、ポリアクリレート、ポリイミド、ポリノルボネン及びポリエーテルスルホン等のプラスチック基板などが使用できる。 The substrate of the organic thin film transistor of the present invention is not particularly limited as long as it is a commonly used substrate, specifically, a glass substrate, a silica substrate, and for example, polyethylene naphthalate, polyethylene terephthalate, polycarbonate, polyvinyl alcohol, polyacrylate, Plastic substrates such as polyimide, polynorbornene, and polyethersulfone can be used.
 前記ゲート電極、ソース及びドレイン電極としては、通常用いられる金属が使用でき、具体的には金(Au)、銀(Ag)、アルミニウム(Al)、ニッケル(Ni)、インジウム錫酸化物(ITO)、モリブデン/タングステン(Mo/W)等を使用することができるが、これらに限定されるものではない。前記ゲート電極、ソース及びドレイン電極の厚さは、それぞれ約500~2,000Åの範囲であることが好ましいが、必ずしもこれに限定されるものではない。 As the gate electrode, source and drain electrodes, commonly used metals can be used. Specifically, gold (Au), silver (Ag), aluminum (Al), nickel (Ni), indium tin oxide (ITO) Molybdenum / tungsten (Mo / W) or the like can be used, but is not limited thereto. The thicknesses of the gate electrode, source and drain electrodes are preferably in the range of about 500 to 2,000 mm, but are not necessarily limited thereto.
 前記絶縁層としては、通常用いられる誘電率の大きい絶縁体を使用することができ、具体的には、Ba0.33Sr0.66TiO(BST)、Al、Ta、La、Y及びTiOよりなる群から選択された強誘電性絶縁体、PbZr0.33Ti0.66(PZT)、BiTi12、BaMgF、SrBi(TaNb)、Ba(ZrTi)O(BZT)、BaTiO、SrTiO、BiTi12、SiO、SiN及びAlONよりなる群から選択された無機絶縁体、又はポリイミド、ベンゼンシクロブテン(BCB)、パリレン(parylene)、ポリアクリレート、ポリビニルアルコール及びポリビニルフェノール等の有機絶縁体を使用することができるが、これらに限定されるものではない。このような絶縁層の厚さは約3,000Å~1μmの範囲であることが好ましいが、必ずしもこれらに限定されるものではない。 As the insulating layer, a generally used insulator having a large dielectric constant can be used. Specifically, Ba 0.33 Sr 0.66 TiO 3 (BST), Al 2 O 3 , Ta 2 O 5 , A ferroelectric insulator selected from the group consisting of La 2 O 5 , Y 2 O 3 and TiO 2 , PbZr 0.33 Ti 0.66 O 3 (PZT), Bi 4 Ti 3 O 12 , BaMgF 4 , An inorganic insulator selected from the group consisting of SrBi 2 (TaNb) 2 O 9 , Ba (ZrTi) O 3 (BZT), BaTiO 3 , SrTiO 3 , Bi 4 Ti 3 O 12 , SiO 2 , SiN x and AlON; Or organic insulators such as polyimide, benzenecyclobutene (BCB), parylene, polyacrylate, polyvinyl alcohol and polyvinylphenol are used. However, the present invention is not limited to these. The thickness of such an insulating layer is preferably in the range of about 3,000 mm to 1 μm, but is not necessarily limited thereto.
 4-3.有機薄膜太陽電池
 有機薄膜太陽電池としては、一対の電極の間に上記化合物を含有する部分が存在すれば特に限定されるものでない。具体的には、安定な絶縁性基板上に下記の構成を有する構造が挙げられる。
(1)下部電極/p層/n層/上部電極
(2)下部電極/バッファー層/p層/n層/上部電極
(3)下部電極/p層/n層/バッファー層/上部電極
(4)下部電極/バッファー層/p層/n層/バッファー層/上部電極
(5)下部電極/バッファー層/p層/i層(又はp材料とn材料の混合層)/n層/バッファー層/上部電極
(6)下部電極/バッファー層/p層/n層/バッファー層/中間電極/バッファー層/p層/n層/バッファー層/上部電極
(7)下部電極/バッファー層/p層/i層(又はp材料とn材料の混合層)/n層/バッファー層/中間電極/バッファー層/p層/i層(又はp材料とn材料の混合層)/n層/バッファー層/上部電極
 本発明の有機薄膜太陽電池では、電池を構成するいずれかの部材に本発明の材料を含有していればよい。また、本発明の材料を含有する部材は、他の成分を併せて含んでいてもよい。本発明の材料を含まない部材又は混合材料については、有機薄膜太陽電池で使用される公知の部材又は材料を使用することができる。
4-3. Organic thin-film solar cell The organic thin-film solar cell is not particularly limited as long as a portion containing the above compound exists between a pair of electrodes. Specifically, a structure having the following configuration on a stable insulating substrate can be given.
(1) Lower electrode / p layer / n layer / upper electrode (2) Lower electrode / buffer layer / p layer / n layer / upper electrode (3) Lower electrode / p layer / n layer / buffer layer / upper electrode (4 ) Lower electrode / buffer layer / p layer / n layer / buffer layer / upper electrode (5) Lower electrode / buffer layer / p layer / i layer (or mixed layer of p and n materials) / n layer / buffer layer / Upper electrode (6) Lower electrode / buffer layer / p layer / n layer / buffer layer / intermediate electrode / buffer layer / p layer / n layer / buffer layer / upper electrode (7) lower electrode / buffer layer / p layer / i Layer (or mixed layer of p material and n material) / n layer / buffer layer / intermediate electrode / buffer layer / p layer / i layer (or mixed layer of p material and n material) / n layer / buffer layer / upper electrode In the organic thin film solar cell of the present invention, the present invention is applied to any member constituting the battery. It is sufficient that the material is contained. Moreover, the member containing the material of this invention may contain the other component collectively. About the member or mixed material which does not contain the material of this invention, the well-known member or material used with an organic thin film solar cell can be used.
 好ましくは、本発明の材料は移動度が高いのでp層/i層/n層に用いる材料として好適である。 Preferably, since the material of the present invention has high mobility, it is suitable as a material used for the p layer / i layer / n layer.
 好ましくは、素子構成(2)~(7)のp層/i層/n層に本発明の材料を用いる。 Preferably, the material of the present invention is used for the p layer / i layer / n layer of the device structures (2) to (7).
 以下、有機薄膜太陽電池の各構成部材について説明する。 Hereinafter, each component of the organic thin film solar cell will be described.
 4-3-1.下部電極、上部電極
下部電極、上部電極の材料は特に制限はなく、公知の導電性材料を使用できる。例えば、p層と接続する電極としては、錫ドープ酸化インジウム(ITO)、金(Au)、オスミウム(Os)、パラジウム(Pd)等の金属が使用でき、n層と接続する電極としては、銀(Ag)、アルミニウム(Al)、インジウム(In),カルシウム(Ca)、白金(Pt)、リチウム(Li)等の金属;Mg:Ag、Mg:InやAl:Li等の二成分金属系、さらには上記p層と接続する電極例示材料が使用できる。
4-3-1. Lower electrode, upper electrode The material of the lower electrode and the upper electrode is not particularly limited, and a known conductive material can be used. For example, a metal such as tin-doped indium oxide (ITO), gold (Au), osmium (Os), palladium (Pd) can be used as the electrode connected to the p layer, and silver as the electrode connected to the n layer. (Ag), aluminum (Al), indium (In), calcium (Ca), platinum (Pt), metals such as lithium (Li), etc .; binary metal systems such as Mg: Ag, Mg: In and Al: Li, Furthermore, the electrode example material connected with the said p layer can be used.
 なお、高効率の光電変換特性を得るためには、太陽電池の少なくとも一方の面は太陽光スペクトルに対して充分透明にすることが望ましい。透明電極は、公知の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように形成する。受光面の電極の光透過率は10%以上とすることが望ましい。一対の電極構成の好ましい構成では、電極部の一方が仕事関数の大きな金属を含み、他方は仕事関数の小さな金属を含む。 In order to obtain highly efficient photoelectric conversion characteristics, it is desirable that at least one surface of the solar cell be sufficiently transparent to the sunlight spectrum. The transparent electrode is formed using a known conductive material so as to ensure predetermined translucency by a method such as vapor deposition or sputtering. The light transmittance of the electrode on the light receiving surface is preferably 10% or more. In a preferred configuration of the pair of electrode configurations, one of the electrode portions includes a metal having a high work function, and the other includes a metal having a low work function.
 4-3-2.p層、n層、i層
 n材料としては、電子受容体としての機能を有する化合物が好ましい。例えば有機化合物であれば、C60、C70等のフラーレン誘導体、カーボンナノチューブ、ペリレン誘導体、多環キノン、キナクリドン等、高分子系ではCN-ポリ(フェニレン-ビニレン)、MEH-CN-PPV、-CN基又はCF基含有ポリマー、ポリ(フルオレン)誘導体等を挙げることができる。電子の移動度が高い材料が好ましい。さらに、好ましくは、電子親和力が小さい材料が好ましい。このように電子親和力の小さい材料をn層として組み合わせることで充分な開放端電圧を実現することができる。
4-3-2. As the p-layer, n-layer, and i-layer n material, a compound having a function as an electron acceptor is preferable. For example, in the case of organic compounds, fullerene derivatives such as C60 and C70, carbon nanotubes, perylene derivatives, polycyclic quinones, quinacridones, etc., such as CN-poly (phenylene-vinylene), MEH-CN-PPV, and -CN groups in polymer systems or CF 3 group-containing polymers, poly (fluorene) derivatives and the like. A material having high electron mobility is preferred. Further, a material having a small electron affinity is preferable. Thus, a sufficient open-circuit voltage can be realized by combining materials having a small electron affinity as the n layer.
 また、無機化合物であれば、n型特性の無機半導体化合物を挙げることができる。具体的には、n-Si、GaAs、CdS、PbS、CdSe、InP、Nb、WO、Fe等のドーピング半導体及び化合物半導体;二酸化チタン(TiO)、一酸化チタン(TiO)、三酸化二チタン(Ti)等の酸化チタン;酸化亜鉛(ZnO)、酸化スズ(SnO)等の導電性酸化物が挙げられ、これらのうちの1種又は2種以上を組み合わせて用いてもよい。好ましくは、酸化チタン、特に好ましくは、二酸化チタンを用いる。 Moreover, if it is an inorganic compound, the inorganic semiconductor compound of an n-type characteristic can be mentioned. Specifically, doping semiconductors and compound semiconductors such as n-Si, GaAs, CdS, PbS, CdSe, InP, Nb 2 O 5 , WO 3 , Fe 2 O 3 ; titanium dioxide (TiO 2 ), titanium monoxide ( TiO), titanium oxide such as dititanium trioxide (Ti 2 O 3 ); and conductive oxides such as zinc oxide (ZnO) and tin oxide (SnO 2 ), and one or more of these May be used in combination. Preference is given to using titanium oxide, particularly preferably titanium dioxide.
 p材料としては、正孔受容体としての機能を有する化合物が好ましい。例えば有機化合物であれば、N,N’-ビス(3-トリル)-N,N’-ジフェニルベンジジン(mTPD)、N,N’-ジナフチル-N,N’-ジフェニルベンジジン(NPD)、4,4’,4’’-トリス(フェニル-3-トリルアミノ)トリフェニルアミン(MTDATA)等に代表されるアミン化合物、フタロシアニン(Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)、チタニルフタロシアニン(TiOPc)等のフタロシアニン、オクタエチルポルフィリン(OEP)、白金オクタエチルポルフィリン(PtOEP)、亜鉛テトラフェニルポルフィリン(ZnTPP)等に代表されるポルフィリン、高分子化合物であれば、ポリヘキシルチオフェン(P3HT)、メトキシエチルヘキシロキシフェニレンビニレン(MEHPPV)等の主鎖型共役高分子、ポリビニルカルバゾール等に代表される側鎖型高分子等が挙げられる。 As the p material, a compound having a function as a hole acceptor is preferable. For example, for organic compounds, N, N′-bis (3-tolyl) -N, N′-diphenylbenzidine (mTPD), N, N′-dinaphthyl-N, N′-diphenylbenzidine (NPD), 4, Amine compounds represented by 4 ′, 4 ″ -tris (phenyl-3-tolylamino) triphenylamine (MTDATA), phthalocyanine (Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), titanyl phthalocyanine (TiOPc) ), Phthalocyanines such as octaethylporphyrin (OEP), platinum octaethylporphyrin (PtOEP), zinc tetraphenylporphyrin (ZnTPP), and the like, and polyhexylthiophene (P3HT) and methoxyethyl as long as they are high molecular compounds. Hexyloxyphenyl Main chain type conjugated polymers such as vinylene (MEHPPV), side-chain polymers typified by polyvinyl carbazole, and the like.
 本発明の材料をi層に用いるときは、上記p層化合物もしくはn層化合物と混合してi層を形成してもよいが、本発明の材料を単独でi層として用いることもできる。その場合のp層もしくはn層は、上記例示化合物のいずれも用いることができる。 When the material of the present invention is used for the i layer, the i layer may be formed by mixing with the p layer compound or the n layer compound, but the material of the present invention may be used alone as the i layer. In this case, any of the above exemplary compounds can be used for the p layer or the n layer.
 4-3-3.バッファー層
 一般に、有機薄膜太陽電池は総膜厚が薄いことが多く、そのため上部電極と下部電極が短絡し、セル作製の歩留まりが低下することが多い。このような場合には、バッファー層を積層することによってこれを防止することが好ましい。
4-3-3. Buffer layer In general, organic thin film solar cells often have a thin total film thickness, so the upper electrode and the lower electrode are short-circuited, and the yield of cell fabrication is often reduced. In such a case, it is preferable to prevent this by laminating a buffer layer.
 バッファー層に好ましい化合物としては、膜厚を厚くしても短絡電流が低下しないようにキャリア移動度が充分に高い化合物が好ましい。例えば、バソクプロイン(BCP)や、低分子化合物であれば下記に示すNTCDAに代表される芳香族環状酸無水物等が挙げられ、高分子化合物であればポリ(3,4-エチレンジオキシ)チオフェン:ポリスチレンスルホネート(PEDOT:PSS)、ポリアニリン:カンファースルホン酸(PANI:CSA)等に代表される公知の導電性高分子等が挙げられる。 As a preferable compound for the buffer layer, a compound having sufficiently high carrier mobility is preferable so that the short-circuit current does not decrease even when the film thickness is increased. Examples include bathocuproin (BCP) and aromatic cyclic acid anhydrides represented by NTCDA shown below for low molecular weight compounds, and poly (3,4-ethylenedioxy) thiophene for high molecular weight compounds. : Known conductive polymers such as polystyrene sulfonate (PEDOT: PSS), polyaniline: camphorsulfonic acid (PANI: CSA), and the like.
