WO2016132826A1 - Node, control method therefor, and control program - Google Patents

Node, control method therefor, and control program Download PDF

Info

Publication number
WO2016132826A1
WO2016132826A1 PCT/JP2016/052116 JP2016052116W WO2016132826A1 WO 2016132826 A1 WO2016132826 A1 WO 2016132826A1 JP 2016052116 W JP2016052116 W JP 2016052116W WO 2016132826 A1 WO2016132826 A1 WO 2016132826A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
master channel
channel
change
downstream
Prior art date
Application number
PCT/JP2016/052116
Other languages
French (fr)
Japanese (ja)
Inventor
淳 白川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016132826A1 publication Critical patent/WO2016132826A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/22Self-organising networks, e.g. ad-hoc networks or sensor networks with access to wired networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a node used in a wireless LAN system, a control method thereof, and a control program.
  • IEEE 802.11 is widely used as a standard for wireless LAN (Local Area Network) systems.
  • IEEE 802.11a, IEEE802.11ac etc. exist.
  • W52 (5.15 to 5.25 GHz)
  • W53 (5.25 to 5.35 GHz)
  • W56 (5.47 to 5.725 GHz) regarding wireless channels used in 5 GHz band wireless LAN systems.
  • standards such as.
  • the frequency bands of W53 and W56 are bands already assigned to various radars such as weather radars. For this reason, there is a possibility that the radio wave of the wireless LAN and the radio waves of the various radars may interfere with each other.
  • the DFS for the AP (Access Point) of the wireless LAN system using the frequency band is used. (DynamicFrequencySelection) It is mandatory to implement the function.
  • the DFS function is a radar detection function and a channel movement function for avoiding operation on the same radio channel as a radar system using the same frequency band. Operation prohibition within 30 minutes on a radio channel in which radar detection is performed by the DFS function and radar search for 60 seconds before operation start on a radio channel whose radar presence / absence information is not known in advance are essential.
  • the changed master channel is It is possible that one AP overlaps with a master channel assigned to another AP. In this case, the overlapping master channels are divided and used, which may reduce the communication speed.
  • each AP may change the master channel assigned to another AP to an optimum one.
  • time and resources for the change are required. Communication may be interrupted during this period.
  • the present invention has been made in view of the above problems, and its purpose is to suppress the possibility that the communication speed is lowered when the master channel assigned to the node by the upstream node is changed, and
  • the object is to provide a node or the like that suppresses the time and resource usage for the own node to change the master channel.
  • a node performs wireless communication with an upstream node via a master channel assigned to the own node by the upstream node, and the own node is a downstream node.
  • the possibility that the communication speed is reduced is suppressed, and the time for the own node to change the master channel and There is an effect that the use of resources can be suppressed.
  • FIG. 2 is a block diagram showing a schematic configuration of the wireless LAN system according to the present embodiment.
  • the wireless LAN system 10 is configured so that a plurality of nodes 11 (nodes A to I) can be connected to each other to perform wireless communication.
  • Each node 11 has an AP function for wireless communication with a plurality of slave units. Some nodes 11 may not have the AP function, but may have only a function of relaying communication between adjacent nodes.
  • the node A is a root node and functions as a gateway for connecting the wireless LAN system 10 and the external network 12 such as the Internet to each other.
  • Each node 11 functions as a master node that assigns a radio channel to the downstream node 11 and also functions as a slave node to which a master channel is assigned from the upstream node 11.
  • the node A is the master node of the nodes B and C
  • the node B is the master node of the nodes D and E
  • the node D is the master node of the nodes G and H
  • the node G Is the master node of node J
  • node J is the master node of node K
  • node K is the master node of node L
  • node C is the master node of node F
  • node F is Node I master node.
  • the own node 11s when distinguishing the own node 11, the upstream node 11, and the downstream node 11, they are referred to as the own node 11s, the upstream node 11u, and the downstream node 11d, respectively.
  • the radio channel assigned to the node 11d downstream by the own node 11s is referred to as a “master channel”, and the radio channel assigned to the node 11s by the upstream node 11u is referred to as a “slave channel”. That is, the master channel of the upstream node 11u for the own node 11s and the slave channel of the own node 11s for the upstream node 11u are the same.
  • the master channel assigned to the own node 11s by the upstream node 11u changes due to detection of weather radar or the like, it is determined whether the master channel assigned to the downstream node 11d by the own node 11s should be changed. , Based on the estimated traffic volume of the own node 11s.
  • the wireless communication through the master channel is maintained by not changing the master channel assigned to the node 11d downstream by the node 11s. Therefore, no time and resources are used for the change. At this time, there is a possibility that the communication efficiency may be lowered due to a conflict between the changed master channel assigned by the upstream node 11u to the own node 11s and the master channel assigned by the own node. However, since the amount of traffic is small, the possibility of a decrease in communication speed can be suppressed.
  • the above determination is performed based on Nhop and Nnode. Since Nhop and Nnode can be calculated from the network topology information of the wireless LAN system 10, the above determination can be made easily.
  • the determination value Vj is calculated from the following equation (1) using Nhop and Nnode, and when the calculated determination value Vj is equal to or greater than the threshold value Vth, the master channel assigned by the own node 11s to the downstream node 11d Is determined to be changed.
  • Vj (1 / Nhop) ⁇ ⁇ + Nnode ⁇ ⁇ (1).
  • the determination value Vj is based on the inverse proportional value of Nhop and the proportional value of Nnode, and thus is limited only to the addition of the inverse proportional value and the proportional value as in the above equation (1).
  • integration may be used.
  • the node C shown in FIG. 2 detects the weather radar and the node C changes the master channel assigned to the node F.
  • the node B shown in FIG. 2 detects a weather radar and the node B changes the master channel assigned to the node D.
  • Nodes H and L are end nodes and there is no master channel assigned to a downstream node, so the above determination is not performed. Therefore, the change of the master channel due to the change of the master channel assigned to the node D by the node B is propagated to the nodes D and G.
  • FIG. 1 is a block diagram showing a schematic configuration of the node 11. As illustrated, the node 11 is configured to include a control unit 20, a storage unit 21, a communication unit 22, and a radar detection unit 23.
  • the control unit 20 controls the various components in the node 11 in an integrated manner, and includes a processor such as a CPU (Central Processing Unit).
  • the storage unit 21 stores various data and programs, and includes a storage element such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory. Details of the control unit 20 and the storage unit 21 will be described later.
  • the communication unit 22 performs wireless communication with another node 11 and the slave unit 13 based on the IEEE802.11 standard.
  • 5 GHz band radio waves are used for communication between the nodes 11.
  • either one or both of the 2 GHz band and the 5 GHz band are used.
  • the communication unit 22 may be separated into an upstream node communication unit 22u, a downstream node communication unit 22d, and a slave unit communication unit 22c. 22d and slave unit communication unit 22c may be separated or integrated.
  • the radar detection unit 23 detects radio waves of various radars such as weather radars in the frequency band used in the wireless LAN system 10. The radar detection unit 23 notifies the control unit 20 that the corresponding radio wave has been detected. Note that details of the radar detection unit 23 are well known, and a description thereof will be omitted.
  • the control unit 20 includes a channel change notification acquisition unit 30, a slave channel change instruction unit 31, a master channel change determination unit (change determination unit) 32, and a master channel change instruction unit 33.
  • the storage unit 21 stores the above Nhop and Nnode. Nhop and Nnode can be calculated by acquiring network topology information of the wireless LAN system 10.
  • the channel change notification acquisition unit 30 acquires a channel change notification indicating that the upstream node 11u has changed the master channel for the own node 11s from the upstream node 11u via the upstream node communication unit 22u.
  • the channel change notification acquisition unit 30 sends the acquired channel change notification to the slave channel change instruction unit 31 and the master channel change determination unit 32.
  • a CSA Channel Switch Announcement
  • the slave channel change instructing unit 31 sets the master channel, that is, the slave channel of the own node 11s for the upstream node 11u to the transition destination radio channel (hereinafter referred to as “transition”) indicated by the channel change notification from the channel change notification acquiring unit 30.
  • the upstream node communication unit 22u is instructed to change to “destination channel”.
  • the upstream node communication unit 22u notifies the control unit 20 to that effect and also notifies the upstream node 11 via the upstream node communication unit 22u.
  • the own node 11s can perform wireless communication with the upstream node 11u via the transition destination channel.
  • the master channel change determination unit 32 Upon receiving the channel change notification from the channel change notification acquisition unit 30, the master channel change determination unit 32 stores in the storage unit 21 whether or not the master channel assigned to the node 11d downstream by the own node 11s should be changed. Judgment is based on Nhop and Nnode. The details of the determination are as described above. When it is determined that the master channel should be changed, the master channel change determination unit 32 notifies the master channel change instruction unit 33 to that effect.
  • the master channel change instruction unit 33 When the master channel change instruction unit 33 receives the notification from the master channel change determination unit 32, the master channel change instruction unit 33 instructs the downstream node communication unit 22d to change the master channel. Details of the change will be described later.
  • FIG. 3 is a flowchart showing the flow of control processing when the channel change notification acquisition unit 30 acquires a CSA frame from the upstream node 11u for the node 11s having the above configuration.
  • the slave channel change instruction unit 31 first instructs the upstream node communication unit 22u to change the slave channel to the transition destination channel indicated by the CSA frame (S10).
  • the master channel change determination unit 32 uses the Nhop and Nnode stored in the storage unit 21 to calculate the determination value Vj from the above equation (1) (S11, change determination step), and the calculated determination value Vj Is greater than or equal to the threshold value Vth (S12, change determination step).
  • the control process is terminated without changing the master channel for the downstream node 11d.
  • the master channel change instruction unit 33 instructs the downstream node communication unit 22d to change the master channel for the downstream node 11d (S13), and then performs the above control. The process ends.
  • FIG. 4 is a flowchart showing the flow of change processing (S13) for changing the master channel.
  • the master channel change instructing unit 33 instructs the downstream node communication unit 22d to measure the surrounding radio wave condition, thereby freeing the channel.
  • the channel is searched and the optimum radio channel is determined as the transition destination channel (S21).
  • step S21 can be handled by existing technology. For example, by receiving both the data communication radio signal and the channel measurement radio signal, the transition destination channel can be determined without interrupting the data communication. If the channel measurement radio signal is not received, communication must be interrupted.
  • the master channel change instruction unit 33 creates a CSA frame including information on the transition destination channel and transmits it to the downstream node 11d via the downstream node communication unit 22d (S22). Then, the master channel change instruction unit 33 changes the master channel to the transition destination channel (S23), and then returns to the original process.
  • FIG. 5 is a sequence diagram showing the flow of processing in the wireless LAN system 10.
  • the node B detects the weather radar (T10)
  • a CSA frame is transmitted to the node D (T11 and T20).
  • This CSA frame includes information about the transition destination channel and transition time.
  • An example of the transition time information is the number of beacon transmissions on the current master channel.
  • the node B transmits the beacons by the number of beacons transmitted after transmitting the CSA frame, the node B changes the master channel to the transition destination channel.
  • the node B When the transition time is reached after transmitting the CSA frame, the node B changes the master channel (for example, 116ch) for the node D to the transition destination channel (for example, 124ch) (T12), while the node D The slave channel for B is changed to the transition destination channel (T21). Then, wireless communication between the nodes B and D is resumed (T13 and T22). The wireless communication between the nodes B and D is interrupted only during the period from step T11 / T20 to step T13 / T22, but the period is short enough to be ignored.
  • the node D determines that the master channel assigned by the own node should be changed (T23), and obtains a CSA frame including information on the transition destination channel and the transition time.
  • the data is transmitted to the node D (T24 / T30).
  • the node D changes the master channel for the node G to the transition destination channel (T25), while the node G changes the slave channel for the node D to the transition destination. Change to a channel (T31).
  • wireless communication between the nodes D and G is resumed (T26 and T32).
  • the master channel change process is sequentially performed for each node 11.
  • the master channel change determination unit 32 uses Nhop and Nnode to determine whether to change the master channel, but uses either Nhop or Nnode to perform the above determination. Also good.
  • the traffic amount of the node 11 increases as the number of the slave units 13 currently connected to the node 11 increases.
  • the greater the number of slave units connected to a node 11 in the past the greater the number of slave units 13 to be connected in the future, even if the number of slave units 13 currently connected is small. Is done. Therefore, the above determination is made using at least one of Nhop, Nnode, the number of handset 13 currently connected to the own node 11s, and the statistical value of the number of handset connected to the own node 11s in the past. You may go.
  • the past traffic volume of the own node 11s may be measured, and the above determination may be performed based on the statistical value of the traffic volume. In this case, since the traffic volume can be estimated with high accuracy, the determination can be performed with high accuracy.
  • the present invention is applied to the wireless LAN system 10 based on the IEEE802.11 standard.
  • the present invention is not limited to this, and IEEE802.15 (wireless PAN (Personal Area Network)) or the like is used.
  • the present invention can be applied to any wireless network system.
  • control block (particularly the control unit 20) of the node 11 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or realized by software using a CPU (Central Processing Unit). May be.
  • the node 11 includes a CPU that executes instructions of a program that is software that realizes each function, a ROM (Read Only Memory) or a storage in which the program and various data are recorded so as to be readable by the computer (or CPU).
  • a device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided.
  • the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • the node (11 ⁇ 11s) performs wireless communication with the upstream node via the master channel assigned to the own node (11s) by the upstream node (11u), and the own node is downstream.
  • a change determination unit (master channel change determination unit 32) is provided for determining whether to change the master channel assigned to the downstream node based on the estimated traffic volume of the own node.
  • a node that is close to the root node that is a node that functions as a gateway a node that has a large number of nodes located downstream from its own node, a node that has a large number of slave units currently connected to its own node, or its own node
  • a node having a large statistical value of the number of slaves connected to the past is estimated to have a large amount of traffic.
  • the change determination unit is configured such that the number of hops (Nhop) from the root node, which is a node functioning as a gateway, to the own node, and the downstream from the own node.
  • the determination is made based on at least one of the number of located nodes (Nnode), the number of handset currently connected to the own node, and the statistical value of the number of handset connected to the own node in the past. You may go.
  • the determination can be performed based on the connection configuration (network topology) of the nodes in the network system, the determination can be easily performed.
  • the change determination unit may perform the determination based on a statistical value of a past traffic volume. In this case, since the traffic volume can be estimated with high accuracy, the determination can be performed with high accuracy.
  • the upstream node performs wireless communication with the upstream node via the master channel assigned to the own node, and the master channel assigned to the downstream node by the own node Control method of a node that performs wireless communication with the downstream node via the master channel, and when the master channel assigned to the own node by the upstream node is changed, the master channel assigned to the downstream node by the own node A change determination step for determining whether or not to change is based on the estimated traffic volume of the own node.
  • the node according to each aspect of the present invention may be realized by a computer.
  • the node is controlled by the computer by causing the computer to operate as each unit (software element) included in the node.
  • a program and a computer-readable recording medium on which the program is recorded also fall within the scope of the present invention.
  • the present invention determines whether to change the master channel assigned to the downstream node by the own node based on the estimated traffic volume of the own node when the master channel assigned to the own node by the upstream node is changed. By doing so, the average period during which communication is interrupted by changing the master channel is suppressed, and the possibility that the communication speed is reduced by not changing the master channel is suppressed. It can be applied to a LAN system.

