WO2016139735A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2016139735A1
WO2016139735A1 PCT/JP2015/056121 JP2015056121W WO2016139735A1 WO 2016139735 A1 WO2016139735 A1 WO 2016139735A1 JP 2015056121 W JP2015056121 W JP 2015056121W WO 2016139735 A1 WO2016139735 A1 WO 2016139735A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
bearing
rotary compressor
rolling bearing
inner ring
Prior art date
Application number
PCT/JP2015/056121
Other languages
French (fr)
Japanese (ja)
Inventor
祐策 石部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017503238A priority Critical patent/JP6429987B2/en
Priority to PCT/JP2015/056121 priority patent/WO2016139735A1/en
Priority to CN201620159444.4U priority patent/CN205503462U/en
Publication of WO2016139735A1 publication Critical patent/WO2016139735A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to a rotary compressor.
  • the slide bearing as described in Patent Document 1 has a problem that the contact portion between the crankshaft and the slide bearing may be damaged when the refrigeration oil is exhausted.
  • the rolling bearings described in Patent Documents 1 to 4 have a problem that a certain sliding loss occurs due to friction in the rolling bearing.
  • the present invention has been made to solve the above-described problem, and provides a rotary compressor capable of preventing damage to a contact portion between a crankshaft and a bearing and reducing sliding loss. Objective.
  • the rotary compressor of the present invention includes a compression mechanism portion that compresses refrigerant, a crankshaft that transmits a rotational driving force to the compression mechanism portion, and a plain bearing that has an inner diameter surface that slidably supports the crankshaft, A rolling bearing having an outer ring portion fixed to a groove provided on an inner diameter surface of the slide bearing and an inner ring portion rotatably supported by the slide bearing, the outer diameter surface of the crankshaft and the rolling bearing; A clearance is provided between the inner ring portion and the inner ring portion.
  • the rotary compressor of the present invention has a clearance between the outer diameter surface of the crankshaft and the inner ring portion of the rolling bearing, and when the refrigerating machine oil is exhausted, the outer diameter surface of the crankshaft is the inner ring portion of the rolling bearing. When it comes into contact with the inner ring, it slides integrally with the inner ring portion of the rolling bearing. When an oil seal is formed in the clearance, the inner ring portion of the rolling bearing functions as a sliding bearing for the crankshaft. Therefore, according to this invention, while preventing the damage of the contact part of a crankshaft and a slide bearing, the rotary compressor which can reduce a sliding loss can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of a rotary compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged cross-sectional view schematically showing the compression mechanism unit 50 of the rotary compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 3 is a plan view schematically showing the structure of the crankshaft 5 of the rotary compressor 100 according to Embodiment 1 of the present invention.
  • symbol is attached
  • FIG. 1 illustrates a vertical two-cylinder rotary compressor 100 as an example.
  • the rotary compressor 100 includes a sealed container 1 that is a cylinder-shaped housing.
  • a motor 30 is accommodated in the upper part of the sealed container 1, and a compression mechanism part 50 is accommodated in the lower part.
  • the inside of the sealed container 1 is filled with a high-pressure gas refrigerant compressed by the compression mechanism unit 50, and the refrigerating machine oil 2 for lubricating the compression mechanism unit 50 is sealed at the bottom of the sealed container 1. .
  • the motor 30 includes a rotor 3 and a stator 4, and the stator 4 is fixed to the inner surface of the hermetic container 1.
  • the motor 30 rotates the rotor 3 by energizing the stator 4.
  • a DC brushless motor or the like is used.
  • the crankshaft 5 passes through the center of the rotor 3 and is fixed to the rotor 3.
  • the crankshaft 5 includes a cylindrical first eccentric portion 5a and a cylindrical second eccentric portion 5b disposed below the first eccentric portion 5a.
  • the second eccentric portion 5b is disposed so as to face the first eccentric portion 5a 180 degrees with respect to the central axis of the crankshaft 5.
  • the compression mechanism portion 50 includes a first cylinder 6 having a cylindrical hollow portion in which a first eccentric portion 5 a of the crankshaft 5 can rotate, and a second cylinder shaft 5.
  • the eccentric part 5b is provided with the 2nd cylinder 7 which has a cylindrical hollow part which can rotate.
  • the outer surfaces of the first cylinder 6 and the second cylinder 7 are fixed to the inner surface of the sealed container 1.
  • the compression mechanism 50 includes an intermediate plate 8 that is fixed between the first cylinder 6 and the second cylinder 7 and separates the hollow portion of the first cylinder 6 and the hollow portion of the second cylinder 7. .
  • the intermediate plate 8 has an inner diameter surface that slidably supports a rotating portion located between the first eccentric portion 5a and the second eccentric portion 5b of the crankshaft 5.
  • the compression mechanism unit 50 includes a main bearing 9 and a sub-bearing 12 which are sliding bearings.
  • the main bearing 9 is fixed to the upper surface of the first cylinder 6 and has an inner diameter surface that supports the crankshaft 5 in a slidable manner.
  • the auxiliary bearing 12 is fixed to the lower surface of the second cylinder 7 and has an inner diameter surface that supports the crankshaft 5 in a slidable manner.
  • a hollow portion of the first cylinder 6 surrounded by the intermediate plate 8 and the main bearing 9 constitutes a first compression chamber 10.
  • a first rolling piston 11 that is rotatably attached to the outer periphery of the first eccentric portion 5a of the crankshaft 5 is disposed.
  • the hollow portion of the second cylinder 7 surrounded by the intermediate plate 8 and the auxiliary bearing 12 constitutes a second compression chamber 13.
  • a second rolling piston 14 that is rotatably attached to the outer periphery of the second eccentric portion 5 b of the crankshaft 5 is disposed.
  • the crankshaft 5 has one end extending to the bottom of the sealed container 1 so that the refrigerating machine oil 2 sealed in the bottom of the sealed container 1 can be supplied to the compression mechanism 50.
  • An oil separator 15 for suppressing the refrigerating machine oil 2 from flowing out of the rotary compressor 100 is fitted to one end of the crankshaft 5 in the upper direction of the sealed container 1.
  • a hollow hole 5 c that extends along the axial direction from one end of the crankshaft 5 on the bottom side of the sealed container 1 and sucks up the refrigerating machine oil 2 is formed in the axial center portion of the crankshaft 5. Is provided.
  • crankshaft 5 is provided with a first oil supply hole 5d, a second oil supply hole 5e, a third oil supply hole 5f, and a fourth oil supply hole 5g. .
  • the first oil supply hole 5d is located above the first eccentric portion 5a of the crankshaft 5, branches from the hollow hole 5c, and extends to the outer diameter surface of the crankshaft 5.
  • the first oil supply hole 5 d is provided to supply the refrigerating machine oil 2 between the inner diameter surface of the main bearing 9 and the outer diameter surface of the crankshaft 5.
  • the second oil supply hole 5e is located inside the first eccentric portion 5a of the crankshaft 5, branches from the hollow hole 5c, and extends to the outer diameter surface of the first eccentric portion 5a.
  • the second oil supply hole 5 e is provided for supplying the refrigerating machine oil 2 to the inside of the first compression chamber 10.
  • the third oil supply hole 5f is located inside the second eccentric portion 5b of the crankshaft 5, branches from the hollow hole 5c, and extends to the outer diameter surface of the second eccentric portion 5b.
  • the third oil supply hole 5 f is provided for supplying the refrigerating machine oil 2 to the inside of the second compression chamber 13.
  • the fourth oil supply hole 5g is located below the second eccentric portion 5b of the crankshaft 5, branches from the hollow hole 5c, and extends to the outer diameter surface of the crankshaft 5.
  • the fourth oil supply hole 5g is provided to supply the refrigerating machine oil 2 between the inner diameter surface of the auxiliary bearing 12 and the outer diameter surface of the crankshaft 5.
  • the rotary compressor 100 includes a first refrigerant pipe 16 and a second refrigerant pipe 17.
  • the first refrigerant pipe 16 passes through the side surface of the sealed container 1 and communicates with the first compression chamber 10.
  • the first refrigerant pipe 16 allows low-pressure gas refrigerant from a suction muffler (not shown) to flow into the first compression chamber 10 in the first cylinder 6.
  • the second refrigerant pipe 17 passes through the side surface of the sealed container 1 and communicates with the second compression chamber 13.
  • the second refrigerant pipe 17 allows low-pressure gas refrigerant from a suction muffler (not shown) to flow into the second compression chamber 13 in the second cylinder 7.
  • the rotary compressor 100 includes a discharge pipe 18 that discharges a high-pressure gas refrigerant filled in the sealed container 1 of the rotary compressor 100 to a refrigerant pipe (not shown) of the refrigeration cycle circuit.
  • the discharge pipe 18 passes through the upper surface of the sealed container 1 and communicates with the inside of the sealed container 1.
  • the main bearing 9 and the sub-bearing 12 which are the sliding bearings of the first embodiment are provided with one or more rolling bearings 19 as shown in FIG.
  • the structure of the rolling bearing 19 will be described in detail with reference to FIGS.
  • FIG. 4 is a cross-sectional view schematically showing structures of the main bearing 9 and the rolling bearing 19 of the rotary compressor 100 according to the first embodiment.
  • FIG. 5 is a plan view schematically showing the structure of the rolling bearing 19 of the rotary compressor 100 according to Embodiment 1 of the present invention.
  • the rolling bearing 19 includes a plurality of inner ring portions 19a (inner diameter portions) and outer ring portions 19b (outer diameter portions) which are starting wheels, and a plurality of rollers disposed between the inner ring portion 19a and the outer ring portion 19b. It is a machine element having a hollow cylindrical appearance including a rolling element 19c.
  • the rolling bearing 19 may be a ball bearing or a roller bearing such as a cylindrical roller bearing.
  • the outer surface of the outer ring portion 19b is fixed to a groove 9a provided on the inner diameter surface of the main bearing 9, and the inner ring portion 19a is rotatably supported by the groove 9a. That is, the rolling bearing 19 according to the first embodiment is configured to be fixed to the groove 9 a provided on the inner diameter surface of the main bearing 9.
  • a stepped groove 9 a is provided at the upper end and lower end of the inner diameter surface of the main bearing 9, and the outer surface of the outer ring portion 19 b is fixed to the stepped groove 9 a, whereby the rolling bearing 19 is The main bearing 9 is fixed to a groove 9a provided on the inner diameter surface.
  • the arrangement position of the rolling bearing 19 according to the first embodiment is not limited to the upper end portion and the lower end portion of the inner diameter surface of the main bearing 9.