 バッファー層はまた、励起子が電極まで拡散して失活してしまうのを防止する役割を有する層であってもよい。このように励起子阻止層としてバッファー層を用いることは、高効率化のために有効である。励起子阻止層は陽極側、陰極側のいずれにも挿入することができる。また、中間層に隣接して設けることもできる。このような役割を有する材料としては、エネルギーギャップが大きい材料が挙げられる。例えば、BCPが挙げられる。 The buffer layer may also be a layer having a role of preventing the excitons from diffusing to the electrode and being deactivated. Using the buffer layer as the exciton blocking layer in this way is effective for increasing the efficiency. The exciton blocking layer can be inserted on either the anode side or the cathode side. It can also be provided adjacent to the intermediate layer. Examples of the material having such a role include materials having a large energy gap. An example is BCP.
 上記の他、バッファー層材料として、上記n層の材料として例示した無機半導体化合物を用いてもよい。当該無機半導体化合物としてはCdTe、p-Si、SiC、GaAs、NiO、WO、MoO、V等を用いることができる。 In addition to the above, as the buffer layer material, the inorganic semiconductor compounds exemplified as the material for the n layer may be used. As the inorganic semiconductor compound, CdTe, p-Si, SiC, GaAs, NiO, WO 3 , MoO 3 , V 2 O 5 or the like can be used.
 4-3-4.基板
 基板は、機械的、熱的強度を有し、透明性を有するものが好ましい。例えば、ガラス基板及び透明性樹脂フィルムがある。透明性樹脂フィルムとしては、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。
4-3-4. The substrate substrate preferably has mechanical and thermal strength and is transparent. For example, there are a glass substrate and a transparent resin film. Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone. , Polysulfone, polyethersulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, Polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene, etc. It is.
 4-3-5.中間電極
 積層型有機薄膜太陽電池においては、中間電極の設置によって、電子-正孔再結合ゾーンを形成することにより積層型素子の個々の光電変換ユニットを分離することができる。この層は前方の光電変換ユニットのn層と後方の光電変換ユニットのp層の間の逆ヘテロ接合の形成を防ぐ役目をする。個々の光電変換ユニットの間の層は、前方の光電変換ユニットから入る電子と後方の光電変換ユニットからの正孔とが再結合するゾーンを提供する。前方の光電変換ユニットから入る電子と後方の光電変換ユニットからの正孔との効率的な再結合は、光誘起電流を積層型素子で起こそうとする場合に必要である。
4-3-5. In the intermediate electrode laminated organic thin film solar cell, the individual photoelectric conversion units of the laminated element can be separated by forming an electron-hole recombination zone by installing the intermediate electrode. This layer serves to prevent the formation of a reverse heterojunction between the n layer of the front photoelectric conversion unit and the p layer of the rear photoelectric conversion unit. The layer between the individual photoelectric conversion units provides a zone where electrons entering from the front photoelectric conversion unit and holes from the rear photoelectric conversion unit are recombined. Efficient recombination of electrons entering from the front photoelectric conversion unit and holes from the rear photoelectric conversion unit is necessary when a photo-induced current is to occur in the stacked device.
 中間電極による電子-正孔再結合ゾーンを形成する材料は特に限定されず、上記上部電極及び下部電極を形成する材料を用いることができる。好ましくは、中間電極による電子-正孔再結合ゾーンは薄い金属層を含む。金属層は、光が後方の(複数の)光電変換ユニットに到達できるように、十分薄くて半透明であるのがよい。 The material for forming the electron-hole recombination zone by the intermediate electrode is not particularly limited, and the material for forming the upper electrode and the lower electrode can be used. Preferably, the electron-hole recombination zone with the intermediate electrode comprises a thin metal layer. The metal layer should be sufficiently thin and translucent so that light can reach the back photoelectric conversion unit (s).
 この目的のために、金属層の厚みは約20Åより薄いことが好ましい。金属膜が約5Å程度の厚みであると特に好ましい。これらの極めて薄い金属膜(~5Å)は連続膜でなく、むしろ孤立した金属ナノ粒子からなると考えられている。驚くべきことに、この極めて薄い金属層は連続ではないが、それは依然として電子-正孔再結合層として有効である。この層に用いられる好ましい金属には、Ag、Li、LiF、Al、Ti、及びSnが含まれる。銀がこの層に特に好ましい金属である。 For this purpose, the thickness of the metal layer is preferably thinner than about 20 mm. It is particularly preferable that the metal film has a thickness of about 5 mm. These very thin metal films (~ 5cm) are not continuous films but rather are composed of isolated metal nanoparticles. Surprisingly, this very thin metal layer is not continuous, but it is still effective as an electron-hole recombination layer. Preferred metals used for this layer include Ag, Li, LiF, Al, Ti, and Sn. Silver is a particularly preferred metal for this layer.
 本発明の有機薄膜太陽電池又は積層型有機薄膜太陽電池の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディップコート、キャスティング、ロールコート、フローコーティング、インクジェット等の湿式成膜法を適用することができる。 The formation of each layer of the organic thin film solar cell or the stacked organic thin film solar cell of the present invention is performed by a dry film forming method such as vacuum deposition, sputtering, plasma, ion plating, spin coating, dip coating, casting, roll coating, flow coating. In addition, a wet film forming method such as an ink jet method can be applied.
 各層の膜厚は特に限定されないが、適切な膜厚に設定する。一般に有機薄膜の励起子拡散長は短いことが知られているため、膜厚が厚すぎると励起子がp材料とn材料のヘテロ界面に到達する前に失活してしまうため光電変換効率が低くなる。膜厚が薄すぎるとピンホール等が発生してしまうため、充分なダイオード特性が得られないため、変換効率が低下する。通常の膜厚は1nm~10μmの範囲が適しているが、5nm~0.2μmの範囲がさらに好ましい。 The film thickness of each layer is not particularly limited, but is set to an appropriate film thickness. In general, it is known that the exciton diffusion length of an organic thin film is short. Therefore, if the film thickness is too thick, the exciton is deactivated before reaching the hetero interface between the p material and the n material. Lower. If the film thickness is too thin, pinholes and the like are generated, so that sufficient diode characteristics cannot be obtained, resulting in a decrease in conversion efficiency. The normal film thickness is suitably in the range of 1 nm to 10 μm, but more preferably in the range of 5 nm to 0.2 μm.
 乾式成膜法の場合、公知の抵抗加熱法が好ましく、混合層の形成には、例えば、複数の蒸発源からの同時蒸着による成膜方法が好ましい。さらに好ましくは、成膜時に基板温度を制御する。 In the case of a dry film forming method, a known resistance heating method is preferable, and for forming a mixed layer, for example, a film forming method by simultaneous vapor deposition from a plurality of evaporation sources is preferable. More preferably, the substrate temperature is controlled during film formation.
 湿式成膜法の場合、各層を形成する材料を、適切な溶媒に溶解又は分散させて発光性有機溶液を調製し、薄膜を形成する。溶媒としては、任意の溶媒を使用できる。例えば、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、テトラクロロエタン、トリクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン等のハロゲン化炭化水素系溶媒;ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶媒;メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール等のアルコール系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、ヘキサン、オクタン、デカン、テトラリン等の炭化水素系溶媒;酢酸エチル、酢酸ブチル、酢酸アミル等のエステル系溶媒などが挙げられる。中でも、炭化水素系溶媒又はエーテル系溶媒が好ましい。また、これらの溶媒は単独で使用しても複数混合して用いてもよい。なお、使用可能な溶媒は、これらに限定されるものではない。 In the case of a wet film forming method, a material for forming each layer is dissolved or dispersed in an appropriate solvent to prepare a luminescent organic solution, and a thin film is formed. Any solvent can be used as the solvent. For example, halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrachloroethane, trichloroethane, chlorobenzene, dichlorobenzene, chlorotoluene; ether solvents such as dibutyl ether, tetrahydrofuran, dioxane, anisole; methanol, ethanol Alcohol solvents such as propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol; hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, hexane, octane, decane, tetralin; acetic acid Examples thereof include ester solvents such as ethyl, butyl acetate, and amyl acetate. Of these, hydrocarbon solvents or ether solvents are preferred. These solvents may be used alone or in combination. In addition, the solvent which can be used is not limited to these.
 本発明においては、有機薄膜太陽電池又は積層型有機薄膜太陽電池のいずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため、適切な樹脂又は添加剤を使用してもよい。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ-N-ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げられる。 In the present invention, in any organic thin film layer of an organic thin film solar cell or a stacked organic thin film solar cell, an appropriate resin or additive may be used for improving film formability and preventing pinholes in the film. Good. Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
 また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等が挙げられる。 Further, examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
 以下、実施例及び製造例を示して、本発明の化合物について具体的に説明する。ただし、実施例はあくまで一例であって、本発明は、実施例に限定されない。 Hereinafter, the compound of the present invention will be specifically described with reference to Examples and Production Examples. However, the examples are merely examples, and the present invention is not limited to the examples.
 製造例1:8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセン(化合物1-1)の製造 Production Example 1: Production of 8a-bora-8,9-dioxabenzo [fg] tetracene (Compound 1-1)
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 第1工程:2’-ヨード-2,2”-ジメトキシ-1,1’:3’,1”-ターフェニル(化合物2-1)の調製 First Step: Preparation of 2′-iodo-2,2 ″ -dimethoxy-1,1 ′: 3 ′, 1 ″ -terphenyl (Compound 2-1)
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 1,3-ジクロロベンゼン(3-1)(18.3g、0.16mol)及びテトラヒドロフラン(200mL)に、窒素雰囲気下、-55℃でブチルリチウムのヘキサン溶液(100mL、1.60M、0.16mol)を添加した。反応溶液を4時間撹拌した後、1-(2-メトキシフェニル)マグネシウムブロマイドのテトラヒドロフラン溶液(326mL、1.23M、0.40mol)を-55℃で添加し、2時間攪拌した。その後、室温に昇温し、13時間撹拌した後、さらに60℃に昇温し5.5時間撹拌した。この反応液に、ヨウ素(74.4g、0.29mol)を0℃で添加し、室温で3時間撹拌した後、飽和チオ硫酸ナトリウム水溶液(300mL)を添加した。トルエンで水層を抽出し、合わせた有機層に対し、硫酸マグネシウムを加えた後にセライト濾過し、溶媒を減圧留去して粗生成物を得た。粗生成物をメタノールを用いて洗浄することで、淡褐色粉末として2’-ヨード-2,2”-ジメトキシ-1,1’:3’,1”-ターフェニル(化合物2-1)を得た(46.3g、収率69%)。  A solution of butyl lithium in hexane (100 mL, 1.60 M, 0.16 mol) at −55 ° C. in 1,3-dichlorobenzene (3-1) (18.3 g, 0.16 mol) and tetrahydrofuran (200 mL) under a nitrogen atmosphere. ) Was added. After stirring the reaction solution for 4 hours, a tetrahydrofuran solution of 1- (2-methoxyphenyl) magnesium bromide (326 mL, 1.23 M, 0.40 mol) was added at −55 ° C., and the mixture was stirred for 2 hours. Thereafter, the mixture was warmed to room temperature and stirred for 13 hours, and further heated to 60 ° C. and stirred for 5.5 hours. To this reaction solution, iodine (74.4 g, 0.29 mol) was added at 0 ° C., and the mixture was stirred at room temperature for 3 hours, and then a saturated aqueous sodium thiosulfate solution (300 mL) was added. The aqueous layer was extracted with toluene, and magnesium sulfate was added to the combined organic layers, followed by Celite filtration. The solvent was distilled off under reduced pressure to obtain a crude product. By washing the crude product with methanol, 2′-iodo-2,2 ″ -dimethoxy-1,1 ′: 3 ′, 1 ″ -terphenyl (compound 2-1) was obtained as a light brown powder. (46.3 g, 69% yield).
 1H NMR (δppm in CDCl3);3.81-3.83 (s, 6H), 6.97-7.00 (d, 2H, J = 8 Hz), 7.03-7.08 (t, 2H, J = 8 Hz), 7.17-7.27 (m, 4H), 7.38-7.46 (m, 3H) 1 H NMR (δppm in CDCl 3 ); 3.81-3.83 (s, 6H), 6.97-7.00 (d, 2H, J = 8 Hz), 7.03-7.08 (t, 2H, J = 8 Hz), 7.17-7.27 (m, 4H), 7.38-7.46 (m, 3H)
 第2工程:8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセン(化合物1-1)の製造 Second step: Production of 8a-bora-8,9-dioxabenzo [fg] tetracene (compound 1-1)
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 第1工程で得られた2’-ヨード-2,2”-ジメトキシ-1,1’:3’,1”-ターフェニル(2-1)(4.2g、10.0mmol)、及びトルエン(35mL)に、窒素雰囲気下、-50℃でn-ブチルリチウムのヘキサン溶液(6.56mL、1.60M、10.5mmol)をゆっくり添加した。その後、該反応溶液を0℃で5時間攪拌した後、これに三臭化ホウ素(1.10mL、12.0mmol)を添加した。次いで、該反応溶液を100℃で2時間加熱した後、室温下に戻し、ジクロロメタンを用いてセライト濾過を行い、溶媒を減圧留去して粗生成物を得た。粗生成物をアセトニトリルを用いて洗浄することで、白色粉末として(1-1)で表される化合物を得た(1.81g、収率67%)。 2′-iodo-2,2 ″ -dimethoxy-1,1 ′ obtained in the first step: 3 ′, 1 ″ -terphenyl (2-1) (4.2 g, 10.0 mmol), and toluene ( (35 mL) was slowly added a hexane solution of n-butyllithium (6.56 mL, 1.60 M, 10.5 mmol) at −50 ° C. under a nitrogen atmosphere. Thereafter, the reaction solution was stirred at 0 ° C. for 5 hours, and boron tribromide (1.10 mL, 12.0 mmol) was added thereto. Next, the reaction solution was heated at 100 ° C. for 2 hours, then returned to room temperature, filtered through celite using dichloromethane, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was washed with acetonitrile to obtain a compound represented by (1-1) as a white powder (1.81 g, yield 67%).