Abstract

A node (11) is provided with a master channel change determination unit (32) which, when a master channel assigned to the node itself by an upstream node is changed, determines, on the basis of an estimated traffic amount of the node itself, whether to change a master channel assigned to a downstream node by the node itself.

Description

ノードおよびその制御方法、並びに制御プログラムNode, its control method, and control program
 本発明は、無線LANシステムに用いられるノードおよびその制御方法、並びに制御プログラムに関する。 The present invention relates to a node used in a wireless LAN system, a control method thereof, and a control program.
 無線LAN(Local Area Network)システムの規格としては、IEEE(Institute ofElectrical and Electronic Engineers)802.11が広く普及しており、この規格の中には、5GHz帯での利用に関する規格としてIEEE802.11a、IEEE802.11acなどが存在する。日本では、5GHz帯の無線LANシステムに使用されている無線チャネルに関して、W52(5.15~5.25GHz)、W53(5.25~5.35GHz)、W56(5.47~5.725GHz)などの規格が存在する。 IEEE (Institute of Electrical and Electronic Engineers) 802.11 is widely used as a standard for wireless LAN (Local Area Network) systems. Among these standards, IEEE 802.11a, IEEE802.11ac etc. exist. In Japan, W52 (5.15 to 5.25 GHz), W53 (5.25 to 5.35 GHz), W56 (5.47 to 5.725 GHz) regarding wireless channels used in 5 GHz band wireless LAN systems. There are standards such as.
 このうち、W53およびW56の周波数帯は、気象レーダ等の各種レーダに割り当て済みの帯域でもある。このため、無線LANの電波と上記各種レーダの電波とが干渉するおそれがあり、該干渉を回避するために、当該周波数帯を使用する無線LANシステムのAP(Access Point:アクセスポイント)に対しDFS(DynamicFrequencySelection)機能の実装を義務付けている。 Of these, the frequency bands of W53 and W56 are bands already assigned to various radars such as weather radars. For this reason, there is a possibility that the radio wave of the wireless LAN and the radio waves of the various radars may interfere with each other. In order to avoid the interference, the DFS for the AP (Access Point) of the wireless LAN system using the frequency band is used. (DynamicFrequencySelection) It is mandatory to implement the function.
 上記DFS機能は、同一周波数帯を使用するレーダシステムと同一の無線チャネルでの運用を回避するためのレーダ検出機能およびチャネル移動機能である。DFS機能によるレーダ検出を行った無線チャネルでの30分以内の運用禁止と、レーダ有無情報が予め分かっていない無線チャネルでの運用開始前60秒間のレーダサーチとを必須としている。 The DFS function is a radar detection function and a channel movement function for avoiding operation on the same radio channel as a radar system using the same frequency band. Operation prohibition within 30 minutes on a radio channel in which radar detection is performed by the DFS function and radar search for 60 seconds before operation start on a radio channel whose radar presence / absence information is not known in advance are essential.
 このため、APは、レーダを検出すると、子機との通信が数分間に亘って途絶したり、変更後の無線チャネルが、隣接するAPが使用する無線チャネルと重なって、子機との通信速度が低下したりすることが起こり得る。これらの問題点に対し、種々の提案がなされている(例えば、特許文献1・2を参照)。 For this reason, when the AP detects the radar, the communication with the slave unit is interrupted for several minutes, or the wireless channel after the change overlaps with the wireless channel used by the adjacent AP, thereby communicating with the slave unit. It can happen that the speed decreases. Various proposals have been made for these problems (see, for example, Patent Documents 1 and 2).
日本国公開特許公報「特開2007-214713号(2007年08月23日公開)」Japanese Patent Publication “JP 2007-214713 (published Aug. 23, 2007)” 日本国公開特許公報「特開2010-154373号(2010年07月08日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-154373 (Released on July 08, 2010)”
 特許文献1・2に記載の無線LANシステムでは、APどうしを有線ネットワークで接続している。これに対し、最近では、APどうしを無線で接続する無線バックホール方式の無線LANシステムが検討されている。APどうしを無線で連携することにより、AP間のケーブルの敷設が不要となり、該敷設に係る時間およびコストを削減することができる。 In the wireless LAN system described in Patent Documents 1 and 2, APs are connected by a wired network. In contrast, recently, a wireless backhaul wireless LAN system in which APs are connected wirelessly has been studied. By linking APs wirelessly, it is not necessary to install a cable between APs, and the time and cost associated with the installation can be reduced.
 しかしながら、上記無線LANシステムにおいて、或るAPが、上記レーダを検知したことなどにより、別のAPに割り当てた無線チャネル(マスタチャネル)を変更する必要がある場合、変更したマスタチャネルが、上記別のAPがさらに別のAPに割り当てたマスタチャネルと重なることが起こり得る。この場合、重なったマスタチャネルを分割して使用することになり、通信速度が低下するおそれがある。 However, in the wireless LAN system, when a certain AP needs to change a wireless channel (master channel) assigned to another AP due to the detection of the radar, the changed master channel is It is possible that one AP overlaps with a master channel assigned to another AP. In this case, the overlapping master channels are divided and used, which may reduce the communication speed.
 この問題点を回避するには、各APは、別のAPに割り当てたマスタチャネルを最適なものに変更すればよいが、該変更のための時間およびリソースが必要となり、場合によっては、当該変更の間に通信が中断するおそれがある。 In order to avoid this problem, each AP may change the master channel assigned to another AP to an optimum one. However, time and resources for the change are required. Communication may be interrupted during this period.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、上流のノードが自ノードに割り当てたマスタチャネルが変更された場合に、通信速度が低下する可能性を抑えると共に、自ノードがマスタチャネルを変更するための時間およびリソースの利用を抑えるノードなどを提供することにある。 The present invention has been made in view of the above problems, and its purpose is to suppress the possibility that the communication speed is lowered when the master channel assigned to the node by the upstream node is changed, and The object is to provide a node or the like that suppresses the time and resource usage for the own node to change the master channel.
 上記の課題を解決するために、本発明の一態様に係るノードは、上流のノードが自ノードに割り当てたマスタチャネルを介して当該上流のノードと無線通信を行うと共に、自ノードが下流のノードに割り当てたマスタチャネルを介して当該下流のノードと無線通信を行うノードであって、上記課題を解決するために、前記上流のノードが自ノードに割り当てたマスタチャネルが変更された場合に前記自ノードが前記下流のノードに割り当てたマスタチャネルを変更すべきかの判定を、推定される自ノードのトラフィック量に基づいて行う変更判定部を備えることを特徴としている。 In order to solve the above problem, a node according to one aspect of the present invention performs wireless communication with an upstream node via a master channel assigned to the own node by the upstream node, and the own node is a downstream node. A node that performs wireless communication with the downstream node via the master channel assigned to the node, and in order to solve the above problem, when the master channel assigned to the node by the upstream node is changed, It is characterized by comprising a change determining unit that determines whether a node should change the master channel assigned to the downstream node based on the estimated traffic volume of the own node.
 本発明の一態様によれば、上流のノードが自ノードに割り当てたマスタチャネルが変更された場合に、通信速度が低下する可能性を抑えると共に、自ノードがマスタチャネルを変更するための時間およびリソースの利用を抑えることができるという効果を奏する。 According to one aspect of the present invention, when a master channel assigned to an own node by an upstream node is changed, the possibility that the communication speed is reduced is suppressed, and the time for the own node to change the master channel and There is an effect that the use of resources can be suppressed.
本発明の一実施形態に係る無線LANシステムを構成するノードの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the node which comprises the wireless LAN system which concerns on one Embodiment of this invention. 上記無線LANシステムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the said wireless LAN system. 上記構成のノードについて、上流のノードからCSAフレームを取得した場合の制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing at the time of acquiring a CSA frame from an upstream node about the node of the said structure. 上記マスタチャネルを変更する変更処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the change process which changes the said master channel. 上記無線LANシステムにおける処理の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of a process in the said wireless LAN system.
 〔実施形態1〕
 まず、本発明の一実施形態について、図1~図5を参照して説明する。
[Embodiment 1]
First, an embodiment of the present invention will be described with reference to FIGS.
 (無線LANシステムの概要)
 図2は、本実施形態に係る無線LANシステムの概略構成を示すブロック図である。図示のように、無線LANシステム10は、複数のノード11(ノードA~I)が相互接続して無線通信できるよう構成されたものである。
(Overview of wireless LAN system)
FIG. 2 is a block diagram showing a schematic configuration of the wireless LAN system according to the present embodiment. As shown in the figure, the wireless LAN system 10 is configured so that a plurality of nodes 11 (nodes A to I) can be connected to each other to perform wireless communication.
