WO2016132784A1 - Method for producing insulating film, insulating film, resin composition for laser abrasion, and electronic component - Google Patents

Method for producing insulating film, insulating film, resin composition for laser abrasion, and electronic component Download PDF

Info

Publication number
WO2016132784A1
WO2016132784A1 PCT/JP2016/050972 JP2016050972W WO2016132784A1 WO 2016132784 A1 WO2016132784 A1 WO 2016132784A1 JP 2016050972 W JP2016050972 W JP 2016050972W WO 2016132784 A1 WO2016132784 A1 WO 2016132784A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
resin film
laser
aromatic ring
formula
Prior art date
Application number
PCT/JP2016/050972
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 土井
西村 功
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2016132784A1 publication Critical patent/WO2016132784A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/36Imagewise removal not covered by groups G03F7/30 - G03F7/34, e.g. using gas streams, using plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the present invention relates to a method for producing an insulating film using a laser ablation method, an insulating film obtained by the method, a resin composition for laser ablation, and an electronic component.
  • Electronic components include insulating films such as surface protective films and interlayer insulating films.
  • insulating films such as surface protective films and interlayer insulating films.
  • a photolithography method is known (for example, see Patent Document 1).
  • a resin film is formed on a substrate by applying a photosensitive resin composition, and an exposure process and a development process are performed on the resin film to form an insulating film pattern.
  • Patent Document 2 describes a resist material for excimer laser ablation containing a polyurethane compound.
  • Patent Document 3 describes a laser ablation composition containing a vinyl polymer and nigrosine. These documents relate to a resist material that is used to form a metal pattern on a substrate and is scheduled to be peeled off.
  • JP 2002-341542 A Japanese Patent Laid-Open No. 10-018059 JP 2011-046766 A
  • An object of the present invention is to provide a method for producing an insulating film using a laser ablation method, in which the sensitivity of the resin film to laser light is high, and the insulating film obtained by the above method, and the resin composition used in the method And an electronic component having the insulating film.
  • a method for manufacturing an insulating film comprising: a step 2 for heat treatment; and a step 3 for forming a pattern on a resin film after heating by a laser ablation method.
  • the manufacturing method of the insulating film using the laser ablation method with the high sensitivity of the resin film with respect to a laser beam can be provided, the insulating film obtained by the said method, and the resin composition used for the said method And an electronic component having the insulating film can be provided.
  • FIG. 1 is a top view of a base material for electrical insulation evaluation.
  • FIG. 2 shows measurement results of the infrared spectrum of the polymer (A1) obtained in Synthesis Example 1 and the infrared spectrum after the polymer (A1) is heated at 260 ° C. for 1 hour.
  • the resin composition for laser ablation of the present invention contains a polyarylene (A) and a solvent (B) described below.
  • the resin composition for laser ablation of the present invention is also referred to as “the composition of the present invention”.
  • the resin film formed from the composition of the present invention has high sensitivity to the laser light used in the laser ablation method, the laser workability is high. For this reason, a highly accurate pattern can be formed by the laser ablation method.
  • Ar is an aromatic ring and may be a monocyclic structure or a polycyclic structure.
  • the number of benzene nuclei constituting the aromatic ring is preferably 1 to 4, more preferably 1 to 3, and further preferably 1 to 2.
  • the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and a fluorene ring, and a naphthalene ring is particularly preferable.
  • a hydroxyl group is a substituent bonded to an aromatic ring.
  • R 1 is a substituent bonded to the aromatic ring, and is a halogen atom or an alkyl group having 1 to 10 carbon atoms. When a plurality of R 1 are present, they may be the same as or different from each other.
  • the “substituent bonded to the aromatic ring” may be bonded to any of the benzene nuclei when the aromatic ring has two or more benzene nuclei. Further, when the aromatic ring has two or more benzene nuclei, (1) when a plurality of hydroxyl groups are present in the same structural unit (A1), the hydroxyl groups are bonded to the same benzene nuclei contained in the aromatic ring. Or may be bonded to different benzene nuclei; (2) when a plurality of R 1 are present in the same structural unit (A1), R 1 is the same benzene contained in the aromatic ring. It may be bonded to a nucleus or may be bonded to a different benzene nucleus.
  • halogen atom examples include fluorine, chlorine, and iodine.
  • alkyl group having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl and decyl.
  • the alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms.
  • a is an integer of 1 or more, and is preferably an integer of 2 to 4 since it has high sensitivity to laser light.
  • b is an integer of 0 or more, preferably an integer of 0-2.
  • the bonds * 1 and * 2 are bonded to an aromatic ring, and when the aromatic ring has two or more benzene nuclei, the same benzene nuclei contained in the aromatic ring They may be bonded or may be bonded to different benzene nuclei.
  • the bonds * 1 and * 2 may be bonded to the same benzene nucleus contained in the naphthalene ring (for example, 1 below) or bonded to different benzene nuclei. (For example, the following 2).
  • the bonds * 1 and * 2 may be structural units bonded to different benzene nuclei contained in the aromatic ring. preferable.
  • the structural unit (A1) is preferably a structural unit represented by the formula (A1-1), and particularly preferably a structural unit represented by the formula (A1-1-1). In these cases, the sensitivity of the resin film to laser light tends to be high.
  • the hydroxyl group is a substituent bonded to the naphthalene ring
  • R 1 is a substituent bonded to the naphthalene ring
  • R 1 May be the same as or different from each other.
  • a1 is an integer of 1 to 6
  • b1 is an integer of 0 to 4
  • a1 is preferably an integer of 2 to 4, more preferably 2.
  • b1 is preferably an integer of 0 to 2, more preferably 0.
  • bonds * 1 and * 2 may be bonded to the same benzene nucleus included in the naphthalene ring or may be bonded to different benzene nuclei. Bonds * 1 and * 2 are preferably bonded to different benzene nuclei contained in the naphthalene ring.
  • the polyarylene (A) has a polyarylene structure in which the main chain is formed by connecting aromatic rings (Ar) with direct bonds.
  • the content of the structural unit (A1) is usually 80% by mass or more, preferably 90% by mass or more, and more preferably 99% by mass or more in 100% by mass of the polyarylene (A).
  • the content can be measured by NMR.
  • the weight average molecular weight (Mw) measured by gel permeation chromatography of polyarylene (A) is usually 10,000 to 200,000, preferably 15,000 to 100,000, more preferably in terms of polystyrene. 20,000 to 60,000.
  • Mw When Mw is in the above range, a pattern with high resolution and high crack resistance can be formed. Details of the method for measuring Mw are as described in the examples. Mw can be adjusted by changing the kind and amount of the one-electron oxidizing agent and reaction solvent described later.
  • the content of polyarylene (A) is usually 50% by mass or more, preferably 60 to 100% by mass, and more preferably 70 to 100% by mass in 100% by mass of the solid content contained in the composition of the present invention.
  • Solid content means all the components other than the solvent (B) normally contained in the composition of this invention.
  • Examples of the method for synthesizing polyarylene (A) include the methods described in paragraphs [0027] to [0035] of JP-A-2008-65081. Specifically, by using an aromatic compound corresponding to the structural unit (A1) as a monomer, and using another copolymerizable monomer as necessary, a polyarylene ( A) can be obtained.
  • a coupling reaction using a one-electron oxidant is preferable.
  • the coupling reaction using a one-electron oxidant can be performed by dissolving an aromatic compound in a reaction solvent.
  • the phenomenon of oxidizing the oxide by taking one electron from the oxide is called one-electron oxidation, and the component that receives one electron at this time is called one-electron oxidant.
  • the aromatic compound include a derivative represented by the formula (a1).
  • Ar ′ is an aromatic ring corresponding to Ar in the formula (A1), and R 1 , a and b have the same meanings as in the formula (A1).
  • An aromatic compound may be used individually by 1 type, and may use 2 or more types together.
  • Examples of other copolymerizable monomers include p-isopropenylphenol, ethynylstyrene, propargylic acid, 6-hexynoic acid, 2-propyn-1-ol, 1-butyn-3-ol, and 3-butyne. -3-ol, 1-pentyn-3-ol, 4-pentyn-1-ol, 3-ethynylaniline, 4-ethynylaniline, and phenylacetylene.
  • copolymerizable monomers may be used alone or in combination of two or more.
  • the one-electron oxidant include organometallic compounds, peracids or peroxides, diazo compounds, halogens or halogen acids, ozone, and enzymes described in JP-A-2008-65081 described above. These may be used alone or in combination of two or more.
  • organometallic compounds are preferable in terms of reaction results, and copper (II) compounds and iron (III) compounds are preferable.
  • di- ⁇ -hydroxo-bis [(N, N, N ′, N′-tetramethylethylenediamine) copper (II)] chloride
  • di- ⁇ -hydroxo-bis [(N, N, N ′ , N′-Tetramethylpropylenediamine) copper (II)] chloride
  • di- ⁇ -hydroxo-bis [(N, N, N ′, N′-tetraethylethylenediamine) copper (II)] chloride
  • di- ⁇ -hydroxo-bis [(N, N, N ′, N′-tetramethyl-1,6- Hexan
  • a combination of a plurality of one-electron oxidants for example, a combination of an organic metal compound such as a copper (II) compound and a peracid or peroxide
  • the oxidation rate can be greatly improved.
  • the peracid include peracetic acid and m-chloroperbenzoic acid.
  • the peroxide include hydrogen peroxide and t-butyl hydroperoxide.
  • the amount of the one-electron oxidant used is preferably 0.0001 to 10 mol, more preferably 0.01 to 5 mol, still more preferably 0.1 to 1 mol, relative to 1 mol of the aromatic compound. is there.
  • the reaction solvent used in the coupling reaction is preferably a monomer that forms polyarylene (A), a one-electron oxidant, and a solvent that dissolves the resulting polyarylene (A).
  • a monomer that forms polyarylene (A) e.g., 2-methoxyethanol 2-ethoxyethanol, 3-methoxypropanol, 3-ethoxypropanol, ethyl lactate, propane lactic acid, butyl lactate, and N, N-dimethylformamide.
  • the reaction conditions for the coupling reaction are, for example, 10 to 100 ° C. and 0.1 to 10 hours.
  • the reaction solution contains impurities other than polyarylene (A), such as catalyst residues.
  • impurities other than polyarylene (A) such as catalyst residues.
  • the composition of the present invention contains a solvent (B).
  • the handleability of the composition can be improved, and the viscosity and storage stability can be adjusted.
  • Ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and ethylene glycol monobutyl ether; propylene glycol monomethyl ether , Propylene glycol monoalkyl ethers such as propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether; propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether Propylene glycol dialkyl ethers and the like; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol
  • lactic acid esters propylene glycol monoalkyl ether acetates, ethylene glycol monoalkyl ethers, propylene glycol monoalkyl ethers are preferred; ethyl lactate, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, propylene glycol monomethyl ether Is more preferable.
  • a solvent (B) may be used by 1 type and may use 2 or more types together.
  • the content of the solvent (B) is such that the solid concentration in the composition is usually 1 to 70% by mass, preferably 5 to 60% by mass, more preferably 10 to 50% by mass. It is a range.
  • the composition of the present invention may contain a crosslinking agent (C).
  • a crosslinking agent (C) By using the crosslinking agent (C), the insulating properties and chemical resistance of the insulating film can be improved.
  • crosslinking agent (C) examples include a crosslinking agent (C1) having at least two groups represented by —CH 2 OR and other crosslinking agents (C2).
  • R is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an acetyl group.
  • the (C1) is also referred to as “active methylene group-containing crosslinking agent (C1)”.
  • the crosslinking agent (C1) is preferable because an insulating film having a small internal stress can be formed.
  • the content thereof is usually 5 to 50 parts by mass, preferably 10 to 40 parts by mass, more preferably 100 parts by mass of the polymer (A). Is 15 to 30 parts by mass.
  • the content of the crosslinking agent (C) is in the above range, a composition excellent in sensitivity and resolution is obtained, and a cured film excellent in insulation tends to be obtained.
  • the active methylene group-containing crosslinking agent (C1) is a crosslinking agent having at least two groups represented by —CH 2 OR.
  • R is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an acetyl group, preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • crosslinking agent (C1) examples include a compound having two or more groups represented by the formula (C1-1) and a compound having two or more groups represented by the formula (C1-2).
  • crosslinking agent (C1) examples include crosslinking agents described in JP-A-6-180501, JP-A-2006-178059, and JP-A-2012-226297.
  • melamine-based crosslinking agents such as polymethylolated melamine, hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexabutoxymethylmelamine; polymethylolated glycoluril, tetramethoxymethylglycoluril, tetrabutoxy Glycoluril-based crosslinking agents such as methylglycoluril; 3,9-bis [2- (3,5-diamino-2,4,6-triazaphenyl) ethyl] 2,4,8,10-tetraoxospiro [ 5,5] Undecane, 3,9-bis [2- (3,5-diamino-2,4,6-triazaphenyl) propyl] 2,4,8,10-tetrao
  • crosslinking agent (C1) examples include a methylol group-containing phenol compound, an alkylmethylol group-containing phenol compound, and an acetoxymethyl group-containing phenol compound.
  • Specific examples include 2,6-dimethoxymethyl-4-t-butylphenol, 2,6-dimethoxymethyl-p-cresol, 2,6-diacetoxymethyl-p-cresol, and compounds represented by the following formulae. It is done.
  • a crosslinking agent (C1) may be used by 1 type, and may use 2 or more types together.
  • cross-linking agent (C2) examples include an oxirane ring-containing compound, an oxetane ring-containing compound, an isocyanate group-containing compound (including a blocked one), an oxazoline ring-containing compound, and an aldehyde group-containing phenol compound. .
  • oxirane ring-containing compound it is sufficient that an oxirane ring is contained in the molecule.
  • phenol novolac type epoxy resin cresol novolac type epoxy resin, bisphenol type epoxy resin, trisphenol type epoxy resin, tetraphenol type epoxy resin Phenol-xylylene type epoxy resin, naphthol-xylylene type epoxy resin, phenol-naphthol type epoxy resin, phenol-dicyclopentadiene type epoxy resin, alicyclic epoxy resin, and aliphatic epoxy resin.
  • the oxirane ring-containing compound examples include resorcinol diglycidyl ether, pentaerythritol glycidyl ether, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, phenyl glycidyl ether, neopentyl glycol diglycidyl ether, ethylene / polyethylene glycol diester.
  • Examples thereof include glycidyl ether, propylene / polypropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, sorbitol polyglycidyl ether, propylene glycol diglycidyl ether, and trimethylolpropane triglycidyl ether.
  • the other crosslinking agent (C2) may be used alone or in combination of two or more.
  • additives In the composition of the present invention, other additives such as crosslinked fine particles, adhesion-imparting agents, leveling agents, antifoaming agents, surfactants, fillers and the like are used alone or in combination of two or more. Can be contained in a range that does not impair.
  • the composition of the present invention contains a sensitizer and / or a crosslinking agent
  • the internal stress of the obtained insulating film may be increased. Therefore, when the internal stress needs to be further reduced, the present invention
  • the composition preferably does not contain a sensitizer and / or a crosslinking agent, and more preferably contains neither a sensitizer nor a crosslinking agent.
  • the polymer was identified by H-NMR and infrared spectroscopy. Infrared spectroscopic analysis was performed by the following method. The polymer was dissolved in 2-methylethanol to prepare a solution having a solid concentration of 20% by mass. The solution was applied onto a substrate made of polyethylene terephthalate by a doctor blade method and heated at 70 ° C. for 30 minutes and 120 ° C. for 30 minutes to obtain a coating film. The coating film was peeled off from the substrate, and the coating film was fixed to a metal frame with an adhesive tape, followed by vacuum drying at 120 ° C. for 2 hours to obtain an infrared evaluation film having a thickness of 20 ⁇ m.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)