 1H NMR (δppm in CDCl3); 7.25-7.30 (m, 2H), 7.44-7.45 (m, 4H), 7.91 (t, J = 8.0 Hz, 1H), 8.09 (d, J = 8.0 Hz,2H), 8.16 (d, J = 8.0 Hz, 2H)
 13C NMR (δppm in CDCl3) 119.7 (2C), 120.6 (2C), 123.2 (2C), 123.3 (2C), 124.0 (2C), 129.7 (2C), 134.0, 139.6 (2C), 151.9 (2C)
1 H NMR (δppm in CDCl 3 ); 7.25-7.30 (m, 2H), 7.44-7.45 (m, 4H), 7.91 (t, J = 8.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, 2H ), 8.16 (d, J = 8.0 Hz, 2H)
13 C NMR (δppm in CDCl 3 ) 119.7 (2C), 120.6 (2C), 123.2 (2C), 123.3 (2C), 124.0 (2C), 129.7 (2C), 134.0, 139.6 (2C), 151.9 (2C)
 実施例1:7a-ボラ-7,8-ジオキソトリベンゾ[a, l, op]テトラセン(化合物1-2)の製造 Example 1: Preparation of 7a-bora-7,8-dioxotribenzo [a, l, op] tetracene (compound 1-2)
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 第1工程:1,1’-(2-ヨード-1,3-フェニレン)ビス(2-メトキシナフタレン)(化合物2-2)の調製 First Step: Preparation of 1,1 ′-(2-iodo-1,3-phenylene) bis (2-methoxynaphthalene) (Compound 2-2)
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 1,3-ジクロロベンゼン(3-1)(1.47g、10.0mmol)及びテトラヒドロフラン(14mL)に、窒素雰囲気下、-50℃でn-ブチルリチウムのヘキサン溶液(6.1mL、1.60M、10.0mmol)を添加した。得られた反応溶液を2時間撹拌した後、1-(2-メトキシナフチル)マグネシウムブロマイドのテトラヒドロフラン溶液(30.0mL、0.667M、20.0mmol)を添加した。その後、室温に昇温し16時間撹拌した後、さらに80℃に昇温し3時間撹拌した。得られた反応溶液にヨウ素(2.79g、11.0mmol)を0℃で添加し、室温で2時間撹拌した後、飽和チオ硫酸ナトリウム水溶液を添加した。次いで、ジクロロメタンで水層を抽出し、合わせた有機層に対し、硫酸マグネシウムを加えた後に濾過し、溶媒を減圧留去して粗生成物を得た。粗生成物をメタノールを用いて洗浄することで、淡褐色粉末として1,1’-(2-ヨード-1,3-フェニレン)ビス(2-メトキシナフタレン)(化合物2-2)を得た(3.30g、収率64%)。  A solution of n-butyllithium in hexane (6.1 mL, 1.60 M) was added to 1,3-dichlorobenzene (3-1) (1.47 g, 10.0 mmol) and tetrahydrofuran (14 mL) at −50 ° C. under a nitrogen atmosphere. 10.0 mmol) was added. The resulting reaction solution was stirred for 2 hours, and 1- (2-methoxynaphthyl) magnesium bromide in tetrahydrofuran (30.0 mL, 0.667 M, 20.0 mmol) was added. Then, after heating up to room temperature and stirring for 16 hours, it heated up at 80 degreeC further and stirred for 3 hours. Iodine (2.79 g, 11.0 mmol) was added to the obtained reaction solution at 0 ° C., and the mixture was stirred at room temperature for 2 hours, and then a saturated aqueous sodium thiosulfate solution was added. Next, the aqueous layer was extracted with dichloromethane, and magnesium sulfate was added to the combined organic layer, followed by filtration. The solvent was distilled off under reduced pressure to obtain a crude product. The crude product was washed with methanol to obtain 1,1 ′-(2-iodo-1,3-phenylene) bis (2-methoxynaphthalene) (compound 2-2) as a light brown powder ( 3.30 g, yield 64%).
 1H NMR (δppm in CDCl3); 3.92 (s, 6H), 7.29-7.46 (m, 10H), 7.59(t, 1H, J = 7.6 Hz), 7.84 (d, 2H, J = 7.6 Hz), 7.94 (d, 2H, J = 9.2 Hz)
 FAB-MS m/z [M]+calcd for C28H21IO2 370.1170; observed 370.1175
1 H NMR (δppm in CDCl 3 ); 3.92 (s, 6H), 7.29-7.46 (m, 10H), 7.59 (t, 1H, J = 7.6 Hz), 7.84 (d, 2H, J = 7.6 Hz), 7.94 (d, 2H, J = 9.2 Hz)
FAB-MS m / z [M] + calcd for C 28 H 21 IO 2 370.1170; observed 370.1175
 第2工程:7a-ボラ-7,8-ジオキソトリベンゾ[a, l, op]テトラセン(化合物1-2)の製造 Second step: Preparation of 7a-bora-7,8-dioxotribenzo [a, l, op] tetracene (compound 1-2)
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 第1工程で得られた1,1’-(2-ヨード-1,3-フェニレン)ビス(2-メトキシナフタレン)(2-2)(2.58g、5.0mmol)及びトルエン(40mL)に、窒素雰囲気下、-78℃でn-ブチルリチウムのヘキサン溶液(3.28mL、1.60M、5.3mmol)を添加し撹拌した。30分後、0℃に昇温し、さらに1時間半攪拌した。三臭化ホウ素(1.50g、6.0mmol)を加え、1時間撹拌した後、100℃で2時間撹拌した。反応溶液にジクロロメタンを加え希釈し、セライト濾過した後、溶媒を減圧留去して粗生成物を得た。粗生成物をアセトニトリルを用いて洗浄することで、黄緑色粉末として化合物(1-2)を得た(1.23g、収率67%)。  To 1,1 ′-(2-iodo-1,3-phenylene) bis (2-methoxynaphthalene) (2-2) (2.58 g, 5.0 mmol) and toluene (40 mL) obtained in the first step In a nitrogen atmosphere, a hexane solution of n-butyllithium (3.28 mL, 1.60 M, 5.3 mmol) was added and stirred at −78 ° C. After 30 minutes, the temperature was raised to 0 ° C., and the mixture was further stirred for 1.5 hours. Boron tribromide (1.50 g, 6.0 mmol) was added and stirred for 1 hour, then at 100 ° C. for 2 hours. Dichloromethane was added to the reaction solution to dilute and filtered through Celite, and then the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was washed with acetonitrile to obtain Compound (1-2) as a yellowish green powder (1.23 g, yield 67%).
 1H NMR (δppm in CDCl3); 7.49(dd, 2H, J = 7.4, 7.8 Hz), 7.56(d, 2H, J = 9.0 Hz), 7.61(dd, 2H, J = 7.4, 7.8 Hz), 7.87 (d, 2H, J = 9.0 Hz), 7.90 (d, 1H, J = 8.0 Hz), 7.92 (d, 2H, J = 7.8 Hz), 8.50 (d, 2H, J = 8.0 Hz), 8.89 (d, 2H, J = 8.6 Hz) 
 13C NMR (CDCl3, 101 MHz) 118.0 (2C), 120.7 (2C), 124.6 (2C), 125.1 (2C), 125.4 (2C), 126.9 (2C), 129.0 (2C), 130.2 (2C), 131.1 (2C), 131.2 (2C), 133.1, 140.5 (2C), 150.4 (2C)
1 H NMR (δppm in CDCl 3 ); 7.49 (dd, 2H, J = 7.4, 7.8 Hz), 7.56 (d, 2H, J = 9.0 Hz), 7.61 (dd, 2H, J = 7.4, 7.8 Hz), 7.87 (d, 2H, J = 9.0 Hz), 7.90 (d, 1H, J = 8.0 Hz), 7.92 (d, 2H, J = 7.8 Hz), 8.50 (d, 2H, J = 8.0 Hz), 8.89 ( d, 2H, J = 8.6 Hz)
13 C NMR (CDCl 3 , 101 MHz) 118.0 (2C), 120.7 (2C), 124.6 (2C), 125.1 (2C), 125.4 (2C), 126.9 (2C), 129.0 (2C), 130.2 (2C), 131.1 (2C), 131.2 (2C), 133.1, 140.5 (2C), 150.4 (2C)
 実施例2:9a,19a-ジボラ-9,10,19,20-テトラオキソテトラベンゾ[a,f,j,o]ペリレン(化合物1-3)の製造 Example 2: Preparation of 9a, 19a-Dibora-9,10,19,20-tetraoxotetrabenzo [a, f, j, o] perylene (Compound 1-3)
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 第1工程:3’,6’-ジヨード-2,2”-ジメトキシ-4’,5’-ビス(2-メトキシフェニル)-1,1’:2’,1”-ターフェニル(化合物2-3)の調製 First step: 3 ′, 6′-diiodo-2,2 ″ -dimethoxy-4 ′, 5′-bis (2-methoxyphenyl) -1,1 ′: 2 ′, 1 ″ -terphenyl (compound 2- 3) Preparation
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 2-メトキシフェニルマグネシウムブロマイドのテトラヒドロフラン溶液(330mL、1.24M、0.41mol)に、窒素雰囲気下、0℃でヘキサブロモベンゼン(化合物3-3)(28.3g、51.0mmol)を添加し、得られた反応溶液を室温で3時間撹拌した後、80℃で13時間加熱撹拌した。その後、ヨウ素(78.1g、0.38mol)を0℃で添加し、室温で2時間撹拌した後、溶媒を減圧留去した。得られた粗生成物をジクロロメタンに溶かし、塩酸で洗浄した後、ジクロロメタンで有機層を抽出した。次いで、飽和チオ硫酸ナトリウム水溶液を添加し、ジクロロメタンで水層を抽出した。有機層をフロリジルを用いて濾過した後、溶媒を減圧留去して粗生成物を得た。シリカゲルカラムクロマトグラフィーを行い、白黄色粉末として3’,6’-ジヨード-2,2”-ジメトキシ-4’,5’-ビス(2-メトキシフェニル)-1,1’:2’,1”-ターフェニル(化合物2-3)を得た(8.07g、収率21%)。  To a tetrahydrofuran solution of 2-methoxyphenylmagnesium bromide (330 mL, 1.24 M, 0.41 mol) was added hexabromobenzene (compound 3-3) (28.3 g, 51.0 mmol) at 0 ° C. under a nitrogen atmosphere. The resulting reaction solution was stirred at room temperature for 3 hours and then heated and stirred at 80 ° C. for 13 hours. Thereafter, iodine (78.1 g, 0.38 mol) was added at 0 ° C. and stirred at room temperature for 2 hours, and then the solvent was distilled off under reduced pressure. The obtained crude product was dissolved in dichloromethane, washed with hydrochloric acid, and the organic layer was extracted with dichloromethane. Next, a saturated aqueous sodium thiosulfate solution was added, and the aqueous layer was extracted with dichloromethane. The organic layer was filtered using Florisil, and then the solvent was distilled off under reduced pressure to obtain a crude product. Silica gel column chromatography was performed to obtain 3 ′, 6′-diiodo-2,2 ″ -dimethoxy-4 ′, 5′-bis (2-methoxyphenyl) -1,1 ′: 2 ′, 1 ″ as a white yellow powder. -Terphenyl (compound 2-3) was obtained (8.07 g, yield 21%).
 1H NMR (δppm in CDCl3); 3.62-3.89 (s, 12H), 6.65-7.21 (m, 16H)
 HRMS (EI) m/z [M]+ calcd for C34H38O4I2 754.0077; observed 754.0075.
1 H NMR (δppm in CDCl 3 ); 3.62-3.89 (s, 12H), 6.65-7.21 (m, 16H)
HRMS (EI) m / z [M] + calcd for C 34 H 38 O 4 I 2 754.0077; observed 754.0075.
 第2工程:9a,19a-ジボラ-9,10,19,20-テトラオキソテトラベンゾ[a,f,j,o]ペリレン(化合物1-3)の製造 Second step: Production of 9a, 19a-dibora-9,10,19,20-tetraoxotetrabenzo [a, f, j, o] perylene (compound 1-3)
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 第1工程で得られた3’,6’-ジヨード-2,2”-ジメトキシ-4’,5’-ビス(2-メトキシフェニル)-1,1’:2’,1”-ターフェニル(2-3)(8.30g、11.0mmol)及びトルエン(66mL)に、窒素雰囲気下、-78℃でブチルリチウムのヘキサン溶液(14.4mL、1.60M、23.1mmol)を添加し撹拌した。1時間後、0℃に昇温しさらに5時間半攪拌した。三臭化ホウ素(6.61g、26.4mmol)を加え、2時間撹拌した後、100℃で6時間撹拌した。反応溶液にジクロロメタンを加え希釈し、セライト濾過した後、溶媒を減圧留去して粗生成物を得た。粗生成物をアセトニトリルを用いて洗浄することで、黄色粉末として9a,19a-ジボラ-9,10,19,20-テトラオキソテトラベンゾ[a,f,j,o]ペリレン(化合物1-3)を得た(1.35g、収率27%)。  3 ′, 6′-diiodo-2,2 ″ -dimethoxy-4 ′, 5′-bis (2-methoxyphenyl) -1,1 ′: 2 ′, 1 ″ -terphenyl obtained in the first step ( 2-3) To a hexane solution (14.4 mL, 1.60 M, 23.1 mmol) of butyllithium was added to (8.30 g, 11.0 mmol) and toluene (66 mL) at −78 ° C. under a nitrogen atmosphere and stirred. did. After 1 hour, the temperature was raised to 0 ° C., and the mixture was further stirred for 5 and a half hours. Boron tribromide (6.61 g, 26.4 mmol) was added and stirred for 2 hours, and then stirred at 100 ° C. for 6 hours. Dichloromethane was added to the reaction solution to dilute and filtered through Celite, and then the solvent was distilled off under reduced pressure to obtain a crude product. By washing the crude product with acetonitrile, 9a, 19a-dibora-9,10,19,20-tetraoxotetrabenzo [a, f, j, o] perylene (compound 1-3) is obtained as a yellow powder. (1.35 g, 27% yield).
 1H NMR (δppm in CDCl3); 7.03(ddd, 4H, J = 1.4, 7.1, 8.2 Hz), 7.40(ddd, 4H, J = 1.4, 7.1, 8.2 Hz), 7.48(dd, 4H, J = 1.4, 8.2 Hz), 8.27 (dd, 4H, J = 1.4, 8.2 Hz) 
 13C NMR (CDCl3, 101 MHz) 120.3 (4C), 122.1 (4C), 122.9 (4C), 128.8 (4C), 130.0 (4C), 132.6 (4C), 151.4 (4C)
1 H NMR (δppm in CDCl 3 ); 7.03 (ddd, 4H, J = 1.4, 7.1, 8.2 Hz), 7.40 (ddd, 4H, J = 1.4, 7.1, 8.2 Hz), 7.48 (dd, 4H, J = 1.4, 8.2 Hz), 8.27 (dd, 4H, J = 1.4, 8.2 Hz)
13 C NMR (CDCl 3 , 101 MHz) 120.3 (4C), 122.1 (4C), 122.9 (4C), 128.8 (4C), 130.0 (4C), 132.6 (4C), 151.4 (4C)
 実施例3:9a,19a-ジボラ-9,10,19,20-テトラオキソ-3,6,13,16-テトラターシャリーブチルベンゾ[a,f,j,o]ペリレン(化合物1-4)の製造 Example 3: 9a, 19a-Dibora-9,10,19,20-tetraoxo-3,6,13,16-tetratertiary butylbenzo [a, f, j, o] perylene (compound 1-4) Manufacturing
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 第1工程:3’,6’-ジヨード-2,2”-ジメトキシ-5,5”-ターシャリーブチル-4’,5’-ビス(2-メトキシ-5-ターシャリーブチル)-1,1’:2’1”-ターフェニル(化合物2-4)の調製 First step: 3 ′, 6′-diiodo-2,2 ″ -dimethoxy-5,5 ″ -tertiarybutyl-4 ′, 5′-bis (2-methoxy-5-tertiarybutyl) -1,1 ': Preparation of 2'1 "-terphenyl (compound 2-4)
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 マグネシウム(4.55g、187mmol)及びテトラヒドロフラン(120mL)に、窒素雰囲気下、室温で1-ブロモ-3-ターシャリーブチルアニソール(3-4)(43.3g、178mmol)を添加して20時間撹拌し、グリニャール試薬を得た。得られたグリニャール試薬をヘキサブロモベンゼン(12.30g、22.3mmol)及びトルエン(310mL)に0℃で添加し、室温で43時間撹拌し、次いで60℃で2時間加熱撹拌した。得られた反応溶液に、ヨウ素(23.8g、93.5mmol)を0℃で添加し、室温で21時間撹拌した。その後、溶媒を減圧留去して、得られた粗生成物をジクロロメタンに溶かした。さらに塩酸を加えて、ジクロロメタンで抽出した有機層を飽和チオ硫酸ナトリウム水溶液で洗浄し、溶媒を減圧留去した。次いで、トルエンを加えて、フロリジルを用いて濾過した後、溶媒を減圧留去して粗生成物を得た。該粗生成物をアセトニトリルを用いて洗浄することで、白色粉末として3’,6’-ジヨード-2,2”-ジメトキシ-5,5”-ターシャリーブチル-4’,5’-ビス(2-メトキシ-5-ターシャリーブチル)-1,1’:2’1”-ターフェニル(2-4)を得た(7.27g、収率33%)。 1-Bromo-3-tertiarybutylanisole (3-4) (43.3 g, 178 mmol) was added to magnesium (4.55 g, 187 mmol) and tetrahydrofuran (120 mL) at room temperature under a nitrogen atmosphere and stirred for 20 hours. Thus, a Grignard reagent was obtained. The obtained Grignard reagent was added to hexabromobenzene (12.30 g, 22.3 mmol) and toluene (310 mL) at 0 ° C., stirred at room temperature for 43 hours, and then heated and stirred at 60 ° C. for 2 hours. To the obtained reaction solution, iodine (23.8 g, 93.5 mmol) was added at 0 ° C., and the mixture was stirred at room temperature for 21 hours. Thereafter, the solvent was distilled off under reduced pressure, and the resulting crude product was dissolved in dichloromethane. Further, hydrochloric acid was added, the organic layer extracted with dichloromethane was washed with a saturated aqueous sodium thiosulfate solution, and the solvent was distilled off under reduced pressure. Subsequently, toluene was added and filtered using Florisil, and then the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was washed with acetonitrile to give 3 ′, 6′-diiodo-2,2 ″ -dimethoxy-5,5 ″ -tertiarybutyl-4 ′, 5′-bis (2 -Methoxy-5-tertiarybutyl) -1,1 ': 2'1 "-terphenyl (2-4) was obtained (7.27 g, yield 33%).
