WO2016143340A1 - Speech processing device and control device - Google Patents

Speech processing device and control device Download PDF

Info

Publication number
WO2016143340A1
WO2016143340A1 PCT/JP2016/001290 JP2016001290W WO2016143340A1 WO 2016143340 A1 WO2016143340 A1 WO 2016143340A1 JP 2016001290 W JP2016001290 W JP 2016001290W WO 2016143340 A1 WO2016143340 A1 WO 2016143340A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
sound
signal
processing unit
unit
Prior art date
Application number
PCT/JP2016/001290
Other languages
French (fr)
Japanese (ja)
Inventor
一平 菅江
丹羽 栄二
孝之 中所
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Publication of WO2016143340A1 publication Critical patent/WO2016143340A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/10Speech classification or search using distance or distortion measures between unknown speech and reference templates
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/20Speech recognition techniques specially adapted for robustness in adverse environments, e.g. in noise, of stress induced speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0272Voice signal separating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to a voice processing device and a control device.
  • Various devices are provided in vehicles such as automobiles. Operations on these various devices are performed, for example, by operating operation buttons, operation panels, and the like.
  • Patent Documents 1 and 2 Recently, it has also been proposed to control a vehicle using a voice recognition technology (Patent Documents 1 and 2).
  • An object of the present invention is to provide a voice processing device that can accurately perform voice processing on voice that can be emitted inside and outside a vehicle while satisfying a demand for cost reduction, and a control device using the voice processing device. It is in.
  • a sound source direction determination unit that determines a direction of a sound source that is a sound source included in a sound reception signal acquired by each of a plurality of microphones arranged in a vehicle;
  • a beam forming processing unit that performs beam forming to suppress sound coming from an azimuth range other than the azimuth range including the azimuth range of the sound source; and
  • a noise removal processing unit that performs processing to remove noise mixed in the received sound signal.
  • the present invention on / off of the beam forming is set based on the first signal indicating whether or not an occupant is present in the vehicle. For this reason, even when the occupant is located outside the vehicle, it is possible to reliably detect the sound emitted by the occupant using the microphone disposed in the vehicle. Since it is not necessary to provide a microphone for acquiring sound emitted outside the vehicle separately from the microphone arranged in the vehicle, it is possible to contribute to cost reduction.
  • FIG. 1 is a schematic diagram showing a configuration of a vehicle.
  • a driver's seat 40 that is a driver's seat and a passenger's seat 44 that is a passenger's seat are arranged at the front of a vehicle body (cabinet) 46 of a vehicle (automobile) 136.
  • the driver's seat 40 is located on the right side of the passenger compartment 46, for example.
  • a steering wheel (handle) 78 is disposed in front of the driver seat 40.
  • the passenger seat 44 is located on the left side of the passenger compartment 46, for example.
  • the driver seat 40 and the passenger seat 44 constitute a front seat. In the vicinity of the driver's seat 40, an audio source 72a when the driver emits audio is located.
  • an audio source 72b when the passenger seat makes a sound is located in the vicinity of the passenger seat 44. Since both the driver and the front passenger can move the upper body while seated in the seats 40 and 44, the position of the sound source 72 can change.
  • a rear seat 70 is disposed at the rear of the vehicle body 46.
  • reference numeral 72 is used when the description is made without distinguishing between the individual sound sources, and reference numerals 72a and 72b are used when the description is made with the individual sound sources distinguished.
  • a plurality of microphones 22 (22a to 22c), that is, microphone arrays are arranged in front of the front seats 40 and 44.
  • reference numeral 22 is used when the description is made without distinguishing the individual microphones, and reference numerals 22a to 22c are used when the description is made with the individual microphones distinguished.
  • the microphone 22 may be disposed on the dashboard 42 or may be disposed on a portion close to the roof.
  • the distance between the sound source 72 of the front seats 40 and 44 and the microphone 22 is often about several tens of centimeters. However, the distance between the microphone 22 and the audio source 72 can be less than a few tens of centimeters. Also, the distance between the microphone 22 and the audio source 72 can exceed 1 m.
  • a speaker (loud speaker) 76 constituting a speaker system of an on-vehicle acoustic device (car audio device) 84 (see FIG. 2) is arranged.
  • Music (music) emitted from the speaker 76 can be noise when performing speech recognition.
  • the vehicle body 46 is provided with an engine 80 for driving the vehicle 136.
  • the sound emitted from the engine 80 can be noise when performing speech recognition.
  • the noise generated in the passenger compartment 46 due to road surface stimulation while the vehicle 136 is traveling can also be noise when performing voice recognition.
  • wind noise generated when the vehicle 136 travels can also be a noise source in performing voice recognition.
  • the noise source 82 may exist outside the vehicle body 46. The sound emitted from the external noise source 82 can also be noise in performing speech recognition.
  • the voice instruction is recognized using, for example, an automatic voice recognition device 168 (see FIG. 2).
  • the speech processing apparatus 102 contributes to improvement of speech recognition accuracy.
  • FIG. 2 is a block diagram showing the control device according to the present embodiment.
  • the control device 100 includes a speech processing device 102, an automatic speech recognition device 168, an input unit 114, a control unit (CPU: Central Processing Unit) 116, a memory 118, and an output unit 120.
  • the voice processing device 102, the automatic voice recognition device 168, the input unit 114, the control unit 116, the memory 118, and the output unit 120 can input / output signals to / from each other via the bus line 122.
  • the voice processing device 102 and the automatic voice recognition device 168 may be separate devices, or the voice processing device (voice processing unit) 102 and the automatic voice recognition device (voice recognition unit) 168 are integrated. May be.
  • a device in which the speech processing device 102 and the automatic speech recognition device 168 are integrated can be called a speech processing device or an automatic speech recognition device.
  • a signal acquired by each of the plurality of microphones 22a to 22c is input to the voice processing device 102.
  • a signal from the in-vehicle acoustic device 84 is input to the audio processing device 102.
  • the voice signal processed by the voice processing apparatus 102 is output to the automatic voice recognition apparatus (voice recognition apparatus) 168 as a voice output.
  • a signal from the proximity detection unit (proximity detection means) 126 is input to the input unit 114.
  • a signal indicating whether or not a passenger is approaching the vehicle 136, that is, a proximity detection signal is input from the proximity detection unit 126 to the input unit 114.
  • a reception unit (reception unit) that can receive a wireless signal emitted from the smart key (authentication key) 146 can be used.
  • the proximity detection unit 126 may also serve as a reception unit for the smart key system, or may be provided separately from the reception unit for the smart key system.
  • FIG. 3 is a plan view showing the vehicle according to the present embodiment. As shown in FIG.
  • a communication area 148 of the smart key 146 is formed in the vicinity of the opening / closing bodies 134a to 134c.
  • a signal indicating that the smart key 146 is located in the communication area 148 is input from the proximity detection unit 126 to the input unit 114.
  • the presence / absence of the occupant's proximity to the vehicle 136 is determined based on the reception of the wireless signal emitted from the smart key 146 by the proximity detection unit 126, but the present invention is not limited to this. That is, the occupant-side device used to determine whether or not the occupant is approaching the vehicle 136 is not limited to the smart key 146, and may be any portable device that can perform ID authentication. It is possible to appropriately determine the proximity of an occupant to the vehicle 136 based on whether or not communication between various portable devices capable of ID authentication and in-vehicle devices is established.
  • a signal indicating whether or not there is an occupant in the vehicle 136, that is, an occupant presence / absence detection signal is input to the input unit 114 from the occupant detection unit 142 to the input unit 114.
  • the occupant detection unit 142 for example, a driver monitor, a weight detection sensor, or the like can be used.
  • the driver monitor can detect the presence or absence of an occupant based on an image taken by a camera (not shown).
  • the weight detection sensor is arranged in the driver's seat 40 and can detect the presence or absence of an occupant based on the weight detected by the weight detection sensor.
  • the control unit 116 controls the entire control device 100.
  • the control unit 116 reads a proximity detection signal input from the proximity detection unit 126 via the input unit 114. Based on the proximity detection signal, the control unit 116 can determine whether or not the occupant carrying the smart key 146 is in a state of being close to the vehicle 136. Further, the control unit 116 reads an occupant presence / absence detection signal input from the occupant detection unit 142 via the input unit 114. The control unit 116 can determine whether there is an occupant in the vehicle 136 based on the occupant presence / absence detection signal. Further, the control unit 116 reads output information from the automatic speech recognition device 168, that is, a speech recognition result. The control unit 116 can recognize an occupant instruction by voice based on the voice recognition result by the automatic voice recognition device 168.
  • the control unit 116 controls various devices mounted on the vehicle 136 based on the voice recognition result by the automatic voice recognition device 168.
  • the control unit 116 controls the opening / closing body 134. Specifically, the control unit 116 outputs a control signal for controlling the opening / closing body driving device 132 to the opening / closing body driving device 132 via the output unit 120.
  • the opening / closing body driving device 132 is for driving an opening / closing body 134 which is a structure having an opening / closing mechanism.
  • the control unit 116 automatically opens and closes the opening / closing body 134 via the opening / closing body driving device 132.
  • the vehicle 136 is provided with various opening / closing bodies such as the side doors 134a and 134b and the back door 134c. In FIG. 2, the individual opening / closing bodies are not distinguished, and one of the plurality of opening / closing bodies is illustrated by reference numeral 134.
  • control unit 116 controls the brake 140. Specifically, the control unit 116 outputs a control signal for controlling the brake control device 138 to the brake control device 138 via the output unit 120.
  • the brake control device 138 is for controlling the brake 140.
  • the control unit 116 controls the brake 140 via the brake control device 138.
  • FIG. 4 is a block diagram showing a system configuration of the speech processing apparatus according to the present embodiment.
  • the speech processing apparatus 102 includes a preprocessing unit 10, a processing unit 12, a post-processing unit 14, a speech source direction determination unit 16, an adaptive algorithm determination unit 18, noise A model determining unit 20.
  • a signal acquired by each of the plurality of microphones 22a to 22c, that is, a sound reception signal is input to the preprocessing unit 10.
  • the microphone 22 for example, an omnidirectional microphone is used.
  • FIG. 5A and FIG. 5B are schematic diagrams showing examples of microphone arrangement.
  • FIG. 5A shows a case where the number of microphones 22 is three.
  • FIG. 5B shows a case where the number of microphones 22 is two.
  • the plurality of microphones 22 are arranged so as to be positioned on a straight line.
  • FIG. 6A and 6B are diagrams showing a case where the sound source is located in the far field and a case where the sound source is located in the near field.
  • FIG. 6A shows a case where the audio source 72 is located in the far field
  • FIG. 6B shows a case where the audio source 72 is located in the near field.
  • d indicates a difference in distance from the sound source 72 to the microphone 22.
  • represents the direction of the audio source 72.
  • the sound reaching the microphone 22 can be regarded as a plane wave.
  • the sound reaching the microphone 22 is handled as a plane wave, and the direction (direction) of the sound source 72, that is, the sound source direction (DOA: Direction) Of Arrival). Since the sound reaching the microphone 22 can be handled as a plane wave, when the sound source 72 is located in the far field, the direction of the sound source 72 can be determined using the two microphones 22. Depending on the position of the sound source 72 and the arrangement of the microphones 22, the orientation of the sound source 72 located in the near field can be determined even when the number of the microphones 22 is two.
  • the sound reaching the microphone 22 can be regarded as a spherical wave.
  • the sound reaching the microphone 22 is treated as a spherical wave, and the direction of the sound source 72 is determined. Since the sound reaching the microphone 22 needs to be handled as a spherical wave, when the sound source 72 is located in the near field, the orientation of the sound source 72 is determined using at least three microphones 22.
  • the number of microphones 22 is three will be described as an example.
  • the distance L1 between the microphone 22a and the microphone 22b is set to be relatively long.
  • the distance L2 between the microphone 22b and the microphone 22c is set to be relatively short.
  • the reason why the distance L1 and the distance L2 are different in the present embodiment is as follows. That is, in this embodiment, the direction of the sound source 72 is specified based on the sound (arrival time difference (TDOA: Time Delay Of Arrival) of the received sound signal) reaching each microphone 22. Since the wavelength is relatively long, it is preferable to set the distance between the microphones 22 to be relatively large in order to cope with the sound having a relatively low frequency.For this reason, in this embodiment, the microphone 22a and the microphone 22b The distance L1 between the microphones 22 is set to be relatively long, while the sound having a relatively high frequency has a relatively short wavelength, so that the distance between the microphones 22 is relatively small in order to correspond to the sound having a relatively high frequency. Therefore, in this embodiment, the distance L2 between the microphone 22b and the microphone 22c is relatively short. It is constant.
  • the distance L1 between the microphone 22a and the microphone 22b is, for example, about 5 cm so as to be suitable for sound having a frequency of 3400 Hz or less.
  • the distance L2 between the microphone 22b and the microphone 22c is, for example, about 2.5 cm so as to be suitable for sound having a frequency exceeding 3400 Hz.
  • the distances L1 and L2 are not limited to these, and can be set as appropriate.
  • the sound reaching the microphone 22 is handled as a plane wave when the sound is handled as a plane wave than when the sound is handled as a spherical wave. This is because the process for determining the direction of the audio source 72 is simple. For this reason, in this embodiment, when the sound source 72 is located in the far field, the sound reaching the microphone 22 is treated as a plane wave. Since the sound reaching the microphone 22 is handled as a plane wave, when determining the direction of the sound source 72 located in the far field, the processing load for determining the direction of the sound source 72 can be reduced.
  • the direction of the sound source 72 is determined by treating the sound as a plane wave, and when the sound source 72 is located in the near field, The direction of the sound source 72 is determined by treating the sound as a spherical wave.
  • sound reception signals acquired by the plurality of microphones 22 are input to the preprocessing unit 10.
  • sound field correction is performed.
  • tuning is performed in consideration of the acoustic characteristics of the vehicle compartment 46 that is an acoustic space.
  • the preprocessing unit 10 When the sound reception signal acquired by the microphone 22 includes music, the preprocessing unit 10 removes the music from the sound reception signal acquired by the microphone 22.
  • a reference music signal (reference signal) is input to the preprocessing unit 10.
  • the preprocessing unit 10 removes music included in the sound reception signal acquired by the microphone 22 using the reference music signal.
  • FIG. 7 is a schematic diagram showing a music removal algorithm.
  • the sound reception signal acquired by the microphone 22 includes music.
  • a received sound signal including music acquired by the microphone 22 is input to a music removal processing unit 24 provided in the preprocessing unit 10.
  • a reference music signal is input to the music removal processing unit 24.
  • the reference music signal can be obtained, for example, by acquiring music output from the speaker 76 of the in-vehicle acoustic device 84 using the microphones 26a and 26b.
  • the music source signal before being converted into sound by the speaker 76 may be input to the music removal processing unit 24 as a reference music signal.
  • the output signal from the music removal processing unit 24 is input to a step size determination unit 28 provided in the preprocessing unit 10.
  • the step size determination unit 28 determines the step size of the output signal of the music removal processing unit 24.
  • the step size determined by the step size determination unit 28 is fed back to the music removal processing unit 24.
  • the music removal processing unit 24 uses the reference music signal and, based on the step size determined by the step size determination unit 28, the frequency domain normalized least square method (NLMS: Normalized Least-Mean Square) algorithm Remove music from signals that contain.
  • NLMS Normalized Least-Mean Square
  • FIGS. 8A and 8B are diagrams showing signal waveforms before and after music removal.
  • the horizontal axis indicates time, and the vertical axis indicates amplitude.
  • FIG. 8A shows before music removal
  • FIG. 8B shows after music removal. As can be seen from FIGS. 8A and 8B, the music is reliably removed.
  • the signal from which music has been removed in this way is output from the music removal processing unit 24 of the preprocessing unit 10 and input to the processing unit 12. If the pre-processing unit 10 cannot sufficiently remove music, the post-processing unit 14 may also perform music removal processing.
  • the sound source direction determination unit 16 determines the direction of the sound source.
  • FIG. 9 is a diagram showing an algorithm for determining the direction of the sound source.
  • a signal from a certain microphone 22 among the plurality of microphones 22 is input to a delay unit 30 provided in the sound source direction determination unit 16.
  • a signal from another microphone 22 among the plurality of microphones 22 is input to an adaptive filter 32 provided in the sound source direction determination unit 16.
  • the output signal of the delay unit 30 and the output signal of the adaptive filter 32 are input to the subtraction point 34.
  • the output signal of the adaptive filter 34 is subtracted from the output signal of the delay unit 30.
  • the adaptive filter 32 is adjusted based on the signal subjected to the subtraction process at the subtraction point 34.
  • the output from the adaptive filter 32 is input to the peak detector 36.
  • the peak detector 36 detects a peak (maximum value) of the adaptive filter coefficient.
  • the arrival time difference ⁇ corresponding to the peak of the adaptive filter coefficient is the arrival time difference ⁇ corresponding to the arrival direction of the target sound. Therefore, it is possible to determine the direction of the voice source 72, that is, the direction of arrival of the target sound, based on the arrival time difference ⁇ thus obtained.
  • the speed of sound is c [m / s]
  • the distance between microphones is d [m]
  • the arrival time difference is ⁇ [seconds]
  • the direction ⁇ [degree] of the sound source 72 is expressed by the following equation (1). Represented by The sound speed c is about 340 [m / s].
  • FIG. 10A is a diagram showing adaptive filter coefficients.
  • FIG. 10B is a diagram showing the azimuth angle of the audio source.
  • FIG. 10C is a diagram illustrating the amplitude of the audio signal.
  • the portion where the adaptive filter coefficient has a peak is hatched.
  • FIG. 10B shows the orientation of the audio source 72 determined based on the arrival time difference ⁇ .
  • FIG. 10C shows the amplitude of the audio signal.
  • FIGS. 10A to 10C show a case where the driver and the passenger are uttered alternately.
  • the direction of the sound source 72a when the driver emits sound is ⁇ 1.
  • the direction of the sound source 72b when the passenger seat utters sound is ⁇ 2.
  • the arrival time difference ⁇ can be detected based on the peak of the adaptive filter coefficient w (t, ⁇ ).