  • the rolling bearing 19 according to the first embodiment can be fixed by providing a groove 9a at an arbitrary position of the inner diameter portion of the main bearing 9 and the auxiliary bearing 12 where the refrigerating machine oil 2 is easily depleted.
  • the crankshaft 5 is slidably supported with respect to the inner ring portion 19a in the hollow portion of the inner ring portion 19a of the rolling bearing 19 according to the first embodiment.
  • a clearance 20 is provided between the crankshaft 5 and the inner ring portion 19a of the rolling bearing 19, and the radial width of the clearance 20 is adjusted to be 10 to 50 ⁇ m.
  • the outer diameter portion of the crankshaft 5 is configured not to be fitted or fixed to the inner ring portion 19a of the rolling bearing 19.
  • the load of the refrigerant gas at which the rolling bearing 19 starts to function is set lower than the load at which the inner ring portion 19a, which is the proof stress limit of the inner ring portion 19a of the rolling bearing 19, starts to be damaged.
  • the rotor 3 rotates by receiving a rotational force from a rotating magnetic field generated by the stator 4.
  • the crankshaft 5 fixed to the rotor 3 rotates, and the first eccentric portion 5a and the second eccentric portion 5b of the crankshaft 5 rotate eccentrically.
  • the first rolling piston 11 rotates eccentrically in the first compression chamber 10
  • the volume of the first compression chamber 10 is reduced.
  • the second rolling piston 14 rotates eccentrically in the second compression chamber 13, and the volume of the second compression chamber 13 is reduced.
  • the low-pressure gas refrigerant sucked into the first compression chamber 10 from the first refrigerant pipe 16 is compressed into the high-pressure gas refrigerant, and the sealed container 1 It is discharged inside.
  • the low-pressure gas refrigerant sucked into the second compression chamber 13 from the second refrigerant pipe 17 is compressed into the high-pressure gas refrigerant, and the sealed container 1. It is discharged inside.
  • the high-pressure gas refrigerant discharged into the sealed container 1 is discharged through a discharge pipe 18 to a refrigerant pipe (not shown) of the refrigeration cycle circuit.
  • the second eccentric portion 5b is disposed so as to face the first eccentric portion 5a 180 degrees with respect to the central axis of the crankshaft 5. Therefore, the compression process in the second compression chamber 13 can be shifted by 180 degrees in rotation angle with respect to the compression process in the first compression chamber 10. Therefore, in the two-cylinder rotary compressor 100, the load on the crankshaft 5 can be reduced and the reliability can be improved. Moreover, the fluctuation
  • the refrigerating machine oil 2 sealed at the bottom of the sealed container 1 is sucked up by the centrifugal pump principle from the hollow hole 5c provided in the crankshaft 5 by the centrifugal force generated by the rotation of the crankshaft 5.
  • the refrigerating machine oil 2 sucked up into the hollow hole 5c is supplied to the compression mechanism section 50 as lubricating oil (lubricant) through the first oil supply hole 5d to the fourth oil supply hole 5g.
  • the refrigerating machine oil 2 is supplied from the first oil supply hole 5 d between the inner diameter surface of the main bearing 9 and the outer diameter surface of the crankshaft 5.
  • the refrigerating machine oil 2 is supplied into the first compression chamber 10 from the second oil supply hole 5e.
  • the refrigerating machine oil 2 is supplied into the second compression chamber 13 from the third oil supply hole 5f. From the fourth oil supply hole 5g, the refrigerating machine oil 2 is supplied between the inner diameter surface of the auxiliary bearing 12 and the outer diameter surface of the crankshaft 5.
  • an oil film formed by the refrigerating machine oil 2 is formed in the gap between the intermediate plate 8 and the crankshaft 5. It is formed.
  • the oil film refrigerant leakage from the first compression chamber 10 or the second compression chamber 13 is avoided, so that the compression performance in the first compression chamber 10 or the second compression chamber 13 can be improved. it can.
  • the oil film since the oil film is formed, it is possible to avoid the direct contact between the inner diameter surface of the intermediate plate 8 and the outer diameter surface of the crankshaft 5, so that the compression mechanism section 50 can be prevented from being damaged.
  • the refrigerating machine oil 2 includes an inner ring portion 19a of a rolling bearing 19 disposed on the inner diameter surface of the main bearing 9 and the sub-bearing 12 which are sliding bearings via the first oil supply hole 5d and the fourth oil supply hole 5g.
  • the clearance 20 between the crankshaft 5 and the outer diameter surface is supplied with oil.
  • an oil seal 70 is formed in the clearance 20 as shown in FIG.
  • the crankshaft 5 rotates without contacting the inner ring portion 19 a of the rolling bearing 19. That is, the rolling bearing 19 functions as a sliding bearing.
  • the rotary compressor 100 is started in a state where the refrigerating machine oil 2 has accumulated at the bottom of the hermetic container 1 and the refrigerant has been liquefied and dissolved in the refrigerating machine oil 2 because it has not been operated for a long time.
  • the refrigerating machine oil 2 in the clearance 20 is depleted, and a cavity 90 is formed in the clearance 20 as shown in FIG.
  • the cavity 90 is formed in the clearance 20, the outer diameter portion of the crankshaft 5 can come into contact with the inner ring portion 19 a of the rolling bearing 19.
  • the inner ring portion 19 a of the rolling bearing 19 slides integrally with the crankshaft 5. That is, in a state where the refrigerating machine oil 2 is depleted, the inner ring portion 19 a of the rolling bearing 19 exhibits its original function as the rolling bearing 19.
  • a part of the refrigerating machine oil 2 supplied into the first compression chamber 10 or the second compression chamber 13 is a high-pressure gas refrigerant compressed in the first compression chamber 10 or the second compression chamber 13. Together, they are discharged from the first compression chamber 10 or the second compression chamber 13.
  • the mixed fluid of the high-pressure gas refrigerant flowing toward the discharge pipe 18 and the refrigerating machine oil 2 collides with the oil separator 15 fitted to the upper part of the crankshaft 5, and the refrigerant and the refrigerating machine oil 2 are separated by centrifugal force.
  • the refrigerating machine oil 2 is returned to the bottom of the sealed container 1. That is, in the rotary compressor 100 according to the first embodiment, the refrigeration oil 2 is discharged to the refrigerant pipe (not shown) of the refrigeration cycle circuit through the discharge pipe 18 by the centrifugal separation structure of the oil separator 15. Is suppressed.
  • the outer ring portion 19b of the rolling bearing 19 is fixed to the groove 9a provided on the inner diameter surfaces of the main bearing 9 and the sub bearing 12 that are sliding bearings.
  • the inner ring portion 19a of the rolling bearing 19 is slidably supported, and a clearance 20 is provided between the outer diameter surface of the crankshaft 5 slidably supported by the inner ring portion 19a and the inner ring portion 19a of the rolling bearing 19. It is what has. The effect of the rotary compressor 100 according to the first embodiment will be described with reference to FIG.
  • FIG. 6 is a graph schematically showing the effect of the rotary compressor 100 according to Embodiment 1 of the present invention.
  • the horizontal axis of the graph indicates the amount of the refrigerating machine oil 2 in the clearance 20, that is, the thickness of the oil seal 70.
  • the vertical axis of the graph represents sliding loss.
  • a region indicated by a symbol A on the horizontal axis indicates a state where the refrigerating machine oil 2 is depleted, that is, a state where a cavity 90 is formed in the clearance 20.
  • a region indicated by a symbol B on the horizontal axis indicates a state where the refrigerator oil 2 is rich, that is, a state where the oil seal 70 is formed in the clearance 20.
  • the boundary between the code A and the code B is indicated by a one-dot chain line.
  • FIG. 6 represents the sliding loss in the rotary compressor 100 according to the first embodiment.
  • the dotted line in the area of symbol A in FIG. 6 shows the sliding loss when the bearing of the conventional compressor functions as a slide bearing in a state where the refrigerating machine oil 2 is depleted.
  • the double line in the region B in FIG. 6 indicates the sliding loss when the bearing of the conventional compressor functions as a rolling bearing in a state where the refrigerator oil 2 is rich.
  • the rotary compressor 100 has a clearance 20 between the outer diameter surface of the crankshaft 5 and the inner ring portion 19 a of the rolling bearing 19.
  • a cavity 90 is formed in the clearance 20.
  • the outer diameter portion of the crankshaft 5 can come into contact with the inner ring portion 19 a of the rolling bearing 19.
  • the outer diameter surface of the crankshaft 5 comes into contact with the inner ring portion 19 a of the rolling bearing 19, it slides integrally with the inner ring portion 19 a of the rolling bearing 19. That is, as shown in the solid line graph of the region A in FIG. 6, when the crankshaft 5 and the inner ring portion 19a of the rolling bearing 19 are in direct contact, the friction coefficient becomes as close to 1 as possible.
  • the part 19a exhibits the original function as the rolling bearing 19.
  • an oil seal 70 is formed in the clearance 20.
  • the friction coefficient between the outer diameter surface of the crankshaft 5 and the inner ring portion 19a of the rolling bearing 19 is lowered. That is, since the crankshaft 5 rotates without contacting the inner ring portion 19a of the rolling bearing 19, the rolling bearing 19 functions as a sliding bearing as shown by the solid line graph in the region B of FIG. Become.
  • the rotary compressor 100 As described above, in the rotary compressor 100 according to the first embodiment, depending on the state of the oil seal 70 formed in the clearance 20, there are advantages of both the function as a slide bearing and the original function as a rolling bearing. It is possible to make the most of it, and it is possible to reduce both component damage and sliding loss. Therefore, according to the first embodiment, the rotary compressor 100 capable of preventing damage to the contact portion between the crankshaft 5 and the main bearing 9 and the sub-bearing 12 that are sliding bearings and reducing sliding loss. Can be provided.
  • the rotary compressor 100 that can be used for a long time can be provided, and the refrigerating machine oil enclosed in the rotary compressor 100 can be provided.
  • the amount of 2 can be reduced. Therefore, according to the first embodiment, the amount of the refrigerating machine oil 2 discharged from the rotary compressor 100 together with the refrigerant can be reduced.
  • the configuration of the first embodiment is also effective in reducing the size of the rotary compressor 100 and reducing the material cost.
  • the rotary compressor 100 is a vertical type, but may be a horizontal type.
  • the two-cylinder rotary compressor 100 is used, but the present invention is not limited to this.
  • a single-cylinder rotary compressor 100 may be used, or a rotary compressor 100 having three or more cylinders may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