 該化合物(2-4)は、4又は5つのジアステレオマーが含まれている。 The compound (2-4) contains 4 or 5 diastereomers.
 1H NMR (δppm in CDCl3); 1.05-1.16 (m, 36H), 3.44-3.88 (m, 12H), 6.52-7.19(m, 12H)
 Anal. calcd for C50H6004I2C,61.35; H,6.18. found C,61.06; H,5.93.
1 H NMR (δppm in CDCl 3 ); 1.05-1.16 (m, 36H), 3.44-3.88 (m, 12H), 6.52-7.19 (m, 12H)
Anal.calcd for C 50 H 60 0 4 I 2 C, 61.35; H, 6.18.found C, 61.06; H, 5.93.
 第2工程:9a,19a-ジボラ-9,10,19,20-テトラオキソ-3,6,13,16-テトラターシャリーブチルベンゾ[a,f,j,o]ペリレン(化合物1-4)の製造 Second step: 9a, 19a-Dibora-9,10,19,20-tetraoxo-3,6,13,16-tetratertiarybutylbenzo [a, f, j, o] perylene (compound 1-4) Manufacturing
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 3’,6’-ジヨード-2,2”-ジメトキシ-5,5”-ターシャリーブチル-4’,5’-ビス(2-メトキシ-5-ターシャリーブチル)-1,1’:2’1”-ターフェニル(2-4)(2.93g、3.00mmol)及びクロロベンゼン(30mL)に、窒素雰囲気下、-42℃でターシャリーブチルリチウムのn-ペンタン溶液(7.69mL、1.60M、12.3mmol)を添加し4時間撹拌した。三臭化ホウ素(1.80g、7.20mmol)を加え、40℃で24時間撹拌した。反応溶液にトルエンを加え希釈し、フロリジルを用いて濾過した後、溶媒を減圧留去して粗生成物を得た。シリカゲルカラムクロマトグラフィーを行い、黄色粉末として化合物(1-4)を得た(1.18g、収率57%)。 3 ', 6'-diiodo-2,2 "-dimethoxy-5,5" -tertiarybutyl-4', 5'-bis (2-methoxy-5-tertiarybutyl) -1,1 ': 2' A 1-terphenyl (2-4) (2.93 g, 3.00 mmol) and chlorobenzene (30 mL) in a nitrogen atmosphere at −42 ° C. in an n-pentane solution (7.69 mL, 1.69 mL) at −42 ° C. 60 M, 12.3 mmol) was added and stirred for 4 hours, boron tribromide (1.80 g, 7.20 mmol) was added, and the mixture was stirred for 24 hours at 40 ° C. Toluene was added to the reaction solution for dilution, and Florisil was used. After filtration, the solvent was distilled off under reduced pressure to obtain a crude product, which was subjected to silica gel column chromatography to obtain compound (1-4) as a yellow powder (1.18 g, yield 57%).
 1H NMR (δppm in CDCl3); 1.16 (s, 36H), 7.41 (s, 8H), 8.17 (s, 4H)
 13C NMR (δppm in CDCl3); 31.3 (12C), 34.4 (4C), 119.8 (4C), 122.2 (4C), 124.7 (4C), 127.6(4C), 132.6(4C), 144.6(4C), 149.2(4C)
1 H NMR (δppm in CDCl 3 ); 1.16 (s, 36H), 7.41 (s, 8H), 8.17 (s, 4H)
13 C NMR (δppm in CDCl 3 ); 31.3 (12C), 34.4 (4C), 119.8 (4C), 122.2 (4C), 124.7 (4C), 127.6 (4C), 132.6 (4C), 144.6 (4C), 149.2 (4C)
 実施例4:8,9-ジチア-8a-ボラベンゾ[fg]テトラセン(化合物1-5)の製造 Example 4: Preparation of 8,9-dithia-8a-borabenzo [fg] tetracene (Compound 1-5)
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 第1工程:2,2”-ジメチルチア-1,1’:3’,1”-ターフェニル(化合物2-5)の調製 First step: Preparation of 2,2 ″ -dimethylthia-1,1 ′: 3 ′, 1 ″ -terphenyl (compound 2-5)
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 まず、1,3-ジブロモベンゼン(3-5)(2.48mL、20.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.378g、0.40mmol)、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロリド(0.680g、1.60mmol)及び1,4-ジオキサン(80mL)に、窒素雰囲気下、2-(メチルチオフェニル)マグネシウムブロマイド(4-5)のテトラヒドロフラン溶液(51.2mL、0.863M、44.0mmol)を添加し、室温で50時間撹拌を行った。次いで、溶媒を減圧留去した後、これにトルエン及び蒸留水を添加して撹拌した。得られた溶液をセライト濾過することで不溶物を取り除き、有機層と水層とを分けた後、水層をトルエンで抽出した。得られた有機層を合わせて濃縮した後、シリカゲルカラムクロマトグラフィーを行い、溶媒を減圧下に留去し粗生成物を得た。粗生成物をヘキサンを用いて洗浄することで白色固体として2,2”-ジメチルチア-1,1’:3’,1”-ターフェニル(2-5)を得た(3.61g、収率56%)。 First, 1,3-dibromobenzene (3-5) (2.48 mL, 20.0 mmol), tris (dibenzylideneacetone) dipalladium (0) (0.378 g, 0.40 mmol), 1,3-bis ( Tetrahydrofuran solution of 2- (methylthiophenyl) magnesium bromide (4-5) in 2,6-diisopropylphenyl) imidazolium chloride (0.680 g, 1.60 mmol) and 1,4-dioxane (80 mL) under nitrogen atmosphere (51.2 mL, 0.863 M, 44.0 mmol) was added and stirred at room temperature for 50 hours. Subsequently, after depressurizingly distilling a solvent, toluene and distilled water were added and stirred to this. The obtained solution was filtered through Celite to remove insoluble matters, and the organic layer and the aqueous layer were separated. Then, the aqueous layer was extracted with toluene. The obtained organic layers were combined and concentrated, followed by silica gel column chromatography, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was washed with hexane to obtain 2,2 ″ -dimethylthia-1,1 ′: 3 ′, 1 ″ -terphenyl (2-5) as a white solid (3.61 g, yield). 56%).
 1H NMR (δppm in CDCl3);2.37 (s, 6H), 7.20 (ddd, 2H, J = 1.6, 6.8, 7.4 Hz), 7.26-7.35 (m, 6H), 7.42-7.52 (m, 4H)
 13C NMR (δppm in CDCl3);16.1 (2C), 124.7 (2C), 125.3 (2C), 127.7, 127.9 (2C), 128.4 (2C), 130.1 (2C), 130.3, 137.1 (2C), 140.3 (2C), 140.7 (2C).
1 H NMR (δppm in CDCl 3 ); 2.37 (s, 6H), 7.20 (ddd, 2H, J = 1.6, 6.8, 7.4 Hz), 7.26-7.35 (m, 6H), 7.42-7.52 (m, 4H)
13 C NMR (δppm in CDCl 3 ); 16.1 (2C), 124.7 (2C), 125.3 (2C), 127.7, 127.9 (2C), 128.4 (2C), 130.1 (2C), 130.3, 137.1 (2C), 140.3 (2C), 140.7 (2C).
 第2工程:8,9-ジチア-8a-ボラベンゾ[fg]テトラセン(化合物1-5)の製造 Second step: Production of 8,9-dithia-8a-borabenzo [fg] tetracene (compound 1-5)
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 第1工程で得られた2,2”-ジメチルチア-1,1’:3’,1”-ターフェニル(2-5)(0.323g、1.00mmol)及びo-ジクロロベンゼン(4.0mL)に、窒素雰囲気下、三臭化ホウ素(94.5μL、1.00mmol)を添加し、ステンレス製オートクレーブ中、200℃で18時間加熱を行った。次いで、これに室温下でトリエチルアミン(0.418mL、3.00mmol)添加した後、溶媒を減圧下に留去し、昇華精製することで粗生成物を得た。粗生成物をヘキサンを用いて洗浄することで白色固体として化合物(1-5)を得た(0.632g、収率21%)。 2,2 ″ -dimethylthia-1,1 ′: 3 ′, 1 ″ -terphenyl (2-5) (0.323 g, 1.00 mmol) and o-dichlorobenzene (4.0 mL) obtained in the first step ) Was added boron tribromide (94.5 μL, 1.00 mmol) in a nitrogen atmosphere and heated in a stainless steel autoclave at 200 ° C. for 18 hours. Subsequently, triethylamine (0.418 mL, 3.00 mmol) was added thereto at room temperature, and then the solvent was distilled off under reduced pressure, followed by sublimation purification to obtain a crude product. The crude product was washed with hexane to obtain compound (1-5) as a white solid (0.632 g, yield 21%).
 1H NMR (δppm in CDCl); 7.29 (dt, 2H, J = 1.6, 8.2 Hz), 7.35 (ddd, 2H, J = 1.4, 7.7, 8.2 Hz), 7.55 (dd, 2H, J = 1.6, 7.7 Hz), 7.86 (t, 1H, J = 8.0 Hz), 8.26 (dd, 2H, J = 1.4, 8.2 Hz), 8.35 (d, 2H, J = 8.0 Hz)
 13C NMR (δppm in CDCl); 125.0(2C), 126.9 (2C), 127.8 (2C), 128.2 (2C), 130.2 (2C), 130.5(2C), 133.0 (2C), 133.3, 139.2 (2C)
1 H NMR (δppm in CD 2 Cl 2 ); 7.29 (dt, 2H, J = 1.6, 8.2 Hz), 7.35 (ddd, 2H, J = 1.4, 7.7, 8.2 Hz), 7.55 (dd, 2H, J = 1.6, 7.7 Hz), 7.86 (t, 1H, J = 8.0 Hz), 8.26 (dd, 2H, J = 1.4, 8.2 Hz), 8.35 (d, 2H, J = 8.0 Hz)
13 C NMR (δppm in CD 2 Cl 2 ); 125.0 (2C), 126.9 (2C), 127.8 (2C), 128.2 (2C), 130.2 (2C), 130.5 (2C), 133.0 (2C), 133.3, 139.2 (2C)
 実施例5:8,9-ジメチル-8H,9H-8,9-ジアザ-8a-ボラベンゾ[fg]テトラセン(化合物1-6)の製造 Example 5: Preparation of 8,9-dimethyl-8H, 9H-8,9-diaza-8a-borabenzo [fg] tetracene (Compound 1-6)
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 第1工程:2,2”-ビスジメチルアミノ-1,1’:3’,1”-ターフェニル(化合物2-6)の調製 First step: Preparation of 2,2 ″ -bisdimethylamino-1,1 ′: 3 ′, 1 ″ -terphenyl (compound 2-6)
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 1,3-ジブロモベンゼン(3-5)(4.96mL、40.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.755g、0.80mmol)、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロリド(1.36g、3.20mmol)及び1,4-ジオキサン(200mL)に、窒素雰囲気下、2-(ジメチルアミノフェニル)マグネシウムブロマイド(4-6)のテトラヒドロフラン溶液(85.4mL、1.06M、88.0mmol)を添加し、80℃で26時間加熱撹拌を行った。次いで、これに室温下で溶媒を減圧留去した後、トルエン及び蒸留水を添加して撹拌した。得られた溶液をセライト濾過することにより不溶物を取り除き、有機層と水層とを分けた後、水層をトルエンで抽出した。そして、得られた有機層を合わせて濃縮した後、トルエンを展開溶媒としてフロリジルを用いて濾過を行った。溶媒を減圧下に留去して得た粗生成物を昇華精製することで淡黄色固体として2,2”-ビスジメチルアミノ-1,1’:3’,1” -ターフェニル(2-6)を得た(9.47g、収率75%)。 1,3-dibromobenzene (3-5) (4.96 mL, 40.0 mmol), tris (dibenzylideneacetone) dipalladium (0) (0.755 g, 0.80 mmol), 1,3-bis (2, 6-Diisopropylphenyl) imidazolium chloride (1.36 g, 3.20 mmol) and 1,4-dioxane (200 mL) were added to a tetrahydrofuran solution of 2- (dimethylaminophenyl) magnesium bromide (4-6) under a nitrogen atmosphere ( 85.4 mL, 1.06 M, 88.0 mmol) was added, and the mixture was heated and stirred at 80 ° C. for 26 hours. Next, after the solvent was distilled off under reduced pressure at room temperature, toluene and distilled water were added and stirred. The obtained solution was filtered through Celite to remove insoluble matters, and the organic layer and the aqueous layer were separated. Then, the aqueous layer was extracted with toluene. And after combining and concentrating the obtained organic layer, it filtered using florisil by using toluene as a developing solvent. The crude product obtained by distilling off the solvent under reduced pressure was purified by sublimation to give 2,2 ″ -bisdimethylamino-1,1 ′: 3 ′, 1 ″ -terphenyl (2-6) as a pale yellow solid. (9.47 g, 75% yield).