Abstract

The objective of the present invention is to provide a method for producing an insulating film, which uses a laser abrasion method, and wherein a resin film has high sensitivity to laser light. A method for producing an insulating film according to the present invention comprises: a step 1 wherein a resin film of a resin composition that contains a polyarylene (A) having a repeating structural unit represented by formula (A1) and a solvent (B) is formed on a substrate; a step 2 wherein the resin film is subjected to a heat treatment; and a step 3 wherein the resin film after heating is patterned by means of a laser abrasion method. (In formula (A1), Ar represents an aromatic ring; a hydroxyl group is a substituent bonded to the aromatic ring; R1 represents a substituent bonded to the aromatic ring, which is a halogen atom or an alkyl group having 1-10 carbon atoms, and if there are a plurality of R1 moieties, the R1 moieties may be the same as or different from each other; a represents an integer of 1 or more; and b represents an integer of 0 or more.)

Description

絶縁膜の製造方法および絶縁膜、レーザーアブレーション用樹脂組成物、ならびに電子部品Insulating film manufacturing method, insulating film, resin composition for laser ablation, and electronic component
 本発明は、レーザーアブレーション法を用いた絶縁膜の製造方法および前記方法で得られる絶縁膜、レーザーアブレーション用樹脂組成物、ならびに電子部品に関する。 The present invention relates to a method for producing an insulating film using a laser ablation method, an insulating film obtained by the method, a resin composition for laser ablation, and an electronic component.
 電子部品には、表面保護膜、層間絶縁膜等の絶縁膜が含まれる。
 絶縁膜のパターンを形成する方法としては、フォトリソグラフィー法が知られている(例えば、特許文献1参照)。フォトリソグラフィー法では、基板上に感光性樹脂組成物を塗布することにより樹脂膜を形成し、樹脂膜に対して露光処理および現像処理を実施し、絶縁膜のパターンを形成する。
Electronic components include insulating films such as surface protective films and interlayer insulating films.
As a method for forming an insulating film pattern, a photolithography method is known (for example, see Patent Document 1). In the photolithography method, a resin film is formed on a substrate by applying a photosensitive resin composition, and an exposure process and a development process are performed on the resin film to form an insulating film pattern.
 しかしながら、現像処理には現像液および現像装置が必要であることから、近年の基板サイズの大型化、基板の生産量の増加により、現像液の使用量が増大する問題、現像装置が大型化する問題がある。また、現像液の廃液処理に関するコスト、廃液の環境への影響等の問題もある。 However, since a developing solution and a developing device are required for the development processing, the problem of an increase in the usage amount of the developing solution due to the recent increase in the substrate size and the increase in the production amount of the substrate, and the developing device become larger. There's a problem. In addition, there are also problems such as costs related to waste liquid treatment of the developer and the environmental impact of the waste liquid.
 一方、レーザーアブレーション法を利用した微細加工技術が知られている(例えば、特許文献2および3参照)。レーザーアブレーション法は、閾値以上の照射強度でレーザー光を固体材料に照射した場合に、レーザー光を吸収した固体材料が昇華、蒸発または分解して、固体材料を構成する物質が原子、分子、ラジカル等の様々な形態で放出され、レーザー照射部分において固体材料がエッチングされる現象を利用する。レーザーアブレーション法では、現像処理を省略できることから、上述の問題を解決できると考えられる。 On the other hand, a fine processing technique using a laser ablation method is known (for example, see Patent Documents 2 and 3). In laser ablation, when a solid material is irradiated with laser light with an irradiation intensity equal to or higher than a threshold, the solid material that has absorbed the laser light is sublimated, evaporated, or decomposed, and the substances constituting the solid material become atoms, molecules, or radicals. And the like, and the phenomenon that the solid material is etched in the laser irradiation portion is utilized. In the laser ablation method, it is considered that the above-mentioned problems can be solved because the development process can be omitted.
 特許文献2には、ポリウレタン化合物を含むエキシマレーザーアブレーション用レジスト材が記載されている。特許文献3には、ビニル系重合体およびニグロシンを含有するレーザーアブレーション用組成物が記載されている。これらの文献は、基板上に金属パターンを形成するために用いられる、剥離が予定されているレジスト材に関する。 Patent Document 2 describes a resist material for excimer laser ablation containing a polyurethane compound. Patent Document 3 describes a laser ablation composition containing a vinyl polymer and nigrosine. These documents relate to a resist material that is used to form a metal pattern on a substrate and is scheduled to be peeled off.
特開2002-341542号公報JP 2002-341542 A 特開平10-018059号公報Japanese Patent Laid-Open No. 10-018059 特開2011-046766号公報JP 2011-046766 A
 本発明の課題は、レーザー光に対する樹脂膜の感度が高い、レーザーアブレーション法を用いた絶縁膜の製造方法を提供することにあり、また前記方法で得られた絶縁膜、前記方法に用いる樹脂組成物、および前記絶縁膜を有する電子部品を提供することにある。 An object of the present invention is to provide a method for producing an insulating film using a laser ablation method, in which the sensitivity of the resin film to laser light is high, and the insulating film obtained by the above method, and the resin composition used in the method And an electronic component having the insulating film.
 本発明者らは上記課題を解決するため鋭意検討を行った。その結果、以下の構成を有する樹脂組成物を用いることで、上記課題を解決できることを見出し、本発明を完成するに至った。 The present inventors have intensively studied to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by using a resin composition having the following configuration, and the present invention has been completed.
 本発明は、例えば以下の[1]~[9]である。
 [1]後述する式(A1)で表される繰り返し構造単位を有するポリアリーレン(A)および溶剤(B)を含有する樹脂組成物の樹脂膜を基板上に形成する工程1と、樹脂膜を加熱処理する工程2と、レーザーアブレーション法により、加熱後の樹脂膜にパターンを形成する工程3とを有する絶縁膜の製造方法。
The present invention includes, for example, the following [1] to [9].
[1] Step 1 of forming a resin film of a resin composition containing a polyarylene (A) having a repeating structural unit represented by the formula (A1) described later and a solvent (B) on a substrate, and a resin film A method for manufacturing an insulating film, comprising: a step 2 for heat treatment; and a step 3 for forming a pattern on a resin film after heating by a laser ablation method.
 [2]工程3におけるレーザーの照射量が、工程2の加熱処理後の樹脂膜の膜厚1μmあたり、1,000mJ/cm2以上である前記[1]に記載の絶縁膜の製造方法。
 [3]工程3におけるレーザーが、エキシマレーザーである前記[1]または[2]に記載の絶縁膜の製造方法。
[2] The method for producing an insulating film according to [1], wherein the laser irradiation amount in the step 3 is 1,000 mJ / cm 2 or more per 1 μm of the film thickness of the resin film after the heat treatment in the step 2.
[3] The method for manufacturing an insulating film according to [1] or [2], wherein the laser in step 3 is an excimer laser.
 [4]工程2における樹脂膜の加熱温度が、150℃以上である前記[1]~[3]のいずれか1項に記載の絶縁膜の製造方法。
 [5]ポリアリーレン(A)において、式(A1)中のArがナフタレン環である前記[1]~[4]のいずれか1項に記載の絶縁膜の製造方法。
[4] The method for manufacturing an insulating film according to any one of [1] to [3], wherein the heating temperature of the resin film in step 2 is 150 ° C. or higher.
[5] The method for producing an insulating film according to any one of [1] to [4], wherein in the polyarylene (A), Ar in the formula (A1) is a naphthalene ring.
 [6]後述する式(A1)で表される繰り返し構造単位を有するポリアリーレン(A)と、溶剤(B)とを含有するレーザーアブレーション用樹脂組成物。
 [7]前記[1]~[5]のいずれか1項に記載の製造方法によって得られた絶縁膜。
 [8]前記[7]に記載の絶縁膜を有する電子部品。
 [9]基板と、金属配線および前記[7]に記載の絶縁膜を含む再配線層とを有する電子部品。
[6] A resin composition for laser ablation containing polyarylene (A) having a repeating structural unit represented by the formula (A1) described later and a solvent (B).
[7] An insulating film obtained by the manufacturing method according to any one of [1] to [5].
[8] An electronic component having the insulating film according to [7].
[9] An electronic component having a substrate and a rewiring layer including metal wiring and the insulating film according to [7].
 本発明によれば、レーザー光に対する樹脂膜の感度が高い、レーザーアブレーション法を用いた絶縁膜の製造方法を提供することができ、また前記方法で得られた絶縁膜、前記方法に用いる樹脂組成物、および前記絶縁膜を有する電子部品を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the insulating film using the laser ablation method with the high sensitivity of the resin film with respect to a laser beam can be provided, the insulating film obtained by the said method, and the resin composition used for the said method And an electronic component having the insulating film can be provided.
図1は、電気絶縁性評価用の基材の上視図である。FIG. 1 is a top view of a base material for electrical insulation evaluation. 図2は、合成例1で得られた重合体(A1)の赤外分光スペクトルと、前記重合体(A1)を260℃で1時間加熱した後の赤外分光スペクトルの測定結果である。FIG. 2 shows measurement results of the infrared spectrum of the polymer (A1) obtained in Synthesis Example 1 and the infrared spectrum after the polymer (A1) is heated at 260 ° C. for 1 hour.
 以下、本発明を実施するための形態について好適態様も含めて説明する。
 〔レーザーアブレーション用樹脂組成物〕
 本発明のレーザーアブレーション用樹脂組成物は、以下に説明するポリアリーレン(A)および溶剤(B)を含有する。本発明のレーザーアブレーション用樹脂組成物を「本発明の組成物」ともいう。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described including preferred embodiments.
[Resin composition for laser ablation]
The resin composition for laser ablation of the present invention contains a polyarylene (A) and a solvent (B) described below. The resin composition for laser ablation of the present invention is also referred to as “the composition of the present invention”.
 本発明の組成物から形成された樹脂膜は、レーザーアブレーション法で用いられるレーザー光に対して高い感度を有することから、レーザー加工性が高い。このため、レーザーアブレーション法により、高精度のパターンを形成することができる。 Since the resin film formed from the composition of the present invention has high sensitivity to the laser light used in the laser ablation method, the laser workability is high. For this reason, a highly accurate pattern can be formed by the laser ablation method.
 〈ポリアリーレン(A)〉
 ポリアリーレン(A)は、式(A1)で表される繰り返し構造単位を有する。式(A1)で表される繰り返し構造単位を「構造単位(A1)」ともいう。構造単位(A1)は、高温の加熱処理を受けることでキノン構造等の環状ケトン構造を形成すると考えられる(図2参照)。
<Polyarylene (A)>
The polyarylene (A) has a repeating structural unit represented by the formula (A1). The repeating structural unit represented by the formula (A1) is also referred to as “structural unit (A1)”. The structural unit (A1) is considered to form a cyclic ketone structure such as a quinone structure by being subjected to a high-temperature heat treatment (see FIG. 2).
Figure JPOXMLDOC01-appb-C000003
 式(A1)中、各記号の詳細は以下のとおりである。
Figure JPOXMLDOC01-appb-C000003
In the formula (A1), details of each symbol are as follows.
 Arは、芳香族環であり、単環構造であっても多環構造であってもよい。例えばベンゼン系芳香族環の場合、前記芳香族環を構成するベンゼン核数は、好ましくは1~4、より好ましくは1~3、さらに好ましくは1~2である。芳香族環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、およびフルオレン環が挙げられ、ナフタレン環が特に好ましい。 Ar is an aromatic ring and may be a monocyclic structure or a polycyclic structure. For example, in the case of a benzene aromatic ring, the number of benzene nuclei constituting the aromatic ring is preferably 1 to 4, more preferably 1 to 3, and further preferably 1 to 2. Examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and a fluorene ring, and a naphthalene ring is particularly preferable.
 水酸基は、芳香族環に結合する置換基である。R1は、芳香族環に結合する置換基であり、ハロゲン原子または炭素数1~10のアルキル基である。R1は、複数存在する場合、互いに同一でもよく異なっていてもよい。 A hydroxyl group is a substituent bonded to an aromatic ring. R 1 is a substituent bonded to the aromatic ring, and is a halogen atom or an alkyl group having 1 to 10 carbon atoms. When a plurality of R 1 are present, they may be the same as or different from each other.
 「芳香族環に結合する置換基」は、芳香族環が2つ以上のベンゼン核を有する場合、ベンゼン核のいずれに結合していてもよい。また、芳香族環が2つ以上のベンゼン核を有する場合、(1)同一の構造単位(A1)中に水酸基が複数存在するときは、水酸基は芳香族環に含まれる同一のベンゼン核に結合していてもよく、異なるベンゼン核に結合していてもよく;(2)同一の構造単位(A1)中にR1が複数存在するときは、R1は芳香族環に含まれる同一のベンゼン核に結合していてもよく、異なるベンゼン核に結合していてもよい。 The “substituent bonded to the aromatic ring” may be bonded to any of the benzene nuclei when the aromatic ring has two or more benzene nuclei. Further, when the aromatic ring has two or more benzene nuclei, (1) when a plurality of hydroxyl groups are present in the same structural unit (A1), the hydroxyl groups are bonded to the same benzene nuclei contained in the aromatic ring. Or may be bonded to different benzene nuclei; (2) when a plurality of R 1 are present in the same structural unit (A1), R 1 is the same benzene contained in the aromatic ring. It may be bonded to a nucleus or may be bonded to a different benzene nucleus.
 ハロゲン原子としては、例えば、フッ素、塩素、ヨウ素が挙げられる。
 炭素数1~10のアルキル基としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルが挙げられる。アルキル基の炭素数は、好ましくは1~8、より好ましくは1~5である。
Examples of the halogen atom include fluorine, chlorine, and iodine.
Examples of the alkyl group having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl and decyl. The alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms.
 aは1以上の整数であり、レーザー光に対して高い感度を有することから、好ましくは2~4の整数である。bは0以上の整数であり、好ましくは0~2の整数である。
 構造単位(A1)において、結合手*1および*2は、芳香族環に結合しており、芳香族環が2つ以上のベンゼン核を有する場合、芳香族環に含まれる同一のベンゼン核に結合していてもよく、異なるベンゼン核に結合していてもよい。具体的には、Arがナフタレン環である場合、結合手*1および*2は、ナフタレン環に含まれる同一のベンゼン核に結合していてもよく(例えば、下記1)、異なるベンゼン核に結合していてもよい(例えば、下記2)。
a is an integer of 1 or more, and is preferably an integer of 2 to 4 since it has high sensitivity to laser light. b is an integer of 0 or more, preferably an integer of 0-2.
