WO2016136214A1 - Identifier learning device, remaining object detection system, identifier learning method, remaining object detection method, and program recording medium - Google Patents

Identifier learning device, remaining object detection system, identifier learning method, remaining object detection method, and program recording medium Download PDF

Info

Publication number
WO2016136214A1
WO2016136214A1 PCT/JP2016/000869 JP2016000869W WO2016136214A1 WO 2016136214 A1 WO2016136214 A1 WO 2016136214A1 JP 2016000869 W JP2016000869 W JP 2016000869W WO 2016136214 A1 WO2016136214 A1 WO 2016136214A1
Authority
WO
WIPO (PCT)
Prior art keywords
images
analysis
staying
detection target
image
Prior art date
Application number
PCT/JP2016/000869
Other languages
French (fr)
Japanese (ja)
Inventor
有紀江 海老山
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017501921A priority Critical patent/JP6784254B2/en
Publication of WO2016136214A1 publication Critical patent/WO2016136214A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion

Definitions

  • the present disclosure relates to a system, a method and a program recording medium for detecting a person or an object staying in a monitoring area, and an apparatus and a method for learning an identifier for identifying the person or an object staying. And a program recording medium.
  • Patent Documents 1 to 4 A technique for detecting an object is known (for example, see Patent Documents 1 to 4). For example, in video surveillance, it is considered to specify an object left behind or a person who stays for a certain period of time.
  • Patent Document 1 describes a method for detecting an object left behind from a scene of an image taken by a camera.
  • a motion in a scene is analyzed on a plurality of time scales, and a long-term background model is generated based on the frequency of appearance of pixel values using a plurality of photographed images photographed over a long period of time. To do. Then, this long-term background model is compared with a short-term background model generated using a plurality of photographed images photographed over a shorter period.
  • the long-term background model has a long background observation time compared to the observation time of the left object that is stationary for a short time. Become dominant.
  • the short-term background model in addition to the background, the pixel of the left object that remains stationary for a short time becomes dominant. Therefore, the long-term background model and the short-term background model have a difference in the appearance frequency of the pixel values belonging to the left object that is stationary for a short time.
  • the pixels belonging to the background portion that is mainly stationary and the left object that is stationary for a short time are distinguished from each other.
  • Patent Document 2 describes an abandoned object detection device that detects an abandoned object based on a captured image of a target area. Similarly, the abandoned object detection device described in Patent Document 2 also analyzes the movement in the scene on a plurality of time scales. Specifically, the abandoned object detection device described in Patent Document 2 distinguishes a foreground region and a background region based on pixel value variations using the latest captured images of a plurality of frames, and obtains a currently obtained background. The pixel values in the region and the background region obtained in the past are compared.
  • pixels of the moving object and the background and the stationary object are mixed, so that the pixel value variation increases, and in the background and the stationary object region, the pixel value variation decreases. A region and a background region are distinguished. Then, paying attention to the background area where the variation of the pixel value is small, and comparing the pixel value of the current background area with the pixel value of the past background area, the pixel value belonging to the stationary object is obtained before and after the stationary object appears. A difference is born.
  • a pixel belonging to a dynamic foreground part, a pixel belonging to a stationary background, and a pixel belonging to a left object that has been stationary for a short time are distinguished from each other.
  • a method for comparing the results of analyzing images on a plurality of time scales and determining that a stagnant object is present in the region where the difference is obtained has been proposed.
  • Japanese Patent No. 5058010 Japanese Patent No. 4852355 JP 2010-176206 A JP 2014-126942 A
  • changes in the shooting environment include differences in sunshine and lighting conditions due to shooting time and weather, movement of objects, changes in posters and signs such as digital signage, camera lens contamination, wind, vibration and contact There is a shift in the angle of view of the camera.
  • An exemplary object of the present disclosure is to provide a technique capable of suitably detecting a staying object and a technique for appropriately identifying the staying object.
  • the discriminator learning device uses a set of a plurality of images including the same detection target as a positive example indicating a staying state, and a set of a plurality of images not including the same detection target as a negative example indicating a non-staying state And a learning unit for learning a discriminator for identifying a staying object.
  • the staying object detection system includes a target image selection unit that selects a plurality of detection target images that are captured with a time difference suitable for stay analysis from a plurality of detection target images that are captured at different times. Identification that identifies each staying object from the plurality of images, and an analysis image generation unit that extracts an image showing the same analysis region from the plurality of selected detection target images and generates an analysis image that is a set of the extracted images And a stagnant object detecting means for detecting a stagnant object from the generated analysis image, and the target image selecting means is based on at least one of the movement model of the detection target or the size of the analysis region. It is characterized by determining a time difference suitable for analysis.
  • the discriminator learning method is a discriminator learning method for learning a discriminator for identifying a stagnant object, in which a computer sets a plurality of image sets including the same detection target as a positive example indicating a stagnant state.
  • a classifier that identifies a staying object is learned by using a set of a plurality of images that do not include the same detection target as a negative example indicating a non-staying state.
  • the staying object detection method selects a plurality of detection target images that are captured with a time difference suitable for stay analysis from a plurality of detection target images that are captured at different times.
  • Each of the images showing the same analysis area is extracted from the detection target image, an analysis image that is a set of the extracted images is generated, and an analysis image generated using a discriminator that identifies a stagnant object from a plurality of images
  • a time difference suitable for stagnant analysis is determined based on at least one of a movement model of a detection target or a size of an analysis region.
  • a discriminator learning program is a discriminator learning program applied to a computer that learns a discriminator for identifying a stagnant object, wherein a set of a plurality of images including the same detection target is stored in the computer. And a learning process for learning a discriminator for identifying a staying object is executed by using a set of a plurality of images not including the same detection target as a negative example indicating a non-staying state.
  • the stagnant object detection program is a target image selection that selects a plurality of detection target images that are captured at a time difference suitable for stay analysis from a plurality of detection target images that are captured at different times. Processing, an analysis image generation process for generating an analysis image that is a set of the extracted images, respectively, and extracting a stagnant object from the plurality of images. Based on at least one of the moving model of the detection target or the size of the analysis region in the target image selection process, the identification object is used to execute the staying object detection process for detecting the staying object from the generated analysis image.
  • the method is characterized in that a time difference suitable for the residence analysis is determined.
  • a staying object can be detected suitably.
  • FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a staying object detection system according to the present disclosure.
  • FIG. 2 is a block diagram illustrating a configuration example of the analysis image acquisition unit.
  • FIG. 3 is an explanatory diagram illustrating an example of selecting an analysis region.
  • FIG. 4 is an explanatory diagram illustrating an example of a method for detecting a person who stays.
  • FIG. 5 is an explanatory diagram showing an example of another method for detecting a person who stays.
  • FIG. 6 is an explanatory diagram illustrating an operation example of the staying object detection system.
  • FIG. 7 is a flowchart illustrating an operation example of learning a classifier.
  • FIG. 8 is a block diagram illustrating an overview of a classifier learning device according to the present disclosure.
  • FIG. 9 is a block diagram illustrating an outline of a staying object detection system according to the present disclosure.
  • FIG. 10 is a block diagram illustrating a configuration example of a computer device according to the present disclosure
  • FIG. 1 is a block diagram illustrating an embodiment of a staying object detection system according to the present disclosure.
  • the staying object detection system includes an image input unit 1, a stay detection unit 2, an output unit 3, and a classifier learning unit 4.
  • the image input unit 1 sequentially inputs time-series images obtained by photographing a predetermined monitoring area to the stay detection unit 2.
  • the input image input from the image input unit 1 can be said to be an image in which the detection target is photographed, and hence may be referred to as a “detection target image” below.
  • a photographing device such as a surveillance camera may be used.
  • the image input unit 1 may sequentially input time-series images obtained by reading video data stored in a storage device (not shown) to the stay detection unit 2.
  • the type of object to be detected in the present disclosure is not particularly limited, and may be a human, an animal, a car, a robot, or the like.
  • the stay detection unit 2 analyzes images sequentially input from the image input unit 1 and detects staying objects present in the image.
  • the stay detection unit 2 includes an analysis image acquisition unit 21, a stay identifier storage unit 22, a stay degree calculation unit 23, and a stay determination unit 24.
  • the analysis image acquisition means 21 holds the images input from the image input unit 1 for the past several frames, and acquires a set of local region images subdivided based on the size of the detection target appearing in the input image.
  • the set of images of the local area is used for calculation of the staying degree described later.
  • FIG. 2 is a block diagram illustrating a configuration example of the analysis image acquisition unit 21 of the present embodiment.
  • the analysis image acquisition unit 21 of the present embodiment includes an analysis region selection unit 211, an analysis time selection unit 212, and an analysis image selection unit 213.
  • the analysis area selection unit 211 selects a local area as a unit for analyzing the staying state from the input image.
  • the local region selected by the analysis region selection unit 211 is referred to as an analysis region.
  • the size of the analysis region is arbitrary, and may be determined based on the size of the detection target, for example.
  • the analysis area selection unit 211 may select an analysis area by moving an area having a predetermined size at predetermined intervals on the image, for example.
  • the size and interval of the analysis area may be determined by the administrator of the staying object detection system based on the apparent size of the detection target in the image.
  • the analysis region selection unit 211 may select the analysis region using the size and interval values determined in this way.
  • the analysis region selection unit 211 uses the camera parameter indicating the camera posture obtained in advance to detect the detection target for each position on the image. The apparent size may be calculated. Then, the analysis region selection unit 211 may determine the size of the analysis region according to the apparent size calculation result.
  • the analysis area selection unit 211 may continue to use the analysis area that was initially selected when the stagnant object detection system was started, or each time a new image is input, a new position or size that is newly changed. The analysis area may be selected again. That is, the analysis region selection unit 211 may select the same region of a plurality of images as the analysis region using the newly selected analysis region.
  • FIG. 3 is an explanatory diagram illustrating an example in which the analysis region selection unit 211 selects an analysis region.
  • the analysis region selection unit 211 may select the region R1 at the time t1 and the time t2, and may select the region R2 at the time when another image is input (time t11).
  • a region having the same coordinates is used. For example, when comparing the image at time t11 and the image at time t12, both regions R2 are used.
  • the analysis time selection unit 212 is photographed for each analysis region selected by the analysis region selection unit 211 at a time suitable for the stay analysis among the past several frames of images input from the image input unit 1. (Ie, taken with a time difference suitable for the analysis of dwell).
  • the analysis time selection unit 212 may calculate a time difference suitable for the analysis of the stay using, for example, a movement model of a detection target.
  • a detection target is a person
  • a range having a width of 0.6 m centering on the person is cut out as a local region (analysis region).
  • the analysis time selection unit 212 may select images taken at intervals of 0.5 seconds or more. This is because only the staying person is photographed in common at the same position, and the moving person passes through the analysis region, so that it is not photographed in common at the same position. Accordingly, the time difference suitable for the stay analysis in this case is 0.5 seconds. Therefore, the analysis time selection unit 212 may select an image taken at intervals of 0.5 seconds or more from the images input from the image input unit 1.
  • the analysis time selection unit 212 calculates the time required for the detection target to pass through the analysis region based on the movement model of the detection target, and the input images taken at intervals of the calculated time or more. May be selected. At that time, the size of the analysis region may be a fixed size defined in advance.
  • the movement model is exemplified when the movement speed of the detection target is modeled.
  • the movement model may be a model of movement speed and movement direction.
  • the movement model may be a model that can derive the movement direction of the detection target and the movement speed assumed for the movement direction.
  • the movement direction and movement speed of the detection target may be fixed values defined in advance.
  • the analysis time selection unit 212 may determine the time difference suitable for the stay analysis by using one or both of the movement model to be detected and the size of the analysis region.
  • the administrator of the stagnant object detection system may determine a movement model to be detected in advance and use the value. Further, the apparent moving speed of the detection target in the image may change depending on the position of the detection target.
  • the analysis time selection unit 212 may calculate the apparent movement distance of the detection target between the frame images for each position on the image, using the camera parameter indicating the camera posture obtained in advance. Then, the analysis time selection unit 212 may select only images in which the moving object is not included in the same analysis region in the previous and subsequent frames. The analysis time selection unit 212 inputs an image for each selected analysis region to the analysis image selection unit 213.
  • the analysis image selection unit 213 selects a combination of images used for calculating the staying degree from the images for each analysis region input from the analysis time selection unit 212.
  • the staying degree is an index indicating the probability that the detection target is staying.
  • the image selected by the analysis image selection unit 213 is referred to as an analysis image.
  • FIG. 4 is an explanatory diagram illustrating an example of a method for detecting a person who stays.
  • a method of detecting a person staying in a surveillance camera image taken on the street will be described.
  • FIG. 4 shows an example of detecting a staying person by paying attention to the upper body of the person.
  • the image input unit 1 sequentially inputs the images at time t1, time t2, and time t3 illustrated in FIG. 4, and the analysis image acquisition unit 21 holds the past two images. That is, when input images are obtained in the order of time t1, time t2, and time t3, the analysis image acquisition unit 21 acquires a set of analysis images based on the images at time t1 and time t2 at time t2. At time t3, another set of analysis images is acquired based on the images at time t2 and time t3.
  • the analysis region selection means 211 selects the analysis region based on the size in the image of the person to be detected.
  • FIG. 4 shows an example in which three analysis regions, a predetermined region 1, region 2, and region 3, are set to simplify the description.
  • analysis time selection unit 212 determines whether or not a person can move on the analysis area at the shooting time interval of the input image for each selected analysis area. If it is possible to move, the analysis time selection unit 212 sets the images taken at the time interval as analysis image candidates. In the example of FIG. 4, it is assumed that a person can move in all analysis regions.
  • the analysis image selection unit 213 obtains an image of the analysis area from each input image. That is, at time t2, a pair of the image of region 1 captured at time t1 and the image of region 1 captured at time t2 is a set of analysis images. As described above, the analysis image selection unit 213 sets a set of images acquired from the same analysis region as one set of analysis images, and inputs all of the obtained analysis images to the staying degree calculation unit 23. In other words, the analysis image selection unit 213 extracts images indicating the same analysis region from the plurality of input images selected by the analysis time selection unit 212, and generates a set analysis image of the extracted images. I can say that.
  • FIG. 4 shows an example in which three analysis areas are set
  • the number of analysis areas to be set is arbitrary. Further, the analysis area may be set in an overlapping range on the image.
  • FIG. 4 shows an example in which the upper half of the person to be detected is included in the analysis region.
  • the analysis region may be set so as to include an arbitrary part to be detected, or may be set so as to include the detection target.
  • FIG. 4 shows an example in which the analysis region is a square, but the shape of the analysis region is not limited to a square and may be set to an arbitrary rectangle.
  • the number of local images is not limited to two, and an arbitrary number of two or more images can be used as one set.
  • An analysis image may be used.
  • the analysis image selection unit 213 may select a plurality of sets of analysis images. .
  • FIG. 5 is an explanatory diagram showing an example of another method for detecting a person who stays. Note that the example shown in FIG. 5 is the same as the example shown in FIG. 4 except that the analysis image acquisition unit 21 holds the past three images.
  • the analysis image selection unit 213 selects two images from the three images at times t1 to t3 to form a set of analysis images, and therefore (t1, t2), (t2, t3) for each analysis region. ), (T1, t3) three sets of analysis images are selected.
  • the analysis image selection unit 213 inputs the set of analysis images thus selected for each analysis region to the staying degree calculation unit 23.
  • the analysis image selection unit 213 selects an analysis image from all combinations of analysis images.
  • the analysis image selection means 213 does not necessarily need to select all combinations, and may select analysis images by other methods.
  • a method of selecting a set of analysis images it is assumed that a set of analysis images is generated by selecting two images from among five frames of images from time t1 to t5.
  • the analysis image selection unit 213 may generate a set of analysis images from adjacent frames such as (t1, t2), (t2, t3), ..., (t4, t5).
  • the analysis image selection unit 213 sets the latest frame image and any one of the past frame images as 1 (t5, t2), (t5, t3),..., (T5, t4).
  • a set of analysis images may be used.
  • the analysis image selection means 213 of the present embodiment selects a plurality of sets of analysis images for calculating the staying degree with respect to the past several frames of images obtained from the image input unit 1.
  • the analysis image selection means 213 of the present embodiment selects a plurality of sets of analysis images for calculating the staying degree with respect to the past several frames of images obtained from the image input unit 1.
  • the analysis image selection means 213 inputs the selected set of analysis images to the staying degree calculation means 23.
  • the staying discriminator storage unit 22 stores a discriminator used by the staying degree calculating unit 23 described later for calculating the staying degree with respect to the set of analysis images input from the analysis image acquiring unit 21. This discriminator is constructed in advance before the stagnant object detection system performs processing for detecting stagnant objects.
  • the staying classifier storage unit 22 may store a classifier generated by the classifier learning unit 4 described later, or may store a classifier generated by an administrator or the like.
  • the discriminator learning unit 4 learns a discriminator that identifies a staying object from a plurality of images.
  • identifying a stagnant object includes not only identifying whether or not it is a stagnant object, but also calculating an index (degree of stay) indicating the probability that the detection target is stagnating in order to identify the stagnant object. It is.
  • the discriminator learning unit 4 may generate a discriminator that outputs a staying degree as a determination result for a plurality of images, for example. Specifically, the discriminator learning unit 4 may generate a discriminator that calculates the staying degree of the detection target higher as the same detection target is included in the plurality of input images.