This rotary compressor 100 is provided with the following: a compression mechanism section 50 that compresses a refrigerant; a crankshaft 5 that transmits a rotational driving force to the compression mechanism section 50; a primary bearing 9 and an auxiliary bearing 12, which are slide bearings having inner diameter surfaces that slidably support the crankshaft 5; and a rolling bearing 19 having an outer ring section 19b fixed to a groove 9a provided on the inner diameter surface of the slide bearing, and an inner ring section 19a rotatably supported by the slide bearing. A clearance 20 is present between the outer diameter surface of the crankshaft 5 and the inner ring section 19a of the roll bearing 19.

Description

ロータリ圧縮機Rotary compressor
 本発明は、ロータリ圧縮機に関する。 The present invention relates to a rotary compressor.
 従来のロータリ圧縮機としては、例えば、すべり軸受の上部に転がり軸受構造を設けたものが提案されている(例えば、特許文献1参照)。また、従来のロータリ圧縮機としては、すべり軸受の内径部に転がり軸受を設けたものが提案されている(例えば、特許文献2~4参照)。 As a conventional rotary compressor, for example, a structure in which a rolling bearing structure is provided on an upper part of a sliding bearing has been proposed (for example, see Patent Document 1). In addition, as a conventional rotary compressor, one in which a rolling bearing is provided on an inner diameter portion of a sliding bearing has been proposed (for example, see Patent Documents 2 to 4).
特開2008-169827号公報JP 2008-169827 A 特開2001-323886号公報JP 2001-323886 A 特開2007-285180号公報JP 2007-285180 A 特開平5-256283号公報JP-A-5-256283
 しかしながら、特許文献1に記載のようなすべり軸受では、冷凍機油が枯渇した場合に、クランクシャフトとすべり軸受との接触部分が損傷する可能性があるという問題点があった。また、特許文献1~4に記載のような転がり軸受では、転がり軸受における摩擦による一定の摺動損失が生じるという問題があった。 However, the slide bearing as described in Patent Document 1 has a problem that the contact portion between the crankshaft and the slide bearing may be damaged when the refrigeration oil is exhausted. In addition, the rolling bearings described in Patent Documents 1 to 4 have a problem that a certain sliding loss occurs due to friction in the rolling bearing.
 本発明は、上述の問題を解決するためになされたものであり、クランクシャフトと軸受との接触部分の損傷を防ぐとともに、摺動損失を低減することが可能なロータリ圧縮機を提供することを目的とする。 The present invention has been made to solve the above-described problem, and provides a rotary compressor capable of preventing damage to a contact portion between a crankshaft and a bearing and reducing sliding loss. Objective.
 本発明のロータリ圧縮機は、冷媒を圧縮する圧縮機構部と、前記圧縮機構部に回転駆動力を伝達するクランクシャフトと、前記クランクシャフトを摺動可能に支持する内径面を有するすべり軸受と、前記すべり軸受の内径面に設けられた溝に固定された外輪部と前記すべり軸受に回転可能に支持された内輪部とを有する転がり軸受とを備え、前記クランクシャフトの外径面と前記転がり軸受の内輪部との間にクリアランスを有する。 The rotary compressor of the present invention includes a compression mechanism portion that compresses refrigerant, a crankshaft that transmits a rotational driving force to the compression mechanism portion, and a plain bearing that has an inner diameter surface that slidably supports the crankshaft, A rolling bearing having an outer ring portion fixed to a groove provided on an inner diameter surface of the slide bearing and an inner ring portion rotatably supported by the slide bearing, the outer diameter surface of the crankshaft and the rolling bearing; A clearance is provided between the inner ring portion and the inner ring portion.
 本発明のロータリ圧縮機は、クランクシャフトの外径面と転がり軸受の内輪部との間にクリアランスを有し、冷凍機油が枯渇した場合には、クランクシャフトの外径面は転がり軸受の内輪部に接触したときに、転がり軸受の内輪部と一体となり摺動する。また、クリアランスにオイルシールが形成されている場合は、転がり軸受の内輪部はクランクシャフトのすべり軸受として機能する。したがって、本発明によれば、クランクシャフトとすべり軸受との接触部分の損傷を防ぐとともに、摺動損失を低減することが可能なロータリ圧縮機を提供することができる。 The rotary compressor of the present invention has a clearance between the outer diameter surface of the crankshaft and the inner ring portion of the rolling bearing, and when the refrigerating machine oil is exhausted, the outer diameter surface of the crankshaft is the inner ring portion of the rolling bearing. When it comes into contact with the inner ring, it slides integrally with the inner ring portion of the rolling bearing. When an oil seal is formed in the clearance, the inner ring portion of the rolling bearing functions as a sliding bearing for the crankshaft. Therefore, according to this invention, while preventing the damage of the contact part of a crankshaft and a slide bearing, the rotary compressor which can reduce a sliding loss can be provided.
本発明の実施の形態1に係るロータリ圧縮機100の一例を概略的に示す断面図である。It is sectional drawing which shows roughly an example of the rotary compressor 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るロータリ圧縮機100の圧縮機構部50を概略的に示す拡大断面図である。It is an expanded sectional view showing roughly compression mechanism part 50 of rotary compressor 100 concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係るロータリ圧縮機100のクランクシャフト5の構造を概略的に示す平面図である。It is a top view which shows roughly the structure of the crankshaft 5 of the rotary compressor 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るロータリ圧縮機100の主軸受9及び転がり軸受19の構造を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the main bearing 9 and the rolling bearing 19 of the rotary compressor 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るロータリ圧縮機100の転がり軸受19の構造を概略的に示す平面図である。It is a top view which shows roughly the structure of the rolling bearing 19 of the rotary compressor 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るロータリ圧縮機100の効果を概略的に示すグラフである。It is a graph which shows roughly the effect of rotary compressor 100 concerning Embodiment 1 of the present invention.
実施の形態1.
 本発明の実施の形態1に係るロータリ圧縮機100の構成について図1~3を用いて説明する。図1は、本発明の実施の形態1に係るロータリ圧縮機100の一例を概略的に示す断面図である。図2は、本発明の実施の形態1に係るロータリ圧縮機100の圧縮機構部50を概略的に示す拡大断面図である。図3は、本発明の実施の形態1に係るロータリ圧縮機100のクランクシャフト5の構造を概略的に示す平面図である。なお、図1~3を含む以下の図面では各構成部材の寸法の関係及び形状が、実際のものとは異なる場合がある。また、以下の図面では、同一の又は類似する部材又は部分には、同一の符号を付すか、又は、符号を付すことを省略している。
Embodiment 1 FIG.
The configuration of the rotary compressor 100 according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view schematically showing an example of a rotary compressor 100 according to Embodiment 1 of the present invention. FIG. 2 is an enlarged cross-sectional view schematically showing the compression mechanism unit 50 of the rotary compressor 100 according to Embodiment 1 of the present invention. FIG. 3 is a plan view schematically showing the structure of the crankshaft 5 of the rotary compressor 100 according to Embodiment 1 of the present invention. In the following drawings including FIGS. 1 to 3, the dimensional relationship and shape of each component may be different from the actual ones. Moreover, in the following drawings, the same code | symbol is attached | subjected to the same or similar member or part, or attaching | subjecting code | symbol is abbreviate | omitted.
 図1では、縦置型の2シリンダ型のロータリ圧縮機100が一例として例示されている。ロータリ圧縮機100は、シリンダ形状の筐体である密閉容器1を備えている。密閉容器1内上部にはモータ30が収容されており、下部には圧縮機構部50が収容されている。密閉容器1の内部は、圧縮機構部50で圧縮された高圧のガス冷媒で満たされており、密閉容器1の底部には、圧縮機構部50の潤滑のための冷凍機油2が封入されている。 FIG. 1 illustrates a vertical two-cylinder rotary compressor 100 as an example. The rotary compressor 100 includes a sealed container 1 that is a cylinder-shaped housing. A motor 30 is accommodated in the upper part of the sealed container 1, and a compression mechanism part 50 is accommodated in the lower part. The inside of the sealed container 1 is filled with a high-pressure gas refrigerant compressed by the compression mechanism unit 50, and the refrigerating machine oil 2 for lubricating the compression mechanism unit 50 is sealed at the bottom of the sealed container 1. .
 モータ30は、回転子3と固定子4とを備えており、固定子4は密閉容器1の内側面に固定されている。モータ30は固定子4に通電することにより、回転子3を回転させるものであり、例えばDCブラシレスモータ等が用いられる。 The motor 30 includes a rotor 3 and a stator 4, and the stator 4 is fixed to the inner surface of the hermetic container 1. The motor 30 rotates the rotor 3 by energizing the stator 4. For example, a DC brushless motor or the like is used.
 クランクシャフト5は、回転子3の中心部を貫通し、回転子3に固定されている。クランクシャフト5は、円筒形状の第1の偏心部5aと、第1の偏心部5aの下方に配置された円筒形状の第2の偏心部5bとを有している。第2の偏心部5bは、クランクシャフト5の中心軸に対し、第1の偏心部5aと180度対向するように配置される。 The crankshaft 5 passes through the center of the rotor 3 and is fixed to the rotor 3. The crankshaft 5 includes a cylindrical first eccentric portion 5a and a cylindrical second eccentric portion 5b disposed below the first eccentric portion 5a. The second eccentric portion 5b is disposed so as to face the first eccentric portion 5a 180 degrees with respect to the central axis of the crankshaft 5.
 図1、2に示すように、圧縮機構部50は、クランクシャフト5の第1の偏心部5aが回転可能な円筒形の中空部分を有する第1のシリンダ6と、クランクシャフト5の第2の偏心部5bが回転可能な円筒形の中空部分を有する第2のシリンダ7を備える。第1のシリンダ6及び第2のシリンダ7の外側面は密閉容器1の内側面に固定されている。 As shown in FIGS. 1 and 2, the compression mechanism portion 50 includes a first cylinder 6 having a cylindrical hollow portion in which a first eccentric portion 5 a of the crankshaft 5 can rotate, and a second cylinder shaft 5. The eccentric part 5b is provided with the 2nd cylinder 7 which has a cylindrical hollow part which can rotate. The outer surfaces of the first cylinder 6 and the second cylinder 7 are fixed to the inner surface of the sealed container 1.
 圧縮機構部50は、第1のシリンダ6と第2のシリンダ7との間に固定され、第1のシリンダ6の中空部分と第2のシリンダ7の中空部分とを分離する中間板8を備える。中間板8は、クランクシャフト5の第1の偏心部5aと第2の偏心部5bとの間に位置する回転部分を摺動可能に支持する内径面を有している。 The compression mechanism 50 includes an intermediate plate 8 that is fixed between the first cylinder 6 and the second cylinder 7 and separates the hollow portion of the first cylinder 6 and the hollow portion of the second cylinder 7. . The intermediate plate 8 has an inner diameter surface that slidably supports a rotating portion located between the first eccentric portion 5a and the second eccentric portion 5b of the crankshaft 5.
 圧縮機構部50は、すべり軸受である主軸受9と副軸受12とを備えている。主軸受9は、第1のシリンダ6の上面に固定され、クランクシャフト5を摺動可能に支持する内径面を有する。副軸受12は、第2のシリンダ7の下面に固定され、クランクシャフト5を摺動可能に支持する内径面を有する。 The compression mechanism unit 50 includes a main bearing 9 and a sub-bearing 12 which are sliding bearings. The main bearing 9 is fixed to the upper surface of the first cylinder 6 and has an inner diameter surface that supports the crankshaft 5 in a slidable manner. The auxiliary bearing 12 is fixed to the lower surface of the second cylinder 7 and has an inner diameter surface that supports the crankshaft 5 in a slidable manner.