In the structural unit (A1), the bonds * 1 and * 2 are bonded to an aromatic ring, and when the aromatic ring has two or more benzene nuclei, the same benzene nuclei contained in the aromatic ring They may be bonded or may be bonded to different benzene nuclei. Specifically, when Ar is a naphthalene ring, the bonds * 1 and * 2 may be bonded to the same benzene nucleus contained in the naphthalene ring (for example, 1 below) or bonded to different benzene nuclei. (For example, the following 2).
Figure JPOXMLDOC01-appb-C000004
 構造単位(A1)における結合手*1および*2の結合部位としては、Arがナフタレン環である場合、例えば、1,2位、1,3位、1,4位、1,5位、1,6位、1,7位、1,8位、2,3位、2,4位、2,5位、2,6位、2,7位、2,8位、3,4位、3,5位、3,6位、3,7位、3,8位、4,5位、4,6位、4,7位、4,8位が挙げられる。
Figure JPOXMLDOC01-appb-C000004
As the bonding site of the bond * 1 and * 2 in the structural unit (A1), when Ar is a naphthalene ring, for example, 1,2-position, 1,3-position, 1,4-position, 1,5-position, 1 6th, 1st, 7th, 1st, 8th, 2nd, 3rd, 2,4th, 2,5th, 2,6th, 2,7th, 2,8th, 3,4th, 3rd , 5th, 3,6th, 3,7th, 3,8th, 4,5th, 4,6th, 4,7th, 4th, 8th.
 構造単位(A1)において、芳香族環が2つ以上のベンゼン核を有する場合、結合手*1および*2が、芳香族環に含まれる異なるベンゼン核に結合している構造単位であることが好ましい。 In the structural unit (A1), when the aromatic ring has two or more benzene nuclei, the bonds * 1 and * 2 may be structural units bonded to different benzene nuclei contained in the aromatic ring. preferable.
 構造単位(A1)は、式(A1-1)で表される構造単位であることが好ましく、式(A1-1-1)で表される構造単位であることが特に好ましい。これらの場合、レーザー光に対する樹脂膜の感度が高い傾向にある。 The structural unit (A1) is preferably a structural unit represented by the formula (A1-1), and particularly preferably a structural unit represented by the formula (A1-1-1). In these cases, the sensitivity of the resin film to laser light tends to be high.
Figure JPOXMLDOC01-appb-C000005
 式(A1-1)中、水酸基は、ナフタレン環に結合する置換基であり、R1は、ナフタレン環に結合する置換基であり、式(A1)中の同一記号と同義であり、R1は、複数存在する場合、互いに同一でもよく異なっていてもよい。a1は1~6の整数であり、b1は0~4の整数であり、1≦a1+b1≦6である。a1は好ましくは2~4の整数であり、より好ましくは2である。b1は好ましくは0~2の整数であり、より好ましくは0である。
Figure JPOXMLDOC01-appb-C000005
In formula (A1-1), the hydroxyl group is a substituent bonded to the naphthalene ring, R 1 is a substituent bonded to the naphthalene ring, and is synonymous with the same symbol in formula (A1), R 1 May be the same as or different from each other. a1 is an integer of 1 to 6, b1 is an integer of 0 to 4, and 1 ≦ a1 + b1 ≦ 6. a1 is preferably an integer of 2 to 4, more preferably 2. b1 is preferably an integer of 0 to 2, more preferably 0.
 式(A1-1)中、結合手*1および*2は、ナフタレン環に含まれる同一のベンゼン核に結合していてもよく、異なるベンゼン核に結合していてもよい。結合手*1および*2は、ナフタレン環に含まれる異なるベンゼン核に結合していることが好ましい。 In formula (A1-1), the bonds * 1 and * 2 may be bonded to the same benzene nucleus included in the naphthalene ring or may be bonded to different benzene nuclei. Bonds * 1 and * 2 are preferably bonded to different benzene nuclei contained in the naphthalene ring.
 ポリアリーレン(A)は、主鎖が、芳香族環(Ar)が直接結合で連結してなるポリアリーレン構造を有している。このような重合体を用いることで、レーザー光に対する樹脂膜の感度が高く、且つ、内部応力、耐熱性の点で優れた絶縁膜を得ることができる。 The polyarylene (A) has a polyarylene structure in which the main chain is formed by connecting aromatic rings (Ar) with direct bonds. By using such a polymer, it is possible to obtain an insulating film having high sensitivity of the resin film to laser light and excellent in internal stress and heat resistance.
 構造単位(A1)の含有量は、ポリアリーレン(A)100質量%中、通常80質量%以上、好ましくは90質量%以上、より好ましくは99質量%以上である。含有量が前記範囲にあると、レーザー光に対する樹脂膜の感度が高く、且つ、内部応力、耐熱性の点で優れた絶縁膜を得られる傾向にある。前記含有量は、NMRにより測定することができる。 The content of the structural unit (A1) is usually 80% by mass or more, preferably 90% by mass or more, and more preferably 99% by mass or more in 100% by mass of the polyarylene (A). When the content is in the above range, the sensitivity of the resin film to the laser light is high, and an insulating film excellent in terms of internal stress and heat resistance tends to be obtained. The content can be measured by NMR.
 ポリアリーレン(A)のゲルパーミエーションクロマトグラフィー法により測定される重量平均分子量(Mw)は、ポリスチレン換算で、通常10,000~200,000、好ましくは15,000~100,000、さらに好ましくは20,000~60,000である。 The weight average molecular weight (Mw) measured by gel permeation chromatography of polyarylene (A) is usually 10,000 to 200,000, preferably 15,000 to 100,000, more preferably in terms of polystyrene. 20,000 to 60,000.
 Mwが上記範囲にあると、解像度が高く、クラック耐性が高いパターンを形成することができる。Mwの測定方法の詳細は、実施例に記載したとおりである。Mwは、後述する1電子酸化剤および反応溶媒の種類・量を変えることで調整することができる。 When Mw is in the above range, a pattern with high resolution and high crack resistance can be formed. Details of the method for measuring Mw are as described in the examples. Mw can be adjusted by changing the kind and amount of the one-electron oxidizing agent and reaction solvent described later.
 ポリアリーレン(A)の含有量は、本発明の組成物に含まれる固形分100質量%中、通常50質量%以上、好ましくは60~100質量%、さらに好ましくは70~100質量%である。固形分とは、通常、本発明の組成物に含まれる、溶剤(B)以外の全成分をいう。ポリアリーレン(A)の含有量が前記範囲にあると、解像度が高いパターンを形成可能な組成物が得られる傾向にある。 The content of polyarylene (A) is usually 50% by mass or more, preferably 60 to 100% by mass, and more preferably 70 to 100% by mass in 100% by mass of the solid content contained in the composition of the present invention. Solid content means all the components other than the solvent (B) normally contained in the composition of this invention. When the content of the polyarylene (A) is in the above range, a composition capable of forming a pattern with high resolution tends to be obtained.
 ポリアリーレン(A)の合成方法としては、例えば、特開2008-65081号公報の段落[0027]~[0035]に記載された方法が挙げられる。具体的には、単量体として、構造単位(A1)に対応する芳香族化合物を用い、必要に応じて他の共重合可能な単量体を用い、カップリング反応することにより、ポリアリーレン(A)を得ることができる。 Examples of the method for synthesizing polyarylene (A) include the methods described in paragraphs [0027] to [0035] of JP-A-2008-65081. Specifically, by using an aromatic compound corresponding to the structural unit (A1) as a monomer, and using another copolymerizable monomer as necessary, a polyarylene ( A) can be obtained.
 分子量制御の点から、1電子酸化剤を用いたカップリング反応が好ましい。1電子酸化剤を用いたカップリング反応は、芳香族化合物を反応溶媒に溶解させて行うことができる。1電子を被酸化物から奪うことにより、被酸化物を酸化する現象を1電子酸化と称し、このとき1電子を受け取る成分を1電子酸化剤という。
 芳香族化合物としては、例えば、式(a1)で表される誘導体が挙げられる。
From the viewpoint of molecular weight control, a coupling reaction using a one-electron oxidant is preferable. The coupling reaction using a one-electron oxidant can be performed by dissolving an aromatic compound in a reaction solvent. The phenomenon of oxidizing the oxide by taking one electron from the oxide is called one-electron oxidation, and the component that receives one electron at this time is called one-electron oxidant.
Examples of the aromatic compound include a derivative represented by the formula (a1).
Figure JPOXMLDOC01-appb-C000006
 式(a1)中、Ar'は式(A1)中のArに対応する芳香族環であり、R1、aおよびbは、式(A1)中の同一記号と同義である。
Figure JPOXMLDOC01-appb-C000006
In the formula (a1), Ar ′ is an aromatic ring corresponding to Ar in the formula (A1), and R 1 , a and b have the same meanings as in the formula (A1).
 芳香族化合物としては、例えば、式(a1)においてAr'がナフタレン環でありa=2であるナフタレン誘導体が挙げられ、具体的には、1,3-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,4-ジヒドロキシナフタレン、2,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレン、3-メチル-2,6-ジヒドロキシナフタレンが挙げられる。また、式(a1)においてAr'がベンゼン環でありa=1であるベンゼン誘導体が挙げられ、具体的には、フェノールが挙げられる。 Examples of the aromatic compound include naphthalene derivatives in which Ar ′ is a naphthalene ring and a = 2 in the formula (a1), and specific examples thereof include 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, Examples include 2,4-dihydroxynaphthalene, 2,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,8-dihydroxynaphthalene, and 3-methyl-2,6-dihydroxynaphthalene. Further, in the formula (a1), a benzene derivative in which Ar ′ is a benzene ring and a = 1 is mentioned, and specifically, phenol is mentioned.
 芳香族化合物は、1種単独で用いてもよく、2種以上を併用してもよい。
 他の共重合可能な単量体としては、例えば、p-イソプロペニルフェノール、エチニルスチレン、プロパギル酸、6-ヘキシン酸、2-プロピン-1-オール、1-ブチン-3-オール、3-ブチン-3-オール、1-ペンチン-3-オール、4-ペンチン-1-オール、3-エチニルアニリン、4-エチニルアニリン、フェニルアセチレンが挙げられる。
An aromatic compound may be used individually by 1 type, and may use 2 or more types together.
Examples of other copolymerizable monomers include p-isopropenylphenol, ethynylstyrene, propargylic acid, 6-hexynoic acid, 2-propyn-1-ol, 1-butyn-3-ol, and 3-butyne. -3-ol, 1-pentyn-3-ol, 4-pentyn-1-ol, 3-ethynylaniline, 4-ethynylaniline, and phenylacetylene.
 他の共重合可能な単量体は、1種単独で用いてもよく、2種以上を併用してもよい。
 1電子酸化剤としては、例えば、上述の特開2008-65081号公報に記載された、有機金属化合物、過酸又は過酸化物、ジアゾ化合物、ハロゲン又はハロゲン酸、オゾン、酵素が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
Other copolymerizable monomers may be used alone or in combination of two or more.
Examples of the one-electron oxidant include organometallic compounds, peracids or peroxides, diazo compounds, halogens or halogen acids, ozone, and enzymes described in JP-A-2008-65081 described above. These may be used alone or in combination of two or more.
 1電子酸化剤のなかでも、反応成績等の点において、有機金属化合物が好ましく、銅(II)化合物および鉄(III)化合物が好ましい。具体的には、ジ-μ-ヒドロキソ-ビス[(N,N,N',N'-テトラメチルエチレンジアミン)銅(II)]クロリド、ジ-μ-ヒドロキソ-ビス[(N,N,N',N'-テトラメチルプロピレンジアミン)銅(II)]クロリド、ジ-μ-ヒドロキソ-ビス[(N,N,N',N'-テトラエチルエチレンジアミン)銅(II)]クロリド、ジ-μ-ヒドロキソ-ビス[(N,N,N',N'-テトラエチルエチレンジアミン)銅(II)]クロリド、ジ-μ-ヒドロキソ-ビス[(N,N,N',N'-テトラメチル-1,6-ヘキサンジアミン)銅(II)]クロリド、ジ-μ-ヒドロキソ-ビス[(N,N,N',N'-テトラメチル-1,8-ナフタレンジアミン)銅(II)]クロリド、ジ-μ-ヒドロキソ-ビス[(N,N,N',N'-テトラメチルエチレンジアミン)チタン(II)]クロリド、ジ-μ-ヒドロキソ-ビス[(N,N,N',N'-テトラメチルエチレンジアミン)セリウム(II)]クロリド、ジ-μ-ヒドロキソ-ビス[(N,N,N',N'-テトラメチルエチレンジアミン)鉄]クロリドが好ましい。 Among the 1-electron oxidizers, organometallic compounds are preferable in terms of reaction results, and copper (II) compounds and iron (III) compounds are preferable. Specifically, di-μ-hydroxo-bis [(N, N, N ′, N′-tetramethylethylenediamine) copper (II)] chloride, di-μ-hydroxo-bis [(N, N, N ′ , N′-Tetramethylpropylenediamine) copper (II)] chloride, di-μ-hydroxo-bis [(N, N, N ′, N′-tetraethylethylenediamine) copper (II)] chloride, di-μ-hydroxo -Bis [(N, N, N ′, N′-tetraethylethylenediamine) copper (II)] chloride, di-μ-hydroxo-bis [(N, N, N ′, N′-tetramethyl-1,6- Hexanediamine) copper (II)] chloride, di-μ-hydroxo-bis [(N, N, N ′, N′-tetramethyl-1,8-naphthalenediamine) copper (II)] chloride, di-μ- Hydroxo-bis [(N, N, N ′, N′-tetramethylethylenedi Amine) titanium (II)] chloride, di-μ-hydroxo-bis [(N, N, N ′, N′-tetramethylethylenediamine) cerium (II)] chloride, di-μ-hydroxo-bis [(N, N, N ′, N′-tetramethylethylenediamine) iron] chloride is preferred.
 また、1電子酸化剤を複数組み合わせて使用する場合〔例えば、銅(II)化合物等の有機金属化合物と、過酸又は過酸化物との組み合わせ〕、1電子酸化剤を単独で使用する場合と比較して、酸化速度を大幅に向上させることができる。過酸としては、例えば、過酢酸、m-クロロ過安息香酸が挙げられる。過酸化物としては、例えば、過酸化水素、t-ブチルヒドロペルオキシドが挙げられる。 Also, when using a combination of a plurality of one-electron oxidants [for example, a combination of an organic metal compound such as a copper (II) compound and a peracid or peroxide] and when using a one-electron oxidant alone In comparison, the oxidation rate can be greatly improved. Examples of the peracid include peracetic acid and m-chloroperbenzoic acid. Examples of the peroxide include hydrogen peroxide and t-butyl hydroperoxide.
 1電子酸化剤の使用量は、芳香族化合物1モルに対して、0.0001~10モルであることが好ましく、より好ましくは0.01~5モル、更に好ましくは0.1~1モルである。 The amount of the one-electron oxidant used is preferably 0.0001 to 10 mol, more preferably 0.01 to 5 mol, still more preferably 0.1 to 1 mol, relative to 1 mol of the aromatic compound. is there.
 カップリング反応に用いられる反応溶媒としては、ポリアリーレン(A)を形成する単量体、1電子酸化剤および得られるポリアリーレン(A)を溶解させる溶媒が好ましく、例えば、メタノール、2-メトキシエタノール、2-エトキシエタノール、3-メトキシプロパノール、3-エトキシプロパノール、乳酸エチル、乳酸プロパン、乳酸ブチル、N,N-ジメチルホルムアミドが挙げられる。 The reaction solvent used in the coupling reaction is preferably a monomer that forms polyarylene (A), a one-electron oxidant, and a solvent that dissolves the resulting polyarylene (A). For example, methanol, 2-methoxyethanol 2-ethoxyethanol, 3-methoxypropanol, 3-ethoxypropanol, ethyl lactate, propane lactic acid, butyl lactate, and N, N-dimethylformamide.
 カップリング反応の反応条件は、例えば、10~100℃で、0.1~10時間である。カップリング反応終了後は、反応溶液には、触媒残渣等の、ポリアリーレン(A)以外の不純物が含まれている。このため、反応終了後は、公知の精製方法、例えば、沈殿法および液洗浄法により精製することが好ましい。 The reaction conditions for the coupling reaction are, for example, 10 to 100 ° C. and 0.1 to 10 hours. After completion of the coupling reaction, the reaction solution contains impurities other than polyarylene (A), such as catalyst residues. For this reason, after completion | finish of reaction, it is preferable to refine | purify by a well-known purification method, for example, the precipitation method and the liquid washing method.
 〈溶剤(B)〉
 本発明の組成物は、溶剤(B)を含有する。溶剤(B)を用いることで、前記組成物の取扱い性を向上させたり、粘度および保存安定性を調節したりすることができる。
<Solvent (B)>
The composition of the present invention contains a solvent (B). By using the solvent (B), the handleability of the composition can be improved, and the viscosity and storage stability can be adjusted.
 溶剤(B)としては、例えば、
 エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル類;プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;
 ブチルカルビトール等のカルビトール類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸イソプロピル等の乳酸エステル類;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、酢酸イソアミル、プロピオン酸イソプロピル、プロピオン酸n-ブチル、プロピオン酸イソブチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;
 2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン類;N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ブチロラクン等のラクトン類;トルエン、キシレン等の芳香族炭化水素類;
が挙げられる。