  • the arrival time difference ⁇ corresponding to the peak of the adaptive filter coefficient is, for example, about ⁇ t1.
  • the azimuth angle of the audio source 72a is determined based on the arrival time difference ⁇
  • the azimuth angle of the audio source 72a is determined to be about ⁇ 1, for example.
  • the arrival time difference ⁇ corresponding to the peak of the adaptive filter coefficient is, for example, about t2.
  • the azimuth angle of the audio source 72b is determined based on the arrival time difference ⁇
  • the azimuth angle of the audio source 72b is determined to be about ⁇ 2 degrees, for example.
  • the case where the driver is located in the direction of ⁇ 1 and the passenger seat is located in the direction of ⁇ 2 has been described as an example, but the present invention is not limited to this.
  • the position of the audio source 72 can be specified based on the arrival time difference ⁇ . .
  • the sound source 72 is located in the near field, as described above, three or more microphones 22 are required, so that the processing load for obtaining the direction of the sound source 72 becomes heavy.
  • the output signal of the voice source direction determination unit 16, that is, the signal indicating the direction of the voice source 72 is input to the adaptive algorithm determination unit 18.
  • the adaptive algorithm determination unit 18 determines an adaptive algorithm based on the orientation of the audio source 72.
  • a signal indicating the adaptation algorithm determined by the adaptation algorithm determination unit 18 is input from the adaptation algorithm determination unit 18 to the processing unit 12.
  • the processing unit 12 performs adaptive beamforming, which is signal processing that adaptively forms directivity (adaptive beamformer, beamforming processing unit).
  • adaptive beamformer can be used as the beamformer.
  • the beam forming is not limited to the Frost beamformer, and various beamformers can be applied as appropriate.
  • the processing unit 12 performs beam forming based on the adaptive algorithm determined by the adaptive algorithm determination unit 18. In this embodiment, the beam forming is performed in order to reduce the sensitivity other than the arrival direction of the target sound while securing the sensitivity to the arrival direction of the target sound.
  • the target sound is, for example, a sound emitted from the driver. Since the driver can move the upper body while sitting in the driver's seat 40, the position of the sound source 72a can change.
  • the arrival direction of the target sound changes according to the change in the position of the sound source 72a.
  • the beam former is sequentially updated so as to suppress sound from an azimuth range other than the azimuth range including the azimuth.
  • FIG. 11 is a diagram conceptually showing the directivity of the beamformer.
  • FIG. 11 conceptually shows the directivity of the beamformer when the voice source 72a to be subjected to voice recognition is located in the driver's seat 40.
  • the hatching in FIG. 11 indicates the azimuth range in which the incoming sound is suppressed (suppressed or reduced). As shown in FIG. 11, sound coming from an azimuth range other than the azimuth range including the azimuth of the driver's seat 40 is suppressed.
  • the voice source 72b to be subjected to voice recognition is located in the passenger seat 44, sound coming from an azimuth range other than the azimuth range including the azimuth of the passenger seat 44 is suppressed. Good.
  • FIG. 12 is a diagram showing a beamformer algorithm.
  • the received sound signals acquired by the microphones 22a to 22c are input to the window function / fast Fourier transform processing units 48a to 48c provided in the processing unit 12 via the preprocessing unit 10 (see FIG. 4). It is like that.
  • the window function / fast Fourier transform processing units 48a to 48c perform window function processing and fast Fourier transform processing. In this embodiment, the window function process and the fast Fourier transform process are performed because the calculation in the frequency domain is faster than the calculation in the time domain.
  • the output signal X1 , k of the window function / fast Fourier transform processing unit 48a and the beamformer weight tensor W1 , k * are multiplied at the multiplication point 50a.
  • the output signal X2 , k of the window function / fast Fourier transform processor 48b and the beamformer weight tensor W2 , k * are multiplied at the multiplication point 50b.
  • the output signal X3 , k of the window function / fast Fourier transform processing unit 48b and the beamformer weight tensor W3 , k * are multiplied at the multiplication point 50c.
  • the signals multiplied at the multiplication points 50 a to 50 c are added at the addition point 52.
  • the signal Y k added at the addition point 52 is input to an inverse fast Fourier transform / superimposition addition processing unit 54 provided in the processing unit 12.
  • the inverse fast Fourier transform / superimposition addition processing unit 54 performs an inverse fast Fourier transform process and a process based on an overlay addition (OLA: OverLap-Add) method. By performing processing by the superposition addition method, the frequency domain signal is returned to the time domain signal. A signal subjected to the inverse fast Fourier transform process and the superposition addition method is input from the inverse fast Fourier transform / superimposition addition processing unit 54 to the post-processing unit 14.
  • OVA OverLap-Add
  • FIG. 13 is a diagram showing the directivity (angle characteristic) obtained by the beamformer.
  • the horizontal axis indicates the azimuth angle
  • the vertical axis indicates the output signal power.
  • the output signal power is minimized at the azimuth angle ⁇ 1 and the azimuth angle ⁇ 2.
  • Sufficient suppression is also performed between the azimuth angle ⁇ 1 and the azimuth angle ⁇ 2. If a directional beamformer as shown in FIG. 13 is used, the sound coming from the passenger seat can be sufficiently suppressed. On the other hand, the voice coming from the driver's seat reaches the microphone 22 with almost no suppression.
  • FIG. 14 is a diagram showing the directivity (angle characteristic) when the beamformer and the sound source direction determination cancellation processing are combined. The solid line indicates the directivity of the beamformer.
  • the alternate long and short dash line indicates the angle characteristic of the audio source direction determination cancellation process.
  • a voice arriving from a direction smaller than ⁇ 1 or a voice arriving from a direction larger than ⁇ 2 for example, is larger than the voice from the driver
  • a voice source direction determination canceling process is performed.
  • the case where the beamformer is set so as to acquire the voice from the driver has been described as an example, but the beamformer may be set so as to acquire the voice from the passenger. .
  • the estimation of the direction of the voice source is interrupted.
  • FIG. 15 is a graph showing the directivity obtained by the beamformer when there are two microphones.
  • the horizontal axis is the azimuth angle
  • the vertical axis is the output signal power. Since there are two microphones 22, there is only one angle at which the minimum value is obtained. As can be seen from FIG. 15, for example, significant suppression is possible at the azimuth angle ⁇ 1, but the robustness to the change in the azimuth of the audio source 72 is not so high.
  • a signal in which sound coming from an azimuth range other than the azimuth range including the azimuth of the audio source 72 is suppressed is output from the processing unit 12.
  • An output signal from the processing unit 12 is input to the post-processing unit 14.
  • FIG. 16 is a diagram illustrating an algorithm for noise removal.
  • a fundamental wave of noise is determined by a fundamental wave determination unit 56 provided in the noise model determination unit 20.
  • the fundamental wave determination unit 56 outputs a sine wave based on the fundamental wave of noise.
  • the sine wave output from the fundamental wave determination unit 56 is input to a modeling processing unit 58 provided in the noise model determination unit 20.
  • the modeling processing unit 58 includes a non-linear mapping processing unit 60, a linear filter 62, and a non-linear mapping processing unit 64.
  • the modeling processing unit 58 performs modeling processing using a Hammerstein-Wiener nonlinear model.
  • the modeling processing unit 58 includes a non-linear mapping processing unit 60, a linear filter 62, and a non-linear mapping processing unit 64.
  • the modeling processing unit 58 generates a reference noise signal by performing a modeling process on the sine wave output from the fundamental wave determination unit 56.
  • the reference noise signal output from the modeling processing unit 58 is a reference signal for removing noise from a signal including noise.
  • the reference noise signal is input to a noise removal processing unit 66 provided in the post-processing unit 14.
  • a signal including noise from the processing unit 12 is also input to the noise removal processing unit 66.
  • the noise removal processing unit 66 removes noise from a signal including noise by using a reference noise signal and using a normalization least squares algorithm.
  • the noise removal processing unit 66 outputs a signal from which noise has been removed.
  • FIG. 17A and FIG. 17B are diagrams showing signal waveforms before and after noise removal.
  • the horizontal axis indicates time, and the vertical axis indicates amplitude.
  • FIG. 17A shows before noise removal
  • FIG. 17B shows after noise removal. As can be seen from FIGS. 17A and 17B, noise is reliably removed.
  • noise removal is not performed only in the post-processing unit 14. Noise is removed from a sound acquired via the microphone 22 by a series of processes performed in the preprocessing unit 10, the processing unit 12, and the postprocessing unit 14.
  • the signal that has been post-processed by the post-processing unit 14 is output to the automatic speech recognition apparatus 168 as a voice output. Since a good target sound in which sounds other than the target sound are suppressed is input to the automatic speech recognition device 168, the automatic speech recognition device 168 can improve the accuracy of speech recognition. Based on the voice recognition result by the automatic voice recognition device 168, the operation on the device mounted on the vehicle 136 is automatically performed.
  • FIG. 18 is a flowchart showing the operation of the speech processing apparatus according to this embodiment.
  • step S1 it is determined whether or not an occupant is present in the vehicle 136 (step S1). Whether an occupant is present in the vehicle 136 can be determined based on, for example, an occupant presence / absence detection signal from the occupant detection unit 142.
  • the voice processing device 102 is operated in the first operation mode.
  • the first operation mode is an operation mode on the assumption that an occupant is present in the vehicle 136. In the first operation mode, sound source direction determination, beam forming processing, noise removal processing, music removal processing, and the like are performed.
  • FIG. 19 is a flowchart showing the operation in the first operation mode in the speech processing apparatus according to the present embodiment.
  • noise removal processing and music removal processing are started (step S10). That is, the noise removal process and the music removal process are set on. Thereafter, the noise removal process and the music removal process are continuously performed.
  • the music removal process may not be performed when the in-vehicle acoustic device 84 is not outputting music or when the volume of the music is extremely low.
  • noise is removed by a series of processes performed in the pre-processing unit 10, the processing unit 12, and the post-processing unit 14. Further, as described above, the music removal processing is performed by the music removal processing unit 24 provided in the preprocessing unit 10 or the like.
  • step S11 Before the call by the occupant is made to the sound processing apparatus 102 (NO in step S11), noise removal processing, music removal processing, and the like are performed, but sound source direction determination, beam forming, and the like are not performed.
  • the voice source direction determination process and the beam forming process are set to ON, and the direction of the voice source 72 that issued the call is determined (Ste S12).
  • the determination of the direction of the sound source 72 is performed by the sound source direction determination unit 16 and the like as described above.
  • the call is made by the driver, for example.
  • the call may not be performed by the driver.
  • a passenger seat may make a call.
  • the call may be a specific word or a simple utterance.
  • the directivity of the beamformer is set according to the direction of the sound source 72 (step S13).
  • the setting of the beamformer directivity is performed by the adaptive algorithm determination unit 18, the processing unit 12, and the like as described above.
  • voice source 72 Is interrupted (step S15).
  • step S12 , S13 is repeated.
  • the beamformer is adaptively set according to the change of the position of the sound source 72, and the sound other than the target sound is surely suppressed. Since a good target sound, in which noise removal processing, music removal processing, and the like are performed and a sound other than the target sound is suppressed, is input to the automatic speech recognition device 168, the automatic speech recognition device 168 has a voice recognition accuracy. Can be improved. Based on the voice recognition result by the automatic voice recognition device 168, an operation on a device mounted on the vehicle 136, for example, an operation on a door, a window, a wiper, a winker, or the like is automatically performed.
  • the voice processing device 102 is operated in the second operation mode.
  • the second operation mode is an operation mode on the assumption that no occupant is present in the vehicle 136. In the second operation mode, noise removal processing, music removal processing, and the like are performed, but audio source direction determination, beam forming processing, and the like are not performed.
  • FIG. 20 is a flowchart showing the operation in the second operation mode in the speech processing apparatus according to the present embodiment.
  • noise removal processing and music removal processing are started (step S20). Thereafter, the noise removal process and the music removal process are continuously performed.
  • the noise removal process and the music removal process are continuously performed.
  • sound source direction determination, beam forming, and the like are not performed. That is, in the second operation mode, the sound source direction determination process and the beam forming process are set to off.
  • the music removal process may not be performed when the in-vehicle audio device 84 does not output music or when the volume of music is extremely low.
  • noise is removed by a series of processes performed in the preprocessing unit 10, the processing unit 12, and the postprocessing unit 14. Further, as described above, the music removal processing is performed by the music removal processing unit 24 provided in the preprocessing unit 10 or the like.
  • the sound source direction determination process and the beam forming process are set to OFF for the following reason. That is, when an occupant is present outside the vehicle 136, it is not always easy to accurately and reliably specify the position of the occupant outside the vehicle 136. For this reason, it is also conceivable that beam forming is performed in the wrong direction. When sound is emitted from the occupant while beamforming is performed in the wrong direction, the sound emitted from the occupant is suppressed, and the sound emitted from the occupant cannot be acquired. There is a fear.
  • beam forming is not performed in the second operation mode. Since beam forming is not performed, in this embodiment, sound source direction determination necessary for performing beam forming is not performed. Since a good audio signal that has been subjected to noise removal processing, music removal processing, and the like is input to the automatic speech recognition device 168, the automatic speech recognition device 168 can perform speech recognition with high accuracy. Based on the voice recognition result by the automatic voice recognition device 168, the operation on the device mounted on the vehicle 136 is automatically performed.
  • the automatic sound processing device 168 In the second operation mode, when a predetermined word such as “open” or “closed” is detected by the automatic sound processing device 168, an occupant located outside the vehicle 136 opens the opening / closing body 134. It seems that he wants to operate and close. When the proximity detection signal from the proximity detection unit 126 is input to the input unit 114, it is considered that the occupant has issued the predetermined word.
  • the control unit 116 performs control for opening or closing the opening / closing body 134. Specifically, the control unit 116 opens or closes the opening / closing body 134 by controlling the opening / closing body driving device 132 via the output unit 120.
  • the control unit 116 performs control for stopping the vehicle 136. Specifically, the control unit 116 controls the brake control device 138 via the output unit 120 to operate the brake 140, thereby stopping the vehicle 136.
  • a voice processing device that can accurately perform voice processing on voice that can be emitted inside and outside the vehicle while satisfying a demand for cost reduction, and a control device using the voice processing device are provided. Can be provided.
  • FIG. 21 is a flowchart showing the operation in the second operation mode in the speech processing apparatus according to this modification.
  • the sound processing apparatus is configured to perform beam forming on an occupant after the occupant located outside the vehicle 136 has issued a predetermined word.
  • step S1 it is determined whether or not an occupant is present in the vehicle 136 in the same manner as in the sound processing apparatus according to the embodiment described above with reference to FIG. 18 (step S1).
  • the voice processing device 102 is operated in the first operation mode.
  • the operation of the speech processing apparatus in the first operation mode is the same as the operation in the first operation mode of the speech processing apparatus according to the embodiment described above with reference to FIG.
  • the voice processing device 102 is operated in the second operation mode.
  • the second operation mode is an operation mode based on the assumption that no occupant is present in the vehicle 136.
  • noise removal processing, music removal processing, and the like are performed before a predetermined word is detected by the automatic speech recognition device 168, but sound source direction determination, beam forming, and the like are not performed. . That is, before the predetermined word is detected by the automatic speech recognition device 168, the voice source direction determination process and the beam forming process are set to off.
  • FIG. 21 is a flowchart showing the operation in the second operation mode in the speech processing apparatus according to this modification.
  • noise removal processing and music removal processing are started (step S30). Thereafter, the noise removal process and the music removal process are continuously performed. In the second operation mode, sound source direction determination, beam forming, and the like are not performed.
  • the music removal process may not be performed when the in-vehicle acoustic device 84 does not output music, or when the volume of music is extremely low.
  • noise is removed by a series of processes performed in the preprocessing unit 10, the processing unit 12, and the postprocessing unit 14. Further, as described above, the music removal processing is performed by the music removal processing unit 24 provided in the preprocessing unit 10 or the like.
  • the voice source direction determination process and the beam forming process are set to ON, and the direction of the voice source 72 that issued the predetermined word is determined. (Step S32).
  • the determination of the direction of the sound source 72 is performed by the sound source direction determination unit 16 and the like as described above.
  • the predetermined word for example, “A” which is a voice uttered when surprised can be cited.
  • the operation after step S32 is performed in order to acquire more reliably the sound emitted from the occupant who has issued the predetermined word. Done.
  • the directivity of the beamformer is set according to the direction of the sound source 72 (step S33).
  • the setting of the beamformer directivity is performed by the adaptive algorithm determination unit 18, the processing unit 12, and the like as described above.
  • voice source 72 Is interrupted (step S35).
  • step S32 when the magnitude of sound coming from an azimuth range other than the predetermined azimuth range including the azimuth of voice source 72 is not greater than the magnitude of voice coming from voice source 72 (NO in step S34), step S32 , S33 is repeated.
  • the sound source direction determination process, the beam forming process, and the like are set on, so that the sound other than the target sound is suppressed.
  • Voice signal is input to the automatic voice recognition device 168.
  • the accuracy of voice recognition can be further improved, and operations on devices and the like mounted on the vehicle 136 can be performed more accurately and reliably.
  • the case where the number of the microphones 22 is three has been described as an example, but the number of the microphones 22 is not limited to three, and may be four or more. If many microphones 22 are used, the direction of the sound source 72 can be determined with higher accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Otolaryngology (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