  • the classifier learning unit 4 learns a classifier using positive and negative learning images. Specifically, the classifier learning unit 4 uses a set of a plurality of images including the same detection target as a positive example indicating the staying state. The classifier learning unit 4 uses a set of a plurality of images that do not include the same detection target as a negative example indicating a non-staying state.
  • the classifier learning unit 4 constructs a classifier suitable for discriminating between the positive example and the negative example by machine learning. Specifically, the classifier learning unit 4 learns a classifier that identifies a stagnant object from these images when the same number of images as the number of images included in the positive or negative example set is input. To do.
  • the learning image will be specifically described with an example in which the detection target is a person.
  • the positive example may be an image including the same detection target.
  • the positive example is not necessarily an image in which the same detection target is included in the same state.
  • the positive example assumes the monitoring environment of the application destination, for example, a set of images assuming that different people such as passersby appear before and after the staying person, or a set of images in which the lighting conditions around the staying person have changed. It may be.
  • the learning image is subjected to perturbation processing that reflects the influence of how light strikes, brightness, shadows, etc., on the detection target or background of at least one of the images included in the positive example set. It may be given. By doing so, it is possible to maintain the accuracy of identifying the staying object even when the shooting environment changes.
  • the positive example may be a set of a plurality of images including the same detection target and at least a part of the same background image.
  • the classifier learning unit 4 can more appropriately determine the staying image by learning the classifier by using, as a positive example, a set of a plurality of images including the same detection target and at least a part of the same background image. At this time, the above-described perturbation process may be performed on the background image.
  • the negative example may be an image that does not include the same detection target.For example, a set of images in which different persons are photographed assuming a passerby, a set of images of backgrounds such as the ground and buildings, and the like are learned images. As an example. Further, the negative example may be subjected to the above-described perturbation process in the same manner as the positive example. By performing the perturbation process on the negative example image, it is possible to suppress erroneous detection even when the way the light strikes and how the shadow is produced changes due to changes in the shooting environment.
  • the discriminator learning unit 4 learns the discriminator using such positive examples and negative examples collected in large quantities as learning images. That is, the discriminator learning unit 4 learns a discriminator using a set of images in which at least one image is subjected to perturbation processing among images included in a set of positive examples or negative examples.
  • the target to which the perturbation process is performed is arbitrary, and may be, for example, a detection target or a background included in a positive example or a negative example.
  • the learning image may be an image cut out from the real image, may be an image obtained by combining the background of the real image and the foreground (detection target) of the real image, or may be artificially generated by CG (Computer Graphics). An automatically generated image may be used.
  • CG Computer Graphics
  • the discriminator learning unit 4 constructs a discriminator suitable for discriminating between positive examples and negative examples using the prepared learning images.
  • the discriminator learning unit 4 may construct a discriminator suitable for discriminating between positive examples and negative examples by using a machine learning method such as CNN (Convolutional Neural Network). By using the discriminator generated in this way, it is possible to obtain the probability of belonging to a positive example or a negative example for an arbitrary input image.
  • CNN Convolutional Neural Network
  • the learning method used by the discriminator learning unit 4 is not limited to CNN, and any method can be used as long as it can construct a discriminator that outputs a probability belonging to a positive example or a negative example for an arbitrary input image.
  • a method of learning a plurality of images with CNN is also known. However, this method is a method of learning for images that are very close to each other at regular intervals, and is different from a method of using images that are taken at some time apart as in the discriminator learning unit 4 of the present embodiment. .
  • the staying degree calculating unit 23 calculates a staying degree for the set of analysis images input from the analysis image acquiring unit 21 using a classifier stored in the staying classifier storage unit 22. That is, the staying degree is calculated for each analysis region.
  • the staying degree calculating unit 23 inputs a set of the coordinates of the analysis region and the calculated staying degree to the staying determining unit 24.
  • the staying degree calculation unit 23 applies to all sets of analysis images. The staying degree is calculated, and the calculated staying degree is integrated for each analysis region.
  • FIG. 5 shows an example in which input images for the past three frames are held, and two of the local images are used for calculating the staying degree.
  • the analysis image selection unit 213 selects three sets of analysis images (t1, t2), (t2, t3), and (t1, t3) shown in FIG. Therefore, the staying degree calculating unit 23 calculates three staying degrees for these three sets of analysis images. Then, the staying degree calculating means 23 calculates, for example, an average value, a median value, a maximum value, or a minimum value of three values and integrates the calculated staying degrees. It is good also as a result of integration.
  • the stay determination unit 24 performs stay determination using information on a set of the analysis region coordinates input from the stay degree calculation unit 23 and the calculated stay degree, and outputs stay generation coordinates for the input image. In other words, a staying object detection process for detecting a staying object from the set of generated analysis images is executed by the staying degree calculation unit 23 and the staying determination unit 24.
  • the stay determination unit 24 may determine, for example, that a stay has occurred in an analysis region in which a stay degree equal to or greater than the threshold is obtained by comparing a preset threshold value with a stay degree value.
  • the stay determination means 24 performs the stay determination in the overlap areas, and the average value, median value, maximum value, and minimum value of the stay degrees calculated for each overlap analysis area If any of the above values is equal to or greater than a predetermined threshold value, it may be determined as staying.
  • the staying degree calculation unit 23 specifies a background image that does not include the stay of the detection target in advance, and the specified background image portion is included in the specified background image portion.
  • the staying degree may be calculated.
  • the staying determination unit 24 may perform a correction process for reducing the staying degree with respect to an area where the staying degree is easily calculated with a high degree of staying (a region where erroneous detection is likely to occur).
  • the stay determination unit 24 may calculate the reliability based on the stay degree with respect to the background image that does not include the stay of the detection target.
  • the stay determination means 24 has a low reliability of the area where the stay degree is easily calculated with respect to the background (an area where erroneous detection is likely to occur), and the reliability of the area where the stay degree is low with respect to the background is high.
  • the reliability is calculated from the staying degree.
  • the stay determination unit 24 outputs the calculated reliability to the output unit 3 together with the stay degree for each region.
  • the stay determination means 24 may use coordinates on the screen as the stay occurrence coordinates to be output, or may use coordinates converted to real world coordinates.
  • the output unit 3 outputs the stay occurrence coordinates input from the stay detection unit 2.
  • the output mode of the output unit 3 is to display, for example.
  • the output unit 3 may include a display device (not shown) and display on the display device.
  • the output mode of the output unit 3 is not limited to display, and may be other modes.
  • Analysis image acquisition means 21 (more specifically, analysis region selection means 211, analysis time selection means 212, analysis image selection means 213), retention degree calculation means 23, and stay determination means 24 in the stay detection unit 2 Is realized by a CPU (Central Processing Unit) of a computer that operates according to a program (a staying object detection program).
  • CPU Central Processing Unit
  • the program may be stored in a storage unit (not shown) included in the staying object detection system.
  • the CPU reads the program, and according to the program, the analysis image acquisition means 21 (more specifically, the analysis region selection means 211, the analysis time selection means 212, and the analysis image selection means 213), the staying degree calculation means 23, and The residence determination unit 24 may operate.
  • the analysis image acquisition means 21 (more specifically, the analysis region selection means 211, the analysis time selection means 212, and the analysis image selection means 213), the staying degree calculation means 23, and the stay determination means 24 are: Each may be realized by dedicated hardware.
  • the classifier learning unit 4 is realized by a CPU of a computer that operates according to a program (a classifier learning program).
  • the classifier learning unit 4 may also be realized by dedicated hardware.
  • FIG. 6 is an explanatory diagram illustrating an operation example of the staying object detection system according to the present embodiment. Note that the order of the processing steps described below may be arbitrarily changed within a range in which there is no contradiction in processing content, or may be executed in parallel. Further, other steps may be added between the processing steps. Further, a step described as one step for convenience can be divided into a plurality of steps, and a step described as divided for convenience can be executed as one step.
  • Analytical image acquisition means 21 acquires a captured image and its captured time from the image input unit 1 (step S1). Next, the analysis image acquisition means 21 discards the image with the oldest shooting time among the images of the past several frames to be stored, and newly stores the latest input image acquired in step S1, thereby storing the image history. Update (step S2).
  • the analysis area selection unit 211 selects a plurality of analysis areas from the image (step S3).
  • the analysis image acquisition unit 21 (specifically, the analysis region selection unit 211) has an unprocessed analysis region for which the residence degree has not yet been calculated among the plurality of analysis regions selected in step S3. (Yes in step S4), one unprocessed analysis region is selected (step S5).
  • the analysis time selection unit 212 calculates the photographing time interval of each image from the image history updated in step S2 based on the movement model of the detection target defined in advance in the analysis region selected in step S5. Then, the analysis time selection unit 212 determines whether or not the detection target is movable on the target analysis region at the time interval, and selects an image that is determined to be movable (step S6).
  • the analysis image selection means 213 selects a combination of analysis images to be used for calculating the staying degree from the images of the respective history selected in step S6 (step S7).
  • the staying degree calculating means 23 calculates the staying degree for the set of analysis images selected in Step S9 by using the classifier held by the staying classifier storage unit 22 (Step S10).
  • step S10 the staying degree calculating means 23 repeats the processing after step S8. If it is determined in step S8 that there is no set of unprocessed analysis images (no in step S8), the staying degree calculating unit 23 integrates the results of calculating a plurality of staying degrees for one analysis region. The calculated numerical value is calculated (step S11). The staying degree calculating unit 23 calculates, for example, any one of the calculated average value, median value, maximum value, and minimum value of the staying degrees as an integrated numerical value.
  • the analysis image acquisition unit 21 repeats the processing after step S4. If it is determined in step S4 that there is no unprocessed analysis area (no in step S4), the stay determination unit 24 performs a stay determination process using the stay degree calculated for each analysis area (step S12). ). The stay determination unit 24 performs a stay determination process so that, for example, if the stay degree calculated for each analysis region is equal to or greater than a predetermined threshold, the stay determination unit 24 determines that the stay is present.
  • the stay determination unit 24 performs the stay determination in the overlap region, for example, the average value, median value, maximum value, minimum value of the stay degree calculated for each analysis region that overlaps If any of the values is equal to or greater than a predetermined threshold, it may be determined that the object is staying.
  • the output unit 3 outputs the stay detection result output from the stay determination unit 24 (step S13).
  • the output unit 3 may output a stay detection result to an application, or may output it to an external module such as a storage medium.
  • FIG. 7 is a flowchart showing an operation example of the classifier learning unit 4 of the present embodiment.
  • the discriminator learning unit 4 reads positive and negative learning images stored in a storage unit (not shown) (step S21). Specifically, the classifier learning unit 4 reads a set of a plurality of images including the same detection target as a positive example indicating the staying state, and does not include the same detection target as a negative example indicating the non-staying state. Read multiple image sets.
  • the discriminator learning unit 4 learns discriminators that identify stagnant objects from the same number of input images as the number of images included in the positive or negative example set from the positive and negative example learning images (step). S22).
  • the analysis time selection unit 212 selects a plurality of input images taken with a time difference suitable for stay analysis from a plurality of input images with different taken times. Moreover, the analysis image selection means 213 extracts the image which shows the same analysis area
  • the staying degree calculating unit 23 and the staying determining unit 24 detect the staying object from the set of analysis images using the above-described discriminator. Therefore, it is possible to detect a stagnant object stably without being affected by an increase in false detection caused by a change in photographing environment represented by a change in illumination in the monitoring area, lens contamination of the monitoring camera, movement of an object, and the like.
  • the classifier learning unit 4 sets a plurality of image sets including the same detection target as a positive example indicating the staying state, and sets a plurality of image sets not including the same detection target as the non-staying state.
  • a discriminator for identifying a staying object is learned. By using this discriminator, it is possible to suitably detect a staying object.
  • FIG. 8 is a block diagram illustrating an overview of a classifier learning device according to the present disclosure.
  • the classifier learning device 90 includes a learning unit 91 (for example, the classifier learning unit 4) that learns a classifier that identifies a staying object.
  • the learning unit 91 sets a plurality of images including the same detection target as a positive example indicating a staying state, and sets a plurality of images not including the same detection target as a negative example indicating a non-staying state. Learn classifiers to identify.
  • the staying object can be suitably detected.
  • the learning unit 91 may learn a discriminator that identifies a staying object from the same number of detection target images as the number of images included in the positive or negative example set.
  • the learning unit 91 may learn the discriminator using a set of a plurality of images including at least a part of the same background image together with the same detection target as a positive example. When comparing multiple images targeting the same analysis area, it is more likely that the same background image will be reflected in the analysis area to be compared. A staying image can be determined.
  • the learning unit 91 performs perturbation processing on the detection target of at least one of the images included in the positive or negative example set (for example, how the light hits the detection target, brightness, shadow)
  • the classifier may be learned using a set of images that have been subjected to processing reflecting the influence of the above. By using such an image as a positive example or a negative example, it is possible to learn a discriminator that can maintain the accuracy of identifying a staying object even when the shooting environment changes.
  • FIG. 9 is a block diagram illustrating an outline of the stagnant object detection system according to the present disclosure.
  • a staying object detection system 80 includes target image selection means 81, analysis image generation means 82, and staying object detection means 83.
  • the target image selection unit 81 (for example, the analysis time selection unit 212) selects a plurality of detection target images that are captured with a time difference suitable for stay analysis from a plurality of detection target images that are captured at different times. .
  • the analysis image generation unit 82 (for example, the analysis image selection unit 213) extracts images indicating the same analysis region from the plurality of detection target images selected by the target image selection unit 81, and uses the extracted sets of images.
  • a set of analysis images is generated.
  • the staying object detection means 83 (for example, staying degree calculation means 23, stay determination means 24) uses a discriminator for identifying staying objects from a plurality of images, and uses a set of analysis images generated by the analysis image generation means 82. Detect stagnant objects.
  • the target image selection unit 81 is suitable for the analysis of the stay based on at least one of the movement model of the detection target (for example, the movement model modeling the movement speed and movement direction of the detection target) or the size of the analysis region. Determine the time difference.
  • the staying object detection means 83 is generated by using an identifier that calculates the staying degree that indicates the probability that the detection target stays as the same detection target is included in a plurality of input images.
  • a staying object may be detected from the set of analyzed images.
  • the analysis image generation means 82 may generate a plurality of sets of analysis images in the same analysis region.
  • the staying object detection means 83 acquires the staying degree calculated by the classifier for each of a plurality of generated analysis images, and the average value, median value, maximum value, and minimum value of the staying degree obtained. At least one of these values may be calculated as the staying degree in the same analysis region.
  • the staying object detection means 83 may detect a staying object based on the calculated staying degree.
  • the staying object detection unit 83 may specify the background image portion from the detection target image and correct the staying degree of the region corresponding to the specified background image portion to be low. According to such a configuration, it is possible to improve the detection accuracy of a region where the degree of stay is high with respect to the background and is easily calculated (a region where erroneous detection is likely to occur).
  • the target image selection unit 81 calculates a time required for the detection target to pass through the analysis region based on the movement model of the detection target, and detects the detection target image captured at an interval equal to or longer than the calculated time. You may choose.
  • FIG. 10 is a block diagram illustrating a hardware configuration of the computer device 200 that implements the discriminator learning device 90 or the staying object detection system 80.
  • the computer device 200 includes a CPU 201, a ROM (Read Only Memory) 202, a RAM (Random Access Memory) 203, a storage device 204, a drive device 205, a communication interface 206, and an input / output interface 207.
  • the discriminator learning device 90 or the staying object detection system 80 can be realized by the configuration (or part thereof) shown in FIG.
  • the CPU 201 executes the program 208 using the RAM 203.
  • the program 208 may be stored in the ROM 202.
  • the program 208 may be recorded on a recording medium 209 such as a flash memory and read by the drive device 205 or transmitted from an external device via the network 210.
  • the communication interface 206 exchanges data with an external device via the network 210.
  • the input / output interface 207 exchanges data with peripheral devices (such as an input device and a display device).
  • the communication interface 206 and the input / output interface 207 can function as means for acquiring or outputting data.
  • the classifier learning device 90 or the staying object detection system 80 may be configured by a single circuit (such as a processor) or may be configured by a combination of a plurality of circuits.
  • the circuit here may be either dedicated or general purpose.
  • the present disclosure can be suitably applied to a system that detects an object such as a person or an abandoned object staying in the monitoring area.
  • the characteristics of the stay image that is a specific detection target are learned. Therefore, in an outdoor environment that was difficult to apply with the difference-based method, the present disclosure is disclosed to detect only the target stagnant object without being affected by the increase in false detection due to illumination fluctuations, lens contamination, movement of objects, etc. Can be suitably applied.
  • the present disclosure does not need to generate a background image in advance as compared with the difference-based stay detection method. Therefore, it is easy to introduce the stagnant object detection system in an environment where it is difficult to acquire and generate a background image in which detection targets are always coming and going.