 中間板8と主軸受9とに囲まれた第1のシリンダ6の中空部分は、第1の圧縮室10を構成する。第1の圧縮室10には、クランクシャフト5の第1の偏心部5aの外周に回転自在に取付けられた第1のローリングピストン11が配置される。また、中間板8と副軸受12とに囲まれた第2のシリンダ7の中空部分は第2の圧縮室13を構成する。第2のシリンダ7の中空部分には、クランクシャフト5の第2の偏心部5bの外周に回転自在に取付けられた第2のローリングピストン14が配置される。 A hollow portion of the first cylinder 6 surrounded by the intermediate plate 8 and the main bearing 9 constitutes a first compression chamber 10. In the first compression chamber 10, a first rolling piston 11 that is rotatably attached to the outer periphery of the first eccentric portion 5a of the crankshaft 5 is disposed. The hollow portion of the second cylinder 7 surrounded by the intermediate plate 8 and the auxiliary bearing 12 constitutes a second compression chamber 13. In the hollow portion of the second cylinder 7, a second rolling piston 14 that is rotatably attached to the outer periphery of the second eccentric portion 5 b of the crankshaft 5 is disposed.
 図1に示すように、クランクシャフト5は、密閉容器1の底部に封入された冷凍機油2を圧縮機構部50に給油可能なように、一端が密閉容器1の底部に延びている。密閉容器1の上部方向のクランクシャフト5の一端には、ロータリ圧縮機100の外へ冷凍機油2が流出するのを抑制するための油分離器15が嵌合されている。クランクシャフト5の軸中心部には、図3に示すように、密閉容器1の底部側のクランクシャフト5の一端から軸方向に沿って延在する、冷凍機油2を吸い上げるための中空穴5cが設けられている。 As shown in FIG. 1, the crankshaft 5 has one end extending to the bottom of the sealed container 1 so that the refrigerating machine oil 2 sealed in the bottom of the sealed container 1 can be supplied to the compression mechanism 50. An oil separator 15 for suppressing the refrigerating machine oil 2 from flowing out of the rotary compressor 100 is fitted to one end of the crankshaft 5 in the upper direction of the sealed container 1. As shown in FIG. 3, a hollow hole 5 c that extends along the axial direction from one end of the crankshaft 5 on the bottom side of the sealed container 1 and sucks up the refrigerating machine oil 2 is formed in the axial center portion of the crankshaft 5. Is provided.
 また、図3に示すように、クランクシャフト5の内部には、第1の給油穴5d、第2の給油穴5e、第3の給油穴5f、及び第4の給油穴5gが設けられている。 Further, as shown in FIG. 3, the crankshaft 5 is provided with a first oil supply hole 5d, a second oil supply hole 5e, a third oil supply hole 5f, and a fourth oil supply hole 5g. .
 第1の給油穴5dは、クランクシャフト5の第1の偏心部5aの上方に位置し、中空穴5cから分岐しクランクシャフト5の外径面まで延びている。第1の給油穴5dは、主軸受9の内径面とクランクシャフト5の外径面との間に冷凍機油2を供給するために設けられる。 The first oil supply hole 5d is located above the first eccentric portion 5a of the crankshaft 5, branches from the hollow hole 5c, and extends to the outer diameter surface of the crankshaft 5. The first oil supply hole 5 d is provided to supply the refrigerating machine oil 2 between the inner diameter surface of the main bearing 9 and the outer diameter surface of the crankshaft 5.
 第2の給油穴5eは、クランクシャフト5の第1の偏心部5aの内部に位置し、中空穴5cから分岐し第1の偏心部5aの外径面まで延びている。第2の給油穴5eは、第1の圧縮室10の内部に冷凍機油2を供給するために設けられる。 The second oil supply hole 5e is located inside the first eccentric portion 5a of the crankshaft 5, branches from the hollow hole 5c, and extends to the outer diameter surface of the first eccentric portion 5a. The second oil supply hole 5 e is provided for supplying the refrigerating machine oil 2 to the inside of the first compression chamber 10.
 第3の給油穴5fは、クランクシャフト5の第2の偏心部5bの内部に位置し、中空穴5cから分岐し第2の偏心部5bの外径面まで延びている。第3の給油穴5fは、第2の圧縮室13の内部に冷凍機油2を供給するために設けられる。 The third oil supply hole 5f is located inside the second eccentric portion 5b of the crankshaft 5, branches from the hollow hole 5c, and extends to the outer diameter surface of the second eccentric portion 5b. The third oil supply hole 5 f is provided for supplying the refrigerating machine oil 2 to the inside of the second compression chamber 13.
 第4の給油穴5gは、クランクシャフト5の第2の偏心部5bの下方に位置し、中空穴5cから分岐しクランクシャフト5の外径面まで延びている。第4の給油穴5gは、副軸受12の内径面とクランクシャフト5の外径面との間に冷凍機油2を供給するために設けられる。 The fourth oil supply hole 5g is located below the second eccentric portion 5b of the crankshaft 5, branches from the hollow hole 5c, and extends to the outer diameter surface of the crankshaft 5. The fourth oil supply hole 5g is provided to supply the refrigerating machine oil 2 between the inner diameter surface of the auxiliary bearing 12 and the outer diameter surface of the crankshaft 5.
 図1に示すように、ロータリ圧縮機100は、第1の冷媒配管16と第2の冷媒配管17を備える。第1の冷媒配管16は、密閉容器1の側面を貫通して第1の圧縮室10と連通する。第1の冷媒配管16は、吸入マフラ(図示せず)からの低圧のガス冷媒を第1のシリンダ6内の第1の圧縮室10に流入させるものである。第2の冷媒配管17は、密閉容器1の側面を貫通して第2の圧縮室13と連通する。第2の冷媒配管17は、吸入マフラ(図示せず)からの低圧のガス冷媒を第2のシリンダ7内の第2の圧縮室13に流入させるものである。 As shown in FIG. 1, the rotary compressor 100 includes a first refrigerant pipe 16 and a second refrigerant pipe 17. The first refrigerant pipe 16 passes through the side surface of the sealed container 1 and communicates with the first compression chamber 10. The first refrigerant pipe 16 allows low-pressure gas refrigerant from a suction muffler (not shown) to flow into the first compression chamber 10 in the first cylinder 6. The second refrigerant pipe 17 passes through the side surface of the sealed container 1 and communicates with the second compression chamber 13. The second refrigerant pipe 17 allows low-pressure gas refrigerant from a suction muffler (not shown) to flow into the second compression chamber 13 in the second cylinder 7.
 また、ロータリ圧縮機100は、ロータリ圧縮機100の密閉容器1内に充満した高圧のガス冷媒を、冷凍サイクル回路の冷媒配管(図示せず)に吐出する吐出管18を備えている。吐出管18は、密閉容器1の上面を貫通して密閉容器1の内部と連通している。 Further, the rotary compressor 100 includes a discharge pipe 18 that discharges a high-pressure gas refrigerant filled in the sealed container 1 of the rotary compressor 100 to a refrigerant pipe (not shown) of the refrigeration cycle circuit. The discharge pipe 18 passes through the upper surface of the sealed container 1 and communicates with the inside of the sealed container 1.
 本実施の形態1のすべり軸受である主軸受9及び副軸受12は、図1に示すように、1以上の転がり軸受19を備えている。以降では、図4、5を用いて転がり軸受19の構造について詳しく説明する。 The main bearing 9 and the sub-bearing 12 which are the sliding bearings of the first embodiment are provided with one or more rolling bearings 19 as shown in FIG. Hereinafter, the structure of the rolling bearing 19 will be described in detail with reference to FIGS.
 図4は、本実施の形態1に係るロータリ圧縮機100の主軸受9及び転がり軸受19の構造を概略的に示す断面図である。図5は、本発明の実施の形態1に係るロータリ圧縮機100の転がり軸受19の構造を概略的に示す平面図である。 FIG. 4 is a cross-sectional view schematically showing structures of the main bearing 9 and the rolling bearing 19 of the rotary compressor 100 according to the first embodiment. FIG. 5 is a plan view schematically showing the structure of the rolling bearing 19 of the rotary compressor 100 according to Embodiment 1 of the present invention.
 図5に示すように、転がり軸受19は、起動輪である内輪部19a(内径部)及び外輪部19b(外径部)と、内輪部19aと外輪部19bとの間に配置される複数の転動体19cとを備える中空円筒状の外観を有する機械要素である。転がり軸受19は、玉軸受であっても、円筒ころ軸受等のころ軸受であってもよい。 As shown in FIG. 5, the rolling bearing 19 includes a plurality of inner ring portions 19a (inner diameter portions) and outer ring portions 19b (outer diameter portions) which are starting wheels, and a plurality of rollers disposed between the inner ring portion 19a and the outer ring portion 19b. It is a machine element having a hollow cylindrical appearance including a rolling element 19c. The rolling bearing 19 may be a ball bearing or a roller bearing such as a cylindrical roller bearing.
 本実施の形態1に係る転がり軸受19では、外輪部19bの外側面が主軸受9の内径面に設けられた溝9aに固定され、内輪部19aは回転可能に溝9aに支持されている。すなわち、本実施の形態1に係る転がり軸受19は、主軸受9の内径面に設けられた溝9aに固定された構成となっている。図4においては、主軸受9の内径面の上端部及び下端部に階段状の溝9aが設けられ、階段状の溝9aに外輪部19bの外側面が固定されることにより、転がり軸受19は、主軸受9の内径面に設けられた溝9aに固定されている。 In the rolling bearing 19 according to the first embodiment, the outer surface of the outer ring portion 19b is fixed to a groove 9a provided on the inner diameter surface of the main bearing 9, and the inner ring portion 19a is rotatably supported by the groove 9a. That is, the rolling bearing 19 according to the first embodiment is configured to be fixed to the groove 9 a provided on the inner diameter surface of the main bearing 9. In FIG. 4, a stepped groove 9 a is provided at the upper end and lower end of the inner diameter surface of the main bearing 9, and the outer surface of the outer ring portion 19 b is fixed to the stepped groove 9 a, whereby the rolling bearing 19 is The main bearing 9 is fixed to a groove 9a provided on the inner diameter surface.
 なお、本実施の形態1に係る転がり軸受19の配置位置は、主軸受9の内径面の上端部及び下端部に限られない。本実施の形態1に係る転がり軸受19は、冷凍機油2が枯渇しやすい主軸受9及び副軸受12の内径部の任意の位置に溝9aを設けて固定することができる。 In addition, the arrangement position of the rolling bearing 19 according to the first embodiment is not limited to the upper end portion and the lower end portion of the inner diameter surface of the main bearing 9. The rolling bearing 19 according to the first embodiment can be fixed by providing a groove 9a at an arbitrary position of the inner diameter portion of the main bearing 9 and the auxiliary bearing 12 where the refrigerating machine oil 2 is easily depleted.
 本実施の形態1に係る転がり軸受19の内輪部19aの中空部分には、クランクシャフト5が内輪部19aに対し摺動可能に支持されている。本実施の形態1においては、クランクシャフト5と転がり軸受19の内輪部19aとの間にはクリアランス20が設けられており、クリアランス20の径方向の幅は、10~50μmとなるように調整される。すなわち、本実施の形態1においては、クランクシャフト5の外径部は、転がり軸受19の内輪部19aに嵌合も固定もされない構成となっている。 The crankshaft 5 is slidably supported with respect to the inner ring portion 19a in the hollow portion of the inner ring portion 19a of the rolling bearing 19 according to the first embodiment. In the first embodiment, a clearance 20 is provided between the crankshaft 5 and the inner ring portion 19a of the rolling bearing 19, and the radial width of the clearance 20 is adjusted to be 10 to 50 μm. The That is, in the first embodiment, the outer diameter portion of the crankshaft 5 is configured not to be fitted or fixed to the inner ring portion 19a of the rolling bearing 19.
 クランクシャフト5と転がり軸受19の内輪部19aとの間に冷凍機油2が潤沢にある場合、図5(a)の斜線部分に示されるように、クリアランス20はオイルシール70(油膜)となり、クランクシャフト5の外径部は、転がり軸受19の内輪部19aと接触することがなくなる。 When the refrigerating machine oil 2 is abundant between the crankshaft 5 and the inner ring portion 19a of the rolling bearing 19, the clearance 20 becomes an oil seal 70 (oil film) as shown by the hatched portion in FIG. The outer diameter portion of the shaft 5 does not come into contact with the inner ring portion 19 a of the rolling bearing 19.