As the solvent (B), for example,
Ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and ethylene glycol monobutyl ether; propylene glycol monomethyl ether , Propylene glycol monoalkyl ethers such as propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether; propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether Propylene glycol dialkyl ethers and the like; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monoalkyl ether acetates such as propylene glycol monobutyl ether acetate;
Carbitols such as butyl carbitol; Lactic acid esters such as methyl lactate, ethyl lactate, n-propyl lactate and isopropyl lactate; Ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, n-acetate Aliphatic carboxylic acid esters such as amyl, isoamyl acetate, isopropyl propionate, n-butyl propionate, isobutyl propionate; methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3- Other esters such as ethyl ethoxypropionate, methyl pyruvate, ethyl pyruvate;
Ketones such as 2-heptanone, 3-heptanone, 4-heptanone and cyclohexanone; Amides such as N-dimethylformamide, N-methylacetamide, N, N-dimethylacetamide and N-methylpyrrolidone; Lactones such as γ-butyrolacun Aromatic hydrocarbons such as toluene and xylene;
Is mentioned.
 これらの中でも、乳酸エステル類、プロピレングリコールモノアルキルエーテルアセテート類、エチレングリコールモノアルキルエーテル類、プロピレングリコールモノアルキルエーテル類が好ましく;乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルがより好ましい。 Among these, lactic acid esters, propylene glycol monoalkyl ether acetates, ethylene glycol monoalkyl ethers, propylene glycol monoalkyl ethers are preferred; ethyl lactate, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, propylene glycol monomethyl ether Is more preferable.
 溶剤(B)は1種で用いてもよく、2種以上を併用してもよい。
 本発明の組成物において、溶剤(B)の含有量は、当該組成物中の固形分濃度が通常1~70質量%、好ましくは5~60質量%、より好ましくは10~50質量%となる範囲である。
A solvent (B) may be used by 1 type and may use 2 or more types together.
In the composition of the present invention, the content of the solvent (B) is such that the solid concentration in the composition is usually 1 to 70% by mass, preferably 5 to 60% by mass, more preferably 10 to 50% by mass. It is a range.
 〈架橋剤(C)〉
 本発明の組成物は、架橋剤(C)を含有してもよい。架橋剤(C)を用いることで、絶縁膜の絶縁性、耐薬品性を向上させることができる。
<Crosslinking agent (C)>
The composition of the present invention may contain a crosslinking agent (C). By using the crosslinking agent (C), the insulating properties and chemical resistance of the insulating film can be improved.
 架橋剤(C)としては、例えば、-CH2ORで表される基を少なくとも2つ有する架橋剤(C1)、他の架橋剤(C2)が挙げられる。前記式中、Rは、水素原子、炭素数1~10のアルキル基またはアセチル基である。前記(C1)を「活性メチレン基含有架橋剤(C1)」ともいう。これらの中でも、内部応力が小さい絶縁膜を形成することが可能な点から、架橋剤(C1)が好ましい。 Examples of the crosslinking agent (C) include a crosslinking agent (C1) having at least two groups represented by —CH 2 OR and other crosslinking agents (C2). In the above formula, R is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an acetyl group. The (C1) is also referred to as “active methylene group-containing crosslinking agent (C1)”. Among these, the crosslinking agent (C1) is preferable because an insulating film having a small internal stress can be formed.
 本発明の組成物において、架橋剤(C)を用いる場合のその含有量は、重合体(A)100質量部に対して、通常5~50質量部、好ましくは10~40質量部、より好ましくは15~30質量部である。架橋剤(C)の含有量が前記範囲にあると、感度および解像性に優れた組成物が得られ、また絶縁性に優れた硬化膜が得られる傾向にある。 In the composition of the present invention, when the crosslinking agent (C) is used, the content thereof is usually 5 to 50 parts by mass, preferably 10 to 40 parts by mass, more preferably 100 parts by mass of the polymer (A). Is 15 to 30 parts by mass. When the content of the crosslinking agent (C) is in the above range, a composition excellent in sensitivity and resolution is obtained, and a cured film excellent in insulation tends to be obtained.
 《活性メチレン基含有架橋剤(C1)》
 活性メチレン基含有架橋剤(C1)は、-CH2ORで表される基を少なくとも2つ有する架橋剤である。式中、Rは、水素原子、炭素数1~10のアルキル基またはアセチル基であり、好ましくは水素原子または炭素数1~6のアルキル基である。
<< Active methylene group-containing crosslinking agent (C1) >>
The active methylene group-containing crosslinking agent (C1) is a crosslinking agent having at least two groups represented by —CH 2 OR. In the formula, R is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an acetyl group, preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 架橋剤(C1)としては、例えば、式(C1-1)で表される基を2つ以上有する化合物、式(C1-2)で表される基を2つ以上有する化合物が挙げられる。 Examples of the crosslinking agent (C1) include a compound having two or more groups represented by the formula (C1-1) and a compound having two or more groups represented by the formula (C1-2).
Figure JPOXMLDOC01-appb-C000007
 式(C1-1)および(C1-2)中、mは1または2であり、nは0または1であり、m+nは2であり、Rは水素原子、炭素数1~10のアルキル基またはアセチル基であり、好ましくは水素原子または炭素数1~6のアルキル基であり、*は結合手である。
Figure JPOXMLDOC01-appb-C000007
In the formulas (C1-1) and (C1-2), m is 1 or 2, n is 0 or 1, m + n is 2, R is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or An acetyl group, preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and * is a bond.
 架橋剤(C1)としては、例えば、ポリメチロール化メラミン、ポリメチロール化グリコールウリル、ポリメチロール化グアナミン、ポリメチロール化ウレア等の窒素化合物;前記窒素化合物中の活性メチロール基(N原子に結合したCH2OH基)の全部または一部がアルキルエーテル化またはアセトキシ化された化合物が挙げられる。ここで、アルキルエーテルを構成するアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基が挙げられ、これらは互いに同一であってもよいし、異なっていてもよい。また、アルキルエーテル化またはアセトキシ化されていない活性メチロール基は、1分子内で自己縮合していてもよく、2分子間で縮合して、その結果、オリゴマー成分が形成されていてもよい。 Examples of the crosslinking agent (C1) include nitrogen compounds such as polymethylolated melamine, polymethylolated glycoluril, polymethylolated guanamine, and polymethylolated urea; active methylol groups in the nitrogen compounds (CH bonded to N atom) 2 OH group) or all of a part thereof are alkyl etherified or acetoxylated. Here, examples of the alkyl group constituting the alkyl ether include a methyl group, an ethyl group, a propyl group, and a butyl group, which may be the same as or different from each other. Moreover, the active methylol group which is not alkyletherified or acetoxylated may be self-condensed within one molecule, or may be condensed between two molecules, and as a result, an oligomer component may be formed.
 架橋剤(C1)としては、例えば、特開平6-180501号公報、特開2006-178059号公報、および特開2012-226297号公報に記載の架橋剤が挙げられる。具体的には、ポリメチロール化メラミン、ヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサブトキシメチルメラミン等のメラミン系架橋剤;ポリメチロール化グリコールウリル、テトラメトキシメチルグリコールウリル、テトラブトキシメチルグリコールウリル等のグリコールウリル系架橋剤;3,9-ビス[2-(3,5-ジアミノ-2,4,6-トリアザフェニル)エチル]2,4,8,10-テトラオキソスピロ[5,5]ウンデカン、3,9-ビス[2-(3,5-ジアミノ-2,4,6-トリアザフェニル)プロピル]2,4,8,10-テトラオキソスピロ[5,5]ウンデカン等のグアナミンをメチロール化した化合物、および当該化合物中の活性メチロール基の全部または一部をアルキルエーテル化またはアセトキシ化した化合物等のグアナミン系架橋剤が挙げられる。これらの中でも、メラミン系架橋剤およびグアナミン系架橋剤が好ましい。 Examples of the crosslinking agent (C1) include crosslinking agents described in JP-A-6-180501, JP-A-2006-178059, and JP-A-2012-226297. Specifically, melamine-based crosslinking agents such as polymethylolated melamine, hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexabutoxymethylmelamine; polymethylolated glycoluril, tetramethoxymethylglycoluril, tetrabutoxy Glycoluril-based crosslinking agents such as methylglycoluril; 3,9-bis [2- (3,5-diamino-2,4,6-triazaphenyl) ethyl] 2,4,8,10-tetraoxospiro [ 5,5] Undecane, 3,9-bis [2- (3,5-diamino-2,4,6-triazaphenyl) propyl] 2,4,8,10-tetraoxospiro [5,5] undecane A compound obtained by methylolating guanamine, etc., and all of the active methylol groups in the compound Or guanamine-based crosslinking agent such as an alkyl etherified or acetoxylation the compounds of the part. Among these, a melamine type crosslinking agent and a guanamine type crosslinking agent are preferable.
 架橋剤(C1)としては、そのほか、メチロール基含有フェノール化合物、アルキルメチロール基含有フェノール化合物、アセトキシメチル基含有フェノール化合物を挙げることもできる。具体的には、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾール、下記式で表される化合物が挙げられる。 Other examples of the crosslinking agent (C1) include a methylol group-containing phenol compound, an alkylmethylol group-containing phenol compound, and an acetoxymethyl group-containing phenol compound. Specific examples include 2,6-dimethoxymethyl-4-t-butylphenol, 2,6-dimethoxymethyl-p-cresol, 2,6-diacetoxymethyl-p-cresol, and compounds represented by the following formulae. It is done.
Figure JPOXMLDOC01-appb-C000008
 架橋剤(C1)は1種で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000008
A crosslinking agent (C1) may be used by 1 type, and may use 2 or more types together.
 《他の架橋剤(C2)》
 他の架橋剤(C2)としては、例えば、オキシラン環含有化合物、オキセタン環含有化合物、イソシアネート基含有化合物(ブロック化されたものを含む。)、オキサゾリン環含有化合物、アルデヒド基含有フェノール化合物が挙げられる。
<< Other cross-linking agent (C2) >>
Examples of the other crosslinking agent (C2) include an oxirane ring-containing compound, an oxetane ring-containing compound, an isocyanate group-containing compound (including a blocked one), an oxazoline ring-containing compound, and an aldehyde group-containing phenol compound. .
 オキシラン環含有化合物としては、分子内にオキシラン環が含有されていればよく、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリスフェノール型エポキシ樹脂、テトラフェノール型エポキシ樹脂、フェノール-キシリレン型エポキシ樹脂、ナフトール-キシリレン型エポキシ樹脂、フェノール-ナフトール型エポキシ樹脂、フェノール-ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂が挙げられる。 As the oxirane ring-containing compound, it is sufficient that an oxirane ring is contained in the molecule. For example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol type epoxy resin, trisphenol type epoxy resin, tetraphenol type epoxy resin Phenol-xylylene type epoxy resin, naphthol-xylylene type epoxy resin, phenol-naphthol type epoxy resin, phenol-dicyclopentadiene type epoxy resin, alicyclic epoxy resin, and aliphatic epoxy resin.
 オキシラン環含有化合物の具体例としては、例えば、レゾルシノールジグリシジルエーテル、ペンタエリスリトールグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、フェニルグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレン/ポリエチレングリコールジグリシジルエーテル、プロピレン/ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテルが挙げられる。
 他の架橋剤(C2)は1種で用いてもよく、2種以上を併用してもよい。
Specific examples of the oxirane ring-containing compound include resorcinol diglycidyl ether, pentaerythritol glycidyl ether, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, phenyl glycidyl ether, neopentyl glycol diglycidyl ether, ethylene / polyethylene glycol diester. Examples thereof include glycidyl ether, propylene / polypropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, sorbitol polyglycidyl ether, propylene glycol diglycidyl ether, and trimethylolpropane triglycidyl ether.
The other crosslinking agent (C2) may be used alone or in combination of two or more.
 〈その他添加剤〉
 本発明の組成物には、その他、架橋微粒子、密着性付与剤、レベリング剤、消泡剤、界面活性剤、フィラー等の各種添加剤を、1種または2種以上、本発明の目的および特性を損なわない範囲で含有させることができる。
<Other additives>
In the composition of the present invention, other additives such as crosslinked fine particles, adhesion-imparting agents, leveling agents, antifoaming agents, surfactants, fillers and the like are used alone or in combination of two or more. Can be contained in a range that does not impair.
 本発明の組成物に増感剤および/または架橋剤を含有させると得られる絶縁膜の内部応力を増大させる可能性があることから、内部応力をより低減させる必要がある場合には、本発明の組成物には、増感剤および/または架橋剤を含有させないことが好ましく、増感剤および架橋剤をいずれも含有させないことがより好ましい。 When the composition of the present invention contains a sensitizer and / or a crosslinking agent, the internal stress of the obtained insulating film may be increased. Therefore, when the internal stress needs to be further reduced, the present invention The composition preferably does not contain a sensitizer and / or a crosslinking agent, and more preferably contains neither a sensitizer nor a crosslinking agent.
 本発明の組成物から形成された絶縁膜は、膜としての高い加工耐性(溶剤耐性)を有する。この理由は、樹脂膜を加熱処理した際に、ポリアリーレン(A)がキノン構造等の環状ケトン構造を形成するためであると考えられる。このため、本発明の組成物には、絶縁膜の加工耐性を向上させるための架橋剤を含有させなくともよい、という利点がある。 The insulating film formed from the composition of the present invention has high processing resistance (solvent resistance) as a film. The reason is considered to be that when the resin film is heat-treated, the polyarylene (A) forms a cyclic ketone structure such as a quinone structure. For this reason, the composition of this invention has the advantage that it is not necessary to contain the crosslinking agent for improving the process tolerance of an insulating film.
 また、本発明の組成物は、レーザーアブレーション法で用いられるレーザー光に対して高い感度を有し、前記組成物からなる樹脂膜は、レーザー加工性が高い。この理由は、樹脂膜を加熱処理した際に、ポリアリーレン(A)がキノン構造等の環状ケトン構造を形成するためであると考えられる。このため、本発明の組成物には、増感剤を含有させなくともよい、という利点がある。 Moreover, the composition of the present invention has high sensitivity to laser light used in the laser ablation method, and the resin film made of the composition has high laser processability. The reason is considered to be that when the resin film is heat-treated, the polyarylene (A) forms a cyclic ketone structure such as a quinone structure. For this reason, the composition of this invention has the advantage that it is not necessary to contain a sensitizer.