Abstract

[Problem] To provide a remaining object detection system, remaining object detection method, and remaining object detection program capable of preferably detecting a remaining object, and an identifier learning device, identifier learning method, and identifier learning program for learning an identifier for preferably identifying a remaining object. [Solution] In an identifier learning device that learns an identifier for identifying a remaining object, a learning unit 91 of the identifier learning device learns the identifier for identifying the remaining object with a set of a plurality of images including the same detection target as a positive example that indicates a remaining state and with a set of a plurality of images not including the same detection target as a negative example that indicates a non-remaining state.

Description

識別器学習装置、滞留物体検出システム、識別器学習方法、滞留物体検出方法およびプログラム記録媒体Discriminator learning apparatus, stagnant object detection system, discriminator learning method, stagnant object detection method, and program recording medium
 本開示は、監視領域内に滞留している人や物を検出するためのシステム、方法およびプログラム記録媒体、並びに、滞留している人や物を識別する識別器を学習するための装置、方法およびプログラム記録媒体に関する。 The present disclosure relates to a system, a method and a program recording medium for detecting a person or an object staying in a monitoring area, and an apparatus and a method for learning an identifier for identifying the person or an object staying. And a program recording medium.
 物体を検出する技術が知られている(例えば、特許文献1~4参照)。また、例えばビデオ監視などにおいて、置き去りにされた物体や一定時間以上滞留する人物を特定することが考えられている。 A technique for detecting an object is known (for example, see Patent Documents 1 to 4). For example, in video surveillance, it is considered to specify an object left behind or a person who stays for a certain period of time.
 特許文献1には、カメラで撮影された画像のシーンから置き去りにされた物体を検出する方法が記載されている。特許文献1に記載された方法では、シーン中の動きを複数の時間スケールで解析し、長期間にわたって撮影された複数の撮影画像を用いて、画素値の出現頻度に基づいて長期背景モデルを生成する。そして、この長期背景モデルと、それよりも短い期間にわたって撮影された複数の撮影画像を用いて生成された短期背景モデルが比較される。 Patent Document 1 describes a method for detecting an object left behind from a scene of an image taken by a camera. In the method described in Patent Document 1, a motion in a scene is analyzed on a plurality of time scales, and a long-term background model is generated based on the frequency of appearance of pixel values using a plurality of photographed images photographed over a long period of time. To do. Then, this long-term background model is compared with a short-term background model generated using a plurality of photographed images photographed over a shorter period.
 このとき、一定期間内の撮影画像から出現頻度が高い画素を用いて画像が生成されれば、例えばすぐにフレームアウトするような移動物体の画素の出現頻度は低く、静止物体の画素の出現頻度は高くなる。そのため、長期背景モデルおよび短期背景モデルでは、背景および静止物体が抽出されやすくなる。 At this time, if an image is generated from a captured image within a certain period using pixels with a high appearance frequency, for example, the appearance frequency of a pixel of a moving object that is immediately out of frame is low, and the appearance frequency of a pixel of a stationary object Becomes higher. Therefore, in the long-term background model and the short-term background model, the background and the stationary object are easily extracted.
 そして、長期背景モデルと短期背景モデルとを比較すると、長期背景モデルでは、短い時間静止している置き去り物体の観測時間に比べて主に静止している背景の観測時間が長いため、背景画素が支配的になる。一方で、短期背景モデルでは、背景に加え、短い時間に亘って静止している置き去り物体の画素も支配的になる。そのため、長期背景モデルと短期背景モデルとでは、短い時間に亘って静止している置き去り物体に属する画素値の出現頻度に差分が生じる。 And comparing the long-term background model with the short-term background model, the long-term background model has a long background observation time compared to the observation time of the left object that is stationary for a short time. Become dominant. On the other hand, in the short-term background model, in addition to the background, the pixel of the left object that remains stationary for a short time becomes dominant. Therefore, the long-term background model and the short-term background model have a difference in the appearance frequency of the pixel values belonging to the left object that is stationary for a short time.
 これにより、解析シーンにおいて、主に静止している背景部分と、ある短い時間に亘って静止している置き去り物体とに属する画素がそれぞれ区別される。 Thus, in the analysis scene, the pixels belonging to the background portion that is mainly stationary and the left object that is stationary for a short time are distinguished from each other.
 また、特許文献2には、対象領域の撮影画像に基づいて放置物を検出する放置物検出装置が記載されている。特許文献2に記載された放置物検出装置も、同様に、シーン中の動きを複数の時間スケールで解析している。具体的には、特許文献2に記載された放置物検出装置は、直近の複数フレームの撮影画像を用いて、画素値のばらつきに基づいて前景領域と背景領域を区別し、現在得られた背景領域と過去に得られた背景領域における画素値を比較する。 Patent Document 2 describes an abandoned object detection device that detects an abandoned object based on a captured image of a target area. Similarly, the abandoned object detection device described in Patent Document 2 also analyzes the movement in the scene on a plurality of time scales. Specifically, the abandoned object detection device described in Patent Document 2 distinguishes a foreground region and a background region based on pixel value variations using the latest captured images of a plurality of frames, and obtains a currently obtained background. The pixel values in the region and the background region obtained in the past are compared.
 このとき、移動体が通過した領域では、移動体および背景や静止物体の画素が混在するため画素値のばらつきが大きくなり、背景や静止物体の領域では画素値のばらつきが小さくなることから、前景領域と背景領域とが区別される。そして、画素値のばらつきが小さい背景領域に注目し、現在の背景領域の画素値と過去の背景領域の画素値とを比較することで、静止物体が出現する前後では静止物体に属する画素値に差分が生まれる。 At this time, in the area through which the moving object has passed, pixels of the moving object and the background and the stationary object are mixed, so that the pixel value variation increases, and in the background and the stationary object region, the pixel value variation decreases. A region and a background region are distinguished. Then, paying attention to the background area where the variation of the pixel value is small, and comparing the pixel value of the current background area with the pixel value of the past background area, the pixel value belonging to the stationary object is obtained before and after the stationary object appears. A difference is born.
 これにより、解析シーンにおいて、動的な前景部分に属する画素と、主に静止している背景に属する画素と、ある短い時間に亘って静止している置き去り物体に属する画素とをそれぞれ区別している。 Thereby, in the analysis scene, a pixel belonging to a dynamic foreground part, a pixel belonging to a stationary background, and a pixel belonging to a left object that has been stationary for a short time are distinguished from each other. .
 このように、一般的には、ある複数の時間スケールで画像を解析した結果を比較し、差分が得られた領域に滞留物体が存在すると判断する手法(差分ベースの手法)が提案されている。 In this way, generally, a method (difference-based method) for comparing the results of analyzing images on a plurality of time scales and determining that a stagnant object is present in the region where the difference is obtained has been proposed. .
特許第5058010号公報Japanese Patent No. 5058010 特許第4852355号公報Japanese Patent No. 4852355 特開2010-176206号公報JP 2010-176206 A 特開2014-126942号公報JP 2014-126942 A
 しかし、特許文献1および特許文献2に記載された差分ベースの方法では、撮影環境の変化に対して誤検出を起こしやすいという問題がある。差分ベースの手法では、複数の時間スケールにおいて得られた画素情報を比較し差分領域が抽出される。そのため、比較に用いられた時間スケール間で撮影環境に変化が生じた場合、その変化領域で誤検知が生じる。 However, the difference-based methods described in Patent Document 1 and Patent Document 2 have a problem that false detection is likely to occur with respect to changes in the shooting environment. In the difference-based method, pixel information obtained at a plurality of time scales is compared to extract a difference region. Therefore, when a change occurs in the shooting environment between time scales used for comparison, erroneous detection occurs in the change region.
 撮影環境の変化の具体例として、撮影時間帯や天候などによる日照や照明条件の違い、物の移動、ポスターやデジタルサイネージなどの掲示物の変化、カメラのレンズ汚れ、風や振動や接触等によるカメラの撮影画角のずれなどがある。 Specific examples of changes in the shooting environment include differences in sunshine and lighting conditions due to shooting time and weather, movement of objects, changes in posters and signs such as digital signage, camera lens contamination, wind, vibration and contact There is a shift in the angle of view of the camera.
 本開示の例示的な目的は、滞留する物体を好適に検出できる技術、並びに、滞留する物体を好適に識別する技術を提供することである。 An exemplary object of the present disclosure is to provide a technique capable of suitably detecting a staying object and a technique for appropriately identifying the staying object.
 本開示に係る識別器学習装置は、同一の検出対象を含む複数の画像の組を滞留状態を示す正例とし、同一の検出対象を含まない複数の画像の組を非滞留状態を示す負例として、滞留物体を識別する識別器を学習する学習部を備えたことを特徴とする。 The discriminator learning device according to the present disclosure uses a set of a plurality of images including the same detection target as a positive example indicating a staying state, and a set of a plurality of images not including the same detection target as a negative example indicating a non-staying state And a learning unit for learning a discriminator for identifying a staying object.
 本開示に係る滞留物体検出システムは、撮影された時間が異なる複数の検出対象画像から、滞留の解析に適した時間差をおいて撮影された複数の検出対象画像を選択する対象画像選択手段と、選択された複数の検出対象画像から同一の解析領域を示す画像をそれぞれ抽出して、抽出した画像の組である解析画像を生成する解析画像生成手段と、複数の画像から滞留物体を識別する識別器を用いて、生成された解析画像から滞留物体を検出する滞留物体検出手段とを備え、対象画像選択手段が、検出対象の移動モデル又は解析領域の大きさの少なくとも一方に基づいて、滞留の解析に適した時間差を決定することを特徴とする。 The staying object detection system according to the present disclosure includes a target image selection unit that selects a plurality of detection target images that are captured with a time difference suitable for stay analysis from a plurality of detection target images that are captured at different times. Identification that identifies each staying object from the plurality of images, and an analysis image generation unit that extracts an image showing the same analysis region from the plurality of selected detection target images and generates an analysis image that is a set of the extracted images And a stagnant object detecting means for detecting a stagnant object from the generated analysis image, and the target image selecting means is based on at least one of the movement model of the detection target or the size of the analysis region. It is characterized by determining a time difference suitable for analysis.
 本開示に係る識別器学習方法は、滞留物体を識別する識別器を学習する識別器学習方法であって、コンピュータが、同一の検出対象を含む複数の画像の組を滞留状態を示す正例とし、同一の検出対象を含まない複数の画像の組を非滞留状態を示す負例として、滞留物体を識別する識別器を学習することを特徴とする。 The discriminator learning method according to the present disclosure is a discriminator learning method for learning a discriminator for identifying a stagnant object, in which a computer sets a plurality of image sets including the same detection target as a positive example indicating a stagnant state. A classifier that identifies a staying object is learned by using a set of a plurality of images that do not include the same detection target as a negative example indicating a non-staying state.
 本開示に係る滞留物体検出方法は、撮影された時間が異なる複数の検出対象画像から、滞留の解析に適した時間差をおいて撮影された複数の検出対象画像を選択し、選択された複数の検出対象画像から同一の解析領域を示す画像をそれぞれ抽出して、抽出した画像の組である解析画像を生成し、複数の画像から滞留物体を識別する識別器を用いて、生成された解析画像から滞留物体を検出し、検出対象画像を選択する際、検出対象の移動モデル又は解析領域の大きさの少なくとも一方に基づいて、滞留の解析に適した時間差を決定することを特徴とする。 The staying object detection method according to the present disclosure selects a plurality of detection target images that are captured with a time difference suitable for stay analysis from a plurality of detection target images that are captured at different times. Each of the images showing the same analysis area is extracted from the detection target image, an analysis image that is a set of the extracted images is generated, and an analysis image generated using a discriminator that identifies a stagnant object from a plurality of images When a stagnant object is detected and a detection target image is selected, a time difference suitable for stagnant analysis is determined based on at least one of a movement model of a detection target or a size of an analysis region.
 本開示に係る識別器学習プログラムは、滞留物体を識別する識別器を学習するコンピュータに適用される識別器学習プログラムであって、コンピュータに、同一の検出対象を含む複数の画像の組を滞留状態を示す正例とし、同一の検出対象を含まない複数の画像の組を非滞留状態を示す負例として、滞留物体を識別する識別器を学習する学習処理を実行させることを特徴とする。 A discriminator learning program according to the present disclosure is a discriminator learning program applied to a computer that learns a discriminator for identifying a stagnant object, wherein a set of a plurality of images including the same detection target is stored in the computer. And a learning process for learning a discriminator for identifying a staying object is executed by using a set of a plurality of images not including the same detection target as a negative example indicating a non-staying state.
 本開示に係る滞留物体検出プログラムは、コンピュータに、撮影された時間が異なる複数の検出対象画像から、滞留の解析に適した時間差をおいて撮影された複数の検出対象画像を選択する対象画像選択処理、選択された複数の検出対象画像から同一の解析領域を示す画像をそれぞれ抽出して、抽出した画像の組である解析画像を生成する解析画像生成処理、および、複数の画像から滞留物体を識別する識別器を用いて、生成された解析画像から滞留物体を検出する滞留物体検出処理を実行させ、対象画像選択処理で、検出対象の移動モデル又は解析領域の大きさの少なくとも一方に基づいて、滞留の解析に適した時間差を決定させることを特徴とする。 The stagnant object detection program according to the present disclosure is a target image selection that selects a plurality of detection target images that are captured at a time difference suitable for stay analysis from a plurality of detection target images that are captured at different times. Processing, an analysis image generation process for generating an analysis image that is a set of the extracted images, respectively, and extracting a stagnant object from the plurality of images. Based on at least one of the moving model of the detection target or the size of the analysis region in the target image selection process, the identification object is used to execute the staying object detection process for detecting the staying object from the generated analysis image. The method is characterized in that a time difference suitable for the residence analysis is determined.
 本開示によれば、滞留する物体を好適に検出できる。 According to the present disclosure, a staying object can be detected suitably.
図1は、本開示による滞留物体検出システムの一実施形態の構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a staying object detection system according to the present disclosure. 図2は、解析画像取得手段の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of the analysis image acquisition unit. 図3は、解析領域を選択する例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an example of selecting an analysis region. 図4は、滞留する人物を検出する方法の例を示す説明図である。FIG. 4 is an explanatory diagram illustrating an example of a method for detecting a person who stays. 図5は、滞留する人物を検出する他の方法の例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of another method for detecting a person who stays. 図6は、滞留物体検出システムの動作例を示す説明図である。FIG. 6 is an explanatory diagram illustrating an operation example of the staying object detection system. 図7は、識別器を学習する動作例を示すフローチャートである。FIG. 7 is a flowchart illustrating an operation example of learning a classifier. 図8は、本開示による識別器学習装置の概要を示すブロック図である。FIG. 8 is a block diagram illustrating an overview of a classifier learning device according to the present disclosure. 図9は、本開示による滞留物体検出システムの概要を示すブロック図である。FIG. 9 is a block diagram illustrating an outline of a staying object detection system according to the present disclosure. 図10は、本開示によるコンピュータ装置の構成例を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration example of a computer device according to the present disclosure.
 以下、本開示の実施形態を図面を参照して説明する。なお、本開示において、「部」や「手段」、「装置」、「システム」とは、単に物理的手段や装置を意味するものではなく、その「部」や「手段」、「装置」、「システム」が有する機能をソフトウェアによって実現する場合も含まれる。また、1つの「部」や「手段」、「装置」、「システム」が有する機能が2つ以上の物理的手段や装置により実現されてもよく、2つ以上の「部」や「手段」、「装置」、「システム」の機能が1つの物理的手段や装置により実現されてもよい。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the present disclosure, “part”, “means”, “apparatus”, and “system” do not simply mean physical means or apparatus, but “part”, “means”, “apparatus”, The case where the functions of the “system” are realized by software is also included. Further, the functions of one “unit”, “means”, “apparatus”, and “system” may be realized by two or more physical means or devices, and two or more “parts” or “means” may be realized. The functions of “device” and “system” may be realized by one physical means or device.
 図1は、本開示による滞留物体検出システムの一実施形態を示すブロック図である。図1に示すように、本実施形態の滞留物体検出システムは、画像入力部1と、滞留検出部2と、出力部3と、識別器学習部4とを備えている。 FIG. 1 is a block diagram illustrating an embodiment of a staying object detection system according to the present disclosure. As shown in FIG. 1, the staying object detection system according to this embodiment includes an image input unit 1, a stay detection unit 2, an output unit 3, and a classifier learning unit 4.
 画像入力部1は、所定の監視領域を撮影した時系列の画像を、滞留検出部2に逐次入力する。なお、画像入力部1から入力される入力画像は、検出対象が撮影された画像とも言えるため、以下においては「検出対象画像」と言う場合がある。画像の取得には、例えば監視カメラなどの撮影装置が用いられてもよい。また、画像入力部1は、記憶装置(図示せず)に記憶された映像データを読み出して得られる時系列の画像を、滞留検出部2に逐次入力してもよい。 The image input unit 1 sequentially inputs time-series images obtained by photographing a predetermined monitoring area to the stay detection unit 2. Note that the input image input from the image input unit 1 can be said to be an image in which the detection target is photographed, and hence may be referred to as a “detection target image” below. For acquisition of an image, for example, a photographing device such as a surveillance camera may be used. Further, the image input unit 1 may sequentially input time-series images obtained by reading video data stored in a storage device (not shown) to the stay detection unit 2.
 なお、本開示において検出対象とする物体の種類は特に限定されず、人間、動物、車、ロボットなどであってもよい。 Note that the type of object to be detected in the present disclosure is not particularly limited, and may be a human, an animal, a car, a robot, or the like.
 滞留検出部2は、画像入力部1から逐次入力される画像を解析し、画像中に存在する滞留物体を検出する。滞留検出部2は、解析画像取得手段21と、滞留識別器記憶部22と、滞留度算出手段23と、滞留判定手段24とを含む。 The stay detection unit 2 analyzes images sequentially input from the image input unit 1 and detects staying objects present in the image. The stay detection unit 2 includes an analysis image acquisition unit 21, a stay identifier storage unit 22, a stay degree calculation unit 23, and a stay determination unit 24.
 解析画像取得手段21は、画像入力部1から入力された画像を過去数フレーム分保持し、入力画像に写る検出対象の大きさに基づいて細分化した局所領域の画像の組を取得する。局所領域の画像の組は、後述する滞留度の算出に用いられる。 The analysis image acquisition means 21 holds the images input from the image input unit 1 for the past several frames, and acquires a set of local region images subdivided based on the size of the detection target appearing in the input image. The set of images of the local area is used for calculation of the staying degree described later.
 図2は、本実施形態の解析画像取得手段21の構成例を示すブロック図である。本実施形態の解析画像取得手段21は、解析領域選択手段211と、解析時刻選択手段212と、解析画像選択手段213とを有する。 FIG. 2 is a block diagram illustrating a configuration example of the analysis image acquisition unit 21 of the present embodiment. The analysis image acquisition unit 21 of the present embodiment includes an analysis region selection unit 211, an analysis time selection unit 212, and an analysis image selection unit 213.