 一方、クランクシャフト5と転がり軸受19の内輪部19aとの間の冷凍機油2が枯渇している場合、図5(b)の黒塗りつぶし部分に示されるように、クリアランス20は空洞90となり、クランクシャフト5の外径部は、転がり軸受19の内輪部19aと接触可能となる。 On the other hand, when the refrigerating machine oil 2 between the crankshaft 5 and the inner ring portion 19a of the rolling bearing 19 is exhausted, the clearance 20 becomes a cavity 90 as shown in the black-painted portion in FIG. The outer diameter portion of the shaft 5 can come into contact with the inner ring portion 19 a of the rolling bearing 19.
 なお、転がり軸受19が機能し始める冷媒ガスの荷重は、転がり軸受19の内輪部19aの耐力限界である内輪部19aが損傷し始める荷重よりも低く設定されている。 The load of the refrigerant gas at which the rolling bearing 19 starts to function is set lower than the load at which the inner ring portion 19a, which is the proof stress limit of the inner ring portion 19a of the rolling bearing 19, starts to be damaged.
 次に、本実施の形態1に係るロータリ圧縮機100の動作について説明する。 Next, the operation of the rotary compressor 100 according to the first embodiment will be described.
 モータ30の固定子4に駆動電圧が供給されると、回転子3は、固定子4が発生する回転磁界からの回転力を受けて回転する。回転子3が回転すると、回転子3に固定されたクランクシャフト5が回転し、クランクシャフト5の第1の偏心部5a及び第2の偏心部5bが偏心回転する。第1の偏心部5aの偏心回転運動と連動して、第1の圧縮室10内で第1のローリングピストン11が偏心回転し、第1の圧縮室10の体積が縮小される。第2の偏心部5bの偏心回転運動と連動して、第2の圧縮室13内で第2のローリングピストン14が偏心回転し、第2の圧縮室13の体積が縮小される。 When a driving voltage is supplied to the stator 4 of the motor 30, the rotor 3 rotates by receiving a rotational force from a rotating magnetic field generated by the stator 4. When the rotor 3 rotates, the crankshaft 5 fixed to the rotor 3 rotates, and the first eccentric portion 5a and the second eccentric portion 5b of the crankshaft 5 rotate eccentrically. In conjunction with the eccentric rotational movement of the first eccentric portion 5a, the first rolling piston 11 rotates eccentrically in the first compression chamber 10, and the volume of the first compression chamber 10 is reduced. In conjunction with the eccentric rotational movement of the second eccentric portion 5b, the second rolling piston 14 rotates eccentrically in the second compression chamber 13, and the volume of the second compression chamber 13 is reduced.
 第1の圧縮室10の体積が縮小されることによって、第1の冷媒配管16から第1の圧縮室10内に吸入された低圧のガス冷媒が、高圧のガス冷媒に圧縮され、密閉容器1内に吐出される。第2の圧縮室13の体積が縮小されることによって、第2の冷媒配管17から第2の圧縮室13内に吸入された低圧のガス冷媒が、高圧のガス冷媒に圧縮され、密閉容器1内に吐出される。密閉容器1内に吐出された高圧のガス冷媒は、吐出管18を介して冷凍サイクル回路の冷媒配管(図示せず)に吐出される。 By reducing the volume of the first compression chamber 10, the low-pressure gas refrigerant sucked into the first compression chamber 10 from the first refrigerant pipe 16 is compressed into the high-pressure gas refrigerant, and the sealed container 1 It is discharged inside. By reducing the volume of the second compression chamber 13, the low-pressure gas refrigerant sucked into the second compression chamber 13 from the second refrigerant pipe 17 is compressed into the high-pressure gas refrigerant, and the sealed container 1. It is discharged inside. The high-pressure gas refrigerant discharged into the sealed container 1 is discharged through a discharge pipe 18 to a refrigerant pipe (not shown) of the refrigeration cycle circuit.
 なお、本実施の形態1に係るロータリ圧縮機100では、第2の偏心部5bは、クランクシャフト5の中心軸に対し、第1の偏心部5aと180度対向するように配置されている。したがって、第2の圧縮室13での圧縮工程は、第1の圧縮室10での圧縮工程に対し、回転角で180度ずらすことができる。したがって、2シリンダ型のロータリ圧縮機100においては、クランクシャフト5の負荷を小さくし、信頼性を向上させることができる。また、クランクシャフト5の回転トルクの変動を小さくし、回転方向の振動を低減することができる。 In the rotary compressor 100 according to the first embodiment, the second eccentric portion 5b is disposed so as to face the first eccentric portion 5a 180 degrees with respect to the central axis of the crankshaft 5. Therefore, the compression process in the second compression chamber 13 can be shifted by 180 degrees in rotation angle with respect to the compression process in the first compression chamber 10. Therefore, in the two-cylinder rotary compressor 100, the load on the crankshaft 5 can be reduced and the reliability can be improved. Moreover, the fluctuation | variation of the rotational torque of the crankshaft 5 can be made small, and the vibration of a rotation direction can be reduced.
 また、密閉容器1の底部に封入された冷凍機油2は、クランクシャフト5の回転による遠心力により、クランクシャフト5に設けられた中空穴5cから遠心ポンプの原理で吸い上げられる。中空穴5cに吸い上げられた冷凍機油2は、第1の給油穴5d~第4の給油穴5gを通って潤滑油(潤滑材)として、圧縮機構部50に給油される。例えば、第1の給油穴5dからは、主軸受9の内径面とクランクシャフト5の外径面との間に冷凍機油2が供給される。第2の給油穴5eからは、第1の圧縮室10の内部に冷凍機油2が供給される。第3の給油穴5fからは、第2の圧縮室13の内部に冷凍機油2を供給される。第4の給油穴5gからは、副軸受12の内径面とクランクシャフト5の外径面との間に冷凍機油2が供給される。 Further, the refrigerating machine oil 2 sealed at the bottom of the sealed container 1 is sucked up by the centrifugal pump principle from the hollow hole 5c provided in the crankshaft 5 by the centrifugal force generated by the rotation of the crankshaft 5. The refrigerating machine oil 2 sucked up into the hollow hole 5c is supplied to the compression mechanism section 50 as lubricating oil (lubricant) through the first oil supply hole 5d to the fourth oil supply hole 5g. For example, the refrigerating machine oil 2 is supplied from the first oil supply hole 5 d between the inner diameter surface of the main bearing 9 and the outer diameter surface of the crankshaft 5. The refrigerating machine oil 2 is supplied into the first compression chamber 10 from the second oil supply hole 5e. The refrigerating machine oil 2 is supplied into the second compression chamber 13 from the third oil supply hole 5f. From the fourth oil supply hole 5g, the refrigerating machine oil 2 is supplied between the inner diameter surface of the auxiliary bearing 12 and the outer diameter surface of the crankshaft 5.
 例えば、冷凍機油2が第2の給油穴5eを介して第1の圧縮室10の内部に給油されることにより、中間板8とクランクシャフト5との間の空隙部に冷凍機油2による油膜が形成される。油膜の形成により、第1の圧縮室10又は第2の圧縮室13からの冷媒の漏れが回避されるため、第1の圧縮室10又は第2の圧縮室13における圧縮性能を向上させることができる。また、油膜の形成により、中間板8の内径面とクランクシャフト5の外径面とが直接的に接触することを回避できるため、圧縮機構部50の損傷を防止することができる。 For example, when the refrigerating machine oil 2 is supplied into the first compression chamber 10 through the second oil supply hole 5e, an oil film formed by the refrigerating machine oil 2 is formed in the gap between the intermediate plate 8 and the crankshaft 5. It is formed. By forming the oil film, refrigerant leakage from the first compression chamber 10 or the second compression chamber 13 is avoided, so that the compression performance in the first compression chamber 10 or the second compression chamber 13 can be improved. it can. Further, since the oil film is formed, it is possible to avoid the direct contact between the inner diameter surface of the intermediate plate 8 and the outer diameter surface of the crankshaft 5, so that the compression mechanism section 50 can be prevented from being damaged.
 また、冷凍機油2は、第1の給油穴5d及び第4の給油穴5gを介して、すべり軸受である主軸受9及び副軸受12の内径面に配置された転がり軸受19の内輪部19aと、クランクシャフト5の外径面との間のクリアランス20に給油される。クリアランス20に冷凍機油2が給油されることによって、図5(a)に示すように、クリアランス20にオイルシール70が形成される。オイルシール70が形成されることによって、クランクシャフト5は、転がり軸受19の内輪部19aと接触することなく回転運動する。すなわち、転がり軸受19はすべり軸受として機能することとなる。 The refrigerating machine oil 2 includes an inner ring portion 19a of a rolling bearing 19 disposed on the inner diameter surface of the main bearing 9 and the sub-bearing 12 which are sliding bearings via the first oil supply hole 5d and the fourth oil supply hole 5g. The clearance 20 between the crankshaft 5 and the outer diameter surface is supplied with oil. By supplying the refrigerating machine oil 2 to the clearance 20, an oil seal 70 is formed in the clearance 20 as shown in FIG. By forming the oil seal 70, the crankshaft 5 rotates without contacting the inner ring portion 19 a of the rolling bearing 19. That is, the rolling bearing 19 functions as a sliding bearing.
 ここで、長期間運転しなかったために冷凍機油2が密閉容器1の底部に溜り、更に冷媒が液化して冷凍機油2に溶け込んでいる状態で、ロータリ圧縮機100を起動した場合を考える。ロータリ圧縮機100の起動時は、クリアランス20における冷凍機油2が枯渇した状態となり、図5(b)に示すように、クリアランス20には空洞90が形成される。クリアランス20に空洞90が形成された場合、クランクシャフト5の外径部は、転がり軸受19の内輪部19aと接触可能となる。クランクシャフト5の外径部が転がり軸受19の内輪部19aと接触したとき、転がり軸受19の内輪部19aは、クランクシャフト5と一体となって摺動する。すなわち、冷凍機油2が枯渇した状態では、転がり軸受19の内輪部19aは、転がり軸受19としての本来の機能を発揮する。 Here, consider a case where the rotary compressor 100 is started in a state where the refrigerating machine oil 2 has accumulated at the bottom of the hermetic container 1 and the refrigerant has been liquefied and dissolved in the refrigerating machine oil 2 because it has not been operated for a long time. When the rotary compressor 100 is started, the refrigerating machine oil 2 in the clearance 20 is depleted, and a cavity 90 is formed in the clearance 20 as shown in FIG. When the cavity 90 is formed in the clearance 20, the outer diameter portion of the crankshaft 5 can come into contact with the inner ring portion 19 a of the rolling bearing 19. When the outer diameter portion of the crankshaft 5 comes into contact with the inner ring portion 19 a of the rolling bearing 19, the inner ring portion 19 a of the rolling bearing 19 slides integrally with the crankshaft 5. That is, in a state where the refrigerating machine oil 2 is depleted, the inner ring portion 19 a of the rolling bearing 19 exhibits its original function as the rolling bearing 19.
 なお、第1の圧縮室10又は第2の圧縮室13内に給油された冷凍機油2の一部は、第1の圧縮室10又は第2の圧縮室13で圧縮された高圧のガス冷媒と一緒に、第1の圧縮室10又は第2の圧縮室13から吐出される。吐出管18へ向かって流れる高圧のガス冷媒と冷凍機油2との混合流体は、クランクシャフト5上部に嵌められている油分離器15に衝突し、遠心力により冷媒と冷凍機油2とが分離され、冷凍機油2は密閉容器1の底部に戻される。すなわち、本実施の形態1に係るロータリ圧縮機100では、油分離器15の有する遠心分離構造によって、冷凍機油2が吐出管18を介して冷凍サイクル回路の冷媒配管(図示せず)に吐出されるのが抑制される。 Note that a part of the refrigerating machine oil 2 supplied into the first compression chamber 10 or the second compression chamber 13 is a high-pressure gas refrigerant compressed in the first compression chamber 10 or the second compression chamber 13. Together, they are discharged from the first compression chamber 10 or the second compression chamber 13. The mixed fluid of the high-pressure gas refrigerant flowing toward the discharge pipe 18 and the refrigerating machine oil 2 collides with the oil separator 15 fitted to the upper part of the crankshaft 5, and the refrigerant and the refrigerating machine oil 2 are separated by centrifugal force. The refrigerating machine oil 2 is returned to the bottom of the sealed container 1. That is, in the rotary compressor 100 according to the first embodiment, the refrigeration oil 2 is discharged to the refrigerant pipe (not shown) of the refrigeration cycle circuit through the discharge pipe 18 by the centrifugal separation structure of the oil separator 15. Is suppressed.
