WO2016139978A1 - Control device, light source device, laser light-emitting device, and control method - Google Patents

Control device, light source device, laser light-emitting device, and control method Download PDF

Info

Publication number
WO2016139978A1
WO2016139978A1 PCT/JP2016/051329 JP2016051329W WO2016139978A1 WO 2016139978 A1 WO2016139978 A1 WO 2016139978A1 JP 2016051329 W JP2016051329 W JP 2016051329W WO 2016139978 A1 WO2016139978 A1 WO 2016139978A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
pulse
unit
laser
laser light
Prior art date
Application number
PCT/JP2016/051329
Other languages
French (fr)
Japanese (ja)
Inventor
和田 成司
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016139978A1 publication Critical patent/WO2016139978A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes

Definitions

  • the present disclosure relates to a control device, a light source device, a laser light generation device, and a control method.
  • a current is supplied from the laser driving device to the semiconductor laser to emit light.
  • PWM Pulse Width Modulation
  • the current increase rate does not increase to a certain degree due to the low current increase rate derived from the high output impedance of the current source, and the substantial emission time of the semiconductor laser is the pulse width of the input pulse. Shorter than the time.
  • Patent Document 1 discloses a technique in which an input pulse and a pulse having a pulse width shorter than the pulse width of the input pulse are generated by a current source. As described above, the current drive control method does not increase the current increase rate to a certain extent, so that the current drive control method alone has a limit in bringing the laser light emission time closer to the input pulse time.
  • a novel and improved control device capable of bringing the emission time of the laser light closer to the time of the input pulse by combining the current drive control method with the voltage drive control method to make the rising slope steep.
  • a light source device, a laser beam generator, and a control method are proposed.
  • a current driving unit that outputs a current set according to a first pulse to a laser that emits light according to a current, and the current driving unit in the pulse width of the first pulse
  • a voltage driver that outputs current to the laser based on a voltage set in accordance with a second pulse having a pulse width shorter than the pulse width of the first pulse in a period including a period in which an output current rises And a control device is provided.
  • a light source device including the control device is provided.
  • a laser light generation device including the light source device.
  • a current set according to the first pulse is output to a laser that emits light according to the current, and the first pulse in the pulse width of the first pulse is output. And outputting a current to the laser based on a voltage set according to a second pulse having a pulse width shorter than the pulse width of the first pulse in a period including a period in which a current output correspondingly rises. And a control method is provided.
  • the current drive control method is combined with the voltage drive control method to make the rising slope steep so that the laser light emission time can be made closer to the input pulse time.
  • an improved control device, light source device, laser light generation device, and control method can be provided.
  • FIG. 3 is an explanatory diagram illustrating a specific circuit configuration example of a current driving unit and a voltage driving unit 103.
  • FIG. It is explanatory drawing which shows the equivalent circuit of semiconductor light-emitting device LD. It is explanatory drawing which shows the example of the relationship of a pulse, a drive voltage, and a drive current with a graph. It is explanatory drawing which shows the example of the relationship of a pulse, a drive voltage, and a drive current with a graph.
  • FIG. 1 is a configuration diagram illustrating an example of a schematic configuration of a laser beam generator according to an embodiment of the present disclosure.
  • a laser beam generator 1 includes a light source unit 10, a wavelength conversion optical system 20, a controller 30, an adder 31, an SOA (Semiconductor Optical Amplifier) driver 40, and the like. including.
  • SOA semiconductor Optical Amplifier
  • the light source unit 10 uses a pulse laser, and has a MOPA (Master) that includes a laser (Mode Locked Laser Diode (hereinafter referred to as MLLD)) having a resonator and a semiconductor optical amplifier (SOA). It is an Oscillator Power Amplifier type light source.
  • MOPA Master
  • MLLD Mode Locked Laser Diode
  • SOA semiconductor optical amplifier
  • the light source unit 10 includes an MLLD (mode-locked laser) unit 11, lenses 121, 127 and 129, a mirror 123, an isolator 125, and an optical amplifier unit (SOA unit) 131.
  • the MLLD unit 11 corresponds to a laser (MLLD) including a resonator.
  • the operation of the light source unit 10 is controlled by the control unit 30.
  • the control unit 30 includes an oscillator 301, an isolator 303, a photodetector 305, a band pass filter 307, a mixer 309, a drive signal generation unit 311, and a servo control driver 313.
  • the configuration of the light source unit 10 will be described together with the configuration of the oscillator 301 in the configuration of the control unit 30. Other configurations of the control unit 30 will be described later separately.
  • the signal of frequency f M output from the oscillator 301 is supplied to the adder 31 and the mixer 309.
  • the adder 31 to the signal of the frequency f M which is supplied from the oscillator 301, by adding a direct current component (DC Current) having a predetermined output (amplitude), the signal of the frequency f M of the DC component is added
  • DC Current direct current component
  • the modulated signal is supplied to the MLLD unit 11.
  • the MLLD unit 11 includes a laser light source 111, a lens 113, and a diffraction grating 115.
  • the laser light source 111 outputs laser light and can be constituted by various lasers.
  • a semiconductor laser is used as the laser light source 111.
  • Laser light emitted from the laser light source 111 is guided to the diffraction grating 115 through the lens 113.
  • a resonator (spatial resonator) is formed between the mirror on the rear end face of the laser light source 111 and the diffraction grating 115, and the frequency f MLLD of the laser light is determined by the optical path length Lc of the resonator.
  • the laser light source 111 is supplied with a modulation signal obtained by adding a direct current component to the signal of the frequency f M supplied from the oscillator 301 by the adder 31.
  • the laser beam having the frequency f MLLD in the MLLD unit 11 is phase-modulated by the supplied modulation signal having the frequency f M.
  • phase modulator For modulation of the laser beam having the frequency f MLLD , for example, a phase modulator composed of an EO (electro-optic) element or an AO (acousto-optic) element may be used.
  • the phase modulator modulates the laser beam having the frequency f MLLD with the supplied modulation signal having the frequency f M.
  • the laser light source 111 may be directly driven by using the modulation signal having the frequency f M as a drive signal, so that the laser light modulated at the frequency f M is emitted from the laser light source 111.
  • the laser light source 111 may include a saturable absorber mirror (SAM) as a rear end face mirror.
  • SAM saturable absorber mirror
  • the supersaturated absorption mirror is mainly composed of a distributed Bragg reflector (DBR) and a saturable absorber.
  • DBR distributed Bragg reflector
  • SESAM semiconductor saturable absorber mirror
  • the semiconductor saturable absorption mirror converts the laser light emitted from the laser light source 111 into laser light having a shorter pulse width and higher energy than the laser light by generating a Q-switch mode lock by a saturable absorption mechanism.
  • the diffraction grating 115 reflects a part of the incident laser light having a predetermined frequency (that is, the frequency f MLLD ) so as to be emitted to the outside of the MLLD unit 11 and directs the other part toward the laser light source 111. To reflect. In addition, the diffraction grating 115 reflects light having a different frequency from the frequency f MLLD toward the outside of the MLLD unit 11 and a direction different from the laser light source 111. With such a configuration, with light of a frequency f MLLD resonates inside the MLLD portion 11, and only light of the frequency f MLLD is emitted to the outside of the MLLD portion 11.
  • a predetermined frequency that is, the frequency f MLLD
  • the diffraction grating 115 may be replaced with another configuration.
  • a configuration in which a bandpass filter (BPF) and a half mirror are combined may be provided.
  • BPF bandpass filter
  • the laser light emitted from the MLLD unit 11, that is, the laser light obtained by modulating the light with the frequency f MLLD by the modulation signal with the frequency f M may be referred to as “laser light L1”.
  • the laser beam L1 emitted from the MLLD unit 11 is guided to the isolator 125 through the lens 121 and the mirror 123, passes through the isolator 125, and enters the optical amplifier unit (SOA unit) 131 through the lens 127. If the laser beam L1 emitted from the MLLD unit 11 can be guided to the optical amplifier unit (SOA unit) 131 via the isolator 125, the configuration of the optical system arranged in the optical path is a lens. Needless to say, it is not limited to 121 and the mirror 123.
  • the isolator 125 is interposed between the MLLD unit 11 and the optical amplifier unit (SOA unit) 131, and transmits the laser light L1 from the MLLD unit 11 toward the optical amplifier unit (SOA unit) 131. Further, the isolator 125 blocks the reflected light (leakage light) from the optical amplifier unit (SOA unit) 131 and the emitted light from the inside of the optical amplifier unit (SOA unit), so that the reflected light and the optical amplifier unit (SOA unit) are blocked. Part) The outgoing light from the inside is prevented from entering the MLLD part 11.
  • the optical amplifier unit (SOA unit) 131 is composed of, for example, a semiconductor optical amplifier.
  • the optical amplifier section (SOA section) 131 functions as an optical modulation section that amplifies and modulates the incident laser light (that is, the laser light L1 emitted from the MLLD section 11), and is disposed at the subsequent stage of the isolator 125.
  • the laser output from the MLLD unit 11 is amplified by the optical amplifier unit 131 because its power is relatively small.
  • the optical amplifier 131 is a small and low-cost optical amplifier, and can be used as an optical gate and an optical switch for turning light on and off.
  • the laser light L1 emitted from the MLLD unit 11 is modulated by turning on / off the optical amplifier unit 131.
  • the operation of the optical amplifier unit 131 is controlled by the SOA driver 40. Specifically, the optical amplifier unit (SOA unit) 131 amplifies the laser beam L1 according to the magnitude of the control current (direct current) supplied from the SOA driver 40. Further, the optical amplifier unit 131 performs intermittent driving with a control current having a pulse waveform at the time of amplification, thereby turning on / off the laser light L1 at a predetermined period, thereby intermittent laser light, that is, pulse laser light. L2 is output.
  • the SOA driver 40 intermittently drives the optical amplifier unit (SOA unit) 131 based on the SOA drive signal having the frequency f SOA . That is, the optical amplifier unit (SOA unit) 131 modulates the laser beam L1 by turning on and off the laser beam L1 at the frequency f SOA , and outputs the modulated pulsed laser beam L2.
  • the frequency f SOA of the control current is determined so as to avoid interference with a band in which a servo control driver 313 described later servo-controls the optical path length of the resonator 21.
  • the pulsed laser light L2 emitted from the optical amplifier unit (SOA unit) 131 is guided to the isolator 303 of the control unit 30 described later through the lens 129, passes through the isolator 303, and enters the wavelength conversion optical system 20. To do.
  • the wavelength conversion optical system 20 includes a resonator 21, relay lenses 221 and 223, and mirrors 225 and 227.
  • the pulsed laser light L2 output from the light source unit 10 is incident on the inside of the resonator 21 from the input coupler 201 through an isolator 303 of the control unit 30 described later, relay lenses 221 and 223, and mirrors 225 and 227. . If the pulsed laser light L2 emitted from the light source unit 10 can be guided into the resonator 21 through the isolator 303, the configuration of the optical system disposed in the optical path is the relay lens 221. And 223 and the mirrors 225 and 227 are not limited.
  • the resonator 21 is a so-called optical parametric oscillator (OPO), which resonates the pulse laser beam L2 from the light source unit 10 inside, converts the wavelength of the laser beam L2, and converts the wavelength.
  • the pulsed laser beam L4 is output.
  • OPO optical parametric oscillator
  • the pulse laser light incident on the resonator 21 may be referred to as “excitation laser light”, and the pulse laser light whose wavelength is converted and output from the resonator 21 may be referred to as “OPO laser light”.
  • excitation laser light L3 or “pulse laser light L3” is used. May be described.
  • the resonator 21 includes an input coupler 201, mirrors 203, 205, and 207, a dichroic mirror 209, an output coupler 211, and a nonlinear optical element 213.
  • the input coupler 201 and the output coupler 211 are generally partial reflectors (partial reflectors) having a transmittance of several percent.
  • a nonlinear optical element 213 is disposed between the mirror 203 and the mirror 205.
  • the nonlinear optical element 213 includes, for example, KTP (KTiOPO 4 ), LN (LiNbO 3 ), QPMLN (pseudo phase matching LN), BBO ( ⁇ -BaB 2 O 4 ), LBO (LiB 3 O 4 ), KN (KNbO 3 ). ) Etc. are used.
  • the nonlinear optical element 213 converts input laser light (that is, excitation laser light L3) into two wavelengths. Then, at least one of the two converted wavelengths (for example, a long wavelength) laser light resonates in the resonator 21 as the OPO laser light L4, and is output from the output coupler 211 to the outside of the resonator 21. Will be output.
  • a dichroic mirror 209 is disposed between the input coupler 201 and the mirror 203. Of the light reflected toward the input coupler 201 by the mirror 203, the dichroic mirror 209 transmits the excitation laser light L3 toward the input coupler 201 and reflects the OPO laser light L4 toward the output coupler 211. With such a configuration, the resonator 21 according to the present embodiment is guided through the resonator 21 through optical paths in which the excitation laser light L3 and the OPO laser light L4 are different. The details of the optical paths of the excitation laser light L3 and the OPO laser light L4 in the resonator 21 will be described below.
  • the excitation laser light L3 incident on the resonator from the input coupler 201 passes through the dichroic mirror 209, reaches the mirror 207 via the mirror 203, the nonlinear optical element 213, and the mirror 205, and is reflected by the mirror 207. .
  • the excitation laser light L3 reflected by the mirror 207 is guided to the dichroic mirror 209 through the mirror 205, the nonlinear optical element 213, and the mirror 203, passes through the dichroic mirror 209, and is guided to the input coupler 201. Is done.
  • the input coupler 201 reflects a part of the guided excitation laser beam L3 and emits the other part to the outside of the resonator 21.
  • the excitation laser light L3 incident on the resonator 21 is repeatedly reflected between the input coupler 201 and the mirror 207. That is, the optical path between the input coupler 201 and the mirror 207 corresponds to the optical path length of the excitation laser light L3 in the resonator 21 (in other words, the resonator length), and the optical path length is the resonance of the excitation laser light L3.
  • the excitation laser light L3 resonates in the resonator 21.
  • the light density can be increased by resonating light repeatedly in the resonator. Raising the light density in this way is called pumping, and when it is raised, the other light is called pump light. This is an effective method for exceeding the threshold when the output of the excitation light is lower than the threshold of the nonlinear element.
  • the excitation laser light emitted from the input coupler 201 to the outside of the resonator 21 is guided toward the photodetector 305 by the isolator 303 as reflected light from the resonator 21 and detected by the photodetector 305. Is done.
  • the excitation laser light L3 wavelength-converted by the nonlinear optical element 213, that is, the OPO laser light L4 reaches the mirror 207 via the mirror 205 and is reflected by the mirror 207.
  • the OPO laser light L4 reflected by the mirror 207 is guided to the dichroic mirror 209 via the mirror 205, the nonlinear optical element 213, and the mirror 203, reflected by the dichroic mirror 209, and then output to the output coupler 211. Light is guided.
  • the output coupler 211 reflects a part of the guided OPO laser beam L4 and emits the other part to the outside of the resonator 21.
  • the OPO laser light L 4 incident on the resonator 21 is repeatedly reflected between the output coupler 211 and the mirror 207. That is, the optical path between the output coupler 211 and the mirror 207 corresponds to the optical path length of the OPO laser light L4 in the resonator 21 (in other words, the resonator length), and the optical path length is the same as that of the OPO laser light L4.
  • the OPO laser beam L4 resonates in the resonator 21.
  • the mirror 207 is configured to be adjustable in position along the optical axis direction of the excitation laser light L3 and the OPO laser light L4 incident on the mirror 207.
  • the output coupler 211 is configured such that the position can be adjusted along the optical axis direction of the OPO laser light L4 incident on the output coupler 211.
  • the optical path length of each of the excitation laser light L3 and the OPO laser light L4 is adjusted by adjusting the position of the mirror 207, and the optical path length of the OPO laser light L4 is adjusted by adjusting the position of the output coupler 211. Is adjusted. Therefore, for example, the position of the mirror 207 may be adjusted so as to satisfy the resonance condition of the excitation laser beam L3, and then the position of the output coupler 211 may be adjusted so as to satisfy the resonance condition of the OPO laser beam L4. . By adjusting the positions of the mirror 207 and the output coupler 211 in this order, the optical path length can be controlled so as to satisfy the resonance condition for each of the excitation laser light L3 and the OPO laser light L4.
  • the positions of the mirror 207 and the output coupler 211 are adjusted by an actuator device such as an electromagnetic actuator (VCM: Voice Coil Motor) or a piezoelectric element configuration, for example.
  • VCM Voice Coil Motor
  • the operation of the actuator device for adjusting the positions of the mirror 207 and the output coupler 211 is controlled by a servo control driver 313 described later.
  • the isolator 303 is interposed between the optical amplifier unit (SOA unit) 131 and the resonator 21, and transmits the pulsed laser light L2 output from the optical amplifier unit (SOA unit) 131 toward the resonator 21.