 1H NMR (δppm in CDCl3);2.57 (s, 12H), 6.98-7.05 (m, 4H), 7.23-7.30 (m, 4H), 7.40 (dd, 1H, J = 6.8, 8.3 Hz), 7.49 (dd, 1H, J = 1.7, 6.8 Hz), 7.49 (dd, 1H, J = 1.7, 8.3 Hz), 7.79 (t, 1H, J = 1.7 Hz)
 13C NMR (δppm in CDCl3);43.4 (4C), 117.6 (2C), 121.5 (2C), 126.9 (2C), 128.1 (2C), 128.3, 129.2, 131.8 (2C), 134.4 (2C), 142.1 (2C), 151.4 (2C)
1 H NMR (δppm in CDCl 3 ); 2.57 (s, 12H), 6.98-7.05 (m, 4H), 7.23-7.30 (m, 4H), 7.40 (dd, 1H, J = 6.8, 8.3 Hz), 7.49 (dd, 1H, J = 1.7, 6.8 Hz), 7.49 (dd, 1H, J = 1.7, 8.3 Hz), 7.79 (t, 1H, J = 1.7 Hz)
13 C NMR (δppm in CDCl 3 ); 43.4 (4C), 117.6 (2C), 121.5 (2C), 126.9 (2C), 128.1 (2C), 128.3, 129.2, 131.8 (2C), 134.4 (2C), 142.1 (2C), 151.4 (2C)
 第2工程:8,9-ジメチル-8H,9H-8,9-ジアザ-8a-ボラベンゾ[fg]テトラセン(化合物1-6)の製造 Second step: Preparation of 8,9-dimethyl-8H, 9H-8,9-diaza-8a-borabenzo [fg] tetracene (compound 1-6)
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
 第1工程で得られた2,2”-ビスジメチルアミノ-1,1’:3’,1”-ターフェニル(2-6)(0.158g、0.50mmol)、テトラフェニルホウ酸ナトリウム(0.257g、0.75mmol)及びo-ジクロロベンゼン(2.0mL)に、窒素雰囲気下、三臭化ホウ素(47.3μL、0.50mmol)を添加し、120℃で18時間加熱撹拌を行った。次いで、室温下で溶媒を減圧留去した後、トルエンを展開溶媒としてフロリジルを用いて濾過を行った。さらに、溶媒を減圧下に留去して得た粗生成物を昇華精製することで白色固体として化合物(1-6)を得た(0.959g、収率65%)。 2,2 ″ -bisdimethylamino-1,1 ′: 3 ′, 1 ″ -terphenyl (2-6) (0.158 g, 0.50 mmol) obtained in the first step, sodium tetraphenylborate ( Boron tribromide (47.3 μL, 0.50 mmol) was added to 0.257 g, 0.75 mmol) and o-dichlorobenzene (2.0 mL) under a nitrogen atmosphere, and the mixture was heated and stirred at 120 ° C. for 18 hours. It was. Subsequently, after depressurizingly distilling a solvent under room temperature, it filtered using florisil by using toluene as a developing solvent. Further, the crude product obtained by distilling off the solvent under reduced pressure was purified by sublimation to obtain Compound (1-6) as a white solid (0.959 g, yield 65%).
 1H NMR (δppm in CDCl3); 3.61 (s, 6H), 7.17 (ddd, 2H, J = 1.2, 7.0, 8.0 Hz), 7.39 (dd, 2H, J = 1.2, 8.3 Hz), 7.46 (ddd, 2H, J = 1.4, 7.0, 8.3 Hz), 7.77 (t, 1H, J = 8.0 Hz), 8.19 (d, 2H, J = 8.0 Hz), 8.31 (dd, 2H, J = 1.4, 8.0 Hz)
 13C NMR (δppm in CDCl3); 37.5 (2C), 115.4 (2C), 119.1 (2C), 119.9 (2C), 123.9 (2C), 124.1 (2C), 128.4 (2C), 130.3, 137.8 (2C), 144.7 (2C)
1 H NMR (δppm in CDCl 3 ); 3.61 (s, 6H), 7.17 (ddd, 2H, J = 1.2, 7.0, 8.0 Hz), 7.39 (dd, 2H, J = 1.2, 8.3 Hz), 7.46 (ddd , 2H, J = 1.4, 7.0, 8.3 Hz), 7.77 (t, 1H, J = 8.0 Hz), 8.19 (d, 2H, J = 8.0 Hz), 8.31 (dd, 2H, J = 1.4, 8.0 Hz)
13 C NMR (δppm in CDCl 3 ); 37.5 (2C), 115.4 (2C), 119.1 (2C), 119.9 (2C), 123.9 (2C), 124.1 (2C), 128.4 (2C), 130.3, 137.8 (2C ), 144.7 (2C)
 実施例6:8a-オキソホスファ-8,9-ジオキサベンゾ[fg]テトラセン(化合物1-7)の製造 Example 6: Preparation of 8a-oxophospha-8,9-dioxabenzo [fg] tetracene (Compound 1-7)
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 第1工程1:2’-ヨード-2,2”-ジヒドロキシ-1,1’:3’,1”-ターフェニル(化合物2-7)の調製 First Step 1: Preparation of 2′-iodo-2,2 ″ -dihydroxy-1,1 ′: 3 ′, 1 ″ -terphenyl (Compound 2-7)
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 製造例1の第1工程で得られた2’-ヨード-2,2”-ジメトキシ-1,1’:3’,1”-ターフェニル(2-1)(10.6g、25.4mmol)および塩化メチレン(120mL)に、窒素雰囲気下、0℃で三臭化ホウ素(4.8mL、50.8mmol)を添加した。35℃で21.5時間撹拌した後、0℃でメタノール(20.6mL)を添加した後、溶媒を減圧留去した。粗生成物をトルエンに溶かし,ジクロロメタンを用いてシリカゲルカラムによる濾過を行い、溶媒を減圧留去して粗生成物を得た。粗生成物をヘキサンを用いて洗浄することで、2’-ヨード-2,2”-ジヒドロキシ-1,1’:3’,1”-ターフェニル(化合物2-7)を得た(9.1g、収率93%)。 2′-iodo-2,2 ″ -dimethoxy-1,1 ′: 3 ′, 1 ″ -terphenyl (2-1) obtained in the first step of Production Example 1 (10.6 g, 25.4 mmol) And methylene chloride (120 mL) was added boron tribromide (4.8 mL, 50.8 mmol) at 0 ° C. under a nitrogen atmosphere. After stirring at 35 ° C. for 21.5 hours, methanol (20.6 mL) was added at 0 ° C., and then the solvent was distilled off under reduced pressure. The crude product was dissolved in toluene, filtered through a silica gel column using dichloromethane, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was washed with hexane to obtain 2′-iodo-2,2 ″ -dihydroxy-1,1 ′: 3 ′, 1 ″ -terphenyl (Compound 2-7) (9. 1 g, 93% yield).
 1H NMR (δppm in CDCl3); 4.75 (broad s, 2H), 6.90 (d, 1H, J = 8.0 Hz), 6.97-7.02 (m, 3H), 7.09-7.15 (m, 2H), 7.24-7.53 (m, 5H). 1 H NMR (δppm in CDCl 3 ); 4.75 (broad s, 2H), 6.90 (d, 1H, J = 8.0 Hz), 6.97-7.02 (m, 3H), 7.09-7.15 (m, 2H), 7.24- 7.53 (m, 5H).
 第2工程:8a-オキソホスファ-8,9-ジオキサベンゾ[fg]テトラセン(化合物1-7)の製造 Second step: Preparation of 8a-oxophospha-8,9-dioxabenzo [fg] tetracene (compound 1-7)
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 第1工程で得られた2’-ヨード-2,2”-ジヒドロキシ-1,1’:3’,1”-ターフェニル(化合物2-7)(7.77g、20.0mmol)及びトルエン(140mL)に、窒素雰囲気下、-85℃でフェニルリチウムのジブチルエーテル溶液(21.1mL、1.90M、40.0mmol)をゆっくり添加した後、1時間かけて室温に戻した。次いで、これに、-92℃でブチルリチウムのヘキサン溶液(12.5mL、1.60M、20.0mmol)をゆっくり添加した後、1時間かけて室温に戻した。さらに、-88℃で三塩化リン(1.83mL、20.9mmol)を添加した後、1時間かけて室温に戻した。-70℃でメタクロロ過安息香酸(m-CPBA)(3.19g、14.2mmol、77%純度)を添加した後、1時間かけて室温に戻した。酢酸エチルを用いてシリカゲルによる濾過を行い、溶媒を減圧留去して粗生成物を得た。粗生成物を昇華精製することで、白色粉末として8a-オキソホスファ-8,9-ジオキサベンゾ[fg]テトラセン(化合物1-7)を得た(0.347g、収率38%)。 2′-iodo-2,2 ″ -dihydroxy-1,1 ′: 3 ′, 1 ″ -terphenyl (compound 2-7) (7.77 g, 20.0 mmol) obtained in the first step and toluene ( 140 mL), a solution of phenyllithium in dibutyl ether (21.1 mL, 1.90 M, 40.0 mmol) was slowly added at −85 ° C. under a nitrogen atmosphere, and the temperature was returned to room temperature over 1 hour. Next, a butyllithium hexane solution (12.5 mL, 1.60 M, 20.0 mmol) was slowly added thereto at −92 ° C., and the mixture was returned to room temperature over 1 hour. Further, phosphorus trichloride (1.83 mL, 20.9 mmol) was added at −88 ° C., and the temperature was returned to room temperature over 1 hour. After adding metachloroperbenzoic acid (m-CPBA) (3.19 g, 14.2 mmol, 77% purity) at −70 ° C., the temperature was returned to room temperature over 1 hour. Filtration through silica gel using ethyl acetate was performed, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified by sublimation to obtain 8a-oxophospha-8,9-dioxabenzo [fg] tetracene (compound 1-7) as a white powder (0.347 g, 38% yield).
 1H NMR (δppm in CDCl3); 7.32-7.36 (m, 2H), 7.39 (dd, 2H, J = 1.2, 8.0 Hz), 7.44-7.48 (m, 2H), 7.81-7.90 (m,3H), 7.99 (dd, 2H, J = 1.6, 8.0 Hz)
 13C NMR (δppm in CDCl3); 119.1 (d, J = 84.0 Hz), 121.2 (d, J = 3.4 Hz, 2C), 123.5 (d, J = 5.7 Hz, 2C), 123.6 (d, J = 6.7 Hz, 2C), 125.6 (2C), 125.7 (2C), 131.1 (2C), 133.7, 134.9 (d, J = 2.9 Hz, 2C), 149.1(d, J = 2.4 Hz, 2C)
1 H NMR (δppm in CDCl 3 ); 7.32-7.36 (m, 2H), 7.39 (dd, 2H, J = 1.2, 8.0 Hz), 7.44-7.48 (m, 2H), 7.81-7.90 (m, 3H) , 7.99 (dd, 2H, J = 1.6, 8.0 Hz)
13 C NMR (δppm in CDCl 3 ); 119.1 (d, J = 84.0 Hz), 121.2 (d, J = 3.4 Hz, 2C), 123.5 (d, J = 5.7 Hz, 2C), 123.6 (d, J = 6.7 Hz, 2C), 125.6 (2C), 125.7 (2C), 131.1 (2C), 133.7, 134.9 (d, J = 2.9 Hz, 2C), 149.1 (d, J = 2.4 Hz, 2C)
 実施例7:5,12-ジオクチル-8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセン(化合物1-8)の製造 Example 7: Preparation of 5,12-dioctyl-8a-bora-8,9-dioxabenzo [fg] tetracene (Compound 1-8)
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 第1工程:2,2”-ジメトキシ-5,5” -ジオクチル-1,1’:3’,1”-ターフェニル(化合物2-8)の調製 Step 1: Preparation of 2,2 "-dimethoxy-5,5" -dioctyl-1,1 ': 3', 1 "-terphenyl (compound 2-8)
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 1,3-ジブロモベンゼン(3-5)(1.55mL、12.5mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.284g、0.31mmol)、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロリド(0.531g、1.25mmol)及び1,4-ジオキサン(65mL)に、窒素雰囲気下、2-メトキシ-5-オクチルマグネシウムブロマイド(3-8)のテトラヒドロフラン溶液(65mL、0.50M)を添加し、リフラックスで14時間加熱撹拌を行った。次いで、これを室温下で溶媒を減圧留去した後、トルエン及び塩酸を添加して分液を行った。有機層と水層とを分けた後、水層をトルエンで抽出した。そして、得られた有機層を合わせて濃縮した後、トルエンを展開溶媒としてフロリジルを用いて濾過を行った。溶媒を減圧下に留去して得た粗生成物を昇華精製することで黄褐色液体として2,2”-ジメトキシ-5,5” -ジオクチル-1,1’:3’,1”-ターフェニル(化合物2-8)を得た(6.43g、収率66%)。 1,3-dibromobenzene (3-5) (1.55 mL, 12.5 mmol), tris (dibenzylideneacetone) dipalladium (0) (0.284 g, 0.31 mmol), 1,3-bis (2, 6-Diisopropylphenyl) imidazolium chloride (0.531 g, 1.25 mmol) and 1,4-dioxane (65 mL) were added to a tetrahydrofuran solution of 2-methoxy-5-octylmagnesium bromide (3-8) under a nitrogen atmosphere ( 65 mL, 0.50 M) was added, and the mixture was heated and stirred with reflux for 14 hours. Next, after the solvent was distilled off under reduced pressure at room temperature, toluene and hydrochloric acid were added to carry out liquid separation. After separating the organic layer and the aqueous layer, the aqueous layer was extracted with toluene. And after combining and concentrating the obtained organic layer, it filtered using florisil by using toluene as a developing solvent. The crude product obtained by distilling off the solvent under reduced pressure was purified by sublimation to give 2,2 ″ -dimethoxy-5,5 ″ -dioctyl-1,1 ′: 3 ′, 1 ″ -ter as a tan liquid. Phenyl (Compound 2-8) was obtained (6.43 g, 66% yield).