 各ノード11は、複数の子機と無線通信を行うAPの機能を有している。なお、一部のノード11は、上記APの機能を有さず、隣接するノードどうしの通信を中継する機能のみを有してもよい。 Each node 11 has an AP function for wireless communication with a plurality of slave units. Some nodes 11 may not have the AP function, but may have only a function of relaying communication between adjacent nodes.
 ノードA~Iのうち、ノードAは、ルートノードであり、上記無線LANシステム10と、インターネット等の外部ネットワーク12とを相互に接続するゲートウェイとして機能する。また、各ノード11は、下流のノード11に対し無線チャネルを割り当てるマスタノードとして機能すると共に、上流のノード11からマスタチャネルが割り当てられるスレーブノードとして機能する。 Among the nodes A to I, the node A is a root node and functions as a gateway for connecting the wireless LAN system 10 and the external network 12 such as the Internet to each other. Each node 11 functions as a master node that assigns a radio channel to the downstream node 11 and also functions as a slave node to which a master channel is assigned from the upstream node 11.
 図2の例では、ノードAは、ノードB・Cのマスタノードであり、ノードBは、ノードD・Eのマスタノードであり、ノードDは、ノードG・Hのマスタノードであり、ノードGは、ノードJのマスタノードであり、ノードJは、ノードKのマスタノードであり、ノードKは、ノードLのマスタノードであり、ノードCは、ノードFのマスタノードであり、ノードFは、ノードIのマスタノードである。 In the example of FIG. 2, the node A is the master node of the nodes B and C, the node B is the master node of the nodes D and E, the node D is the master node of the nodes G and H, and the node G Is the master node of node J, node J is the master node of node K, node K is the master node of node L, node C is the master node of node F, and node F is Node I master node.
 なお、以下では、自ノード11、上流のノード11、および下流のノード11を区別する場合には、それぞれ、自ノード11s、上流のノード11u、および下流のノード11dと記載する。また、自ノード11sが下流のノード11dに割り当てた無線チャネルを「マスタチャネル」と称し、上流のノード11uが自ノード11sに割り当てた無線チャネルを「スレーブチャネル」と称する。すなわち、自ノード11sに対する上流のノード11uのマスタチャネルと、上流のノード11uに対する自ノード11sのスレーブチャンネルとは同じである。 In the following description, when distinguishing the own node 11, the upstream node 11, and the downstream node 11, they are referred to as the own node 11s, the upstream node 11u, and the downstream node 11d, respectively. The radio channel assigned to the node 11d downstream by the own node 11s is referred to as a “master channel”, and the radio channel assigned to the node 11s by the upstream node 11u is referred to as a “slave channel”. That is, the master channel of the upstream node 11u for the own node 11s and the slave channel of the own node 11s for the upstream node 11u are the same.
 本実施形態では、上流のノード11uが自ノード11sに割り当てたマスタチャネルが、気象レーダの検知等により変更する場合、自ノード11sが下流のノード11dに割り当てたマスタチャネルを変更すべきかの判定を、推定される自ノード11sのトラフィック量に基づいて行っている。 In the present embodiment, when the master channel assigned to the own node 11s by the upstream node 11u changes due to detection of weather radar or the like, it is determined whether the master channel assigned to the downstream node 11d by the own node 11s should be changed. , Based on the estimated traffic volume of the own node 11s.
 上記の構成によると、上記トラフィック量が少ない場合、自ノード11sが下流のノード11dに割り当てたマスタチャネルを変更しないことにより、該マスタチャネルを介しての無線通信は維持される。従って、当該変更のための時間およびリソースの利用は発生しない。なお、このとき、上流のノード11uが自ノード11sに割り当てた変更後のマスタチャネルと、自ノードが割り当てているマスタチャネルとが競合することにより、通信効率が低下する可能性がある。しかしながら、上記トラフィック量が少ないので、通信速度が低下する可能性を抑えることができる。 According to the above configuration, when the traffic volume is small, the wireless communication through the master channel is maintained by not changing the master channel assigned to the node 11d downstream by the node 11s. Therefore, no time and resources are used for the change. At this time, there is a possibility that the communication efficiency may be lowered due to a conflict between the changed master channel assigned by the upstream node 11u to the own node 11s and the master channel assigned by the own node. However, since the amount of traffic is small, the possibility of a decrease in communication speed can be suppressed.
 一方、上記トラフィック量が多い場合、自ノード11sがマスタチャネルを変更することにより、当該変更のための時間およびリソースの利用が発生することになる。しかしながら、当該変更により、上記競合を防止できるので、通信効率が低下することを防止できる。その結果、上記トラフィック量が多くても、通信速度が低下することを防止できる。 On the other hand, when the traffic volume is large, the own node 11s changes the master channel, so that time and resources are used for the change. However, since the change can prevent the competition, the communication efficiency can be prevented from decreasing. As a result, even if the traffic volume is large, it is possible to prevent the communication speed from decreasing.
 以上より、自ノード11sが上記マスタチャネルを変更するかを、上記トラフィック量に基づき判定することにより、通信速度が低下する可能性を抑えると共に、当該変更のための時間およびリソースの利用を抑えることができる。 As described above, by determining whether the own node 11s changes the master channel based on the traffic volume, it is possible to suppress the possibility of a decrease in communication speed, and to suppress use of time and resources for the change. Can do.
 ところで、上記ルートノード(ノードA)から自ノード11sまでのホップ数Nhopが少ないほど、或いは、自ノード11sから下流側に位置するノード11の数Nnodeが多いほど、自ノード11sのトラフィック量は多いと推定される。 By the way, the smaller the number of hops Nhop from the root node (node A) to the own node 11s, or the larger the number Nnode of nodes 11 located downstream from the own node 11s, the greater the traffic volume of the own node 11s. It is estimated to be.
 そこで、本実施形態では、上記判定をNhopおよびNnodeに基づいて行っている。NhopおよびNnodeは、無線LANシステム10のネットワークトポロジの情報から算出できるので、上記判定を容易に行うことができる。 Therefore, in the present embodiment, the above determination is performed based on Nhop and Nnode. Since Nhop and Nnode can be calculated from the network topology information of the wireless LAN system 10, the above determination can be made easily.
 実施例では、NhopおよびNnodeを用いて次式(1)から判断値Vjを算出し、算出した判断値Vjが閾値Vth以上である場合に、自ノード11sが下流のノード11dに割り当てたマスタチャネルを変更すべきと判定している。
Vj=(1/Nhop)×α+Nnode×β ・・・(1)。
In the embodiment, the determination value Vj is calculated from the following equation (1) using Nhop and Nnode, and when the calculated determination value Vj is equal to or greater than the threshold value Vth, the master channel assigned by the own node 11s to the downstream node 11d Is determined to be changed.
Vj = (1 / Nhop) × α + Nnode × β (1).
 なお、上記α・βは、重み係数である。また、判断値Vjは、Nhopの逆比例値と、Nnodeの比例値とに基づくことが特徴であるので、上記式(1)のような上記逆比例値と上記比例値との加算のみに限定するものではなく、例えば積算であってもよい。 Note that α and β are weighting factors. In addition, the determination value Vj is based on the inverse proportional value of Nhop and the proportional value of Nnode, and thus is limited only to the addition of the inverse proportional value and the proportional value as in the above equation (1). For example, integration may be used.
 例えば、α=1、β=1、Vth=3.1とする。そして、図2に示すノードCが気象レーダを検知して、ノードCがノードFに割り当てたマスタチャネルを変更したとする。これにより、ノードFは、上記判定を行い、Nhop=2、Nnode=1であるので、Vj=1/2+1=1.5となり、Vj<Vthであるので、下流のノードIに割り当てたマスタチャネルを維持する(変更しない)。 For example, α = 1, β = 1, and Vth = 3.1. Then, it is assumed that the node C shown in FIG. 2 detects the weather radar and the node C changes the master channel assigned to the node F. Thereby, the node F performs the above determination, and Nhop = 2 and Nnode = 1, so Vj = 1/2 + 1 = 1.5 and Vj <Vth, so that the master channel assigned to the downstream node I Is maintained (does not change).
 一方、図2に示すノードBが気象レーダを検知して、ノードBがノードDに割り当てたマスタチャネルを変更したとする。これにより、ノードDは、上記判定を行い、Nhop=2、Nnode=5であるので、Vj=1/2+5=5.5となり、Vj≧Vthであるので、下流のノードG・Hに割り当てたマスタチャネルを変更する。これにより、ノードGは、上記判定を行い、Nhop=3、Nnode=3であるので、Vj=1/3+3≒3.3となり、Vj≧Vthとなるので、下流のノードJに割り当てたマスタチャネルを変更する。これにより、ノードJは、上記判定を行い、Nhop=4、Nnode=2であるので、Vj=1/4+2=2.25となり、Vj<Vthとなるので、下流のノードJに割り当てたマスタチャネルを維持する。 On the other hand, it is assumed that the node B shown in FIG. 2 detects a weather radar and the node B changes the master channel assigned to the node D. As a result, the node D makes the above determination, and Nhop = 2 and Nnode = 5, so Vj = 1/2 + 5 = 5.5, and Vj ≧ Vth, so that it is assigned to the downstream nodes G and H. Change the master channel. As a result, the node G makes the above determination, and Nhop = 3 and Nnode = 3, so Vj = 1/3 + 3≈3.3 and Vj ≧ Vth, so that the master channel assigned to the downstream node J To change. As a result, the node J performs the above determination, and Nhop = 4 and Nnode = 2. Therefore, Vj = 1/4 + 2 = 2.25 and Vj <Vth, so that the master channel assigned to the downstream node J To maintain.