  • a part of the excitation laser light L3 transmitted through the input coupler 201 of the resonator 21 and emitted to the outside of the resonator 21, that is, the reflected light from the resonator 21, is reflected by the mirrors 227 and 225 and the relay lens 223. And 221 and guided to the isolator 303.
  • the isolator 303 reflects the reflected light from the resonator 21 toward the photodetector 305 disposed in a different direction from the optical amplifier unit (SOA unit) 131, so that the reflected light is reflected in the optical amplifier unit (SOA unit). Part) 131 is prevented from entering.
  • the photodetector 305 is made of, for example, a PD (Photo Detector).
  • the photodetector 305 detects the reflected light from the resonator 21 guided through the isolator 303.
  • the photodetector 305 outputs the detection result of the reflected light from the resonator 21 to the bandpass filter 307 as a reflected signal.
  • Bandpass filter 307 towards a signal in a band corresponding to the modulation frequency f M of the excitation laser beam L3 to the mixer 309 is passed through, to cut off the signal other than the band.
  • the signal based on the reflected light from the resonator 21 that is, the excitation laser light L 3 leaking from the resonator 21
  • the bandpass filter 307. A signal that is input to the mixer 309 and is based on other light due to disturbance or the like is blocked by the bandpass filter 307.
  • the mixer 309 multiplies the signal of the frequency f M supplied from the oscillator 301 by the reflected signal based on the reflected light from the resonator 21 to generate an error signal of the resonator length, and the generated error signal is Output to the drive signal generator 311.
  • the error signal generated at this time corresponds to an error signal in a so-called PDH (Pound-Drever-Hall) method, and the optical path length of the excitation laser light L3 in the resonator 21 and the resonance condition of the excitation laser light L3 are determined. The deviation from the optical path length to be filled is shown.
  • the drive signal generation unit 311 includes a low-pass filter, a synchronous detection circuit synchronized with intermittent light emission, and a phase compensation unit.
  • the error signal output from the mixer 309 is supplied with a high-frequency component (that is, noise) from the low-pass filter of the drive signal generation unit 311 and supplied to the synchronous detection circuit.
  • the synchronous detection circuit of the drive signal generation unit 311 synchronously detects the error signal from which noise has been removed by the low-pass filter based on the S / H signal synchronized with intermittent light emission. Then, the synchronous detection circuit outputs an error signal synchronously detected based on the S / H signal (hereinafter, sometimes referred to as “S / H output”) to the phase compensation unit.
  • S / H output an error signal synchronously detected based on the S / H signal
  • the phase compensation unit of the drive signal generation unit 311 performs phase compensation by matching the S / H output supplied from the synchronous detection circuit with the characteristics of the VCM, and sends the signal output whose phase is compensated to the servo control driver 313 as a drive signal. Supply.
  • the servo control driver 313 adjusts the position of the mirror 207 by driving the actuator device based on the drive signal supplied from the drive signal generation unit 311.
  • the drive signal is generated based on an error signal indicating a deviation between the optical path length of the excitation laser light L3 in the resonator 21 and the optical path length satisfying the resonance condition of the excitation laser light L3. Therefore, the servo control driver 313 controls the position of the mirror 207 based on the drive signal supplied from the drive signal generation unit 311, so that the optical path length of the excitation laser light L 3 in the resonator 21 is servo-controlled.
  • the optical path length of the excitation laser beam L3 in the resonator 21 is controlled, that is, when the position of the mirror 207 varies, the optical path length of the OPO laser beam L4 in the resonator 21 also varies. Become. Therefore, when the servo control driver 313 controls the position of the mirror 207, the servo control driver 313 adjusts the position of the output coupler 211 according to the control amount of the position of the mirror 207, thereby adjusting the optical path length of the OPO laser light L4. Needless to say, it may be controlled together.
  • the current drive control method alone has a limit in bringing the laser light emission time closer to the pulse width time of the input pulse.
  • the inventor of the present invention diligently studied a technique capable of making the laser light emission time closer to the time of the pulse width of the input pulse. As a result, the present inventor makes the laser light emission time closer to the pulse width time of the input pulse by combining the current drive control method with the voltage drive control method to make the rising slope of the laser light emission steep.
  • the SOA driver 40 that can be used has been devised.
  • FIG. 2 is an explanatory diagram showing a functional configuration example of the SOA driver 40 of the laser light generating apparatus 1 according to the present embodiment.
  • the SOA driver 40 includes a signal shaping unit 101, a current driving unit 102, a voltage driving unit 103, and a combining unit 104.
  • the signal shaping unit 101 outputs the input pulse input to the SOA driver 40 to the current driving unit 102 as a pulse V1, and shapes the input pulse to output it to the voltage driving unit 103 as a pulse V2.
  • the signal shaping unit 101 generates the pulse V2 so that the pulse width of the pulse V2 is narrower than the pulse width of the pulse V1.
  • the pulse V1 output from the signal shaping unit 101 to the voltage driving unit 102 is a pulse for setting the light emission amount of the laser light of the light source unit 10, and the laser light of the light source unit 10 is emitted during the period of the pulse width of the pulse V1.
  • the pulse V ⁇ b> 2 output from the signal shaping unit 101 to the voltage driving unit 103 is a pulse for making the rising slope of the laser light emission of the light source unit 10 steep.
  • the current driving unit 102 outputs a current based on the pulse V1 sent from the signal shaping unit 101.
  • the current output from the current driving unit 102 based on the pulse V ⁇ b> 1 is supplied to the combining unit 104.
  • the voltage driver 103 outputs a current based on the pulse V ⁇ b> 2 sent from the signal shaping unit 101.
  • the current output from the voltage driving unit 103 based on the pulse V ⁇ b> 2 is supplied to the combining unit 104.
  • Specific circuit configuration examples of the current driver 102 and the voltage driver 103 will be described in detail later.
  • the current output from the voltage driver 103 based on the pulse V2 is output in a section including the rising section of the current output from the current driver 102 based on the pulse V1.
  • the voltage driver 103 outputs a current based on the pulse V2 in a section including a section where the current output from the current driver 102 is output based on the pulse V1, so that the current driver 102 changes to the pulse V1. Based on this, it is possible to compensate for the rise of the output current.
  • the combining unit 104 combines the current output from the current driving unit 102 and the current output from the voltage driving unit 103.
  • the combining unit 104 outputs the combined current to the light source unit 10.
  • the light source unit 10 drives the semiconductor light emitting element based on the current output from the combining unit 104, so that the light emission unit has a steep rise in light emission over the time of the pulse width of the input pulse and the light emission amount is substantially constant. Realize light emission.
  • FIG. 3 is an explanatory diagram illustrating a specific circuit configuration example of the current driving unit 102 and the voltage driving unit 103.
  • the current driver 102 includes an amplifier AMPA and resistors RS1, RF1, RS2, RF2, and R1.
  • the resistor RS1 and the resistor RF1 are connected in series, and the resistor RS2 and the resistor RF2 are connected in series.
  • the resistor RS1 and the resistor RF1 are connected to the inverting input terminal of the amplifier AMPA, and the resistor RS2 and the resistor RF2 are connected to the non-inverting input terminal of the amplifier AMPA.
  • the side of the resistor RS1 not connected to the inverting input terminal of the amplifier AMPA is connected to the ground, and the side of the resistor RS2 not connected to the non-inverting input terminal of the amplifier AMPA is connected to the terminal to which the pulse V1 is input. Is done.
  • the resistor R1 is provided between the output terminal of the amplifier AMPA and the side of the resistor RF2 that is not connected to the non-inverting input terminal of the amplifier AMPA.
  • the voltage driving unit 103 includes an amplifier AMPB and resistors RV1 and RV2.
  • the resistor RV1 is provided between the inverting input terminal of the amplifier AMPB and the ground.
  • the resistor RV2 is provided between the inverting input terminal of the amplifier AMPB and the output terminal of the amplifier AMPB.
  • the non-inverting input terminal of the amplifier AMPB is connected to a terminal to which the pulse V2 is input.
  • FIG. 3 also shows the diodes D1, D2, and D3 and the semiconductor light emitting element LD.
  • the diodes D1 and D2 can function as an example of the combining unit 104 in FIG.
  • the diodes D1, D2, and D3 can function as protective elements that prevent reverse current flow, but the diodes D1, D2, and D3 are not necessarily provided.
  • the current Io output from the current driving unit 102 can be expressed by the following formula 1.
  • Rf is the resistance value of the resistors RF1 and RF2
  • Rs is the resistance value of the resistors RS1 and RS2. Therefore, the resistors RF1 and RF2 have the same resistance value, and the resistors RS1 and RS2 are the same. It has a resistance value.
  • V1 is a voltage value supplied by the pulse V1.
  • Equation 2 the voltage Vo output from the voltage driving unit 103 can be expressed by Equation 2 below.
  • RV1 and RV2 are resistance values of the resistors RV1 and RV2, respectively.
  • V2 is a voltage value supplied by the pulse V2.
  • the light emission amount of the semiconductor light emitting element LD is a function of the drive current, and the light emission amount of the semiconductor light emitting element LD increases as the drive current increases.
  • the light emission amount of the semiconductor light emitting element LD increases as the drive current increases.
  • FIG. 4 is an explanatory diagram showing an equivalent circuit of the semiconductor light emitting element LD.
  • the semiconductor light emitting element LD can be represented by a predetermined equivalent inductance L, equivalent capacitance C, and equivalent resistance R, as shown in FIG.
  • the equivalent inductance L is the total value of the inductance of the package lead and gold wire and the wiring inductance between the light emitting unit 10 and the current driving unit 102
  • the equivalent capacitance C is the parasitic capacitance of the submount and lead lead insulating part and the light emitting unit 10
  • the total wiring capacitance between the current driving unit 102 and the voltage driving unit 103, and the equivalent resistance R represent IV characteristics (differential resistance) at or above the threshold current of the semiconductor laser.
  • the values of L, C, and R vary depending on the type of semiconductor laser, and the frequency characteristics of the semiconductor laser alone are determined by the equivalent inductance L, equivalent capacitance C, and equivalent resistance R.
  • the equivalent resistance R can be obtained from Equation 3 using terminal voltages V1 and V2 of the light emitting element at two drive current values I1 and I2 having different values.
  • R (V2-V1) / (I2-I1) (Equation 3)
  • the equivalent inductance L is obtained by the following formulas 4 and 5 from the drive voltage value V3 of the semiconductor light emitting element LD and the current value I3 after the drive time t3 has elapsed.
  • V L * dI / dt (equation 4)
  • L (V3-R * I3) / (I3 / t3) (Equation 5)
  • FIG. 5 and 6 are explanatory diagrams illustrating an example of the relationship among the pulse V1, the drive voltage Vo, and the drive current Io.
  • FIG. 5 shows the relationship when the drive current Io is 4.0 A
  • FIG. 6 shows the relationship when the drive current Io is 6.0 A.
  • FIGS. 7 and 8 are explanatory diagrams illustrating an example of the relationship between the pulse V2, the drive voltage Vo, and the drive current Io.
  • FIG. 7 shows the relationship when the drive voltage Vo is 8.5V
  • FIG. 8 shows the relationship when the drive voltage Vo is 13V.
  • the driving voltage of the voltage driving unit 103 is determined based on the equivalent inductance component of the conductor light emitting element LD, and increasing the driving voltage of the voltage driving unit 103 shortens the time required for the light emitting rise of the semiconductor light emitting element LD. Can do.
  • FIG. 9 is an explanatory diagram showing an example of a waveform of the output current Io to the semiconductor light emitting element LD when only current driving is performed by the current driving unit 102.
  • FIG. 10 is an explanatory diagram showing an example of the waveform of the output current Io to the semiconductor light emitting element LD when only voltage driving is performed by the voltage driving unit 103.
  • FIG. 11 is an explanatory diagram showing an example of the waveform of the output current Io to the semiconductor light emitting element LD when the current driving by the current driving unit 102 and the voltage driving by the voltage driving unit 103 are combined.
  • the time until the output current Io reaches a predetermined value is 200 ns.
  • the time until the output current Io reaches a predetermined value is 145 ns, and only in current driving. Although shorter, the output current Io decreases again after the output current Io reaches a predetermined value.
  • the output current Io reaches a predetermined value (6A in the example of FIG. 11).
  • the time until the time is 120 ns, which is even shorter than the case of only voltage driving, and since current driving and voltage driving are combined, even after the output current Io reaches a predetermined value (6A in the example of FIG. 10). Continue to maintain a predetermined value.
  • the SOA driver 40 having the configuration shown in FIGS. 2 and 3 can shorten the time until the output current Io reaches a predetermined value as compared with the case of only current driving. It becomes possible.
  • FIG. 12 is an explanatory diagram illustrating a specific circuit configuration example of the SOA driver 40.
  • FIG. 12 shows a configuration in which a current mirror circuit 105 is inserted after the current driver 102 and a current from the current mirror circuit 105 is output to the semiconductor light emitting element LD.
  • the current mirror circuit 105 is an example of a current amplification unit of the present disclosure. As shown in FIG. 12, the current mirror circuit 105 includes transistors TR1 and TR2, and the output current from the current driver 102 can be amplified by appropriately selecting the transistors TR1 and TR2.
  • the current mirror circuit 105 in the subsequent stage of the current driving unit 102, a large current can flow through the semiconductor light emitting element LD even when the output current from the current driving unit 102 is small. Further, by inserting the current mirror circuit 105 at the subsequent stage of the current driving unit 102, the resistance R1 of the current driving unit 102 and the internal parasitic inductance components existing in the elements such as the transistors TR1 and TR2 are fixed on the substrate and minimized. Thus, the current driver 102 can be stabilized.
  • the light emission time of the semiconductor light emitting element LD is set to the pulse width of the input pulse.
  • An SOA driver 40 that can be brought close to is provided.
  • the current drive control method alone is caused by the low current increase rate derived from the high output impedance of the current source.
  • the current increase rate does not become higher than a certain level. Therefore, in the case of only the current control driving method, the substantial light emission time of the semiconductor light emitting element LD is shorter than the time of the pulse width of the input pulse.
  • the current increase rate of the semiconductor light emitting element LD as a load is increased in proportion to the drive voltage from the voltage driver 103. Can do.
  • the light emission of the semiconductor light emitting element LD starts earlier, so that the light emission time can be extended in a direction closer to the time of the pulse width of the input pulse.
  • the parasitic component of the semiconductor light emitting element LD and the inductance component of the transmission path are controlled, thereby enabling high-speed light emission startup during pulse modulation operation or pulse driving for heat dissipation.
  • the parasitic inductance component that cannot be ignored due to the low internal resistance associated with the high power element is positively controlled to reach the light emission timing in the steady state.
  • Light emission duty can be increased by advancing time.
  • the SOA driver 40 is an example of the control device of the present disclosure
  • the configuration in which the light source unit 10 is added to the SOA driver 40 is an example of the light source device of the present disclosure
  • the laser light generator 1 is the main device. It is an example of the laser beam generator of an indication.
  • a current driver that outputs a current set according to the first pulse for a laser that emits light according to the current; In the period including the period in which the current output from the current driver rises in the pulse width of the first pulse, the first pulse is set according to the second pulse having a pulse width shorter than the pulse width of the first pulse.
  • a voltage driver that outputs a current to the laser based on a voltage;
  • a control device comprising: (2) The control device according to (1), wherein the voltage set by the voltage driving unit is determined based on an equivalent inductance component of the laser.
  • control device (3) The control device according to (1) or (2), further including a current amplifying unit that amplifies a current output from the current driving unit and outputs the current to the laser.
  • a current amplifying unit that amplifies a current output from the current driving unit and outputs the current to the laser.
  • a control device according to claim 1.
  • the control device according to any one of (1) to (4), wherein the laser is an intermittently driven laser.
  • a light source device comprising the control device according to any one of (1) to (5).
  • a laser beam generator comprising the light source device according to (6).
  • Laser light generator 10 Light source unit 11: MLLD unit 20: Wavelength conversion optical system 21: Resonator 30: Control unit 31: Adder 40: SOA driver 111: Laser light source 113: Lens 115: Diffraction grating 121: Lens 123: Mirror 125: Isolator 127: Lens 129: Lens 131: Optical amplifier unit 201: Input coupler 203: Mirror 205: Mirror 207: Mirror 209: Dichroic mirror 211: Output coupler 213: Nonlinear optical element 221: Relay lens 223 : Relay lens 225: Mirror 227: Mirror 301: Oscillator 303: Isolator 305: Optical detector 307: Band pass filter 309: Mixer 311 Drive signal generation unit 313: servo control driver