 1H NMR (δppm in CDCl3);0.87 (t, 6H), 1.19-1.39 (m, 20H), 1.56-1.66 (m, 4H), 2.58 (t, 4H), 3.79 (s, 6H), 6.90 (d, 2H), 7.12 (dd, 2H), 7.19 (d, 2H), 7.42 (t, 1H), 7.50 (dd, 2H), 7.67 (s, 1H)
 13C NMR (δppm in CDCl3); 14.1 (2C), 22.7 (2C), 29.3 (4C), 29.5 (2C), 31.7 (2C), 31.9 (2C), 35.1 (2C), 55.7 (2C), 111.1 (2C), 127.4 (1C), 128.1 (4C), 130.1 (2C), 130.7 (1C), 131.1 (2C), 135.2 (2C), 138.3 (2C), 154.6 (2C)
1 H NMR (δppm in CDCl 3 ); 0.87 (t, 6H), 1.19-1.39 (m, 20H), 1.56-1.66 (m, 4H), 2.58 (t, 4H), 3.79 (s, 6H), 6.90 (d, 2H), 7.12 (dd, 2H), 7.19 (d, 2H), 7.42 (t, 1H), 7.50 (dd, 2H), 7.67 (s, 1H)
13 C NMR (δppm in CDCl 3 ); 14.1 (2C), 22.7 (2C), 29.3 (4C), 29.5 (2C), 31.7 (2C), 31.9 (2C), 35.1 (2C), 55.7 (2C), 111.1 (2C), 127.4 (1C), 128.1 (4C), 130.1 (2C), 130.7 (1C), 131.1 (2C), 135.2 (2C), 138.3 (2C), 154.6 (2C)
 第2工程:5,12-ジオクチル-8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセン(化合物1-8)の製造 Second step: Preparation of 5,12-dioctyl-8a-bora-8,9-dioxabenzo [fg] tetracene (compound 1-8)
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 第1工程で得られた2,2”-ジメトキシ-5,5” -ジオクチル-1,1’:3’,1”-ターフェニル(化合物2-8)(0.257g、0.50mmol)及びo-ジクロロベンゼン(2.0mL)に、窒素雰囲気下、三臭化ホウ素(47.3μL、0.50mmol)を添加し、室温で24時間撹拌した。その後、これに1,2,2,6,6-ペンタメチルピペリジン(181μL、1.0mmol)を0℃で添加し、170℃で36時間加熱撹拌を行った。次いで、室温下で溶媒を減圧留去した後、トルエンを展開溶媒としてフロリジルを用いて濾過を行った。さらに、溶媒を減圧下に留去して得た粗生成物を昇華精製することで白色固体として(化合物1-8)を得た(26.4mg、収率11%)。 2,2 ″ -dimethoxy-5,5 ″ -dioctyl-1,1 ′ obtained in the first step: 3 ′, 1 ″ -terphenyl (compound 2-8) (0.257 g, 0.50 mmol) and Boron tribromide (47.3 μL, 0.50 mmol) was added to o-dichlorobenzene (2.0 mL) under a nitrogen atmosphere and stirred at room temperature for 24 hours. , 6-pentamethylpiperidine (181 μL, 1.0 mmol) was added at 0 ° C., and the mixture was stirred with heating for 36 hours at 170 ° C. Then, the solvent was distilled off under reduced pressure at room temperature, and then Florisil was used with toluene as a developing solvent. The crude product obtained by distilling off the solvent under reduced pressure was purified by sublimation to obtain (Compound 1-8) as a white solid (26.4 mg, yield 11). %).
 1H NMR (δppm in CDCl3); 0.87 (t, 6H), 1.19-1.43 (m, 20H), 1.61-1.74 (m, 4H), 2.70 (t, 4H), 7.19-7.28 (m, 2H), 7.34 (d, 2H), 7.85-7.96 (m, 3H), 8.08 (d, 2H)
 13C NMR (δppm in CDCl3); 14.1 (2C), 22.7 (2C), 29.3 (4C), 29.5 (2C), 31.8 (2C), 31.9 (2C), 35.6 (2C), 119.4 (2C), 120.1 (2C), 122.7 (2C), 123.4 (2C), 129.7 (2C), 133.6 (1C), 137.4 (2C), 139.5 (2C), 149.9 (2C)
1 H NMR (δppm in CDCl 3 ); 0.87 (t, 6H), 1.19-1.43 (m, 20H), 1.61-1.74 (m, 4H), 2.70 (t, 4H), 7.19-7.28 (m, 2H) , 7.34 (d, 2H), 7.85-7.96 (m, 3H), 8.08 (d, 2H)
13 C NMR (δppm in CDCl 3 ); 14.1 (2C), 22.7 (2C), 29.3 (4C), 29.5 (2C), 31.8 (2C), 31.9 (2C), 35.6 (2C), 119.4 (2C), 120.1 (2C), 122.7 (2C), 123.4 (2C), 129.7 (2C), 133.6 (1C), 137.4 (2C), 139.5 (2C), 149.9 (2C)
 実施例8:5,12-ジブロモ-8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセン(化合物1-9)の製造 Example 8: Preparation of 5,12-dibromo-8a-bora-8,9-dioxabenzo [fg] tetracene (Compound 1-9)
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセン(1-1)(27.0mg、0.1mmol)、アセトニトリル(0.8mL)、及びジクロロメタン(0.8mL)の懸濁液に対して、1,3-ジブロモ-5,5-ジメチルヒダントイン(54.0mg、0.4mmol)を室温で加え、30時間撹拌した。反応終了後、溶媒を減圧下で留去して得られた粗生成物をGPCで単離することで、白色固体として式(1-9)で表される化合物を得た(12.4mg、収率29%)。 To a suspension of 8a-bora-8,9-dioxabenzo [fg] tetracene (1-1) (27.0 mg, 0.1 mmol), acetonitrile (0.8 mL), and dichloromethane (0.8 mL), 1,3-Dibromo-5,5-dimethylhydantoin (54.0 mg, 0.4 mmol) was added at room temperature and stirred for 30 hours. After completion of the reaction, the crude product obtained by distilling off the solvent under reduced pressure was isolated by GPC to obtain a compound represented by the formula (1-9) as a white solid (12.4 mg, Yield 29%).
 1H NMR (δppm in CDCl3); 7.33 (d, 2H), 7.54 (dd, 2H), 7.95 (t, 1H), 8.07 (d, 2H) 8.26 (d, 2H)
 13C NMR (δ NM in CDCl3); 116.2 (2C), 120.5 (2C), 122.3 (2C), 125.0 (2C), 127.0 (2C), 132.5(2C), 134.3, 138.6(2C), 150.9(2C)
1 H NMR (δppm in CDCl 3 ); 7.33 (d, 2H), 7.54 (dd, 2H), 7.95 (t, 1H), 8.07 (d, 2H) 8.26 (d, 2H)
13 C NMR (δ NM in CDCl 3 ); 116.2 (2C), 120.5 (2C), 122.3 (2C), 125.0 (2C), 127.0 (2C), 132.5 (2C), 134.3, 138.6 (2C), 150.9 ( 2C)
 実施例9:10a-ボラ-10,11-ジオキサベンゾ[h,i]ヘキサセン(化合物1-10)の製造 Example 9: Preparation of 10a-bora-10,11-dioxabenzo [h, i] hexacene (Compound 1-10)
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 第1工程:1,3-ビス(3-メトキシナフタレニル)ベンゼン(化合物2-10)の調製 First Step: Preparation of 1,3-bis (3-methoxynaphthalenyl) benzene (Compound 2-10)
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 1,3-ジブロモベンゼン(48.2mL、4.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(55.0mg、0.060mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(49.5mg、0.12mmol)、3-メトキシ-2-ナフタレニルボロン酸(1.78g、8.8mmol)、炭酸セシウム(3.26g、10mmol)に窒素雰囲気下、-45℃でトルエン(40mL)を加え、80℃で18時間加熱撹拌を行った。反応液を室温まで冷やし、シリカゲルショートパスカラム(展開液:トルエン)に通した。溶媒を減圧留去した後、更にヘキサンで洗浄し、1,3-ビス(3-メトキシナフタレニル)ベンゼン(2-10)(1.24g、収率80%)を得た。 1,3-dibromobenzene (48.2 mL, 4.0 mmol), tris (dibenzylideneacetone) dipalladium (0) (55.0 mg, 0.060 mmol), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxy Biphenyl (49.5 mg, 0.12 mmol), 3-methoxy-2-naphthalenylboronic acid (1.78 g, 8.8 mmol), cesium carbonate (3.26 g, 10 mmol) at −45 ° C. under a nitrogen atmosphere. Toluene (40 mL) was added, and the mixture was heated and stirred at 80 ° C. for 18 hours. The reaction solution was cooled to room temperature and passed through a silica gel short pass column (developing solution: toluene). After the solvent was distilled off under reduced pressure, the residue was further washed with hexane to obtain 1,3-bis (3-methoxynaphthalenyl) benzene (2-10) (1.24 g, yield 80%).
 1H NMR (δppm in CDCl3); 3.95 (s, 6H)、7.22-7.29 (m, 2H)、7.36 (t, 2H)、7.46 (t, 2H)、7.52 (t, 1H)、7.64 (d, 2H)、7.74-7.89 (m, 7H)
 13C NMR (δppm in CDCl3); 55.5 (2C)、105.7 (2C)、123.9 (2C)、126.3 (4C)、127.6、127.7 (2C)、128.7 (2C)、128.8 (2C)、130.1 (2C)、131.1、132.4 (2C)、134.0 (2C)、138.0 (2C)、155.3 (2C)
1 H NMR (δppm in CDCl 3 ); 3.95 (s, 6H), 7.22-7.29 (m, 2H), 7.36 (t, 2H), 7.46 (t, 2H), 7.52 (t, 1H), 7.64 (d , 2H), 7.74-7.89 (m, 7H)
13 C NMR (δppm in CDCl 3 ); 55.5 (2C), 105.7 (2C), 123.9 (2C), 126.3 (4C), 127.6, 127.7 (2C), 128.7 (2C), 128.8 (2C), 130.1 (2C ), 131.1, 132.4 (2C), 134.0 (2C), 138.0 (2C), 155.3 (2C)
 第2工程:10a-ボラ-10,11-ジオキサベンゾ[h,i]ヘキサセン(化合物1-10)の製造 Second step: Production of 10a-bora-10,11-dioxabenzo [h, i] hexacene (compound 1-10)
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 第1工程で得られた1,3-ビス(3-メトキシナフタレニル)ベンゼン(2-10)(0.195g、0.50mmol)およびオルトジクロロベンゼン(2.0mL)に窒素雰囲気下、0℃で三臭化ホウ素(47.5μL、0.50mmol)を加え、室温で20時間撹拌を行った。反応液を0℃まで冷やし、2,2,6,6-テトラメチルピペリジン(0.141mL、1.0mmol)加えて、180℃で36時間加熱撹拌した。反応液を室温まで冷やし、溶媒を減圧留去した後、ジクロロメタンで洗浄することで、白い固体として式(1-10)で表される化合物(0.141g、収率76%)を得た。 To the 1,3-bis (3-methoxynaphthalenyl) benzene (2-10) (0.195 g, 0.50 mmol) and orthodichlorobenzene (2.0 mL) obtained in the first step under a nitrogen atmosphere, 0 Boron tribromide (47.5 μL, 0.50 mmol) was added at 0 ° C., and the mixture was stirred at room temperature for 20 hours. The reaction solution was cooled to 0 ° C., 2,2,6,6-tetramethylpiperidine (0.141 mL, 1.0 mmol) was added, and the mixture was heated and stirred at 180 ° C. for 36 hours. The reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure, and the residue was washed with dichloromethane to obtain a compound represented by the formula (1-10) (0.141 g, yield 76%) as a white solid.
 1H NMR (δppm in CDCl3); 7.41-7.58 (m, 4H)、7.82-8.05 (m, 7H)、8.32 (d, 2H)、8.65 (s, 2H)
 13C NMR (δppm in CDCl3); 116.2 (2C)、120.9 (2C)、123.7 (2C)、124.1 (2C)、125.1 (2C)、127.0 (4C)、128.3 (2C)、130.2 (2C)、134.2、134.5 (2C)、139.9 (2C)、150.0 (2C)
1 H NMR (δppm in CDCl 3 ); 7.41-7.58 (m, 4H), 7.82-8.05 (m, 7H), 8.32 (d, 2H), 8.65 (s, 2H)
13 C NMR (δ ppm in CDCl 3 ); 116.2 (2C), 120.9 (2C), 123.7 (2C), 124.1 (2C), 125.1 (2C), 127.0 (4C), 128.3 (2C), 130.2 (2C), 134.2, 134.5 (2C), 139.9 (2C), 150.0 (2C)
 実施例10:9a,19a-ジボラ-9,10,19,20-テトラオキソ-3,6,13,16-テトラシアノベンゾ[a,f,j,o]ペリレン(化合物1-11)の製造 Example 10: Preparation of 9a, 19a-Dibora-9,10,19,20-tetraoxo-3,6,13,16-tetracyanobenzo [a, f, j, o] perylene (Compound 1-11)
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 第1工程:9a,19a-ジボラ-9,10,19,20-テトラオキソ-3,6,13,16-テトラブロモベンゾ[a,f,j,o]ペリレン(化合物2-11)の調製 First Step: Preparation of 9a, 19a-Dibora-9,10,19,20-tetraoxo-3,6,13,16-tetrabromobenzo [a, f, j, o] perylene (Compound 2-11)
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 窒素導入管及び攪拌装置を取り付けた三つ口フラスコに、化合物(1-3)(50mg、0.11mmol)、ジクロロメタン(15mL)、及びアセトニトリル(15mL)を加えた。前記フラスコを-5℃に冷やした後、1,3-ジブロモ-5,5-ジメチルヒダントイン(500mg)を加え、室温にして3日間撹拌した。反応混合物から減圧で溶媒を除去した後、クロロホルム20mLを加えてろ過し、溶媒を留去した。得られた反応混合物にクロロホルムを少量加え、シリカゲルクロマトグラフィー(クロロホルム-ヘプタン)によって精製することにより、黄色固体として式(2-11)で表される化合物(10mg、収率11.7%)を得た。 Compound (1-3) (50 mg, 0.11 mmol), dichloromethane (15 mL), and acetonitrile (15 mL) were added to a three-necked flask equipped with a nitrogen inlet tube and a stirrer. The flask was cooled to −5 ° C., 1,3-dibromo-5,5-dimethylhydantoin (500 mg) was added, and the mixture was stirred at room temperature for 3 days. After removing the solvent from the reaction mixture under reduced pressure, 20 mL of chloroform was added and filtered, and the solvent was distilled off. A small amount of chloroform was added to the obtained reaction mixture, and the mixture was purified by silica gel chromatography (chloroform-heptane) to give a compound represented by the formula (2-11) (10 mg, yield 11.7%) as a yellow solid. Obtained.
 1H NMR (500MHz;THF-d4;δ(ppm)); 7.422 (d, 4H) 、 7.7.598 (dd, 4H) 、 8.407 (d, 4H) 1 H NMR (500 MHz; THF-d 4 ; δ (ppm)); 7.422 (d, 4H), 7.7.598 (dd, 4H), 8.407 (d, 4H)
 第2工程:9a,19a-ジボラ-9,10,19,20-テトラオキソ-3,6,13,16-テトラシアノベンゾ[a,f,j,o]ペリレン(化合物1-11)の調製 Second Step: Preparation of 9a, 19a-Dibora-9,10,19,20-tetraoxo-3,6,13,16-tetracyanobenzo [a, f, j, o] perylene (Compound 1-11)
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 窒素導入管及び冷却管を取り付けた10mLナスフラスコに、第1工程で得られた化合物(2-11)(10mg、0.012mmol)、DMF(1.5mL)、及びシアン化銅(I)(0.01g)を加えた。窒素気流下で6時間還流した後、室温に戻し氷水中に投入した。析出した固体をろ別し、減圧下乾燥させた。得られた固体を少量のクロロホルムに溶かし、シリカゲルクロマトグラフィー(クロロホルム-ヘプタン)によって精製することにより、淡黄色固体として式(1-11)で表される化合物(6.1mg、収率90.6%)を得た。 In a 10 mL eggplant flask equipped with a nitrogen introduction tube and a cooling tube, the compound (2-11) (10 mg, 0.012 mmol) obtained in the first step, DMF (1.5 mL), and copper (I) cyanide ( 0.01 g) was added. After refluxing for 6 hours under a nitrogen stream, the temperature was returned to room temperature and poured into ice water. The precipitated solid was filtered off and dried under reduced pressure. The obtained solid was dissolved in a small amount of chloroform and purified by silica gel chromatography (chloroform-heptane) to give a compound represented by the formula (1-11) (6.1 mg, yield 90.6) as a pale yellow solid. %).