 解析領域選択手段211は、入力画像から滞留状態の解析を行う単位となる局所領域を選択する。以降、解析領域選択手段211で選択された局所領域を解析領域と呼ぶ。解析領域の大きさは任意であり、例えば、検出対象の大きさに基づいて決定されてもよい。 The analysis area selection unit 211 selects a local area as a unit for analyzing the staying state from the input image. Hereinafter, the local region selected by the analysis region selection unit 211 is referred to as an analysis region. The size of the analysis region is arbitrary, and may be determined based on the size of the detection target, for example.
 解析領域選択手段211は、例えば、所定の大きさの領域を、画像上の所定の間隔ごとに移動させて解析領域を選択してもよい。解析領域の大きさや間隔は、画像における検出対象の見かけ上の大きさに基づいて滞留物体検出システムの管理者によって決定されてもよい。解析領域選択手段211は、このように決定された大きさや間隔の値を用いて解析領域を選択してもよい。 The analysis area selection unit 211 may select an analysis area by moving an area having a predetermined size at predetermined intervals on the image, for example. The size and interval of the analysis area may be determined by the administrator of the staying object detection system based on the apparent size of the detection target in the image. The analysis region selection unit 211 may select the analysis region using the size and interval values determined in this way.
 また、検出対象の位置によって検出対象の見かけ上の大きさが変化する場合、解析領域選択手段211は、あらかじめ求めたカメラの姿勢を表わすカメラパラメータを用いて、画像上の位置ごとに検出対象の見かけ上の大きさを算出してもよい。そして、解析領域選択手段211は、見かけ上の大きさの算出結果に応じて解析領域の大きさを決定してもよい。 In addition, when the apparent size of the detection target changes depending on the position of the detection target, the analysis region selection unit 211 uses the camera parameter indicating the camera posture obtained in advance to detect the detection target for each position on the image. The apparent size may be calculated. Then, the analysis region selection unit 211 may determine the size of the analysis region according to the apparent size calculation result.
 また、解析領域選択手段211は、滞留物体検出システムの起動時に最初に選択した解析領域を以降も使い続けるようにしてもよいし、新たな画像が入力される都度、新たに異なる位置や大きさの解析領域を選択し直すようにしてもよい。すなわち、解析領域選択手段211は、新たに選択した解析領域を用いて、複数の画像の同一領域を解析領域として選択してもよい。 In addition, the analysis area selection unit 211 may continue to use the analysis area that was initially selected when the stagnant object detection system was started, or each time a new image is input, a new position or size that is newly changed. The analysis area may be selected again. That is, the analysis region selection unit 211 may select the same region of a plurality of images as the analysis region using the newly selected analysis region.
 図3は、解析領域選択手段211が解析領域を選択する例を示す説明図である。図3に示す例では、異なる時刻の画像で異なる解析領域が選択されていることを示す。例えば、解析領域選択手段211は、時刻t1および時刻t2においては領域R1を選択し、別の画像が入力された時点(時刻t11)の時点で領域R2を選択してもよい。ただし、画像を比較する際には、同一座標の領域が用いられる。例えば、時刻t11における画像と時刻t12における画像とを比較する場合には、両者の領域R2が用いられる。 FIG. 3 is an explanatory diagram illustrating an example in which the analysis region selection unit 211 selects an analysis region. In the example shown in FIG. 3, it is shown that different analysis regions are selected in images at different times. For example, the analysis region selection unit 211 may select the region R1 at the time t1 and the time t2, and may select the region R2 at the time when another image is input (time t11). However, when the images are compared, a region having the same coordinates is used. For example, when comparing the image at time t11 and the image at time t12, both regions R2 are used.
 解析時刻選択手段212は、解析領域選択手段211で選択された解析領域ごとに、画像入力部1から入力された過去数フレーム分の画像のうち、滞留の解析に適した時間をおいて撮影された(すなわち、滞留の解析に適した時間差で撮影された)画像を選択する。 The analysis time selection unit 212 is photographed for each analysis region selected by the analysis region selection unit 211 at a time suitable for the stay analysis among the past several frames of images input from the image input unit 1. (Ie, taken with a time difference suitable for the analysis of dwell).
 解析時刻選択手段212は、この滞留の解析に適した時間差を、例えば、検出対象の移動モデルによって算出してもよい。具体例として、検出対象を人物とし、人物を中心とした幅0.6mの範囲を局所領域(解析領域)として切り出す場合を考える。例えば、一般的な人物の移動速度を1.2m/秒と仮定し、これを検出対象の移動モデルとする。この場合、解析時刻選択手段212は、0.5秒以上の間隔で撮影された画像を選択すればよい。これは、滞留人物のみが同じ位置に共通して撮影され、移動人物は解析領域を通り過ぎるため、同じ位置に共通して撮影されることはないからである。したがって、この場合の滞留の解析に適した時間差は、0.5秒となる。そこで、解析時刻選択手段212は、画像入力部1から入力された画像のうち、0.5秒以上の間隔で撮影された画像を選択すればよい。 The analysis time selection unit 212 may calculate a time difference suitable for the analysis of the stay using, for example, a movement model of a detection target. As a specific example, consider a case where a detection target is a person, and a range having a width of 0.6 m centering on the person is cut out as a local region (analysis region). For example, assuming that the moving speed of a general person is 1.2 m / sec, this is set as a moving model of a detection target. In this case, the analysis time selection unit 212 may select images taken at intervals of 0.5 seconds or more. This is because only the staying person is photographed in common at the same position, and the moving person passes through the analysis region, so that it is not photographed in common at the same position. Accordingly, the time difference suitable for the stay analysis in this case is 0.5 seconds. Therefore, the analysis time selection unit 212 may select an image taken at intervals of 0.5 seconds or more from the images input from the image input unit 1.
 このように、解析時刻選択手段212は、検出対象の移動モデルに基づいて、その検出対象が解析領域を通過するために要する時間を算出し、算出された時間以上の間隔で撮影された入力画像を選択してもよい。その際、解析領域の大きさは、事前に定義された固定の大きさであってもよい。 As described above, the analysis time selection unit 212 calculates the time required for the detection target to pass through the analysis region based on the movement model of the detection target, and the input images taken at intervals of the calculated time or more. May be selected. At that time, the size of the analysis region may be a fixed size defined in advance.
 なお、移動モデルは、上述した例では、検出対象の移動速度をモデル化した場合が例示されている。ただし、移動モデルは、移動速度および移動方向をモデル化したものであってもよい。具体的には、移動モデルは、検出対象の移動方向とその移動方向に対して想定される移動速度とを導出可能なモデルであってもよい。また、このような移動モデルを用いずに、検出対象の移動方向と移動速度が事前に定義された固定値であってもよい。このように、解析時刻選択手段212は、検出対象の移動モデル又は解析領域の大きさのいずれか一方または両方を用いて、滞留の解析に適した時間差を決定してもよい。 In the above-described example, the movement model is exemplified when the movement speed of the detection target is modeled. However, the movement model may be a model of movement speed and movement direction. Specifically, the movement model may be a model that can derive the movement direction of the detection target and the movement speed assumed for the movement direction. Further, without using such a movement model, the movement direction and movement speed of the detection target may be fixed values defined in advance. As described above, the analysis time selection unit 212 may determine the time difference suitable for the stay analysis by using one or both of the movement model to be detected and the size of the analysis region.
 なお、滞留物体検出システムの管理者が、事前に検出対象の移動モデルを決定し、その値が用いられてもよい。また、検出対象の位置によって画像における検出対象の見かけ上の移動速度が変化する場合がある。この場合、解析時刻選択手段212は、あらかじめ求めたカメラの姿勢を表すカメラパラメータを用いて、画像上の位置ごとにフレーム画像間における検出対象の見かけ上の移動距離を算出してもよい。そして、解析時刻選択手段212は、前後のフレームで移動物体が同じ解析領域に含まれない画像のみを選択してもよい。解析時刻選択手段212は、選択した解析領域ごとの画像を解析画像選択手段213に入力する。 Note that the administrator of the stagnant object detection system may determine a movement model to be detected in advance and use the value. Further, the apparent moving speed of the detection target in the image may change depending on the position of the detection target. In this case, the analysis time selection unit 212 may calculate the apparent movement distance of the detection target between the frame images for each position on the image, using the camera parameter indicating the camera posture obtained in advance. Then, the analysis time selection unit 212 may select only images in which the moving object is not included in the same analysis region in the previous and subsequent frames. The analysis time selection unit 212 inputs an image for each selected analysis region to the analysis image selection unit 213.
 解析画像選択手段213は、解析時刻選択手段212から入力された解析領域ごとの画像のうち、滞留度の算出に用いられる画像の組合せを選択する。ここにおいて、滞留度は、検出対象が滞留している確からしさを示す指標である。以降、解析画像選択手段213で選択された画像を解析画像と呼ぶ。 The analysis image selection unit 213 selects a combination of images used for calculating the staying degree from the images for each analysis region input from the analysis time selection unit 212. Here, the staying degree is an index indicating the probability that the detection target is staying. Hereinafter, the image selected by the analysis image selection unit 213 is referred to as an analysis image.
 ここで、解析画像の取得方法を具体的に説明する。図4は、滞留する人物を検出する方法の例を示す説明図である。以下、図4を参照して、街頭で撮影された監視カメラ映像から滞留する人物を検出する方法を説明する。 Here, the method for acquiring the analysis image will be specifically described. FIG. 4 is an explanatory diagram illustrating an example of a method for detecting a person who stays. Hereinafter, with reference to FIG. 4, a method of detecting a person staying in a surveillance camera image taken on the street will be described.
 図4では、人物の上半身に注目して滞留人物を検出する様子の例を示している。本例では、画像入力部1が図4に例示する時刻t1、時刻t2、時刻t3の画像を逐次入力し、解析画像取得手段21が、過去2枚の画像を保持するものとする。すなわち、時刻t1、時刻t2、時刻t3の順に入力画像が得られた場合、解析画像取得手段21は、時刻t2で、時刻t1と時刻t2の画像を元に1組の解析画像を取得し、時刻t3で、時刻t2と時刻t3の画像を元にさらに1組の解析画像を取得する。 FIG. 4 shows an example of detecting a staying person by paying attention to the upper body of the person. In this example, it is assumed that the image input unit 1 sequentially inputs the images at time t1, time t2, and time t3 illustrated in FIG. 4, and the analysis image acquisition unit 21 holds the past two images. That is, when input images are obtained in the order of time t1, time t2, and time t3, the analysis image acquisition unit 21 acquires a set of analysis images based on the images at time t1 and time t2 at time t2. At time t3, another set of analysis images is acquired based on the images at time t2 and time t3.
 このとき、解析領域選択手段211は、検出対象である人物の画像中の大きさに基づいて解析領域を選択する。図4では、説明を簡単にするため、あらかじめ定めた領域1、領域2、領域3の3個の解析領域が設定されている例を示す。 At this time, the analysis region selection means 211 selects the analysis region based on the size in the image of the person to be detected. FIG. 4 shows an example in which three analysis regions, a predetermined region 1, region 2, and region 3, are set to simplify the description.
 これらの解析領域は、異なる時刻に撮影されたそれぞれの入力画像に対して同じ座標(すなわち、同一の解析領域)に設定される。そして、解析時刻選択手段212は、選択された各解析領域に対し、入力画像の撮影時間間隔で人物が解析領域上を移動可能かどうか判定する。移動可能であれば、解析時刻選択手段212は、その時間間隔で撮影された画像を解析画像の候補とする。図4の例では、すべての解析領域において人物が移動可能であるとする。 These analysis areas are set to the same coordinates (that is, the same analysis area) for each input image taken at different times. Then, the analysis time selection unit 212 determines whether or not a person can move on the analysis area at the shooting time interval of the input image for each selected analysis area. If it is possible to move, the analysis time selection unit 212 sets the images taken at the time interval as analysis image candidates. In the example of FIG. 4, it is assumed that a person can move in all analysis regions.
 そして、解析画像選択手段213は、各入力画像から解析領域の画像をそれぞれ取得する。すなわち、時刻t2では、時刻t1に撮影された領域1の画像と時刻t2に撮影された領域1の画像とのペアが、1組の解析画像となる。このように、解析画像選択手段213は、同じ解析領域から取得された画像の組を1組の解析画像とし、得られたすべての組の解析画像を滞留度算出手段23に入力する。言い換えると、解析画像選択手段213は、解析時刻選択手段212によって選択された複数の入力画像から同一の解析領域を示す画像をそれぞれ抽出して、抽出した画像の組解析画像を生成していると言うことができる。 Then, the analysis image selection unit 213 obtains an image of the analysis area from each input image. That is, at time t2, a pair of the image of region 1 captured at time t1 and the image of region 1 captured at time t2 is a set of analysis images. As described above, the analysis image selection unit 213 sets a set of images acquired from the same analysis region as one set of analysis images, and inputs all of the obtained analysis images to the staying degree calculation unit 23. In other words, the analysis image selection unit 213 extracts images indicating the same analysis region from the plurality of input images selected by the analysis time selection unit 212, and generates a set analysis image of the extracted images. I can say that.
 なお、図4では、3個の解析領域が設定された例を示しているが、設定される解析領域の数は任意である。また、解析領域は、画像上の重複する範囲に設定されてもよい。 Although FIG. 4 shows an example in which three analysis areas are set, the number of analysis areas to be set is arbitrary. Further, the analysis area may be set in an overlapping range on the image.
 また、図4では、検出対象である人物の上半身を解析領域に含む例を示している。ただし、解析領域は、検出対象の任意の部位を含むように設定されてもよいし、検出対象を包含するように設定されてもよい。 FIG. 4 shows an example in which the upper half of the person to be detected is included in the analysis region. However, the analysis region may be set so as to include an arbitrary part to be detected, or may be set so as to include the detection target.
 また、図4では、解析領域を正方形とする例を示しているが、解析領域の形状は正方形に限らず、任意の矩形に設定されてもよい。 Further, FIG. 4 shows an example in which the analysis region is a square, but the shape of the analysis region is not limited to a square and may be set to an arbitrary rectangle.
 また、本例では、2枚の局所画像から1組の解析画像を生成する例について説明したが、局所画像の数は2枚に限られず、2枚以上の任意の数の画像を1組の解析画像としてもよい。 In this example, an example in which one set of analysis images is generated from two local images has been described. However, the number of local images is not limited to two, and an arbitrary number of two or more images can be used as one set. An analysis image may be used.
 また、図4の例では、1組の解析画像に含まれる画像枚数と解析画像取得手段21が保持する過去画像の枚数とが一致する場合について説明した。ただし、1組の解析画像に含まれる画像枚数よりも解析画像取得手段21が保持する過去画像の枚数の方が多い場合、解析画像選択手段213は、複数組の解析画像を選択してもよい。 In the example of FIG. 4, the case where the number of images included in one set of analysis images matches the number of past images held by the analysis image acquisition unit 21 has been described. However, when the number of past images held by the analysis image acquisition unit 21 is larger than the number of images included in one set of analysis images, the analysis image selection unit 213 may select a plurality of sets of analysis images. .
 ここで、解析画像選択手段213が1つの解析領域に対し複数組の解析画像を取得する手順を、図5を用いて具体的に説明する。図5は、滞留する人物を検出する他の方法の例を示す説明図である。なお、図5に示す例は、解析画像取得手段21が過去3枚の画像を保持する以外は、図4に示す例と同じ条件であるとする。 Here, the procedure for the analysis image selection means 213 to acquire a plurality of sets of analysis images for one analysis region will be specifically described with reference to FIG. FIG. 5 is an explanatory diagram showing an example of another method for detecting a person who stays. Note that the example shown in FIG. 5 is the same as the example shown in FIG. 4 except that the analysis image acquisition unit 21 holds the past three images.
 図5に示す時刻t3では、領域1~3のそれぞれの解析領域において、時刻t1~t3の3つの画像が得られている。本例では、解析画像選択手段213は、時刻t1~t3の3つの画像から2枚の画像を選択し1組の解析画像とするため、解析領域ごとに(t1,t2)、(t2,t3)、(t1,t3)の3組の解析画像を選択する。解析画像選択手段213は、このようにして解析領域ごとに選択した解析画像の組を滞留度算出手段23に入力する。 At time t3 shown in FIG. 5, three images from time t1 to t3 are obtained in each analysis region of regions 1 to 3. In this example, the analysis image selection unit 213 selects two images from the three images at times t1 to t3 to form a set of analysis images, and therefore (t1, t2), (t2, t3) for each analysis region. ), (T1, t3) three sets of analysis images are selected. The analysis image selection unit 213 inputs the set of analysis images thus selected for each analysis region to the staying degree calculation unit 23.
 なお、解析画像選択手段213は、図5に示す例では解析画像全通りの組合せから解析画像を選択した。しかし、解析画像選択手段213は、必ずしも全通りの組合せを選択する必要はなく、その他の方法によって解析画像を選択してもよい。例えば、解析画像の組の選び方として、時刻t1~t5までの5フレームの画像のうち2枚の画像を選択して解析画像の組を生成するとする。この場合、解析画像選択手段213は、(t1,t2)、(t2,t3)、・・・、(t4,t5)のように、隣接するフレーム同士から解析画像の組を生成してもよい。他にも、解析画像選択手段213は、(t5,t2)、(t5,t3)、・・・、(t5,t4)のように、最新のフレーム画像と過去のいずれかのフレーム画像を1組の解析画像としてもよい。 In the example shown in FIG. 5, the analysis image selection unit 213 selects an analysis image from all combinations of analysis images. However, the analysis image selection means 213 does not necessarily need to select all combinations, and may select analysis images by other methods. For example, as a method of selecting a set of analysis images, it is assumed that a set of analysis images is generated by selecting two images from among five frames of images from time t1 to t5. In this case, the analysis image selection unit 213 may generate a set of analysis images from adjacent frames such as (t1, t2), (t2, t3), ..., (t4, t5). . In addition, the analysis image selection unit 213 sets the latest frame image and any one of the past frame images as 1 (t5, t2), (t5, t3),..., (T5, t4). A set of analysis images may be used.
 複数の解析画像の組を選択することによる利点は、以下の点である。 The advantages of selecting a plurality of sets of analysis images are as follows.
 監視領域内に多数の移動体が存在している場合、ある時刻の画像と別の時刻の画像とを比較したときに、同じ解析領域に異なる移動体が偶然存在することが起こりやすくなる。この場合、異なる移動体の外見が類似していると、その解析領域では誤って高い滞留度が得られ、滞留の誤検出が起こりやすくなる。 When there are a large number of moving objects in the monitoring area, when comparing an image at a certain time with an image at a different time, it is likely that different moving objects will accidentally exist in the same analysis area. In this case, if the appearances of the different moving bodies are similar, a high retention degree is erroneously obtained in the analysis region, and erroneous detection of retention is likely to occur.
 一方、本実施形態の解析画像選択手段213は、画像入力部1から得られた過去数フレームの画像に対し、滞留度を算出するための複数組の解析画像を選択する。複数組の解析画像を選択することで、同じ解析領域に偶然異なる移動体が存在する可能性が低下し、誤検出を低減することができる。 On the other hand, the analysis image selection means 213 of the present embodiment selects a plurality of sets of analysis images for calculating the staying degree with respect to the past several frames of images obtained from the image input unit 1. By selecting a plurality of sets of analysis images, it is possible to reduce the possibility that a different moving body will accidentally exist in the same analysis region, and to reduce erroneous detection.
 解析画像選択手段213は、選択した解析画像の組を滞留度算出手段23に入力する。 The analysis image selection means 213 inputs the selected set of analysis images to the staying degree calculation means 23.
 滞留識別器記憶部22は、解析画像取得手段21から入力される解析画像の組に対して、後述する滞留度算出手段23が滞留度を算出するために用いる識別器を記憶する。なお、この識別器は、滞留物体検出システムが滞留物体を検出する処理を行う前にあらかじめ構築しておくものである。 The staying discriminator storage unit 22 stores a discriminator used by the staying degree calculating unit 23 described later for calculating the staying degree with respect to the set of analysis images input from the analysis image acquiring unit 21. This discriminator is constructed in advance before the stagnant object detection system performs processing for detecting stagnant objects.
 滞留識別器記憶部22は、後述する識別器学習部4によって生成される識別器を記憶してもよいし、管理者等によって生成される識別器を記憶してもよい。 The staying classifier storage unit 22 may store a classifier generated by the classifier learning unit 4 described later, or may store a classifier generated by an administrator or the like.
 識別器学習部4は、複数の画像から滞留物体を識別する識別器を学習する。ここで、滞留物体を識別するとは、滞留物体かどうかを識別するだけでなく、滞留物体を識別するために検出対象が滞留している確からしさを示す指標(滞留度)を算出することも含まれる。 The discriminator learning unit 4 learns a discriminator that identifies a staying object from a plurality of images. Here, identifying a stagnant object includes not only identifying whether or not it is a stagnant object, but also calculating an index (degree of stay) indicating the probability that the detection target is stagnating in order to identify the stagnant object. It is.