Provided is a speech processing device and control device that can accurately perform speech processing of speech generated inside and outside a vehicle while meeting demand for lower costs. The present invention comprises a speech source direction determination unit 16 that determines the direction of speech sources that are the sources of speech included in received sound signals obtained via each of multiple microphones 22 provided within a vehicle, a beam forming processing unit 12 that forms beams which suppress sound incoming from direction ranges other than direction ranges that include the directions of the speech sources and a noise removal processing unit 14 that performs removal processing on noise mixed into the received sound signals, wherein on the basis of a first signal that indicates whether or not passengers are present in the vehicle, beam forming by the beam forming processing unit is set on or off.

Description

音声処理装置及び制御装置Voice processing apparatus and control apparatus
 本発明は、音声処理装置及び制御装置に関する。 The present invention relates to a voice processing device and a control device.
 自動車等の車両には、様々な機器が設けられている。これらの様々な機器に対する操作は、例えば、操作ボタンや操作パネル等を操作することにより行われている。 Various devices are provided in vehicles such as automobiles. Operations on these various devices are performed, for example, by operating operation buttons, operation panels, and the like.
 一方、近時では、音声認識技術を用いて車両の制御を行うことも提案されている(特許文献1、2)。 On the other hand, recently, it has also been proposed to control a vehicle using a voice recognition technology (Patent Documents 1 and 2).
特開2006-189394号公報JP 2006-189394 A 特開2007-308887号公報JP 2007-308887 A
 しかしながら、車両内のみならず、車両外においても、音声が発せられ得る。様々な箇所において発せられ得る音声を確実に検出すべく、様々な箇所にマイクロフォンを配した場合には、低コスト化の要請に反することとなる。 However, sound can be emitted not only inside the vehicle but also outside the vehicle. If microphones are arranged at various locations in order to reliably detect sound that can be uttered at various locations, this is contrary to the demand for cost reduction.
 本発明の目的は、低コスト化の要請を満たしつつ、車両の内外において発せられ得る音声に対して音声処理を的確に行い得る音声処理装置及びその音声処理装置を用いた制御装置を提供することにある。 An object of the present invention is to provide a voice processing device that can accurately perform voice processing on voice that can be emitted inside and outside a vehicle while satisfying a demand for cost reduction, and a control device using the voice processing device. It is in.
 本発明の一観点によれば、車両内に配された複数のマイクロフォンの各々によって取得される受音信号に含まれる音声の発生源である音声源の方位を判定する音声源方位判定部と、前記音声源の前記方位を含む方位範囲以外の方位範囲から到来する音を抑圧するビームフォーミングを行うビームフォーミング処理部と、前記受音信号に混入されたノイズの除去処理を行うノイズ除去処理部とを有し、前記車両内に乗員が存在しているか否かを示す第1の信号に基づいて、前記ビームフォーミング処理部による前記ビームフォーミングのオン/オフが設定される、音声処理装置が提供される。 According to one aspect of the present invention, a sound source direction determination unit that determines a direction of a sound source that is a sound source included in a sound reception signal acquired by each of a plurality of microphones arranged in a vehicle; A beam forming processing unit that performs beam forming to suppress sound coming from an azimuth range other than the azimuth range including the azimuth range of the sound source; and a noise removal processing unit that performs processing to remove noise mixed in the received sound signal. There is provided a speech processing apparatus in which on / off of the beamforming by the beamforming processing unit is set based on a first signal indicating whether or not an occupant is present in the vehicle. The
 本発明によれば、車両内に乗員が存在しているか否かを示す第1の信号に基づいて、ビームフォーミングのオン/オフが設定される。このため、車両の外部に乗員が位置している場合であっても、かかる乗員が発する音声を、車両内に配されたマイクロフォンを用いて確実に検出することができる。車両の外部において発せられる音声を取得するためのマイクロフォンを、車両内に配されたマイクロフォンと別個に設けることを要しないため、低コスト化に寄与することができる。 According to the present invention, on / off of the beam forming is set based on the first signal indicating whether or not an occupant is present in the vehicle. For this reason, even when the occupant is located outside the vehicle, it is possible to reliably detect the sound emitted by the occupant using the microphone disposed in the vehicle. Since it is not necessary to provide a microphone for acquiring sound emitted outside the vehicle separately from the microphone arranged in the vehicle, it is possible to contribute to cost reduction.
車両の構成を示す概略図である。It is the schematic which shows the structure of a vehicle. 本発明の一実施形態による制御装置のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the control apparatus by one Embodiment of this invention. 本発明の一実施形態による車両を示す平面図である。It is a top view which shows the vehicle by one Embodiment of this invention. 本発明の一実施形態による音声処理装置のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the audio processing apparatus by one Embodiment of this invention. マイクロフォンの数が3個の場合におけるマイクロフォンの配置の例を示す概略図である。It is the schematic which shows the example of arrangement | positioning of a microphone in case the number of microphones is three. マイクロフォンの数が2個の場合におけるマイクロフォンの配置の例を示す概略図である。It is the schematic which shows the example of arrangement | positioning of a microphone in case the number of microphones is two. 音声源が遠方界に位置する場合を示す図である。It is a figure which shows the case where an audio source is located in a far field. 音声源が近傍界に位置する場合を示す図である。It is a figure which shows the case where a sound source is located in a near field. 音楽の除去のアルゴリズムを示す概略図である。It is the schematic which shows the algorithm of a music removal. 音楽の除去前の信号波形を示す図である。It is a figure which shows the signal waveform before the removal of music. 音楽の除去後の信号波形を示す図である。It is a figure which shows the signal waveform after the removal of music. 音声源の方位の判定のアルゴリズムを示す図である。It is a figure which shows the algorithm of determination of the azimuth | direction of an audio source. 適応フィルタ係数を示す図である。It is a figure which shows an adaptive filter coefficient. 音声源の方位角を示す図である。It is a figure which shows the azimuth | direction angle of an audio source. 音声信号の振幅を示す図である。It is a figure which shows the amplitude of an audio | voice signal. ビームフォーマの指向性を概念的に示す図である。It is a figure which shows the directivity of a beam former notionally. ビームフォーマのアルゴリズムを示す図である。It is a figure which shows the algorithm of a beam former. ビームフォーマにより得られる指向性の例を示すグラフである。It is a graph which shows the example of the directivity obtained by a beam former. ビームフォーマと音声源方位判定キャンセル処理とを組み合わせた場合の角度特性を示す図である。It is a figure which shows the angle characteristic at the time of combining a beam former and an audio source direction determination cancellation process. ビームフォーマにより得られる指向性の例を示すグラフである。It is a graph which shows the example of the directivity obtained by a beam former. ノイズの除去のアルゴリズムを示す図である。It is a figure which shows the algorithm of noise removal. ノイズの除去前の信号波形を示す図である。It is a figure which shows the signal waveform before noise removal. ノイズの除去後の信号波形を示す図である。It is a figure which shows the signal waveform after noise removal. 本発明の一実施形態による音声処理装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the audio processing apparatus by one Embodiment of this invention. 本発明の一実施形態による音声処理装置における第1の動作モードでの動作を示すフローチャートである。It is a flowchart which shows the operation | movement in the 1st operation mode in the speech processing unit by one Embodiment of this invention. 本発明の一実施形態による音声処理装置における第2の動作モードでの動作を示すフローチャートである。It is a flowchart which shows the operation | movement in the 2nd operation mode in the speech processing unit by one Embodiment of this invention. 本発明の一実施形態の変形例による音声処理装置における第2の動作モードでの動作を示すフローチャートである。It is a flowchart which shows the operation | movement in the 2nd operation mode in the audio processing apparatus by the modification of one Embodiment of this invention.
 以下、本発明の実施の形態について図面を用いて説明する。なお、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において適宜変更可能である。また、以下で説明する図面において、同じ機能を有するものは同一の符号を付し、その説明を省略又は簡潔にすることもある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment, In the range which does not deviate from the summary, it can change suitably. In the drawings described below, components having the same function are denoted by the same reference numerals, and the description thereof may be omitted or simplified.
 [一実施形態]
 本発明の一実施形態による音声処理装置及びその音声処理装置を用いた制御装置について図1乃至図19を用いて説明する。
[One Embodiment]
A voice processing device and a control device using the voice processing device according to an embodiment of the present invention will be described with reference to FIGS.
 本実施形態による音声処理装置及び制御装置について説明するに先立って、車両の構成について図1を用いて説明する。図1は、車両の構成を示す概略図である。 Prior to describing the voice processing device and the control device according to the present embodiment, the configuration of the vehicle will be described with reference to FIG. FIG. 1 is a schematic diagram showing a configuration of a vehicle.
 図1に示すように、車両(自動車)136の車体(車室)46の前部には、運転者用の座席である運転席40と助手席者用の座席である助手席44とが配されている。運転席40は、例えば車室46の右側に位置している。運転席40の前方には、ステアリングホイール(ハンドル)78が配されている。助手席44は、例えば車室46の左側に位置している。運転席40と助手席44とにより、前部座席が構成されている。運転席40の近傍には、運転者が音声を発する場合における音声源72aが位置する。助手席44の近傍には、助手席者が音声を発する場合における音声源72bが位置する。運転者も助手席者も座席40,44に着座した状態で上半身を動かし得るため、音声源72の位置は変化し得る。車体46の後部には、後部座席70が配されている。なお、ここでは、個々の音声源を区別しないで説明する場合には、符号72を用い、個々の音声源を区別して説明する場合には、符号72a、72bを用いることとする。 As shown in FIG. 1, a driver's seat 40 that is a driver's seat and a passenger's seat 44 that is a passenger's seat are arranged at the front of a vehicle body (cabinet) 46 of a vehicle (automobile) 136. Has been. The driver's seat 40 is located on the right side of the passenger compartment 46, for example. A steering wheel (handle) 78 is disposed in front of the driver seat 40. The passenger seat 44 is located on the left side of the passenger compartment 46, for example. The driver seat 40 and the passenger seat 44 constitute a front seat. In the vicinity of the driver's seat 40, an audio source 72a when the driver emits audio is located. In the vicinity of the passenger seat 44, an audio source 72b when the passenger seat makes a sound is located. Since both the driver and the front passenger can move the upper body while seated in the seats 40 and 44, the position of the sound source 72 can change. A rear seat 70 is disposed at the rear of the vehicle body 46. Here, reference numeral 72 is used when the description is made without distinguishing between the individual sound sources, and reference numerals 72a and 72b are used when the description is made with the individual sound sources distinguished.
 前部座席40,44の前方には、複数のマイクロフォン22(22a~22c)、即ち、マイクロフォンアレイが配されている。なお、ここでは、個々のマイクロフォンを区別しないで説明する場合には、符号22を用い、個々のマイクロフォンを区別して説明する場合には、符号22a~22cを用いることとする。マイクロフォン22は、ダッシュボード42に配されていてもよいし、ルーフに近い部位に配されていてもよい。 A plurality of microphones 22 (22a to 22c), that is, microphone arrays are arranged in front of the front seats 40 and 44. Here, reference numeral 22 is used when the description is made without distinguishing the individual microphones, and reference numerals 22a to 22c are used when the description is made with the individual microphones distinguished. The microphone 22 may be disposed on the dashboard 42 or may be disposed on a portion close to the roof.
 前部座席40,44の音声源72とマイクロフォン22との間の距離は、数十cm程度である場合が多い。しかし、マイクロフォン22と音声源72との間の距離は、数十cmより小さくなることもあり得る。また、マイクロフォン22と音声源72との間の距離は、1mを超えることもあり得る。 The distance between the sound source 72 of the front seats 40 and 44 and the microphone 22 is often about several tens of centimeters. However, the distance between the microphone 22 and the audio source 72 can be less than a few tens of centimeters. Also, the distance between the microphone 22 and the audio source 72 can exceed 1 m.
 車体46の内部には、車載音響機器(カーオーディオ機器)84(図2参照)のスピーカシステムを構成するスピーカ(ラウドスピーカ)76が配されている。スピーカ76から発せられる音楽(ミュージック)は、音声認識を行う上でのノイズとなり得る。 Inside the vehicle body 46, a speaker (loud speaker) 76 constituting a speaker system of an on-vehicle acoustic device (car audio device) 84 (see FIG. 2) is arranged. Music (music) emitted from the speaker 76 can be noise when performing speech recognition.
 車体46には、車両136を駆動するためのエンジン80が配されている。エンジン80から発せられる音は、音声認識を行う上でのノイズとなり得る。 The vehicle body 46 is provided with an engine 80 for driving the vehicle 136. The sound emitted from the engine 80 can be noise when performing speech recognition.
 車両136の走行中に路面の刺激によって車室46内に発生する騒音、即ち、ロードノイズも、音声認識を行う上でのノイズとなり得る。また、車両136が走行する際に生ずる風切り音も、音声認識を行う上でのノイズ源となり得る。また、車体46の外部にも、ノイズ源82は存在し得る。外部ノイズ源82から発せられる音も、音声認識を行う上でのノイズとなり得る。 The noise generated in the passenger compartment 46 due to road surface stimulation while the vehicle 136 is traveling, that is, road noise, can also be noise when performing voice recognition. In addition, wind noise generated when the vehicle 136 travels can also be a noise source in performing voice recognition. Further, the noise source 82 may exist outside the vehicle body 46. The sound emitted from the external noise source 82 can also be noise in performing speech recognition.
 車体46に配された様々な機器に対する操作を、音声による指示によって行い得ると便利である。音声による指示は、例えば自動音声認識装置168(図2参照)を用いて認識される。本実施形態による音声処理装置102は、音声認識の精度の向上に資するものである。 It is convenient if operations on various devices arranged on the vehicle body 46 can be performed by voice instructions. The voice instruction is recognized using, for example, an automatic voice recognition device 168 (see FIG. 2). The speech processing apparatus 102 according to the present embodiment contributes to improvement of speech recognition accuracy.
 図2は、本実施形態による制御装置を示すブロック図である。 FIG. 2 is a block diagram showing the control device according to the present embodiment.
 図2に示すように、本実施形態による制御装置100は、音声処理装置102、自動音声認識装置168、入力部114、制御部(CPU:Central Processing Unit)116、メモリ118、及び、出力部120を有している。音声処理装置102、自動音声認識装置168、入力部114、制御部116、メモリ118、及び、出力部120は、バスライン122を介して相互に信号を入出力し得る。 As shown in FIG. 2, the control device 100 according to the present embodiment includes a speech processing device 102, an automatic speech recognition device 168, an input unit 114, a control unit (CPU: Central Processing Unit) 116, a memory 118, and an output unit 120. have. The voice processing device 102, the automatic voice recognition device 168, the input unit 114, the control unit 116, the memory 118, and the output unit 120 can input / output signals to / from each other via the bus line 122.
 なお、音声処理装置102と自動音声認識装置168とが別個の装置であってもよいし、音声処理装置(音声処理部)102と自動音声認識装置(音声認識部)168とが一体になっていてもよい。音声処理装置102と自動音声認識装置168とが一体になった装置は、音声処理装置と称することもできるし、自動音声認識装置と称することもできる。 The voice processing device 102 and the automatic voice recognition device 168 may be separate devices, or the voice processing device (voice processing unit) 102 and the automatic voice recognition device (voice recognition unit) 168 are integrated. May be. A device in which the speech processing device 102 and the automatic speech recognition device 168 are integrated can be called a speech processing device or an automatic speech recognition device.
 音声処理装置102には、複数のマイクロフォン22a~22cの各々によって取得される信号が入力されるようになっている。また、音声処理装置102には、車載音響機器84からの信号が入力されるようになっている。 A signal acquired by each of the plurality of microphones 22a to 22c is input to the voice processing device 102. In addition, a signal from the in-vehicle acoustic device 84 is input to the audio processing device 102.
 音声処理装置102によって処理が行われた音声信号が、音声出力として自動音声認識装置(音声認識装置)168に出力されるようになっている。 The voice signal processed by the voice processing apparatus 102 is output to the automatic voice recognition apparatus (voice recognition apparatus) 168 as a voice output.