  実施例11:6,15-ジオクチル-10,11-ジオキサ-10a-ボラベンゾ[hi]ヘキサセン(化合物1-12)の製造 Example 11: Preparation of 6,15-dioctyl-10,11-dioxa-10a-borabenzo [hi] hexacene (Compound 1-12)
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
第1工程:1,3-ビス(3-メトキシ-7-オクチルナフタレニル)ベンゼン(化合物2-12)の製造First step: Production of 1,3-bis (3-methoxy-7-octylnaphthalenyl) benzene (compound 2-12)
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
 1,3-ジブロモベンゼン(1.81mL、0.015mol)、3-メトキシ-7-オクチル-2-ナフタレニルボロン酸(10.4g、0.033mol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.206g、0.23mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(0.186g、0.45mmol)、炭酸セシウム(12.2g、0.037mol)に窒素雰囲気下、-55℃でトルエン(150mL)を加え、80℃で18時間加熱撹拌を行った。反応液を室温まで冷やし、シリカゲルショートパスカラム(展開液:トルエン)に通した。溶媒を減圧留去した後、ゲル浸透クロマトグラフィー(展開溶媒:トルエン)を用いて精製し、溶媒を減圧留去することにより、1,3-ビス(3-メトキシ-7-オクチルナフタレニル)ベンゼン(2-12)(5.10g、収率55%)を得た。 1,3-dibromobenzene (1.81 mL, 0.015 mol), 3-methoxy-7-octyl-2-naphthalenylboronic acid (10.4 g, 0.033 mol), tris (dibenzylideneacetone) dipalladium ( 0) (0.206 g, 0.23 mmol), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl (0.186 g, 0.45 mmol), cesium carbonate (12.2 g, 0.037 mol) in nitrogen atmosphere Then, toluene (150 mL) was added at −55 ° C., and the mixture was heated and stirred at 80 ° C. for 18 hours. The reaction solution was cooled to room temperature and passed through a silica gel short pass column (developing solution: toluene). After the solvent was distilled off under reduced pressure, purification was performed using gel permeation chromatography (developing solvent: toluene), and the solvent was distilled off under reduced pressure to obtain 1,3-bis (3-methoxy-7-octylnaphthalenyl). Benzene (2-12) (5.10 g, yield 55%) was obtained.
 1H NMR (δppm in CDCl3); 0.92 (t, 6H)、1.31-1.38 (m, 20H)、1.66-1.76 (m, 4H)、2.77 (t, 4H)、4.00 (s, 6H)、7.26 (s, 2H)、7.37 (d, 2H)、7.56 (t, 1H)、7.62 (s, 2H)、7.70 (d, 2H)、7.75 (d, 2H)、7.82 (s, 2H)、7.89 (s, 1H)
 13C NMR (δppm in CDCl3); 14.2 (2C)、22.6 (2C)、29.2 (2C)、29.3 (2C)、29.4 (2C)、31.4 (2C)、31.8 (2C)、35.8 (2C)、55.6 (2C)、105.5 (2C)、126.1 (2C)、126.2 (2C)、127.5、128.1 (2C)、128.6 (2C)、128.7 (2C)、129.7 (2C)、131.0、131.8 (2C)、132.0 (2C)、138.0 (2C)、138.6 (2C)、154.5 (2C)
1 H NMR (δppm in CDCl 3 ); 0.92 (t, 6H), 1.31-1.38 (m, 20H), 1.66-1.76 (m, 4H), 2.77 (t, 4H), 4.00 (s, 6H), 7.26 (s, 2H), 7.37 (d, 2H), 7.56 (t, 1H), 7.62 (s, 2H), 7.70 (d, 2H), 7.75 (d, 2H), 7.82 (s, 2H), 7.89 ( s, 1H)
13 C NMR (δ ppm in CDCl 3 ); 14.2 (2C), 22.6 (2C), 29.2 (2C), 29.3 (2C), 29.4 (2C), 31.4 (2C), 31.8 (2C), 35.8 (2C), 55.6 (2C), 105.5 (2C), 126.1 (2C), 126.2 (2C), 127.5, 128.1 (2C), 128.6 (2C), 128.7 (2C), 129.7 (2C), 131.0, 131.8 (2C), 132.0 (2C), 138.0 (2C), 138.6 (2C), 154.5 (2C)
第2工程:6,15-ジオクチル-10,11-ジオキサ-10a-ボラベンゾ[hi]ヘキサセン(化合物1-12)の製造Second step: Production of 6,15-dioctyl-10,11-dioxa-10a-borabenzo [hi] hexacene (compound 1-12)
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 第1工程で得られた1,3-ビス(3-メトキシ-7-オクチルナフタレニル)ベンゼン(2-12)(0.244g、0.40mmol)およびオルトジクロロベンゼン(1.8mL)に窒素雰囲気下、0℃で三臭化ホウ素(38.0μL、0.40mmol)を加え、室温で20時間撹拌を行った。反応液を0℃まで冷やして、2,2,6,6-テトラメチルピペリジン(0.135mL、0.80mmol)を加え、180℃で36時間加熱撹拌した。反応液を室温まで冷やし、溶媒を減圧留去した後、トルエンを展開溶媒としてフロリジルを用いて濾過を行った。溶媒を減圧留去して得た粗生成物をアセトニトリルで洗浄することで、白い固体として式(1-12)で表される化合物(53.0mg、収率22%)を得た。 Nitrogen was added to 1,3-bis (3-methoxy-7-octylnaphthalenyl) benzene (2-12) (0.244 g, 0.40 mmol) and orthodichlorobenzene (1.8 mL) obtained in the first step. Under an atmosphere, boron tribromide (38.0 μL, 0.40 mmol) was added at 0 ° C., and the mixture was stirred at room temperature for 20 hours. The reaction solution was cooled to 0 ° C., 2,2,6,6-tetramethylpiperidine (0.135 mL, 0.80 mmol) was added, and the mixture was heated and stirred at 180 ° C. for 36 hours. The reaction solution was cooled to room temperature, and the solvent was distilled off under reduced pressure, followed by filtration using Florisil with toluene as a developing solvent. The crude product obtained by distilling off the solvent under reduced pressure was washed with acetonitrile to obtain a compound represented by the formula (1-12) (53.0 mg, yield 22%) as a white solid.
 1H NMR (δppm in CDCl3); 0.89 (t, 6H)、1.25-1.37 (m, 20H)、1.69-1.75(m, 4H)、2.78 (t, 4H)、7.35 (d, 2H)、7.70 (s, 2H)、7.76-7.78 (m, 4H)、7.94 (t, 1H)、8.25 (d, 2H)、8.54 (s, 2H)
 13C NMR (δppm in CDCl3); 14.1 (2C)、22.7 (2C)、29.3 (2C)、29.4 (2C)、29.5 (2C)、31.3 (2C)、31.9 (2C)、36.1 (2C)、115.7 (2C)、120.5 (2C)、122.9 (2C)、123.6 (2C)、126.3 (2C)、126.7 (2C)、128.6 (2C)、129.9 (2C)、132.5 (2C)、133.9、139.5 (2C)、139.6 (2C)、149.2 (2C)
1 H NMR (δppm in CDCl 3 ); 0.89 (t, 6H), 1.25-1.37 (m, 20H), 1.69-1.75 (m, 4H), 2.78 (t, 4H), 7.35 (d, 2H), 7.70 (s, 2H), 7.76-7.78 (m, 4H), 7.94 (t, 1H), 8.25 (d, 2H), 8.54 (s, 2H)
13 C NMR (δppm in CDCl 3 ); 14.1 (2C), 22.7 (2C), 29.3 (2C), 29.4 (2C), 29.5 (2C), 31.3 (2C), 31.9 (2C), 36.1 (2C), 115.7 (2C), 120.5 (2C), 122.9 (2C), 123.6 (2C), 126.3 (2C), 126.7 (2C), 128.6 (2C), 129.9 (2C), 132.5 (2C), 133.9, 139.5 (2C ), 139.6 (2C), 149.2 (2C)
 試験例1:9a,19a-ジボラ-9,10,19,20-テトラオキソテトラベンゾ[a,f,j,o]ペリレン(化合物1-3)のキャリア移動度測定 Test Example 1: Measurement of carrier mobility of 9a, 19a-dibora-9,10,19,20-tetraoxotetrabenzo [a, f, j, o] perylene (compound 1-3)
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 26mm×28mm×0.5mmのガラス基板(日本板硝子(株)製)を透明支持基板とした。この透明支持基板を市販の蒸着装置の基板ホルダーに、2mm幅の下部アルミ電極を得るためのメタルマスクと同時に装着した。次いで、アルミニウムをのせたタングステン製の蒸着ボートを蒸着装置にセットした。 A glass substrate (manufactured by Nippon Sheet Glass Co., Ltd.) of 26 mm × 28 mm × 0.5 mm was used as a transparent support substrate. This transparent support substrate was mounted on a substrate holder of a commercially available vapor deposition apparatus at the same time as a metal mask for obtaining a lower aluminum electrode having a width of 2 mm. Next, a tungsten vapor deposition boat on which aluminum was placed was set in a vapor deposition apparatus.
 真空槽を5×10-3Pa以下まで減圧し、蒸着用ボートを加熱して膜厚10nmになるように半透明の下部アルミ電極を形成した。蒸着速度は、0.5~1nm/秒であった。 The vacuum chamber was depressurized to 5 × 10 −3 Pa or less, and the evaporation boat was heated to form a translucent lower aluminum electrode so as to have a film thickness of 10 nm. The deposition rate was 0.5 to 1 nm / second.
 次に、下部アルミ電極を覆うように設計した有機層を形成するためのメタルマスクを基板ホルダーに装着し、実施例2で得られた化合物1-3を入れたモリブデン製蒸着用ボートと共に蒸着装置にセットした。 Next, a metal mask for forming an organic layer designed to cover the lower aluminum electrode is attached to the substrate holder, and the vapor deposition apparatus is mounted together with the molybdenum vapor deposition boat containing the compound 1-3 obtained in Example 2 Set.
 真空槽を5×10-3Pa以下まで減圧し、蒸着用ボートを加熱して化合物1-3を蒸着した。膜厚は6μm、蒸着速度は1.5~2nm/秒であった。 The vacuum vessel was depressurized to 5 × 10 −3 Pa or less, and the evaporation boat was heated to deposit compound 1-3. The film thickness was 6 μm and the deposition rate was 1.5-2 nm / sec.
 次に、基板ホルダーに上部アルミ電極を形成するためのメタルマスクを装着し、アルミニウムをのせたタングステン製の蒸着ボートと共に蒸着装置にセットした。このメタルマスクは、上部及び下部アルミニウム電極の有機層を挟んだ重なり面積が4mmになるように設計されている。 Next, a metal mask for forming the upper aluminum electrode was mounted on the substrate holder, and set in a vapor deposition apparatus together with a tungsten vapor deposition boat on which aluminum was placed. This metal mask is designed so that the overlapping area between the organic layers of the upper and lower aluminum electrodes is 4 mm 2 .
 真空槽を5×10-3Pa以下まで減圧し、蒸着用ボートを加熱して膜厚50nmになるように上部アルミ電極を形成した。蒸着速度は、0.5~1nm/秒であった。 The vacuum chamber was depressurized to 5 × 10 −3 Pa or less, and the deposition boat was heated to form an upper aluminum electrode so as to have a film thickness of 50 nm. The deposition rate was 0.5 to 1 nm / second.
 移動度の測定は、Time Of Flight法を用いて実施した。測定は市販の測定装置であるTOF-401(住友重機械アドバンストマシナリー(株) 製)を用いて実施した。励起光源は、窒素ガスレーザーを用いた。上部アルミ電極と下部アルミ電極の間に適度な電圧を印加した状態で、半透明な下アルミ電極側から光を照射し、過渡光電流を観測して移動度を求めた。 The measurement of mobility was carried out using the Time-Of-Flight method. The measurement was performed using a commercially available measuring device TOF-401 (manufactured by Sumitomo Heavy Industries Advanced Machinery Co., Ltd.). A nitrogen gas laser was used as the excitation light source. With a moderate voltage applied between the upper aluminum electrode and lower aluminum electrode, light was irradiated from the translucent lower aluminum electrode side, and the transient photocurrent was observed to determine the mobility.
 過渡光電流波形の解析から移動度を導出する手法については、文献「有機EL材料とディスプレイ」(出版:株式会社シーエムシー)のP69-70に記載されている。 A method for deriving the mobility from the analysis of the transient photocurrent waveform is described in P69-70 of the document “Organic EL materials and displays” (published by CMC Co., Ltd.).
 測定の結果、0.5MV/cmの電界強度において、「9a,19a-ジボラ-9,10,19,20-テトラオキソテトラベンゾ[a,f,j,o]ペリレン」の正孔移動度として7.2×10-3(cm/V秒)、電子移動度として8.3×10-3(cm/V秒)の結果が得られた。 As a result of the measurement, the hole mobility of “9a, 19a-dibora-9,10,19,20-tetraoxotetrabenzo [a, f, j, o] perylene” at an electric field strength of 0.5 MV / cm was obtained. The result of 7.2 × 10 −3 (cm 2 / V second) and the electron mobility of 8.3 × 10 −3 (cm 2 / V second) was obtained.
 試験例2:蛍光スペクトル、燐光スペクトル、及び絶対PL量子収率の測定
 下記表1に記載した化合物のジクロロメタン溶液(2×10-5M)を、各々、市販の測定装置であるFluoroMax-4P(HORIBA社製)を用いて、室温で、蛍光スペクトルを測定した。その結果を表1に示した。
Test Example 2: Measurement of fluorescence spectrum, phosphorescence spectrum, and absolute PL quantum yield A dichloromethane solution (2 × 10 −5 M) of the compound described in Table 1 below was obtained by using FluoroMax-4P ( Fluorescence spectrum was measured at room temperature using HORIBA. The results are shown in Table 1.
 下記表1に記載した化合物のエタノール溶液(2×10-5M)を、各々、市販の測定装置であるFluoroMax-4P(HORIBA社製)を用いて、77Kで、燐光スペクトルを測定した。その結果を表1に示した。 Phosphorescence spectra of ethanol solutions (2 × 10 −5 M) of the compounds listed in Table 1 below were measured at 77K using a commercially available measuring device FluoroMax-4P (manufactured by HORIBA). The results are shown in Table 1.