 識別器学習部4は、例えば、複数の画像に対する判定結果として、滞留度を出力する識別器を生成してもよい。具体的には、識別器学習部4は、入力される複数の画像に同一の検出対象が含まれるほど、その検出対象の滞留度を高く算出するような識別器を生成してもよい。 The discriminator learning unit 4 may generate a discriminator that outputs a staying degree as a determination result for a plurality of images, for example. Specifically, the discriminator learning unit 4 may generate a discriminator that calculates the staying degree of the detection target higher as the same detection target is included in the plurality of input images.
 以下、本実施形態の識別器学習部4が識別器を学習する具体的な方法を説明する。本実施形態の識別器学習部4は、正例と負例の学習画像を用いて識別器を学習する。具体的には、識別器学習部4は、同一の検出対象を含む複数の画像の組を、滞留状態を示す正例として用いる。また、識別器学習部4は、同一の検出対象を含まない複数の画像の組を、非滞留状態を示す負例として用いる。 Hereinafter, a specific method in which the classifier learning unit 4 of the present embodiment learns the classifier will be described. The classifier learning unit 4 according to the present embodiment learns a classifier using positive and negative learning images. Specifically, the classifier learning unit 4 uses a set of a plurality of images including the same detection target as a positive example indicating the staying state. The classifier learning unit 4 uses a set of a plurality of images that do not include the same detection target as a negative example indicating a non-staying state.
 そして、識別器学習部4は、この正例と負例の識別に適した識別器を機械学習により構築する。具体的には、識別器学習部4は、この正例または負例の組に含まれる画像の数と同数の画像が入力されたときに、それらの画像から滞留物体を識別する識別器を学習する。 Then, the classifier learning unit 4 constructs a classifier suitable for discriminating between the positive example and the negative example by machine learning. Specifically, the classifier learning unit 4 learns a classifier that identifies a stagnant object from these images when the same number of images as the number of images included in the positive or negative example set is input. To do.
 ここで、学習画像について、検出対象を人物とする例を挙げて具体的に説明する。正例は、同一の検出対象が含まれる画像であればよい。また、正例は、必ずしも同一の検出対象が同一の状態で含まれている画像である必要はない。正例は、適用先の監視環境を想定し、例えば、滞留人物の前後に通行人など異なる人物が写りこむことを想定した画像の組や、滞留人物の周囲の照明条件が変化した画像の組であってもよい。 Here, the learning image will be specifically described with an example in which the detection target is a person. The positive example may be an image including the same detection target. The positive example is not necessarily an image in which the same detection target is included in the same state. The positive example assumes the monitoring environment of the application destination, for example, a set of images assuming that different people such as passersby appear before and after the staying person, or a set of images in which the lighting conditions around the staying person have changed. It may be.
 すなわち、学習画像は、正例とした組に含まれる画像のうち、少なくとも1つの画像の検出対象や背景に対して、光の当たり方や明るさ、影などの影響を反映させた摂動処理が施されていてもよい。このようにすることで、撮影環境が変わった場合でも滞留物体を識別する精度を維持することが可能になる。 That is, the learning image is subjected to perturbation processing that reflects the influence of how light strikes, brightness, shadows, etc., on the detection target or background of at least one of the images included in the positive example set. It may be given. By doing so, it is possible to maintain the accuracy of identifying the staying object even when the shooting environment changes.
 また、正例は、同一の検出対象と共に少なくとも一部が同一の背景画像を含む複数の画像の組であってもよい。本実施形態のように、同一の解析領域を対象とした複数の画像を比較する場合には、比較する解析領域には同一の背景画像が映り込む可能性が高い。そのため、識別器学習部4が同一の検出対象と共に少なくとも一部が同一の背景画像を含む複数の画像の組を正例として識別器を学習することにより、より適切に滞留画像を判断できる。なお、このとき、背景画像に対しても上述した摂動処理が施されていてもよい。 Also, the positive example may be a set of a plurality of images including the same detection target and at least a part of the same background image. When comparing a plurality of images targeting the same analysis region as in this embodiment, there is a high possibility that the same background image is reflected in the comparison analysis region. Therefore, the classifier learning unit 4 can more appropriately determine the staying image by learning the classifier by using, as a positive example, a set of a plurality of images including the same detection target and at least a part of the same background image. At this time, the above-described perturbation process may be performed on the background image.
 負例は、同一の検出対象が含まれない画像であればよく、例えば、通行人を想定し異なる人物が撮影された画像の組、地面や建物などの背景同士の画像の組などが学習画像の例として挙げられる。また、負例も正例と同様に、上述する摂動処理が施されていてもよい。負例の画像に摂動処理が施されることにより、光の当たり方や影の出来方が撮影環境の変化によって変わる場合でも、誤検出を抑制することが可能になる。 The negative example may be an image that does not include the same detection target.For example, a set of images in which different persons are photographed assuming a passerby, a set of images of backgrounds such as the ground and buildings, and the like are learned images. As an example. Further, the negative example may be subjected to the above-described perturbation process in the same manner as the positive example. By performing the perturbation process on the negative example image, it is possible to suppress erroneous detection even when the way the light strikes and how the shadow is produced changes due to changes in the shooting environment.
 識別器学習部4は、大量に収集されたこのような正例および負例を学習画像として使用し、識別器を学習する。すなわち、識別器学習部4は、正例または負例とした組に含まれる画像のうち、少なくとも1つの画像に摂動処理が施された画像の組を用いて識別器を学習する。このとき、摂動処理が施される対象は任意であり、例えば、正例や負例に含まれる検出対象や背景であってもよい。 The discriminator learning unit 4 learns the discriminator using such positive examples and negative examples collected in large quantities as learning images. That is, the discriminator learning unit 4 learns a discriminator using a set of images in which at least one image is subjected to perturbation processing among images included in a set of positive examples or negative examples. At this time, the target to which the perturbation process is performed is arbitrary, and may be, for example, a detection target or a background included in a positive example or a negative example.
 なお、学習画像は、実画像から切り抜いた画像であってもよいし、実画像の背景と実画像の前景(検出対象)を合成した画像であってもよいし、CG(Computer graphics)により人工的に生成された画像であってもよい。 Note that the learning image may be an image cut out from the real image, may be an image obtained by combining the background of the real image and the foreground (detection target) of the real image, or may be artificially generated by CG (Computer Graphics). An automatically generated image may be used.
 識別器学習部4は、用意された学習画像を用いて正例と負例の識別に適した識別器を構築する。識別器学習部4は、例えば、CNN(Convolutional Neural Network)などの機械学習手法を用いて、正例と負例の識別に適した識別器を構築してもよい。このように生成された識別器を用いることで、任意の入力画像に対し、正例または負例に属する確からしさを得ることができる。 The discriminator learning unit 4 constructs a discriminator suitable for discriminating between positive examples and negative examples using the prepared learning images. The discriminator learning unit 4 may construct a discriminator suitable for discriminating between positive examples and negative examples by using a machine learning method such as CNN (Convolutional Neural Network). By using the discriminator generated in this way, it is possible to obtain the probability of belonging to a positive example or a negative example for an arbitrary input image.
 ただし、識別器学習部4が用いる学習手法はCNNに限らず、任意の入力画像に対し、正例または負例に属する確からしさを出力する識別器を構築できる手法であればよい。なお、複数枚の画像をCNNで学習する方法も知られている。ただし、この方法は、等間隔で極めて近接する画像を対象に学習する方法であり、本実施形態の識別器学習部4のように、ある程度時間が離れて撮影された画像を用いる方法とは異なる。 However, the learning method used by the discriminator learning unit 4 is not limited to CNN, and any method can be used as long as it can construct a discriminator that outputs a probability belonging to a positive example or a negative example for an arbitrary input image. A method of learning a plurality of images with CNN is also known. However, this method is a method of learning for images that are very close to each other at regular intervals, and is different from a method of using images that are taken at some time apart as in the discriminator learning unit 4 of the present embodiment. .
 また、滞留識別器記憶部22に記憶された識別器の学習に使用する1つの正例および負例に含まれる画像の枚数と、解析画像取得手段21で取得される解析画像の組に含まれる画像の枚数は一致するものとする。 Also included in the set of analysis images acquired by the analysis image acquisition means 21 and the number of images included in one positive example and negative example used for learning of the identifiers stored in the staying identifier storage unit 22. Assume that the number of images matches.
 滞留度算出手段23は、解析画像取得手段21から入力される解析画像の組に対し、滞留識別器記憶部22に記憶されている識別器を用いて滞留度を算出する。すなわち、滞留度は、解析領域ごとに算出される。滞留度算出手段23は、この解析領域の座標と算出した滞留度との組を、滞留判定手段24に入力する。 The staying degree calculating unit 23 calculates a staying degree for the set of analysis images input from the analysis image acquiring unit 21 using a classifier stored in the staying classifier storage unit 22. That is, the staying degree is calculated for each analysis region. The staying degree calculating unit 23 inputs a set of the coordinates of the analysis region and the calculated staying degree to the staying determining unit 24.
 また、図5で例示するように、解析画像選択手段213が1つの解析領域に対し複数組の解析画像を選択している場合、滞留度算出手段23は、すべての組の解析画像に対して滞留度を算出し、算出した滞留度を解析領域ごとに統合する。 Further, as illustrated in FIG. 5, when the analysis image selection unit 213 selects a plurality of sets of analysis images for one analysis region, the staying degree calculation unit 23 applies to all sets of analysis images. The staying degree is calculated, and the calculated staying degree is integrated for each analysis region.
 図5は、過去3フレーム分の入力画像が保持され、そのうちの2枚の局所画像が滞留度の算出に用いられる場合の例を示している。この例では、解析画像選択手段213が、解析領域である領域1から、図5に示す(t1,t2)、(t2,t3)、(t1,t3)の3組の解析画像を選択する。そのため、滞留度算出手段23は、これらの3組の解析画像に対して3つの滞留度を算出する。そして、滞留度算出手段23は、算出した各滞留度を統合するために、例えば、3つの値の平均値、中央値、最大値、最小値のいずれかの値を算出し、これを滞留度の統合結果としてもよい。 FIG. 5 shows an example in which input images for the past three frames are held, and two of the local images are used for calculating the staying degree. In this example, the analysis image selection unit 213 selects three sets of analysis images (t1, t2), (t2, t3), and (t1, t3) shown in FIG. Therefore, the staying degree calculating unit 23 calculates three staying degrees for these three sets of analysis images. Then, the staying degree calculating means 23 calculates, for example, an average value, a median value, a maximum value, or a minimum value of three values and integrates the calculated staying degrees. It is good also as a result of integration.
 滞留判定手段24は、滞留度算出手段23から入力される解析領域の座標と算出した滞留度との組の情報を用いて滞留判定を行い、入力画像に対する滞留発生座標を出力する。言い換えると、滞留度算出手段23と滞留判定手段24で、生成された解析画像の組から滞留物体を検出する滞留物体検出処理が実行される。 The stay determination unit 24 performs stay determination using information on a set of the analysis region coordinates input from the stay degree calculation unit 23 and the calculated stay degree, and outputs stay generation coordinates for the input image. In other words, a staying object detection process for detecting a staying object from the set of generated analysis images is executed by the staying degree calculation unit 23 and the staying determination unit 24.
 滞留判定手段24は、例えば、あらかじめ設定された閾値と滞留度の値とを比較し、閾値以上の滞留度が得られた解析領域で滞留が発生したと判定してもよい。 The stay determination unit 24 may determine, for example, that a stay has occurred in an analysis region in which a stay degree equal to or greater than the threshold is obtained by comparing a preset threshold value with a stay degree value.
 滞留判定手段24は、解析領域が画像上で重複する場合において、重複する領域における滞留判定を行う際、重複する各解析領域について算出された滞留度の平均値、中央値、最大値、最小値のいずれかの値について所定の閾値以上であれば滞留と判定してもよい。 In the case where the analysis areas overlap on the image, the stay determination means 24 performs the stay determination in the overlap areas, and the average value, median value, maximum value, and minimum value of the stay degrees calculated for each overlap analysis area If any of the above values is equal to or greater than a predetermined threshold value, it may be determined as staying.
 また、固定監視カメラで撮影された画像に対して滞留物体検出を行う場合、滞留度算出手段23は、事前に検出対象の滞留を含まない背景画像を特定し、その特定された背景画像部分に対して滞留度を算出しておいてもよい。そして、滞留判定手段24は、定常的に滞留度が高く算出されやすい領域(誤検出が起こりやすい領域)に対して、滞留度を下げる補正処理を行ってもよい。 Further, when the staying object detection is performed on the image captured by the fixed monitoring camera, the staying degree calculation unit 23 specifies a background image that does not include the stay of the detection target in advance, and the specified background image portion is included in the specified background image portion. On the other hand, the staying degree may be calculated. Then, the staying determination unit 24 may perform a correction process for reducing the staying degree with respect to an area where the staying degree is easily calculated with a high degree of staying (a region where erroneous detection is likely to occur).
 また、滞留判定手段24は、事前に算出された、検出対象の滞留を含まない背景画像に対する滞留度に基づいて信頼度を算出してもよい。この場合、滞留判定手段24は、背景に対し滞留度が高く算出されやすい領域(誤検出が起こりやすい領域)の信頼度は低く、背景に対し滞留度が低く算出される領域の信頼度を高くなるように、滞留度から信頼度を算出する。そして、滞留判定手段24は、算出した信頼度を、領域ごとの滞留度と合わせて、出力部3に出力する。 Further, the stay determination unit 24 may calculate the reliability based on the stay degree with respect to the background image that does not include the stay of the detection target. In this case, the stay determination means 24 has a low reliability of the area where the stay degree is easily calculated with respect to the background (an area where erroneous detection is likely to occur), and the reliability of the area where the stay degree is low with respect to the background is high. Thus, the reliability is calculated from the staying degree. Then, the stay determination unit 24 outputs the calculated reliability to the output unit 3 together with the stay degree for each region.
 滞留判定手段24は、出力する滞留発生座標として、画面上の座標を用いてもよいし、実世界座標に変換した座標を用いてもよい。 The stay determination means 24 may use coordinates on the screen as the stay occurrence coordinates to be output, or may use coordinates converted to real world coordinates.
 出力部3は、滞留検出部2から入力される滞留発生座標を出力する。出力部3の出力態様は、例えば、表示することである。この場合、出力部3は、ディスプレイ装置(図示せず)を備え、そのディスプレイ装置に表示を行えばよい。ただし、出力部3の出力態様は表示に限定されず、他の態様であってもよい。 The output unit 3 outputs the stay occurrence coordinates input from the stay detection unit 2. The output mode of the output unit 3 is to display, for example. In this case, the output unit 3 may include a display device (not shown) and display on the display device. However, the output mode of the output unit 3 is not limited to display, and may be other modes.
 滞留検出部2における解析画像取得手段21(より具体的には、解析領域選択手段211と、解析時刻選択手段212と、解析画像選択手段213)と、滞留度算出手段23と、滞留判定手段24とは、プログラム(滞留物体検出プログラム)に従って動作するコンピュータのCPU(Central Processing Unit)によって実現される。 Analysis image acquisition means 21 (more specifically, analysis region selection means 211, analysis time selection means 212, analysis image selection means 213), retention degree calculation means 23, and stay determination means 24 in the stay detection unit 2 Is realized by a CPU (Central Processing Unit) of a computer that operates according to a program (a staying object detection program).
 例えば、プログラムは、滞留物体検出システムが備える記憶部(図示せず)に記憶されてもよい。CPUは、そのプログラムを読み込み、プログラムに従って、解析画像取得手段21(より具体的には、解析領域選択手段211と、解析時刻選択手段212と、解析画像選択手段213)、滞留度算出手段23および滞留判定手段24として動作してもよい。 For example, the program may be stored in a storage unit (not shown) included in the staying object detection system. The CPU reads the program, and according to the program, the analysis image acquisition means 21 (more specifically, the analysis region selection means 211, the analysis time selection means 212, and the analysis image selection means 213), the staying degree calculation means 23, and The residence determination unit 24 may operate.
 また、解析画像取得手段21(より具体的には、解析領域選択手段211と、解析時刻選択手段212と、解析画像選択手段213)と、滞留度算出手段23と、滞留判定手段24とは、それぞれが専用のハードウェアで実現されていてもよい。 The analysis image acquisition means 21 (more specifically, the analysis region selection means 211, the analysis time selection means 212, and the analysis image selection means 213), the staying degree calculation means 23, and the stay determination means 24 are: Each may be realized by dedicated hardware.
 また、識別器学習部4は、プログラム(識別器学習プログラム)に従って動作するコンピュータのCPUによって実現される。識別器学習部4も、専用のハードウェアで実現されていてもよい。 The classifier learning unit 4 is realized by a CPU of a computer that operates according to a program (a classifier learning program). The classifier learning unit 4 may also be realized by dedicated hardware.
 次に、本実施形態に係る滞留物体検出システムの動作を説明する。図6は、本実施形態の滞留物体検出システムの動作例を示す説明図である。なお、後述の各処理ステップは、処理内容に矛盾を生じない範囲で、任意に順番が変更されてもよいし、並列に実行されてもよい。また、各処理ステップ間に他のステップが追加されても良い。更に、便宜上1つのステップとして記載されているステップを複数のステップに分けて実行することもでき、便宜上複数に分けて記載されているステップを1ステップとして実行することもできる。 Next, the operation of the staying object detection system according to this embodiment will be described. FIG. 6 is an explanatory diagram illustrating an operation example of the staying object detection system according to the present embodiment. Note that the order of the processing steps described below may be arbitrarily changed within a range in which there is no contradiction in processing content, or may be executed in parallel. Further, other steps may be added between the processing steps. Further, a step described as one step for convenience can be divided into a plurality of steps, and a step described as divided for convenience can be executed as one step.
 解析画像取得手段21は、画像入力部1から、撮影画像とその撮影時刻を取得する(ステップS1)。次に、解析画像取得手段21は、保持する過去数フレームの画像のうち撮影時刻が最も古い画像を破棄し、ステップS1で取得した最新の入力画像を新たに保持することで、画像の履歴を更新する(ステップS2)。 Analytical image acquisition means 21 acquires a captured image and its captured time from the image input unit 1 (step S1). Next, the analysis image acquisition means 21 discards the image with the oldest shooting time among the images of the past several frames to be stored, and newly stores the latest input image acquired in step S1, thereby storing the image history. Update (step S2).
 次に、解析領域選択手段211は、画像から複数の解析領域を選択する(ステップS3)。解析画像取得手段21(具体的には、解析領域選択手段211)は、ステップS3で選択した複数の解析領域のうち、滞留度の算出がまだ行われていない未処理の解析領域が存在する場合(ステップS4のyes)、未処理の解析領域を1つ選択する(ステップS5)。 Next, the analysis area selection unit 211 selects a plurality of analysis areas from the image (step S3). The analysis image acquisition unit 21 (specifically, the analysis region selection unit 211) has an unprocessed analysis region for which the residence degree has not yet been calculated among the plurality of analysis regions selected in step S3. (Yes in step S4), one unprocessed analysis region is selected (step S5).
 解析時刻選択手段212は、ステップS5で選択された解析領域において、事前に定義されている検出対象の移動モデルに基づいて、ステップS2で更新した画像履歴から各画像の撮影時間間隔を算出する。そして、解析時刻選択手段212は、検出対象がその時間間隔で対象とする解析領域上を移動可能かどうか判断し、移動可能と判断した画像を選択する(ステップS6)。 The analysis time selection unit 212 calculates the photographing time interval of each image from the image history updated in step S2 based on the movement model of the detection target defined in advance in the analysis region selected in step S5. Then, the analysis time selection unit 212 determines whether or not the detection target is movable on the target analysis region at the time interval, and selects an image that is determined to be movable (step S6).