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

[Problem] To provide a control device capable of bringing the time of light emission closer to the time of an input pulse by making the slope of a rising edge steeper, by combining a voltage drive control system with a current drive control system. [Solution] A control device is provided with: a current drive unit that outputs, to a laser that emits light in accordance with a current, a current that is set in accordance with a first pulse; and a voltage drive unit that, in a period in the pulse width of the first pulse, including a period in which the current output by the current drive unit rises, outputs a current to the laser on the basis of a voltage that is set in accordance with a second pulse having a shorter pulse width than the pulse width of the first pulse.

Description

制御装置、光源装置、レーザー光発生装置及び制御方法Control device, light source device, laser light generation device, and control method
 本開示は、制御装置、光源装置、レーザー光発生装置及び制御方法に関する。 The present disclosure relates to a control device, a light source device, a laser light generation device, and a control method.
 半導体レーザーなどの半導体発光素子をパルス変調動作させるか、放熱のためにPWM(Pulse Width Modulation;パルス幅変調)駆動させる際に、レーザー駆動装置から半導体レーザーに電流を供給して半導体レーザーを発光させる電流駆動制御方式がある。しかし電流駆動制御方式では、電流源の出力インピーダンスの高さから由来する電流増加率の低さから電流の増加率がある程度以上高くならず、半導体レーザーの実質的な発光時間が入力パルスのパルス幅の時間より短くなる。 When a semiconductor light emitting device such as a semiconductor laser is pulse-modulated or driven by PWM (Pulse Width Modulation) for heat dissipation, a current is supplied from the laser driving device to the semiconductor laser to emit light. There is a current drive control system. However, in the current drive control method, the current increase rate does not increase to a certain degree due to the low current increase rate derived from the high output impedance of the current source, and the substantial emission time of the semiconductor laser is the pulse width of the input pulse. Shorter than the time.
 そこで、例えば特許文献1で開示されているように、レーザーのパルス発光の立ち上がりの鈍りを先鋭化するために、入力パルスのパルス幅よりさらに短いパルス幅のパルスを入力することでエッジを強調し、発光時間を入力パルスのパルス幅の時間に近づける技術がある。 Therefore, for example, as disclosed in Patent Document 1, in order to sharpen the dull rise of the pulse emission of the laser, the edge is emphasized by inputting a pulse having a pulse width shorter than the pulse width of the input pulse. There is a technique for bringing the light emission time closer to the pulse width time of the input pulse.
特許第4398331号公報Japanese Patent No. 4398331
 しかし特許文献1で開示されているのは、入力パルスも、入力パルスのパルス幅よりさらに短いパルス幅のパルスも、電流源によって発生させている技術である。上述したように、電流駆動制御方式では電流の増加率がある程度以上高くならないことから、電流駆動制御方式だけではレーザー光の発光時間を入力パルスの時間に近づけるには限界がある。 However, Patent Document 1 discloses a technique in which an input pulse and a pulse having a pulse width shorter than the pulse width of the input pulse are generated by a current source. As described above, the current drive control method does not increase the current increase rate to a certain extent, so that the current drive control method alone has a limit in bringing the laser light emission time closer to the input pulse time.
 そこで本開示では、電流駆動制御方式に電圧駆動制御方式を組み合わせて立ち上がりの傾きを急峻にすることでレーザー光の発光時間を入力パルスの時間に近づけることが可能な、新規かつ改良された制御装置、光源装置、レーザー光発生装置及び制御方法を提案する。 Therefore, in the present disclosure, a novel and improved control device capable of bringing the emission time of the laser light closer to the time of the input pulse by combining the current drive control method with the voltage drive control method to make the rising slope steep. , A light source device, a laser beam generator, and a control method are proposed.
 本開示によれば、電流に応じて発光するレーザーに対し、第1のパルスに応じて設定される電流を出力する電流駆動部と、前記第1のパルスのパルス幅における、前記電流駆動部が出力する電流が立ち上がる期間を含む期間において、前記第1のパルスのパルス幅より短いパルス幅を有する第2のパルスに応じて設定される電圧に基づいて前記レーザーに対し電流を出力する電圧駆動部と、を備える、制御装置が提供される。 According to the present disclosure, a current driving unit that outputs a current set according to a first pulse to a laser that emits light according to a current, and the current driving unit in the pulse width of the first pulse A voltage driver that outputs current to the laser based on a voltage set in accordance with a second pulse having a pulse width shorter than the pulse width of the first pulse in a period including a period in which an output current rises And a control device is provided.
 また本開示によれば、上記制御装置を備える、光源装置が提供される。 Further, according to the present disclosure, a light source device including the control device is provided.
 また本開示によれば、上記光源装置を備える、レーザー光発生装置が提供される。 According to the present disclosure, there is provided a laser light generation device including the light source device.
 また本開示によれば、電流に応じて発光するレーザーに対し、第1のパルスに応じて設定される電流を出力することと、前記第1のパルスのパルス幅における、前記第1のパルスに応じて出力される電流が立ち上がる期間を含む期間において、前記第1のパルスのパルス幅より短いパルス幅を有する第2のパルスに応じて設定される電圧に基づいて前記レーザーに対し電流を出力することと、を含む、制御方法が提供される。 According to the present disclosure, a current set according to the first pulse is output to a laser that emits light according to the current, and the first pulse in the pulse width of the first pulse is output. And outputting a current to the laser based on a voltage set according to a second pulse having a pulse width shorter than the pulse width of the first pulse in a period including a period in which a current output correspondingly rises. And a control method is provided.
 以上説明したように本開示によれば、電流駆動制御方式に電圧駆動制御方式を組み合わせて立ち上がりの傾きを急峻にすることでレーザー光の発光時間を入力パルスの時間に近づけることが可能な、新規かつ改良された制御装置、光源装置、レーザー光発生装置及び制御方法を提供することができる。 As described above, according to the present disclosure, the current drive control method is combined with the voltage drive control method to make the rising slope steep so that the laser light emission time can be made closer to the input pulse time. In addition, an improved control device, light source device, laser light generation device, and control method can be provided.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の実施形態に係るレーザー光発生装置の概略的な構成の一例を示した構成図である。It is the block diagram which showed an example of the schematic structure of the laser beam generator which concerns on embodiment of this indication. 本実施形態に係るレーザー光発生装置1のSOAドライバ40の機能構成例を示す説明図である。It is explanatory drawing which shows the function structural example of the SOA driver 40 of the laser beam generator 1 which concerns on this embodiment. 電流駆動部102および電圧駆動部103の具体的な回路構成例を示す説明図である。3 is an explanatory diagram illustrating a specific circuit configuration example of a current driving unit and a voltage driving unit 103. FIG. 半導体発光素子LDの等価回路を示す説明図である。It is explanatory drawing which shows the equivalent circuit of semiconductor light-emitting device LD. パルス、駆動電圧及び駆動電流の関係の例をグラフで示す説明図である。It is explanatory drawing which shows the example of the relationship of a pulse, a drive voltage, and a drive current with a graph. パルス、駆動電圧及び駆動電流の関係の例をグラフで示す説明図である。It is explanatory drawing which shows the example of the relationship of a pulse, a drive voltage, and a drive current with a graph. パルス、駆動電圧及び駆動電流の関係の例をグラフで示す説明図である。It is explanatory drawing which shows the example of the relationship of a pulse, a drive voltage, and a drive current with a graph. パルス、駆動電圧及び駆動電流の関係の例をグラフで示す説明図である。It is explanatory drawing which shows the example of the relationship of a pulse, a drive voltage, and a drive current with a graph. 電流駆動のみの場合の半導体発光素子への出力電流の波形の例を示す説明図である。It is explanatory drawing which shows the example of the waveform of the output current to the semiconductor light-emitting device in the case of only current drive. 電圧駆動のみの場合の半導体発光素子への出力電流の波形の例を示す説明図である。It is explanatory drawing which shows the example of the waveform of the output current to the semiconductor light-emitting device in the case of only voltage drive. 電流駆動と電圧駆動とを組み合わせた場合の半導体発光素子への出力電流の波形の例を示す説明図である。It is explanatory drawing which shows the example of the waveform of the output current to the semiconductor light-emitting device at the time of combining current drive and voltage drive. 電流駆動部102および電圧駆動部103の具体的な回路構成例を示す説明図である。3 is an explanatory diagram illustrating a specific circuit configuration example of a current driving unit and a voltage driving unit 103. FIG.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.本開示の一実施形態
  1.1.レーザー光発生装置の構成
  1.2.制御装置の構成
 2.まとめ
The description will be made in the following order.
1. One Embodiment of the Present Disclosure 1.1. Configuration of laser light generator 1.2. 1. Configuration of control device Summary
 <1.本開示の一実施形態>
 [1.1.レーザー光発生装置の構成]
 まず、図1を参照して、本開示の実施形態に係るレーザー光発生装置の構成について説明する。図1は、本開示の実施形態に係るレーザー光発生装置の概略的な構成の一例を示した構成図である。
<1. One Embodiment of the Present Disclosure>
[1.1. Configuration of laser light generator]
First, with reference to FIG. 1, the structure of the laser beam generator which concerns on embodiment of this indication is demonstrated. FIG. 1 is a configuration diagram illustrating an example of a schematic configuration of a laser beam generator according to an embodiment of the present disclosure.
 図1に示すように、本実施形態に係るレーザー光発生装置1は、光源ユニット10と、波長変換光学系20と、制御部30と、加算器31と、SOA(Semiconductor Optical Amplifier)ドライバ40とを含む。 As shown in FIG. 1, a laser beam generator 1 according to this embodiment includes a light source unit 10, a wavelength conversion optical system 20, a controller 30, an adder 31, an SOA (Semiconductor Optical Amplifier) driver 40, and the like. including.
 光源ユニット10は、パルスレーザーを用いるものであり、共振器を備えたレーザー(Mode Locked Laser Diode(以下、MLLDと称する))と半導体光増幅アンプ(SOA)を有して構成されるMOPA(Master Oscillator Power Amplifier)型の光源である。 The light source unit 10 uses a pulse laser, and has a MOPA (Master) that includes a laser (Mode Locked Laser Diode (hereinafter referred to as MLLD)) having a resonator and a semiconductor optical amplifier (SOA). It is an Oscillator Power Amplifier type light source.
 光源ユニット10は、MLLD(モードロックレーザー)部11と、レンズ121、127及び129と、ミラー123と、アイソレーター125と、光増幅器部(SOA部)131とを含む。なお、MLLD部11が、共振器を備えたレーザー(MLLD)に相当する。 The light source unit 10 includes an MLLD (mode-locked laser) unit 11, lenses 121, 127 and 129, a mirror 123, an isolator 125, and an optical amplifier unit (SOA unit) 131. The MLLD unit 11 corresponds to a laser (MLLD) including a resonator.
 光源ユニット10の動作は、制御部30により制御される。制御部30は、発振器301と、アイソレーター303と、光検出器305と、バンドパスフィルタ307と、混合器309と、駆動信号生成部311と、サーボ制御ドライバ313とを含む。以下に、光源ユニット10の構成について、制御部30の構成のうち、発振器301の構成とあわせて説明する。なお、制御部30の他の構成については別途後述するものとする。 The operation of the light source unit 10 is controlled by the control unit 30. The control unit 30 includes an oscillator 301, an isolator 303, a photodetector 305, a band pass filter 307, a mixer 309, a drive signal generation unit 311, and a servo control driver 313. Hereinafter, the configuration of the light source unit 10 will be described together with the configuration of the oscillator 301 in the configuration of the control unit 30. Other configurations of the control unit 30 will be described later separately.
 発振器301から出力される周波数fの信号は、加算器31と混合器309に供給される。 The signal of frequency f M output from the oscillator 301 is supplied to the adder 31 and the mixer 309.
 加算器31は、発振器301から供給される周波数fの信号に対して、所定の出力(振幅)を有する直流成分(DC Current)を加算し、直流成分が加算された周波数fの信号を変調信号としてMLLD部11に供給する。 The adder 31, to the signal of the frequency f M which is supplied from the oscillator 301, by adding a direct current component (DC Current) having a predetermined output (amplitude), the signal of the frequency f M of the DC component is added The modulated signal is supplied to the MLLD unit 11.
 MLLD部11は、レーザー光源111と、レンズ113と、回折格子115とを含む。 The MLLD unit 11 includes a laser light source 111, a lens 113, and a diffraction grating 115.
 レーザー光源111は、レーザー光を出力するものであり、各種のレーザーにより構成することが可能である。本実施形態に係るMLLD部11では、レーザー光源111として、例えば、半導体レーザーが用いられる。 The laser light source 111 outputs laser light and can be constituted by various lasers. In the MLLD unit 11 according to the present embodiment, for example, a semiconductor laser is used as the laser light source 111.
 レーザー光源111から出射されたレーザー光は、レンズ113を経て回折格子115に導光される。そして、レーザー光源111の後方端面のミラーと、回折格子115との間に共振器(空間共振器)が構成され、この共振器の光路長Lcにより当該レーザー光の周波数fMLLDが決定される。具体的には、周波数fMLLDは、MLLD部11内における光路長2Lcと、光速Cとに基づき、fMLLD=2Lc/Cとして決定される。 Laser light emitted from the laser light source 111 is guided to the diffraction grating 115 through the lens 113. A resonator (spatial resonator) is formed between the mirror on the rear end face of the laser light source 111 and the diffraction grating 115, and the frequency f MLLD of the laser light is determined by the optical path length Lc of the resonator. Specifically, the frequency f MLLD is determined as f MLLD = 2Lc / C based on the optical path length 2Lc in the MLLD unit 11 and the light velocity C.
 また、レーザー光源111には、発振器301から供給される周波数fの信号に対して、加算器31で直流成分が加算された変調信号が供給される。MLLD部11内における周波数fMLLDのレーザー光は、供給された周波数fの変調信号により位相変調される。 The laser light source 111 is supplied with a modulation signal obtained by adding a direct current component to the signal of the frequency f M supplied from the oscillator 301 by the adder 31. The laser beam having the frequency f MLLD in the MLLD unit 11 is phase-modulated by the supplied modulation signal having the frequency f M.
 なお、周波数fMLLDのレーザー光の変調には、例えば、EO(電気光学)素子や、AO(音響光学)素子からなる位相変調器を用いてもよい。この場合には、当該位相変調器は、供給された周波数fの変調信号により、周波数fMLLDのレーザー光を変調する。 For modulation of the laser beam having the frequency f MLLD , for example, a phase modulator composed of an EO (electro-optic) element or an AO (acousto-optic) element may be used. In this case, the phase modulator modulates the laser beam having the frequency f MLLD with the supplied modulation signal having the frequency f M.
 また、他の一例として、周波数fの変調信号を駆動信号として、レーザー光源111を直接駆動することで、レーザー光源111から、周波数fで変調されたレーザー光を出射させる構成としてもよい。 As another example, the laser light source 111 may be directly driven by using the modulation signal having the frequency f M as a drive signal, so that the laser light modulated at the frequency f M is emitted from the laser light source 111.
 また、レーザー光源111は、後方端面のミラーとして、可飽和吸収ミラー(SAM:Saturable Absorber Mirror)を備えてもよい。過飽和吸収ミラーは、主に分布ブラッグ反射鏡(DBR:Distributed Bragg Reflector)と可飽和吸収体とで構成されている。具体的な一例として、半導体可飽和吸収ミラー(SESAM:Semiconductor Saturable Absorber Mirror)が挙げられる。 Moreover, the laser light source 111 may include a saturable absorber mirror (SAM) as a rear end face mirror. The supersaturated absorption mirror is mainly composed of a distributed Bragg reflector (DBR) and a saturable absorber. A specific example is a semiconductor saturable absorber mirror (SESAM).
 半導体可飽和吸収ミラーは、レーザー光源111から出射されたレーザー光を可飽和吸収メカニズムによりQスイッチモードロックを発生させて、当該レーザー光よりもパルス幅の短くエネルギーの大きいレーザー光に変換する。 The semiconductor saturable absorption mirror converts the laser light emitted from the laser light source 111 into laser light having a shorter pulse width and higher energy than the laser light by generating a Q-switch mode lock by a saturable absorption mechanism.
 回折格子115は、入射したレーザー光のうち所定の周波数(即ち、周波数fMLLD)の光の一部をMLLD部11の外部に出射するように反射させ、他の一部をレーザー光源111に向けて反射させる。また、回折格子115は、周波数fMLLDとは異なる他の周波数の光については、MLLD部11の外部及びレーザー光源111とは異なる方向に向けて反射させる。このような構成により、周波数fMLLDの光がMLLD部11の内部で共振するとともに、当該周波数fMLLDの光のみがMLLD部11の外部に出射されることとなる。なお、上記に説明した構成を実現可能であれば、回折格子115を他の構成に置き換えてもよい。具体的な一例として、回折格子115に替えて、バンドパスフィルタ(BPF)とハーフミラーとを組み合わせた構成を設けてもよい。また、以降では、MLLD部11から出射されるレーザー光、即ち、周波数fMLLDの光が周波数fの変調信号により変調されたレーザー光を、「レーザー光L1」と記載する場合がある。 The diffraction grating 115 reflects a part of the incident laser light having a predetermined frequency (that is, the frequency f MLLD ) so as to be emitted to the outside of the MLLD unit 11 and directs the other part toward the laser light source 111. To reflect. In addition, the diffraction grating 115 reflects light having a different frequency from the frequency f MLLD toward the outside of the MLLD unit 11 and a direction different from the laser light source 111. With such a configuration, with light of a frequency f MLLD resonates inside the MLLD portion 11, and only light of the frequency f MLLD is emitted to the outside of the MLLD portion 11. If the above-described configuration can be realized, the diffraction grating 115 may be replaced with another configuration. As a specific example, instead of the diffraction grating 115, a configuration in which a bandpass filter (BPF) and a half mirror are combined may be provided. Further, hereinafter, the laser light emitted from the MLLD unit 11, that is, the laser light obtained by modulating the light with the frequency f MLLD by the modulation signal with the frequency f M may be referred to as “laser light L1”.