 これにより、ノードJの下流側に位置するノードKは、上記判定を行わない。なお、ノードH・Lは、末端のノードであり、下流のノードに割り当てたマスタチャネルが存在しないので、上記判定は行わない。従って、ノードBがノードDに割り当てたマスタチャネルを変更することによるマスタチャネルの変更は、ノードD・Gまで伝播することになる。 Thereby, the node K located downstream of the node J does not make the above determination. Nodes H and L are end nodes and there is no master channel assigned to a downstream node, so the above determination is not performed. Therefore, the change of the master channel due to the change of the master channel assigned to the node D by the node B is propagated to the nodes D and G.
 (ノードの概要)
 図1は、ノード11の概略構成を示すブロック図である。図示のように、ノード11は、制御部20、記憶部21、通信部22、およびレーダ検知部23を備える構成である。
(Node overview)
FIG. 1 is a block diagram showing a schematic configuration of the node 11. As illustrated, the node 11 is configured to include a control unit 20, a storage unit 21, a communication unit 22, and a radar detection unit 23.
 制御部20は、ノード11内の各種構成を統括的に制御するものであり、CPU(Central Processing Unit)などのプロセッサを備える構成である。記憶部21は、各種のデータおよびプログラムを記憶するものであり、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの記憶素子を備える構成である。なお、制御部20および記憶部21の詳細については後述する。 The control unit 20 controls the various components in the node 11 in an integrated manner, and includes a processor such as a CPU (Central Processing Unit). The storage unit 21 stores various data and programs, and includes a storage element such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory. Details of the control unit 20 and the storage unit 21 will be described later.
 通信部22は、IEEE802.11の規格に基づいて、別のノード11および子機13と無線通信を行うものである。実施例では、ノード11どうしの通信には5GHz帯の電波が利用される。なお、ノード11と子機13との通信には、2GHz帯および5GHz帯の何れか一方または両方の電波が利用される。 The communication unit 22 performs wireless communication with another node 11 and the slave unit 13 based on the IEEE802.11 standard. In the embodiment, 5 GHz band radio waves are used for communication between the nodes 11. For communication between the node 11 and the slave unit 13, either one or both of the 2 GHz band and the 5 GHz band are used.
 なお、通信部22の詳細は公知であるので、その説明を省略する。また、通信部22は、図1に示すように、上流ノード用通信部22u、下流ノード用通信部22d、および子機用通信部22cに分離していてもよいし、ノード用通信部22u・22dおよび子機用通信部22cに分離していてもよいし、一体であってもよい。 In addition, since the details of the communication unit 22 are known, the description thereof is omitted. Further, as shown in FIG. 1, the communication unit 22 may be separated into an upstream node communication unit 22u, a downstream node communication unit 22d, and a slave unit communication unit 22c. 22d and slave unit communication unit 22c may be separated or integrated.
 レーダ検知部23は、気象レーダ等の各種レーダの電波であって、本無線LANシステム10にて利用される周波数帯の電波を検知するものである。レーダ検知部23は、該当する電波を検知した旨を制御部20に通知する。なお、レーダ検知部23の詳細は公知であるので、その説明を省略する。 The radar detection unit 23 detects radio waves of various radars such as weather radars in the frequency band used in the wireless LAN system 10. The radar detection unit 23 notifies the control unit 20 that the corresponding radio wave has been detected. Note that details of the radar detection unit 23 are well known, and a description thereof will be omitted.
 (ノードの詳細)
 次に、制御部20および記憶部21の詳細について説明する。図1に示すように、制御部20は、チャネル変更通知取得部30、スレーブチャネル変更指示部31、マスタチャネル変更判定部(変更判定部)32、およびマスタチャネル変更指示部33を備える構成である。また、記憶部21には、上述のNhopおよびNnodeが記憶されている。NhopおよびNnodeは、無線LANシステム10のネットワークトポロジの情報を取得することにより算出することができる。
(Node details)
Next, details of the control unit 20 and the storage unit 21 will be described. As shown in FIG. 1, the control unit 20 includes a channel change notification acquisition unit 30, a slave channel change instruction unit 31, a master channel change determination unit (change determination unit) 32, and a master channel change instruction unit 33. . The storage unit 21 stores the above Nhop and Nnode. Nhop and Nnode can be calculated by acquiring network topology information of the wireless LAN system 10.
 チャネル変更通知取得部30は、上流のノード11uが自ノード11sに対するマスタチャネルを変更した旨を示すチャネル変更通知を、上流のノード11uから上流ノード用通信部22uを介して取得するものである。チャネル変更通知取得部30は、取得したチャネル変更通知をスレーブチャネル変更指示部31およびマスタチャネル変更判定部32に送出する。実施例では、上記チャネル変更通知には、IEEE802.11の規格にて規定されているCSA(ChannelSwitchAnnouncement)フレームを使用しているが、その他のフレームを使用してもよい。 The channel change notification acquisition unit 30 acquires a channel change notification indicating that the upstream node 11u has changed the master channel for the own node 11s from the upstream node 11u via the upstream node communication unit 22u. The channel change notification acquisition unit 30 sends the acquired channel change notification to the slave channel change instruction unit 31 and the master channel change determination unit 32. In the embodiment, for the channel change notification, a CSA (Channel Switch Announcement) frame defined in the IEEE 802.11 standard is used, but other frames may be used.
 スレーブチャネル変更指示部31は、上記マスタチャネル、すなわち、上流のノード11uに対する自ノード11sのスレーブチャネルを、チャネル変更通知取得部30からのチャネル変更通知が示す遷移先の無線チャネル(以下、「遷移先チャネル」と称する。)に変更するように、上流ノード用通信部22uに指示するものである。上流ノード用通信部22uは、上記スレーブチャネルの変更が完了すると、その旨を制御部20に通知すると共に、上流ノード用通信部22uを介して上流のノード11に通知する。これにより、自ノード11sは、上流のノード11uと上記遷移先チャネルを介して無線通信を行うことができる。 The slave channel change instructing unit 31 sets the master channel, that is, the slave channel of the own node 11s for the upstream node 11u to the transition destination radio channel (hereinafter referred to as “transition”) indicated by the channel change notification from the channel change notification acquiring unit 30. The upstream node communication unit 22u is instructed to change to “destination channel”. When the change of the slave channel is completed, the upstream node communication unit 22u notifies the control unit 20 to that effect and also notifies the upstream node 11 via the upstream node communication unit 22u. As a result, the own node 11s can perform wireless communication with the upstream node 11u via the transition destination channel.
 マスタチャネル変更判定部32は、チャネル変更通知取得部30からのチャネル変更通知を受け取ると、自ノード11sが下流のノード11dに割り当てたマスタチャネルを変更すべきか否かを、記憶部21に記憶されたNhopおよびNnodeに基づき判定するものである。なお、該判定の詳細については前述の通りである。マスタチャネル変更判定部32は、上記マスタチャネルを変更すべきであると判定した場合、その旨をマスタチャネル変更指示部33に通知する。 Upon receiving the channel change notification from the channel change notification acquisition unit 30, the master channel change determination unit 32 stores in the storage unit 21 whether or not the master channel assigned to the node 11d downstream by the own node 11s should be changed. Judgment is based on Nhop and Nnode. The details of the determination are as described above. When it is determined that the master channel should be changed, the master channel change determination unit 32 notifies the master channel change instruction unit 33 to that effect.
 マスタチャネル変更指示部33は、マスタチャネル変更判定部32からの上記通知を受け取ると、上記マスタチャネルを変更するように、下流ノード用通信部22dに指示するものである。なお、該変更の詳細については後述する。 When the master channel change instruction unit 33 receives the notification from the master channel change determination unit 32, the master channel change instruction unit 33 instructs the downstream node communication unit 22d to change the master channel. Details of the change will be described later.
 (ノードの制御処理)
 図3は、上記構成のノード11sについて、チャネル変更通知取得部30が上流のノード11uからCSAフレームを取得した場合の制御処理の流れを示すフローチャートである。
(Node control processing)
FIG. 3 is a flowchart showing the flow of control processing when the channel change notification acquisition unit 30 acquires a CSA frame from the upstream node 11u for the node 11s having the above configuration.
 図3に示すように、まず、スレーブチャネル変更指示部31は、CSAフレームが示す遷移先チャネルにスレーブチャネルを変更するように、上流ノード用通信部22uに指示する(S10)。次に、マスタチャネル変更判定部32は、記憶部21に記憶されたNhopおよびNnodeを用いて、上記式(1)から判断値Vjを算出し(S11、変更判定ステップ)、算出した判断値Vjが閾値Vth以上であるか否かを判断する(S12、変更判定ステップ)。 As shown in FIG. 3, the slave channel change instruction unit 31 first instructs the upstream node communication unit 22u to change the slave channel to the transition destination channel indicated by the CSA frame (S10). Next, the master channel change determination unit 32 uses the Nhop and Nnode stored in the storage unit 21 to calculate the determination value Vj from the above equation (1) (S11, change determination step), and the calculated determination value Vj Is greater than or equal to the threshold value Vth (S12, change determination step).