 以上に説明したとおり、本実施の形態1に係るロータリ圧縮機100は、すべり軸受である主軸受9及び副軸受12の内径面に設けられた溝9aに転がり軸受19の外輪部19bが固定され、転がり軸受19の内輪部19aが摺動可能に支持され、内輪部19aに摺動可能に支持されたクランクシャフト5の外径面と、前記転がり軸受19の内輪部19aとの間にクリアランス20を有するものである。本実施の形態1に係るロータリ圧縮機100による効果について図6を用いて説明する。 As described above, in the rotary compressor 100 according to the first embodiment, the outer ring portion 19b of the rolling bearing 19 is fixed to the groove 9a provided on the inner diameter surfaces of the main bearing 9 and the sub bearing 12 that are sliding bearings. The inner ring portion 19a of the rolling bearing 19 is slidably supported, and a clearance 20 is provided between the outer diameter surface of the crankshaft 5 slidably supported by the inner ring portion 19a and the inner ring portion 19a of the rolling bearing 19. It is what has. The effect of the rotary compressor 100 according to the first embodiment will be described with reference to FIG.
 図6は、本発明の実施の形態1に係るロータリ圧縮機100の効果を概略的に示すグラフである。グラフの横軸は、クリアランス20における冷凍機油2の油量、すなわち、オイルシール70の厚さを示す。グラフの縦軸は摺動損失を示す。横軸における符号Aの領域は冷凍機油2が枯渇した状態、すなわち、クリアランス20に空洞90が形成された状態を示す。横軸における符号Bの領域は、冷凍機油2が潤沢な状態、すなわち、クリアランス20にオイルシール70が形成された状態を示す。符号Aと符号Bとの境界は、一点鎖線で示している。 FIG. 6 is a graph schematically showing the effect of the rotary compressor 100 according to Embodiment 1 of the present invention. The horizontal axis of the graph indicates the amount of the refrigerating machine oil 2 in the clearance 20, that is, the thickness of the oil seal 70. The vertical axis of the graph represents sliding loss. A region indicated by a symbol A on the horizontal axis indicates a state where the refrigerating machine oil 2 is depleted, that is, a state where a cavity 90 is formed in the clearance 20. A region indicated by a symbol B on the horizontal axis indicates a state where the refrigerator oil 2 is rich, that is, a state where the oil seal 70 is formed in the clearance 20. The boundary between the code A and the code B is indicated by a one-dot chain line.
 図6における実線は、本実施の形態1に係るロータリ圧縮機100における摺動損失を示すものである。図6の符号Aの領域における点線は、冷凍機油2が枯渇した状態において、従来の圧縮機の軸受がすべり軸受として機能する場合における摺動損失を示すものである。図6の符号Bの領域における二重線は、冷凍機油2が潤沢な状態において、従来の圧縮機の軸受が転がり軸受として機能する場合における摺動損失を示すものである。 6 represents the sliding loss in the rotary compressor 100 according to the first embodiment. The dotted line in the area of symbol A in FIG. 6 shows the sliding loss when the bearing of the conventional compressor functions as a slide bearing in a state where the refrigerating machine oil 2 is depleted. The double line in the region B in FIG. 6 indicates the sliding loss when the bearing of the conventional compressor functions as a rolling bearing in a state where the refrigerator oil 2 is rich.
 図6の点線のグラフに示すように、冷凍機油2が枯渇した状態において軸受がすべり軸受として機能する場合、回転軸と軸受とが直接接触するために、油膜が少なくなるに従い、摺動損失が大きくなる。そして、点線のグラフ上の×印の数値に摺動損失が達すると、シャフトと軸受との接触部分が損傷するといった問題があった。 As shown in the dotted line graph of FIG. 6, when the bearing functions as a sliding bearing in a state where the refrigerating machine oil 2 is depleted, since the rotating shaft and the bearing are in direct contact, the sliding loss decreases as the oil film decreases. growing. Then, when the sliding loss reaches the numerical value indicated by x on the dotted line graph, there is a problem that the contact portion between the shaft and the bearing is damaged.
 また、図6の二重線のグラフに示すように、冷凍機油2が潤沢な状態において軸受が転がり軸受として機能する場合、回転軸と軸受とが常に接触して摺動するため、すべり軸受を用いた場合と比較して、摺動損失が大きくなるという問題があった。 Further, as shown in the double line graph of FIG. 6, when the bearing functions as a rolling bearing in a state where the refrigeration oil 2 is abundant, the rotating shaft and the bearing always slide in contact with each other. There was a problem that the sliding loss was increased as compared with the case of using it.
 これに対し、本実施の形態1に係るロータリ圧縮機100は、クランクシャフト5の外径面と転がり軸受19の内輪部19aとの間にクリアランス20を有している。 In contrast, the rotary compressor 100 according to the first embodiment has a clearance 20 between the outer diameter surface of the crankshaft 5 and the inner ring portion 19 a of the rolling bearing 19.
 冷凍機油2が枯渇した場合には、クリアランス20に空洞90が形成される。空洞90が形成された場合、クランクシャフト5の外径部は、転がり軸受19の内輪部19aと接触可能となる。クランクシャフト5の外径面は転がり軸受19の内輪部19aに接触したときに、転がり軸受19の内輪部19aと一体となり摺動する。すなわち、図6の領域Aの実線のグラフに示されるように、クランクシャフト5と転がり軸受19の内輪部19aが直接接触することで、摩擦係数は限りなく1に近くなり、転がり軸受19の内輪部19aは、転がり軸受19としての本来の機能を発揮する。 When the refrigerating machine oil 2 is depleted, a cavity 90 is formed in the clearance 20. When the cavity 90 is formed, the outer diameter portion of the crankshaft 5 can come into contact with the inner ring portion 19 a of the rolling bearing 19. When the outer diameter surface of the crankshaft 5 comes into contact with the inner ring portion 19 a of the rolling bearing 19, it slides integrally with the inner ring portion 19 a of the rolling bearing 19. That is, as shown in the solid line graph of the region A in FIG. 6, when the crankshaft 5 and the inner ring portion 19a of the rolling bearing 19 are in direct contact, the friction coefficient becomes as close to 1 as possible. The part 19a exhibits the original function as the rolling bearing 19.
 一方、冷凍機油2が潤沢な場合は、クリアランス20にオイルシール70が形成される。オイルシール70が形成されることによって、クランクシャフト5の外径面と転がり軸受19の内輪部19aとの間の摩擦係数は低下する。すなわち、クランクシャフト5は、転がり軸受19の内輪部19aと接触することなく回転運動するため、図6の領域Bの実線のグラフに示されるように、転がり軸受19はすべり軸受として機能することとなる。 On the other hand, when the refrigerating machine oil 2 is abundant, an oil seal 70 is formed in the clearance 20. By forming the oil seal 70, the friction coefficient between the outer diameter surface of the crankshaft 5 and the inner ring portion 19a of the rolling bearing 19 is lowered. That is, since the crankshaft 5 rotates without contacting the inner ring portion 19a of the rolling bearing 19, the rolling bearing 19 functions as a sliding bearing as shown by the solid line graph in the region B of FIG. Become.
 以上のように、本実施の形態1のロータリ圧縮機100では、クリアランス20に形成されるオイルシール70の状態によって、すべり軸受としての機能及び転がり軸受としての本来の機能の両方の機能の利点を活かすことができ、部品損傷の低減と摺動損失の低減を両立することができる。よって、本実施の形態1によれば、クランクシャフト5とすべり軸受である主軸受9及び副軸受12との接触部分の損傷を防ぐとともに、摺動損失を低減することが可能なロータリ圧縮機100を提供することができる。 As described above, in the rotary compressor 100 according to the first embodiment, depending on the state of the oil seal 70 formed in the clearance 20, there are advantages of both the function as a slide bearing and the original function as a rolling bearing. It is possible to make the most of it, and it is possible to reduce both component damage and sliding loss. Therefore, according to the first embodiment, the rotary compressor 100 capable of preventing damage to the contact portion between the crankshaft 5 and the main bearing 9 and the sub-bearing 12 that are sliding bearings and reducing sliding loss. Can be provided.
 また、本実施の形態1によれば、冷凍機油2が枯渇したときの耐力が大きく向上するため、長期使用可能なロータリ圧縮機100を提供することができ、ロータリ圧縮機100に封入する冷凍機油2の量を少なくすることができる。よって、本実施の形態1によれば、ロータリ圧縮機100から冷媒とともに吐出される冷凍機油2の量を低減することができる。ロータリ圧縮機100から吐出される冷凍機油2の量を低減することによって、例えば、冷凍サイクルの熱交換器における、冷凍機油2による熱交換の性能低下を回避することができる。 Further, according to the first embodiment, since the yield strength when the refrigerating machine oil 2 is depleted is greatly improved, the rotary compressor 100 that can be used for a long time can be provided, and the refrigerating machine oil enclosed in the rotary compressor 100 can be provided. The amount of 2 can be reduced. Therefore, according to the first embodiment, the amount of the refrigerating machine oil 2 discharged from the rotary compressor 100 together with the refrigerant can be reduced. By reducing the amount of the refrigerating machine oil 2 discharged from the rotary compressor 100, for example, it is possible to avoid a decrease in the performance of heat exchange by the refrigerating machine oil 2 in the heat exchanger of the refrigeration cycle.
 また、本実施の形態1によれば、ロータリ圧縮機100に封入する冷凍機油2の量を少なくすることができるため、例えば油分離器15等の冷媒と冷凍機油2を分離する構造を無くすことも可能となる。したがって、本実施の形態1の構成は、ロータリ圧縮機100の小型化及び材料費の低減にも効果があるといえる。 Further, according to the first embodiment, since the amount of the refrigerating machine oil 2 sealed in the rotary compressor 100 can be reduced, for example, a structure for separating the refrigerating machine oil 2 from the refrigerant such as the oil separator 15 is eliminated. Is also possible. Therefore, it can be said that the configuration of the first embodiment is also effective in reducing the size of the rotary compressor 100 and reducing the material cost.
その他の実施の形態.
 上述の実施の形態に限らず種々の変形が可能である。例えば、上述の実施の形態1ではロータリ圧縮機100を縦置型のものとしたが、横置型のものとしてもよい。
Other embodiments.
The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the first embodiment, the rotary compressor 100 is a vertical type, but may be a horizontal type.
 また、上述の実施の形態1では、2シリンダ型のロータリ圧縮機100としたがこれに限られない。例えば、1シリンダ型のロータリ圧縮機100としてもよいし、3以上のシリンダを有するロータリ圧縮機100としてもよい。 In the first embodiment, the two-cylinder rotary compressor 100 is used, but the present invention is not limited to this. For example, a single-cylinder rotary compressor 100 may be used, or a rotary compressor 100 having three or more cylinders may be used.
 1 密閉容器、2 冷凍機油、3 回転子、4 固定子、5 クランクシャフト、5a 第1の偏心部、5b 第2の偏心部、5c 中空穴、5d 第1の給油穴、5e 第2の給油穴、5f 第3の給油穴、5g 第4の給油穴、6 第1のシリンダ、7 第2のシリンダ、8 中間板、9 主軸受、9a 溝、10 第1の圧縮室、11 第1のローリングピストン、12 副軸受、13 第2の圧縮室、14 第2のローリングピストン、15 油分離器、16 第1の冷媒配管、17 第2の冷媒配管、18 吐出管、19 転がり軸受、19a 内輪部、19b 外輪部、19c 転動体、20 クリアランス、30 モータ、50 圧縮機構部、70 オイルシール、90 空洞、100 ロータリ圧縮機。 1 closed container, 2 refrigerator oil, 3 rotor, 4 stator, 5 crankshaft, 5a first eccentric part, 5b second eccentric part, 5c hollow hole, 5d first oiling hole, 5e second oiling Hole, 5f third oiling hole, 5g fourth oiling hole, 6 first cylinder, 7 second cylinder, 8 intermediate plate, 9 main bearing, 9a groove, 10 first compression chamber, 11 first Rolling piston, 12 sub bearing, 13 second compression chamber, 14 second rolling piston, 15 oil separator, 16 first refrigerant pipe, 17 second refrigerant pipe, 18 discharge pipe, 19 rolling bearing, 19a inner ring Part, 19b outer ring part, 19c rolling element, 20 clearance, 30 motor, 50 compression mechanism part, 70 oil seal, 90 cavity, 100 rotary compressor.