 解析画像選択手段213は、ステップS6で選択された各履歴の画像から、滞留度の算出に用いるための解析画像の組合せを選択する(ステップS7)。 The analysis image selection means 213 selects a combination of analysis images to be used for calculating the staying degree from the images of the respective history selected in step S6 (step S7).
 滞留度算出手段23は、ステップS7で選択された解析画像の組のうち、滞留度を算出していない未処理の解析画像の組が存在する場合(ステップS8のyes)、未処理の解析画像の組を1つ選択する(ステップS9)。 The staying degree calculating means 23, when there is a set of unprocessed analysis images for which the staying degree is not calculated among the set of analysis images selected in step S7 (yes in step S8), the unprocessed analysis image. One set is selected (step S9).
 そして、滞留度算出手段23は、滞留識別器記憶部22が保持している識別器を用いて、ステップS9で選択した解析画像の組に対して滞留度を算出する(ステップS10)。 Then, the staying degree calculating means 23 calculates the staying degree for the set of analysis images selected in Step S9 by using the classifier held by the staying classifier storage unit 22 (Step S10).
 ステップS10が終了すると、滞留度算出手段23は、ステップS8以降の処理を繰り返す。ステップS8において、未処理の解析画像の組が存在しないと判定された場合(ステップS8のno)、滞留度算出手段23は、1つの解析領域に対して複数の滞留度を算出した結果を統合した数値を算出する(ステップS11)。滞留度算出手段23は、例えば、算出した各滞留度の平均値、中央値、最大値、最小値のいずれかを、統合した数値として算出する。 When step S10 is completed, the staying degree calculating means 23 repeats the processing after step S8. If it is determined in step S8 that there is no set of unprocessed analysis images (no in step S8), the staying degree calculating unit 23 integrates the results of calculating a plurality of staying degrees for one analysis region. The calculated numerical value is calculated (step S11). The staying degree calculating unit 23 calculates, for example, any one of the calculated average value, median value, maximum value, and minimum value of the staying degrees as an integrated numerical value.
 ステップS11の後、解析画像取得手段21は、ステップS4以降の処理を繰り返す。滞留判定手段24は、ステップS4において未処理の解析領域が存在しないと判断された場合(ステップS4のno)、解析領域ごとに算出された滞留度を用いて、滞留判定処理を行う(ステップS12)。滞留判定手段24は、例えば解析領域ごとに算出された滞留度が所定の閾値以上であれば滞留と判断するように滞留判定処理を行う。 After step S11, the analysis image acquisition unit 21 repeats the processing after step S4. If it is determined in step S4 that there is no unprocessed analysis area (no in step S4), the stay determination unit 24 performs a stay determination process using the stay degree calculated for each analysis area (step S12). ). The stay determination unit 24 performs a stay determination process so that, for example, if the stay degree calculated for each analysis region is equal to or greater than a predetermined threshold, the stay determination unit 24 determines that the stay is present.
 解析領域が画像上で重複する場合、滞留判定手段24は、重複する領域における滞留判定を行う際、例えば、重複する各解析領域について算出された滞留度の平均値、中央値、最大値、最小値のいずれかの値について、所定の閾値以上であれば滞留と判定してもよい。 When the analysis regions overlap on the image, the stay determination unit 24 performs the stay determination in the overlap region, for example, the average value, median value, maximum value, minimum value of the stay degree calculated for each analysis region that overlaps If any of the values is equal to or greater than a predetermined threshold, it may be determined that the object is staying.
 出力部3は、滞留判定手段24から出力される滞留検知結果を出力する(ステップS13)。出力部3は、例えば、滞留検知結果をアプリケーションに出力してもよし、記憶媒体などの外部モジュールに対して出力してもよい。 The output unit 3 outputs the stay detection result output from the stay determination unit 24 (step S13). For example, the output unit 3 may output a stay detection result to an application, or may output it to an external module such as a storage medium.
 次に、本実施形態の識別器学習部4が識別器を学習する動作を説明する。図7は、本実施形態の識別器学習部4の動作例を示すフローチャートである。 Next, the operation in which the classifier learning unit 4 of the present embodiment learns the classifier will be described. FIG. 7 is a flowchart showing an operation example of the classifier learning unit 4 of the present embodiment.
 識別器学習部4は、記憶部(図示せず)に記憶された正例と負例の学習画像を読み取る(ステップS21)。具体的には、識別器学習部4は、滞留状態を示す正例として、同一の検出対象を含む複数の画像の組を読み取り、非滞留状態を示す負例として、同一の検出対象を含まない複数の画像の組を読み取る。 The discriminator learning unit 4 reads positive and negative learning images stored in a storage unit (not shown) (step S21). Specifically, the classifier learning unit 4 reads a set of a plurality of images including the same detection target as a positive example indicating the staying state, and does not include the same detection target as a negative example indicating the non-staying state. Read multiple image sets.
 そして、識別器学習部4は、正例と負例の学習画像から、正例または負例の組に含まれる画像の数と同数の入力画像から滞留物体を識別する識別器を学習する(ステップS22)。 Then, the discriminator learning unit 4 learns discriminators that identify stagnant objects from the same number of input images as the number of images included in the positive or negative example set from the positive and negative example learning images (step). S22).
 以上のように、本実施形態では、解析時刻選択手段212が、撮影された時間が異なる複数の入力画像から、滞留の解析に適した時間差をおいて撮影された複数の入力画像を選択する。また、解析画像選択手段213が、選択された複数の入力画像から同一の解析領域を示す画像をそれぞれ抽出して、抽出した画像の組である解析画像の組を生成する。そして、滞留度算出手段23および滞留判定手段24が、複数の画像から滞留物体を識別する識別器を用いて、生成された解析画像の組から滞留物体を検出する。その際、解析時刻選択手段212は、検出対象の移動モデルまたは解析領域の大きさの少なくとも一方に基づいて、滞留の解析に適した時間差を決定する。そのため、滞留する物体を好適に検出できる。 As described above, in the present embodiment, the analysis time selection unit 212 selects a plurality of input images taken with a time difference suitable for stay analysis from a plurality of input images with different taken times. Moreover, the analysis image selection means 213 extracts the image which shows the same analysis area | region from the selected several input image, respectively, and produces | generates the set of the analysis image which is a set of the extracted image. Then, the staying degree calculating unit 23 and the staying determining unit 24 detect the staying object from the generated set of analysis images using an identifier that identifies the staying object from the plurality of images. At this time, the analysis time selection unit 212 determines a time difference suitable for the stay analysis based on at least one of the movement model to be detected or the size of the analysis region. Therefore, the staying object can be detected suitably.
 特に、本実施形態では、滞留度算出手段23および滞留判定手段24が、上述した識別器を用いて、解析画像の組から滞留物体を検出する。そのため、監視領域の照明変動や、監視カメラのレンズ汚れ、物の移動などに代表される撮影環境の変化による誤検出増加の影響を受けずに、安定して滞留物を検出可能になる。 In particular, in this embodiment, the staying degree calculating unit 23 and the staying determining unit 24 detect the staying object from the set of analysis images using the above-described discriminator. Therefore, it is possible to detect a stagnant object stably without being affected by an increase in false detection caused by a change in photographing environment represented by a change in illumination in the monitoring area, lens contamination of the monitoring camera, movement of an object, and the like.
 また、本実施形態では、識別器学習部4が、同一の検出対象を含む複数の画像の組を滞留状態を示す正例とし、同一の検出対象を含まない複数の画像の組を非滞留状態を示す負例として、滞留物体を識別する識別器を学習する。この識別器を用いることで、滞留する物体を好適に検出できる。 In the present embodiment, the classifier learning unit 4 sets a plurality of image sets including the same detection target as a positive example indicating the staying state, and sets a plurality of image sets not including the same detection target as the non-staying state. As a negative example, a discriminator for identifying a staying object is learned. By using this discriminator, it is possible to suitably detect a staying object.
 次に、本実施形態の概要を説明する。図8は、本開示による識別器学習装置の概要を示すブロック図である。本開示による識別器学習装置90は、滞留物体を識別する識別器を学習する学習部91(例えば、識別器学習部4)を備える。学習部91は、同一の検出対象を含む複数の画像の組を滞留状態を示す正例とし、同一の検出対象を含まない複数の画像の組を非滞留状態を示す負例として、滞留物体を識別する識別器を学習する。 Next, the outline of this embodiment will be described. FIG. 8 is a block diagram illustrating an overview of a classifier learning device according to the present disclosure. The classifier learning device 90 according to the present disclosure includes a learning unit 91 (for example, the classifier learning unit 4) that learns a classifier that identifies a staying object. The learning unit 91 sets a plurality of images including the same detection target as a positive example indicating a staying state, and sets a plurality of images not including the same detection target as a negative example indicating a non-staying state. Learn classifiers to identify.
 そのような構成により生成された識別器を用いることで、滞留する物体を好適に検出できる。 By using the discriminator generated with such a configuration, the staying object can be suitably detected.
 また、学習部91は、正例または負例の組に含まれる画像の数と同数の検出対象画像から滞留物体を識別する識別器を学習してもよい。 Further, the learning unit 91 may learn a discriminator that identifies a staying object from the same number of detection target images as the number of images included in the positive or negative example set.
 また、学習部91は、同一の検出対象と共に少なくとも一部が同一の背景画像を含む複数の画像の組を正例として識別器を学習してもよい。同一の解析領域を対象とした複数の画像を比較する場合には、比較する解析領域には同一の背景画像が映り込む可能性が高いため、このような識別器を用いることで、より適切に滞留画像を判断できる。 Further, the learning unit 91 may learn the discriminator using a set of a plurality of images including at least a part of the same background image together with the same detection target as a positive example. When comparing multiple images targeting the same analysis area, it is more likely that the same background image will be reflected in the analysis area to be compared. A staying image can be determined.
 また、学習部91は、正例または負例とした組に含まれる画像のうち、少なくとも1つの画像の検出対象に摂動処理(例えば、検出対象に対して、光の当たり方や明るさ、影などの影響を反映させた処理)が施された画像の組を用いて識別器を学習してもよい。このような画像を正例または負例として用いることで、撮影環境が変わった場合でも滞留物体を識別する精度を維持できる識別器を学習できる。 In addition, the learning unit 91 performs perturbation processing on the detection target of at least one of the images included in the positive or negative example set (for example, how the light hits the detection target, brightness, shadow) The classifier may be learned using a set of images that have been subjected to processing reflecting the influence of the above. By using such an image as a positive example or a negative example, it is possible to learn a discriminator that can maintain the accuracy of identifying a staying object even when the shooting environment changes.
 また、図9は、本開示による滞留物体検出システムの概要を示すブロック図である。本開示による滞留物体検出システム80は、対象画像選択手段81と、解析画像生成手段82と、滞留物体検出手段83とを備える。対象画像選択手段81(例えば、解析時刻選択手段212)は、撮影された時間が異なる複数の検出対象画像から、滞留の解析に適した時間差をおいて撮影された複数の検出対象画像を選択する。解析画像生成手段82(例えば、解析画像選択手段213)は、対象画像選択手段81により選択された複数の検出対象画像から同一の解析領域を示す画像をそれぞれ抽出して、抽出した画像の組である解析画像の組を生成する。滞留物体検出手段83(例えば、滞留度算出手段23、滞留判定手段24)は、複数の画像から滞留物体を識別する識別器を用いて、解析画像生成手段82により生成された解析画像の組から滞留物体を検出する。 FIG. 9 is a block diagram illustrating an outline of the stagnant object detection system according to the present disclosure. A staying object detection system 80 according to the present disclosure includes target image selection means 81, analysis image generation means 82, and staying object detection means 83. The target image selection unit 81 (for example, the analysis time selection unit 212) selects a plurality of detection target images that are captured with a time difference suitable for stay analysis from a plurality of detection target images that are captured at different times. . The analysis image generation unit 82 (for example, the analysis image selection unit 213) extracts images indicating the same analysis region from the plurality of detection target images selected by the target image selection unit 81, and uses the extracted sets of images. A set of analysis images is generated. The staying object detection means 83 (for example, staying degree calculation means 23, stay determination means 24) uses a discriminator for identifying staying objects from a plurality of images, and uses a set of analysis images generated by the analysis image generation means 82. Detect stagnant objects.
 そして、対象画像選択手段81は、検出対象の移動モデル(例えば、検出対象の移動速度および移動方向をモデル化した移動モデル)又は解析領域の大きさの少なくとも一方に基づいて、滞留の解析に適した時間差を決定する。 The target image selection unit 81 is suitable for the analysis of the stay based on at least one of the movement model of the detection target (for example, the movement model modeling the movement speed and movement direction of the detection target) or the size of the analysis region. Determine the time difference.
 そのような構成により、滞留する物体を好適に検出できる。 With such a configuration, a staying object can be detected suitably.
 また、滞留物体検出手段83は、入力される複数の画像に同一の検出対象が含まれるほどその検出対象が滞留している確からしさを表わす滞留度を高く算出する識別器を用いて、生成された解析画像の組から滞留物体を検出してもよい。 Further, the staying object detection means 83 is generated by using an identifier that calculates the staying degree that indicates the probability that the detection target stays as the same detection target is included in a plurality of input images. A staying object may be detected from the set of analyzed images.
 また、解析画像生成手段82は、同一の解析領域の複数組の解析画像を生成してもよい。この場合、滞留物体検出手段83は、複数生成された解析画像の組に対してそれぞれ識別器が算出する滞留度を取得し、取得された滞留度の平均値、中央値、最大値、最小値の少なくともいずれかの値を同一の解析領域の滞留度として算出してもよい。滞留物体検出手段83は、算出された滞留度に基づいて滞留物体を検出してもよい。 Further, the analysis image generation means 82 may generate a plurality of sets of analysis images in the same analysis region. In this case, the staying object detection means 83 acquires the staying degree calculated by the classifier for each of a plurality of generated analysis images, and the average value, median value, maximum value, and minimum value of the staying degree obtained. At least one of these values may be calculated as the staying degree in the same analysis region. The staying object detection means 83 may detect a staying object based on the calculated staying degree.
 また、滞留物体検出手段83は、検出対象画像から背景画像部分を特定し、特定された背景画像部分に対応する領域の滞留度が低くなるように補正してもよい。そのような構成によれば、背景に対し滞留度が高く算出されやすい領域(誤検出が起こりやすい領域)の検出精度を向上させることができる。 Further, the staying object detection unit 83 may specify the background image portion from the detection target image and correct the staying degree of the region corresponding to the specified background image portion to be low. According to such a configuration, it is possible to improve the detection accuracy of a region where the degree of stay is high with respect to the background and is easily calculated (a region where erroneous detection is likely to occur).
 また、対象画像選択手段81は、検出対象の移動モデルに基づいて、その検出対象が解析領域を通過するために要する時間を算出し、算出された時間以上の間隔で撮影された検出対象画像を選択してもよい。 Further, the target image selection unit 81 calculates a time required for the detection target to pass through the analysis region based on the movement model of the detection target, and detects the detection target image captured at an interval equal to or longer than the calculated time. You may choose.
 図10は、識別器学習装置90または滞留物体検出システム80を実現するコンピュータ装置200のハードウェア構成を例示するブロック図である。コンピュータ装置200は、CPU201と、ROM(Read Only Memory)202と、RAM(Random Access Memory)203と、記憶装置204と、ドライブ装置205と、通信インタフェース206と、入出力インタフェース207とを備える。識別器学習装置90または滞留物体検出システム80は、図10に示される構成(またはその一部)によって実現され得る。 FIG. 10 is a block diagram illustrating a hardware configuration of the computer device 200 that implements the discriminator learning device 90 or the staying object detection system 80. The computer device 200 includes a CPU 201, a ROM (Read Only Memory) 202, a RAM (Random Access Memory) 203, a storage device 204, a drive device 205, a communication interface 206, and an input / output interface 207. The discriminator learning device 90 or the staying object detection system 80 can be realized by the configuration (or part thereof) shown in FIG.
 CPU201は、RAM203を用いてプログラム208を実行する。プログラム208は、ROM202に記憶されていてもよい。また、プログラム208は、フラッシュメモリなどの記録媒体209に記録され、ドライブ装置205によって読み出されてもよいし、外部装置からネットワーク210を介して送信されてもよい。通信インタフェース206は、ネットワーク210を介して外部装置とデータをやり取りする。入出力インタフェース207は、周辺機器(入力装置、表示装置など)とデータをやり取りする。通信インタフェース206及び入出力インタフェース207は、データを取得又は出力する手段として機能することができる。 The CPU 201 executes the program 208 using the RAM 203. The program 208 may be stored in the ROM 202. The program 208 may be recorded on a recording medium 209 such as a flash memory and read by the drive device 205 or transmitted from an external device via the network 210. The communication interface 206 exchanges data with an external device via the network 210. The input / output interface 207 exchanges data with peripheral devices (such as an input device and a display device). The communication interface 206 and the input / output interface 207 can function as means for acquiring or outputting data.
 なお、識別器学習装置90または滞留物体検出システム80は、単一の回路(プロセッサ等)によって構成されてもよいし、複数の回路の組み合わせによって構成されてもよい。ここでいう回路(circuitry)は、専用又は汎用のいずれであってもよい。 Note that the classifier learning device 90 or the staying object detection system 80 may be configured by a single circuit (such as a processor) or may be configured by a combination of a plurality of circuits. The circuit here may be either dedicated or general purpose.
 本開示によれば、監視領域内に滞留している人物や放置物などの物体を検出するシステムに好適に適用することができる。 The present disclosure can be suitably applied to a system that detects an object such as a person or an abandoned object staying in the monitoring area.
 また、本開示では特定の検出対象の滞留画像の特徴を学習する。そのため、差分ベースの手法では適用が困難だった屋外環境において、照明変動やレンズ汚れ、物の移動等による誤検知増加の影響を受けずに、対象となる滞留物体のみを検出する用途に本開示を好適に適用可能である。 Further, in the present disclosure, the characteristics of the stay image that is a specific detection target are learned. Therefore, in an outdoor environment that was difficult to apply with the difference-based method, the present disclosure is disclosed to detect only the target stagnant object without being affected by the increase in false detection due to illumination fluctuations, lens contamination, movement of objects, etc. Can be suitably applied.
 また、本開示は、差分ベースの滞留検出手法と比較すると、事前に背景画像を生成する必要がない。そのため、検出対象が常に往来しているような背景画像の取得や生成が困難な環境に、滞留物体検知システムの導入が容易になる。 In addition, the present disclosure does not need to generate a background image in advance as compared with the difference-based stay detection method. Therefore, it is easy to introduce the stagnant object detection system in an environment where it is difficult to acquire and generate a background image in which detection targets are always coming and going.
 以上、上述した実施形態を模範的な例として本開示を説明した。しかしながら、本開示は、上述した実施形態には限定されない。即ち、本開示は、本開示のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present disclosure has been described above using the above-described embodiment as an exemplary example. However, the present disclosure is not limited to the above-described embodiment. That is, the present disclosure can apply various modes that can be understood by those skilled in the art within the scope of the present disclosure.
 この出願は、2015年2月27日に出願された日本出願特願2015-037926を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-037926 filed on February 27, 2015, the entire disclosure of which is incorporated herein.
 1 画像入力部
 2 滞留検出部
 3 出力部
 4 識別器学習部
 21 解析画像取得手段
 22 滞留識別器記憶部
 23 滞留度算出手段
 24 滞留判定手段
 211 解析領域選択手段
 212 解析時刻選択手段
 213 解析画像選択手段
DESCRIPTION OF SYMBOLS 1 Image input part 2 Stay detection part 3 Output part 4 Discriminator learning part 21 Analysis image acquisition means 22 Stay discriminator memory | storage part 23 Stay degree calculation means 24 Stay determination means 211 Analysis area selection means 212 Analysis time selection means 213 Analysis image selection means