 入力部114には、近接検知部(近接検知手段)126からの信号が入力されるようになっている。車両136への乗員の近接の有無を示す信号、即ち、近接検知信号が、近接検知部126から入力部114に入力されるようになっている。近接検知部126としては、例えば、スマートキー(認証キー)146から発せられる無線信号を受信し得る受信部(受信手段)等を用いることができる。近接検知部126は、例えば、スマートキーシステム用の受信部を兼ねていてもよいし、スマートキーシステム用の受信部と別個に設けられているものであってもよい。図3は、本実施形態による車両を示す平面図である。図3に示すように、開閉体134a~134cの近傍にスマートキー146の通信エリア148が形成される。スマートキー146がスマートキーシステムの通信エリア148内に位置している際に、スマートキー146が通信エリア148内に位置していることを示す信号が、近接検知部126から入力部114に入力される。 A signal from the proximity detection unit (proximity detection means) 126 is input to the input unit 114. A signal indicating whether or not a passenger is approaching the vehicle 136, that is, a proximity detection signal is input from the proximity detection unit 126 to the input unit 114. As the proximity detection unit 126, for example, a reception unit (reception unit) that can receive a wireless signal emitted from the smart key (authentication key) 146 can be used. For example, the proximity detection unit 126 may also serve as a reception unit for the smart key system, or may be provided separately from the reception unit for the smart key system. FIG. 3 is a plan view showing the vehicle according to the present embodiment. As shown in FIG. 3, a communication area 148 of the smart key 146 is formed in the vicinity of the opening / closing bodies 134a to 134c. When the smart key 146 is located in the communication area 148 of the smart key system, a signal indicating that the smart key 146 is located in the communication area 148 is input from the proximity detection unit 126 to the input unit 114. The
 なお、ここでは、スマートキー146から発せられる無線信号が近接検知部126により受信されたことに基づいて、車両136への乗員の近接の有無を判定したが、これに限定されるものではない。即ち、車両136への乗員の近接の有無を判定ために用いられる乗員側の機器は、スマートキー146に限定されるものではなく、ID認証が可能な携帯機器であればよい。ID認証が可能な様々な携帯機器と車載機器との間の通信の成立の有無に基づいて、車両136への乗員の近接の適宜判定することが可能である。 Note that, here, the presence / absence of the occupant's proximity to the vehicle 136 is determined based on the reception of the wireless signal emitted from the smart key 146 by the proximity detection unit 126, but the present invention is not limited to this. That is, the occupant-side device used to determine whether or not the occupant is approaching the vehicle 136 is not limited to the smart key 146, and may be any portable device that can perform ID authentication. It is possible to appropriately determine the proximity of an occupant to the vehicle 136 based on whether or not communication between various portable devices capable of ID authentication and in-vehicle devices is established.
 入力部114には、車両136内に乗員が存在するか否かを示す信号、即ち、乗員有無検知信号が、乗員検出部142から入力部114に入力されるようになっている。乗員検出部142としては、例えば、ドライバモニタや体重検知センサ等を用いることができる。ドライバモニタは、カメラ(図示せず)で撮影した画像に基づいて乗員の有無を検出し得る。体重検知センサは、例えば、運転席40に配され、体重検知センサによって検知された体重に基づいて乗員の有無を検出し得る。 A signal indicating whether or not there is an occupant in the vehicle 136, that is, an occupant presence / absence detection signal is input to the input unit 114 from the occupant detection unit 142 to the input unit 114. As the occupant detection unit 142, for example, a driver monitor, a weight detection sensor, or the like can be used. The driver monitor can detect the presence or absence of an occupant based on an image taken by a camera (not shown). For example, the weight detection sensor is arranged in the driver's seat 40 and can detect the presence or absence of an occupant based on the weight detected by the weight detection sensor.
 制御部116は、制御装置100の全体の制御を司るものである。制御部116は、近接検知部126から入力部114を介して入力される近接検知信号を読み取る。制御部116は、スマートキー146を所持した乗員が車両136に近接した状態であるか否かを、近接検知信号に基づいて判断し得る。また、制御部116は、乗員検出部142から入力部114を介して入力される乗員有無検知信号を読み取る。制御部116は、車両136内に乗員が存在するか否かを、乗員有無検知信号に基づいて判断し得る。また、制御部116は、自動音声認識装置168からの出力情報、即ち、音声認識結果を読み取る。制御部116は、自動音声認識装置168による音声認識結果に基づいて、音声による乗員の指示を認識し得る。 The control unit 116 controls the entire control device 100. The control unit 116 reads a proximity detection signal input from the proximity detection unit 126 via the input unit 114. Based on the proximity detection signal, the control unit 116 can determine whether or not the occupant carrying the smart key 146 is in a state of being close to the vehicle 136. Further, the control unit 116 reads an occupant presence / absence detection signal input from the occupant detection unit 142 via the input unit 114. The control unit 116 can determine whether there is an occupant in the vehicle 136 based on the occupant presence / absence detection signal. Further, the control unit 116 reads output information from the automatic speech recognition device 168, that is, a speech recognition result. The control unit 116 can recognize an occupant instruction by voice based on the voice recognition result by the automatic voice recognition device 168.
 制御部116は、自動音声認識装置168による音声認識結果に基づいて、車両136に搭載されている様々な機器等に対しての制御を行う。 The control unit 116 controls various devices mounted on the vehicle 136 based on the voice recognition result by the automatic voice recognition device 168.
 例えば、制御部116は、開閉体134に対しての制御を行う。具体的には、制御部116は、開閉体駆動装置132を制御するための制御信号を、出力部120を介して開閉体駆動装置132に出力する。開閉体駆動装置132は、開閉機構を有する構造体である開閉体134を駆動するためのものである。制御部116は、開閉体駆動装置132を介して開閉体134を自動で開作動等させる。車両136には、サイドドア134a、134bやバックドア134c等の様々な開閉体が配されているが。図2においては、個々の開閉体を区別せず、複数の開閉体のうちの1つを符号134を用いて図示している。 For example, the control unit 116 controls the opening / closing body 134. Specifically, the control unit 116 outputs a control signal for controlling the opening / closing body driving device 132 to the opening / closing body driving device 132 via the output unit 120. The opening / closing body driving device 132 is for driving an opening / closing body 134 which is a structure having an opening / closing mechanism. The control unit 116 automatically opens and closes the opening / closing body 134 via the opening / closing body driving device 132. The vehicle 136 is provided with various opening / closing bodies such as the side doors 134a and 134b and the back door 134c. In FIG. 2, the individual opening / closing bodies are not distinguished, and one of the plurality of opening / closing bodies is illustrated by reference numeral 134.
 また、制御部116は、ブレーキ140に対しての制御を行う。具体的には、制御部116は、ブレーキ制御装置138を制御するための制御信号を、出力部120を介してブレーキ制御装置138に出力する。ブレーキ制御装置138は、ブレーキ140を制御するためのものである。制御部116は、ブレーキ制御装置138を介してブレーキ140を制御する。 In addition, the control unit 116 controls the brake 140. Specifically, the control unit 116 outputs a control signal for controlling the brake control device 138 to the brake control device 138 via the output unit 120. The brake control device 138 is for controlling the brake 140. The control unit 116 controls the brake 140 via the brake control device 138.
 図4は、本実施形態による音声処理装置のシステム構成を示すブロック図である。図4に示すように、本実施形態による音声処理装置102は、前処理部10と、処理部12と、後処理部14と、音声源方位判定部16と、適応アルゴリズム決定部18と、ノイズモデル決定部20とを含む。 FIG. 4 is a block diagram showing a system configuration of the speech processing apparatus according to the present embodiment. As shown in FIG. 4, the speech processing apparatus 102 according to the present embodiment includes a preprocessing unit 10, a processing unit 12, a post-processing unit 14, a speech source direction determination unit 16, an adaptive algorithm determination unit 18, noise A model determining unit 20.
 前処理部10には、複数のマイクロフォン22a~22cの各々によって取得される信号、即ち、受音信号が入力されるようになっている。マイクロフォン22としては、例えば、無指向性のマイクロフォンが用いられる。 A signal acquired by each of the plurality of microphones 22a to 22c, that is, a sound reception signal is input to the preprocessing unit 10. As the microphone 22, for example, an omnidirectional microphone is used.
 図5A及び図5Bは、マイクロフォンの配置の例を示す概略図である。図5Aは、マイクロフォン22の数が3個の場合を示している。図5Bは、マイクロフォン22の数が2個の場合を示している。複数のマイクロフォン22は、直線上に位置するように配されている。 FIG. 5A and FIG. 5B are schematic diagrams showing examples of microphone arrangement. FIG. 5A shows a case where the number of microphones 22 is three. FIG. 5B shows a case where the number of microphones 22 is two. The plurality of microphones 22 are arranged so as to be positioned on a straight line.
 図6A及び図6Bは、音声源が遠方界に位置する場合と近傍界に位置する場合とを示す図である。図6Aは、音声源72が遠方界に位置する場合を示しており、図6Bは、音声源72が近傍界に位置する場合を示している。dは、音声源72からマイクロフォン22までの距離の差を示している。θは、音声源72の方位を示している。 6A and 6B are diagrams showing a case where the sound source is located in the far field and a case where the sound source is located in the near field. FIG. 6A shows a case where the audio source 72 is located in the far field, and FIG. 6B shows a case where the audio source 72 is located in the near field. d indicates a difference in distance from the sound source 72 to the microphone 22. θ represents the direction of the audio source 72.
 図6Aに示すように、音声源72が遠方界に位置する場合には、マイクロフォン22に到達する音声は、平面波とみなすことができる。このため、本実施形態では、音声源72が遠方界に位置する場合には、マイクロフォン22に到達する音声を平面波として取り扱って、音声源72の方位(方向)、即ち、音源方位(DOA:Direction Of Arrival)を判定する。マイクロフォン22に到達する音声を平面波として扱うことが可能なため、音声源72が遠方界に位置する場合には、2個のマイクロフォン22を用いて音声源72の方位を判定し得る。なお、音声源72の位置やマイクロフォン22の配置によっては、マイクロフォン22の数が2個の場合であっても、近傍界に位置する音声源72の方位を判定し得る。 As shown in FIG. 6A, when the sound source 72 is located in the far field, the sound reaching the microphone 22 can be regarded as a plane wave. For this reason, in this embodiment, when the sound source 72 is located in the far field, the sound reaching the microphone 22 is handled as a plane wave, and the direction (direction) of the sound source 72, that is, the sound source direction (DOA: Direction) Of Arrival). Since the sound reaching the microphone 22 can be handled as a plane wave, when the sound source 72 is located in the far field, the direction of the sound source 72 can be determined using the two microphones 22. Depending on the position of the sound source 72 and the arrangement of the microphones 22, the orientation of the sound source 72 located in the near field can be determined even when the number of the microphones 22 is two.
 図6Bに示すように、音声源72が近傍界に位置する場合には、マイクロフォン22に到達する音声は、球面波とみなすことができる。このため、本実施形態では、音声源72が近傍界に位置する場合には、マイクロフォン22に到達する音声を球面波として扱って、音声源72の方位を判定する。マイクロフォン22に到達する音声を球面波として扱うことを要するため、音声源72が近傍界に位置する場合には、少なくとも3個のマイクロフォン22を用いて音声源72の方位を判定する。ここでは、説明の簡略化のため、マイクロフォン22の数を3個とする場合を例に説明する。 As shown in FIG. 6B, when the sound source 72 is located in the near field, the sound reaching the microphone 22 can be regarded as a spherical wave. For this reason, in this embodiment, when the sound source 72 is located in the near field, the sound reaching the microphone 22 is treated as a spherical wave, and the direction of the sound source 72 is determined. Since the sound reaching the microphone 22 needs to be handled as a spherical wave, when the sound source 72 is located in the near field, the orientation of the sound source 72 is determined using at least three microphones 22. Here, for simplification of description, a case where the number of microphones 22 is three will be described as an example.
 マイクロフォン22aとマイクロフォン22bとの距離L1は、比較的長く設定されている。マイクロフォン22bとマイクロフォン22cとの距離L2は、比較的短く設定されている。 The distance L1 between the microphone 22a and the microphone 22b is set to be relatively long. The distance L2 between the microphone 22b and the microphone 22c is set to be relatively short.
 本実施形態において距離L1と距離L2とを異ならせているのは、以下のような理由によるものである。即ち、本実施形態では、各々のマイクロフォン22に到達する音声(受音信号の到来時間差(TDOA:Time Delay Of Arrival)に基づいて、音声源72の方位を特定する。周波数が比較的低い音声は波長が比較的長いため、周波数が比較的低い音声に対応するためには、マイクロフォン22間の距離を比較的大きく設定することが好ましい。このため、本実施形態では、マイクロフォン22aとマイクロフォン22bとの間の距離L1を比較的長く設定している。一方、周波数が比較的高い音声は波長が比較的短いため、周波数が比較的高い音声に対応するためには、マイクロフォン22間の距離を比較的小さく設定することが好ましい。そこで、本実施形態では、マイクロフォン22bとマイクロフォン22cとの間の距離L2を比較的短く設定している。 The reason why the distance L1 and the distance L2 are different in the present embodiment is as follows. That is, in this embodiment, the direction of the sound source 72 is specified based on the sound (arrival time difference (TDOA: Time Delay Of Arrival) of the received sound signal) reaching each microphone 22. Since the wavelength is relatively long, it is preferable to set the distance between the microphones 22 to be relatively large in order to cope with the sound having a relatively low frequency.For this reason, in this embodiment, the microphone 22a and the microphone 22b The distance L1 between the microphones 22 is set to be relatively long, while the sound having a relatively high frequency has a relatively short wavelength, so that the distance between the microphones 22 is relatively small in order to correspond to the sound having a relatively high frequency. Therefore, in this embodiment, the distance L2 between the microphone 22b and the microphone 22c is relatively short. It is constant.
 マイクロフォン22aとマイクロフォン22bとの間の距離L1は、例えば3400Hz以下の周波数の音声に対して好適とすべく、例えば5cm程度とする。マイクロフォン22bとマイクロフォン22cとの間の距離L2は、例えば3400Hzを超える周波数の音声に対して好適とすべく、例えば2.5cm程度とする。なお、距離L1、L2は、これらに限定されるものではなく、適宜設定し得る。 The distance L1 between the microphone 22a and the microphone 22b is, for example, about 5 cm so as to be suitable for sound having a frequency of 3400 Hz or less. The distance L2 between the microphone 22b and the microphone 22c is, for example, about 2.5 cm so as to be suitable for sound having a frequency exceeding 3400 Hz. The distances L1 and L2 are not limited to these, and can be set as appropriate.
 本実施形態において、音声源72が遠方界に位置する場合に、マイクロフォン22に到達する音声を平面波として扱うのは、音声を平面波として扱う場合の方が、音声を球面波として扱う場合よりも、音声源72の方位を判定するための処理が簡略なためである。このため、本実施形態では、音声源72が遠方界に位置する場合には、マイクロフォン22に到達する音声を平面波として扱う。マイクロフォン22に到達する音声を平面波として扱うため、遠方界に位置する音声源72の方位を判定する際には、音声源72の方位を判定するための処理の負荷を軽くすることができる。 In the present embodiment, when the sound source 72 is located in the far field, the sound reaching the microphone 22 is handled as a plane wave when the sound is handled as a plane wave than when the sound is handled as a spherical wave. This is because the process for determining the direction of the audio source 72 is simple. For this reason, in this embodiment, when the sound source 72 is located in the far field, the sound reaching the microphone 22 is treated as a plane wave. Since the sound reaching the microphone 22 is handled as a plane wave, when determining the direction of the sound source 72 located in the far field, the processing load for determining the direction of the sound source 72 can be reduced.
 なお、音声源72の方位を判定するための処理の付加は重くなるが、音声源72が近傍界に位置する場合には、マイクロフォン22に到達する音声を球面波として扱う。音声源72が近傍界に位置する場合には、マイクロフォン22に到達する音声を球面波として扱わないと、音声源72の方位を正確に判定し得ないためである。 In addition, although the addition of the process for determining the azimuth | direction of the audio | voice source 72 becomes heavy, when the audio | voice source 72 is located in a near field, the audio | voice which reaches | attains the microphone 22 is handled as a spherical wave. This is because when the sound source 72 is located in the near field, the direction of the sound source 72 cannot be accurately determined unless the sound reaching the microphone 22 is treated as a spherical wave.
 このように、本実施形態では、音声源72が遠方界に位置する場合には、音声を平面波として扱って音声源72の方位を判定し、音声源72が近傍界に位置する場合には、音声を球面波として扱って音声源72の方位を判定する。 As described above, in the present embodiment, when the sound source 72 is located in the far field, the direction of the sound source 72 is determined by treating the sound as a plane wave, and when the sound source 72 is located in the near field, The direction of the sound source 72 is determined by treating the sound as a spherical wave.
 図4に示すように、複数のマイクロフォン22によって取得される受音信号が、前処理部10に入力されるようになっている。前処理部10では、音場補正が行われる。音場補正においては、音響空間である車室46の音響特性を考慮したチューニングが行われる。 As shown in FIG. 4, sound reception signals acquired by the plurality of microphones 22 are input to the preprocessing unit 10. In the preprocessing unit 10, sound field correction is performed. In the sound field correction, tuning is performed in consideration of the acoustic characteristics of the vehicle compartment 46 that is an acoustic space.