Claims (2)

  1.  冷媒を圧縮する圧縮機構部と、
     前記圧縮機構部に回転駆動力を伝達するクランクシャフトと、
     前記クランクシャフトを摺動可能に支持する内径面を有するすべり軸受と、
     前記すべり軸受の内径面に設けられた溝に固定された外輪部と前記すべり軸受に回転可能に支持された内輪部とを有する転がり軸受と
     を備え、前記クランクシャフトの外径面と前記転がり軸受の内輪部との間にクリアランスを有するロータリ圧縮機。
    A compression mechanism for compressing the refrigerant;
    A crankshaft that transmits a rotational driving force to the compression mechanism;
    A plain bearing having an inner diameter surface for slidably supporting the crankshaft;
    A rolling bearing having an outer ring portion fixed to a groove provided on an inner diameter surface of the sliding bearing and an inner ring portion rotatably supported by the sliding bearing, the outer diameter surface of the crankshaft and the rolling bearing A rotary compressor having a clearance with the inner ring portion.
  2.  前記クリアランスの径方向の幅が10~50μmである請求項1に記載のロータリ圧縮機。 The rotary compressor according to claim 1, wherein the radial width of the clearance is 10 to 50 µm.
PCT/JP2015/056121 2015-03-02 2015-03-02 Rotary compressor WO2016139735A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017503238A JP6429987B2 (en) 2015-03-02 2015-03-02 Rotary compressor
PCT/JP2015/056121 WO2016139735A1 (en) 2015-03-02 2015-03-02 Rotary compressor
CN201620159444.4U CN205503462U (en) 2015-03-02 2016-03-02 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056121 WO2016139735A1 (en) 2015-03-02 2015-03-02 Rotary compressor