 判断値Vjが閾値Vth未満である場合、下流のノード11dに対するマスタチャネルを変更することなく上記制御処理を終了する。一方、判断値Vjが閾値Vth以上である場合、マスタチャネル変更指示部33は、下流ノード用通信部22dに指示して、下流のノード11dに対するマスタチャネルを変更させ(S13)、その後、上記制御処理を終了する。 If the judgment value Vj is less than the threshold value Vth, the control process is terminated without changing the master channel for the downstream node 11d. On the other hand, when the determination value Vj is equal to or greater than the threshold value Vth, the master channel change instruction unit 33 instructs the downstream node communication unit 22d to change the master channel for the downstream node 11d (S13), and then performs the above control. The process ends.
 図4は、上記マスタチャネルを変更する変更処理(S13)の流れを示すフローチャートである。図示のように、マスタチャネル変更指示部33は、遷移先チャネルが予め決定されていない場合(S20にてNO)、下流ノード用通信部22dに指示して周囲の電波状況を測定することにより空きチャネルを検索し、最適な無線チャネルを遷移先チャネルとして決定する(S21)。 FIG. 4 is a flowchart showing the flow of change processing (S13) for changing the master channel. As shown in the figure, when the transition channel is not determined in advance (NO in S20), the master channel change instructing unit 33 instructs the downstream node communication unit 22d to measure the surrounding radio wave condition, thereby freeing the channel. The channel is searched and the optimum radio channel is determined as the transition destination channel (S21).
 ステップS21の処理は、既存の技術にて対応することができる。例えば、データ通信用無線信号とチャネル測定用無線信号との両方を受信することにより、データ通信を中断することなく、遷移先チャネルを決定することができる。なお、上記チャネル測定用無線信号を受信しない場合には、通信を中断する必要がある。 The processing in step S21 can be handled by existing technology. For example, by receiving both the data communication radio signal and the channel measurement radio signal, the transition destination channel can be determined without interrupting the data communication. If the channel measurement radio signal is not received, communication must be interrupted.
 次に、マスタチャネル変更指示部33は、遷移先チャネルの情報を含むCSAフレームを作成し、下流ノード用通信部22dを介して下流のノード11dに送信する(S22)。そして、マスタチャネル変更指示部33は、上記マスタチャネルを遷移先チャネルに変更し(S23)、その後、元の処理に戻る。 Next, the master channel change instruction unit 33 creates a CSA frame including information on the transition destination channel and transmits it to the downstream node 11d via the downstream node communication unit 22d (S22). Then, the master channel change instruction unit 33 changes the master channel to the transition destination channel (S23), and then returns to the original process.
 (無線LANシステムの処理の変遷)
 図5は、無線LANシステム10における処理の流れを示すシーケンス図である。図示のように、ノードBが気象レーダを検知すると(T10)、CSAフレームをノードDに送信する(T11・T20)。このCSAフレームには、遷移先チャネルおよび遷移時間の情報が含まれる。該遷移時間の情報の例としては、現在のマスタチャネルでのビーコン(Beacon)送信数が挙げられる。ノードBは、CSAフレームの送信後に上記ビーコン送信数だけビーコンを送信すると、上記マスタチャネルを遷移先チャネルに変更する。
(Transition of wireless LAN system processing)
FIG. 5 is a sequence diagram showing the flow of processing in the wireless LAN system 10. As shown in the figure, when the node B detects the weather radar (T10), a CSA frame is transmitted to the node D (T11 and T20). This CSA frame includes information about the transition destination channel and transition time. An example of the transition time information is the number of beacon transmissions on the current master channel. When the node B transmits the beacons by the number of beacons transmitted after transmitting the CSA frame, the node B changes the master channel to the transition destination channel.
 上記CSAフレームを送信してから上記遷移時間に達すると、ノードBは、ノードDに対するマスタチャネル(例えば116ch)を上記遷移先チャネル(例えば124ch)に変更する一方(T12)、ノードDは、ノードBに対するスレーブチャネルを上記遷移先チャネルに変更する(T21)。そして、ノードB・D間の無線通信が再開される(T13・T22)。なお、ノードB・D間の無線通信は、ステップT11・T20からステップT13・T22までの期間だけ中断することになるが、当該期間は無視可能なほど短い。 When the transition time is reached after transmitting the CSA frame, the node B changes the master channel (for example, 116ch) for the node D to the transition destination channel (for example, 124ch) (T12), while the node D The slave channel for B is changed to the transition destination channel (T21). Then, wireless communication between the nodes B and D is resumed (T13 and T22). The wireless communication between the nodes B and D is interrupted only during the period from step T11 / T20 to step T13 / T22, but the period is short enough to be ignored.
 次に、ノードDは、自ノードのNhopおよびNnodeに基づき、自ノードが割り当てたマスタチャネルを変更すべきと判定して(T23)、上記遷移先チャネルおよび上記遷移時間の情報を含むCSAフレームをノードDに送信する(T24・T30)。該CSAフレームを送信してから上記遷移時間に達すると、ノードDは、ノードGに対するマスタチャネルを上記遷移先チャネルに変更する一方(T25)、ノードGは、ノードDに対するスレーブチャネルを上記遷移先チャネルに変更する(T31)。そして、ノードD・G間の無線通信が再開される(T26・T32)。このように、マスタチャネルの変更処理は、ノード11ごとに順次行われることになる。 Next, based on Nhop and Nnode of the own node, the node D determines that the master channel assigned by the own node should be changed (T23), and obtains a CSA frame including information on the transition destination channel and the transition time. The data is transmitted to the node D (T24 / T30). When the transition time is reached after transmitting the CSA frame, the node D changes the master channel for the node G to the transition destination channel (T25), while the node G changes the slave channel for the node D to the transition destination. Change to a channel (T31). Then, wireless communication between the nodes D and G is resumed (T26 and T32). As described above, the master channel change process is sequentially performed for each node 11.
 (変形例)
 なお、気象レーダを検知したノード11が、下流のノード11dにおけるマスタチャネルを変更すべきかを判断してもよい。例えば、ノードCが気象レーダを検知すると、Nhop=1、Nnode=2であるので、Vj=1/1+2=3となり、Vj<Vthであるので、下流のノードFにおけるマスタチャネルの変更を指示しないようにしてもよい。この場合、ノードFにてマスタチャネルを変更すべきかの判断を省略することができる。
(Modification)
Note that the node 11 that has detected the weather radar may determine whether to change the master channel in the downstream node 11d. For example, when node C detects a weather radar, Nhop = 1 and Nnode = 2, so Vj = 1/1 + 2 = 3, and Vj <Vth, so that no change of the master channel in the downstream node F is instructed. You may do it. In this case, the determination on whether or not to change the master channel at the node F can be omitted.
 (付加事項)
 なお、上記実施形態では、マスタチャネル変更判定部32は、NhopおよびNnodeを用いて、マスタチャネルを変更すべきかの判定を行っているが、NhopおよびNnodeの何れかを用いて上記判定を行ってもよい。
(Additional items)
In the above embodiment, the master channel change determination unit 32 uses Nhop and Nnode to determine whether to change the master channel, but uses either Nhop or Nnode to perform the above determination. Also good.
 また、或るノード11に現在接続している子機13の数が多いほど、当該ノード11のトラフィック量が多くなると予想される。また、或るノード11に過去に接続された子機の数が多いほど、例え現在接続している子機13の数が少なくても、将来接続する子機13の数が多くなることが予想される。そこで、Nhop、Nnode、自ノード11sに現在接続している子機13の数、および、自ノード11sに過去に接続された子機の数の統計値の少なくとも1つを用いて、上記判定を行ってもよい。 Further, it is expected that the traffic amount of the node 11 increases as the number of the slave units 13 currently connected to the node 11 increases. In addition, it is expected that the greater the number of slave units connected to a node 11 in the past, the greater the number of slave units 13 to be connected in the future, even if the number of slave units 13 currently connected is small. Is done. Therefore, the above determination is made using at least one of Nhop, Nnode, the number of handset 13 currently connected to the own node 11s, and the statistical value of the number of handset connected to the own node 11s in the past. You may go.
 また、自ノード11sの過去のトラフィック量を計測し、該トラフィック量の統計値に基づいて上記判定を行ってもよい。この場合、トラフィック量を精度良く推定できるので、上記判定を精度良く行うことができる。 Alternatively, the past traffic volume of the own node 11s may be measured, and the above determination may be performed based on the statistical value of the traffic volume. In this case, since the traffic volume can be estimated with high accuracy, the determination can be performed with high accuracy.
 また、上記実施形態では、IEEE802.11の規格に基づく無線LANシステム10について本発明を適用しているが、これに限定されるものではなく、IEEE802.15(無線PAN(Personal Area Network))など、任意の無線ネットワークシステムに本発明を適用することができる。 In the above embodiment, the present invention is applied to the wireless LAN system 10 based on the IEEE802.11 standard. However, the present invention is not limited to this, and IEEE802.15 (wireless PAN (Personal Area Network)) or the like is used. The present invention can be applied to any wireless network system.
 〔ソフトウェアによる実現例〕
 ノード11の制御ブロック(特に制御部20)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central ProcessingUnit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control block (particularly the control unit 20) of the node 11 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or realized by software using a CPU (Central Processing Unit). May be.