 マイクロフォン22によって取得される受音信号に音楽が含まれている場合には、前処理部10は、マイクロフォン22によって取得される受音信号から音楽を除去する。前処理部10には、参照用音楽信号(参照信号)が入力されるようになっている。前処理部10は、マイクロフォン22によって取得される受音信号に含まれている音楽を、参照用音楽信号を用いて除去する。 When the sound reception signal acquired by the microphone 22 includes music, the preprocessing unit 10 removes the music from the sound reception signal acquired by the microphone 22. A reference music signal (reference signal) is input to the preprocessing unit 10. The preprocessing unit 10 removes music included in the sound reception signal acquired by the microphone 22 using the reference music signal.
 図7は、音楽の除去のアルゴリズムを示す概略図である。車載音響機器84によって音楽が再生されている際には、マイクロフォン22によって取得される受音信号には音楽が含まれる。マイクロフォン22によって取得される音楽を含む受音信号は、前処理部10内に設けられた音楽除去処理部24に入力されるようになっている。また、参照用音楽信号が、音楽除去処理部24に入力されるようになっている。参照用音楽信号は、例えば、車載音響機器84のスピーカ76から出力された音楽を、マイクロフォン26a、26bによって取得することにより得ることが可能である。また、スピーカ76によって音に変換される前の音楽ソース信号を、参照用音楽信号として、音楽除去処理部24に入力するようにしてもよい。 FIG. 7 is a schematic diagram showing a music removal algorithm. When music is played back by the in-vehicle acoustic device 84, the sound reception signal acquired by the microphone 22 includes music. A received sound signal including music acquired by the microphone 22 is input to a music removal processing unit 24 provided in the preprocessing unit 10. A reference music signal is input to the music removal processing unit 24. The reference music signal can be obtained, for example, by acquiring music output from the speaker 76 of the in-vehicle acoustic device 84 using the microphones 26a and 26b. Alternatively, the music source signal before being converted into sound by the speaker 76 may be input to the music removal processing unit 24 as a reference music signal.
 音楽除去処理部24からの出力信号は、前処理部10内に設けられたステップサイズ判定部28に入力されるようになっている。ステップサイズ判定部28は、音楽除去処理部24の出力信号のステップサイズの判定を行うものである。ステップサイズ判定部28によって判定されたステップサイズは、音楽除去処理部24にフィードバックされるようになっている。音楽除去処理部24は、参照用音楽信号を用い、ステップサイズ判定部28により判定されたステップサイズに基づき、周波数領域の正規化最小二乗法(NLMS:Normalized Least-Mean Square)のアルゴリズムによって、音楽を含む信号から音楽を除去する。車室46内における音楽の反響成分をも十分に除去すべく、十分な処理段数で音楽の除去の処理が行われる。 The output signal from the music removal processing unit 24 is input to a step size determination unit 28 provided in the preprocessing unit 10. The step size determination unit 28 determines the step size of the output signal of the music removal processing unit 24. The step size determined by the step size determination unit 28 is fed back to the music removal processing unit 24. The music removal processing unit 24 uses the reference music signal and, based on the step size determined by the step size determination unit 28, the frequency domain normalized least square method (NLMS: Normalized Least-Mean Square) algorithm Remove music from signals that contain. The music removal process is performed with a sufficient number of processing steps to sufficiently remove the reverberant component of the music in the passenger compartment 46.
 図8A及び図8Bは、音楽の除去前と除去後の信号波形を示す図である。横軸は時間を示しており、縦軸は振幅を示している。図8Aは音楽の除去前を示しており、図8Bは音楽の除去後を示している。図8A及び図8Bから分かるように、音楽が確実に除去されている。 8A and 8B are diagrams showing signal waveforms before and after music removal. The horizontal axis indicates time, and the vertical axis indicates amplitude. FIG. 8A shows before music removal, and FIG. 8B shows after music removal. As can be seen from FIGS. 8A and 8B, the music is reliably removed.
 このようにして音楽が除去された信号が、前処理部10の音楽除去処理部24から出力され、処理部12に入力される。なお、前処理部10において音楽を十分に除去し得ない場合には、後処理部14においても、音楽の除去の処理を行うようにしてもよい。 The signal from which music has been removed in this way is output from the music removal processing unit 24 of the preprocessing unit 10 and input to the processing unit 12. If the pre-processing unit 10 cannot sufficiently remove music, the post-processing unit 14 may also perform music removal processing.
 音声源方位判定部16では、音声源の方位の判定が行われる。図9は、音声源の方位の判定のアルゴリズムを示す図である。複数のマイクロフォン22のうちのあるマイクロフォン22からの信号が、音声源方位判定部16内に設けられた遅延部30に入力されるようになっている。複数のマイクロフォン22のうちの他のマイクロフォン22からの信号が、音声源方位判定部16内に設けられた適応フィルタ32に入力されるようになっている。遅延部30の出力信号と適応フィルタ32の出力信号とが、減算点34に入力されるようになっている。減算点34においては、遅延部30の出力信号から適応フィルタ34の出力信号が減算される。減算点34において減算処理が行われた信号に基づいて、適応フィルタ32が調整される。適応フィルタ32からの出力は、ピーク検出部36に入力されるようになっている。ピーク検出部36は、適応フィルタ係数のピーク(最大値)を検出するものである。適応フィルタ係数のピークに対応する到来時間差τが、目的音の到来方位に対応する到来時間差τである。従って、こうして求められた到来時間差τに基づいて、音声源72の方位、即ち、目的音の到来方位を判定することが可能となる。 The sound source direction determination unit 16 determines the direction of the sound source. FIG. 9 is a diagram showing an algorithm for determining the direction of the sound source. A signal from a certain microphone 22 among the plurality of microphones 22 is input to a delay unit 30 provided in the sound source direction determination unit 16. A signal from another microphone 22 among the plurality of microphones 22 is input to an adaptive filter 32 provided in the sound source direction determination unit 16. The output signal of the delay unit 30 and the output signal of the adaptive filter 32 are input to the subtraction point 34. At the subtraction point 34, the output signal of the adaptive filter 34 is subtracted from the output signal of the delay unit 30. The adaptive filter 32 is adjusted based on the signal subjected to the subtraction process at the subtraction point 34. The output from the adaptive filter 32 is input to the peak detector 36. The peak detector 36 detects a peak (maximum value) of the adaptive filter coefficient. The arrival time difference τ corresponding to the peak of the adaptive filter coefficient is the arrival time difference τ corresponding to the arrival direction of the target sound. Therefore, it is possible to determine the direction of the voice source 72, that is, the direction of arrival of the target sound, based on the arrival time difference τ thus obtained.
 音の速度をc[m/s]、マイクロフォン間の距離をd[m]、到来時間差をτ[秒]とすると、音声源72の方向θ[度]は、以下のような式(1)によって表される。なお、音速cは、340[m/s]程度である。 Assuming that the speed of sound is c [m / s], the distance between microphones is d [m], and the arrival time difference is τ [seconds], the direction θ [degree] of the sound source 72 is expressed by the following equation (1). Represented by The sound speed c is about 340 [m / s].
 θ = (180/π)×arccos(τ・c/d) ・・・(1) Θ = (180 / π) × arccos (τ · c / d) (1)
 図10Aは、適応フィルタ係数を示す図である。図10Bは、音声源の方位角を示す図である。図10Cは、音声信号の振幅を示す図である。図10Aでは、適応フィルタ係数がピークとなる部分にハッチングを付している。図10Bは、到来時間差τに基づいて判定された音声源72の方位を示している。図10Cは、音声信号の振幅を示している。なお、図10A乃至図10Cは、運転者と助手席者とで交互に音声を発した場合を示している。ここでは、運転者が音声を発する場合の音声源72aの方位は、α1とした。助手席者が音声を発する場合の音声源72bの方位は、α2とした。 FIG. 10A is a diagram showing adaptive filter coefficients. FIG. 10B is a diagram showing the azimuth angle of the audio source. FIG. 10C is a diagram illustrating the amplitude of the audio signal. In FIG. 10A, the portion where the adaptive filter coefficient has a peak is hatched. FIG. 10B shows the orientation of the audio source 72 determined based on the arrival time difference τ. FIG. 10C shows the amplitude of the audio signal. FIGS. 10A to 10C show a case where the driver and the passenger are uttered alternately. Here, the direction of the sound source 72a when the driver emits sound is α1. The direction of the sound source 72b when the passenger seat utters sound is α2.
 図10Aに示すように、適応フィルタ係数w(t,τ)のピークに基づいて、到来時間差τを検出することが可能である。運転者が音声を発した場合には、適応フィルタ係数のピークに対応する到来時間差τは、例えば-t1程度となる。そして、到来時間差τに基づいて音声源72aの方位角を判定すると、音声源72aの方位角は例えばα1程度と判定される。一方、助手席者が音声を発した場合には、適応フィルタ係数のピークに対応する到来時間差τは、例えばt2程度となる。そして、到来時間差τに基づいて音声源72bの方位角を判定すると、音声源72bの方位角は例えばα2度程度と判定される。なお、ここでは、α1の方位に運転者が位置しており、α2の方位に助手席者が位置している場合を例に説明したが、これに限定されるものではない。音声源72が近傍界に位置する場合であっても、音声源72が遠方界に位置する場合であっても、到来時間差τに基づいて、音声源72の位置を特定することが可能である。但し、音声源72が近傍界に位置する場合には、上述したように、マイクロフォン22が3個以上必要であるため、音声源72の方位を求めるための処理の負荷は重くなる。 As shown in FIG. 10A, the arrival time difference τ can be detected based on the peak of the adaptive filter coefficient w (t, τ). When the driver utters voice, the arrival time difference τ corresponding to the peak of the adaptive filter coefficient is, for example, about −t1. When the azimuth angle of the audio source 72a is determined based on the arrival time difference τ, the azimuth angle of the audio source 72a is determined to be about α1, for example. On the other hand, when the passenger seat utters a voice, the arrival time difference τ corresponding to the peak of the adaptive filter coefficient is, for example, about t2. When the azimuth angle of the audio source 72b is determined based on the arrival time difference τ, the azimuth angle of the audio source 72b is determined to be about α2 degrees, for example. Here, the case where the driver is located in the direction of α1 and the passenger seat is located in the direction of α2 has been described as an example, but the present invention is not limited to this. Whether the audio source 72 is located in the near field or the audio source 72 is located in the far field, the position of the audio source 72 can be specified based on the arrival time difference τ. . However, when the sound source 72 is located in the near field, as described above, three or more microphones 22 are required, so that the processing load for obtaining the direction of the sound source 72 becomes heavy.
 音声源方位判定部16の出力信号、即ち、音声源72の方位を示す信号が、適応アルゴリズム決定部18に入力されるようになっている。適応アルゴリズム決定部18は、音声源72の方位に基づいて適応アルゴリズムを決定するものである。適応アルゴリズム決定部18によって決定された適応アルゴリズムを示す信号が、適応アルゴリズム決定部18から処理部12に入力されるようになっている。 The output signal of the voice source direction determination unit 16, that is, the signal indicating the direction of the voice source 72 is input to the adaptive algorithm determination unit 18. The adaptive algorithm determination unit 18 determines an adaptive algorithm based on the orientation of the audio source 72. A signal indicating the adaptation algorithm determined by the adaptation algorithm determination unit 18 is input from the adaptation algorithm determination unit 18 to the processing unit 12.
 処理部12は、適応的に指向性を形成する信号処理である適応ビームフォーミングを行うものである(適応ビームフォーマ、ビームフォーミング処理部)。ビームフォーマとしては、例えばFrostビームフォーマを用いることができる。なお、ビームフォーミングは、Frostビームフォーマに限定されるものではなく、様々なビームフォーマを適宜適用することができる。処理部12は、適応アルゴリズム決定部18によって決定された適応アルゴリズムに基づいて、ビームフォーミングを行う。本実施形態において、ビームフォーミングを行うのは、目的音の到来方位に対しての感度を確保しつつ、目的音の到来方向以外の感度を低下させるためである。目的音は、例えば運転者から発せられる音声である。運転者は運転席40に着座した状態で上半身を動かし得るため、音声源72aの位置は変化し得る。音声源72aの位置の変化に応じて、目的音の到来方位は変化する。良好な音声認識を行うためには、目的音の到来方向以外の感度を確実に低下させることが好ましい。そこで、本実施形態では、上記のようにして判定される音声源72の方位に基づいて、当該方位を含む方位範囲以外の方位範囲からの音声を抑圧すべく、ビームフォーマを順次更新する。 The processing unit 12 performs adaptive beamforming, which is signal processing that adaptively forms directivity (adaptive beamformer, beamforming processing unit). For example, a Frost beamformer can be used as the beamformer. The beam forming is not limited to the Frost beamformer, and various beamformers can be applied as appropriate. The processing unit 12 performs beam forming based on the adaptive algorithm determined by the adaptive algorithm determination unit 18. In this embodiment, the beam forming is performed in order to reduce the sensitivity other than the arrival direction of the target sound while securing the sensitivity to the arrival direction of the target sound. The target sound is, for example, a sound emitted from the driver. Since the driver can move the upper body while sitting in the driver's seat 40, the position of the sound source 72a can change. The arrival direction of the target sound changes according to the change in the position of the sound source 72a. In order to perform good speech recognition, it is preferable to reliably reduce the sensitivity other than the arrival direction of the target sound. Therefore, in the present embodiment, based on the direction of the sound source 72 determined as described above, the beam former is sequentially updated so as to suppress sound from an azimuth range other than the azimuth range including the azimuth.
 図11は、ビームフォーマの指向性を概念的に示す図である。図11は、音声認識の対象とすべき音声源72aが運転席40に位置している場合のビームフォーマの指向性を概念的に示している。図11におけるハッチングは、到来音が抑圧(抑制、低減)される方位範囲を示している。図11に示すように、運転席40の方位を含む方位範囲以外の方位範囲から到来する音が抑圧される。 FIG. 11 is a diagram conceptually showing the directivity of the beamformer. FIG. 11 conceptually shows the directivity of the beamformer when the voice source 72a to be subjected to voice recognition is located in the driver's seat 40. The hatching in FIG. 11 indicates the azimuth range in which the incoming sound is suppressed (suppressed or reduced). As shown in FIG. 11, sound coming from an azimuth range other than the azimuth range including the azimuth of the driver's seat 40 is suppressed.
 なお、音声認識の対象とすべき音声源72bが助手席44に位置している場合には、助手席44の方位を含む方位範囲以外の方位範囲から到来する音が抑圧されるようにすればよい。 If the voice source 72b to be subjected to voice recognition is located in the passenger seat 44, sound coming from an azimuth range other than the azimuth range including the azimuth of the passenger seat 44 is suppressed. Good.
 図12は、ビームフォーマのアルゴリズムを示す図である。マイクロフォン22a~22cによって取得される受音信号が、前処理部10(図4参照)を介して、処理部12内に設けられた窓関数/高速フーリエ変換処理部48a~48cにそれぞれ入力されるようになっている。窓関数/高速フーリエ変換処理部48a~48cは、窓関数処理及び高速フーリエ変換処理を行うものである。本実施形態において、窓関数処理及び高速フーリエ変換処理を行うのは、周波数領域での計算は時間領域での計算より速いためである。窓関数/高速フーリエ変換処理部48aの出力信号X1,kとビームフォーマの重みテンソルW1,k とが、乗算点50aにおいて乗算されるようになっている。窓関数/高速フーリエ変換処理部48bの出力信号X2,kとビームフォーマの重みテンソルW2,k とが、乗算点50bにおいて乗算されるようになっている。窓関数/高速フーリエ変換処理部48bの出力信号X3,kとビームフォーマの重みテンソルW3,k とが、乗算点50cにおいて乗算されるようになっている。乗算点50a~50cにおいてそれぞれ乗算処理された信号が、加算点52において加算されるようになっている。加算点52において加算処理された信号Yは、処理部12内に設けられた逆高速フーリエ変換/重畳加算処理部54に入力されるようになっている。逆高速フーリエ変換/重畳加算処理部54は、逆高速フーリエ変換処理及び重畳加算(OLA:OverLap-Add)法による処理を行うものである。重畳加算法による処理を行うことにより、周波数領域の信号が時間領域の信号に戻される。逆高速フーリエ変換処理及び重畳加算法による処理が行われた信号が、逆高速フーリエ変換/重畳加算処理部54から後処理部14に入力されるようになっている。 FIG. 12 is a diagram showing a beamformer algorithm. The received sound signals acquired by the microphones 22a to 22c are input to the window function / fast Fourier transform processing units 48a to 48c provided in the processing unit 12 via the preprocessing unit 10 (see FIG. 4). It is like that. The window function / fast Fourier transform processing units 48a to 48c perform window function processing and fast Fourier transform processing. In this embodiment, the window function process and the fast Fourier transform process are performed because the calculation in the frequency domain is faster than the calculation in the time domain. The output signal X1 , k of the window function / fast Fourier transform processing unit 48a and the beamformer weight tensor W1 , k * are multiplied at the multiplication point 50a. The output signal X2 , k of the window function / fast Fourier transform processor 48b and the beamformer weight tensor W2 , k * are multiplied at the multiplication point 50b. The output signal X3 , k of the window function / fast Fourier transform processing unit 48b and the beamformer weight tensor W3 , k * are multiplied at the multiplication point 50c. The signals multiplied at the multiplication points 50 a to 50 c are added at the addition point 52. The signal Y k added at the addition point 52 is input to an inverse fast Fourier transform / superimposition addition processing unit 54 provided in the processing unit 12. The inverse fast Fourier transform / superimposition addition processing unit 54 performs an inverse fast Fourier transform process and a process based on an overlay addition (OLA: OverLap-Add) method. By performing processing by the superposition addition method, the frequency domain signal is returned to the time domain signal. A signal subjected to the inverse fast Fourier transform process and the superposition addition method is input from the inverse fast Fourier transform / superimposition addition processing unit 54 to the post-processing unit 14.
 図13は、ビームフォーマにより得られた指向性(角度特性)を示す図である。横軸は方位角を示しており、縦軸は出力信号パワーを示している。図13から分かるように、例えば方位角β1と方位角β2とにおいて出力信号パワーが極小となる。方位角β1と方位角β2との間においても、十分な抑圧が行われている。図13に示すような指向性のビームフォーマを用いれば、助手席から到来する音を十分に抑圧することができる。一方、運転席から到来する音声は、殆ど抑圧されることなくマイクロフォン22に到達する。 FIG. 13 is a diagram showing the directivity (angle characteristic) obtained by the beamformer. The horizontal axis indicates the azimuth angle, and the vertical axis indicates the output signal power. As can be seen from FIG. 13, for example, the output signal power is minimized at the azimuth angle β1 and the azimuth angle β2. Sufficient suppression is also performed between the azimuth angle β1 and the azimuth angle β2. If a directional beamformer as shown in FIG. 13 is used, the sound coming from the passenger seat can be sufficiently suppressed. On the other hand, the voice coming from the driver's seat reaches the microphone 22 with almost no suppression.
 本実施形態では、音声源72から到来する音声の大きさよりも、音声源72の方位を含む方位範囲以外の方位範囲から到来する音の方が大きい場合には、音声源72の方位の判定を中断する(音声源方位判定キャンセル処理)。例えば、運転者からの音声を取得するようにビームフォーマが設定されている場合において、運転者からの音声よりも助手席者からの音声の方が大きい場合には、音声源の方位の推定を中断する。この場合、マイクロフォン22によって取得される受音信号を十分に抑圧する。図14は、ビームフォーマと音声源方位判定キャンセル処理とを組み合わせた場合の指向性(角度特性)を示す図である。実線は、ビームフォーマの指向性を示している。一点鎖線は、音声源方位判定キャンセル処理の角度特性を示している。例えばγ1より小さい方位から到来する音声、又は、例えばγ2より大きい方位から到来する音声が、運転者からの音声よりも大きい場合には、音声源方位判定キャンセル処理が行われる。なお、ここでは、運転者からの音声を取得するようにビームフォーマが設定されている場合を例に説明したが、助手席者からの音声を取得するようにビームフォーマが設定されていてもよい。この場合には、助手席者からの音声よりも運転者からの音声の方が大きい場合には、音声源の方位の推定を中断する。 In the present embodiment, when the sound coming from an azimuth range other than the azimuth range including the azimuth of the audio source 72 is larger than the magnitude of the audio coming from the audio source 72, the direction of the audio source 72 is determined. Suspend (voice source direction determination cancellation process). For example, when the beamformer is set to acquire the voice from the driver, if the voice from the passenger seat is larger than the voice from the driver, the direction of the voice source is estimated. Interrupt. In this case, the sound reception signal acquired by the microphone 22 is sufficiently suppressed. FIG. 14 is a diagram showing the directivity (angle characteristic) when the beamformer and the sound source direction determination cancellation processing are combined. The solid line indicates the directivity of the beamformer. The alternate long and short dash line indicates the angle characteristic of the audio source direction determination cancellation process. For example, when a voice arriving from a direction smaller than γ1 or a voice arriving from a direction larger than γ2, for example, is larger than the voice from the driver, a voice source direction determination canceling process is performed. Here, the case where the beamformer is set so as to acquire the voice from the driver has been described as an example, but the beamformer may be set so as to acquire the voice from the passenger. . In this case, when the voice from the driver is louder than the voice from the passenger, the estimation of the direction of the voice source is interrupted.
 図15は、マイクロフォンが2個の場合におけるビームフォーマにより得られる指向性を示すグラフである。横軸は方位角であり、縦軸は出力信号パワーである。マイクロフォン22が2個であるため、極小値となる角度が1箇所のみである。図15から分かるように、例えば方位角β1においては著しい抑圧が可能であるが、音声源72の方位の変化に対するロバスト性はあまり高くない。 FIG. 15 is a graph showing the directivity obtained by the beamformer when there are two microphones. The horizontal axis is the azimuth angle, and the vertical axis is the output signal power. Since there are two microphones 22, there is only one angle at which the minimum value is obtained. As can be seen from FIG. 15, for example, significant suppression is possible at the azimuth angle β1, but the robustness to the change in the azimuth of the audio source 72 is not so high.
 こうして、音声源72の方位を含む方位範囲以外の方位範囲から到来する音が抑圧された信号が、処理部12から出力される。処理部12からの出力信号は、後処理部14に入力されるようになっている。 Thus, a signal in which sound coming from an azimuth range other than the azimuth range including the azimuth of the audio source 72 is suppressed is output from the processing unit 12. An output signal from the processing unit 12 is input to the post-processing unit 14.
 後処理部(後処理適応フィルタ)14においては、ノイズの除去が行われる。かかるノイズとしては、例えばエンジンノイズ、ロードノイズ、風切り音等が挙げられる。図16は、ノイズの除去のアルゴリズムを示す図である。ノイズモデル決定部20内に設けられた基本波判定部56によって、ノイズの基本波が判定される。基本波判定部56は、ノイズの基本波に基づいた正弦波を出力する。基本波判定部56から出力される正弦波は、ノイズモデル決定部20内に設けられたモデリング処理部58に入力されるようになっている。モデリング処理部58は、非線形マッピング処理部60と、線形フィルタ62と、非線形マッピング処理部64とを有している。モデリング処理部58は、Hammerstein-Wiener非線形モデルによるモデリング処理を行うものである。モデリング処理部58には、非線形マッピング処理部60、線形フィルタ62及び非線形マッピング処理部64が設けられている。モデリング処理部58は、基本波判定部56から出力される正弦波に対してモデリング処理を行うことにより、参照用ノイズ信号を生成する。モデリング処理部58から出力される参照用ノイズ信号は、ノイズが含まれた信号からノイズを除去するための参照信号となる。参照用ノイズ信号は、後処理部14内に設けられたノイズ除去処理部66に入力されるようになっている。ノイズ除去処理部66には、処理部12からのノイズを含む信号も入力されるようになっている。ノイズ除去処理部66は、参照用ノイズ信号を用い、正規化最小二乗法のアルゴリズムによって、ノイズを含む信号からノイズを除去する。ノイズ除去処理部66からは、ノイズが除去された信号が出力される。 In the post-processing unit (post-processing adaptive filter) 14, noise is removed. Examples of such noise include engine noise, road noise, and wind noise. FIG. 16 is a diagram illustrating an algorithm for noise removal. A fundamental wave of noise is determined by a fundamental wave determination unit 56 provided in the noise model determination unit 20. The fundamental wave determination unit 56 outputs a sine wave based on the fundamental wave of noise. The sine wave output from the fundamental wave determination unit 56 is input to a modeling processing unit 58 provided in the noise model determination unit 20. The modeling processing unit 58 includes a non-linear mapping processing unit 60, a linear filter 62, and a non-linear mapping processing unit 64. The modeling processing unit 58 performs modeling processing using a Hammerstein-Wiener nonlinear model. The modeling processing unit 58 includes a non-linear mapping processing unit 60, a linear filter 62, and a non-linear mapping processing unit 64. The modeling processing unit 58 generates a reference noise signal by performing a modeling process on the sine wave output from the fundamental wave determination unit 56. The reference noise signal output from the modeling processing unit 58 is a reference signal for removing noise from a signal including noise. The reference noise signal is input to a noise removal processing unit 66 provided in the post-processing unit 14. A signal including noise from the processing unit 12 is also input to the noise removal processing unit 66. The noise removal processing unit 66 removes noise from a signal including noise by using a reference noise signal and using a normalization least squares algorithm. The noise removal processing unit 66 outputs a signal from which noise has been removed.
 図17A及び図17Bは、ノイズの除去前と除去後の信号波形を示す図である。横軸は時間を示しており、縦軸は振幅を示している。図17Aはノイズ除去前を示しており、図17Bはノイズ除去後を示している。図17A及び図17Bから分かるように、ノイズが確実に除去されている。 FIG. 17A and FIG. 17B are diagrams showing signal waveforms before and after noise removal. The horizontal axis indicates time, and the vertical axis indicates amplitude. FIG. 17A shows before noise removal, and FIG. 17B shows after noise removal. As can be seen from FIGS. 17A and 17B, noise is reliably removed.
 後処理部14においては、歪低減処理も行われる。なお、ノイズの除去は、後処理部14においてのみ行われるわけではない。マイクロフォン22を介して取得された音に対して、前処理部10、処理部12及び後処理部14において行われる一連の処理によって、ノイズの除去が行われる。 In the post-processing unit 14, distortion reduction processing is also performed. Note that noise removal is not performed only in the post-processing unit 14. Noise is removed from a sound acquired via the microphone 22 by a series of processes performed in the preprocessing unit 10, the processing unit 12, and the postprocessing unit 14.
 こうして、後処理部14によって後処理が行われた信号が、自動音声認識装置168に音声出力として出力される。目的音以外の音が抑圧された良好な目的音が自動音声認識装置168に入力されるため、自動音声認識装置168は、音声認識の精度を向上することができる。自動音声認識装置168による音声認識結果に基づいて、車両136に搭載されている機器等に対しての操作が自動で行われる。 Thus, the signal that has been post-processed by the post-processing unit 14 is output to the automatic speech recognition apparatus 168 as a voice output. Since a good target sound in which sounds other than the target sound are suppressed is input to the automatic speech recognition device 168, the automatic speech recognition device 168 can improve the accuracy of speech recognition. Based on the voice recognition result by the automatic voice recognition device 168, the operation on the device mounted on the vehicle 136 is automatically performed.
 次に、本実施形態による音声処理装置及びその音声処理装置を用いた制御装置の動作について図18乃至図20を用いて説明する。図18は、本実施形態による音声処理装置の動作を示すフローチャートである。 Next, operations of the voice processing device according to the present embodiment and the control device using the voice processing device will be described with reference to FIGS. FIG. 18 is a flowchart showing the operation of the speech processing apparatus according to this embodiment.
 まず、図18に示すように、車両136内に乗員が存在するか否かを判定する(ステップS1)。車両136内に乗員が存在するか否かは、例えば、乗員検出部142からの乗員有無検知信号に基づいて判断し得る。 First, as shown in FIG. 18, it is determined whether or not an occupant is present in the vehicle 136 (step S1). Whether an occupant is present in the vehicle 136 can be determined based on, for example, an occupant presence / absence detection signal from the occupant detection unit 142.
 車両136内に乗員が存在する場合には(ステップS1においてYES)、音声処理装置102を第1の動作モードで動作させる。第1の動作モードは、車両136内に乗員が存在していることを前提とした動作モードである。第1の動作モードにおいては、音声源方位判定、ビームフォーミング処理、ノイズ除去処理、音楽除去処理等が行われる。 If a passenger is present in the vehicle 136 (YES in step S1), the voice processing device 102 is operated in the first operation mode. The first operation mode is an operation mode on the assumption that an occupant is present in the vehicle 136. In the first operation mode, sound source direction determination, beam forming processing, noise removal processing, music removal processing, and the like are performed.
 第1の動作モードにおける音声処理装置の動作を、図19を用いて説明する。図19は、本実施形態による音声処理装置における第1の動作モードでの動作を示すフローチャートである。 The operation of the speech processing apparatus in the first operation mode will be described with reference to FIG. FIG. 19 is a flowchart showing the operation in the first operation mode in the speech processing apparatus according to the present embodiment.
 まず、ノイズ除去処理及び音楽除去処理が開始される(ステップS10)。即ち、ノイズ除去処理及び音楽除去処理がオンに設定される。ノイズ除去処理及び音楽除去処理は、この後、継続して行われる。なお、車載音響機器84が音楽を出力していない場合や、音楽の音量が極めて小さい場合等には、音楽除去処理を行わなくてもよい。上述したように、前処理部10、処理部12及び後処理部14において行われる一連の処理によって、ノイズの除去が行われる。また、上述したように、音楽除去処理は、前処理部10に設けられた音楽除去処理部24等によって行われる。 First, noise removal processing and music removal processing are started (step S10). That is, the noise removal process and the music removal process are set on. Thereafter, the noise removal process and the music removal process are continuously performed. Note that the music removal process may not be performed when the in-vehicle acoustic device 84 is not outputting music or when the volume of the music is extremely low. As described above, noise is removed by a series of processes performed in the pre-processing unit 10, the processing unit 12, and the post-processing unit 14. Further, as described above, the music removal processing is performed by the music removal processing unit 24 provided in the preprocessing unit 10 or the like.
 乗員による呼びかけが音声処理装置102に対して行われる前においては(ステップS11においてNO)、ノイズ除去処理、音楽除去処理等は行われるが、音声源方位判定、ビームフォーミング等は行われない。 Before the call by the occupant is made to the sound processing apparatus 102 (NO in step S11), noise removal processing, music removal processing, and the like are performed, but sound source direction determination, beam forming, and the like are not performed.
 乗員による呼びかけが音声処理装置102に対して行われると(ステップS11においてYES)、音声源方位判定処理及びビームフォーミング処理がオンに設定され、呼びかけを発した音声源72の方位が判定される(ステップS12)。音声源72の方位の判定は、上述したように、音声源方位判定部16等によって行われる。呼びかけは、例えば、運転者によって行われる。なお、呼びかけは、運転者が行わなくてもよい。例えば、助手席者が呼びかけを行ってもよい。また、呼びかけは、特定の言葉であってもよいし、単なる発声であってもよい。 When the call by the occupant is made to the voice processing device 102 (YES in step S11), the voice source direction determination process and the beam forming process are set to ON, and the direction of the voice source 72 that issued the call is determined ( Step S12). The determination of the direction of the sound source 72 is performed by the sound source direction determination unit 16 and the like as described above. The call is made by the driver, for example. The call may not be performed by the driver. For example, a passenger seat may make a call. The call may be a specific word or a simple utterance.
 次に、音声源72の方位に応じて、ビームフォーマの指向性が設定される(ステップS13)。ビームフォーマの指向性の設定は、上述したように、適応アルゴリズム決定部18、処理部12等によって行われる。 Next, the directivity of the beamformer is set according to the direction of the sound source 72 (step S13). The setting of the beamformer directivity is performed by the adaptive algorithm determination unit 18, the processing unit 12, and the like as described above.
 音声源72の方位を含む所定の方位範囲以外の方位範囲から到来する音の大きさが、音声源72から到来する音声の大きさ以上である場合には(ステップS14においてYES)、音声源72の方位の判定を中断する(ステップS15)。 When the magnitude of sound coming from an azimuth range other than the predetermined azimuth range including the azimuth of voice source 72 is greater than or equal to the magnitude of voice coming from voice source 72 (YES in step S14), voice source 72 Is interrupted (step S15).
 一方、音声源72の方位を含む所定の方位範囲以外の方位範囲から到来する音の大きさが、音声源72から到来する音声の大きさ以上でない場合には(ステップS14においてNO)、ステップS12、S13を繰り返し行う。 On the other hand, when the magnitude of sound coming from an azimuth range other than the predetermined azimuth range including the azimuth of voice source 72 is not greater than the magnitude of voice coming from voice source 72 (NO in step S14), step S12 , S13 is repeated.
 こうして、音声源72の位置の変化に応じて、ビームフォーマが適応的に設定され、目的音以外の音が確実に抑制される。ノイズ除去処理や音楽除去処理等が行われ、且つ、目的音以外の音が抑圧された、良好な目的音が自動音声認識装置168に入力されるため、自動音声認識装置168は音声認識の精度を向上することができる。自動音声認識装置168による音声認識結果に基づいて、車両136に搭載されている機器等に対しての操作、例えば、ドア、ウィンドウ、ワイパー、ウインカー等に対しての操作が自動で行われる。 Thus, the beamformer is adaptively set according to the change of the position of the sound source 72, and the sound other than the target sound is surely suppressed. Since a good target sound, in which noise removal processing, music removal processing, and the like are performed and a sound other than the target sound is suppressed, is input to the automatic speech recognition device 168, the automatic speech recognition device 168 has a voice recognition accuracy. Can be improved. Based on the voice recognition result by the automatic voice recognition device 168, an operation on a device mounted on the vehicle 136, for example, an operation on a door, a window, a wiper, a winker, or the like is automatically performed.
 一方、車両136内に乗員が存在しない場合には(ステップS1においてNO)、音声処理装置102を第2の動作モードで動作させる。第2の動作モードは、車両136内に乗員が存在しないことを前提とした動作モードである。第2の動作モードにおいては、ノイズ除去処理、音楽除去処理等は行われるが、音声源方位判定やビームフォーミング処理等は行われない。 On the other hand, when no occupant is present in the vehicle 136 (NO in step S1), the voice processing device 102 is operated in the second operation mode. The second operation mode is an operation mode on the assumption that no occupant is present in the vehicle 136. In the second operation mode, noise removal processing, music removal processing, and the like are performed, but audio source direction determination, beam forming processing, and the like are not performed.
 第2の動作モードにおける音声処理装置の動作を、図20を用いて説明する。図20は、本実施形態による音声処理装置における第2の動作モードでの動作を示すフローチャートである。 The operation of the speech processing apparatus in the second operation mode will be described with reference to FIG. FIG. 20 is a flowchart showing the operation in the second operation mode in the speech processing apparatus according to the present embodiment.
 まず、ノイズ除去処理及び音楽除去処理が開始される(ステップS20)。ノイズ除去処理及び音楽除去処理は、この後、継続して行われる。第2の動作モードにおいては、音声源方位判定、ビームフォーミング等は行われない。即ち、第2の動作モードにおいては、音声源方位判定処理やビームフォーミング処理が、オフに設定される。なお、上述したように、車載音響機器84が音楽を出力していない場合や、音楽の音量が極めて小さい場合等には、音楽除去処理を行わなくてもよい。また、上述したように、前処理部10、処理部12及び後処理部14において行われる一連の処理によって、ノイズの除去が行われる。また、上述したように、音楽除去処理は、前処理部10に設けられた音楽除去処理部24等によって行われる。 First, noise removal processing and music removal processing are started (step S20). Thereafter, the noise removal process and the music removal process are continuously performed. In the second operation mode, sound source direction determination, beam forming, and the like are not performed. That is, in the second operation mode, the sound source direction determination process and the beam forming process are set to off. As described above, the music removal process may not be performed when the in-vehicle audio device 84 does not output music or when the volume of music is extremely low. In addition, as described above, noise is removed by a series of processes performed in the preprocessing unit 10, the processing unit 12, and the postprocessing unit 14. Further, as described above, the music removal processing is performed by the music removal processing unit 24 provided in the preprocessing unit 10 or the like.
 第2の動作モードにおいては、ノイズ除去処理、音楽除去処理等が行われた良好な音声信号が、音声処理装置102から出力される。第2の動作モードにおいて、音声源方位判定処理やビームフォーミング処理がオフに設定されるのは、以下のような理由によるものである。即ち、車両136外に乗員が存在する場合には、車両136外における乗員の位置を正確且つ確実に特定するのは必ずしも容易ではない。このため、誤った方向にビームフォーミングが行われることも考えられる。誤った方向にビームフォーミングが行われている状態で、乗員から音声が発せられた場合には、当該乗員から発せられた音声が抑圧されてしまい、当該乗員から発せられた音声を取得し得ない虞がある。そこで、本実施形態では、第2の動作モードにおいては、ビームフォーミングを行わないようにしている。ビームフォーミングを行わないため、本実施形態では、ビームフォーミングを行うために必要となる音声源方位判定も行われない。ノイズ除去処理や音楽除去処理等が行われた良好な音声信号が自動音声認識装置168に入力されるため、自動音声認識装置168は高い精度で音声認識を行うことができる。自動音声認識装置168による音声認識結果に基づいて、車両136に搭載されている機器等に対しての操作が自動で行われる。 In the second operation mode, a sound signal that has been subjected to noise removal processing, music removal processing, and the like is output from the sound processing apparatus 102. In the second operation mode, the sound source direction determination process and the beam forming process are set to OFF for the following reason. That is, when an occupant is present outside the vehicle 136, it is not always easy to accurately and reliably specify the position of the occupant outside the vehicle 136. For this reason, it is also conceivable that beam forming is performed in the wrong direction. When sound is emitted from the occupant while beamforming is performed in the wrong direction, the sound emitted from the occupant is suppressed, and the sound emitted from the occupant cannot be acquired. There is a fear. Therefore, in this embodiment, beam forming is not performed in the second operation mode. Since beam forming is not performed, in this embodiment, sound source direction determination necessary for performing beam forming is not performed. Since a good audio signal that has been subjected to noise removal processing, music removal processing, and the like is input to the automatic speech recognition device 168, the automatic speech recognition device 168 can perform speech recognition with high accuracy. Based on the voice recognition result by the automatic voice recognition device 168, the operation on the device mounted on the vehicle 136 is automatically performed.
 第2の動作モードにおいて、例えば「開け」や「閉まれ」等の所定のワードが自動音声処理装置168によって検出された場合には、車両136の外部に位置する乗員が、開閉体134の開作動や閉作動を欲していると考えられる。また、近接検知部126からの近接検知信号が入力部114に入力されている場合には、所定のワードを発したのは乗員であると考えられる。このため、車両136内に乗員が存在していないことを乗員有無検知信号が示しており、且つ、近接検知部126からの近接検知信号が入力部114に入力されている状態において、「開け」や「閉まれ」等の所定のワードが自動音声処理装置168によって検出された場合には、制御部116は、開閉体134の開作動又は閉作動のための制御を行う。具体的には、制御部116は、出力部120を介して開閉体駆動装置132を制御することにより、開閉体134の開作動又は閉作動を行う。 In the second operation mode, when a predetermined word such as “open” or “closed” is detected by the automatic sound processing device 168, an occupant located outside the vehicle 136 opens the opening / closing body 134. It seems that he wants to operate and close. When the proximity detection signal from the proximity detection unit 126 is input to the input unit 114, it is considered that the occupant has issued the predetermined word. Therefore, in the state where the occupant presence / absence detection signal indicates that no occupant is present in the vehicle 136 and the proximity detection signal from the proximity detection unit 126 is input to the input unit 114, “open” When the automatic speech processing device 168 detects a predetermined word such as “closed” or “closed”, the control unit 116 performs control for opening or closing the opening / closing body 134. Specifically, the control unit 116 opens or closes the opening / closing body 134 by controlling the opening / closing body driving device 132 via the output unit 120.
 第2の動作モードにおいて、例えば「止まれ」という所定のワードが自動音声処理装置168によって検出された場合には、車両136の外部に位置する乗員が、車両136の停止を欲していると考えられる。例えば、坂道に停車させた車両136が動き始めてしまった場合には、車両136の外部に位置している乗員が、車両136の停止を欲する。このため、車両136内に乗員が存在していないことを乗員有無検知信号が示しており、且つ、車両136が移動している状態において、「止まれ」等の所定のワードが検出された場合には、制御部116は、車両136を停止させるための制御を行う。具体的には、制御部116は、出力部120を介してブレーキ制御装置138を制御することにより、ブレーキ140を動作させ、これにより、車両136を停止させる。 In the second operation mode, for example, when a predetermined word “stop” is detected by the automatic sound processing device 168, it is considered that an occupant located outside the vehicle 136 wants the vehicle 136 to stop. . For example, when the vehicle 136 stopped on a slope starts to move, an occupant located outside the vehicle 136 wants the vehicle 136 to stop. For this reason, when an occupant presence / absence detection signal indicates that no occupant is present in the vehicle 136 and the vehicle 136 is moving, a predetermined word such as “stop” is detected. The control unit 116 performs control for stopping the vehicle 136. Specifically, the control unit 116 controls the brake control device 138 via the output unit 120 to operate the brake 140, thereby stopping the vehicle 136.
 このように、本実施形態によれば、車両136内に乗員が存在しているか否かを示す乗員有無検知信号に基づいて、ビームフォーミングのオン/オフが設定される。このため、車両136の外部に乗員が位置している場合であっても、かかる乗員が発する音声を、車両136内に配されたマイクロフォン22を用いて確実に検出することができる。車両136の外部において発せられる音声を取得するためのマイクロフォンを、車両136内に配されたマイクロフォン22と別個に設けることを要しないため、低コスト化に寄与することができる。従って、本実施形態によれば、低コスト化の要請を満たしつつ、車両の内外において発せられ得る音声に対して音声処理を的確に行い得る音声処理装置及びその音声処理装置を用いた制御装置を提供することができる。 Thus, according to the present embodiment, on / off of beamforming is set based on the occupant presence / absence detection signal indicating whether or not an occupant is present in the vehicle 136. For this reason, even when the occupant is located outside the vehicle 136, the sound emitted by the occupant can be reliably detected using the microphone 22 disposed in the vehicle 136. Since it is not necessary to provide a microphone for acquiring sound emitted outside the vehicle 136 separately from the microphone 22 disposed in the vehicle 136, it is possible to contribute to cost reduction. Therefore, according to the present embodiment, a voice processing device that can accurately perform voice processing on voice that can be emitted inside and outside the vehicle while satisfying a demand for cost reduction, and a control device using the voice processing device are provided. Can be provided.
 (変形例)
 次に、本実施形態の変形例による音声処理装置及びその音声処理装置を用いた制御装置について図18、図19及び図21を用いて説明する。図21は、本変形例による音声処理装置における第2の動作モードでの動作を示すフローチャートである。
(Modification)
Next, a voice processing device according to a modification of the present embodiment and a control device using the voice processing device will be described with reference to FIG. 18, FIG. 19, and FIG. FIG. 21 is a flowchart showing the operation in the second operation mode in the speech processing apparatus according to this modification.
 本変形例による音声処理装置は、車両136の外部に位置している乗員が所定のワードを発した後においては、当該乗員に対してビームフォーミングを行うようにするものである。 The sound processing apparatus according to this modification is configured to perform beam forming on an occupant after the occupant located outside the vehicle 136 has issued a predetermined word.
 まず、図18を用いて上述した一実施形態による音声処理装置と同様にして、車両136内に乗員が存在するか否かの判定が行われる(ステップS1)。 First, it is determined whether or not an occupant is present in the vehicle 136 in the same manner as in the sound processing apparatus according to the embodiment described above with reference to FIG. 18 (step S1).
 車両136内に乗員が存在する場合には(ステップS1においてYES)、音声処理装置102を第1の動作モードで動作させる。第1の動作モードにおける音声処理装置の動作は、図19を用いて上述した一実施形態による音声処理装置の第1の動作モードにおける動作と同様であるため、説明を省略する。 If a passenger is present in the vehicle 136 (YES in step S1), the voice processing device 102 is operated in the first operation mode. The operation of the speech processing apparatus in the first operation mode is the same as the operation in the first operation mode of the speech processing apparatus according to the embodiment described above with reference to FIG.
 一方、車両136内に乗員が存在しない場合には(ステップS1においてNO)、音声処理装置102を第2の動作モードで動作させる。第2の動作モードは、上述したように、車両136内に乗員が存在しないことを前提とした動作モードである。第2の動作モードにおいては、所定のワードが自動音声認識装置168によって検出される前においては、ノイズ除去処理、音楽除去処理等は行われるが、音声源方位判定、ビームフォーミング等は行われない。即ち、所定のワードが自動音声認識装置168によって検出される前においては、音声源方位判定処理やビームフォーミング処理が、オフに設定される。 On the other hand, when no occupant is present in the vehicle 136 (NO in step S1), the voice processing device 102 is operated in the second operation mode. As described above, the second operation mode is an operation mode based on the assumption that no occupant is present in the vehicle 136. In the second operation mode, noise removal processing, music removal processing, and the like are performed before a predetermined word is detected by the automatic speech recognition device 168, but sound source direction determination, beam forming, and the like are not performed. . That is, before the predetermined word is detected by the automatic speech recognition device 168, the voice source direction determination process and the beam forming process are set to off.
 第2の動作モードにおける音声処理装置の動作を、図21を用いて説明する。図21は、本変形例による音声処理装置における第2の動作モードでの動作を示すフローチャートである。 The operation of the speech processing apparatus in the second operation mode will be described with reference to FIG. FIG. 21 is a flowchart showing the operation in the second operation mode in the speech processing apparatus according to this modification.
 まず、ノイズ除去処理及び音楽除去処理が開始される(ステップS30)。ノイズ除去処理及び音楽除去処理は、この後、継続して行われる。第2の動作モードにおいては、音声源方位判定、ビームフォーミング等は行われない。なお、上述したように、車載音響機器84が音楽を出力していない場合や、音楽の音量が極めて小さい場合等には、音楽除去処理を行わなくてもよい。また、上述したように、前処理部10、処理部12及び後処理部14において行われる一連の処理によって、ノイズの除去が行われる。また、上述したように、音楽除去処理は、前処理部10に設けられた音楽除去処理部24等によって行われる。 First, noise removal processing and music removal processing are started (step S30). Thereafter, the noise removal process and the music removal process are continuously performed. In the second operation mode, sound source direction determination, beam forming, and the like are not performed. As described above, the music removal process may not be performed when the in-vehicle acoustic device 84 does not output music, or when the volume of music is extremely low. In addition, as described above, noise is removed by a series of processes performed in the preprocessing unit 10, the processing unit 12, and the postprocessing unit 14. Further, as described above, the music removal processing is performed by the music removal processing unit 24 provided in the preprocessing unit 10 or the like.
 所定のワードが自動音声認識装置168によって検出されると(ステップS31においてYES)、音声源方位判定処理及びビームフォーミング処理がオンに設定され、所定のワードを発した音声源72の方位が判定される(ステップS32)。音声源72の方位の判定は、上述したように、音声源方位判定部16等によって行われる。所定のワードとしては、例えば、驚嘆したときに発せられる音声である「あ」を挙げることができる。かかる所定ワードが発せられた場合には、車両136の外部に位置している乗員が驚いていると考えられる。このため、所定ワードが自動音声認識装置168によって検出された場合には(ステップS31においてYES)、所定ワードを発した当該乗員から発せられる音声をより確実に取得すべく、ステップS32以降の動作が行われる。 When the predetermined word is detected by the automatic speech recognition device 168 (YES in step S31), the voice source direction determination process and the beam forming process are set to ON, and the direction of the voice source 72 that issued the predetermined word is determined. (Step S32). The determination of the direction of the sound source 72 is performed by the sound source direction determination unit 16 and the like as described above. As the predetermined word, for example, “A” which is a voice uttered when surprised can be cited. When such a predetermined word is issued, it is considered that an occupant located outside the vehicle 136 is surprised. For this reason, when the predetermined word is detected by the automatic speech recognition device 168 (YES in step S31), the operation after step S32 is performed in order to acquire more reliably the sound emitted from the occupant who has issued the predetermined word. Done.
 次に、音声源72の方位に応じて、ビームフォーマの指向性を設定する(ステップS33)。ビームフォーマの指向性の設定は、上述したように、適応アルゴリズム決定部18、処理部12等によって行われる。 Next, the directivity of the beamformer is set according to the direction of the sound source 72 (step S33). The setting of the beamformer directivity is performed by the adaptive algorithm determination unit 18, the processing unit 12, and the like as described above.
 音声源72の方位を含む所定の方位範囲以外の方位範囲から到来する音の大きさが、音声源72から到来する音声の大きさ以上である場合には(ステップS34においてYES)、音声源72の方位の判定を中断する(ステップS35)。 When the magnitude of sound coming from an azimuth range other than the predetermined azimuth range including the azimuth of voice source 72 is greater than or equal to the magnitude of voice coming from voice source 72 (YES in step S34), voice source 72 Is interrupted (step S35).
 一方、音声源72の方位を含む所定の方位範囲以外の方位範囲から到来する音の大きさが、音声源72から到来する音声の大きさ以上でない場合には(ステップS34においてNO)、ステップS32、S33を繰り返し行う。 On the other hand, when the magnitude of sound coming from an azimuth range other than the predetermined azimuth range including the azimuth of voice source 72 is not greater than the magnitude of voice coming from voice source 72 (NO in step S34), step S32 , S33 is repeated.
 このように、本変形例によれば、所定のワードが検出された後においては、音声源方位判定処理やビームフォーミング処理等がオンに設定されるため、目的音以外の音が抑圧されたより良好な音声信号が自動音声認識装置168に入力される。このため、本変形例によれば、音声認識の精度をより向上することができ、車両136に搭載されている機器等に対しての操作をより正確且つ確実に行うことが可能となる。 As described above, according to the present modification, after the predetermined word is detected, the sound source direction determination process, the beam forming process, and the like are set on, so that the sound other than the target sound is suppressed. Voice signal is input to the automatic voice recognition device 168. For this reason, according to the present modification, the accuracy of voice recognition can be further improved, and operations on devices and the like mounted on the vehicle 136 can be performed more accurately and reliably.
 [変形実施形態]
 上記実施形態に限らず種々の変形が可能である。
[Modified Embodiment]
The present invention is not limited to the above embodiment, and various modifications are possible.
 例えば、上記実施形態では、マイクロフォン22の数が3個である場合を例に説明したが、マイクロフォン22の数は3個に限定されるものではなく、4個以上であってもよい。多くのマイクロフォン22を用いれば、音声源72の方位をより高精度に判定し得る。 For example, in the above embodiment, the case where the number of the microphones 22 is three has been described as an example, but the number of the microphones 22 is not limited to three, and may be four or more. If many microphones 22 are used, the direction of the sound source 72 can be determined with higher accuracy.
 この出願は2015年3月9日に出願された日本国特許出願第2015-045408号からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。 This application claims priority from Japanese Patent Application No. 2015-045408 filed on March 9, 2015, the contents of which are incorporated herein by reference.
22、22a~22c、26a、26b…マイクロフォン
40…運転席
42…ダッシュボード
44…助手席
46…車体、車室
72、72a、72b…音声源
76…スピーカ
78…ステアリングホイール
80…エンジン
82…外部ノイズ源
84…車載音響機器
100…制御装置
102…音声処理装置
134、134a~134c…開閉体
136…車両
148…通信エリア

 
22, 22a to 22c, 26a, 26b ... microphone 40 ... driver's seat 42 ... dashboard 44 ... passenger seat 46 ... car body, passenger compartment 72, 72a, 72b ... sound source 76 ... speaker 78 ... steering wheel 80 ... engine 82 ... external Noise source 84 ... in-vehicle acoustic device 100 ... control device 102 ... voice processing devices 134, 134a to 134c ... opening / closing body 136 ... vehicle 148 ... communication area

Claims (9)

  1.  車両内に配された複数のマイクロフォンの各々によって取得される受音信号に含まれる音声の発生源である音声源の方位を判定する音声源方位判定部と、
     前記音声源の前記方位を含む方位範囲以外の方位範囲から到来する音を抑圧するビームフォーミングを行うビームフォーミング処理部と、
     前記受音信号に混入されたノイズの除去処理を行うノイズ除去処理部とを有し、
     前記車両内に乗員が存在しているか否かを示す第1の信号に基づいて、前記ビームフォーミング処理部による前記ビームフォーミングのオン/オフが設定される、音声処理装置。
    A sound source direction determination unit that determines a direction of a sound source that is a sound source included in a sound reception signal acquired by each of a plurality of microphones arranged in the vehicle;
    A beam forming processing unit that performs beam forming to suppress sound coming from an azimuth range other than the azimuth range including the azimuth of the audio source;
    A noise removal processing unit for removing noise mixed in the received sound signal;
    An audio processing apparatus in which on / off of the beamforming by the beamforming processing unit is set based on a first signal indicating whether or not an occupant is present in the vehicle.
  2.  前記第1の信号にかかわらず、前記ノイズ除去処理部によって前記ノイズの除去処理が行われる、請求項1記載の音声処理装置。 The speech processing apparatus according to claim 1, wherein the noise removal processing unit performs the noise removal processing regardless of the first signal.
  3.  前記車両内に前記乗員が存在していないことを前記第1の信号が示している場合には、前記ビームフォーミング処理部による前記ビームフォーミングがオフに設定される、請求項1又は2記載の音声処理装置。 The sound according to claim 1 or 2, wherein when the first signal indicates that the occupant is not present in the vehicle, the beamforming by the beamforming processing unit is set to off. Processing equipment.
  4.  前記車両内に前記乗員が存在していないことを前記第1の信号が示している場合には、所定のワードが検出される前においては、前記ビームフォーミングがオフに設定され、前記所定のワードが検出された後においては、前記ビームフォーミングがオンに設定される、請求項1又は2記載の音声処理装置。 If the first signal indicates that the occupant is not present in the vehicle, the beamforming is set off before the predetermined word is detected, and the predetermined word The sound processing apparatus according to claim 1, wherein the beamforming is set to be on after the detection of.
  5.  前記受音信号に混入された音楽信号を、音響機器から取得された参照用音楽信号を用いて除去する音楽除去処理部を更に有し、
     前記第1の信号にかかわらず、前記音楽除去処理部によって前記音楽信号の除去が行われる、請求項1乃至4のいずれか1項に記載の音声処理装置。
    A music removal processing unit that removes the music signal mixed in the received sound signal using a reference music signal obtained from an audio device;
    5. The audio processing device according to claim 1, wherein the music signal is removed by the music removal processing unit regardless of the first signal. 6.
  6.  車両内に配された複数のマイクロフォンの各々によって取得される受音信号に含まれる音声の発生源である音声源の方位を判定する音声源方位判定部と、前記音声源の前記方位を含む方位範囲以外の方位範囲から到来する音を抑圧するビームフォーミングを行うビームフォーミング処理部と、前記受音信号に混入されたノイズの除去処理を行うノイズ除去処理部とを含む音声処理部と、
     前記音声処理部を用いて取得される音声認識結果に基づいた制御を行う制御部とを有し、
     前記制御部は、前記車両内に乗員が存在しているか否かを示す第1の信号に基づいて、前記ビームフォーミング処理部による前記ビームフォーミングのオン/オフを設定する
     を有する制御装置。
    An audio source direction determination unit that determines the direction of a sound source that is a sound source included in a sound reception signal acquired by each of a plurality of microphones arranged in the vehicle, and a direction that includes the direction of the sound source A voice processing unit including a beam forming processing unit that performs beam forming to suppress sound coming from a azimuth range other than the range; and a noise removal processing unit that performs processing to remove noise mixed in the received sound signal;
    A control unit that performs control based on a voice recognition result acquired using the voice processing unit,
    The said control part sets the on / off of the said beam forming by the said beam forming process part based on the 1st signal which shows whether the passenger | crew exists in the said vehicle.
  7.  前記車両内に前記乗員が存在していないことを前記第1の信号が示している状態において、所定のワードが検出された場合には、前記制御部は、前記所定のワードに基づいた制御を行う、請求項6記載の制御装置。 In a state where the first signal indicates that the occupant is not present in the vehicle, if a predetermined word is detected, the control unit performs control based on the predetermined word. The control device according to claim 6, which is performed.
  8.  前記車両内に前記乗員が存在していないことを前記第1の信号が示しており、且つ、前記車両が移動している状態において、前記所定のワードが検出された場合には、前記制御部は、前記車両を停止させる、請求項7記載の制御装置。 When the first signal indicates that the occupant is not present in the vehicle, and the predetermined word is detected in a state where the vehicle is moving, the control unit The control device according to claim 7, wherein the vehicle is stopped.
  9.  前記車両内に前記乗員が存在していないことを前記第1の信号が示しており、且つ、前記車両に前記乗員が近接していることを第2の信号が示している状態において、前記所定のワードが検出された場合には、前記制御部は、前記車両に設けられた開閉体の開作動又は閉作動を行う、請求項7記載の制御装置。

     
    In the state where the first signal indicates that the occupant is not present in the vehicle and the second signal indicates that the occupant is approaching the vehicle, the predetermined signal The control device according to claim 7, wherein when the word is detected, the control unit opens or closes an opening / closing body provided in the vehicle.

PCT/JP2016/001290 2015-03-09 2016-03-09 Speech processing device and control device WO2016143340A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-045408 2015-03-09
JP2015045408A JP2016167645A (en) 2015-03-09 2015-03-09 Voice processing device and control device

Publications (1)

Publication Number Publication Date
WO2016143340A1 true WO2016143340A1 (en) 2016-09-15

Family

ID=56880410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001290 WO2016143340A1 (en) 2015-03-09 2016-03-09 Speech processing device and control device

Country Status (2)

Country Link
JP (1) JP2016167645A (en)
WO (1) WO2016143340A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024984A1 (en) * 2017-08-01 2019-02-07 Harman Becker Automotive Systems Gmbh Active road noise control
WO2021019717A1 (en) * 2019-07-31 2021-02-04 三菱電機株式会社 Information processing device, control method, and control program
CN112435682A (en) * 2020-11-10 2021-03-02 广州小鹏汽车科技有限公司 Vehicle noise reduction system, method and device, vehicle and storage medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108538305A (en) * 2018-04-20 2018-09-14 百度在线网络技术(北京)有限公司 Audio recognition method, device, equipment and computer readable storage medium
US20200047687A1 (en) * 2018-08-10 2020-02-13 SF Motors Inc. Exterior speech interface for vehicle
JP7287189B2 (en) * 2019-08-29 2023-06-06 沖電気工業株式会社 Cardioid receiver, filter coefficient calculation method, and filter coefficient calculation program
WO2022102322A1 (en) * 2020-11-11 2022-05-19 株式会社オーディオテクニカ Sound collection system, sound collection method, and program
JP7060905B1 (en) * 2020-11-11 2022-04-27 株式会社オーディオテクニカ Sound collection system, sound collection method and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180600A (en) * 1983-03-31 1984-10-13 日本電気ホームエレクトロニクス株式会社 Voice recognition controller to be carried on vehicle
JP2008022534A (en) * 2006-07-10 2008-01-31 Harman Becker Automotive Systems Gmbh Background noise reduction in hands-free system
JP2009225379A (en) * 2008-03-18 2009-10-01 Fujitsu Ltd Voice processing apparatus, voice processing method, voice processing program
JP2011035685A (en) * 2009-08-03 2011-02-17 Clarion Co Ltd Automatic volume controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180600A (en) * 1983-03-31 1984-10-13 日本電気ホームエレクトロニクス株式会社 Voice recognition controller to be carried on vehicle
JP2008022534A (en) * 2006-07-10 2008-01-31 Harman Becker Automotive Systems Gmbh Background noise reduction in hands-free system
JP2009225379A (en) * 2008-03-18 2009-10-01 Fujitsu Ltd Voice processing apparatus, voice processing method, voice processing program
JP2011035685A (en) * 2009-08-03 2011-02-17 Clarion Co Ltd Automatic volume controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024984A1 (en) * 2017-08-01 2019-02-07 Harman Becker Automotive Systems Gmbh Active road noise control
US11587544B2 (en) 2017-08-01 2023-02-21 Harman Becker Automotive Systems Gmbh Active road noise control
WO2021019717A1 (en) * 2019-07-31 2021-02-04 三菱電機株式会社 Information processing device, control method, and control program
JPWO2021019717A1 (en) * 2019-07-31 2021-11-11 三菱電機株式会社 Information processing device, control method, and control program
CN112435682A (en) * 2020-11-10 2021-03-02 广州小鹏汽车科技有限公司 Vehicle noise reduction system, method and device, vehicle and storage medium
CN112435682B (en) * 2020-11-10 2024-04-16 广州小鹏汽车科技有限公司 Vehicle noise reduction system, method and device, vehicle and storage medium

Also Published As

Publication number Publication date
JP2016167645A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
WO2016103709A1 (en) Voice processing device
WO2016143340A1 (en) Speech processing device and control device
WO2016103710A1 (en) Voice processing device
CN110691299B (en) Audio processing system, method, apparatus, device and storage medium
JP4779748B2 (en) Voice input / output device for vehicle and program for voice input / output device
EP1908640B1 (en) Voice control of vehicular elements from outside a vehicular cabin
US8165310B2 (en) Dereverberation and feedback compensation system
JP5913340B2 (en) Multi-beam acoustic system
US8112272B2 (en) Sound source separation device, speech recognition device, mobile telephone, sound source separation method, and program
US9002027B2 (en) Space-time noise reduction system for use in a vehicle and method of forming same
WO2017081960A1 (en) Voice recognition control system
US20170032806A1 (en) Active noise cancellation apparatus and method for improving voice recognition performance
US20170150256A1 (en) Audio enhancement
US20160150315A1 (en) System and method for echo cancellation
CN111489750A (en) Sound processing apparatus and sound processing method
US8639499B2 (en) Formant aided noise cancellation using multiple microphones
JP2017069806A (en) Speaker array device
WO2017056706A1 (en) Vehicle-mounted acoustic device
US11778370B2 (en) Microphone array onboard aircraft to determine crew/passenger location and to steer a transducer beam pattern to that location
WO2018172131A1 (en) Apparatus and method for privacy enhancement
GB2560498A (en) System and method for noise cancellation
US20220189450A1 (en) Audio processing system and audio processing device
JP2009073417A (en) Apparatus and method for controlling noise
JP2020144204A (en) Signal processor and signal processing method
JP2000322074A (en) Voice input section determination device, aural data extraction device, speech recognition device, vehicle navigation device and input microphone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761313

Country of ref document: EP

Kind code of ref document: A1