 下記表1に記載した化合物のジクロロメタン溶液(2×10-5M)を、市販の測定装置であるQuantaurus-QY(浜松ホトニクス社製)を用いて、室温で、絶対PL量子収率を測定した。その結果を表1に示した。 The absolute PL quantum yield of a dichloromethane solution (2 × 10 −5 M) of the compound described in Table 1 below was measured at room temperature using a commercially available measurement device, Quantaurus-QY (manufactured by Hamamatsu Photonics). . The results are shown in Table 1.
 励起一重項エネルギ―(ΔE(S1-S0))及び励起三重項エネルギ―(ΔE(T1-S0))は、各々、蛍光スペクトル及び燐光スペクトルの極大波長から算出し、表1に示した。 The excitation singlet energy (ΔE (S 1 -S 0 )) and excitation triplet energy (ΔE (T 1 -S 0 )) are calculated from the maximum wavelengths of the fluorescence spectrum and the phosphorescence spectrum, respectively. Indicated.
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000092

Claims (7)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Xは、B、P、P=O、P=S、又はP=Seを示す。
    Y及びZは、同一又は異なって、O、S、又はN-Rを示す。ここで、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示す。
    、R及びRcは、同一又は異なって、ハロゲン原子、シアノ基、ニトロ基、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、又は置換基を有していてもよいアミノ基を示す。
    mは、0~3の整数を示す。mが2を示す場合、2つのRは、同一又は異なっていてもよい。mが3を示す場合、3つのRは、同一又は異なっていてもよい。
    n及びoは、同一又は異なって、0~4の整数を示す。n又はoが2を示す場合、2つのR又は2つのRcは、各々、同一又は異なっていてもよい。n又はoが3を示す場合、3つのR又はRcは、各々、同一又は異なっていてもよい。n又はoが4を示す場合、4つのR又はRcは、各々、同一又は異なっていてもよい。
    mが2、nが2又はoが2を示す場合、2つのR、2つのR又は2つのRcは、互いに結合して飽和若しくは不飽和の炭素環、又は飽和若しくは不飽和複素環を形成していてもよく、これらの環上には置換基を有していてもよい。
    mが3を示す場合、3つのRを有する下記式:
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは前記と同じ。波線は結合を示す。)
    で表される構造は、一般式(A):
    Figure JPOXMLDOC01-appb-C000003
    (式中、X、Y、Z、R、Rc、n及びoは、前記と同じ。波線は結合を示す。)
    で表されるヘテロ環構造を形成していてもよい。
    ここで、上記一般式(1)で表されるヘテロ環化合物又はその塩は、少なくとも1つの水素原子を有している。
    上記一般式(1)で表されるヘテロ環化合物又はその塩における少なくとも1つの水素原子は、重水素原子に置き換わっていてもよい。]
    で表されるヘテロ環化合物又はその塩(ただし、一般式(1)においてX=ホウ素原子、Y=Z=酸素原子、R=R=R=水素原子である、8a-ボラ-8,9-ジオキサベンゾ[fg]テトラセンを除く)。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein X represents B, P, P = O, P = S, or P = Se.
    Y and Z are the same or different and represent O, S, or N—R 1 . Here, R 1 is a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. The heteroaryl group which may have is shown.
    R a , R b and R c are the same or different and are a halogen atom, a cyano group, a nitro group, an optionally substituted alkyl group, an optionally substituted cycloalkyl group or a substituted group. An aryl group which may have a group, a heteroaryl group which may have a substituent, an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, or The amino group which may have a substituent is shown.
    m represents an integer of 0 to 3. When m represents 2, two R a may be the same or different. When m represents 3, three R a may be the same or different.
    n and o are the same or different and represent an integer of 0 to 4. When n or o represents 2, two R b or two R c may be the same or different from each other. When n or o represents 3, three R b or R c may be the same or different from each other. When n or o represents 4, four R b or R c may be the same or different from each other.
    when m is 2, n is 2 or o is 2, 2 R a , 2 R b or 2 R c are bonded to each other to form a saturated or unsaturated carbocyclic ring, or a saturated or unsaturated heterocyclic ring May be formed, and these rings may have a substituent.
    When m represents 3, the following formula having three R a :
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, Ra is the same as described above. The wavy line indicates a bond.)
    The structure represented by general formula (A):
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, X, Y, Z, R b , R c , n and o are the same as described above. The wavy line represents a bond.)
    The heterocyclic structure represented by these may be formed.
    Here, the heterocyclic compound represented by the general formula (1) or a salt thereof has at least one hydrogen atom.
    At least one hydrogen atom in the heterocyclic compound represented by the general formula (1) or a salt thereof may be replaced with a deuterium atom. ]
    Or a salt thereof represented by the formula (wherein, in the general formula (1), X = boron atom, Y = Z = oxygen atom, R a = R b = R c = hydrogen atom, 8a-bora-8 , 9-dioxabenzo [fg] tetracene).
  2. 、R及びRcが、同一又は異なって、ハロゲン原子、シアノ基、ニトロ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、又は置換基を有していてもよいアミノ基である、請求項1に記載のヘテロ環化合物又はその塩。 R a , R b and R c are the same or different and are a halogen atom, a cyano group, a nitro group, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. The heterocyclic compound or a salt thereof according to claim 1, which is a heteroaryl group optionally having a substituent, or an amino group optionally having a substituent.
  3. 前記飽和若しくは不飽和の炭素環が、置換基を有していてもよいベンゼン環若しくは置換基を有していてもよいナフタレン環、又は飽和若しくは不飽和複素環が、置換基を有していてもよいチオフェン環若しくは置換基を有していてもよいベンゾチオフェン環である、請求項1又は2に記載のヘテロ環化合物又はその塩。 The saturated or unsaturated carbocycle has an optionally substituted benzene ring, an optionally substituted naphthalene ring, or a saturated or unsaturated heterocyclic ring has a substituent. The heterocyclic compound or a salt thereof according to claim 1 or 2, which may be a thiophene ring or a benzothiophene ring which may have a substituent.
  4. 下記一般式(1-B)で表される化合物である、請求項1に記載のヘテロ環化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000004
    [式中、X、Y、Z、R、Rc、n及びoは、請求項1と同じ。]
    The heterocyclic compound or a salt thereof according to claim 1, which is a compound represented by the following general formula (1-B).
    Figure JPOXMLDOC01-appb-C000004
    [Wherein, X, Y, Z, R b , R c , n and o are the same as in claim 1. ]
  5. 下記一般式(1-C)で表される化合物である、請求項1に記載のヘテロ環化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000005
    [式中n及びoは、請求項1と同じ。]
    The heterocyclic compound or a salt thereof according to claim 1, which is a compound represented by the following general formula (1-C).
    Figure JPOXMLDOC01-appb-C000005
    [Wherein n and o are the same as in claim 1.] ]
  6. 請求項1~5のいずれか一項に記載のヘテロ環化合物又はその塩を含む、電子デバイス。 An electronic device comprising the heterocyclic compound or a salt thereof according to any one of claims 1 to 5.
  7. 有機発光素子、有機薄膜トランジスタ又は有機薄膜太陽電池である請求項6に記載の電子デバイス。  The electronic device according to claim 6 which is an organic light emitting element, an organic thin film transistor, or an organic thin film solar cell.
PCT/JP2016/057364 2015-03-09 2016-03-09 Heterocyclic compound or salt thereof, and electronic device including same WO2016143819A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017505377A JP6449434B2 (en) 2015-03-09 2016-03-09 Heterocyclic compounds or salts thereof, and electronic devices containing them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-046481 2015-03-09
JP2015046481 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016143819A1 true WO2016143819A1 (en) 2016-09-15

Family

ID=56880038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057364 WO2016143819A1 (en) 2015-03-09 2016-03-09 Heterocyclic compound or salt thereof, and electronic device including same

Country Status (2)

Country Link
JP (1) JP6449434B2 (en)
WO (1) WO2016143819A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110497A1 (en) * 2016-12-16 2018-06-21 学校法人関西学院 Polycyclic aromatic amino compound
CN111039966A (en) * 2019-12-16 2020-04-21 上海交通大学 Preparation method of nitrogen-boron-nitrogen hetero-double-spiro molecule
JP2020100613A (en) * 2018-12-21 2020-07-02 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
JP2020533358A (en) * 2017-09-12 2020-11-19 メルク パテント ゲーエムベーハー Materials for OLED devices
WO2023063516A1 (en) * 2021-10-12 2023-04-20 엘지디스플레이 주식회사 Organic light-emitting diode, and organic light-emitting device comprising same
JP7357880B2 (en) 2019-02-27 2023-10-10 国立大学法人東北大学 New cyclic compounds and their uses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090007075A (en) * 2007-07-13 2009-01-16 제일모직주식회사 Compounds for organic electroluminescent device
WO2010104047A1 (en) * 2009-03-11 2010-09-16 国立大学法人京都大学 Polycyclic aromatic compound
JP2010531294A (en) * 2007-04-05 2010-09-24 インクテック カンパニー リミテッド Phosphaphenanthrene-based organic light-emitting compound and organic electroluminescent device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531294A (en) * 2007-04-05 2010-09-24 インクテック カンパニー リミテッド Phosphaphenanthrene-based organic light-emitting compound and organic electroluminescent device using the same
KR20090007075A (en) * 2007-07-13 2009-01-16 제일모직주식회사 Compounds for organic electroluminescent device
WO2010104047A1 (en) * 2009-03-11 2010-09-16 国立大学法人京都大学 Polycyclic aromatic compound

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIICHI NAKAJIMA ET AL.: "Synthesis and Physical Properties of B-fused Phenoxaborine and Phenazaborine Analogs", THE 94TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2014) KOEN YOKOSHU IV, 12 March 2014 (2014-03-12), pages 1150 *
SOICHIRO NAKATSUKA ET AL.: "Synthesis and Physical Properties of P-fused Phenoxaphosphine Analogs", THE 94TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2014) KOEN YOKOSHU IV, 12 March 2014 (2014-03-12), pages 1150 *
SUMIDA YUTO ET AL.: "Boron-Selective Biaryl Coupling Approach to Versatile Dibenzoxaborins and Application to Concise Synthesis of Defucogilvocarcin M", ORGANIC LETTERS, vol. 16, no. 23, 24 November 2014 (2014-11-24), pages 6240 - 6243, XP055309267 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102438956B1 (en) 2016-12-16 2022-08-31 가꼬우 호징 관세이 가쿠잉 Polyaromatic Amino Compounds
CN110049990A (en) * 2016-12-16 2019-07-23 学校法人关西学院 Ppolynuclear aromatic amino-compound
KR20190096944A (en) * 2016-12-16 2019-08-20 가꼬우 호징 관세이 가쿠잉 Polyaromatic amino compounds
JPWO2018110497A1 (en) * 2016-12-16 2019-10-24 学校法人関西学院 Polycyclic aromatic amino compounds
WO2018110497A1 (en) * 2016-12-16 2018-06-21 学校法人関西学院 Polycyclic aromatic amino compound
US11539003B2 (en) 2016-12-16 2022-12-27 Kwansei Gakuin Educational Foundation Polycyclic aromatic amino compound
JP7083132B2 (en) 2016-12-16 2022-06-10 学校法人関西学院 Polycyclic aromatic amino compounds
JP2020533358A (en) * 2017-09-12 2020-11-19 メルク パテント ゲーエムベーハー Materials for OLED devices
US11370965B2 (en) 2017-09-12 2022-06-28 Merck Patent Gmbh Materials for organic electroluminescent devices
JP7260876B2 (en) 2018-12-21 2023-04-19 三星ディスプレイ株式會社 Organic electroluminescent device and polycyclic compound for organic electroluminescent device
JP2020100613A (en) * 2018-12-21 2020-07-02 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
US11545631B2 (en) 2018-12-21 2023-01-03 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
JP7357880B2 (en) 2019-02-27 2023-10-10 国立大学法人東北大学 New cyclic compounds and their uses
CN111039966A (en) * 2019-12-16 2020-04-21 上海交通大学 Preparation method of nitrogen-boron-nitrogen hetero-double-spiro molecule
WO2023063516A1 (en) * 2021-10-12 2023-04-20 엘지디스플레이 주식회사 Organic light-emitting diode, and organic light-emitting device comprising same
TWI832476B (en) * 2021-10-12 2024-02-11 南韓商Lg顯示器股份有限公司 Organic light emitting diode and organic light emitting device including thereof
JP7478266B2 (en) 2021-10-12 2024-05-02 エルジー ディスプレイ カンパニー リミテッド Organic light-emitting diode and organic light-emitting device including the same

Also Published As

Publication number Publication date
JPWO2016143819A1 (en) 2017-12-21
JP6449434B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6449434B2 (en) Heterocyclic compounds or salts thereof, and electronic devices containing them
EP3026722B1 (en) Compound for organic photoelectric device and organic photoelectric device, image sensor, and electronic device including the same
US9741950B2 (en) Polycyclic aromatic compound
JP2022116248A (en) Compound
EP3018723B1 (en) Compound for organic photoelectric device and organic photoelectric device image sensor, and electronic device including the same
CN110740986B (en) Indane derivatives and their use in organic electronic devices
KR102402723B1 (en) A compound having a spirobifluorene-structure
Liang et al. Exciplex-based electroluminescence: over 21% external quantum efficiency and approaching 100 lm/W power efficiency
JP6721980B2 (en) Organic photoelectric device, image sensor, and electronic device including the same
JP5417039B2 (en) Indole derivatives and organic thin film solar cells using the same
CN111848659A (en) Boron-containing compounds for use in OLEDs
KR20220054693A (en) Heterocyclic spiro compounds
KR102253719B1 (en) Heterocyclic compounds
CN107849016B (en) Compound having fluorene structure
KR20210065972A (en) Method for producing sterically hindered nitrogen-containing heteroaromatic compound
Cao et al. Alkyl effects on the optoelectronic properties of bicarbazole/cyanobenzene hybrid host materials: Double delayed fluorescent host/dopant systems in solution-processed OLEDs
EP3680261A1 (en) Polymer, coating composition comprising same, and organic light emitting element using same
Zhan et al. Utilizing electroplex emission to achieve external quantum efficiency up to 18.1% in nondoped blue OLED
Sonalin et al. Aggregation behavior and high charge-carrier OFET-mobility of functionalized phenanthro [9, 10-d] imidazoles
KR20210091738A (en) Di-, tri- and tetraphenylindane derivatives and their use in organic electronic devices
KR102467071B1 (en) Compound for organic electronic element having benzocyclobutene functional group for cross-linked bond, organic electronic element using the same, and an electronic device thereof
KR102466522B1 (en) Compound for organic electronic element having benzocyclobutene functional group for cross-linked bond, organic electronic element using the same, and an electronic device thereof
WO2023247416A1 (en) Tetraarylbenzidine type compounds and their use in organic electronics
EP3401305A1 (en) Indane derivatives and their use in organic electronics
JP2014177410A (en) Dicyanoquinodimethane compound, organic thin film solar cell material including the dicyanoquinodimethane compound, and organic thin film solar cell using the organic thin film solar cell material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505377

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761786

Country of ref document: EP

Kind code of ref document: A1