Claims (13)

  1.  同一の検出対象を含む複数の画像の組を滞留状態を示す正例とし、同一の検出対象を含まない複数の画像の組を非滞留状態を示す負例として、滞留物体を識別する識別器を学習する学習部を備えた
     ことを特徴とする識別器学習装置。
    A discriminator for identifying a staying object is a positive example indicating a staying state as a set of a plurality of images including the same detection target, and a negative example indicating a non-staying state as a set of a plurality of images not including the same detection target. A classifier learning apparatus comprising a learning unit for learning.
  2.  前記学習部は、正例または負例に含まれる画像の数と同数の検出対象画像から滞留物体を識別する識別器を学習する
     請求項1記載の識別器学習装置。
    The classifier learning device according to claim 1, wherein the learning unit learns a classifier that identifies a staying object from the same number of detection target images as the number of images included in a positive example or a negative example.
  3.  前記学習部は、同一の検出対象と共に少なくとも一部が同一の背景画像を含む複数の画像の組を正例として識別器を学習する
     請求項1または請求項2記載の識別器学習装置。
    The discriminator learning device according to claim 1, wherein the learning unit learns a discriminator using a set of a plurality of images including the same detection target and at least a part of the same background image as a positive example.
  4.  前記学習部は、正例または負例とした組に含まれる画像のうち、少なくとも1つの画像に摂動処理が施された画像の組を用いて識別器を学習する
     請求項1から請求項3のうちのいずれか1項に記載の識別器学習装置。
    The learning unit learns a discriminator using a set of images in which at least one image is subjected to perturbation processing among images included in a set of positive examples or negative examples. The classifier learning device according to any one of the above.
  5.  撮影された時間が異なる複数の検出対象画像から、滞留の解析に適した時間差をおいて撮影された複数の検出対象画像を選択する対象画像選択手段と、
     選択された複数の検出対象画像から同一の解析領域を示す画像をそれぞれ抽出して、抽出した画像の組である解析画像の組を生成する解析画像生成手段と、
     複数の画像から滞留物体を識別する識別器を用いて、生成された解析画像の組から滞留物体を検出する滞留物体検出手段とを備え、
     前記対象画像選択手段は、検出対象の移動モデル又は前記解析領域の大きさの少なくとも一方に基づいて、前記滞留の解析に適した時間差を決定する
     ことを特徴とする滞留物体検出システム。
    A target image selection means for selecting a plurality of detection target images that have been shot with a time difference suitable for stay analysis from a plurality of detection target images that have been shot at different times;
    An analysis image generating means for extracting an image showing the same analysis region from the selected plurality of detection target images, and generating a set of analysis images that is a set of extracted images;
    Using a discriminator for identifying a stagnant object from a plurality of images, and a stagnant object detection means for detecting a stagnant object from a set of generated analysis images,
    The target object selection unit determines a time difference suitable for the stay analysis based on at least one of a movement model of a detection target or a size of the analysis region.
  6.  前記滞留物体検出手段は、入力される複数の画像に同一の検出対象が含まれるほど当該検出対象が滞留している確からしさを表わす滞留度を高く算出する識別器を用いて、生成された解析画像の組から滞留物体を検出する
     請求項5記載の滞留物体検出システム。
    The staying object detection means uses a discriminator that calculates a staying degree that represents the probability that the detection target stays as the same detection target is included in a plurality of input images. The staying object detection system according to claim 5, wherein a staying object is detected from a set of images.
  7.  前記解析画像生成手段は、同一の解析領域の複数組の解析画像を生成し、
     前記滞留物体検出手段は、複数生成された解析画像の組に対してそれぞれ識別器が算出する滞留度を取得し、取得された滞留度の平均値、中央値、最大値、最小値の少なくともいずれかの値を前記同一の解析領域の滞留度として算出し、算出された滞留度に基づいて滞留物体を検出する
     請求項6記載の滞留物体検出システム。
    The analysis image generation means generates a plurality of sets of analysis images of the same analysis region,
    The staying object detection means acquires the staying degree calculated by the classifier for each of a plurality of generated analysis image sets, and at least one of the average value, median value, maximum value, and minimum value of the staying degree obtained. The staying object detection system according to claim 6, wherein the value is calculated as a staying degree of the same analysis region, and a staying object is detected based on the calculated staying degree.
  8.  前記滞留物体検出手段は、検出対象画像から背景画像部分を特定し、特定された背景画像部分に対応する領域の滞留度が低くなるように補正する
     請求項6または請求項7記載の滞留物体検出システム。
    The stagnant object detection unit according to claim 6 or 7, wherein the stagnant object detection unit identifies a background image portion from a detection target image and corrects the stagnant degree of a region corresponding to the specified background image portion to be low. system.
  9.  前記対象画像選択手段は、検出対象の移動モデルに基づいて、当該検出対象が解析領域を通過するために要する時間を算出し、算出された時間以上の間隔で撮影された検出対象画像を選択する
     請求項5から請求項8のうちのいずれか1項に記載の滞留物体検出システム。
    The target image selection unit calculates a time required for the detection target to pass through the analysis region based on a movement model of the detection target, and selects a detection target image captured at an interval equal to or longer than the calculated time. The stagnant object detection system according to any one of claims 5 to 8.
  10.  同一の検出対象を含む複数の画像の組を滞留状態を示す正例とし、同一の検出対象を含まない複数の画像の組を非滞留状態を示す負例として、滞留物体を識別する識別器を学習する
     ことを特徴とする識別器学習方法。
    A discriminator for identifying a staying object is a positive example indicating a staying state as a set of a plurality of images including the same detection target, and a negative example indicating a non-staying state as a set of a plurality of images not including the same detection target. A classifier learning method characterized by learning.
  11.  撮影された時間が異なる複数の検出対象画像から、滞留の解析に適した時間差をおいて撮影された複数の検出対象画像を選択し、
     選択された複数の検出対象画像から同一の解析領域を示す画像をそれぞれ抽出して、抽出した画像の組である解析画像の組を生成し、
     複数の画像から滞留物体を識別する識別器を用いて、生成された解析画像の組から滞留物体を検出し、
     検出対象画像を選択する際、検出対象の移動モデル又はおよび前記解析領域の大きさの少なくとも一方に基づいて、前記滞留の解析に適した時間差を決定する
     ことを特徴とする滞留物体検出方法。
    Select multiple detection target images taken with a time difference suitable for stay analysis from multiple detection target images taken at different times,
    Extracting images indicating the same analysis region from the selected plurality of detection target images, respectively, and generating a set of analysis images that are a set of extracted images,
    Using a discriminator that identifies stagnant objects from multiple images, detect stagnant objects from a set of generated analysis images,
    A method for detecting a staying object, wherein when selecting a detection target image, a time difference suitable for the stay analysis is determined based on at least one of a movement model of the detection target and a size of the analysis region.
  12.  コンピュータに、
     同一の検出対象を含む複数の画像の組を滞留状態を示す正例とし、同一の検出対象を含まない複数の画像の組を非滞留状態を示す負例として、滞留物体を識別する識別器を学習する学習処理
     を実行させるためのプログラムを記録したプログラム記録媒体。
    On the computer,
    A discriminator for identifying a staying object is a positive example indicating a staying state as a set of a plurality of images including the same detection target, and a negative example indicating a non-staying state as a set of a plurality of images not including the same detection target. A program recording medium storing a program for executing a learning process for learning.
  13.  コンピュータに、
     撮影された時間が異なる複数の検出対象画像から、滞留の解析に適した時間差をおいて撮影された複数の検出対象画像を選択する対象画像選択処理、
     選択された複数の検出対象画像から同一の解析領域を示す画像をそれぞれ抽出して、抽出した画像の組である解析画像の組を生成する解析画像生成処理、および、
     複数の画像から滞留物体を識別する識別器を用いて、生成された解析画像の組から滞留物体を検出する滞留物体検出処理を実行させ、
     前記対象画像選択処理で、検出対象の移動モデル又は前記解析領域の大きさの少なくとも一方に基づいて、前記滞留の解析に適した時間差を決定させる
     ためのプログラムを記録したプログラム記録媒体。
    On the computer,
    A target image selection process for selecting a plurality of detection target images shot at a time difference suitable for stay analysis from a plurality of detection target images taken at different times;
    An analysis image generation process for extracting an image showing the same analysis region from a plurality of selected detection target images, and generating a set of analysis images that is a set of extracted images, and
    Using a discriminator that identifies a stagnant object from a plurality of images, a stagnant object detection process for detecting a stagnant object from a set of generated analysis images is executed,
    A program recording medium recording a program for determining a time difference suitable for the stay analysis based on at least one of a movement model of a detection target and a size of the analysis region in the target image selection process.
PCT/JP2016/000869 2015-02-27 2016-02-18 Identifier learning device, remaining object detection system, identifier learning method, remaining object detection method, and program recording medium WO2016136214A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017501921A JP6784254B2 (en) 2015-02-27 2016-02-18 Retained object detection system, retained object detection method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015037926 2015-02-27
JP2015-037926 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136214A1 true WO2016136214A1 (en) 2016-09-01