Publications (1)

Publication Number Publication Date
WO2016139735A1 true WO2016139735A1 (en) 2016-09-09

Family

ID=56727022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056121 WO2016139735A1 (en) 2015-03-02 2015-03-02 Rotary compressor

Country Status (3)

Country Link
JP (1) JP6429987B2 (en)
CN (1) CN205503462U (en)
WO (1) WO2016139735A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014415A1 (en) * 2020-07-15 2022-01-20 ダイキン工業株式会社 Use as refrigerant for compressor, compressor, and refrigeration cycle device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172190U (en) * 1981-04-24 1982-10-29
JPH02199293A (en) * 1989-01-27 1990-08-07 Hitachi Ltd Rotary type compressor
JPH055491A (en) * 1991-06-28 1993-01-14 Matsushita Refrig Co Ltd Liquid coolant conveyer
JP2000145675A (en) * 1998-11-06 2000-05-26 Mitsubishi Electric Corp Two stage screw compressor
JP2000257578A (en) * 1999-03-10 2000-09-19 Mitsubishi Electric Corp Two step screw compressor
JP2002257057A (en) * 2001-02-28 2002-09-11 Tokico Ltd Scroll type fluid machine
JP2006220099A (en) * 2005-02-14 2006-08-24 Hitachi Ltd Portable vacuum pump and automatic urination handling device using the same
JP2013064395A (en) * 2011-08-31 2013-04-11 Jtekt Corp Electric pump unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998522B2 (en) * 2012-02-29 2016-09-28 株式会社富士通ゼネラル Rotary compressor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172190U (en) * 1981-04-24 1982-10-29
JPH02199293A (en) * 1989-01-27 1990-08-07 Hitachi Ltd Rotary type compressor
JPH055491A (en) * 1991-06-28 1993-01-14 Matsushita Refrig Co Ltd Liquid coolant conveyer
JP2000145675A (en) * 1998-11-06 2000-05-26 Mitsubishi Electric Corp Two stage screw compressor
JP2000257578A (en) * 1999-03-10 2000-09-19 Mitsubishi Electric Corp Two step screw compressor
JP2002257057A (en) * 2001-02-28 2002-09-11 Tokico Ltd Scroll type fluid machine
JP2006220099A (en) * 2005-02-14 2006-08-24 Hitachi Ltd Portable vacuum pump and automatic urination handling device using the same
JP2013064395A (en) * 2011-08-31 2013-04-11 Jtekt Corp Electric pump unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014415A1 (en) * 2020-07-15 2022-01-20 ダイキン工業株式会社 Use as refrigerant for compressor, compressor, and refrigeration cycle device
JP2022019597A (en) * 2020-07-15 2022-01-27 ダイキン工業株式会社 Use as refrigerant for compressor, compressor and refrigerant cycle device
JP7316324B2 (en) 2020-07-15 2023-07-27 ダイキン工業株式会社 Use as refrigerant in compressor, compressor and refrigeration cycle device

Also Published As

Publication number Publication date
JP6429987B2 (en) 2018-11-28
JPWO2016139735A1 (en) 2017-09-07
CN205503462U (en) 2016-08-24

Similar Documents

Publication Publication Date Title
EP2390507B1 (en) Shaft bearing clearances for an hermetic compressor
WO2013047064A1 (en) Compressor
US9145890B2 (en) Rotary compressor with dual eccentric portion
JP2017150424A (en) Two-cylinder type sealed compressor
JP2017150425A (en) Two-cylinder type sealed compressor
KR101942252B1 (en) Compressor with oil pump assembly
US8419286B2 (en) Hermetic compressor
WO2013047063A1 (en) Compressor
JP5991958B2 (en) Rotary compressor
JP4172514B2 (en) Compressor
JP6134903B2 (en) Positive displacement compressor
JP6429987B2 (en) Rotary compressor
JP2011111976A (en) Hermetic compressor and refrigeration cycle device
JP5331738B2 (en) Scroll fluid machinery
JP2009085125A (en) Hermetic compressor
JP3737563B2 (en) Scroll compressor
CN112412792B (en) Compressor and refrigeration cycle device with same
JP2012041894A (en) Rotary compressor
JP2012077728A (en) Rotary compressor
JP2010112174A (en) Rotary compressor
WO2016075768A1 (en) Scroll compressor
WO2021053741A1 (en) Rotary compressor
WO2016151769A1 (en) Hermetic rotary compressor
JP2019035391A (en) Compressor
WO2020230230A1 (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883903

Country of ref document: EP

Kind code of ref document: A1