 絶縁膜が形成される基板と絶縁膜(永久膜)との間で、線膨脹係数の差が大きい場合、例えば組成物にフィラーを配合することで、絶縁膜の線膨脹係数を低くすることができる。樹脂膜にフィラーが含まれると、レーザーアブレーション法で用いられるレーザー光に対する感度が低下することがあり、増感剤を多量に用いる必要が生じることがある。しかしながら、本発明の組成物は、レーザーアブレーション法で用いられるレーザー光に対して高い感度を有することから、増感剤を用いなくともよい、という利点がある。 When the difference in linear expansion coefficient between the substrate on which the insulating film is formed and the insulating film (permanent film) is large, for example, by adding a filler to the composition, the linear expansion coefficient of the insulating film can be lowered. it can. If the resin film contains a filler, the sensitivity to the laser beam used in the laser ablation method may be reduced, and it may be necessary to use a large amount of a sensitizer. However, since the composition of the present invention has high sensitivity to laser light used in the laser ablation method, there is an advantage that it is not necessary to use a sensitizer.
 フィラーとしては、例えば、シリカ、アルミナ、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、硫酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸鉛、チタン酸ビスマス等の無機フィラーが挙げられる。これらのフィラーは、各々単独で用いてもよく、2種以上を組み合わせて使用してもよい。フィラーの形状は、球状、板状、ウィスカー(繊維)状のいずれであってもよい。 Examples of the filler include silica, alumina, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, titanium oxide, barium sulfate, barium zirconate, calcium zirconate, barium titanate, strontium titanate, and calcium titanate. Inorganic fillers such as magnesium titanate, lead titanate, and bismuth titanate. These fillers may be used alone or in combination of two or more. The filler may be spherical, plate-shaped, or whisker (fiber) -shaped.
 〈樹脂組成物の製造方法〉
 本発明の組成物は、各成分を均一に混合することにより製造できる。また、異物を取り除くために、各成分を均一に混合した後、得られた混合物をフィルター等で濾過してもよい。
<Method for producing resin composition>
The composition of this invention can be manufactured by mixing each component uniformly. Moreover, in order to remove a foreign material, after mixing each component uniformly, you may filter the obtained mixture with a filter.
 本発明の組成物は、レーザーアブレーション用組成物として有用である。特に、本発明の組成物は、電子部品が有する、表面保護膜、層間絶縁膜および平坦化膜等の絶縁膜を、レーザーアブレーション法を用いて形成するための材料や、高密度実装基板用絶縁膜材料として好適に用いることができる。 The composition of the present invention is useful as a composition for laser ablation. In particular, the composition of the present invention is a material for forming an insulating film such as a surface protective film, an interlayer insulating film, and a planarizing film of an electronic component by using a laser ablation method, or an insulating material for a high-density mounting substrate. It can be suitably used as a film material.
 〔絶縁膜の製造方法〕
 本発明の絶縁膜の製造方法は、上述したレーザーアブレーション用樹脂組成物の樹脂膜を基板上に形成する工程1(樹脂膜形成工程)と、樹脂膜を加熱処理する工程2(加熱工程)と、レーザーアブレーション法により、加熱後の樹脂膜にパターンを形成する工程3(レーザーアブレーション工程)とを有する。
[Insulating film manufacturing method]
The method for producing an insulating film of the present invention includes a step 1 (resin film forming step) for forming a resin film of the above-described resin composition for laser ablation on a substrate, and a step 2 (heating step) for heat-treating the resin film. And a step 3 (laser ablation step) of forming a pattern on the heated resin film by a laser ablation method.
 レーザーアブレーションとは、閾値以上の照射強度でレーザー光を固体材料に照射した場合に、レーザー光を吸収した固体材料が昇華、蒸発または分解して、固体材料を構成する物質が原子、分子、ラジカル等の様々な形態で放出され、レーザー照射部分において固体材料がエッチングされることをいう。固体材料のうち除去したい部分にレーザー光を順次走査しながら照射することにより、所望のパターンを形成することができる。 Laser ablation means that when a solid material is irradiated with laser light with an irradiation intensity equal to or higher than a threshold, the solid material that has absorbed the laser light sublimates, evaporates, or decomposes, and the substances that make up the solid material are atoms, molecules, and radicals. The solid material is emitted in various forms such as, and the solid material is etched in the laser irradiation portion. A desired pattern can be formed by irradiating a portion of the solid material to be removed while sequentially scanning with laser light.
 本発明の製造方法では、レーザー光に対する樹脂膜の感度が高いことから、解像性の高い絶縁膜を製造することができる。また、得られる絶縁膜は、内部応力が低いという利点を有する。さらに、耐熱性、耐薬品性および絶縁性が高い絶縁膜を製造することができる。 In the manufacturing method of the present invention, since the sensitivity of the resin film to the laser beam is high, an insulating film with high resolution can be manufactured. Further, the obtained insulating film has an advantage of low internal stress. Furthermore, an insulating film having high heat resistance, chemical resistance, and insulation can be manufactured.
 [1]樹脂膜形成工程
 樹脂膜形成工程では、例えば、レーザーアブレーション用樹脂組成物を基板上に塗布することにより、樹脂膜を形成する。樹脂膜中に含まれる溶剤量を減少させる目的で、例えば下記加熱工程よりも低温(例えば150℃未満)で、乾燥処理を行ってもよい。
[1] Resin film forming step In the resin film forming step, for example, a resin film is formed by applying a resin composition for laser ablation on a substrate. For the purpose of reducing the amount of solvent contained in the resin film, for example, the drying process may be performed at a lower temperature (for example, less than 150 ° C.) than the following heating step.
 基板としては、例えば、シリコンウエハ、化合物半導体ウエハ、ガラス基板、石英基板、セラミックス基板、アルミ基板、およびこれらの基板の表面に半導体チップを有する基板が挙げられる。これらの基板の表面に、銅配線等の金属配線が形成されていてもよい。 Examples of the substrate include a silicon wafer, a compound semiconductor wafer, a glass substrate, a quartz substrate, a ceramic substrate, an aluminum substrate, and a substrate having a semiconductor chip on the surface of these substrates. Metal wiring such as copper wiring may be formed on the surface of these substrates.
 レーザーアブレーション用樹脂組成物の樹脂膜を基板上に形成する方法としては、例えば、ディッピング法、スプレーコート法、ワイヤーバーコート法、ブレードコート法、エアーナイフコート法、ロールコート法、スピンコート法、カーテンコート法、グラビア印刷法、シルクスクリーン法、インクジェット法が挙げられる。 As a method for forming a resin film of a resin composition for laser ablation on a substrate, for example, a dipping method, a spray coating method, a wire bar coating method, a blade coating method, an air knife coating method, a roll coating method, a spin coating method, The curtain coat method, the gravure printing method, the silk screen method, and the inkjet method are mentioned.
 形成される樹脂膜の膜厚は、その目的用途に応じて設定すればよく、通常0.1~100μm、好ましくは1~50μmである。樹脂膜の膜厚が前記上限値以下であると、アブレーションの速度および形成されるパターンの解像度の点で好ましい。 The film thickness of the resin film to be formed may be set according to its intended use, and is usually 0.1 to 100 μm, preferably 1 to 50 μm. When the thickness of the resin film is not more than the above upper limit value, it is preferable in terms of the speed of ablation and the resolution of the pattern to be formed.
 [2]加熱工程
 加熱工程では、樹脂膜形成工程で形成された樹脂膜を加熱する。加熱により、樹脂膜に含まれるポリアリーレン(A)がキノン構造等の環状ケトン構造を形成すると考えられ、樹脂膜がレーザーアブレーションに適した状態になる。
[2] Heating step In the heating step, the resin film formed in the resin film forming step is heated. By heating, it is considered that the polyarylene (A) contained in the resin film forms a cyclic ketone structure such as a quinone structure, and the resin film becomes suitable for laser ablation.
 加熱条件は、樹脂膜に含まれるポリアリーレン(A)が環状ケトン構造を形成する温度であることが好ましい。加熱温度は、通常150℃以上、好ましくは180~350℃、より好ましくは200~300℃である。加熱時間は、通常1分以上、好ましくは10~1000分である。加熱には、例えば、オーブン、ホットプレートを用いる。 The heating condition is preferably a temperature at which the polyarylene (A) contained in the resin film forms a cyclic ketone structure. The heating temperature is usually 150 ° C. or higher, preferably 180 to 350 ° C., more preferably 200 to 300 ° C. The heating time is usually 1 minute or longer, preferably 10 to 1000 minutes. For example, an oven or a hot plate is used for heating.
 [3]レーザーアブレーション工程
 レーザーアブレーション工程では、加熱後の樹脂膜にレーザー光を所望のパターン状に照射して、樹脂膜のアブレーションを行うことにより、基板上に所望のパターンを形成する。
[3] Laser Ablation Step In the laser ablation step, a desired pattern is formed on the substrate by irradiating the heated resin film with a laser beam in a desired pattern to ablate the resin film.
 加熱後の樹脂膜に照射されるレーザー光としては、樹脂膜をアブレーションすることができるレーザー光であれば特に限定されない。レーザー光としては、発振波長が紫外線領域から赤外線領域までのいずれかの波長のレーザー光が挙げられ、例えば、固体レーザー(例:YAGレーザー)、液体レーザー(例:色素レーザー)、ガスレーザー(例:エキシマレーザー)が挙げられる。これらの中でも、YAGレーザーおよびエキシマレーザーが好ましい。エキシマレーザーが、上記レーザーアブレーション用樹脂組成物からなる樹脂膜による吸収が大きく、高感度になる点で、特に好ましい。 The laser beam applied to the resin film after heating is not particularly limited as long as it is a laser beam that can ablate the resin film. Examples of the laser light include laser light having an oscillation wavelength of any wavelength from the ultraviolet region to the infrared region. For example, a solid laser (example: YAG laser), a liquid laser (example: dye laser), a gas laser (example) : Excimer laser). Among these, YAG laser and excimer laser are preferable. An excimer laser is particularly preferable in that the absorption by the resin film made of the resin composition for laser ablation is large and the sensitivity becomes high.
 エキシマレーザーとしては、例えば、F2エキシマレーザー(発振波長:157nm)、ArFエキシマレーザー(同193nm)、KrFエキシマレーザー(同248nm)、XeClエキシマレーザー(同308nm)、XeFエキシマレーザー(同351nm)が挙げられる。 Examples of excimer lasers include F 2 excimer laser (oscillation wavelength: 157 nm), ArF excimer laser (193 nm), KrF excimer laser (248 nm), XeCl excimer laser (308 nm), and XeF excimer laser (351 nm). Can be mentioned.
 レーザーの照射量は、除去される箇所の加熱処理後の樹脂膜の膜厚1μmあたり、好ましくは1,000mJ/cm2以上であり、より好ましくは2,000~10,000mJ/cm2、さらに好ましくは3,000~8,000mJ/cm2である。 The amount of laser irradiation is preferably 1,000 mJ / cm 2 or more, more preferably 2,000 to 10,000 mJ / cm 2 , more preferably 1,000 mJ / cm 2 or more per 1 μm of the thickness of the resin film after the heat treatment at the portion to be removed. Preferably, it is 3,000 to 8,000 mJ / cm 2 .
 本発明では、レーザーアブレーション法により、樹脂膜に直接パターンを描画することができる。このため、従来のフォトリソグラフィー法で必要とされる、ウェットプロセスである現像工程、例えばアルカリ水溶液等の現像液を用いた現像処理、を省略することができる。 In the present invention, a pattern can be directly drawn on a resin film by a laser ablation method. For this reason, the development process which is a wet process required in the conventional photolithography method, for example, a development process using a developer such as an alkaline aqueous solution can be omitted.
 [4]後工程
 必要に応じて、例えば絶縁膜としての特性を充分に発現させるため、さらに前記パターンに対して加熱処理を行ってもよい。加熱条件は特に限定されないが、絶縁膜の用途に応じて、例えば100~400℃の温度で30分~10時間程度加熱する。パターン形状の変形を防止したりするため、多段階で加熱することもできる。
[4] Post-process If necessary, the pattern may be further subjected to heat treatment, for example, in order to sufficiently develop the characteristics as an insulating film. The heating conditions are not particularly limited, but for example, heating is performed at a temperature of 100 to 400 ° C. for about 30 minutes to 10 hours depending on the use of the insulating film. In order to prevent deformation of the pattern shape, heating can be performed in multiple stages.
 また、必要に応じて、レーザーアブレーションにより生じた樹脂膜の残渣を除去するため、酸素プラズマ処理等によるデスミア処理を行ってもよい。
 以上のようにして、絶縁膜を得ることができる。形成される絶縁膜の膜厚は、その目的用途に応じて設定すればよく、通常0.1~100μm、好ましくは1~50μmである。
Further, if necessary, a desmear process such as an oxygen plasma process may be performed in order to remove the resin film residue generated by the laser ablation.
As described above, an insulating film can be obtained. The thickness of the insulating film to be formed may be set according to its intended use, and is usually 0.1 to 100 μm, preferably 1 to 50 μm.
 本発明の製造方法で得られる絶縁膜の内部応力は、通常30MPa以下、好ましくは0.1~25MPa、より好ましくは1~10MPaである。架橋剤(C)を用いない場合は、より低い内部応力を有する絶縁膜を形成することができる。この内部応力は、絶縁膜が形成される基板の、絶縁膜形成前後の応力差により評価することができる。 The internal stress of the insulating film obtained by the production method of the present invention is usually 30 MPa or less, preferably 0.1 to 25 MPa, more preferably 1 to 10 MPa. When the crosslinking agent (C) is not used, an insulating film having a lower internal stress can be formed. This internal stress can be evaluated by a stress difference between before and after the formation of the insulating film on the substrate on which the insulating film is formed.
 本発明の製造方法で得られる絶縁膜の線膨張係数は、通常1~30ppm/Kである。本発明では、例えば基板として用いられるシリコンウエハと同程度の、低い線膨張係数を有する絶縁膜を形成することができる。 The linear expansion coefficient of the insulating film obtained by the production method of the present invention is usually 1 to 30 ppm / K. In the present invention, for example, an insulating film having a low linear expansion coefficient comparable to that of a silicon wafer used as a substrate can be formed.
 〔電子部品〕
 本発明の絶縁膜の製造方法を用いることにより、上述の絶縁膜を有する電子部品、例えば表面保護膜、層間絶縁膜および平坦化膜から選択される1種以上の絶縁膜を有する電子部品を製造することができる。電子部品としては、例えば、半導体装置、多層配線板が挙げられる。
[Electronic parts]
By using the insulating film manufacturing method of the present invention, an electronic component having the above-described insulating film, for example, an electronic component having one or more insulating films selected from a surface protective film, an interlayer insulating film, and a planarizing film is manufactured. can do. Examples of the electronic component include a semiconductor device and a multilayer wiring board.
 例えば、基板と、金属配線および上記絶縁膜を含む再配線層とを有する電子部品が挙げられ、前記電子部品の製造方法は、前記絶縁膜を本発明の絶縁膜の製造方法を用いて形成する工程を有する。具体的には、この再配線層は、前記製造方法で形成した絶縁膜のパターン間にメッキ等により金属を充填し、必要に応じて、絶縁膜を形成し、金属を充填することを繰り返すことで形成することができる。 For example, an electronic component having a substrate, a metal wiring, and a rewiring layer including the insulating film can be cited. The electronic component manufacturing method includes forming the insulating film using the insulating film manufacturing method of the present invention. Process. Specifically, in this rewiring layer, a metal is filled between the patterns of the insulating film formed by the manufacturing method by plating or the like, and if necessary, an insulating film is formed and the metal is repeatedly filled. Can be formed.
