WO2016140492A1 - Novel dna-rna hybrid regular tetrahedron structure or rna tetrahedron structure - Google Patents

Novel dna-rna hybrid regular tetrahedron structure or rna tetrahedron structure Download PDF

Info

Publication number
WO2016140492A1
WO2016140492A1 PCT/KR2016/002048 KR2016002048W WO2016140492A1 WO 2016140492 A1 WO2016140492 A1 WO 2016140492A1 KR 2016002048 W KR2016002048 W KR 2016002048W WO 2016140492 A1 WO2016140492 A1 WO 2016140492A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
dna
sirna
present
tetrahedral
Prior art date
Application number
PCT/KR2016/002048
Other languages
French (fr)
Korean (ko)
Inventor
이동기
강시내
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160024040A external-priority patent/KR101804039B1/en
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2016140492A1 publication Critical patent/WO2016140492A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to novel DNA-RNA hybrid tetrahedral constructs or RNA tetrahedral constructs that are capable of inhibiting expression of target genes or utilizing for drug delivery.
  • RNAi RNA interference
  • PTGS post-transcriptional process
  • siRNA small interfering RNA
  • RISC RNA induced silencing complex
  • RNAi units such as miRNA and siRNA have a problem of low intracellular delivery efficiency by themselves.
  • An example of attempts to solve this problem is a method using a positively charged polymer as a carrier. Since nucleic acids are basically negatively charged, they are positively charged polymers, which surround the nucleic acid molecules to create complexes that increase cell membrane permeation efficiency. Representative materials include lipofectamine and PEI. When these materials are treated together, the delivery efficiency is increased, but it is not preferable from the viewpoint of commercialization because it shows high cytotoxicity and requires an additional delivery process.
  • RNA since RNA is inherently low in stability to serum, it is likely to be degraded by RNA degrading enzymes before reaching the target cells. Therefore, even if the RNAi unit shows the result of RNA interference under in vitro conditions, it cannot be guaranteed that the results are reproduced in in vivo conditions, i.
  • the introduction of 2'-O-methyl modification has been reported to increase the stability of RNA degrading enzymes, but in this case there is a problem that the efficiency of RNA interference is lower than the RNAi unit without chemical modification.
  • DNA nanotechnology meanwhile, has evolved into the mainstream of nucleic acid research, pioneering Nadrian Seeman.
  • DNA is attracting attention as an excellent building block because it can easily design the desired structure based on complementary binding between bases and self-assembles only with appropriate buffer and temperature changes.
  • various structures of DNA nanostructures have been reported to exhibit interesting properties such as self-transmission and structural stability in cells.
  • the DNA tetrahedral structure is efficiently delivered within the cell without the aid of a carrier and remains structurally stable within the cell for at least 72 hours after delivery.
  • RNA synthesis technology enables the synthesis of RNA having a length of 50 bases or more.
  • RNA has a biological function that can be seen while preserving the physical properties of DNA nanostructures.
  • the present invention has been completed by synthesizing nanostructures comprising RNA.
  • the present invention provides a DNA-RNA hybrid tetrahedral structure or RNA tetrahedral structure comprising a small interfering RNA (siRNA) or miRNA (microRNA) sequence capable of inhibiting the target gene. .
  • siRNA small interfering RNA
  • miRNA miRNA
  • the DNA-RNA hybrid tetrahedral structure may comprise two or more sequences selected from the group consisting of the nucleotide sequences represented by SEQ ID NOs: 1-4.
  • the RNA tetrahedral structure may comprise two or more sequences selected from the group consisting of nucleotide sequences represented by SEQ ID NOs: 9-12.
  • the target gene may be an oncogene.
  • the present invention also provides a composition for inhibiting target gene expression comprising the tetrahedral construct, and a method for inhibiting target gene expression comprising treating the tetrahedral construct to cells.
  • the present invention provides a drug delivery composition comprising the tetrahedral structure in which a drug is loaded therein.
  • the present invention provides a target gene comprising two or more sequences selected from the group consisting of nucleotide sequences represented by SEQ ID NOs: 1 to 4, or two or more sequences selected from the group consisting of nucleotide sequences represented by SEQ ID NOs: 9 to 12. It provides a method for producing a DNA-RNA hybrid tetrahedral structure or RNA tetrahedral structure comprising the step of annealing with an inhibitory siRNA (small interfering RNA) or miRNA (microRNA) sequence.
  • siRNA small interfering RNA
  • miRNA miRNA
  • the present invention has the advantage of providing a functional RNA structure. That is, by introducing a unit such as siRNA, miRNA to produce a tetrahedral structure, it gives a biological function of RNA, such as RNAi and delivered to the cell through high efficiency through self-transfer and induces RNA interference mechanism to induce cell suicide of the target cell can do.
  • RNAi RNAi
  • the structure of the tetrahedron structure may be changed when a certain stimulus is applied to create a controllable structure in which materials in the pupil are released to the outside.
  • the positively charged polymer has a problem of showing cytotoxicity, but in the case of the DNA-RNA hybrid tetrahedron structure or RNA tetrahedral structure that does not require the carrier of the present invention, the nucleic acid as a component is a biopolymer. Inherently harmless to humans, cytotoxicity can be minimized.
  • RNA nanostructures that induce suicide of target cells using RNA interference can be commercialized as new drugs.
  • Figure 1 shows an example of the combined structure of the additional configuration to increase the potential for use as a therapeutic agent of the tetrahedral structure according to the present invention.
  • FIG. 2 is a view showing various designs of the tetrahedral structure according to the present invention.
  • Figure 3 shows the results confirming the formation of the RNA tetrahedron structure according to the present invention.
  • Figure 4 is a result of confirming the intracellular transfer of DNA and RNA tetrahedron, (a) and (b) is a graph showing the fluorescence intensity measured by flow cytometry, (c) shows an image observed with a fluorescence microscope Will: [TF]; Transfection with transfection reagent, transfection without [IB] transfection reagent.
  • Figure 5 shows a simplified schematic diagram of a DNA-RNA hybrid tetrahedron structure having Survivin as a target gene according to the present invention.
  • Figure 6 is a result of confirming the intracellular self-transmission of the DNA-RNA hybrid tetrahedral structure using Survivin as a target gene according to the present invention.
  • Figure 7 shows a simplified schematic diagram of the DNA-RNA hybrid tetrahedron structure with the target gene Survivin and GFP according to the present invention.
  • Figure 8 shows the results of confirming the gene silencing induction effect of the DNA-RNA hybrid tetrahedral structure according to the present invention.
  • the present invention provides a DNA-RNA hybrid tetrahedron structure or RNA tetrahedral structure, or siRNA (small interfering RNA) capable of inhibiting a target gene, including two or more sequences selected from the group consisting of the nucleotide sequences represented by SEQ ID NOs: 9-12. Or a DNA-RNA hybrid tetrahedral structure or an RNA tetrahedral structure comprising a miRNA (microRNA) sequence.
  • miRNA miRNA
  • RNA nanostructures To prepare RNA nanostructures, the inventors first envisioned a framework that can exhibit interesting properties such as self-transfer.
  • the structure of the present invention is not limited to the tetrahedral skeleton, it can be applied to the production of boxes, nanotubes, etc. that can be opened and closed using a regular polyhedron, a hinge other than the tetrahedron.
  • RNAi unit was conceived to give biochemical functions to RNA nanostructures.
  • the sequence of an siRNA or miRNA can induce cell suicide by inhibiting the expression of various target genes such as, but not limited to, RNA interference mechanisms or other mechanisms.
  • the RNAi-derived siRNA base sequence was introduced into one side of the RNA tetrahedron to prepare a DNA-RNA hybrid tetrahedral structure by an annealing method, using survivin and GFP as target genes. Inhibition of expression of the target was confirmed (see Example 3).
  • the expression of several genes can be simultaneously controlled, thereby maximizing a therapeutic effect.
  • the siRNA capable of inhibiting the target gene may be siRNA such as survivin, GFP, and Luciferase, and may be Sox2, Oct4, etc., which target cancer stem cells.
  • the DNA-RNA hybrid tetrahedral constructs of the present invention can be designed to have six target genes, one to four, more than the number of sides of the tetrahedron. Examples of the design are shown in FIG. 2.
  • 2 (a) and 2 (b) show a simple three-dimensional structure of a nucleic acid tetrahedron having three target genes.
  • 2 (a) and 2 (b) are tetrahedrons in which siRNA sequences of Survivin, GFP, and Luciferase (blue, red, and green) are introduced, respectively, and genes capable of inhibiting target genes using cancer stem cells as target cells It is a tetrahedron with genes such as Sox2 and Oct4.
  • FIG. 2 (c) tetrahedral structures labeled with long-wave dyes such as Cy5 or Cy3 (red) may be used, and FIG. 2 (d) may be used to overcome limitations that may occur in structures or to improve titer. It shows a structure that introduces various moieties. For example, ligands that can target targeted cancer cells to induce targeted delivery, drugs to increase titer, and chemical modifications to increase serum stability can be introduced.
  • materials that may be introduced at the vertices of the tetrahedron may be peptides, targeting ligands, chemical modifications, biomarkers, fluorescent dyes, drugs, and the like.
  • the introduction of the materials can improve the delivery efficiency, enhance the endosome escape, improve the RNA interference efficiency, increase the resistance to serum, improve the targeted delivery, mechanism research, etc. Can be used.
  • FIG. 2 (e) shows an example of a functional nucleic acid tetrahedral structure that has been optimized, and targets one or more target genes, while compensating for the disadvantages of the structure and improving the efficiency of delivery and gene silencing. Proceed to manufacture.
  • Survivin is a representative oncogene used in siRNA research in association with the proliferation of cancer cells, and is a member of the inhibitor of apoptosis family (IAP), also called a baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5).
  • IAP apoptosis family
  • BIRC5 baculoviral inhibitor of apoptosis repeat-containing 5
  • Survivin proteins function to inhibit apoptosis (or programmed cell death), or cell suicide. Thus, if Survivin protein is not expressed, apoptosis increases and cancer cell growth decreases.
  • Survivin protein is also highly expressed in human cancer cells and fetal tissues, but is not found at all in differentiated cells. Therefore, targeting the Survivin gene is very useful in distinguishing between normal and modified cells to see if only cancer cells can be eliminated.
  • the tetrahedral structure of the present invention may be added to the additional configuration to increase the potential as a therapeutic agent, for example, aptamer or targeting ligand can be delivered specifically to the specific cell.
  • the RNA aptamer may be extended to form a structure, or a ligand that specifically binds to cancer cells such as folic acid may be attached to the vertex of the polyhedron as shown in FIG. 1.
  • an endosome-escape enhancer to the structure of the present invention it is possible to efficiently deliver the structure in the cell.
  • the therapeutic effect can be maximized by incorporating low molecular weight drugs such as anticancer drugs into the cavity of the tetrahedral structure or intercalating between the double strands of nucleic acid.
  • low molecular weight drugs such as anticancer drugs
  • the present invention can provide a target gene expression inhibition or drug delivery use of the tetrahedral structure.
  • the annealing uses a TEM as a buffer, denaturing at a high temperature by using a thermocycler, and then lowering the temperature to induce self-assembly into a designed design through complementary bonding of bases.
  • a TEM as a buffer
  • thermocycler denaturing at a high temperature by using a thermocycler
  • lowering the temperature to induce self-assembly into a designed design through complementary bonding of bases.
  • the strands of Table 1 are each composed of 55 bases, and three pairs of edges forming one vertex of the tetrahedron are composed of 17 bases.
  • SEQ ID NOs: 1 to 4 are described in Russell P. Goodman et al. The single-step synthesis of a DNA tetrahedron (2004, Chem. Commun.).
  • the two bases present between the edges act as a kind of hinge that provides fluidity to the structure, and are two pairs in total because they exist between the edges.
  • the fluorescent substance Cy3 was attached to the 3 'end of SEQ ID NO: 4 through chemical modification so that the transmission efficiency could be confirmed by a fluorescence microscope.
  • Survivin is selected as a target gene for confirming RNAi effect, and in order to hybridize siRNA (siSurvivin) that targets it to tetrahedron, using the SEQ ID NOs 1 and 2 in Table 1, a new sequence with antisense and sense, respectively. Envisioned.
  • the part that becomes the egde in the sequence is 17 bases
  • the universal siRNA siSurvivin
  • SEQ ID NO: 5 and 6 of Table 2 the problem of 19 bases and the 5 'end of the antisense strand ago2
  • AS antisense strand
  • S sense strand
  • RNA strands as shown in Table 3 were synthesized based on the sequence of the DNA tetrahedron of Table 1 to anneal the RNA tetrahedral nanostructures.
  • RNA strand of Table 3 tetrahedral structures were formed according to the experimental method proposed by R. P. Goodman (R. P. Goodman, Chem. Commun., 2004, 1372-1373). More specifically, the method was used to induce annealing by mixing in 1X TEM buffer so that the strand final concentration of 100 ⁇ M was diluted to 1/10, respectively, and placed at 5 ° C. for 5 minutes at 54 ° C., 30 minutes at 95 ° C. and 5 minutes at 4 ° C. If not stored at -20 °C.
  • RNA tetrahedral structure (Oligonucleotide) was formed.
  • electrophoresis was performed for 30 minutes at 150 V using a 6% polyacrylamide gel, and after EtBr staining for about 5 minutes to check the UV image, to determine the formation of tetrahedral nucleic acid structure Confirmed.
  • the band of the RNA tetrahedral structure on the right side (Lane 3) appeared in a higher position than the single-stranded band (Lane 1), the same pattern as the DNA tetrahedron on the left side.
  • RNA tetrahedral structure of the present invention was successfully produced.
  • RNA-Td 10 nM RNA tetrahedron
  • DNA-Td DNA tetrahedron
  • NC3000 Nucleocounter
  • DNA-RNA hybrid tetrahedron substituted with RNAi units of SEQ ID Nos. 2 and 3 using only one side of the tetrahedron with the DNA sequence of Table 1 as a basic skeleton was synthesized by PAGE analysis. It was confirmed.
  • the side of each color corresponds to a sequence of the same color of each strand, and the same index means complementary to each other (anti-parallel).
  • the starting point of the arrow means the 5 'end and the arrow-shaped end means the 3' end.
  • nt sequences of 17 nt were replaced with the sequences of AS and SS of siSurvivin from the 5 'ends of strand2 and strand3, respectively.
  • AS and SS sequences of AS and SS of siSurvivin from the 5 'ends of strand2 and strand3, respectively.
  • 2nt overhang was allowed from the 5 'end.
  • the 5 'end of the AS is designed to be a structure that is open (so that RNA interference can be made intact).
  • this tetrahedron was made of a construct that targets the Survivin gene.
  • the structure was fluoresced by attaching Cy3 to Strand4 among four nucleic acid strands constituting the tetrahedron structure. After annealing, 50 nM of Td-siSurvivin was treated with HeLa cells without a separate transfection reagent. After 4 hours, Cy3 fluorescence images were obtained through a fluorescence microscope. As can be seen in Figure 6, the DNA-RNA hybrid tetrahedral structure showed no fluorescence compared to the control (no treatment, the same media of the same volume only) without any treatment (no Cy3 fluorescence). Therefore, the self-transmission characteristics of the structure were confirmed through this.
  • SEQ ID NOs 1 to 4 of Table 1 above are used.
  • the new sequence was conceived by antisense and sense, respectively.
  • Universal siGFP is as shown in SEQ ID NOs: 13 and 14 in Table 4 below.
  • RNAi units of SEQ ID NOs: 7 and 8 instead of SEQ ID NOs: 2 and 3, and the SEQ ID NOs of Table 4 below instead of SEQ ID NOs: 1 and 4.
  • DNA-RNA hybrid tetrahedra were synthesized by replacing with RNAi units of 15 and 16.
  • this construct is a multi-targeting functional tetrahedral construct that simultaneously inhibits expression of Survivin and GFP proteins.
  • HeLa cells were used as target cells, and the external environment was maintained at 37 ° C. and 5% CO 2 , and DMEM containing 10% FBS, 1% penicillin, and stretomycin was used as a culture medium. HeLa cells were first seeded on 24-well plates overnight. Passage was performed about once every 3 days to allow for confluency.
  • the functional DNA-RNA hybrid tetrahedral construct which targets the Survivin gene as a target gene, was annealed before the experiment. Seeded cells in DMEM media containing 10% serum were washed with opti-mem, a serum-free media, and opti-mem was used as media during incubation.
  • L2K Lipofectamine 2000
  • siSurvivin and Td-siSurvivin were well mixed with L2K and then treated with HeLa cells. Final concentrations were 50 nM each. After incubation for about 4 hours, real-time qPCR was used to determine the mRNA levels of survivin genes.
  • Td-siSurvivn was found to induce gene silencing with an efficiency similar to siSurvivin.
  • Td-DNA DNA tetrahedral structure without the RNAi unit
  • the gene expression was not inhibited in the same manner as when no treatment was performed (0nM).
  • DNA-RNA hybrid tetrahedron treatment Td-DNA / siRNA
  • knockdown was almost the same level as siRNA (siSurvivin).
  • the DNA-RNA hybrid tetrahedral structure according to the present invention shows excellent gene silencing induction effect.
  • the present invention can provide functional RNA constructs.
  • siRNA and miRNA units to produce tetrahedral structures, it is possible to induce cell suicide of target cells by giving RNA functionalities such as RNAi and delivering them with high efficiency through self-transfer and inducing RNA interference mechanism.
  • RNA functionalities such as RNAi
  • RNAi RNA functionalities
  • RNAi RNAi
  • RNAi RNAi
  • RNA interference mechanism RNA interference mechanism
  • the structure of the tetrahedron structure is changed, thereby making a controllable structure in which materials in the pupil are released to the outside.
  • DNA-RNA hybrid tetrahedral constructs or RNA tetrahedral constructs that do not require the carrier of the present invention can be minimized because cytotoxicity as a constituent nucleic acid is essentially harmless to the human body as a biopolymer. Therefore, the technology of the present invention can provide a cornerstone of the development of new nucleic acid drugs as a source technology in the pharmaceutical technology industry. For example, it may be commercialized as a new drug by preparing RNA nanostructures that cause suicide of target cells using RNA interference.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a novel DNA-RNA hybrid regular tetrahedron structure or RNA tetrahedron structure which can be used in expression inhibition of a target gene or in drug delivery and, more specifically, to a DNA-RNA hybrid regular tetrahedron structure or RNA tetrahedron structure comprising small interfering RNA (siRNA) or microRNA (miRNA) sequences of a target gene. The present invention provides a functional RNA nanostructure in which siRNA or miRNA is introduced, wherein the structure is delivered into a cell through self-delivery at a high efficiency, and can give rise to RNA interference mechanism to induce apoptosis of a target cell. In addition, the present invention can provide a controllable structure in which a drug is released to the outside by supporting the drug in pores. Also, an RNA nanostructure leading to apoptosis of a target cell can be prepared by using RNA interference with the technology of the present invention as the original technology, whereby the RNA nanostructure is expected to be commercialized as a new drug.

Description

신규 DNA-RNA 하이브리드 정사면체 구조물 또는 RNA 정사면체 구조물New DNA-RNA Hybrid tetrahedral constructs or RNA tetrahedral constructs
본 발명은 표적 유전자의 발현을 억제하거나 약물 전달에 활용 가능한 새로운 DNA-RNA 하이브리드 정사면체 구조물 또는 RNA 정사면체 구조물에 관한 것이다.The present invention relates to novel DNA-RNA hybrid tetrahedral constructs or RNA tetrahedral constructs that are capable of inhibiting expression of target genes or utilizing for drug delivery.
20세기 이후 현재까지 RNA(ribonucleic acid)를 이용하여 질병을 진단하고, 치료하는 다양한 시도들이 있었다. 질병 진단의 목적으로 특정 물질에 특이적으로 결합하는 RNA 압타머(aptamer)들이 개발되었다. 또한, RNA 간섭(RNA interference, RNAi) 작용을 밝힌 연구진은 그 공로로 2006년 노벨상을 수상했고, 그 이후 RNA 간섭 작용에 기반한 연구가 생명 혹은 생물화학 분야의 큰 축으로 성장했다. RNAi는 post-transcriptional process(PTGS)로서 기작은 다음과 같다. 세포 내에 27bps 이상의 dsRNA가 생기면 dicer라는 endonuclease는 이것을 21~22bps 길이의 RNA로 자른다. 이렇게 잘려진 RNA를 small interfering RNA(siRNA)이라고 부르며, siRNA는 생성 후 RISC(RNA induced silencing complex)와 결합한다. 그리고 RISC가 ATP를 통해 활성화되면, double strand였던 siRNA가 single strand로 나뉘면서 한 가닥만이 RISC에 남아있게 된다. 이때 남아있는 strand는 antisense strand(혹은 guide strand)라고 불리며, antisense strand는 자신과 상보적인 서열을 가진 mRNA를 인식하여 결합한다. mRNA와 antisense strand가 완벽한 염기쌍을 이루면 세포 내 존재하는 endonuclease가 작용하여 특정 유전자의 mRNA는 분해된다. 이러한 기작을 통해 특정 유전자의 발현이 억제될 수 있다. 이에, 상기 기작에 관여하는 siRNA, miRNA(microRNA)를 이용하여 암 세포와 같은 특정 세포의 생명 연장에 관여하는 유전자 발현을 조절하려는 연구가 활발히 진행 중이다.Since the 20th century, various attempts have been made to diagnose and treat diseases using RNA (ribonucleic acid). RNA aptamers have been developed that specifically bind to specific substances for the purpose of diagnosing diseases. In addition, the researchers who demonstrated RNA interference (RNAi) action won the 2006 Nobel Prize for their work, and since then, research based on RNA interference has grown to become a major pillar of life or biochemistry. RNAi is a post-transcriptional process (PTGS). When a dsRNA of 27bps or more is generated in a cell, the endonuclease called dicer cuts it into 21-22bps of RNA. This cut RNA is called small interfering RNA (siRNA), and siRNA binds to the RNA induced silencing complex (RISC) after generation. When RISC is activated through ATP, siRNA, which is a double strand, is divided into a single strand, and only one strand remains in RISC. The remaining strand is called the antisense strand (or guide strand), and the antisense strand recognizes and binds to mRNAs having complementary sequences. When the mRNA and antisense strands form a perfect base pair, endonuclease in the cell acts to degrade the mRNA of a particular gene. Through this mechanism, expression of specific genes can be suppressed. Accordingly, studies are being actively conducted to control gene expression involved in prolonging life of specific cells such as cancer cells using siRNA and miRNA (microRNA) involved in the mechanism.
그러나 miRNA나 siRNA 등의 RNAi unit들은 그 자체만으로는 세포내 전달 효율이 낮다는 문제점을 가지고 있다. 이러한 문제점을 해결하려는 시도들의 한 예로 양전하를 띠는 고분자를 전달체로 이용하는 방법이 있다. 핵산은 기본적으로 음전하를 띠고 있기 때문에 양전하를 띠는 고분자로 핵산 분자를 둘러싸 콤플렉스를 만들어 세포막 투과 효율을 증대하는 원리다. 대표적인 물질로 lipofectamine, PEI 등이 있고, 이들 물질을 함께 처리하는 경우 전달 효율은 증가하지만, 높은 세포 독성을 보이며, 추가적인 전달 과정을 필요로 하기 때문에 상용화 관점에서는 바람직하지 못하다.However, RNAi units such as miRNA and siRNA have a problem of low intracellular delivery efficiency by themselves. An example of attempts to solve this problem is a method using a positively charged polymer as a carrier. Since nucleic acids are basically negatively charged, they are positively charged polymers, which surround the nucleic acid molecules to create complexes that increase cell membrane permeation efficiency. Representative materials include lipofectamine and PEI. When these materials are treated together, the delivery efficiency is increased, but it is not preferable from the viewpoint of commercialization because it shows high cytotoxicity and requires an additional delivery process.
전달체의 도움 없이 siRNA의 화학적 변형이나 구조적 변이를 유도하여 핵산 물질 자체의 전달 효율을 높이려는 시도 또한 있었다. siRNA의 골격을 변화시킨 비대칭적인 siRNA 구조체에 콜레스테롤을 달아, 핵산 분자의 소수성을 높여 세포막 투과성을 증대시키는 것이 한 예이다. 또한 siRNA의 overhang 구조의 길이를 변화시키거나, 이를 없애 blunt end를 만들기도 한다. antisense 길이 변화에 따른 효율 변화에 대한 보고도 있었다. 그러나 이와 같은 경우 전달 효율을 증대시키는 데는 한계가 있으며, 구조 변화에 있어 제약이 크다. 따라서 이와 같은 시도가 있음에도 불구하고, RNA 기반 신약 개발에 있어 세포내 전달은 여전히 큰 장벽으로 작용하고 있다. Attempts have also been made to enhance the delivery efficiency of the nucleic acid material itself by inducing chemical or structural modifications of the siRNA without the aid of a carrier. One example is the addition of cholesterol to asymmetric siRNA constructs with altered siRNA backbones to increase the hydrophobicity of nucleic acid molecules to increase cell membrane permeability. In addition, the length of the overhang structure of the siRNA is changed or eliminated to make blunt ends. There have also been reports of changes in efficiency with changes in antisense length. However, in this case, there is a limit to increasing the transmission efficiency, and there is a big limitation in the structural change. Thus, despite these attempts, intracellular delivery remains a major barrier in the development of new drugs based on RNA.
더불어 RNA는 본질적으로 혈청에 대한 안정성이 낮기 때문에, 목표 세포에 도달하기 전에 RNA 분해 효소에 의해 분해될 가능성이 있다. 따라서 RNAi unit이 in vitro 조건에서 RNA 간섭 작용의 결과를 보인다하더라도, in vivo 조건, 즉 혈청이 존재하는 조건에서는 결과가 재현된다는 것을 보장할 수 없다. 2'-O-methyl modification을 도입하면, RNA 분해 효소에 대한 안정성이 높아진다는 보고가 있으나, 그러한 경우 화학적 변형이 없는 RNAi unit에 비해 RNA 간섭 작용의 효율이 낮아진다는 문제가 있다.In addition, since RNA is inherently low in stability to serum, it is likely to be degraded by RNA degrading enzymes before reaching the target cells. Therefore, even if the RNAi unit shows the result of RNA interference under in vitro conditions, it cannot be guaranteed that the results are reproduced in in vivo conditions, i. The introduction of 2'-O-methyl modification has been reported to increase the stability of RNA degrading enzymes, but in this case there is a problem that the efficiency of RNA interference is lower than the RNAi unit without chemical modification.
한편, DNA 나노기술은 Nadrian Seeman을 선봉으로 핵산 연구의 주류로 발전해왔다. DNA는 염기간 상보적 결합을 토대로 원하는 구조를 쉽게 설계할 수 있고, 적절한 buffer와 온도 변화만으로도 자가 조립되기 때문에 훌륭한 building block으로 주목받고 있다. 현재까지 다양한 구조의 DNA 나노구조물들이 자가 전달, 세포 내에서의 구조적 안정성 등의 흥미로운 특성들을 나타내는 것으로 보고됐다. 대표적인 예인 DNA 정사면체 구조는 전달체 도움 없이도 세포 내에 효율적으로 전달되며, 전달된 후 적어도 72 시간 동안 세포 내에 구조적으로 안정하게 존재한다.DNA nanotechnology, meanwhile, has evolved into the mainstream of nucleic acid research, pioneering Nadrian Seeman. DNA is attracting attention as an excellent building block because it can easily design the desired structure based on complementary binding between bases and self-assembles only with appropriate buffer and temperature changes. To date, various structures of DNA nanostructures have been reported to exhibit interesting properties such as self-transmission and structural stability in cells. A representative example, the DNA tetrahedral structure is efficiently delivered within the cell without the aid of a carrier and remains structurally stable within the cell for at least 72 hours after delivery.
그러나 상기와 같은 DNA 나노구조물은 유용한 물리적 특성을 보이지만, 외부에서 주입된 DNA는 생물학적 기능을 거의 보이지 못하는 단점이 있다.However, such DNA nanostructures show useful physical properties, but externally injected DNA has a disadvantage in that it shows little biological function.
RNA 합성 기술의 발전으로 50 염기 이상의 길이를 가지는 RNA의 합성이 가능해짐에 따라 RNA를 이용한 나노구조물을 제조하고자 예의 노력한 결과, DNA 나노구조물의 물리적 특성들을 보존하면서 RNA가 보일 수 있는 생물학적 기능을 가지는 RNA를 포함하는 나노구조물을 합성함으로써 본 발명을 완성하였다.The development of RNA synthesis technology enables the synthesis of RNA having a length of 50 bases or more. As a result of the intensive efforts to prepare nanostructures using RNA, RNA has a biological function that can be seen while preserving the physical properties of DNA nanostructures. The present invention has been completed by synthesizing nanostructures comprising RNA.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
상기와 같은 본 발명의 목적을 달성하기 위해서, 본 발명은 표적 유전자를 억제할 수 있는 siRNA(small interfering RNA) 또는 miRNA(microRNA) 서열을 포함하는 DNA-RNA 하이브리드 정사면체 구조물 또는 RNA 정사면체 구조물을 제공한다.In order to achieve the object of the present invention as described above, the present invention provides a DNA-RNA hybrid tetrahedral structure or RNA tetrahedral structure comprising a small interfering RNA (siRNA) or miRNA (microRNA) sequence capable of inhibiting the target gene. .
본 발명의 일실시예에 있어서, 상기 DNA-RNA 하이브리드 정사면체 구조물은 서열번호 1 내지 4로 표시되는 염기 서열로 이루어진 군으로부터 선택되는 2개 이상의 서열을 포함하는 것일 수 있다.In one embodiment of the present invention, the DNA-RNA hybrid tetrahedral structure may comprise two or more sequences selected from the group consisting of the nucleotide sequences represented by SEQ ID NOs: 1-4.
본 발명의 다른 실시예에 있어서, 상기 RNA 정사면체 구조물은 서열번호 9 내지 12로 표시되는 염기 서열로 이루어진 군으로부터 선택되는 2개 이상의 서열을 포함하는 것일 수 있다.In another embodiment of the present invention, the RNA tetrahedral structure may comprise two or more sequences selected from the group consisting of nucleotide sequences represented by SEQ ID NOs: 9-12.
본 발명의 또 다른 실시예에 있어서, 상기 표적 유전자는 발암유전자(oncogene)일 수 있다.In another embodiment of the present invention, the target gene may be an oncogene.
또한, 본 발명은 상기 정사면체 구조물을 포함하는 표적 유전자 발현 저해용 조성물, 및 상기 정사면체 구조물을 세포에 처리하는 단계를 포함하는 표적 유전자 발현 저해 방법을 제공한다.The present invention also provides a composition for inhibiting target gene expression comprising the tetrahedral construct, and a method for inhibiting target gene expression comprising treating the tetrahedral construct to cells.
이에 더하여, 본 발명은 내부에 약물이 담지된 상기 정사면체 구조물을 포함하는 약물 전달용 조성물을 제공한다.In addition, the present invention provides a drug delivery composition comprising the tetrahedral structure in which a drug is loaded therein.
나아가 본 발명은 서열번호 1 내지 4로 표시되는 염기 서열로 이루어진 군으로부터 선택되는 2개 이상의 서열, 또는 서열번호 9 내지 12로 표시되는 염기 서열로 이루어진 군으로부터 선택되는 2개 이상의 서열을 표적 유전자를 억제할 수 있는 siRNA(small interfering RNA) 또는 miRNA(microRNA) 서열과 함께 어닐링(annealing)하는 단계를 포함하는, DNA-RNA 하이브리드 정사면체 구조물 또는 RNA 정사면체 구조물의 제조방법을 제공한다.Furthermore, the present invention provides a target gene comprising two or more sequences selected from the group consisting of nucleotide sequences represented by SEQ ID NOs: 1 to 4, or two or more sequences selected from the group consisting of nucleotide sequences represented by SEQ ID NOs: 9 to 12. It provides a method for producing a DNA-RNA hybrid tetrahedral structure or RNA tetrahedral structure comprising the step of annealing with an inhibitory siRNA (small interfering RNA) or miRNA (microRNA) sequence.
본 발명은 기능성 RNA 구조물을 제공할 수 있는 장점이 있다. 즉, siRNA, miRNA등의 unit을 도입하여 정사면체 구조물을 제조함으로써, RNAi 등 RNA의 생물학적 기능성 부여하여 자가 전달을 통해 세포 내로 높은 효율로 전달된 후 RNA 간섭 기작을 유발하여 표적 세포의 세포 자살을 유도할 수 있다. 또한, 외부 자극에 의한 구조 변화와 같은 특성을 갖는 경우, 일정 자극을 줄 경우 정사면체 구조물의 구조가 바뀌면서 동공에 있던 물질들이 외부로 방출되는 조절 가능한(controllable) 구조물을 만들 수 있다.The present invention has the advantage of providing a functional RNA structure. That is, by introducing a unit such as siRNA, miRNA to produce a tetrahedral structure, it gives a biological function of RNA, such as RNAi and delivered to the cell through high efficiency through self-transfer and induces RNA interference mechanism to induce cell suicide of the target cell can do. In addition, in the case of having characteristics such as structural change due to an external stimulus, the structure of the tetrahedron structure may be changed when a certain stimulus is applied to create a controllable structure in which materials in the pupil are released to the outside.
또한, 종래 기술에 따르면 양전하를 띠는 고분자는 세포 독성을 보인다는 문제점이 있었으나, 본 발명의 전달체를 필요로 하지 않는 DNA-RNA 하이브리드 정사면체 구조물 또는 RNA 정사면체 구조물의 경우, 구성물인 핵산이 생체고분자로서 본질적으로 인체에 무해하므로, 세포 독성이 최소화될 수 있다.In addition, according to the prior art, the positively charged polymer has a problem of showing cytotoxicity, but in the case of the DNA-RNA hybrid tetrahedron structure or RNA tetrahedral structure that does not require the carrier of the present invention, the nucleic acid as a component is a biopolymer. Inherently harmless to humans, cytotoxicity can be minimized.
이에 더하여, 본 발명의 기술을 원천기술로 핵산 신약 개발의 초석을 마련할 수 있다. 예를 들어, RNA 간섭 작용을 이용하여 표적 세포의 자살을 유발하는 RNA 나노구조물을 제조하면 신약으로 상용화할 수 있을 것으로 기대된다.In addition, it is possible to prepare the cornerstone of the development of new nucleic acid drugs by using the technology of the present invention. For example, the production of RNA nanostructures that induce suicide of target cells using RNA interference can be commercialized as new drugs.
도 1은 본 발명에 따른 정사면체 구조물의 치료제로서의 활용 가능성을 높이기 위한 부가적인 구성이 결합된 구조를 예로써 나타낸 것이다.Figure 1 shows an example of the combined structure of the additional configuration to increase the potential for use as a therapeutic agent of the tetrahedral structure according to the present invention.
도 2는 본 발명에 따른 정사면체 구조물의 다양한 디자인을 나타낸 도면이다.2 is a view showing various designs of the tetrahedral structure according to the present invention.
도 3은 본 발명에 따른 RNA 정사면체 구조물의 형성 여부를 확인한 결과를 나타낸 것이다.Figure 3 shows the results confirming the formation of the RNA tetrahedron structure according to the present invention.
도 4는 DNA 및 RNA 정사면체의 세포 내 자가전달을 확인한 결과로, (a) 및 (b) 는 flow cytometry로 측정한 형광 세기를 그래프로 나타낸 것이고, (c)는 형광현미경으로 관측한 이미지를 나타낸 것이다: [TF]; 형질주입 (transfection) 시약과 함께 형질주입, [IB] 형질주입 시약없이 형질주입.Figure 4 is a result of confirming the intracellular transfer of DNA and RNA tetrahedron, (a) and (b) is a graph showing the fluorescence intensity measured by flow cytometry, (c) shows an image observed with a fluorescence microscope Will: [TF]; Transfection with transfection reagent, transfection without [IB] transfection reagent.
도 5는 본 발명에 따른 Survivin을 표적 유전자로 하는 DNA-RNA 하이브리드 정사면체 구조물의 간략한 모식도를 나타낸 것이다.Figure 5 shows a simplified schematic diagram of a DNA-RNA hybrid tetrahedron structure having Survivin as a target gene according to the present invention.
도 6은 본 발명에 따른 Survivin을 표적 유전자로 하는 DNA-RNA 하이브리드 정사면체 구조물의 세포 내 자가전달을 확인한 결과이다. Figure 6 is a result of confirming the intracellular self-transmission of the DNA-RNA hybrid tetrahedral structure using Survivin as a target gene according to the present invention.
도 7은 본 발명에 따른 Survivin 및 GFP을 표적 유전자로 하는 DNA-RNA 하이브리드 정사면체 구조물의 간략한 모식도를 나타낸 것이다.Figure 7 shows a simplified schematic diagram of the DNA-RNA hybrid tetrahedron structure with the target gene Survivin and GFP according to the present invention.
도 8은 본 발명에 따른 DNA-RNA 하이브리드 정사면체 구조물의 유전자 침묵 유도 효과를 확인한 결과를 나타낸 것이다.Figure 8 shows the results of confirming the gene silencing induction effect of the DNA-RNA hybrid tetrahedral structure according to the present invention.
본 발명은 서열번호 9 내지 12로 표시되는 염기 서열로 이루어진 군으로부터 선택되는 2개 이상의 서열을 포함하는 DNA-RNA 하이브리드 정사면체 구조물 또는 RNA 정사면체 구조물, 또는 표적 유전자를 억제할 수 있는 siRNA(small interfering RNA) 또는 miRNA(microRNA) 서열을 포함하는 DNA-RNA 하이브리드 정사면체 구조물 또는 RNA 정사면체 구조물을 제공하는 것을 특징으로 한다.The present invention provides a DNA-RNA hybrid tetrahedron structure or RNA tetrahedral structure, or siRNA (small interfering RNA) capable of inhibiting a target gene, including two or more sequences selected from the group consisting of the nucleotide sequences represented by SEQ ID NOs: 9-12. Or a DNA-RNA hybrid tetrahedral structure or an RNA tetrahedral structure comprising a miRNA (microRNA) sequence.
본 발명자들은 RNA 나노구조물을 제조하기 위하여, 가장 먼저 자가전달과 같은 흥미로운 특성을 보일 수 있는 골격(framework)을 구상하였다. 본 발명의 일실시예에서는 어닐링(annealing) 방법으로 서열번호 9 내지 12로 표시되는 염기 서열을 포함하는 RNA 정사면체 구조물을 제조하였다(실시예 2 참조). 그러나 본 발명의 구조물은 상기 정사면체 골격에 한정되는 것은 아니며, 정사면체 외의 정다면체, 경첩을 이용해 개폐할 수 있는 상자, 나노튜브 등의 제조에 적용될 수 있다.To prepare RNA nanostructures, the inventors first envisioned a framework that can exhibit interesting properties such as self-transfer. In an embodiment of the present invention, an RNA tetrahedral structure including the nucleotide sequence represented by SEQ ID NOs: 9 to 12 was prepared by an annealing method (see Example 2). However, the structure of the present invention is not limited to the tetrahedral skeleton, it can be applied to the production of boxes, nanotubes, etc. that can be opened and closed using a regular polyhedron, a hinge other than the tetrahedron.
다음으로, RNA 나노구조물에 생화학적 기능을 부여하는 RNAi unit을 구상하였다. 예를 들어, siRNA 또는 miRNA의 서열은 RNA 간섭 기작 또는 또 다른 메커니즘을 통해 이에 한정되는 것은 아니나 발암유전자(oncogene)와 같은 다양한 표적 유전자(target gene)의 발현을 저해해 세포 자살을 유도할 수 있다. 본 발명의 일실시예에서는 RNAi를 유도하는 siRNA의 염기 서열을 RNA 정사면체의 한 변에 도입하여, 어닐링(annealing) 방법으로 DNA-RNA 하이브리드 정사면체 구조물을 제조하였으며, 표적 유전자로 survivin 및 GFP를 이용하여 상기 표적의 발현 저해를 확인하였다(실시예 3 참조). 표적 유전자가 서로 다른 두 가지 이상의 siRNA 또는 miRNA 서열을 각각 다른 변에 도입하면, 동시에 여러 종류의 유전자 발현을 조절할 수 있으므로, 치료 효과를 극대화할 수 있다.Next, an RNAi unit was conceived to give biochemical functions to RNA nanostructures. For example, the sequence of an siRNA or miRNA can induce cell suicide by inhibiting the expression of various target genes such as, but not limited to, RNA interference mechanisms or other mechanisms. . In one embodiment of the present invention, the RNAi-derived siRNA base sequence was introduced into one side of the RNA tetrahedron to prepare a DNA-RNA hybrid tetrahedral structure by an annealing method, using survivin and GFP as target genes. Inhibition of expression of the target was confirmed (see Example 3). By introducing two or more siRNA or miRNA sequences with different target genes into different sides, the expression of several genes can be simultaneously controlled, thereby maximizing a therapeutic effect.
상기 표적 유전자를 억제할 수 있는 siRNA는 survivin, GFP, Luciferase 등의 siRNA 일 수 있고, 암줄기세포를 표적 세포로 하는 Sox2, Oct4 등일 수 있다.The siRNA capable of inhibiting the target gene may be siRNA such as survivin, GFP, and Luciferase, and may be Sox2, Oct4, etc., which target cancer stem cells.
본 발명의 DNA-RNA 하이브리드 정사면체 구조물은 1개 내지 4개, 많게는 정사면체의 변의 개수인 6개의 표적 유전자를 가지도록 디자인 될 수 있다. 상기 디자인의 예들을 도 2에 나타내었다.The DNA-RNA hybrid tetrahedral constructs of the present invention can be designed to have six target genes, one to four, more than the number of sides of the tetrahedron. Examples of the design are shown in FIG. 2.
상기 도 2(a) 및 도 2(b)는 세 가지 표적 유전자를 가지는 핵산 정사면체의 간단한 입체 구조를 나타낸 것이다. 도 2(a) 및 도 2(b)는 각각 Survivin, GFP, 및Luciferase(청색, 적색, 녹색)의 siRNA 시퀀스를 도입한 정사면체이고, 암줄기세포를 표적 세포로 하는 표적 유전자를 억제할 수 있는 유전자로 Sox2, Oct4 와 같은 유전자를 도입한 정사면체이다.2 (a) and 2 (b) show a simple three-dimensional structure of a nucleic acid tetrahedron having three target genes. 2 (a) and 2 (b) are tetrahedrons in which siRNA sequences of Survivin, GFP, and Luciferase (blue, red, and green) are introduced, respectively, and genes capable of inhibiting target genes using cancer stem cells as target cells It is a tetrahedron with genes such as Sox2 and Oct4.
또한 도 2(c)와 같이 Cy5나 Cy3(적색)와 같은 장파장 dye를 labeling한 정사면체 구조도 사용될 수 있고, 도 2(d)는 구조물에서 나타날 수 있는 한계를 극복하거나, 역가를 향상시키는데 목적을 두고 여러 가지 moiety를 도입한 구조체를 나타낸 것이다. 예를 들어 특정 암세포를 표적으로하여 targeted delivery를 유도할 수 있는 리간드들, 역가를 높여줄 약물, 혈청 안정성(serum stability)을 높여줄 수 있는 화학적 변형 등이 도입될 수 있다.Also, as shown in FIG. 2 (c), tetrahedral structures labeled with long-wave dyes such as Cy5 or Cy3 (red) may be used, and FIG. 2 (d) may be used to overcome limitations that may occur in structures or to improve titer. It shows a structure that introduces various moieties. For example, ligands that can target targeted cancer cells to induce targeted delivery, drugs to increase titer, and chemical modifications to increase serum stability can be introduced.
이와 관련하여 정사면체의 꼭지점에 도입될 수 있는 물질로는 펩타이드, 타겟팅 리간드, Chemical modification, 바이오마커, 형광 dye, 약물 등일 수 있다. 상기 물질들의 도입으로 인해서 전달 효율을 향상시킬 수 있고, endosome escape를 증진시킬 수 있으며, RNA 간섭 효율이 향상될 수 있고, 혈청에 대한 저항성이 증가될 수 있으며, targeted delivery 향상이나, 메카니즘 연구 등에도 사용될 수 있다.In this regard, materials that may be introduced at the vertices of the tetrahedron may be peptides, targeting ligands, chemical modifications, biomarkers, fluorescent dyes, drugs, and the like. The introduction of the materials can improve the delivery efficiency, enhance the endosome escape, improve the RNA interference efficiency, increase the resistance to serum, improve the targeted delivery, mechanism research, etc. Can be used.
도 2(e)에는 최적화 단계를 거친 기능성 핵산 정사면체 구조물의 일례를 나타낸 것으로, 한 개 이상의 표적 유전자를 타겟팅하도록 하면서, 구조체가 보일 수 있는 단점을 보완하고 전달 및 유전자 침묵 효율을 높이기 위한 최적화 과정을 진행하여 제조된 것이다.FIG. 2 (e) shows an example of a functional nucleic acid tetrahedral structure that has been optimized, and targets one or more target genes, while compensating for the disadvantages of the structure and improving the efficiency of delivery and gene silencing. Proceed to manufacture.
상기 Survivin은 암 세포의 생명 연장에 관여하여 siRNA 연구에 사용되는 대표적인 발암유전자(oncogene)로서, IAP(inhibitor of apoptosis) family의 구성원이며, BIRC5(baculoviral inhibitor of apoptosis repeat-containing 5)로도 불린다. Survivin 단백질은 apoptosis(또는 programmed cell death), 즉, 세포의 자살을 억제하는 기능을 한다. 따라서 Survivin 단백질이 발현되지 못하면 apoptosis는 증가하고 암세포의 성장은 감소되게 된다. 또한, Survivin 단백질은 인간의 암세포와 fetal tissue에 고도로 발현되어 있지만, 분화를 마친 세포에서는 전혀 찾아볼 수 없다. 그러므로 Survivin 유전자를 표적으로 하면, 변형된 세포와 정상 세포를 구별하여 선택적으로 암 세포만을 없앨 수 있는지 확인하는데에 매우 유용하다.Survivin is a representative oncogene used in siRNA research in association with the proliferation of cancer cells, and is a member of the inhibitor of apoptosis family (IAP), also called a baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5). Survivin proteins function to inhibit apoptosis (or programmed cell death), or cell suicide. Thus, if Survivin protein is not expressed, apoptosis increases and cancer cell growth decreases. Survivin protein is also highly expressed in human cancer cells and fetal tissues, but is not found at all in differentiated cells. Therefore, targeting the Survivin gene is very useful in distinguishing between normal and modified cells to see if only cancer cells can be eliminated.
본 발명의 정사면체 구조물은 치료제로서의 잠재가능성을 높이기 위한 부가적인 구성이 추가될 수 있으며, 예를 들어 aptamer나 targeting ligand를 달면 구조물을 특정 세포에만 특이적으로 전달할 수 있다. 다시 말해, RNA aptamer가 뻗어 나오는 구조를 만들거나, 엽산(folic acid)과 같이 암 세포에 특이적으로 결합하는 리간드를 도 1에 나타낸 바와 같이 다면체의 꼭짓점에 부착시킬 수 있다. 또한, 본 발명의 구조물에 endosome-escape enhancer를 도입하면 구조물이 세포 내에 효율적으로 전달될 수 있도록 할 수 있다. 또한, 항암제 등의 저분자 약물을 정사면체 구조물의 동공(cavitiy)에 담거나 핵산의 이중가닥 사이에 인터컬레이션(intercalation) 시켜서 RNAi unit과 함께 전달하면 치료 효과가 극대화될 수 있다. 예를 들어, 본 발명의 정사면체 구조물에 doxorubicn과 같은 항암제를 인터컬레이션시켜 RNAi unit과 함께 전달하면 암 세포를 보다 효율적으로 사멸시킬 수 있다.The tetrahedral structure of the present invention may be added to the additional configuration to increase the potential as a therapeutic agent, for example, aptamer or targeting ligand can be delivered specifically to the specific cell. In other words, the RNA aptamer may be extended to form a structure, or a ligand that specifically binds to cancer cells such as folic acid may be attached to the vertex of the polyhedron as shown in FIG. 1. In addition, by introducing an endosome-escape enhancer to the structure of the present invention it is possible to efficiently deliver the structure in the cell. In addition, the therapeutic effect can be maximized by incorporating low molecular weight drugs such as anticancer drugs into the cavity of the tetrahedral structure or intercalating between the double strands of nucleic acid. For example, by intercalating an anticancer agent such as doxorubicn to the tetrahedral structure of the present invention and delivering it with the RNAi unit, cancer cells may be killed more efficiently.
상기로부터 본 발명은 상기 정사면체 구조물의 표적 유전자 발현 저해 또는 약물 전달 용도를 제공할 수 있다.From the above, the present invention can provide a target gene expression inhibition or drug delivery use of the tetrahedral structure.
본 발명에서 상기 어닐링은 TEM 등을 버퍼로 사용하며, thermocycler를 이용해 온도 변화를 주어 고온에서 denaturing 시킨 뒤, 온도를 낮춰 염기의 상보적 결합을 통해 설계한 디자인으로의 자가조립을 유도하는 방식이다. 현재 주로 사용되고 있는 온도 변화 방식은 두 가지로, 첫 번째는 95℃에 5분 후, 37℃에 30분, 그리고 4℃에 5분을 두는 것이고, 둘째는 95℃에 5분, 4℃에 5분을 두는 것이다. 전자는 자가조립을 서서히 시키고자 할 때 사용하는 방식이다.In the present invention, the annealing uses a TEM as a buffer, denaturing at a high temperature by using a thermocycler, and then lowering the temperature to induce self-assembly into a designed design through complementary bonding of bases. There are two types of temperature changes currently in use: the first is 5 minutes at 95 ° C, 30 minutes at 37 ° C, and 5 minutes at 4 ° C. The second is 5 minutes at 95 ° C and 5 at 4 ° C. It is minutes. The former is used to slow down self-assembly.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
[[ 실시예Example 1] One]
DNA-RNA hybrid 정사면체 및 RNA 정사면체 나노구조물 제조를 위한 핵산 서열 디자인Design of Nucleic Acid Sequences for the Preparation of DNA-RNA hybrid Tetraconductor and RNA Tetraconductor Nanostructures
먼저, 하기 표 1에 서열정보를 나타낸 바와 같이, 네 가지 DNA strand를 합성하였다(Bioneer Corp. Korea). 하기 표 1의 strand는 각각 55개의 염기로 구성되어있으며, 정사면체의 한 꼭짓점을 만드는 3쌍의 edge는 17개의 염기로 구성된다. First, as shown in the sequence information in Table 1 below, four DNA strands were synthesized (Bioneer Corp. Korea). The strands of Table 1 are each composed of 55 bases, and three pairs of edges forming one vertex of the tetrahedron are composed of 17 bases.
서열번호 1 내지 4는 Russell P. Goodman et al. 의 The single-step synthesis of a DNA tetrahedron (2004, Chem. Commun.)을 출처로 사용한 것이다.SEQ ID NOs: 1 to 4 are described in Russell P. Goodman et al. The single-step synthesis of a DNA tetrahedron (2004, Chem. Commun.).
edge 사이에 존재하는 2개의 염기는 구조에 유동성을 제공하는 일종의 hinge 역할을 하며, edge 사이에 존재하므로 총 2쌍이다. 또한, 형광현미경으로 전달 효율을 확인할 수 있도록, 화학적 변형(chemical modification)을 통해 서열번호 4의 3' 말단에 형광물질인 Cy3를 달았다.The two bases present between the edges act as a kind of hinge that provides fluidity to the structure, and are two pairs in total because they exist between the edges. In addition, the fluorescent substance Cy3 was attached to the 3 'end of SEQ ID NO: 4 through chemical modification so that the transmission efficiency could be confirmed by a fluorescence microscope.
명칭designation 서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO:
S1-DNAS1-DNA ACATTCCTAAGTCTGAAACATTCCTAAGTCTGAA ACAC ATTACAGCTTGCTACACATTACAGCTTGCTACAC GAGA GAAGAGCCGCCATAGTAGAAGAGCCGCCATAGTA 1One
S2-DNAS2-DNA TATCACCAGGCAGTTGATATCACCAGGCAGTTGA CACA GTGTAGCAAGCTGTAAT GTGTAGCAAGCTGTAAT AGAG ATGCGAGGGTCCAATACATGCGAGGGTCCAATAC 22
S3-DNAS3-DNA TCAACTGCCTGGTGATATCAACTGCCTGGTGATA AAAA ACGACACTACGTGGGAAACGACACTACGTGGGAA TCTC TACTATGGCGGCTCTTCTACTATGGCGGCTCTTC 33
S4-DNAS4-DNA TTCAGACTTAGGAATGT GCTTCCCACGTAGTGTCGT TT GTATTGGACCCTCGCAT(Cy3) TTCAGACTTAGGAATGT GC T TCCCACGTAGTGTCGT TT GTATTGGACCCTCGCAT (Cy3) 44
진한 글씨: edge 사이에 존재하는 염기밑줄: 꼭짓점을 만드는 edge 염기Dark text: Base between edges Underline: Edge base to create vertices
다음은, RNAi 효과를 확인하기 위한 표적 유전자로 Survivin을 선정하고, 이를 표적하는 siRNA(siSurvivin)를 정사면체에 hybridization 시키기 위하여, 상기 표 1의 서열번호 1 및 2를 이용하여 각각 antisense와 sense로 새로운 서열을 구상하였다. 이때, 상기 서열에서 egde가 되는 부분이 17개의 염기인데, 보편적인 siRNA(siSurvivin)은 하기 표 2의 서열번호 5 및 6에 나타낸 바와 같이, 19개의 염기라는 문제와 antisense strand의 5' 말단은 ago2 단백질과의 결합을 위해 반드시 열려 있어야 한다는 점을 고려하여, antisense strand(AS)의 경우 2nt가 꼬리처럼 튀어나올 수 있도록 하고, sense strand(S)의 경우 2nt를 삭제함으로써, 하기 표 2의 서열번호 7 및 8과 같이, 정사면체의 한 변이 될 수 있는 최종 서열을 결정하여 합성하였다.Next, Survivin is selected as a target gene for confirming RNAi effect, and in order to hybridize siRNA (siSurvivin) that targets it to tetrahedron, using the SEQ ID NOs 1 and 2 in Table 1, a new sequence with antisense and sense, respectively. Envisioned. At this time, the part that becomes the egde in the sequence is 17 bases, the universal siRNA (siSurvivin) is shown in SEQ ID NO: 5 and 6 of Table 2, the problem of 19 bases and the 5 'end of the antisense strand ago2 In consideration of the fact that it must be open for binding to the protein, in the case of the antisense strand (AS) by 2nt protruding like a tail, in the case of sense strand (S) by deleting 2nt, the sequence number of Table 2 As in 7 and 8, the final sequence that can be one side of the tetrahedron was determined and synthesized.
명칭designation 서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO:
siRNA_Survivin-ASsiRNA_Survivin-AS UGAAAAUGUUGAUCUCCUUUGAAAAUGUUGAUCUCCUU 55
siRNA_Survivin-SsiRNA_Survivin-S AAGGAGAUCAACAUUUUCAAAGGAGAUCAACAUUUUCA 66
siRNA_Survivin_S2-ASsiRNA_Survivin_S2-AS UGAAAAUGUUGAUCUCCUU CAGTGTAGCAAGCTGTAATAGATGCGAGGGTCCAATAC UGAAAAUGUUGAUCUCCUU CA GTGTAGCAAGCTGTAAT AG ATGCGAGGGTCCAATAC 77
siRNA_Survivin_S3-SsiRNA_Survivin_S3-S AAGGAGAUCAACAUUUU AAACGACACTACGTGGGAATCTACTATGGCGGCTCTTC AAGGAGAUCAACAUUUU AA ACGACACTACGTGGGAA TC TACTATGGCGGCTCTTC 88
진한글씨: edge 사이에 존재하는 염기밑줄: 꼭짓점을 만드는 edge 염기Dark font: Base between edges Underline: Edge base to create vertices
다음으로, RNA 정사면체 나노구조물을 형성(annealing) 시키기 위해, 상기 표 1의 DNA 정사면체의 서열을 기반으로 하기 표 3에 나타낸 바와 같은 네 가지 RNA strand를 합성하였다.Next, four RNA strands as shown in Table 3 were synthesized based on the sequence of the DNA tetrahedron of Table 1 to anneal the RNA tetrahedral nanostructures.
명칭designation 서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO:
S1-RNAS1-RNA ACAUUCCUAAGUCUGAAACAUUACAGCUUGCUACACGAGAAGAGCCGCCAUAGUAACAUUCCUAAGUCUGAAACAUUACAGCUUGCUACACGAGAAGAGCCGCCAUAGUA 99
S2-RNAS2-RNA UAUCACCAGGCAGUUGACAGUGUAG CAAGCUGUAAUAGAUGCGAGGGUCCAAUACUAUCACCAGGCAGUUGACAGUGUAGCAAGCUGUAAUAGAUGCGAGGGUCCAAUAC 1010
S3-RNAS3-RNA UCAACUGCCUGGUGAUAAAACGACACUACGUGGGAAUCUACUAUGGCGGCUCUUCUCAACUGCCUGGUGAUAAAACGACACUACGUGGGAAUCUACUAUGGCGGCUCUUC 1111
S4-RNAS4-RNA UUCAGACUUAGGAAUGUGCUUCCCACGUAGUGUCGUUUGUAUUGGACCCUCGCAU(Cy3)UUCAGACUUAGGAAUGUGCUUCCCACGUAGUGUCGUUUGUAUUGGACCCUCGCAU (Cy3) 1212
[[ 실시예Example 2] 2]
RNA 정사면체 나노구조물의 제조 및 세포 내 전달 확인Preparation of RNA tetrahedral nanostructures and confirmation of intracellular delivery
<2-1> RNA 정사면체 나노구조물의 형성<2-1> RNA tetrahedral nanostructure formation
상기 표 3의 RNA strand를 이용하여, R. P. Goodman이 제안한 실험 방법(R. P. Goodman, Chem. Commun., 2004, 1372-1373)에 따라 정사면체 구조를 형성하였다. 보다 상세하게 상기 방법은, 100μM의 strand 최종 농도가 각각 1/10으로 희석되도록 1X TEM buffer에 혼합하고 54℃에 5분, 95℃에 30분, 4℃에 5분 두어 annealing을 유도했고, 사용하지 않는 경우 영하 20℃에 보관하였다.Using the RNA strand of Table 3, tetrahedral structures were formed according to the experimental method proposed by R. P. Goodman (R. P. Goodman, Chem. Commun., 2004, 1372-1373). More specifically, the method was used to induce annealing by mixing in 1X TEM buffer so that the strand final concentration of 100 μM was diluted to 1/10, respectively, and placed at 5 ° C. for 5 minutes at 54 ° C., 30 minutes at 95 ° C. and 5 minutes at 4 ° C. If not stored at -20 ℃.
제조한 RNA 정사면체 구조물(Oligonucleotide)이 형성되었는지 확인하고자 non-denaturing PAGE 분석을 통해 annealing test를 진행하였다. 상기와 같이 annealing을 진행한 후, 6% polyacrylamide gel을 이용하여 150 V에서 30분 동안 전기영동을 수행하고, 약 5분 간 EtBr 염색을 한 뒤 UV 이미지를 확인함으로써, 정사면체 핵산 구조물의 형성 여부를 확인하였다. 그 결과, 도 3에 나타낸 바와 같이, 오른편의 RNA 정사면체 구조물의 밴드(Lane 3)는 단일가닥의 밴드(Lane 1)보다 높은 위치에 나타났으며, 왼편의 DNA 정사면체의 패턴과 동일하였다.Annealing test was performed through non-denaturing PAGE analysis to confirm that the prepared RNA tetrahedral structure (Oligonucleotide) was formed. After annealing as described above, electrophoresis was performed for 30 minutes at 150 V using a 6% polyacrylamide gel, and after EtBr staining for about 5 minutes to check the UV image, to determine the formation of tetrahedral nucleic acid structure Confirmed. As a result, as shown in Figure 3, the band of the RNA tetrahedral structure on the right side (Lane 3) appeared in a higher position than the single-stranded band (Lane 1), the same pattern as the DNA tetrahedron on the left side.
따라서 본 발명의 RNA 정사면체 구조물이 성공적으로 제조되었음을 알 수 있다.Therefore, it can be seen that the RNA tetrahedral structure of the present invention was successfully produced.
<2-2> RNA 정사면체 나노구조물의 자가 전달 확인<2-2> Confirmation of self-transfer of RNA tetrahedron nanostructure
상기 <2-1>에서 제작한 RNA 정사면체의 자가 전달을 확인하기 위해, HEK293 세포에 형질주입 시약 없이 100nM 또는 L2K™와 함께 10nM의 RNA 정사면체(RNA-Td) 및 DNA 정사면체(DNA-Td)를 각각 형질주입(transfection)한 후 6시간동안 배양하였으며, 자가전달 효율은 Nucleocounter (NC3000) 기반 분석을 통해 측정하였다. 그 결과, 도 4(a) 및 도 4(b)에 나타낸 바와 같이, DNA 정사면체와 마찬가지로 RNA 정사면체도 형질주입 시약의 사용 유무에 관계없이 효율적으로 세포 내로 전달됨을 알 수 있었으며, 도 4(c)에 현광현미경 관측 결과를 나타내었다.In order to confirm the self-delivery of the RNA tetrahedron produced in the above <2-1>, 10 nM RNA tetrahedron (RNA-Td) and DNA tetrahedron (DNA-Td) together with 100 nM or L2K ™ without transfection reagent in HEK293 cells After each transfection, the cells were cultured for 6 hours, and the self-transmission efficiency was measured by Nucleocounter (NC3000) based analysis. As a result, as shown in Fig. 4 (a) and 4 (b), it can be seen that the RNA tetrahedron, like the DNA tetrahedron, is efficiently delivered into the cells regardless of the use of the transfection reagent, and Fig. 4 (c) The results of observing light microscopy are shown below.
<2-3> <2-3> Survivin을Survivin 표적 유전자로 하는 DNA-RNA  DNA-RNA as target gene 하이브리드hybrid 정사면체 구조물의 형성 Formation of tetrahedron structures
도 5에 나타낸 바와 같이, 표 1의 DNA 서열을 기본 골격으로 정사면체의 한 변만 서열번호 2 및 3 대신 서열번호 7 및 8의 RNAi unit으로 치환한 DNA-RNA hybrid 정사면체를 합성하고 PAGE 분석으로 합성여부를 확인하였다. 도 5에서 각 색깔의 변은 각 strand의 동일한 색의 시퀀스와 대응하는 것이고, 같은 색인 경우 서로 상보적인 것을 의미한다(anti-parallel). 화살표의 시작점이 5' 말단, 화살표 모양의 끝이 3' 말단을 의미하는 것으로 strand2와 strand3의 5' 말단으로부터 17 nt의 염기서열을 각각 siSurvivin의 AS와 SS의 시퀀스로 치환하였다. 단, AS의 경우 19 nt 모두를 삽입하기 위해, 5' 말단으로부터 2 nt의 overhang을 허용하였다. 또한 AS와 SS를 치환할 위치를 고려할 때, AS의 5' 말단이 open 되는 구조가 되도록 디자인하였다 (RNA 간섭이 온전히 이뤄질 수 있도록 함). 따라서 이 정사면체는 Survivin 유전자를 표적 유전자로 삼는 구조체로 제조되었다.As shown in FIG. 5, DNA-RNA hybrid tetrahedron substituted with RNAi units of SEQ ID NOs: 7 and 8 instead of SEQ ID Nos. 2 and 3 using only one side of the tetrahedron with the DNA sequence of Table 1 as a basic skeleton was synthesized by PAGE analysis. It was confirmed. In FIG. 5, the side of each color corresponds to a sequence of the same color of each strand, and the same index means complementary to each other (anti-parallel). The starting point of the arrow means the 5 'end and the arrow-shaped end means the 3' end. The nt sequences of 17 nt were replaced with the sequences of AS and SS of siSurvivin from the 5 'ends of strand2 and strand3, respectively. However, in order to insert all 19 nt in AS, 2nt overhang was allowed from the 5 'end. In addition, when considering the position to replace the AS and SS, the 5 'end of the AS is designed to be a structure that is open (so that RNA interference can be made intact). Thus, this tetrahedron was made of a construct that targets the Survivin gene.
<2-4> <2-4> Survivin을Survivin 표적 유전자로 하는 DNA-RNA  DNA-RNA as target gene 하이브리드hybrid 정사면체 구조물의 자가 전달 확인 Confirm self-transfer of tetrahedral structures
상기 <2-3>에서 제작한 DNA-RNA 하이브리드 정사면체의 자가 전달을 확인하기 위해, 우선 정사면체 구조물을 이루는 네 개의 핵산 가닥 중 Strand4에 Cy3를 달아(labeling) 구조물이 형광을 나타내도록 디자인하였다. 어닐링 후, 별도의 transfection reagent 없이 50 nM의 Td-siSurvivin을 HeLa 세포에 처리하였다. 4 시간 뒤, 형광현미경을 통해 Cy3 형광이미지를 얻었다. 이를 도 6에서 확인할 수 있듯이, DNA-RNA 하이브리드 정사면체 구조물의 경우 아무것도 처리하지 않은(No treatment, 동일 부피의 같은 media만 처리) 대조군에 비해(Cy3 형광이 없음.) 형광이 뚜렷하게 나타났다. 따라서 이를 통해 해당 구조물의 자가전달 특성을 확인하였다. In order to confirm the self-delivery of the DNA-RNA hybrid tetrahedron prepared in the above <2-3>, first, the structure was fluoresced by attaching Cy3 to Strand4 among four nucleic acid strands constituting the tetrahedron structure. After annealing, 50 nM of Td-siSurvivin was treated with HeLa cells without a separate transfection reagent. After 4 hours, Cy3 fluorescence images were obtained through a fluorescence microscope. As can be seen in Figure 6, the DNA-RNA hybrid tetrahedral structure showed no fluorescence compared to the control (no treatment, the same media of the same volume only) without any treatment (no Cy3 fluorescence). Therefore, the self-transmission characteristics of the structure were confirmed through this.
<2-5> <2-5> SurvivinSurvivin  And GPF을GPF 동시에 표적 유전자로 하는 DNA-RNA  DNA-RNA as a target gene at the same time 하이브리드hybrid 정사면체 구조물의 형성 Formation of tetrahedron structures
본 발명의 구조물이 다수개의 유전자를 표적 유전자로 할 수 있는지 확인하기 위해서, 표적 유전자로 Survivin 및 GPF를 선정하여 이를 표적하는 siRNA를 정사면체에 hybridization 시키기 위하여, 상기 표 1의 서열번호 1 내지 4를 이용하여 각각 antisense와 sense로 새로운 서열을 구상하였다. 보편적인 siGFP는 하기 표 4의 서열번호 13 및 14 나타낸 바와 같다.In order to confirm whether the construct of the present invention can make a plurality of genes as target genes, to select Survivin and GPF as target genes and to hybridize siRNAs targeting to tetrahedrons, SEQ ID NOs 1 to 4 of Table 1 above are used. The new sequence was conceived by antisense and sense, respectively. Universal siGFP is as shown in SEQ ID NOs: 13 and 14 in Table 4 below.
도 7에 나타낸 바와 같이, 표 1의 DNA 서열을 기본 골격으로 정사면체의 한 변만 서열번호 2 및 3 대신 서열번호 7 및 8의 RNAi unit으로 치환하였고, 서열번호 1 및 4 대신 하기 표 4의 서열번호 15 및 16의 RNAi unit으로 치환하여 DNA-RNA hybrid 정사면체를 합성하였다. As shown in FIG. 7, only one side of the tetrahedron was replaced with the RNAi units of SEQ ID NOs: 7 and 8 instead of SEQ ID NOs: 2 and 3, and the SEQ ID NOs of Table 4 below instead of SEQ ID NOs: 1 and 4. DNA-RNA hybrid tetrahedra were synthesized by replacing with RNAi units of 15 and 16.
명칭designation 서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO:
siRNA_AS_siGFPsiRNA_AS_siGFP UUCACCUUGAUGCCAUUCUUUCACCUUGAUGCCAUUCU 1313
siRNA_SS_siGFPsiRNA_SS_siGFP AGAAUGGCAUCAAGGUGAAAGAAUGGCAUCAAGGUGAA 1414
siRNA_AS_siGFP_S1-ASsiRNA_AS_siGFP_S1-AS UUCACCUUGAUGCCAUUCUACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTA UUCACCUUGAUGCCAUUCU AC ATTACAGCTTGCTACAC GA GAAGAGCCGCCATAGTA 1515
siRNA_SS_siGFP_S4-SSsiRNA_SS_siGFP_S4-SS AGAAUGGCAUCAAGGUG GCTTCCCACGTAGTGTCGT TT GTATTGGACCCTCGCAT(Cy3) AGAAUGGCAUCAAGGUG GC T TCCCACGTAGTGTCGT TT GTATTGGACCCTCGCAT (Cy3) 1616
진한글씨: edge 사이에 존재하는 염기밑줄: 꼭짓점을 만드는 edge 염기Dark font: Base between edges Underline: Edge base to create vertices
<2-4>와 정사면체와 디자인 원리는 동일한 것이다. 단, siGFP의 AS와 SS 시퀀스(서열번호 13 및 14)는 각각 strand1과 strand4 의 5' 말단에 삽입되었다. 따라서 이 구조체는 Survivin 단백질과 GFP 단백질의 발현을 동시에 억제하는 multi-targeting 기능성 정사면체 구조체라는 것을 알 수 있다.<2-4> and the tetrahedron and the design principle are the same. However, the AS and SS sequences (SEQ ID NO: 13 and 14) of the siGFP were inserted at the 5 'ends of strand1 and strand4, respectively. Thus, it can be seen that this construct is a multi-targeting functional tetrahedral construct that simultaneously inhibits expression of Survivin and GFP proteins.
[[ 실시예Example 3] 3]
DNA-RNA hybrid 정사면체 구조물의 유전자 침묵 유도 확인Confirmation of Gene Silencing of DNA-RNA Hybrid Tetrastructures
상기 <2-3>의 정사면체 핵산 구조물을 이용하여 유전자 침묵 여부를 확인하였다. 표적세포로 HeLa 세포를 사용하였으며, 세포 배양시 외부 환경은 37 ℃ 및 5 % CO2 조건으로 유지하였고, 10 % FBS, 1 %의 페니실린 및 스트레토마이신이 포함된 DMEM을 배양액으로 사용하였다. HeLa cell은 우선 본 실험 하룻밤 전에(overnight) 24-well plate에 씨딩(seeding)되었다. 계대(Passage)는 confluency를 고려하여 약 3일에 한 번 주기로 시행하였다.Gene silencing was confirmed using the tetrahedral nucleic acid structure of <2-3>. HeLa cells were used as target cells, and the external environment was maintained at 37 ° C. and 5% CO 2 , and DMEM containing 10% FBS, 1% penicillin, and stretomycin was used as a culture medium. HeLa cells were first seeded on 24-well plates overnight. Passage was performed about once every 3 days to allow for confluency.
그리고 Survivin 유전자를 표적 유전자로 하는 기능성 DNA-RNA 하이브리드 정사면체 구조물은 실험 전에 미리 어닐링 되었다. 10% serum을 함유한 DMEM media에 있던 씨딩된 세포들은 serum-free media 인 opti-mem으로 씻겨졌고(washed), incubation 동안 opti-mem이 media로서 사용되었다. The functional DNA-RNA hybrid tetrahedral construct, which targets the Survivin gene as a target gene, was annealed before the experiment. Seeded cells in DMEM media containing 10% serum were washed with opti-mem, a serum-free media, and opti-mem was used as media during incubation.
transfection의 경우, Lipofectamine 2000(L2K)을 transfection reagent로 사용하였다. siSurvivin과 Td-siSurvivin을 각각 L2K와 잘 혼합(complexation)시켜 준 뒤, HeLa 세포에 처리하였다. 최종 농도는 각각 50 nM이었다. 약 4시간 동안 배양한 뒤, real-time qPCR을 이용하여 survivin 유전자의 mRNA 수치를 확인하였다.For transfection, Lipofectamine 2000 (L2K) was used as the transfection reagent. siSurvivin and Td-siSurvivin were well mixed with L2K and then treated with HeLa cells. Final concentrations were 50 nM each. After incubation for about 4 hours, real-time qPCR was used to determine the mRNA levels of survivin genes.
그 결과 도 8에서와 같이 Td-siSurvivn이 siSurvivin과 비슷한 효율로 유전자침묵을 유도함을 확인할 수 있었다. 즉, RNAi unit이 없는 DNA 정사면체 구조물을 처리한 경우(Td-DNA)에는 아무것도 처리하지 않은 경우(0nM)와 동일하게 유전자 발현이 억제되지 않았다. 반면, DNA-RNA hybrid 정사면체를 처리한 경우(Td-DNA/siRNA) 유전자 침묵이 관찰되었으며, siRNA(siSurvivin)과 거의 동일한 수준의 knockdown을 보였다.As a result, as shown in FIG. 8, Td-siSurvivn was found to induce gene silencing with an efficiency similar to siSurvivin. In other words, when the DNA tetrahedral structure without the RNAi unit was treated (Td-DNA), the gene expression was not inhibited in the same manner as when no treatment was performed (0nM). On the other hand, DNA-RNA hybrid tetrahedron treatment (Td-DNA / siRNA) gene silencing was observed, and knockdown was almost the same level as siRNA (siSurvivin).
상기로부터, 본 발명에 따른 DNA-RNA hybrid 정사면체 구조물이 우수한 유전자 침묵 유도 효과를 나타냄을 알 수 있다.From the above, it can be seen that the DNA-RNA hybrid tetrahedral structure according to the present invention shows excellent gene silencing induction effect.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above are to be understood in all respects as illustrative and not restrictive.
본 발명은 기능성 RNA 구조물을 제공할 수 있다. siRNA, miRNA등의 unit을 도입하여 정사면체 구조물을 제조함으로써, RNAi 등 RNA의 생물학적 기능성 부여하여 자가 전달을 통해 세포 내로 높은 효율로 전달된 후 RNA 간섭 기작을 유발하여 표적 세포의 세포 자살을 유도할 수 있고, 또한, 외부 자극에 의한 구조 변화와 같은 특성을 갖는 경우, 일정 자극을 줄 경우 정사면체 구조물의 구조가 바뀌면서 동공에 있던 물질들이 외부로 방출되는 조절 가능한(controllable) 구조물을 만들 수 있다.The present invention can provide functional RNA constructs. By incorporating siRNA and miRNA units to produce tetrahedral structures, it is possible to induce cell suicide of target cells by giving RNA functionalities such as RNAi and delivering them with high efficiency through self-transfer and inducing RNA interference mechanism. In addition, in the case of having characteristics such as structural change due to an external stimulus, when a certain stimulus is applied, the structure of the tetrahedron structure is changed, thereby making a controllable structure in which materials in the pupil are released to the outside.
본 발명의 전달체를 필요로 하지 않는 DNA-RNA 하이브리드 정사면체 구조물 또는 RNA 정사면체 구조물은 구성물인 핵산이 생체고분자로서 본질적으로 인체에 무해하므로, 세포 독성이 최소화될 수 있다. 그러므로 본 발명의 기술은 의약기술산업 분야에서 원천기술로 핵산 신약 개발의 초석을 마련할 수 있다. 예를 들면, RNA 간섭 작용을 이용하여 표적 세포의 자살을 유발하는 RNA 나노구조물을 제조함으로써 신약으로 상용화할 수 있다.DNA-RNA hybrid tetrahedral constructs or RNA tetrahedral constructs that do not require the carrier of the present invention can be minimized because cytotoxicity as a constituent nucleic acid is essentially harmless to the human body as a biopolymer. Therefore, the technology of the present invention can provide a cornerstone of the development of new nucleic acid drugs as a source technology in the pharmaceutical technology industry. For example, it may be commercialized as a new drug by preparing RNA nanostructures that cause suicide of target cells using RNA interference.
<110> Research & Business Foundation SUNGKYUNKWAN UNIVERSITY<110> Research & Business Foundation SUNGKYUNKWAN UNIVERSITY
<120> NOVEL TETRAHEDRON NANOSTRUCTURE CONSISTING OF DNA-RNA HYBRID OR <120> NOVEL TETRAHEDRON NANOSTRUCTURE CONSISTING OF DNA-RNA HYBRID OR
RNARNA
<130> MPCT16-014<130> MPCT16-014
<150> KR 10-2016-0024040<150> KR 10-2016-0024040
<151> 2016-02-29<151> 2016-02-29
<150> KR 10-2015-0029242<150> KR 10-2015-0029242
<151> 2015-03-02<151> 2015-03-02
<160> 16<160> 16
<170> KopatentIn 2.0<170> KopatentIn 2.0
<210> 1<210> 1
<211> 55<211> 55
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S1-DNA<223> S1-DNA
<400> 1<400> 1
acattcctaa gtctgaaaca ttacagcttg ctacacgaga agagccgcca tagta 55acattcctaa gtctgaaaca ttacagcttg ctacacgaga agagccgcca tagta 55
<210> 2<210> 2
<211> 55<211> 55
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S2-DNA<223> S2-DNA
<400> 2<400> 2
tatcaccagg cagttgacag tgtagcaagc tgtaatagat gcgagggtcc aatac 55tatcaccagg cagttgacag tgtagcaagc tgtaatagat gcgagggtcc aatac 55
<210> 3<210> 3
<211> 55<211> 55
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S3-DNA<223> S3-DNA
<400> 3<400> 3
tcaactgcct ggtgataaaa cgacactacg tgggaatcta ctatggcggc tcttc 55tcaactgcct ggtgataaaa cgacactacg tgggaatcta ctatggcggc tcttc 55
<210> 4<210> 4
<211> 55<211> 55
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S4-DNA<223> S4-DNA
<400> 4<400> 4
ttcagactta ggaatgtgct tcccacgtag tgtcgtttgt attggaccct cgcat 55ttcagactta ggaatgtgct tcccacgtag tgtcgtttgt attggaccct cgcat 55
<210> 5<210> 5
<211> 19<211> 19
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> siRNA_Survivin-AS<223> siRNA_Survivin-AS
<400> 5<400> 5
ugaaaauguu gaucuccuu 19ugaaaauguu gaucuccuu 19
<210> 6<210> 6
<211> 19<211> 19
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> siRNA_Survivin-S<223> siRNA_Survivin-S
<400> 6<400> 6
aaggagauca acauuuuca 19aaggagauca acauuuuca 19
<210> 7<210> 7
<211> 57<211> 57
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> siRNA_Survivin_S2-AS<223> siRNA_Survivin_S2-AS
<400> 7<400> 7
ugaaaauguu gaucuccuuc agtgtagcaa gctgtaatag atgcgagggt ccaatac 57ugaaaauguu gaucuccuuc agtgtagcaa gctgtaatag atgcgagggt ccaatac 57
<210> 8<210> 8
<211> 55<211> 55
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> siRNA_Survivin_S3-S<223> siRNA_Survivin_S3-S
<400> 8<400> 8
aaggagauca acauuuuaaa cgacactacg tgggaatcta ctatggcggc tcttc 55aaggagauca acauuuuaaa cgacactacg tgggaatcta ctatggcggc tcttc 55
<210> 9<210> 9
<211> 55<211> 55
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S1-RNA<223> S1-RNA
<400> 9<400> 9
acauuccuaa gucugaaaca uuacagcuug cuacacgaga agagccgcca uagua 55acauuccuaa gucugaaaca uuacagcuug cuacacgaga agagccgcca uagua 55
<210> 10<210> 10
<211> 55<211> 55
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S2-RNA<223> S2-RNA
<400> 10<400> 10
uaucaccagg caguugacag uguagcaagc uguaauagau gcgagggucc aauac 55uaucaccagg caguugacag uguagcaagc uguaauagau gcgagggucc aauac 55
<210> 11<210> 11
<211> 55<211> 55
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S3-RNA<223> S3-RNA
<400> 11<400> 11
ucaacugccu ggugauaaaa cgacacuacg ugggaaucua cuauggcggc ucuuc 55ucaacugccu ggugauaaaa cgacacuacg ugggaaucua cuauggcggc ucuuc 55
<210> 12<210> 12
<211> 55<211> 55
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S4-RNA<223> S4-RNA
<400> 12<400> 12
uucagacuua ggaaugugcu ucccacguag ugucguuugu auuggacccu cgcau 55uucagacuua ggaaugugcu ucccacguag ugucguuugu auuggacccu cgcau 55
<210> 13<210> 13
<211> 19<211> 19
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> siRNA_AS_siGFP<223> siRNA_AS_siGFP
<400> 13<400> 13
uucaccuuga ugccauucu 19uucaccuuga ugccauucu 19
<210> 14<210> 14
<211> 19<211> 19
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> siRNA_SS_siGFP<223> siRNA_SS_siGFP
<400> 14<400> 14
agaauggcau caaggugaa 19agaauggcau caaggugaa 19
<210> 15<210> 15
<211> 57<211> 57
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> siRNA_AS_siGFP_S1-AS<223> siRNA_AS_siGFP_S1-AS
<400> 15<400> 15
uucaccuuga ugccauucua cattacagct tgctacacga gaagagccgc catagta 57uucaccuuga ugccauucua cattacagct tgctacacga gaagagccgc catagta 57
<210> 16<210> 16
<211> 55<211> 55
<212> RNA<212> RNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> siRNA_SS_siGFP_S4-SS<223> siRNA_SS_siGFP_S4-SS
<400> 16<400> 16
agaauggcau caagguggct tcccacgtag tgtcgtttgt attggaccct cgcat 55agaauggcau caagguggct tcccacgtag tgtcgtttgt attggaccct cgcat 55

Claims (8)

  1. 표적 유전자를 억제할 수 있는 siRNA(small interfering RNA) 또는 miRNA(microRNA) 서열을 포함하는, DNA-RNA 하이브리드 정사면체 구조물 또는 RNA 정사면체 구조물.A DNA-RNA hybrid tetrahedral structure or RNA tetrahedral structure comprising a small interfering RNA (siRNA) or miRNA (microRNA) sequence capable of inhibiting a target gene.
  2. 제1항에 있어서,The method of claim 1,
    상기 DNA-RNA 하이브리드 정사면체 구조물은 서열번호 1 내지 4로 표시되는 염기 서열로 이루어진 군으로부터 선택되는 2개 이상의 서열을 포함하는 것을 특징으로 하는, 정사면체 구조물.The DNA-RNA hybrid tetrahedral structure is characterized in that it comprises two or more sequences selected from the group consisting of nucleotide sequences represented by SEQ ID NO: 1 to 4, tetrahedral structure.
  3. 제1항에 있어서,The method of claim 1,
    상기 RNA 정사면체 구조물은 서열번호 9 내지 12로 표시되는 염기 서열로 이루어진 군으로부터 선택되는 2개 이상의 서열을 포함하는 것을 특징으로 하는, 정사면체 구조물.The RNA tetrahedral structure is characterized in that it comprises two or more sequences selected from the group consisting of nucleotide sequences represented by SEQ ID NO: 9 to 12, tetrahedral structure.
  4. 제1항에 있어서,The method of claim 1,
    상기 표적 유전자는 발암유전자인 것을 특징으로 하는, 정사면체 구조물.The target gene is characterized in that the carcinogen, tetrahedral structure.
  5. 제1항의 정사면체 구조물을 포함하는, 표적 유전자 발현 저해용 조성물.Comprising a tetrahedral structure of claim 1, a composition for inhibiting target gene expression.
  6. 제1항의 정사면체 구조물을 세포에 처리하는 단계를 포함하는, 표적 유전자 발현 저해 방법.The method of claim 1, comprising the step of treating the tetrahedral structure cells.
  7. 내부에 약물이 담지된 제1항의 정사면체 구조물을 포함하는, 약물 전달용 조성물.A drug delivery composition comprising the tetrahedral structure of claim 1, wherein a drug is supported therein.
  8. 서열번호 1 내지 4로 표시되는 염기 서열로 이루어진 군으로부터 선택되는 2개 이상의 서열, 또는 서열번호 9 내지 12로 표시되는 염기 서열로 이루어진 군으로부터 선택되는 2개 이상의 서열을, 표적 유전자를 억제할 수 있는 siRNA(small interfering RNA) 또는 miRNA(microRNA) 서열과 함께 어닐링(annealing)하는 단계를 포함하는, DNA-RNA 하이브리드 정사면체 구조물 또는 RNA 정사면체 구조물의 제조방법.The target gene can be suppressed by two or more sequences selected from the group consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 4, or two or more sequences selected from the group consisting of the nucleotide sequences represented by SEQ ID NOs: 9 to 12 Annealing with an siRNA (small interfering RNA) or miRNA (microRNA) sequence, the method of producing a DNA-RNA hybrid tetrahedral structure or RNA tetrahedral structure.
PCT/KR2016/002048 2015-03-02 2016-03-02 Novel dna-rna hybrid regular tetrahedron structure or rna tetrahedron structure WO2016140492A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150029242 2015-03-02
KR10-2015-0029242 2015-03-02
KR1020160024040A KR101804039B1 (en) 2015-03-02 2016-02-29 Novel tetrahedron nanostructure consisting of dna-rna hybrid or rna
KR10-2016-0024040 2016-02-29