Family

ID=56788212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000869 WO2016136214A1 (en) 2015-02-27 2016-02-18 Identifier learning device, remaining object detection system, identifier learning method, remaining object detection method, and program recording medium

Country Status (2)

Country Link
JP (2) JP6784254B2 (en)
WO (1) WO2016136214A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045091A1 (en) * 2017-09-04 2019-03-07 日本電気株式会社 Information processing device, counter system, counting method, and program storage medium
WO2019069629A1 (en) * 2017-10-06 2019-04-11 富士フイルム株式会社 Image processing device and learned model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520461A (en) * 1991-07-11 1993-01-29 Nippon Telegr & Teleph Corp <Ntt> Object recognition processing method
JP2002157596A (en) * 2000-11-17 2002-05-31 Sony Corp Robot unit and face identifying method
JP2006178790A (en) * 2004-12-22 2006-07-06 Ricoh Co Ltd State detection apparatus, state detection method, program, and recording medium
JP2014085795A (en) * 2012-10-23 2014-05-12 Toshiba Corp Learning image collection device, learning device and object detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520461A (en) * 1991-07-11 1993-01-29 Nippon Telegr & Teleph Corp <Ntt> Object recognition processing method
JP2002157596A (en) * 2000-11-17 2002-05-31 Sony Corp Robot unit and face identifying method
JP2006178790A (en) * 2004-12-22 2006-07-06 Ricoh Co Ltd State detection apparatus, state detection method, program, and recording medium
JP2014085795A (en) * 2012-10-23 2014-05-12 Toshiba Corp Learning image collection device, learning device and object detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045091A1 (en) * 2017-09-04 2019-03-07 日本電気株式会社 Information processing device, counter system, counting method, and program storage medium
WO2019069629A1 (en) * 2017-10-06 2019-04-11 富士フイルム株式会社 Image processing device and learned model
JPWO2019069629A1 (en) * 2017-10-06 2020-10-15 富士フイルム株式会社 Image processor and trained model
US11574189B2 (en) 2017-10-06 2023-02-07 Fujifilm Corporation Image processing apparatus and learned model

Also Published As

Publication number Publication date
JP7074174B2 (en) 2022-05-24
JPWO2016136214A1 (en) 2017-12-14
JP6784254B2 (en) 2020-11-11
JP2021007055A (en) 2021-01-21

Similar Documents

Publication Publication Date Title
US20200364443A1 (en) Method for acquiring motion track and device thereof, storage medium, and terminal
CN112560999B (en) Target detection model training method and device, electronic equipment and storage medium
US8744125B2 (en) Clustering-based object classification
US11295139B2 (en) Human presence detection in edge devices
CN111325769B (en) Target object detection method and device
EP4035070B1 (en) Method and server for facilitating improved training of a supervised machine learning process
JP6095817B1 (en) Object detection device
CN111191535B (en) Pedestrian detection model construction method based on deep learning and pedestrian detection method
US11871125B2 (en) Method of processing a series of events received asynchronously from an array of pixels of an event-based light sensor
WO2024051067A1 (en) Infrared image processing method, apparatus, and device, and storage medium
JP6157165B2 (en) Gaze detection device and imaging device
JP2013152669A (en) Image monitoring device
JP7074174B2 (en) Discriminator learning device, discriminator learning method and computer program
CN113396423A (en) Method of processing information from event-based sensors
Viraktamath et al. Comparison of YOLOv3 and SSD algorithms
US11605220B2 (en) Systems and methods for video surveillance
JP2016095701A (en) Image processor, image processing method, and program
KR102218255B1 (en) System and method for analyzing image based on artificial intelligence through learning of updated areas and computer program for the same
JP2009123150A (en) Object detection apparatus and method, object detection system and program
JPWO2018179119A1 (en) Video analysis device, video analysis method, and program
JP2024516642A (en) Behavior detection method, electronic device and computer-readable storage medium
CN110602487B (en) Video image jitter detection method based on TSN (time delay network)
Han et al. Object Detection based on Combination of Visible and Thermal Videos using A Joint Sample Consensus Background Model.
JP6767788B2 (en) Information processing equipment, control methods and programs for information processing equipment
CN111046724B (en) Pedestrian retrieval method based on area matching network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16754965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16754965

Country of ref document: EP

Kind code of ref document: A1