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれら実施例に限定されない。以下の実施例等の記載において、特に言及しない限り、「部」は「質量部」の意味で用いる。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In the following description of Examples and the like, “part” is used to mean “part by mass” unless otherwise specified.
 [1]物性の測定方法
 [1-1]重合体の重量平均分子量(Mw)の測定方法
 下記条件下でゲルパーミエーションクロマトグラフィー法にてMwを測定した。
・カラム:東ソー社製カラムのTSK-Mおよび
     TSK2500を直列に接続
・展開溶媒:テトラヒドロフラン
・サンプル濃度:0.01質量%
・温度:40℃
・検出方法:屈折率法
・標準物質:ポリスチレン
・GPC装置:東ソー製、装置名「HLC-8220-GPC」
[1] Method for measuring physical properties [1-1] Method for measuring weight average molecular weight (Mw) of polymer Mw was measured by gel permeation chromatography under the following conditions.
Column: Tosoh column TSK-M and TSK2500 connected in series Developing solvent: Tetrahydrofuran Sample concentration: 0.01% by mass
・ Temperature: 40 ℃
・ Detection method: Refractive index method ・ Standard material: Polystyrene ・ GPC apparatus: manufactured by Tosoh Corporation, apparatus name “HLC-8220-GPC”
 [1-2]重合体の同定方法
 重合体は、H-NMRおよび赤外分光分析により同定した。赤外分光分析は、以下の方法により行った。重合体を2-メチルエタノールに溶解させ、固形分濃度20質量%の溶液を調製した。ドクターブレード法により、ポリエチレンテレフタレートからなる基板上に前記溶液を塗布し、70℃で30分間、120℃で30分間加熱して塗膜を得た。基板から塗膜を剥がし、粘着テープにより塗膜を金枠に固定した後、120℃で2時間真空乾燥して、膜厚20μmの赤外評価用フィルムを得た。
[1-2] Polymer Identification Method The polymer was identified by H-NMR and infrared spectroscopy. Infrared spectroscopic analysis was performed by the following method. The polymer was dissolved in 2-methylethanol to prepare a solution having a solid concentration of 20% by mass. The solution was applied onto a substrate made of polyethylene terephthalate by a doctor blade method and heated at 70 ° C. for 30 minutes and 120 ° C. for 30 minutes to obtain a coating film. The coating film was peeled off from the substrate, and the coating film was fixed to a metal frame with an adhesive tape, followed by vacuum drying at 120 ° C. for 2 hours to obtain an infrared evaluation film having a thickness of 20 μm.
 [2]重合体の合成
 [合成例1]重合体(A1)の合成
 フラスコ内で、窒素雰囲気下、20.00g(0.125mol)の2,6-ジヒドロキシナフタレン、0.58g(0.125mmol)のジ-μ-ヒドロキソ-ビス[(N,N,N',N'-テトラメチルエチレンジアミン)銅(II)]クロリド、および380mLの2-メトキシエタノールを含む混合液Aを調製した。窒素雰囲気下、混合液Aを25℃で攪拌しながら、混合液Aに、13.7gの31質量%過酸化水素水を2時間かけて滴下し、25℃で3時間攪拌し、混合液Bを調製した。その後、混合液Bに、1000mlの水を加えた。析出した固形物を濾別し、濾物を80℃で真空乾燥し、粉末状の重合体(A1)を得た。重合体(A1)の重量平均分子量は48,000であった。また、H-NMRから、重合体(A1)は、ナフタレン環の1位と5位で、隣り合うナフタレン環と結合したポリナフチレンであると同定した。図2に、重合体(A1)を120℃で15分加熱した後の赤外分光スペクトルと、重合体(A1)を260℃で1時間加熱した後の赤外分光スペクトルの測定結果を示す。前記加熱処理により、3200~3500cm-1付近でのOH伸縮によるピーク強度が減少し、1735cm-1付近でのC=O伸縮によるピークが見られることから、重合体(A1)は高温の加熱処理を受けることでキノン構造を形成したと考えられる。
[2] Synthesis of Polymer [Synthesis Example 1] Synthesis of Polymer (A1) In a flask, 20.00 g (0.125 mol) of 2,6-dihydroxynaphthalene, 0.58 g (0.125 mmol) in a nitrogen atmosphere. ) Di-μ-hydroxo-bis [(N, N, N ′, N′-tetramethylethylenediamine) copper (II)] chloride and 380 mL of 2-methoxyethanol were prepared. While stirring the mixed solution A at 25 ° C. in a nitrogen atmosphere, 13.7 g of 31 mass% hydrogen peroxide solution was dropped into the mixed solution A over 2 hours, and the mixture was stirred at 25 ° C. for 3 hours. Was prepared. Thereafter, 1000 ml of water was added to the mixed solution B. The precipitated solid was separated by filtration and the filtrate was vacuum dried at 80 ° C. to obtain a powdery polymer (A1). The weight average molecular weight of the polymer (A1) was 48,000. From H-NMR, the polymer (A1) was identified as polynaphthylene bonded to the adjacent naphthalene ring at the 1- and 5-positions of the naphthalene ring. In FIG. 2, the measurement result of the infrared spectroscopy spectrum after heating a polymer (A1) for 15 minutes at 120 degreeC and the polymer (A1) for 1 hour at 260 degreeC is shown. By the heat treatment, the peak intensity due to OH stretching near 3200 to 3500 cm −1 decreases, and a peak due to C═O stretching near 1735 cm −1 is observed. Therefore, the polymer (A1) is subjected to high temperature heat treatment. It is thought that the quinone structure was formed by receiving.
 [合成例2]重合体(RA1)の合成
 p-t-ブトキシスチレン70部と、スチレン10部とを、プロピレングリコールモノメチルエーテル150部に溶解させ、窒素雰囲気下、反応温度を70℃に保持して、アゾビスイソブチロニトリル4部を用いて10時間重合させた。その後、反応溶液に硫酸を加えて反応温度を90℃に保持して10時間反応させ、p-t-ブトキシスチレン単位を脱保護してp-ヒドロキシスチレン単位に変換した。得られた共重合体に酢酸エチルを加え、水洗を5回繰り返し、酢酸エチル層を分取し、溶剤を除去して、p-ヒドロキシスチレン/スチレン共重合体(RA1)を得た。この重合体(RA1)の重量平均分子量は9,000であった。
[Synthesis Example 2] Synthesis of polymer (RA1) 70 parts of pt-butoxystyrene and 10 parts of styrene were dissolved in 150 parts of propylene glycol monomethyl ether, and the reaction temperature was maintained at 70 ° C under a nitrogen atmosphere. For 10 hours using 4 parts of azobisisobutyronitrile. Thereafter, sulfuric acid was added to the reaction solution, and the reaction temperature was maintained at 90 ° C. for 10 hours, and the pt-butoxystyrene unit was deprotected and converted to the p-hydroxystyrene unit. Ethyl acetate was added to the obtained copolymer, washing with water was repeated 5 times, the ethyl acetate layer was separated, the solvent was removed, and a p-hydroxystyrene / styrene copolymer (RA1) was obtained. The weight average molecular weight of this polymer (RA1) was 9,000.
 [3]樹脂組成物の調製
 [実施例1]
 合成例1の重合体(A1)を100部、溶剤(B1)としてプロピレングリコールモノメチルエーテルを430部の量で均一に混合し、メンブランフィルターで異物を除去し、樹脂組成物を調製した。得られた組成物を用いて、所定の評価を行った。
[3] Preparation of resin composition [Example 1]
100 parts of the polymer (A1) of Synthesis Example 1 and 430 parts of propylene glycol monomethyl ether as a solvent (B1) were uniformly mixed, and foreign matters were removed with a membrane filter to prepare a resin composition. Predetermined evaluation was performed using the obtained composition.
 [実施例2]
 合成例1の重合体(A1)を100部、架橋剤(C1-1)としてメチル化メラミン樹脂(三和ケミカル(株)製、商品名「MW-30M」)を20部、溶剤(B1)としてプロピレングリコールモノメチルエーテルを430部の量で均一に混合し、メンブランフィルターで異物を除去し、樹脂組成物を調製した。得られた組成物を用いて、所定の評価を行った。
[Example 2]
100 parts of the polymer (A1) of Synthesis Example 1, 20 parts of methylated melamine resin (manufactured by Sanwa Chemical Co., Ltd., trade name “MW-30M”) as a crosslinking agent (C1-1), solvent (B1) Was mixed uniformly in an amount of 430 parts of propylene glycol monomethyl ether, and foreign matters were removed with a membrane filter to prepare a resin composition. Predetermined evaluation was performed using the obtained composition.
 [実施例3~5、比較例1]
 実施例3~5および比較例1では、表1に示すとおりに配合成分の種類および量を変更したこと以外は実施例2と同様にして、樹脂組成物を調製した。得られた組成物を用いて、所定の評価を行った。
 表1中の各成分の詳細は以下のとおりである。
[Examples 3 to 5, Comparative Example 1]
In Examples 3 to 5 and Comparative Example 1, resin compositions were prepared in the same manner as in Example 2 except that the types and amounts of the ingredients were changed as shown in Table 1. Predetermined evaluation was performed using the obtained composition.
Details of each component in Table 1 are as follows.
《ポリアリーレン(A)その他の重合体》
 重合体(A1) :合成例1で得られた重合体
 重合体(RA1):合成例2で得られた重合体
《溶剤(B)》
・B1:プロピレングリコールモノメチルエーテル
《架橋剤(C)》
・C1-1:メチル化メラミン樹脂
      (三和ケミカル(株)製、商品名「MW-30M」)
・C1-2:1,1-ビス(4-ヒドロキシフェニル)-1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エタンのメトキシメチロール化物(下記式2で表される化合物)
<< Polyarylene (A) Other Polymers >>
Polymer (A1): Polymer obtained in Synthesis Example 1 Polymer (RA1): Polymer obtained in Synthesis Example 2
<< Solvent (B) >>
B1: Propylene glycol monomethyl ether
<< Crosslinking agent (C) >>
C1-1: Methylated melamine resin (manufactured by Sanwa Chemical Co., Ltd., trade name “MW-30M”)
C1-2: 1,1-bis (4-hydroxyphenyl) -1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethane methoxymethylolated compound (represented by the following formula 2) Compound)
Figure JPOXMLDOC01-appb-C000009
・C1-3:1,1,1-トリス(4-ヒドロキシフェニル)エタンのメトキシメチロール化物(下記式3で表される化合物)
Figure JPOXMLDOC01-appb-C000009
C1-3: methoxymethylolated product of 1,1,1-tris (4-hydroxyphenyl) ethane (compound represented by the following formula 3)
Figure JPOXMLDOC01-appb-C000010
・C2-1:トリメチロールプロパンポリグリシジルエーテル
  (ナガセケムテックス(株)製、商品名「デナコールEX321L」)
Figure JPOXMLDOC01-appb-C000010
C2-1: Trimethylolpropane polyglycidyl ether (manufactured by Nagase ChemteX Corporation, trade name “Denacol EX321L”)
 [4]評価
 樹脂組成物の評価方法は、以下のとおりである。
 [4-1]レーザー加工性
 4インチのシリコンウエハに上記で得られた樹脂組成物をスピンコートし、その後、ホットプレートを用いて90℃で3分間加熱し、厚さ12μmの均一な樹脂膜を作製した。次いで、対流式オーブンを用いて260℃で1時間加熱した。次いで、エキシマレーザー(Light Machinery社製、装置名「IPEX-848」)を用い、パターンマスクを介して、波長248nmのKrFエキシマレーザーをエネルギー密度500mJ/cm2で、樹脂膜に110ショット照射した(樹脂膜の膜厚1μmあたりの照射量は約4580mJ/cm2)。次いで、ドライエッチング装置で100W、60秒間の酸素プラズマ照射しデスミア処理を行った。以上のようにして、樹脂膜表面のビアホール径が約10μmのホールを有するパターンを形成した。その後、パターンにおけるホールの形状を、レーザー顕微鏡(オリンパス(株)製、MHL110)を用いて測長した。樹脂膜表面のビアホール径Dとホール底面のホール径dとの比率[式(d/D)×100[%]]を以下の基準で評価した。
 ○:70%以上
 ×:70%未満
[4] The evaluation method of the evaluation resin composition is as follows.
[4-1] Laser processability A 4-inch silicon wafer is spin-coated with the resin composition obtained above, and then heated at 90 ° C. for 3 minutes using a hot plate to form a uniform resin film having a thickness of 12 μm. Was made. Subsequently, it heated at 260 degreeC for 1 hour using the convection oven. Next, using an excimer laser (manufactured by Light Machinery Co., Ltd., device name “IPEX-848”), a KrF excimer laser with a wavelength of 248 nm was irradiated to the resin film at an energy density of 500 mJ / cm 2 through a pattern mask (110 shots). The irradiation amount per 1 μm thickness of the resin film is about 4580 mJ / cm 2 ). Next, desmear treatment was performed by irradiating oxygen plasma at 100 W for 60 seconds with a dry etching apparatus. As described above, a pattern having a hole having a via hole diameter of about 10 μm on the surface of the resin film was formed. Thereafter, the shape of the hole in the pattern was measured using a laser microscope (manufactured by Olympus Corporation, MHL110). The ratio of the via hole diameter D on the resin film surface and the hole diameter d on the bottom surface [formula (d / D) × 100 [%]] was evaluated according to the following criteria.
○: 70% or more ×: less than 70%
 [4-2]内部応力
 8インチのシリコンウエハに上記で得られた樹脂組成物をスピンコートし、その後、ホットプレートを用いて90℃で3分間加熱し、厚さ12μmの均一な樹脂膜を作製した。次いで、対流式オーブンを用いて260℃で1時間加熱して、絶縁膜を形成した。絶縁膜形成前後のシリコンウエハの応力差を応力測定装置(TOHOテクノロジー(旧技術所有KLA-Tencor)社製FLX-2320-s)にて測定した。
[4-2] A silicon wafer having an internal stress of 8 inches is spin-coated with the resin composition obtained above, and then heated at 90 ° C. for 3 minutes using a hot plate to form a uniform resin film having a thickness of 12 μm. Produced. Subsequently, it heated at 260 degreeC for 1 hour using the convection oven, and formed the insulating film. The stress difference between the silicon wafers before and after the formation of the insulating film was measured by a stress measuring device (FLX-2320-s manufactured by TOHO Technology (formerly owned by KLA-Tencor)).
 [4-3]耐熱性
 上記[4-2]内部応力の欄で製造した絶縁膜の耐熱性を、5質量%熱重量減少温度(℃)にて評価した。5質量%熱重量減少温度は、熱重量分析法(TGA)で、窒素雰囲気下、昇温速度10℃/分にて測定した。
[4-3] Heat Resistance The heat resistance of the insulating film produced in the above [4-2] Internal stress column was evaluated at a 5% by mass thermal weight reduction temperature (° C.). The 5 mass% thermogravimetric decrease temperature was measured by thermogravimetric analysis (TGA) in a nitrogen atmosphere at a heating rate of 10 ° C./min.
 [4-4]電気絶縁性
 図1に示すような、基板1と前記基板1上に形成されたパターン状の銅箔2とを有する電気絶縁性評価用の基材3に上記で得られた樹脂組成物を塗布し、その後、ホットプレートを用いて110℃で5分間加熱し、銅箔2上での厚さが12μmである樹脂膜を有する基材を作製した。その後、120℃で30分、次いで150℃で30分、次いで200℃で1時間、対流式オーブンで加熱して、絶縁膜を得た。得られた試験基材をマイグレーション評価システム(タバイエスペック(株)社製 AEI,EHS-221MD)に投入し、温度121℃、湿度85%、圧力1.2気圧、印加電圧5Vの条件で100時間処理した。その後、試験基材の抵抗値(Ω)を測定し、電気絶縁性を確認した。
[4-4] Electrical Insulation As shown in FIG. 1, a substrate 3 for electrical insulation evaluation having a substrate 1 and a patterned copper foil 2 formed on the substrate 1 was obtained as described above. The resin composition was applied, and then heated at 110 ° C. for 5 minutes using a hot plate to produce a substrate having a resin film having a thickness of 12 μm on the copper foil 2. Thereafter, the film was heated in a convection oven at 120 ° C. for 30 minutes, then at 150 ° C. for 30 minutes, and then at 200 ° C. for 1 hour to obtain an insulating film. The obtained test substrate was put into a migration evaluation system (AEI, EHS-221MD manufactured by Tabai Espec Co., Ltd.), and the temperature was 121 ° C., the humidity was 85%, the pressure was 1.2 atm, and the applied voltage was 5 V for 100 hours. Processed. Thereafter, the resistance value (Ω) of the test substrate was measured to confirm the electrical insulation.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
1…基板、2…パターン状の銅箔、3…電気絶縁性評価用の基材 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Patterned copper foil, 3 ... Base material for electrical insulation evaluation