Publications (1)

Publication Number Publication Date
WO2016140492A1 true WO2016140492A1 (en) 2016-09-09

Family

ID=56848375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002048 WO2016140492A1 (en) 2015-03-02 2016-03-02 Novel dna-rna hybrid regular tetrahedron structure or rna tetrahedron structure

Country Status (1)

Country Link
WO (1) WO2016140492A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107727705A (en) * 2017-09-28 2018-02-23 东南大学 A kind of enzyme reaction detects nano-pore electric sensor
CN108721634A (en) * 2018-05-30 2018-11-02 郑州大学 A kind of construction method of double target spot DNA nanometers of therapy systems and application
CN111298129A (en) * 2019-08-28 2020-06-19 中国人民解放军陆军军医大学第二附属医院 Self-assembly method of metformin-mediated nucleic acid nano material, nano preparation prepared by adopting self-assembly method and application of nano preparation
CN111803511A (en) * 2020-06-12 2020-10-23 南京邮电大学 DNA tetrahedral nucleic acid frame type gastric cancer diagnosis and treatment integrated reagent and preparation method and application thereof
CN115121803A (en) * 2021-03-11 2022-09-30 上海交通大学医学院附属仁济医院 Method for synthesizing polymeric nanoclusters based on DNA framework structure
WO2023043239A1 (en) * 2021-09-15 2023-03-23 올릭스 주식회사 Double-stranded rna having innate immune response-inducing effect, and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090227774A1 (en) * 2006-04-20 2009-09-10 Isis Innovation Limited Polyhedral Nanostructures Formed from Nucleic Acids
US20100323018A1 (en) * 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Branched DNA/RNA monomers and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090227774A1 (en) * 2006-04-20 2009-09-10 Isis Innovation Limited Polyhedral Nanostructures Formed from Nucleic Acids
US20100323018A1 (en) * 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Branched DNA/RNA monomers and uses thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOODMAN, RUSSE LL P. ET AL.: "The Single-step Synthesis of a DNA Tetrahedron", CHEMICAL COMMUNICATIONS, vol. 12, 2004, pages 1372 - 1373 *
KO, SEUNG HYEON ET AL.: "Synergistic Self-assembly of RNA and DNA Molecules", NATURE CHEMISTRY, vol. 2, no. 12, 2010, pages 1050 - 1055 *
LEE, HYUKJIN ET AL.: "Molecularly Self-assembled Nucleic Acid Nanoparticles for Targeted in Vivo siRNA Delivery", NATURE NANOTECHNOLOGY, vol. 7, no. 6, 2012, pages 389 - 393, XP002752154, DOI: doi:10.1038/nnano.2012.73 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107727705A (en) * 2017-09-28 2018-02-23 东南大学 A kind of enzyme reaction detects nano-pore electric sensor
CN107727705B (en) * 2017-09-28 2019-12-10 东南大学 Nano-pore electrical sensor for enzyme reaction detection
CN108721634A (en) * 2018-05-30 2018-11-02 郑州大学 A kind of construction method of double target spot DNA nanometers of therapy systems and application
CN108721634B (en) * 2018-05-30 2021-06-04 郑州大学 Construction method and application of double-target-point DNA nano treatment system
CN111298129A (en) * 2019-08-28 2020-06-19 中国人民解放军陆军军医大学第二附属医院 Self-assembly method of metformin-mediated nucleic acid nano material, nano preparation prepared by adopting self-assembly method and application of nano preparation
CN111803511A (en) * 2020-06-12 2020-10-23 南京邮电大学 DNA tetrahedral nucleic acid frame type gastric cancer diagnosis and treatment integrated reagent and preparation method and application thereof
CN111803511B (en) * 2020-06-12 2022-11-08 南京邮电大学 DNA tetrahedral nucleic acid frame type gastric cancer diagnosis and treatment integrated reagent and preparation method and application thereof
CN115121803A (en) * 2021-03-11 2022-09-30 上海交通大学医学院附属仁济医院 Method for synthesizing polymeric nanoclusters based on DNA framework structure
CN115121803B (en) * 2021-03-11 2024-04-30 上海交通大学医学院附属仁济医院 Synthetic method of polymeric nanoclusters based on DNA framework structure
WO2023043239A1 (en) * 2021-09-15 2023-03-23 올릭스 주식회사 Double-stranded rna having innate immune response-inducing effect, and use thereof

Similar Documents

Publication Publication Date Title
WO2016140492A1 (en) Novel dna-rna hybrid regular tetrahedron structure or rna tetrahedron structure
WO2010090452A2 (en) Small interference rna complex with increased intracellular transmission capacity
WO2012165854A9 (en) Long interfering dsrna simultaneously inducing an immune reaction and the inhibition of the expression of target genes
WO2021086083A2 (en) Engineered guide rna for increasing efficiency of crispr/cas12f1 system, and use of same
WO2013089522A1 (en) Novel oligonucleotide conjugates and use thereof
WO2011056005A2 (en) Novel sirna structure for minimizing off-target effects caused by antisense strands, and use thereof
WO2018030789A1 (en) Peptide nucleic acid complex having improved cell permeability and pharmaceutical composition comprising same
WO2010131916A2 (en) Sirna conjugate and preparation method thereof
WO2017188797A1 (en) Method for evaluating, in vivo, activity of rna-guided nuclease in high-throughput manner
WO2014163425A1 (en) Method for producing reprogrammed derivative neuronal stem cell from non-neuronal cell by using hmga2
WO2015002511A1 (en) Improved nanoparticle type oligonucleotide structure having high efficiency and method for preparing same
WO2018088694A2 (en) Artificially engineered sc function control system
WO2019066490A2 (en) Artificial genome manipulation for gene expression regulation
WO2019225968A1 (en) Amphiregulin gene-specific double-stranded oligonucleotide and composition, for preventing and treating fibrosis-related diseases and respiratory diseases, comprising same
WO2022075813A1 (en) Engineered guide rna for increasing efficiency of crispr/cas12f1 system, and use of same
WO2020235974A9 (en) Single base substitution protein, and composition comprising same
WO2018182361A1 (en) Method for preparing corynebacterium mutant strain, using crispr/cas system, recombinase, and single-stranded oligodeoxyribonucleic acid
WO2018135907A1 (en) Schwann cell precursor and method for preparing schwann cell differentiated therefrom
WO2015002512A1 (en) Dengue virus-specific sirna, double helix oligo-rna structure comprising sirna, and composition for suppressing proliferation of dengue virus comprising rna structure
WO2022075816A1 (en) Engineered guide rna for increasing efficiency of crispr/cas12f1 (cas14a1) system, and use thereof
WO2023153845A2 (en) Target system for homology-directed repair and gene editing method using same
WO2020209458A1 (en) Artificial recombinant chromosome and use thereof
WO2023059115A1 (en) Target system for genome editing and uses thereof
WO2013180350A1 (en) Novel low-molecule compound for promoting pluripotent stem cell generation, maintenance, and proliferation, and composition and culturing method containing same
WO2020027641A1 (en) Pharmaceutical composition for preventing or treating atopic diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16759128

Country of ref document: EP

Kind code of ref document: A1