 後者の場合、ノード11は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the node 11 includes a CPU that executes instructions of a program that is software that realizes each function, a ROM (Read Only Memory) or a storage in which the program and various data are recorded so as to be readable by the computer (or CPU). A device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it. As the recording medium, a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の態様1に係るノード(11・11s)は、上流のノード(11u)が自ノード(11s)に割り当てたマスタチャネルを介して当該上流のノードと無線通信を行うと共に、自ノードが下流のノード(11d)に割り当てたマスタチャネルを介して当該下流のノードと無線通信を行うノードであって、前記上流のノードが自ノードに割り当てたマスタチャネルが変更された場合に前記自ノードが前記下流のノードに割り当てたマスタチャネルを変更すべきかの判定を、推定される自ノードのトラフィック量に基づいて行う変更判定部(マスタチャネル変更判定部32)を備えている。
[Summary]
The node (11 · 11s) according to the aspect 1 of the present invention performs wireless communication with the upstream node via the master channel assigned to the own node (11s) by the upstream node (11u), and the own node is downstream. The node that performs wireless communication with the downstream node via the master channel assigned to the node (11d) of the node (11d) when the master channel assigned to the node by the upstream node is changed. A change determination unit (master channel change determination unit 32) is provided for determining whether to change the master channel assigned to the downstream node based on the estimated traffic volume of the own node.
 上記の構成によると、上記トラフィック量が少ない場合、自ノードが下流のノードに割り当てたマスタチャネルを変更しないことにより、該マスタチャネルを介しての無線通信は維持される。従って、当該変更のための時間およびリソースの利用は発生しない。なお、このとき、上流のノードが割り当てた変更後のマスタチャネルと、自ノードが割り当てているマスタチャネルとが競合することにより、通信効率が低下する可能性がある。しかしながら、上記トラフィック量が少ないので、通信速度が低下する可能性を抑えることができる。 According to the above configuration, when the traffic volume is small, wireless communication through the master channel is maintained by not changing the master channel assigned to the downstream node by the own node. Therefore, no time and resources are used for the change. At this time, there is a possibility that the communication efficiency is lowered due to a conflict between the changed master channel assigned by the upstream node and the master channel assigned by the own node. However, since the amount of traffic is small, the possibility of a decrease in communication speed can be suppressed.
 一方、上記トラフィック量が多い場合、自ノードがマスタチャネルを変更することにより、当該変更のための時間およびリソースの利用が発生する。しかしながら、当該変更により、上記競合を防止できるので、通信効率が低下することを防止できる。その結果、上記トラフィック量が多くても、通信速度が低下することを防止できる。 On the other hand, when the amount of traffic is large, when the own node changes the master channel, time and resources are used for the change. However, since the change can prevent the competition, the communication efficiency can be prevented from decreasing. As a result, even if the traffic volume is large, it is possible to prevent the communication speed from decreasing.
 以上より、自ノードが上記マスタチャネルを変更するかを、上記トラフィック量に基づき判定することにより、通信速度が低下する可能性を抑えると共に、当該変更のための時間およびリソースの利用を抑えることができる。 As described above, by determining whether the own node changes the master channel based on the traffic volume, it is possible to suppress the possibility of a decrease in communication speed and to suppress the time and resource usage for the change. it can.
 ところで、ゲートウェイとして機能するノードであるルートノードに近いノード、自ノードから下流側に位置するノードの数が多いノード、自ノードに現在接続している子機の数が多いノード、或いは、自ノードに過去に接続された子機の数の統計値が多いノードは、トラフィック量が多いと推定される。 By the way, a node that is close to the root node that is a node that functions as a gateway, a node that has a large number of nodes located downstream from its own node, a node that has a large number of slave units currently connected to its own node, or its own node A node having a large statistical value of the number of slaves connected to the past is estimated to have a large amount of traffic.
 そこで、本発明の態様2に係るノードは、上記態様1において、前記変更判定部は、ゲートウェイとして機能するノードであるルートノードから自ノードまでのホップ数(Nhop)と、自ノードから下流側に位置するノードの数(Nnode)と、自ノードに現在接続している子機の数と、自ノードに過去に接続された子機の数の統計値との少なくとも1つに基づいて前記判定を行ってもよい。この場合、ネットワークシステムにおけるノードの接続構成(ネットワークトポロジ)に基づいて上記判定を行うことができるので、上記判定を容易に行うことができる。 Therefore, in the node according to aspect 2 of the present invention, in the aspect 1, the change determination unit is configured such that the number of hops (Nhop) from the root node, which is a node functioning as a gateway, to the own node, and the downstream from the own node. The determination is made based on at least one of the number of located nodes (Nnode), the number of handset currently connected to the own node, and the statistical value of the number of handset connected to the own node in the past. You may go. In this case, since the determination can be performed based on the connection configuration (network topology) of the nodes in the network system, the determination can be easily performed.
 本発明の態様3に係るノードは、上記態様1または2において、前記変更判定部は、過去のトラフィック量の統計値に基づいて前記判定を行ってもよい。この場合、トラフィック量を精度良く推定できるので、上記判定を精度良く行うことができる。 In the node according to aspect 3 of the present invention, in the above aspect 1 or 2, the change determination unit may perform the determination based on a statistical value of a past traffic volume. In this case, since the traffic volume can be estimated with high accuracy, the determination can be performed with high accuracy.
 本発明の態様4に係るノードの制御方法は、上流のノードが自ノードに割り当てたマスタチャネルを介して当該上流のノードと無線通信を行うと共に、自ノードが下流のノードに割り当てたマスタチャネルを介して当該下流のノードと無線通信を行うノードの制御方法であって、前記上流のノードが自ノードに割り当てたマスタチャネルが変更された場合に前記自ノードが前記下流のノードに割り当てたマスタチャネルを変更すべきかの判定を、推定される自ノードのトラフィック量に基づいて行う変更判定ステップを含んでいる。 In the node control method according to aspect 4 of the present invention, the upstream node performs wireless communication with the upstream node via the master channel assigned to the own node, and the master channel assigned to the downstream node by the own node Control method of a node that performs wireless communication with the downstream node via the master channel, and when the master channel assigned to the own node by the upstream node is changed, the master channel assigned to the downstream node by the own node A change determination step for determining whether or not to change is based on the estimated traffic volume of the own node.
 上記の方法によると、上記態様1と同様の効果を奏することができる。 According to the above method, the same effect as in the first aspect can be obtained.
 本発明の各態様に係るノードは、コンピュータによって実現してもよく、この場合には、コンピュータを上記ノードが備える各部(ソフトウェア要素)として動作させることにより上記ノードをコンピュータにて実現させるノードの制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The node according to each aspect of the present invention may be realized by a computer. In this case, the node is controlled by the computer by causing the computer to operate as each unit (software element) included in the node. A program and a computer-readable recording medium on which the program is recorded also fall within the scope of the present invention.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、上流のノードが自ノードに割り当てたマスタチャネルが変更された場合に自ノードが下流のノードに割り当てたマスタチャネルを変更すべきかの判定を、推定される自ノードのトラフィック量に基づいて行うことにより、マスタチャネルを変更することにより通信が中断する平均期間を抑えると共に、マスタチャネルを変更しないことにより通信速度が低下する可能性を抑えるので、ノード間で無線通信を行う任意の無線LANシステムに適用することができる。 The present invention determines whether to change the master channel assigned to the downstream node by the own node based on the estimated traffic volume of the own node when the master channel assigned to the own node by the upstream node is changed. By doing so, the average period during which communication is interrupted by changing the master channel is suppressed, and the possibility that the communication speed is reduced by not changing the master channel is suppressed. It can be applied to a LAN system.
  10 無線LANシステム
  11 ノード
  12 外部ネットワーク
  13 子機
  20 制御部
  21 記憶部
  22 通信部
  23 レーダ検知部
  30 チャネル変更通知取得部
  31 スレーブチャネル変更指示部
  32 マスタチャネル変更判定部(変更判定部)
  33 マスタチャネル変更指示部
DESCRIPTION OF SYMBOLS 10 Wireless LAN system 11 Node 12 External network 13 Child machine 20 Control part 21 Storage part 22 Communication part 23 Radar detection part 30 Channel change notification acquisition part 31 Slave channel change instruction part 32 Master channel change determination part (change determination part)
33 Master channel change instruction section

Claims (5)

  1.  上流のノードが自ノードに割り当てたマスタチャネルを介して当該上流のノードと無線通信を行うと共に、自ノードが下流のノードに割り当てたマスタチャネルを介して当該下流のノードと無線通信を行うノードであって、
     前記上流のノードが自ノードに割り当てたマスタチャネルが変更された場合に前記自ノードが前記下流のノードに割り当てたマスタチャネルを変更すべきかの判定を、推定される自ノードのトラフィック量に基づいて行う変更判定部を備えることを特徴とするノード。
    An upstream node performs wireless communication with the upstream node via a master channel assigned to the own node, and also performs wireless communication with the downstream node via a master channel assigned to the downstream node. There,
    When the master channel assigned to the upstream node by the upstream node is changed, the determination as to whether the master channel assigned to the downstream node should be changed based on the estimated traffic volume of the own node A node comprising a change determination unit for performing.
  2.  前記変更判定部は、ゲートウェイとして機能するノードであるルートノードから自ノードまでのホップ数と、自ノードから下流側に位置するノードの数と、自ノードに現在接続している子機の数と、自ノードに過去に接続された子機の数の統計値との少なくとも1つに基づいて前記判定を行うことを特徴とする請求項1に記載のノード。 The change determination unit includes the number of hops from a root node that is a node functioning as a gateway to the own node, the number of nodes located downstream from the own node, and the number of slave units currently connected to the own node, 2. The node according to claim 1, wherein the determination is performed based on at least one of a statistical value of the number of slave units connected to the node in the past.
  3.  前記変更判定部は、過去のトラフィック量の統計値に基づいて前記判定を行うことを特徴とする請求項1または2に記載のノード。 The node according to claim 1 or 2, wherein the change determination unit performs the determination based on a past traffic volume statistical value.
  4.  請求項1から3までの何れか1項に記載のノードとしてコンピュータを機能させるための制御プログラムであって、上記変更判定部としてコンピュータを機能させるための制御プログラム。 A control program for causing a computer to function as the node according to any one of claims 1 to 3, wherein the control function causes the computer to function as the change determination unit.
  5.  上流のノードが自ノードに割り当てたマスタチャネルを介して当該上流のノードと無線通信を行うと共に、自ノードが下流のノードに割り当てたマスタチャネルを介して当該下流のノードと無線通信を行うノードの制御方法であって、
     前記上流のノードが自ノードに割り当てたマスタチャネルが変更された場合に前記自ノードが前記下流のノードに割り当てたマスタチャネルを変更すべきかの判定を、推定される自ノードのトラフィック量に基づいて行う変更判定ステップを含むことを特徴とするノードの制御方法。
    The upstream node performs wireless communication with the upstream node via the master channel assigned to the own node, and the node that performs wireless communication with the downstream node via the master channel assigned to the downstream node. A control method,
    When the master channel assigned to the upstream node by the upstream node is changed, the determination as to whether the master channel assigned to the downstream node should be changed based on the estimated traffic volume of the own node A node control method comprising a change determination step to be performed.
PCT/JP2016/052116 2015-02-19 2016-01-26 Node, control method therefor, and control program WO2016132826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015031106 2015-02-19
JP2015-031106 2015-02-19

Publications (1)

Publication Number Publication Date
WO2016132826A1 true WO2016132826A1 (en) 2016-08-25

Family

ID=56692518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052116 WO2016132826A1 (en) 2015-02-19 2016-01-26 Node, control method therefor, and control program

Country Status (1)

Country Link
WO (1) WO2016132826A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515431A (en) * 2005-11-02 2009-04-09 インターデイジタル テクノロジー コーポレーション Method and system for autonomous channel adjustment of a wireless distribution system
JP2009141901A (en) * 2007-12-10 2009-06-25 Nec Commun Syst Ltd Wireless device, wireless communication system, control method, and control program
WO2015012208A1 (en) * 2013-07-22 2015-01-29 日本電気株式会社 Access point, wireless communication method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515431A (en) * 2005-11-02 2009-04-09 インターデイジタル テクノロジー コーポレーション Method and system for autonomous channel adjustment of a wireless distribution system
JP2009141901A (en) * 2007-12-10 2009-06-25 Nec Commun Syst Ltd Wireless device, wireless communication system, control method, and control program
WO2015012208A1 (en) * 2013-07-22 2015-01-29 日本電気株式会社 Access point, wireless communication method, and program

Similar Documents

Publication Publication Date Title
KR102624306B1 (en) Resource selection method and terminal device
WO2019214544A1 (en) Electronic apparatus, wireless communication method and computer-readable medium
JP5139788B2 (en) Wireless device, wireless communication system, control method, and control program
WO2015184583A1 (en) An access node,a communication device,respective method performed thereby for carrier hopping
TW201713146A (en) Setting transmission parameters in shared spectrum
JP6531765B2 (en) Method of performing fractional subframe transmission
US20160150461A1 (en) Wireless communication method, wireless terminal, wireless base station, and control device
TW201608922A (en) A method for carrier sensing
TW201739297A (en) Wireless communication method and wireless communication device
JPWO2017033606A1 (en) Terminal device, base station device, communication control method, and program
US10778280B2 (en) Operation method of communication node in network supporting low power communication
US9491631B2 (en) Method and apparatus for managing a wireless transmitter
TW201707477A (en) Method and network node for dynamic resource allocation for control channels
US9510369B2 (en) Sensing and/or transmission coverage adaptation using interference information
US11765706B2 (en) Cooperative inter-network channel selection
JP5860017B2 (en) Wireless device, wireless communication system, control method, and control program
WO2016132826A1 (en) Node, control method therefor, and control program
EP4049398A1 (en) Pdcch monitoring in unlicensed spectrum for a terminal device with a single active panel
US9986412B2 (en) Discovery in a wireless communications system
US20170280355A1 (en) Delegate-Based Inter-Network Communication
US20180324819A1 (en) Method and apparatus for transmitting information in power communications system, and system
JP6432103B2 (en) Communication system, centralized control apparatus, interference control method, and interference control program
KR20160089702A (en) Method and Apparatus for Carrier Aggregation in Heterogeneous Network System
CN106535244B (en) Wireless communication method and device
JP5351321B2 (en) Wireless device, wireless communication system, control method, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16752215

Country of ref document: EP

Kind code of ref document: A1