Claims (9)

  1.  式(A1)で表される繰り返し構造単位を有するポリアリーレン(A)および溶剤(B)を含有する樹脂組成物の樹脂膜を基板上に形成する工程1と、
     樹脂膜を加熱処理する工程2と、
     レーザーアブレーション法により、加熱後の樹脂膜にパターンを形成する工程3と
    を有する絶縁膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(A1)中、Arは芳香族環であり;水酸基は前記芳香族環に結合する置換基であり;R1は前記芳香族環に結合する置換基であり、ハロゲン原子または炭素数1~10のアルキル基であり、R1は、複数存在する場合、互いに同一でもよく異なっていてもよく;aは1以上の整数であり、bは0以上の整数である。]
    Forming a resin film of a resin composition containing a polyarylene (A) having a repeating structural unit represented by the formula (A1) and a solvent (B) on a substrate;
    Step 2 of heat-treating the resin film;
    And a step 3 of forming a pattern on the heated resin film by a laser ablation method.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (A1), Ar is an aromatic ring; a hydroxyl group is a substituent bonded to the aromatic ring; R 1 is a substituent bonded to the aromatic ring; a halogen atom or a carbon number of 1 And when there are a plurality of R 1 s , they may be the same or different from each other; a is an integer of 1 or more, and b is an integer of 0 or more. ]
  2.  工程3におけるレーザーの照射量が、工程2の加熱処理後の樹脂膜の膜厚1μmあたり、1,000mJ/cm2以上である請求項1に記載の絶縁膜の製造方法。 The method for producing an insulating film according to claim 1, wherein the amount of laser irradiation in step 3 is 1,000 mJ / cm 2 or more per 1 μm of film thickness of the resin film after the heat treatment in step 2.
  3.  工程3におけるレーザーが、エキシマレーザーである請求項1または2に記載の絶縁膜の製造方法。 3. The method of manufacturing an insulating film according to claim 1, wherein the laser in step 3 is an excimer laser.
  4.  工程2における樹脂膜の加熱温度が、150℃以上である請求項1~3のいずれか1項に記載の絶縁膜の製造方法。 The method for manufacturing an insulating film according to any one of claims 1 to 3, wherein the heating temperature of the resin film in step 2 is 150 ° C or higher.
  5.  ポリアリーレン(A)において、式(A1)中のArがナフタレン環である請求項1~4のいずれか1項に記載の絶縁膜の製造方法。 The method for producing an insulating film according to any one of claims 1 to 4, wherein in the polyarylene (A), Ar in the formula (A1) is a naphthalene ring.
  6.  式(A1)で表される繰り返し構造単位を有するポリアリーレン(A)と、
     溶剤(B)と
    を含有するレーザーアブレーション用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式(A1)中、Arは芳香族環であり;水酸基は前記芳香族環に結合する置換基であり;R1は前記芳香族環に結合する置換基であり、ハロゲン原子または炭素数1~10のアルキル基であり、R1は、複数存在する場合、互いに同一でもよく異なっていてもよく;aは1以上の整数であり、bは0以上の整数である。]
    A polyarylene (A) having a repeating structural unit represented by the formula (A1);
    A resin composition for laser ablation containing a solvent (B).
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (A1), Ar is an aromatic ring; a hydroxyl group is a substituent bonded to the aromatic ring; R 1 is a substituent bonded to the aromatic ring; a halogen atom or a carbon number of 1 And when there are a plurality of R 1 s , they may be the same or different from each other; a is an integer of 1 or more, and b is an integer of 0 or more. ]
  7.  請求項1~5のいずれか1項に記載の製造方法によって得られた絶縁膜。 An insulating film obtained by the manufacturing method according to any one of claims 1 to 5.
  8.  請求項7に記載の絶縁膜を有する電子部品。 An electronic component having the insulating film according to claim 7.
  9.  基板と、
     金属配線および請求項7に記載の絶縁膜を含む再配線層と
    を有する電子部品。
    A substrate,
    The electronic component which has a metal wiring and the rewiring layer containing the insulating film of Claim 7.
PCT/JP2016/050972 2015-02-20 2016-01-14 Method for producing insulating film, insulating film, resin composition for laser abrasion, and electronic component WO2016132784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-031505 2015-02-20
JP2015031505 2015-02-20