 MLLD部11から出射されたレーザー光L1は、レンズ121及びミラー123を経てアイソレーター125に導光され、アイソレーター125を透過し、レンズ127を経て光増幅器部(SOA部)131に入射する。なお、MLLD部11から出射されたレーザー光L1を、アイソレーター125を経て光増幅器部(SOA部)131に導光させることが可能であれば、光路中に配置される光学系の構成は、レンズ121及びミラー123には限定されないことは言うまでもない。 The laser beam L1 emitted from the MLLD unit 11 is guided to the isolator 125 through the lens 121 and the mirror 123, passes through the isolator 125, and enters the optical amplifier unit (SOA unit) 131 through the lens 127. If the laser beam L1 emitted from the MLLD unit 11 can be guided to the optical amplifier unit (SOA unit) 131 via the isolator 125, the configuration of the optical system arranged in the optical path is a lens. Needless to say, it is not limited to 121 and the mirror 123.
 アイソレーター125は、MLLD部11と光増幅器部(SOA部)131との間に介在し、MLLD部11からのレーザー光L1を光増幅器部(SOA部)131に向けて透過させる。また、アイソレーター125は、光増幅器部(SOA部)131からの反射光(漏れ光)及び光増幅器部(SOA部)内部からの出射光を遮断することで、当該反射光及び光増幅器部(SOA部)内部からの出射光がMLLD部11に入射すことを防止している。 The isolator 125 is interposed between the MLLD unit 11 and the optical amplifier unit (SOA unit) 131, and transmits the laser light L1 from the MLLD unit 11 toward the optical amplifier unit (SOA unit) 131. Further, the isolator 125 blocks the reflected light (leakage light) from the optical amplifier unit (SOA unit) 131 and the emitted light from the inside of the optical amplifier unit (SOA unit), so that the reflected light and the optical amplifier unit (SOA unit) are blocked. Part) The outgoing light from the inside is prevented from entering the MLLD part 11.
 光増幅器部(SOA部)131は、例えば、半導体光増幅アンプからなる。光増幅器部(SOA部)131は、入射したレーザー光(即ち、MLLD部11から出射されたレーザー光L1)を増幅変調する光変調部として機能し、アイソレーター125の後段に配置されている。 The optical amplifier unit (SOA unit) 131 is composed of, for example, a semiconductor optical amplifier. The optical amplifier section (SOA section) 131 functions as an optical modulation section that amplifies and modulates the incident laser light (that is, the laser light L1 emitted from the MLLD section 11), and is disposed at the subsequent stage of the isolator 125.
 MLLD部11から出力されるレーザーは、そのパワーが比較的小さいため、光増幅器部131によって増幅される。 The laser output from the MLLD unit 11 is amplified by the optical amplifier unit 131 because its power is relatively small.
 光増幅器部131は、小型かつ低コストの光増幅器であり、また、光をオン・オフする光ゲート、光スイッチとして用いることができる。本実施形態においては、この光増幅器部131のオン・オフによって、MLLD部11から出射したレーザー光L1を変調する。 The optical amplifier 131 is a small and low-cost optical amplifier, and can be used as an optical gate and an optical switch for turning light on and off. In the present embodiment, the laser light L1 emitted from the MLLD unit 11 is modulated by turning on / off the optical amplifier unit 131.
 光増幅器部131の動作は、SOAドライバ40によって制御される。具体的には、光増幅器部(SOA部)131は、SOAドライバ40から供給される制御電流(直流)の大きさに応じてレーザー光L1を増幅する。更に、光増幅器部131は、増幅の際に、パルス波形の制御電流で間欠駆動を行うことにより、レーザー光L1を所定の周期でオン・オフし、間欠的なレーザー光、即ち、パルスレーザー光L2を出力する。 The operation of the optical amplifier unit 131 is controlled by the SOA driver 40. Specifically, the optical amplifier unit (SOA unit) 131 amplifies the laser beam L1 according to the magnitude of the control current (direct current) supplied from the SOA driver 40. Further, the optical amplifier unit 131 performs intermittent driving with a control current having a pulse waveform at the time of amplification, thereby turning on / off the laser light L1 at a predetermined period, thereby intermittent laser light, that is, pulse laser light. L2 is output.
 このとき、SOAドライバ40は、周波数fSOAのSOA駆動信号に基づき、光増幅器部(SOA部)131を間欠駆動する。即ち、光増幅器部(SOA部)131は、レーザー光L1を、周波数fSOAでオン・オフすることで当該レーザー光L1を変調し、変調後のパルスレーザー光L2を出力することとなる。 At this time, the SOA driver 40 intermittently drives the optical amplifier unit (SOA unit) 131 based on the SOA drive signal having the frequency f SOA . That is, the optical amplifier unit (SOA unit) 131 modulates the laser beam L1 by turning on and off the laser beam L1 at the frequency f SOA , and outputs the modulated pulsed laser beam L2.
 なお、制御電流の周波数fSOAは、後述するサーボ制御ドライバ313が、共振器21の光路長をサーボ制御する帯域との干渉を避けるように決定される。 The frequency f SOA of the control current is determined so as to avoid interference with a band in which a servo control driver 313 described later servo-controls the optical path length of the resonator 21.
 光増幅器部(SOA部)131から出射されたパルスレーザー光L2は、レンズ129を経て、後述する制御部30のアイソレーター303に導光され、当該アイソレーター303を透過して波長変換光学系20に入射する。 The pulsed laser light L2 emitted from the optical amplifier unit (SOA unit) 131 is guided to the isolator 303 of the control unit 30 described later through the lens 129, passes through the isolator 303, and enters the wavelength conversion optical system 20. To do.
 次に、波長変換光学系20の各構成について説明する。波長変換光学系20は、共振器21と、リレーレンズ221及び223と、ミラー225及び227とを含む。 Next, each configuration of the wavelength conversion optical system 20 will be described. The wavelength conversion optical system 20 includes a resonator 21, relay lenses 221 and 223, and mirrors 225 and 227.
 光源ユニット10から出力されたパルスレーザー光L2は、後述する制御部30のアイソレーター303と、リレーレンズ221及び223と、ミラー225及び227とを経て、インプットカプラー201から共振器21の内部に入射する。なお、光源ユニット10から出射されたパルスレーザー光L2を、アイソレーター303を経て共振器21の内部に導光させることが可能であれば、光路中に配置される光学系の構成は、リレーレンズ221及び223と、ミラー225及び227とには限定されない。 The pulsed laser light L2 output from the light source unit 10 is incident on the inside of the resonator 21 from the input coupler 201 through an isolator 303 of the control unit 30 described later, relay lenses 221 and 223, and mirrors 225 and 227. . If the pulsed laser light L2 emitted from the light source unit 10 can be guided into the resonator 21 through the isolator 303, the configuration of the optical system disposed in the optical path is the relay lens 221. And 223 and the mirrors 225 and 227 are not limited.
 共振器21は、所謂、光パラメトリック発振器(OPO:Optical Parametric Oscillation)であり、光源ユニット10からのパルスレーザー光L2を内部で共振させるとともに、当該レーザー光L2の波長を変換し、波長が変換されたパルスレーザー光L4を出力する。以下に、共振器21の詳細な構成について説明する。なお、以降では、共振器21に入射するパルスレーザー光を「励起レーザー光」と呼び、波長が変換されて共振器21から出力されるパルスレーザー光を「OPOレーザー光」と呼ぶ場合がある。また、共振器21内で共振する励起レーザー光を、当該共振器21内に入射する前のパルスレーザー光L2と区別する場合には、「励起レーザー光L3」もしくは、「パルスレーザー光L3」と記載する場合がある。 The resonator 21 is a so-called optical parametric oscillator (OPO), which resonates the pulse laser beam L2 from the light source unit 10 inside, converts the wavelength of the laser beam L2, and converts the wavelength. The pulsed laser beam L4 is output. The detailed configuration of the resonator 21 will be described below. Hereinafter, the pulse laser light incident on the resonator 21 may be referred to as “excitation laser light”, and the pulse laser light whose wavelength is converted and output from the resonator 21 may be referred to as “OPO laser light”. Further, when the excitation laser light resonating in the resonator 21 is distinguished from the pulse laser light L2 before entering the resonator 21, “excitation laser light L3” or “pulse laser light L3” is used. May be described.
 共振器21は、インプットカプラー201と、ミラー203、205、及び207と、ダイクロイックミラー209と、アウトプットカプラー211と、非線形光学素子213とを含む。インプットカプラー201及びアウトプットカプラー211は、一般的には、数%の透過率を有するパーシャルリフレクター(部分反射鏡)である。 The resonator 21 includes an input coupler 201, mirrors 203, 205, and 207, a dichroic mirror 209, an output coupler 211, and a nonlinear optical element 213. The input coupler 201 and the output coupler 211 are generally partial reflectors (partial reflectors) having a transmittance of several percent.
 また、ミラー203とミラー205との間には、非線形光学素子213が配されている。 Further, a nonlinear optical element 213 is disposed between the mirror 203 and the mirror 205.
 非線形光学素子213は、例えば、KTP(KTiOPO)、LN(LiNbO)、QPMLN(疑似位相整合LN)、BBO(β-BaB)、LBO(LiB)、KN(KNbO)等が用いられる。 The nonlinear optical element 213 includes, for example, KTP (KTiOPO 4 ), LN (LiNbO 3 ), QPMLN (pseudo phase matching LN), BBO (β-BaB 2 O 4 ), LBO (LiB 3 O 4 ), KN (KNbO 3 ). ) Etc. are used.
 非線形光学素子213は、一例として、入力されたレーザー光(即ち、励起レーザー光L3)を2つの波長に変換する。そして、変換した2つの波長のうち、少なくとも一方の波長(例えば、長波長)のレーザー光が、OPOレーザー光L4として、共振器21内で共振し、アウトプットカプラー211から共振器21の外部に出力されることとなる。 As an example, the nonlinear optical element 213 converts input laser light (that is, excitation laser light L3) into two wavelengths. Then, at least one of the two converted wavelengths (for example, a long wavelength) laser light resonates in the resonator 21 as the OPO laser light L4, and is output from the output coupler 211 to the outside of the resonator 21. Will be output.
 また、インプットカプラー201と、ミラー203との間にはダイクロイックミラー209が配されている。ダイクロイックミラー209は、ミラー203によりインプットカプラー201に向けて反射された光のうち、励起レーザー光L3をインプットカプラー201に向けて透過させ、OPOレーザー光L4をアウトプットカプラー211に向けて反射させる。このような構成により、本実施形態に係る共振器21は、励起レーザー光L3と、OPOレーザー光L4とが異なる光路を経て共振器21内を導光される。以下に、共振器21内における励起レーザー光L3及びOPOレーザー光L4の光路の詳細について、それぞれ説明する。 A dichroic mirror 209 is disposed between the input coupler 201 and the mirror 203. Of the light reflected toward the input coupler 201 by the mirror 203, the dichroic mirror 209 transmits the excitation laser light L3 toward the input coupler 201 and reflects the OPO laser light L4 toward the output coupler 211. With such a configuration, the resonator 21 according to the present embodiment is guided through the resonator 21 through optical paths in which the excitation laser light L3 and the OPO laser light L4 are different. The details of the optical paths of the excitation laser light L3 and the OPO laser light L4 in the resonator 21 will be described below.
 まず、励起レーザー光L3の光路に着目する。インプットカプラー201から共振器内部に入射した励起レーザー光L3は、ダイクロイックミラー209を透過し、ミラー203、非線形光学素子213、及びミラー205を経て、ミラー207に到達し、当該ミラー207で反射される。 First, focus on the optical path of the excitation laser beam L3. The excitation laser light L3 incident on the resonator from the input coupler 201 passes through the dichroic mirror 209, reaches the mirror 207 via the mirror 203, the nonlinear optical element 213, and the mirror 205, and is reflected by the mirror 207. .
 また、ミラー207で反射された励起レーザー光L3は、ミラー205、非線形光学素子213、及びミラー203を経て、ダイクロイックミラー209に導光され、当該ダイクロイックミラー209を透過し、インプットカプラー201に導光される。 Further, the excitation laser light L3 reflected by the mirror 207 is guided to the dichroic mirror 209 through the mirror 205, the nonlinear optical element 213, and the mirror 203, passes through the dichroic mirror 209, and is guided to the input coupler 201. Is done.
 インプットカプラー201は、導光された励起レーザー光L3の一部を反射させるとともに、他の一部を共振器21の外部に出射させる。このように、共振器21内に入射した励起レーザー光L3は、インプットカプラー201と、ミラー207との間で反射を繰り返す。即ち、インプットカプラー201と、ミラー207との間の光路が、共振器21内における励起レーザー光L3の光路長(換言すると、共振器長)に相当し、当該光路長が励起レーザー光L3の共振条件に合わせて調整されることで、励起レーザー光L3が共振器21内で共振することとなる。このように共振器内で繰り返し光が共鳴する事により光密度が高めることが出来る。このように光密度を高めることをポンピングと呼び、高めたら他光をポンプ光と呼ぶ。励起光の出力が非線型素子の閾値より低い場合は閾値を超えるための有効な方法である。 The input coupler 201 reflects a part of the guided excitation laser beam L3 and emits the other part to the outside of the resonator 21. As described above, the excitation laser light L3 incident on the resonator 21 is repeatedly reflected between the input coupler 201 and the mirror 207. That is, the optical path between the input coupler 201 and the mirror 207 corresponds to the optical path length of the excitation laser light L3 in the resonator 21 (in other words, the resonator length), and the optical path length is the resonance of the excitation laser light L3. By adjusting according to the conditions, the excitation laser light L3 resonates in the resonator 21. Thus, the light density can be increased by resonating light repeatedly in the resonator. Raising the light density in this way is called pumping, and when it is raised, the other light is called pump light. This is an effective method for exceeding the threshold when the output of the excitation light is lower than the threshold of the nonlinear element.
 また、インプットカプラー201から共振器21の外部に出射された励起レーザー光は、共振器21からの反射光として、アイソレーター303により光検出器305に向けて導光され、当該光検出器305で検出される。 Further, the excitation laser light emitted from the input coupler 201 to the outside of the resonator 21 is guided toward the photodetector 305 by the isolator 303 as reflected light from the resonator 21 and detected by the photodetector 305. Is done.
 次に、OPOレーザー光L4の光路に着目する。非線形光学素子213で波長変換された励起レーザー光L3、即ち、OPOレーザー光L4は、ミラー205を経てミラー207に到達し、当該ミラー207で反射される。 Next, attention is focused on the optical path of the OPO laser beam L4. The excitation laser light L3 wavelength-converted by the nonlinear optical element 213, that is, the OPO laser light L4 reaches the mirror 207 via the mirror 205 and is reflected by the mirror 207.
 また、ミラー207で反射されたOPOレーザー光L4は、ミラー205、非線形光学素子213、及びミラー203を経て、ダイクロイックミラー209に導光され、当該ダイクロイックミラー209で反射されて、アウトプットカプラー211に導光される。 Further, the OPO laser light L4 reflected by the mirror 207 is guided to the dichroic mirror 209 via the mirror 205, the nonlinear optical element 213, and the mirror 203, reflected by the dichroic mirror 209, and then output to the output coupler 211. Light is guided.
 アウトプットカプラー211は、導光されたOPOレーザー光L4の一部を反射させるとともに、他の一部を共振器21の外部に出射させる。このように、共振器21内に入射したOPOレーザー光L4は、アウトプットカプラー211と、ミラー207との間で反射を繰り返す。即ち、アウトプットカプラー211と、ミラー207との間の光路が、共振器21内におけるOPOレーザー光L4の光路長(換言すると、共振器長)に相当し、当該光路長がOPOレーザー光L4の共振条件に合わせて調整されることで、OPOレーザー光L4が共振器21内で共振することとなる。 The output coupler 211 reflects a part of the guided OPO laser beam L4 and emits the other part to the outside of the resonator 21. As described above, the OPO laser light L 4 incident on the resonator 21 is repeatedly reflected between the output coupler 211 and the mirror 207. That is, the optical path between the output coupler 211 and the mirror 207 corresponds to the optical path length of the OPO laser light L4 in the resonator 21 (in other words, the resonator length), and the optical path length is the same as that of the OPO laser light L4. By adjusting according to the resonance condition, the OPO laser beam L4 resonates in the resonator 21.
 次に、共振器21内における、励起レーザー光L3及びOPOレーザー光L4それぞれの光路長の調整に係る動作について説明する。本実施形態に係る共振器21では、ミラー207は、当該ミラー207に入射する励起レーザー光L3及びOPOレーザー光L4の光軸方向に沿って位置を調整可能に構成されている。同様に、アウトプットカプラー211は、当該アウトプットカプラー211に入射するOPOレーザー光L4の光軸方向に沿って位置を調整可能に構成されている。 Next, an operation related to adjustment of the optical path lengths of the excitation laser beam L3 and the OPO laser beam L4 in the resonator 21 will be described. In the resonator 21 according to the present embodiment, the mirror 207 is configured to be adjustable in position along the optical axis direction of the excitation laser light L3 and the OPO laser light L4 incident on the mirror 207. Similarly, the output coupler 211 is configured such that the position can be adjusted along the optical axis direction of the OPO laser light L4 incident on the output coupler 211.
 即ち、ミラー207の位置が調整されることで、励起レーザー光L3及びOPOレーザー光L4それぞれの光路長が調整され、アウトプットカプラー211の位置が調整されることで、OPOレーザー光L4の光路長が調整される。そのため、例えば、励起レーザー光L3の共振条件を満たすようにミラー207の位置が調整され、次いで、OPOレーザー光L4の共振条件を満たすようにアウトプットカプラー211の位置が調整される構成としてもよい。このような順序でミラー207及びアウトプットカプラー211の位置が調整されることで、励起レーザー光L3及びOPOレーザー光L4それぞれについて、共振条件を満たすように光路長を制御することが可能となる。 That is, the optical path length of each of the excitation laser light L3 and the OPO laser light L4 is adjusted by adjusting the position of the mirror 207, and the optical path length of the OPO laser light L4 is adjusted by adjusting the position of the output coupler 211. Is adjusted. Therefore, for example, the position of the mirror 207 may be adjusted so as to satisfy the resonance condition of the excitation laser beam L3, and then the position of the output coupler 211 may be adjusted so as to satisfy the resonance condition of the OPO laser beam L4. . By adjusting the positions of the mirror 207 and the output coupler 211 in this order, the optical path length can be controlled so as to satisfy the resonance condition for each of the excitation laser light L3 and the OPO laser light L4.
 ミラー207及びアウトプットカプラー211の位置は、例えば、電磁アクチュエーター(VCM:Voice Coil Motor)や、圧電素子構成等のようなアクチュエーターデバイスにより調整される。なお、ミラー207及びアウトプットカプラー211の位置を調整するためのアクチュエーターデバイスの動作は、後述するサーボ制御ドライバ313により制御される。 The positions of the mirror 207 and the output coupler 211 are adjusted by an actuator device such as an electromagnetic actuator (VCM: Voice Coil Motor) or a piezoelectric element configuration, for example. The operation of the actuator device for adjusting the positions of the mirror 207 and the output coupler 211 is controlled by a servo control driver 313 described later.
 次に、制御部30の各構成について説明する。 Next, each configuration of the control unit 30 will be described.
 アイソレーター303は、光増幅器部(SOA部)131と共振器21との間に介在し、光増幅器部(SOA部)131から出力されるパルスレーザー光L2を共振器21に向けて透過させる。 The isolator 303 is interposed between the optical amplifier unit (SOA unit) 131 and the resonator 21, and transmits the pulsed laser light L2 output from the optical amplifier unit (SOA unit) 131 toward the resonator 21.
 また、共振器21のインプットカプラー201を透過して当該共振器21の外部に出射した励起レーザー光L3の一部、即ち、共振器21からの反射光は、ミラー227及び225と、リレーレンズ223及び221とを経て、アイソレーター303に導光される。アイソレーター303は、共振器21からの反射光を、光増幅器部(SOA部)131とは異なる方向に配置された光検出器305に向けて反射させることで、当該反射光が光増幅器部(SOA部)131に入射することを防止している。 Further, a part of the excitation laser light L3 transmitted through the input coupler 201 of the resonator 21 and emitted to the outside of the resonator 21, that is, the reflected light from the resonator 21, is reflected by the mirrors 227 and 225 and the relay lens 223. And 221 and guided to the isolator 303. The isolator 303 reflects the reflected light from the resonator 21 toward the photodetector 305 disposed in a different direction from the optical amplifier unit (SOA unit) 131, so that the reflected light is reflected in the optical amplifier unit (SOA unit). Part) 131 is prevented from entering.
 光検出器305は、例えば、PD(Photo Detector)からなる。光検出器305は、アイソレーター303を経て導光された共振器21からの反射光を検出する。光検出器305は、共振器21からの反射光の検出結果を反射信号としてバンドパスフィルタ307に出力する。 The photodetector 305 is made of, for example, a PD (Photo Detector). The photodetector 305 detects the reflected light from the resonator 21 guided through the isolator 303. The photodetector 305 outputs the detection result of the reflected light from the resonator 21 to the bandpass filter 307 as a reflected signal.
 バンドパスフィルタ307は、励起レーザー光L3の変調周波数fに対応する帯域の信号を混合器309に向けて通過させ、当該帯域以外の信号を遮断する。これにより、光検出器305の検出結果に基づく信号のうち、共振器21からの反射光(即ち、共振器21から漏れ出た励起レーザー光L3)に基づく信号がバンドパスフィルタ307を通過して混合器309に入力され、外乱等に伴うその他の光に基づく信号がバンドパスフィルタ307で遮断される。 Bandpass filter 307, towards a signal in a band corresponding to the modulation frequency f M of the excitation laser beam L3 to the mixer 309 is passed through, to cut off the signal other than the band. As a result, among the signals based on the detection result of the photodetector 305, the signal based on the reflected light from the resonator 21 (that is, the excitation laser light L 3 leaking from the resonator 21) passes through the bandpass filter 307. A signal that is input to the mixer 309 and is based on other light due to disturbance or the like is blocked by the bandpass filter 307.
 混合器309は、発振器301から供給される周波数fの信号と、共振器21からの反射光に基づく反射信号とをかけ算することで共振器長の誤差信号を生成し、生成した誤差信号を駆動信号生成部311に出力する。このとき生成される誤差信号は、所謂、PDH(Pound-Drever-Hall)法における誤差信号に相当し、共振器21内における励起レーザー光L3の光路長と、当該励起レーザー光L3の共振条件を満たす光路長との間のずれを示している。 The mixer 309 multiplies the signal of the frequency f M supplied from the oscillator 301 by the reflected signal based on the reflected light from the resonator 21 to generate an error signal of the resonator length, and the generated error signal is Output to the drive signal generator 311. The error signal generated at this time corresponds to an error signal in a so-called PDH (Pound-Drever-Hall) method, and the optical path length of the excitation laser light L3 in the resonator 21 and the resonance condition of the excitation laser light L3 are determined. The deviation from the optical path length to be filled is shown.
 駆動信号生成部311は、ローパスフィルタと、間欠発光に同期した同期検波回路と、位相補償部とを含む。混合器309から出力された誤差信号は、駆動信号生成部311のローパスフィルタにより高周波成分(即ち、ノイズ)が除去されて、同期検波回路に供給される。 The drive signal generation unit 311 includes a low-pass filter, a synchronous detection circuit synchronized with intermittent light emission, and a phase compensation unit. The error signal output from the mixer 309 is supplied with a high-frequency component (that is, noise) from the low-pass filter of the drive signal generation unit 311 and supplied to the synchronous detection circuit.
 駆動信号生成部311の同期検波回路は、ローパスフィルタによりノイズが除去された誤差信号を間欠発光に同期したS/H信号に基づき同期検波する。そして、同期検波回路は、S/H信号に基づき同期検波した誤差信号(以降では、「S/H出力」と呼ぶ場合がある)を位相補償部に出力する。 The synchronous detection circuit of the drive signal generation unit 311 synchronously detects the error signal from which noise has been removed by the low-pass filter based on the S / H signal synchronized with intermittent light emission. Then, the synchronous detection circuit outputs an error signal synchronously detected based on the S / H signal (hereinafter, sometimes referred to as “S / H output”) to the phase compensation unit.
 駆動信号生成部311の位相補償部は、同期検波回路から供給されるS/H出力をVCMの特性に合わせた位相補償を行い、位相が補償された信号出力を駆動信号としてサーボ制御ドライバ313に供給する。 The phase compensation unit of the drive signal generation unit 311 performs phase compensation by matching the S / H output supplied from the synchronous detection circuit with the characteristics of the VCM, and sends the signal output whose phase is compensated to the servo control driver 313 as a drive signal. Supply.
 サーボ制御ドライバ313は、駆動信号生成部311から供給される駆動信号に基づき、アクチュエーターデバイスを駆動することで、ミラー207の位置を調整する。このとき、当該駆動信号は、共振器21内における励起レーザー光L3の光路長と、当該励起レーザー光L3の共振条件を満たす光路長との間のずれを示す誤差信号に基づき生成されている。そのため、サーボ制御ドライバ313が、駆動信号生成部311から供給される駆動信号に基づきミラー207の位置を制御することで、共振器21内における励起レーザー光L3の光路長がサーボ制御される。 The servo control driver 313 adjusts the position of the mirror 207 by driving the actuator device based on the drive signal supplied from the drive signal generation unit 311. At this time, the drive signal is generated based on an error signal indicating a deviation between the optical path length of the excitation laser light L3 in the resonator 21 and the optical path length satisfying the resonance condition of the excitation laser light L3. Therefore, the servo control driver 313 controls the position of the mirror 207 based on the drive signal supplied from the drive signal generation unit 311, so that the optical path length of the excitation laser light L 3 in the resonator 21 is servo-controlled.
 なお、共振器21内における励起レーザー光L3の光路長が制御された場合、即ち、ミラー207の位置が変動した場合には、共振器21内におけるOPOレーザー光L4の光路長も変動することとなる。そのため、サーボ制御ドライバ313は、ミラー207の位置を制御した場合には、当該ミラー207の位置の制御量に応じてアウトプットカプラー211の位置を調整することで、OPOレーザー光L4の光路長をあわせて制御すればよいことは言うまでもない。 When the optical path length of the excitation laser beam L3 in the resonator 21 is controlled, that is, when the position of the mirror 207 varies, the optical path length of the OPO laser beam L4 in the resonator 21 also varies. Become. Therefore, when the servo control driver 313 controls the position of the mirror 207, the servo control driver 313 adjusts the position of the output coupler 211 according to the control amount of the position of the mirror 207, thereby adjusting the optical path length of the OPO laser light L4. Needless to say, it may be controlled together.
 以上、図1を参照しながら、本実施形態に係るレーザー光発生装置1の構成について説明した。 The configuration of the laser beam generator 1 according to the present embodiment has been described above with reference to FIG.
 図1に示したように構成されるレーザー光発生装置1において、SOAドライバ40に入力される入力パルスのパルス幅に、レーザー光の発光時間を近づけることが出来ると発光効率の向上に繋がる。しかし、電流駆動制御方式では電流の増加率がある程度以上高くならないことから、電流駆動制御方式だけではレーザー光の発光時間を入力パルスのパルス幅の時間に近づけるには限界がある。 In the laser light generator 1 configured as shown in FIG. 1, if the light emission time of the laser light can be brought close to the pulse width of the input pulse input to the SOA driver 40, the light emission efficiency is improved. However, since the current increase rate does not increase to some extent in the current drive control method, the current drive control method alone has a limit in bringing the laser light emission time closer to the pulse width time of the input pulse.
 そこで本件発明者は、レーザー光の発光時間を入力パルスのパルス幅の時間により近づけることが可能な技術について鋭意検討を行った。その結果、本件発明者は、電流駆動制御方式に電圧駆動制御方式を組み合わせてレーザー光の発光の立ち上がりの傾きを急峻にすることで、レーザー光の発光時間を入力パルスのパルス幅の時間により近づけることが可能なSOAドライバ40を考案した。 Therefore, the inventor of the present invention diligently studied a technique capable of making the laser light emission time closer to the time of the pulse width of the input pulse. As a result, the present inventor makes the laser light emission time closer to the pulse width time of the input pulse by combining the current drive control method with the voltage drive control method to make the rising slope of the laser light emission steep. The SOA driver 40 that can be used has been devised.
 次に、本実施形態に係るレーザー光発生装置1のSOAドライバ40の機能構成例について説明する。 Next, a functional configuration example of the SOA driver 40 of the laser beam generator 1 according to the present embodiment will be described.
 図2は、本実施形態に係るレーザー光発生装置1のSOAドライバ40の機能構成例を示す説明図である。図2に示したように、SOAドライバ40は、信号整形部101と、電流駆動部102と、電圧駆動部103と、合成部104と、を含んで構成される。 FIG. 2 is an explanatory diagram showing a functional configuration example of the SOA driver 40 of the laser light generating apparatus 1 according to the present embodiment. As shown in FIG. 2, the SOA driver 40 includes a signal shaping unit 101, a current driving unit 102, a voltage driving unit 103, and a combining unit 104.
 信号整形部101は、SOAドライバ40に入力される入力パルスをパルスV1として電流駆動部102に出力するとともに、入力パルスを整形してパルスV2として電圧駆動部103に出力する。 The signal shaping unit 101 outputs the input pulse input to the SOA driver 40 to the current driving unit 102 as a pulse V1, and shapes the input pulse to output it to the voltage driving unit 103 as a pulse V2.
 信号整形部101は、パルスV2のパルス幅がパルスV1のパルス幅より狭くなるようにパルスV2を生成する。信号整形部101が電圧駆動部102に出力するパルスV1は、光源ユニット10のレーザー光の発光光量を設定するためのパルスであり、パルスV1のパルス幅の期間で光源ユニット10のレーザー光が発光する。信号整形部101が電圧駆動部103に出力するパルスV2は、光源ユニット10のレーザー光の発光の立ち上がりの傾きを急峻にするためのパルスである。 The signal shaping unit 101 generates the pulse V2 so that the pulse width of the pulse V2 is narrower than the pulse width of the pulse V1. The pulse V1 output from the signal shaping unit 101 to the voltage driving unit 102 is a pulse for setting the light emission amount of the laser light of the light source unit 10, and the laser light of the light source unit 10 is emitted during the period of the pulse width of the pulse V1. To do. The pulse V <b> 2 output from the signal shaping unit 101 to the voltage driving unit 103 is a pulse for making the rising slope of the laser light emission of the light source unit 10 steep.
 電流駆動部102は、信号整形部101から送られるパルスV1に基づいて電流を出力する。電流駆動部102がパルスV1に基づいて出力する電流は合成部104に供給される。電圧駆動部103は、信号整形部101から送られるパルスV2に基づいて電流を出力する。電圧駆動部103がパルスV2に基づいて出力する電流は合成部104に供給される。電流駆動部102および電圧駆動部103の具体的な回路構成例については後に詳述する。 The current driving unit 102 outputs a current based on the pulse V1 sent from the signal shaping unit 101. The current output from the current driving unit 102 based on the pulse V <b> 1 is supplied to the combining unit 104. The voltage driver 103 outputs a current based on the pulse V <b> 2 sent from the signal shaping unit 101. The current output from the voltage driving unit 103 based on the pulse V <b> 2 is supplied to the combining unit 104. Specific circuit configuration examples of the current driver 102 and the voltage driver 103 will be described in detail later.
 また電圧駆動部103がパルスV2に基づいて出力する電流は、後述するように、電流駆動部102がパルスV1に基づいて出力する電流の立ち上がりの区間を含んだ区間において出力される。電圧駆動部103が、電流駆動部102からパルスV1に基づいて出力される電流の立ち上がりの区間を含んだ区間において、パルスV2に基づいて電流を出力することで、電流駆動部102がパルスV1に基づいて出力する電流の立ち上がりを補うことが出来る。 Further, as will be described later, the current output from the voltage driver 103 based on the pulse V2 is output in a section including the rising section of the current output from the current driver 102 based on the pulse V1. The voltage driver 103 outputs a current based on the pulse V2 in a section including a section where the current output from the current driver 102 is output based on the pulse V1, so that the current driver 102 changes to the pulse V1. Based on this, it is possible to compensate for the rise of the output current.
 合成部104は、電流駆動部102から出力される電流と、電圧駆動部103から出力される電流とを合成する。合成部104は、電流駆動部102から出力される電流と、電圧駆動部103から出力される電流とを合成すると、合成した電流を光源ユニット10に出力する。光源ユニット10は、合成部104から出力される電流に基づいて半導体発光素子を駆動することで、ほぼ入力パルスのパルス幅の時間に渡って、発光立ち上がりが急峻で、発光光量がほぼ一定のパルス発光を実現する。 The combining unit 104 combines the current output from the current driving unit 102 and the current output from the voltage driving unit 103. When the combining unit 104 combines the current output from the current driving unit 102 and the current output from the voltage driving unit 103, the combining unit 104 outputs the combined current to the light source unit 10. The light source unit 10 drives the semiconductor light emitting element based on the current output from the combining unit 104, so that the light emission unit has a steep rise in light emission over the time of the pulse width of the input pulse and the light emission amount is substantially constant. Realize light emission.
 続いて電流駆動部102および電圧駆動部103の具体的な回路構成例について説明する。図3は、電流駆動部102および電圧駆動部103の具体的な回路構成例を示す説明図である。 Subsequently, specific circuit configuration examples of the current driving unit 102 and the voltage driving unit 103 will be described. FIG. 3 is an explanatory diagram illustrating a specific circuit configuration example of the current driving unit 102 and the voltage driving unit 103.
 図3に示したように、電流駆動部102は、アンプAMPAと、抵抗RS1、RF1、RS2、RF2、R1と、を含んで構成される。 As shown in FIG. 3, the current driver 102 includes an amplifier AMPA and resistors RS1, RF1, RS2, RF2, and R1.
 図3に示した電流駆動部102では、抵抗RS1と抵抗RF1とは直列に接続され、抵抗RS2と抵抗RF2とは直列に接続される。また抵抗RS1と抵抗RF1との間はアンプAMPAの反転入力端子に接続され、抵抗RS2と抵抗RF2との間はアンプAMPAの非反転入力端子に接続される。抵抗RS1の、アンプAMPAの反転入力端子に接続されていない側はグランドに接続され、抵抗RS2の、アンプAMPAの非反転入力端子に接続されていない側は、パルスV1が入力される端子に接続される。そして抵抗R1は、アンプAMPAの出力端子と、抵抗RF2の、アンプAMPAの非反転入力端子に接続されていない側との間に設けられる。 In the current driving unit 102 shown in FIG. 3, the resistor RS1 and the resistor RF1 are connected in series, and the resistor RS2 and the resistor RF2 are connected in series. The resistor RS1 and the resistor RF1 are connected to the inverting input terminal of the amplifier AMPA, and the resistor RS2 and the resistor RF2 are connected to the non-inverting input terminal of the amplifier AMPA. The side of the resistor RS1 not connected to the inverting input terminal of the amplifier AMPA is connected to the ground, and the side of the resistor RS2 not connected to the non-inverting input terminal of the amplifier AMPA is connected to the terminal to which the pulse V1 is input. Is done. The resistor R1 is provided between the output terminal of the amplifier AMPA and the side of the resistor RF2 that is not connected to the non-inverting input terminal of the amplifier AMPA.
 また、図3に示したように、電圧駆動部103は、アンプAMPBと、抵抗RV1、RV2と、を含んで構成される。 As shown in FIG. 3, the voltage driving unit 103 includes an amplifier AMPB and resistors RV1 and RV2.
 図3に示した電圧駆動部103では、抵抗RV1は、アンプAMPBの反転入力端子と、グランドとの間に設けられる。また抵抗RV2は、アンプAMPBの反転入力端子と、アンプAMPBの出力端子と、の間に設けられる。アンプAMPBの非反転入力端子は、パルスV2が入力される端子に接続される。 In the voltage driver 103 shown in FIG. 3, the resistor RV1 is provided between the inverting input terminal of the amplifier AMPB and the ground. The resistor RV2 is provided between the inverting input terminal of the amplifier AMPB and the output terminal of the amplifier AMPB. The non-inverting input terminal of the amplifier AMPB is connected to a terminal to which the pulse V2 is input.
 図3は、ダイオードD1、D2、D3と、半導体発光素子LDと、も併せて示している。ダイオードD1、D2が、図2の合成部104の一例として機能し得る。またダイオードD1、D2、D3は、電流の逆流を防ぐ保護素子として機能し得るが、ダイオードD1、D2、D3は必ずしも設けられていなくても良い。 FIG. 3 also shows the diodes D1, D2, and D3 and the semiconductor light emitting element LD. The diodes D1 and D2 can function as an example of the combining unit 104 in FIG. In addition, the diodes D1, D2, and D3 can function as protective elements that prevent reverse current flow, but the diodes D1, D2, and D3 are not necessarily provided.
 電流駆動部102が出力する電流Ioは、以下の数式1で表すことができる。なお、下記の数式1において、Rfは抵抗RF1、RF2の抵抗値、Rsは抵抗RS1、RS2の抵抗値である、従って、抵抗RF1、RF2は同じ抵抗値を有し、抵抗RS1、RS2は同じ抵抗値を有する。また数式1において、V1はパルスV1により供給される電圧値である。 The current Io output from the current driving unit 102 can be expressed by the following formula 1. In the following Equation 1, Rf is the resistance value of the resistors RF1 and RF2, and Rs is the resistance value of the resistors RS1 and RS2. Therefore, the resistors RF1 and RF2 have the same resistance value, and the resistors RS1 and RS2 are the same. It has a resistance value. In Equation 1, V1 is a voltage value supplied by the pulse V1.
 Io=(Rf/Rs)*(V1/R1) ・・・(数式1) Io = (Rf / Rs) * (V1 / R1) (Formula 1)
 また、電圧駆動部103が出力する電圧Voは、以下の数式2で表すことができる。なお、下記の数式2において、RV1、RV2は、それぞれ抵抗RV1、RV2の抵抗値である。また数式2において、V2はパルスV2により供給される電圧値である。 Further, the voltage Vo output from the voltage driving unit 103 can be expressed by Equation 2 below. In Equation 2 below, RV1 and RV2 are resistance values of the resistors RV1 and RV2, respectively. In Equation 2, V2 is a voltage value supplied by the pulse V2.
 Vo=(RV1+RV2)/RV1*V2 ………(数式2) Vo = (RV1 + RV2) / RV1 * V2 (Equation 2)
 半導体発光素子LDの発光量は駆動電流の関数であり、駆動電流が増加すれば半導体発光素子LDの発光量も増加する。以下において、半導体発光素子LDの等価回路を用いて、駆動電流が増加すれば半導体発光素子LDの発光量も増加することを説明する。 The light emission amount of the semiconductor light emitting element LD is a function of the drive current, and the light emission amount of the semiconductor light emitting element LD increases as the drive current increases. Hereinafter, using an equivalent circuit of the semiconductor light emitting element LD, it will be described that the light emission amount of the semiconductor light emitting element LD increases as the drive current increases.
 図4は、半導体発光素子LDの等価回路を示す説明図である。半導体発光素子LDは、図4に示したように、所定の等価インダクタンスL、等価キャパシタンスCおよび等価抵抗Rで表すことができる。 FIG. 4 is an explanatory diagram showing an equivalent circuit of the semiconductor light emitting element LD. The semiconductor light emitting element LD can be represented by a predetermined equivalent inductance L, equivalent capacitance C, and equivalent resistance R, as shown in FIG.
 等価インダクタンスLは、パッケージのリードや金ワイヤのインダクタンスおよび発光ユニット10から電流駆動部102の間の配線インダクタンスの合計値、等価キャパシタンスCは、サブマウントやリード引き出し絶縁部の寄生容量および発光ユニット10から電流駆動部102及び電圧駆動部103間の配線容量の合計、等価抵抗Rは、半導体レーザーの閾値電流以上でのI-V特性(微分抵抗)を表している。このL、C、Rの値は半導体レーザーの種類によって様々であり、等価インダクタンスL、等価キャパシタンスCおよび等価抵抗Rにより半導体レーザー単体の周波数特性が決定される。 The equivalent inductance L is the total value of the inductance of the package lead and gold wire and the wiring inductance between the light emitting unit 10 and the current driving unit 102, and the equivalent capacitance C is the parasitic capacitance of the submount and lead lead insulating part and the light emitting unit 10 The total wiring capacitance between the current driving unit 102 and the voltage driving unit 103, and the equivalent resistance R represent IV characteristics (differential resistance) at or above the threshold current of the semiconductor laser. The values of L, C, and R vary depending on the type of semiconductor laser, and the frequency characteristics of the semiconductor laser alone are determined by the equivalent inductance L, equivalent capacitance C, and equivalent resistance R.
 等価抵抗Rについては、値が異なる2つの駆動電流値I1,I2の時の発光素子の端子電圧V1,V2から、数式3のように求められる。
 R=(V2-V1)/(I2-I1) ………(数式3)
The equivalent resistance R can be obtained from Equation 3 using terminal voltages V1 and V2 of the light emitting element at two drive current values I1 and I2 having different values.
R = (V2-V1) / (I2-I1) (Equation 3)
 また、等価インダクタンスLについては、半導体発光素子LDの駆動電圧値V3と、駆動時間t3経過後の電流値I3とより、下記の数式4,数式5により求められる。
 V=L*dI/dt ………(数式4)
 L=(V3-R*I3)/(I3/t3) ………(数式5)
Further, the equivalent inductance L is obtained by the following formulas 4 and 5 from the drive voltage value V3 of the semiconductor light emitting element LD and the current value I3 after the drive time t3 has elapsed.
V = L * dI / dt (equation 4)
L = (V3-R * I3) / (I3 / t3) (Equation 5)
 パルスV1、駆動電圧Vo及び駆動電流Ioの関係の例を示す。図5、図6は、パルスV1、駆動電圧Vo及び駆動電流Ioの関係の例をグラフで示す説明図である。図5は、駆動電流Ioが4.0Aの場合の関係を示し、図6は、駆動電流Ioが6.0Aの場合の関係を示している。図5、図6から、駆動電流Ioが4.0Aの場合、駆動電圧Voは4.45[V]、駆動電流Ioが6.0Aの場合、駆動電圧Voは5.0[V]である。従って、等価抵抗Rは、
 R=(5.0[V]-4.45[V])/(6.0[A]-4.0[A])
  =0.275[Ω]
 と求められる。
An example of the relationship between the pulse V1, the drive voltage Vo, and the drive current Io is shown. 5 and 6 are explanatory diagrams illustrating an example of the relationship among the pulse V1, the drive voltage Vo, and the drive current Io. FIG. 5 shows the relationship when the drive current Io is 4.0 A, and FIG. 6 shows the relationship when the drive current Io is 6.0 A. 5 and 6, when the drive current Io is 4.0 A, the drive voltage Vo is 4.45 [V], and when the drive current Io is 6.0 A, the drive voltage Vo is 5.0 [V]. . Therefore, the equivalent resistance R is
R = (5.0 [V] -4.45 [V]) / (6.0 [A] -4.0 [A])
= 0.275 [Ω]
Is required.
 図7、図8は、パルスV2、駆動電圧Vo及び駆動電流Ioの関係の例をグラフで示す説明図である。図7は、駆動電圧Voが8.5Vの場合の関係を示し、図8は、駆動電圧Voが13Vの場合の関係を示している。 FIGS. 7 and 8 are explanatory diagrams illustrating an example of the relationship between the pulse V2, the drive voltage Vo, and the drive current Io. FIG. 7 shows the relationship when the drive voltage Vo is 8.5V, and FIG. 8 shows the relationship when the drive voltage Vo is 13V.
 駆動電圧Voが8.5Vの場合、駆動電流Ioが0Aから4Aまで立ち上がる時間は174nsであった。従って、等価インダクタンスLは、
 L=(8.5[V]-R[Ω]*4[A])/(4[A]/174[ns])
  =(8.5[V]-0.275[Ω]*4[A])/(4[A]/174[ns])
  =0.32[uH]
 と求められる。
When the drive voltage Vo was 8.5V, the time for the drive current Io to rise from 0A to 4A was 174 ns. Therefore, the equivalent inductance L is
L = (8.5 [V] −R [Ω] * 4 [A]) / (4 [A] / 174 [ns])
= (8.5 [V] -0.275 [Ω] * 4 [A]) / (4 [A] / 174 [ns])
= 0.32 [uH]
Is required.
 また駆動電圧Voが13Vの場合、駆動電流Ioが0Aから4Aまで立ち上がる時間は94nsであった。従って、等価インダクタンスLは、
 L=(13[V]-R[Ω]*4[A])/(4[A]/94[ns])
  =(13[V]-0.275[Ω]*4[A])/(4[A]/94[ns])
  =0.28[uH]
 と求められる。
When the drive voltage Vo was 13 V, the time for the drive current Io to rise from 0 A to 4 A was 94 ns. Therefore, the equivalent inductance L is
L = (13 [V] −R [Ω] * 4 [A]) / (4 [A] / 94 [ns])
= (13 [V] -0.275 [Ω] * 4 [A]) / (4 [A] / 94 [ns])
= 0.28 [uH]
Is required.
 数式4、5、図5~8から求められる半導体発光素子LDの等価抵抗及び等価インダクタンスにより、半導体発光素子LDの電流増加率dI/dtが電圧駆動部103の駆動電圧に比例する関係がある。従って、電圧駆動部103の駆動電圧は導体発光素子LDの等価インダクタンス成分に基づいて決定され、電圧駆動部103の駆動電圧を増加させると、半導体発光素子LDの発光立ち上がりに要する時間を短縮させることができる。 There is a relationship in which the current increase rate dI / dt of the semiconductor light emitting element LD is proportional to the driving voltage of the voltage driving unit 103 due to the equivalent resistance and equivalent inductance of the semiconductor light emitting element LD obtained from Equations 4 and 5 and FIGS. Accordingly, the driving voltage of the voltage driving unit 103 is determined based on the equivalent inductance component of the conductor light emitting element LD, and increasing the driving voltage of the voltage driving unit 103 shortens the time required for the light emitting rise of the semiconductor light emitting element LD. Can do.
 SOAドライバ40が図2及び図3に示したような構成を有することによる効果について、図9~図11を用いて説明する。 The effect of the SOA driver 40 having the configuration shown in FIGS. 2 and 3 will be described with reference to FIGS.
 図9は、電流駆動部102による電流駆動のみの場合の半導体発光素子LDへの出力電流Ioの波形の例を示す説明図である。図10は、電圧駆動部103による電圧駆動のみの場合の半導体発光素子LDへの出力電流Ioの波形の例を示す説明図である。図11は、電流駆動部102による電流駆動と、電圧駆動部103による電圧駆動とを組み合わせた場合の半導体発光素子LDへの出力電流Ioの波形の例を示す説明図である。 FIG. 9 is an explanatory diagram showing an example of a waveform of the output current Io to the semiconductor light emitting element LD when only current driving is performed by the current driving unit 102. FIG. 10 is an explanatory diagram showing an example of the waveform of the output current Io to the semiconductor light emitting element LD when only voltage driving is performed by the voltage driving unit 103. FIG. 11 is an explanatory diagram showing an example of the waveform of the output current Io to the semiconductor light emitting element LD when the current driving by the current driving unit 102 and the voltage driving by the voltage driving unit 103 are combined.
 図9に示したように、電流駆動部102による電流駆動のみの場合は、出力電流Ioが所定の値(図9の例では6A)に達するまでの時間が200nsである。図10に示したように、電圧駆動部103による電圧駆動のみの場合は、出力電流Ioが所定の値(図10の例では6A)に達するまでの時間が145nsと、電流駆動のみの場合に比べて短いが、出力電流Ioが所定の値に達した後はまた出力電流Ioが低下する。 As shown in FIG. 9, in the case of only current driving by the current driving unit 102, the time until the output current Io reaches a predetermined value (6A in the example of FIG. 9) is 200 ns. As shown in FIG. 10, in the case of only voltage driving by the voltage driving unit 103, the time until the output current Io reaches a predetermined value (6A in the example of FIG. 10) is 145 ns, and only in current driving. Although shorter, the output current Io decreases again after the output current Io reaches a predetermined value.
 そして、図11に示したように、電流駆動部102による電流駆動と、電圧駆動部103による電圧駆動とを組み合わせた場合は、出力電流Ioが所定の値(図11の例では6A)に達するまでの時間が120nsと、電圧駆動のみの場合に比べてさらに短く、電流駆動と電圧駆動とを組み合わせているので、出力電流Ioが所定の値(図10の例では6A)に達した後も所定の値を維持し続けている。 As shown in FIG. 11, when current driving by the current driving unit 102 and voltage driving by the voltage driving unit 103 are combined, the output current Io reaches a predetermined value (6A in the example of FIG. 11). The time until the time is 120 ns, which is even shorter than the case of only voltage driving, and since current driving and voltage driving are combined, even after the output current Io reaches a predetermined value (6A in the example of FIG. 10). Continue to maintain a predetermined value.
 このように、SOAドライバ40が図2及び図3に示したような構成を有することで、電流駆動のみの場合と比較して出力電流Ioが所定の値になるまでの時間を短縮させることが可能になる。 As described above, the SOA driver 40 having the configuration shown in FIGS. 2 and 3 can shorten the time until the output current Io reaches a predetermined value as compared with the case of only current driving. It becomes possible.
 (変形例)
 図12は、SOAドライバ40の具体的な回路構成例を示す説明図である。図12には、電流駆動部102の後段にカレントミラー回路105が挿入され、カレントミラー回路105からの電流が半導体発光素子LDに出力される構成が示されている。
(Modification)
FIG. 12 is an explanatory diagram illustrating a specific circuit configuration example of the SOA driver 40. FIG. 12 shows a configuration in which a current mirror circuit 105 is inserted after the current driver 102 and a current from the current mirror circuit 105 is output to the semiconductor light emitting element LD.
 カレントミラー回路105は、本開示の電流増幅部の一例である。図12に示したように、カレントミラー回路105は、トランジスタTR1,TR2からなり、トランジスタTR1,TR2を適切に選択することにより、電流駆動部102からの出力電流を増幅させることができる。 The current mirror circuit 105 is an example of a current amplification unit of the present disclosure. As shown in FIG. 12, the current mirror circuit 105 includes transistors TR1 and TR2, and the output current from the current driver 102 can be amplified by appropriately selecting the transistors TR1 and TR2.
 従って、電流駆動部102の後段にカレントミラー回路105を挿入することで、電流駆動部102からの出力電流が少ない場合であっても大きな電流を半導体発光素子LDに流すことが出来る。また電流駆動部102の後段にカレントミラー回路105を挿入することで、電流駆動部102の抵抗R1や、トランジスタTR1,TR2などの素子に存在する内部寄生インダクタンス成分を、基板上で固定し、極小化して、電流駆動部102を安定化することが出来る。 Therefore, by inserting the current mirror circuit 105 in the subsequent stage of the current driving unit 102, a large current can flow through the semiconductor light emitting element LD even when the output current from the current driving unit 102 is small. Further, by inserting the current mirror circuit 105 at the subsequent stage of the current driving unit 102, the resistance R1 of the current driving unit 102 and the internal parasitic inductance components existing in the elements such as the transistors TR1 and TR2 are fixed on the substrate and minimized. Thus, the current driver 102 can be stabilized.
 <2.まとめ>
 以上説明したように本開示の一実施形態によれば、電流駆動部102による電流駆動と、電圧駆動部103による電圧駆動とを組み合わせることで、半導体発光素子LDの発光時間を入力パルスのパルス幅に近づけることが可能なSOAドライバ40が提供される。
<2. Summary>
As described above, according to an embodiment of the present disclosure, by combining the current driving by the current driving unit 102 and the voltage driving by the voltage driving unit 103, the light emission time of the semiconductor light emitting element LD is set to the pulse width of the input pulse. An SOA driver 40 that can be brought close to is provided.
 半導体レーザーなどの半導体発光素子LDをパルス変調動作させるか、放熱のためにPWM駆動する際に、電流駆動制御方式だけでは、電流源の出力インピーダンスの高さから由来する電流増加率の低さにより、電流の増加率がある程度以上高くならない。従って電流制御駆動方式だけの場合では、半導体発光素子LDの実質的な発光時間が入力パルスのパルス幅の時間より短くなる。 When a semiconductor light emitting element LD such as a semiconductor laser is subjected to pulse modulation operation or PWM driving for heat dissipation, the current drive control method alone is caused by the low current increase rate derived from the high output impedance of the current source. The current increase rate does not become higher than a certain level. Therefore, in the case of only the current control driving method, the substantial light emission time of the semiconductor light emitting element LD is shorter than the time of the pulse width of the input pulse.
 本実施形態では、電流駆動部102だけでなく、電圧駆動部103を設けることで、負荷である半導体発光素子LDの電流増加率を、電圧駆動部103からの駆動電圧に比例して増加させることができる。電流駆動部102だけでなく、電圧駆動部103を設けることで半導体発光素子LDの発光が早く始まることで、発光時間が入力パルスのパルス幅の時間により近づく方向に延長することが出来る。 In the present embodiment, by providing not only the current driver 102 but also the voltage driver 103, the current increase rate of the semiconductor light emitting element LD as a load is increased in proportion to the drive voltage from the voltage driver 103. Can do. By providing not only the current driving unit 102 but also the voltage driving unit 103, the light emission of the semiconductor light emitting element LD starts earlier, so that the light emission time can be extended in a direction closer to the time of the pulse width of the input pulse.
 また本実施形態では、半導体発光素子LDの寄生成分と、伝送路のインダクタンス成分とを制御することで、パルス変調動作、または放熱のためのパルス駆動の際の高速発光立上げを可能にする。 In the present embodiment, the parasitic component of the semiconductor light emitting element LD and the inductance component of the transmission path are controlled, thereby enabling high-speed light emission startup during pulse modulation operation or pulse driving for heat dissipation.
 また本実施形態では、短パルスレーザー光源のSOA大電力間欠駆動において、大電力素子に伴う低内部抵抗により無視できなくなった寄生インダクタンス成分を積極的に制御することで、定常状態の発光タイミングに至る時間を早めて発光デューティを増加させることが出来る。 Further, in the present embodiment, in the SOA high power intermittent drive of the short pulse laser light source, the parasitic inductance component that cannot be ignored due to the low internal resistance associated with the high power element is positively controlled to reach the light emission timing in the steady state. Light emission duty can be increased by advancing time.
 上述の実施の形態では、SOAドライバ40が本開示の制御装置の一例であり、SOAドライバ40に光源ユニット10を加えた構成が本開示の光源装置の一例であり、レーザー光発生装置1が本開示のレーザー光発生装置の一例である。 In the above-described embodiment, the SOA driver 40 is an example of the control device of the present disclosure, the configuration in which the light source unit 10 is added to the SOA driver 40 is an example of the light source device of the present disclosure, and the laser light generator 1 is the main device. It is an example of the laser beam generator of an indication.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 電流に応じて発光するレーザーに対し、第1のパルスに応じて設定される電流を出力する電流駆動部と、
 前記第1のパルスのパルス幅における、前記電流駆動部が出力する電流が立ち上がる期間を含む期間において、前記第1のパルスのパルス幅より短いパルス幅を有する第2のパルスに応じて設定される電圧に基づいて前記レーザーに対し電流を出力する電圧駆動部と、
を備える、制御装置。
(2)
 前記電圧駆動部が設定する電圧は、前記レーザーの等価インダクタンス成分に基づいて決定される、前記(1)に記載の制御装置。
(3)
 前記電流駆動部から出力される電流を増幅して前記レーザーに出力する電流増幅部をさらに備える、前記(1)または(2)に記載の制御装置。
(4)
 入力されるパルスから前記電流駆動部へ出力する前記第1のパルス及び前記電圧駆動部へ出力する前記第2のパルスを生成する信号整形部をさらに備える、前記(1)~(3)のいずれかに記載の制御装置。
(5)
 前記レーザーは、間欠駆動されるレーザーである、前記(1)~(4)のいずれかに記載の制御装置。
(6)
 前記(1)~(5)のいずれかに記載の制御装置を備える、光源装置。
(7)
 前記(6)に記載の光源装置を備える、レーザー光発生装置。
(8)
 電流に応じて発光するレーザーに対し、第1のパルスに応じて設定される電流を出力することと、
 前記第1のパルスのパルス幅における、前記第1のパルスに応じて出力される電流が立ち上がる期間を含む期間において、前記第1のパルスのパルス幅より短いパルス幅を有する第2のパルスに応じて設定される電圧に基づいて前記レーザーに対し電流を出力することと、
を含む、制御方法。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A current driver that outputs a current set according to the first pulse for a laser that emits light according to the current;
In the period including the period in which the current output from the current driver rises in the pulse width of the first pulse, the first pulse is set according to the second pulse having a pulse width shorter than the pulse width of the first pulse. A voltage driver that outputs a current to the laser based on a voltage;
A control device comprising:
(2)
The control device according to (1), wherein the voltage set by the voltage driving unit is determined based on an equivalent inductance component of the laser.
(3)
The control device according to (1) or (2), further including a current amplifying unit that amplifies a current output from the current driving unit and outputs the current to the laser.
(4)
Any of (1) to (3), further comprising: a signal shaping unit that generates the first pulse output from the input pulse to the current driver and the second pulse output to the voltage driver. A control device according to claim 1.
(5)
The control device according to any one of (1) to (4), wherein the laser is an intermittently driven laser.
(6)
A light source device comprising the control device according to any one of (1) to (5).
(7)
A laser beam generator comprising the light source device according to (6).
(8)
Outputting a current set according to the first pulse to a laser emitting according to the current;
In response to a second pulse having a pulse width shorter than the pulse width of the first pulse in a period including a period in which a current output in response to the first pulse rises in the pulse width of the first pulse. Outputting current to the laser based on the voltage set by
Including a control method.
1     :レーザー光発生装置
10    :光源ユニット
11    :MLLD部
20    :波長変換光学系
21    :共振器
30    :制御部
31    :加算器
40    :SOAドライバ
111   :レーザー光源
113   :レンズ
115   :回折格子
121   :レンズ
123   :ミラー
125   :アイソレーター
127、  :レンズ
129   :レンズ
131   :光増幅器部
201   :インプットカプラー
203   :ミラー
205   :ミラー
207   :ミラー
209   :ダイクロイックミラー
211   :アウトプットカプラー
213   :非線形光学素子
221   :リレーレンズ
223   :リレーレンズ
225   :ミラー
227   :ミラー
301   :発振器
303   :アイソレーター
305   :光検出器
307   :バンドパスフィルタ
309   :混合器
311   :駆動信号生成部
313   :サーボ制御ドライバ
1: Laser light generator 10: Light source unit 11: MLLD unit 20: Wavelength conversion optical system 21: Resonator 30: Control unit 31: Adder 40: SOA driver 111: Laser light source 113: Lens 115: Diffraction grating 121: Lens 123: Mirror 125: Isolator 127: Lens 129: Lens 131: Optical amplifier unit 201: Input coupler 203: Mirror 205: Mirror 207: Mirror 209: Dichroic mirror 211: Output coupler 213: Nonlinear optical element 221: Relay lens 223 : Relay lens 225: Mirror 227: Mirror 301: Oscillator 303: Isolator 305: Optical detector 307: Band pass filter 309: Mixer 311 Drive signal generation unit 313: servo control driver

Claims (8)

  1.  電流に応じて発光するレーザーに対し、第1のパルスに応じて設定される電流を出力する電流駆動部と、
     前記第1のパルスのパルス幅における、前記電流駆動部が出力する電流が立ち上がる期間を含む期間において、前記第1のパルスのパルス幅より短いパルス幅を有する第2のパルスに応じて設定される電圧に基づいて前記レーザーに対し電流を出力する電圧駆動部と、
    を備える、制御装置。
    A current driver that outputs a current set according to the first pulse for a laser that emits light according to the current;
    In the period including the period in which the current output from the current driver rises in the pulse width of the first pulse, the first pulse is set according to the second pulse having a pulse width shorter than the pulse width of the first pulse. A voltage driver that outputs a current to the laser based on a voltage;
    A control device comprising:
  2.  前記電圧駆動部が設定する電圧は、前記レーザーの等価インダクタンス成分に基づいて決定される、請求項1に記載の制御装置。 The control device according to claim 1, wherein the voltage set by the voltage driving unit is determined based on an equivalent inductance component of the laser.
  3.  前記電流駆動部から出力される電流を増幅して前記レーザーに出力する電流増幅部をさらに備える、請求項1に記載の制御装置。 The control device according to claim 1, further comprising a current amplifying unit that amplifies a current output from the current driving unit and outputs the amplified current to the laser.
  4.  入力されるパルスから前記電流駆動部へ出力する前記第1のパルス及び前記電圧駆動部へ出力する前記第2のパルスを生成する信号整形部をさらに備える、請求項1に記載の制御装置。 2. The control device according to claim 1, further comprising a signal shaping unit that generates the first pulse output from the input pulse to the current drive unit and the second pulse output to the voltage drive unit.
  5.  前記レーザーは、間欠駆動されるレーザーである、請求項1に記載の制御装置。 The control device according to claim 1, wherein the laser is an intermittently driven laser.
  6.  請求項1に記載の制御装置を備える、光源装置。 A light source device comprising the control device according to claim 1.
  7.  請求項6に記載の光源装置を備える、レーザー光発生装置。 A laser light generator comprising the light source device according to claim 6.
  8.  電流に応じて発光するレーザーに対し、第1のパルスに応じて設定される電流を出力することと、
     前記第1のパルスのパルス幅における、前記第1のパルスに応じて出力される電流が立ち上がる期間を含む期間において、前記第1のパルスのパルス幅より短いパルス幅を有する第2のパルスに応じて設定される電圧に基づいて前記レーザーに対し電流を出力することと、
    を含む、制御方法。
    Outputting a current set according to the first pulse to a laser emitting according to the current;
    In response to a second pulse having a pulse width shorter than the pulse width of the first pulse in a period including a period in which a current output in response to the first pulse rises in the pulse width of the first pulse. Outputting current to the laser based on the voltage set by
    Including a control method.
PCT/JP2016/051329 2015-03-02 2016-01-18 Control device, light source device, laser light-emitting device, and control method WO2016139978A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-040467 2015-03-02
JP2015040467 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016139978A1 true WO2016139978A1 (en) 2016-09-09

Family

ID=56848478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051329 WO2016139978A1 (en) 2015-03-02 2016-01-18 Control device, light source device, laser light-emitting device, and control method

Country Status (1)

Country Link
WO (1) WO2016139978A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181621A (en) * 2016-12-08 2018-06-19 北京万集科技股份有限公司 A kind of bidifly light drive circuit and scanning type laser radar ranging equipment and method
CN111698487A (en) * 2020-06-03 2020-09-22 青岛海信激光显示股份有限公司 Laser projection apparatus and laser drive control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238084A (en) * 1988-03-18 1989-09-22 Fuji Photo Film Co Ltd Semiconductor light emitting element driving circuit
US20040160996A1 (en) * 2003-01-02 2004-08-19 Giorgi David M. Apparatus and method for driving a pulsed laser diode
JP2005063997A (en) * 2003-08-08 2005-03-10 Fuji Xerox Co Ltd Light emitting element driving device and image forming apparatus
JP4123791B2 (en) * 2001-03-05 2008-07-23 富士ゼロックス株式会社 Light emitting element driving apparatus and light emitting element driving system
JP2009105360A (en) * 2007-10-19 2009-05-14 Phihong Technology Co Ltd Laser diode driving circuit and method for driving it
JP2011513988A (en) * 2008-03-03 2011-04-28 イーストマン コダック カンパニー Laser diode driver
JP2012222170A (en) * 2011-04-11 2012-11-12 Fujitsu Ltd Optical amplifier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238084A (en) * 1988-03-18 1989-09-22 Fuji Photo Film Co Ltd Semiconductor light emitting element driving circuit
JP4123791B2 (en) * 2001-03-05 2008-07-23 富士ゼロックス株式会社 Light emitting element driving apparatus and light emitting element driving system
US20040160996A1 (en) * 2003-01-02 2004-08-19 Giorgi David M. Apparatus and method for driving a pulsed laser diode
JP2005063997A (en) * 2003-08-08 2005-03-10 Fuji Xerox Co Ltd Light emitting element driving device and image forming apparatus
JP2009105360A (en) * 2007-10-19 2009-05-14 Phihong Technology Co Ltd Laser diode driving circuit and method for driving it
JP2011513988A (en) * 2008-03-03 2011-04-28 イーストマン コダック カンパニー Laser diode driver
JP2012222170A (en) * 2011-04-11 2012-11-12 Fujitsu Ltd Optical amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181621A (en) * 2016-12-08 2018-06-19 北京万集科技股份有限公司 A kind of bidifly light drive circuit and scanning type laser radar ranging equipment and method
CN111698487A (en) * 2020-06-03 2020-09-22 青岛海信激光显示股份有限公司 Laser projection apparatus and laser drive control method
CN111698487B (en) * 2020-06-03 2022-06-28 青岛海信激光显示股份有限公司 Laser projection apparatus and laser drive control method

Similar Documents

Publication Publication Date Title
CA2743648C (en) Spectrally tailored pulsed fiber laser oscillator
US8879589B2 (en) Stabilizing beam pointing of a frequency-converted laser system
US7787506B1 (en) Gain-switched fiber laser system
JPH0357288A (en) Device with semiconductor laser and using method of the same
US20090296759A1 (en) Sequentially-modulated diode-laser seed-pulse generator
TWI589080B (en) Laser device and laser processing machine
US11050211B2 (en) Pulsed laser device, processing device, and method of controlling pulsed laser device
JP2004253800A (en) Laser apparatus for forming laser pulse
JP2010232650A (en) Laser light source device, laser processing device, control device of laser light source device, and method of controlling laser light source device
JP2003295243A (en) Higher harmonic light source unit, method for driving the same, image display device using the same, image forming device, and optical recording device
JP2009518858A5 (en)
WO2016139978A1 (en) Control device, light source device, laser light-emitting device, and control method
JP6508058B2 (en) Light source device and wavelength conversion method
US5390202A (en) Regenerative optical pulse generator
Werner et al. Direct modulation capabilities of micro-integrated laser sources in the yellow–green spectral range
JP5964779B2 (en) Terahertz wave generation apparatus and terahertz wave generation method
JP2012156175A (en) Fiber laser light source device and wavelength conversion laser light source device using the same
WO2013115308A1 (en) Semiconductor laser device and apparatus using non-linear optical effect
JP2007194416A (en) Light wavelength conversion light source
JP2007048905A (en) Nonlinear semiconductor optical element drive device
JP5903740B2 (en) Laser emitting pulses with variable period and stabilized energy
JP2008010720A (en) Fiber laser device
KR101179202B1 (en) Semiconductor laser of the wavelength convertible type operated by pulse
JP5055791B2 (en) Optical pulse generator
WO2015097972A1 (en) Control device, control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16758674

Country of ref document: EP

Kind code of ref document: A1