Publications (1)

Publication Number Publication Date
WO2016132784A1 true WO2016132784A1 (en) 2016-08-25

Family

ID=56692409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050972 WO2016132784A1 (en) 2015-02-20 2016-01-14 Method for producing insulating film, insulating film, resin composition for laser abrasion, and electronic component

Country Status (1)

Country Link
WO (1) WO2016132784A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10886119B2 (en) 2018-08-17 2021-01-05 Rohm And Haas Electronic Materials Llc Aromatic underlayer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018059A (en) * 1996-07-05 1998-01-20 Dainippon Ink & Chem Inc Resist material for excimer laser ablation
JP2003183362A (en) * 2001-12-20 2003-07-03 Hitachi Chem Co Ltd Method for synthesizing polynaphthylene, photosensitive resin composition, method for manufacturing pattern, and electronic part
JP2004071703A (en) * 2002-08-02 2004-03-04 Asahi Kasei Electronics Co Ltd Method for manufacturing multilayer printed wiring board
JP2006108165A (en) * 2004-09-30 2006-04-20 Sumitomo Bakelite Co Ltd Resin constituent, laminated body, wiring board, and wiring board manufacturing method
JP2008065081A (en) * 2006-09-07 2008-03-21 Jsr Corp Composition for forming resist underlayer film and pattern forming method
WO2012036130A1 (en) * 2010-09-15 2012-03-22 旭化成イーマテリアルズ株式会社 Phenolic resin composition, and method for producing cured relief pattern and semiconductor
JP2013167693A (en) * 2012-02-14 2013-08-29 Hitachi Chemical Co Ltd Photosensitive resin composition, patterned cured film manufacturing method, and semiconductor device including patterned cured film
WO2015178074A1 (en) * 2014-05-22 2015-11-26 Jsr株式会社 Photosensitive resin composition and use of same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018059A (en) * 1996-07-05 1998-01-20 Dainippon Ink & Chem Inc Resist material for excimer laser ablation
JP2003183362A (en) * 2001-12-20 2003-07-03 Hitachi Chem Co Ltd Method for synthesizing polynaphthylene, photosensitive resin composition, method for manufacturing pattern, and electronic part
JP2004071703A (en) * 2002-08-02 2004-03-04 Asahi Kasei Electronics Co Ltd Method for manufacturing multilayer printed wiring board
JP2006108165A (en) * 2004-09-30 2006-04-20 Sumitomo Bakelite Co Ltd Resin constituent, laminated body, wiring board, and wiring board manufacturing method
JP2008065081A (en) * 2006-09-07 2008-03-21 Jsr Corp Composition for forming resist underlayer film and pattern forming method
WO2012036130A1 (en) * 2010-09-15 2012-03-22 旭化成イーマテリアルズ株式会社 Phenolic resin composition, and method for producing cured relief pattern and semiconductor
JP2013167693A (en) * 2012-02-14 2013-08-29 Hitachi Chemical Co Ltd Photosensitive resin composition, patterned cured film manufacturing method, and semiconductor device including patterned cured film
WO2015178074A1 (en) * 2014-05-22 2015-11-26 Jsr株式会社 Photosensitive resin composition and use of same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10886119B2 (en) 2018-08-17 2021-01-05 Rohm And Haas Electronic Materials Llc Aromatic underlayer

Similar Documents

Publication Publication Date Title
TWI390348B (en) Negative photosensitive fluorinated aromatic resin composition
JP4640051B2 (en) Radiation sensitive resin composition for forming insulating film and method for producing insulating film
JP4923656B2 (en) Negative photosensitive resin composition, pattern manufacturing method, and electronic component
JP2005105115A (en) Crosslinkable fluorine-containing aromatic prepolymer and application thereof
WO2020021827A1 (en) Photosensitive resin composition, method for producing patterned resin film, patterned resin film, and semiconductor circuit substrate
JP5109471B2 (en) Negative photosensitive resin composition, pattern manufacturing method, and electronic component
JP5117281B2 (en) Photosensitive heat resistant resin composition
TWI503624B (en) Photosensitive resin composition, method for producing pattern cured film using the same and cured film
JP2005173027A (en) Positive photosensitive resin composition and hardened product
JP6816471B2 (en) Phenolic hydroxyl group-containing compounds and resist materials
WO2015178074A1 (en) Photosensitive resin composition and use of same
JP5181444B2 (en) Crosslinkable fluorine-containing aromatic prepolymer and cured product thereof
WO2016132784A1 (en) Method for producing insulating film, insulating film, resin composition for laser abrasion, and electronic component
WO2020246565A1 (en) Photosensitive polyimide resin composition
CN108604060B (en) Positive photosensitive resin composition
JP7405140B2 (en) Photosensitive resin composition
WO2017204206A1 (en) Resin composition and resist film
KR102661881B1 (en) Photosensitive polyimide composition and electronic device comprising the same
JP7336949B2 (en) Photosensitive resin composition, dry film, cured product and electronic parts
JP7409374B2 (en) Photosensitive resin composition
JP7403268B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
JP4341337B2 (en) Photosensitive resin composition and method for forming resin layer
WO2023190879A1 (en) Negative type photosensitive resin composition, dry film, cured product, and electronic component
WO2018066372A1 (en) Phenolic hydroxyl group-containing resin and resist material
KR20230073529A (en) Polyimide-based compound and photosensitive composition including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP