WO2016132732A1 - Display panel - Google Patents

Display panel Download PDF

Info

Publication number
WO2016132732A1
WO2016132732A1 PCT/JP2016/000780 JP2016000780W WO2016132732A1 WO 2016132732 A1 WO2016132732 A1 WO 2016132732A1 JP 2016000780 W JP2016000780 W JP 2016000780W WO 2016132732 A1 WO2016132732 A1 WO 2016132732A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
layer
pattern layer
optical device
dot
Prior art date
Application number
PCT/JP2016/000780
Other languages
French (fr)
Japanese (ja)
Inventor
高士 山田
山口 博史
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016132732A1 publication Critical patent/WO2016132732A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • This disclosure relates to a display panel that forms a display control system together with an optical device that emits invisible light and receives reflected invisible light.
  • a technique for reading a position information pattern representing a coordinate position on a plane of a display device using a pen-type reading device is known.
  • the reading device receives the invisible light reflected by the display device after emitting the invisible light, and specifies the coordinate position indicated on the display device based on the received invisible light.
  • the Example using an optical film like patent document 1 is known.
  • This disclosure provides a display panel that can obtain higher reading performance of position coordinates while reducing restrictions on material selection and manufacturing method.
  • the display panel according to the present disclosure is a display panel that forms a display control system together with an optical device that includes an emitting unit that emits invisible light and a light receiving unit that receives reflected invisible light.
  • the display panel includes a pattern layer and a non-visible light reflection layer.
  • the pattern layer is formed with a pattern of dots in accordance with a predetermined rule in order for the optical device to specify the position information pointed to by the optical device on the display panel.
  • the non-visible light reflection layer is disposed to face the pattern layer, and reflects at least a part of the non-visible light emitted from the optical device to the optical device through the pattern layer.
  • the pattern layer and the invisible light reflection layer are connected by a transparent medium having a refractive index n.
  • the distance X from the tip of each dot forming the pattern layer on the side facing the non-visible light reflecting layer to the average line of the surface shape of the non-visible light reflecting layer is W / 2 ⁇ X ⁇ D / tan [sin ⁇ 1 ⁇ sin ⁇ / n ⁇ ].
  • the average major axis of each dot forming the pattern layer is D
  • the average height difference of the surface shape of the non-visible light reflecting layer is W
  • the display panel according to the present disclosure is a display panel that can use an optical device that emits invisible light and receives reflected invisible light.
  • the display panel includes a pattern layer, a non-visible light reflection layer, and a transparent medium having a refractive index n.
  • the pattern layer is formed with a dot pattern.
  • the non-visible light reflection layer is disposed to face the pattern layer, and reflects at least a part of the non-visible light emitted from the optical device to the optical device through the pattern layer.
  • a transparent medium having a refractive index n is provided between the pattern layer and the non-visible light reflection layer.
  • the distance X from the surface of each dot forming the pattern layer facing the non-visible light reflecting layer to the average line of the surface shape of the non-visible light reflecting layer is W / 2 ⁇ X ⁇ D / tan (sin ⁇ 1 [ ⁇ Sin ( ⁇ / 4) ⁇ / n]) is satisfied.
  • the average major axis of each dot forming the pattern layer is D
  • the average height difference of the surface shape of the invisible light reflecting layer is W.
  • FIG. 1 is an image diagram showing an appearance of the display control system 100.
  • FIG. 2 is a block diagram illustrating a configuration of the display control system 100.
  • FIG. 3 is a cross-sectional view of the display panel 210 according to the first embodiment.
  • FIG. 4 is an enlarged view of a part of the display panel 210 according to the first embodiment in order to explain details of the positional relationship between the dot pattern sheet 410 and the infrared reflective sheet 430.
  • FIG. 5 is a diagram illustrating the interval between the dot 411 and the dot shadow.
  • FIG. 6 is a first diagram for explaining the optimum range of the distance X.
  • FIG. 7 is a second diagram for explaining the optimum range of the distance X.
  • FIG. FIG. 1 is an image diagram showing an appearance of the display control system 100.
  • FIG. 2 is a block diagram illustrating a configuration of the display control system 100.
  • FIG. 3 is a cross-sectional view of the display panel 210 according to the first embodiment
  • FIG. 8A is an enlarged image diagram for explaining a dot pattern.
  • FIG. 8B is an enlarged image diagram for explaining the dot pattern.
  • FIG. 9A is a schematic diagram for explaining that information obtained by digitizing the position of the dot 411 differs depending on the position of the dot 411.
  • FIG. 9B is a schematic diagram for explaining that information obtained by digitizing the position of the dot 411 differs depending on the position of the dot 411.
  • FIG. 9C is a schematic diagram for explaining that information obtained by digitizing the position of the dot 411 differs depending on the position of the dot 411.
  • FIG. 9D is a schematic diagram for explaining that information obtained by digitizing the position of the dot 411 differs depending on the position of the dot 411.
  • FIG. 10 is a flowchart showing the operation of the display control system 100.
  • FIG. 1 is an image diagram showing an appearance of a display control system 100 according to the first embodiment.
  • the display control system 100 includes a display device 200 and an optical digital pen (hereinafter simply referred to as “digital pen”) 300.
  • the display device 200 includes a display panel 210. On the surface of the display panel 210, a display surface capable of displaying an image or the like is defined.
  • a dot pattern representing information on the position on the display panel 210 is provided on the display surface of the display panel 210.
  • the digital pen 300 optically reads the dot pattern at the pen tip position, thereby detecting information on the position on the display panel 210 where the tip of the digital pen 300 is located (hereinafter also referred to as “position information”). be able to.
  • the display device 200 and the digital pen 300 are in wireless communication, and the digital pen 300 transmits the detected position information to the display device 200. Thereby, the display apparatus 200 can grasp position information indicating the pen tip position of the digital pen 300 and performs various display controls.
  • the tip of the digital pen 300 is moved on the display panel 210.
  • the digital pen 300 detects continuous position information as a locus of the tip of the digital pen 300 from the dot pattern continuously read.
  • the digital pen 300 sequentially transmits the detected position information to the display device 200.
  • the display device 200 can continuously display dots on the display panel 210 according to the locus of the tip of the digital pen 300.
  • the user can input characters, figures, and the like on the display panel 210 by handwriting with the digital pen 300.
  • FIG. 2 is a block diagram illustrating a configuration of the display control system 100.
  • the display device 200 includes a display panel 210, a receiving unit 230, a display-side microcomputer 240, and a display device-side memory 250.
  • the display device 200 may have other electrical configurations, but the description is omitted.
  • the display panel 210 can display an image in accordance with control from the display-side microcomputer 240.
  • the display panel 210 can be realized by, for example, a liquid crystal display method or an organic EL method. Details of the layer structure of the display panel 210 will be described later.
  • the receiving unit 230 receives a signal transmitted from the digital pen 300.
  • the receiving unit 230 transmits the received signal to the display side microcomputer 240.
  • the display-side microcomputer 240 includes a CPU and a memory.
  • the display-side microcomputer 240 controls the content displayed on the display panel 210 based on the signal transmitted from the digital pen 300.
  • the display device side memory 250 stores a program for operating the CPU of the display side microcomputer 240.
  • the display-side microcomputer 240 can read and write information from the display device-side memory 250 as appropriate.
  • the digital pen 300 includes a cylindrical main body case 310 and a pen tip portion 320 attached to the tip of the main body case 310.
  • the digital pen 300 includes a pressure sensor 330, an objective lens 340, an image sensor 350, a pen side microcomputer 360, a pen side memory 390, a transmission unit 370, and an illumination unit 380 inside the main body case 310.
  • the main body case 310 has the same external shape as a general pen and is formed in a cylindrical shape.
  • the pen tip portion 320 is formed in a tapered shape.
  • the tip of the pen tip 320 is rounded to the extent that the surface of the display panel 210 is not damaged.
  • the shape of the pen tip portion 320 is preferably a shape that allows the user to easily recognize an image displayed on the display panel 210.
  • the pressure sensor 330 is built in the main body case 310 and connected to the proximal end portion of the pen tip portion 320.
  • the pressure sensor 330 detects the pressure applied to the pen tip portion 320 and transmits the detection result to the pen-side microcomputer 360. Specifically, the pressure sensor 330 detects the pressure applied from the display panel 210 to the pen tip portion 320 when the user enters characters or the like on the display panel 210 using the digital pen 300.
  • the pressure sensor 330 is used, for example, when determining whether or not the user intends to input using the digital pen 300.
  • the illumination unit 380 is provided at the tip of the main body case 310 and in the vicinity of the pen tip unit 320.
  • the illumination part 380 is comprised by infrared LED, for example.
  • the illumination unit 380 is provided to irradiate infrared light from the tip of the main body case 310 when the user's input intention is determined based on the detection result of the pressure sensor 330.
  • the objective lens 340 causes the image sensor 350 to form an image of light incident from the pen tip side.
  • the objective lens 340 is provided at the distal end portion of the main body case 310 and in the vicinity of the pen tip portion 320.
  • infrared light is irradiated from the illumination unit 380 with the tip of the digital pen 300 facing the display surface of the display device 200
  • the infrared light is incident on the display panel 210 and diffusely reflected in the display panel 210.
  • part of the infrared light transmitted through the display panel 210 returns to the digital pen 300 side.
  • Infrared light emitted from the illumination unit 380 and diffusely reflected by the display device 200 is incident on the objective lens 340.
  • the image sensor 350 is provided on the optical axis of the objective lens 340. Therefore, the infrared light that has passed through the objective lens 340 is imaged on the imaging surface of the image sensor 350.
  • the image sensor 350 outputs an image signal obtained by converting an optical image formed on the imaging surface into an electric signal to the pen-side microcomputer 360.
  • the image sensor 350 is configured by, for example, a CCD image sensor or a CMOS image sensor.
  • the display panel 210 has a dot pattern formed of dots 411.
  • the dots 411 are formed of a material that absorbs infrared light (a material with low transmittance with respect to infrared light). Therefore, the infrared light hardly returns to the digital pen 300 from the dots 411 constituting the dot pattern. On the other hand, more infrared light returns from the area between the dots 411 than from the area of the dots 411. As a result, an optical image in which the dot pattern is expressed in black is captured by the image sensor 350.
  • the pen-side microcomputer 360 specifies position information on the display panel 210 of the digital pen 300 based on the image signal generated by imaging by the image sensor 350. Specifically, the pen-side microcomputer 360 acquires the pattern shape of the dot pattern from the image signal generated by imaging by the image sensor 350, and specifies the position of the pen tip 320 on the display panel 210 based on the pattern shape. .
  • the pen side memory 390 stores a program for operating the CPU of the pen side microcomputer 360.
  • the pen side microcomputer 360 can read and write information from the pen side memory 390 as appropriate.
  • the transmission unit 370 transmits a signal to the outside. Specifically, the transmission unit 370 transmits the position information specified by the pen-side microcomputer 360 to the reception unit 230 of the display device 200 that is a wireless communication partner.
  • FIG. 3 is a cross-sectional view of the display panel 210 according to the first embodiment.
  • the display panel 210 includes an optical film 400, a transparent adhesive layer 431, a touch sensor glass 440, a liquid crystal panel 450, and a backlight device 460.
  • the optical film 400 is configured by laminating a dot pattern sheet 410 and an infrared reflection sheet 430 via a transparent medium layer 413.
  • the dot pattern sheet 410 has a dot pattern composed of a PET film 412 as a base material and a plurality of dots 411.
  • the PET film 412 protects the surface of the display panel 210 and also functions as a base material for laminating layers such as the dots 411.
  • a plurality of dots 411 are laminated on the back surface of PET film 412 (the lower surface in FIG. 3). Each dot 411 protrudes from the back surface of the PET film 412 by its own thickness.
  • One dot pattern is formed by a set of a plurality of dots 411 in the unit area 213, which will be described in detail later.
  • the dots 411 are formed of a material that absorbs infrared light (a material with low transmittance with respect to infrared light).
  • the infrared reflection sheet 430 includes an uneven base 433 and an infrared reflection layer 432 formed along the uneven surface 434 of the uneven base 433.
  • the concavo-convex base material 433 has a concavo-convex surface 434 having a fine concavo-convex shape in which an inclination at a predetermined angle with respect to a reference surface (concave / convex surface average line 435) is defined in order to improve infrared reflection performance.
  • the ratio of the projected area occupied by the region where the absolute inclination angle ⁇ of the uneven surface 434 is 40 ° or more is 20% or less.
  • an absolute angle ( ⁇ 90 °) at which each uneven shape of the uneven surface 434 is inclined with respect to the reference surface 435 is an absolute inclination angle ⁇
  • the distribution rate f ( ⁇ ) is expressed by the following formula 1.
  • the unit of ⁇ is [°].
  • Sa represents the effective total area of the infrared reflection sheet 430.
  • the effective total area is the total projected area of a region (effective surface) where the uneven shape of the uneven surface 434 is formed substantially uniformly.
  • d ⁇ represents a minute angle near the absolute inclination angle ⁇ .
  • ds indicates a projected area occupied by a region where the absolute inclination angle of the uneven surface 434 is in the range of ⁇ to ⁇ + d ⁇ in the effective plane.
  • the projected area is not the area of the curved surface along the concavo-convex shape of the concavo-convex surface 434 but the area of the plane projected on the flat surface (reference surface) obtained by averaging the concavo-convex surface 434.
  • infrared diffuse reflection characteristics can be imparted to the infrared reflection sheet 430.
  • the infrared light emitted from the illumination unit 380 built in the digital pen 300 is diffusely reflected by the infrared reflection sheet 430, and the infrared reflected light is incident on the image sensor 350 built in the digital pen 300. it can.
  • corrugated shape is an example and you may form uneven
  • the infrared reflective layer 432 is a layer that reflects infrared light while transmitting visible light. When viewed microscopically, the infrared reflection layer 432 specularly reflects infrared rays. On the other hand, when viewed macroscopically, the infrared reflection sheet 430 functions as an infrared diffuse reflection member that diffuses and reflects infrared rays because the infrared reflection layer 432 is formed along the uneven surface 434.
  • the transparent medium layer 413 is a layer for bonding the dot pattern sheet 410 and the infrared reflective sheet 430. Further, the transparent medium layer 413 is laminated between the dot pattern sheet 410 and the infrared reflection sheet 430 so as to fill a space between the plurality of dots 411.
  • the transparent medium layer 413 is formed of a material that transmits both visible light and infrared light.
  • the transparent medium layer 413 has a refractive index (refractive index n) substantially equal to the refractive index of the material of the PET film 412, the dots 411, and the uneven substrate 433.
  • the surface of the infrared reflective sheet 430 on the dot pattern sheet 410 side has an uneven shape due to the uneven surface 434. Therefore, when the dot pattern sheet 410 and the infrared reflection sheet 430 are bonded to each other, the transparent medium layer 413 fills the gap by flattening the concavo-convex shape and functions to optically couple.
  • the touch sensor glass 440 is a glass including a sensor that detects contact of a finger by a user's touch operation with respect to the display panel 210 by a known technique.
  • the touch sensor glass 440 is disposed on the back surface (the bottom surface in FIG. 3) of the infrared reflective sheet 430.
  • the surface of the touch sensor glass 440 and the back surface of the infrared reflective sheet 430 are bonded by a transparent adhesive layer 431.
  • the liquid crystal panel 450 is a device that displays an image based on visible light irradiation using the backlight device 460 as a light source by controlling the orientation of liquid crystal molecules.
  • the liquid crystal panel 450 includes a color filter layer 451 including a black matrix 453, a liquid crystal layer, and the like.
  • the black matrix 453 forms, for example, a lattice structure (pixel structure) that partitions the RGB color filters 452.
  • a backlight device 460 for irradiating the liquid crystal panel 450 with light is disposed.
  • the liquid crystal panel 450 applies a voltage for changing the liquid crystal alignment of the liquid crystal layer based on display control by the display-side microcomputer 240. Accordingly, the liquid crystal panel 450 controls the amount of light transmitted from the backlight device 460 and executes various display operations.
  • the liquid crystal panel 450 is disposed on the back surface of the touch sensor glass 440 (the lower surface in FIG. 3).
  • FIG. 4 is an enlarged view of a part of the display panel 210 in order to explain the details of the positional relationship between the dot pattern sheet 410 and the infrared reflection sheet 430.
  • the dot pattern sheet 410 and the infrared reflection sheet 430 are individually manufactured and bonded to each other with a transparent medium layer 413.
  • the display panel 210 with few restrictions of a manufacturing method can be provided in material selection.
  • a photocurable transparent adhesive or a transparent adhesive is used for the transparent medium layer 413.
  • the distance from the tip of each dot 411 forming the dot pattern sheet 410 on the side facing the infrared reflection sheet 430 (infrared reflection layer 432) to the average line of the uneven surface 434 of the infrared reflection sheet 430 is determined.
  • this distance X is large, the shadow of the dot 411 illuminated by the infrared light from the illumination unit 380 of the digital pen 300 is projected onto the surface portion of the infrared reflection sheet 430. This becomes a double image that overlaps the original image of the dot 411, and a reading error may occur in the digital pen 300.
  • the average height difference of the uneven surface 434 of the infrared reflection sheet 430 is defined as W.
  • W the average height difference of the uneven surface 434 of the infrared reflection sheet 430 (infrared reflection layer 432)
  • W the average height difference of the uneven surface 434 of the infrared reflection sheet 430
  • the double image is not generated, which is the most desirable condition.
  • an appropriate range of the distance X for preventing occurrence of a reading error will be described.
  • an inclination angle of the digital pen 300 with respect to the display panel 210 is ⁇ (0 ⁇ ⁇ / 2 (90 °)).
  • An appropriate range of the distance X can be calculated from the major axis size D of the dots 411, the angle ⁇ , and the refractive index n of the transparent medium layer 413.
  • FIG. 5 is a diagram illustrating the interval between the dot 411 and the dot shadow.
  • a shadow as indicated by a broken line is generated immediately below the dot 411.
  • L the distance between the dot 411 and the dot shadow.
  • the interval L is expressed by Equation 2 where ⁇ is the converted angle in the transparent medium layer 413 of the angle ⁇ .
  • the units of ⁇ and ⁇ are [rad].
  • Equation 3 is established according to Snell's law.
  • FIG. 6 is a first diagram for explaining the optimum range of the distance X.
  • the pen angle ⁇ is ⁇ with respect to the normal line of the dot pattern sheet 410 (display panel 210). / 4.
  • the interval L in Formula 5 becomes equal to the dot diameter D
  • the image of the dot 411 and the shadow image of the dot 411 are separated into one image and captured by the image sensor 350.
  • FIG. 7 is a second diagram for explaining the optimum range of the distance X.
  • the interval L is half D / 2 of the dot diameter D
  • the image of the dot 411 and the shadow image of the dot 411 are displayed on the image sensor 350 as a double image in which about half are overlapped. Imaged.
  • the condition is solved with respect to the distance X in the same manner as the derivation of Equation 6, the following Equation 7 is derived.
  • the distance X is set in the range shown in the following equation (9).
  • the range of the distance X is appropriately set, it is possible to construct a system that is excellent in reading performance by the digital pen 300 and is easy to manufacture.
  • a sheet-like adhesive film set to a predetermined thickness may be used. Thereby, the sheet
  • the real value as an example is that the diameter D of the dot 411 is about 80 to 200 ⁇ m, the refractive index n of the transparent medium layer 413 is about 1.4 to 1.6, and the average height difference of the uneven surface 434 is W. Is 1 to 10 ⁇ m.
  • an appropriate range of the distance X is a range shown in Formula 10, more preferably in Formula 11.
  • FIG. 8A and 8B are enlarged views when the optical film 400 is viewed from the front.
  • the first reference line 414 is assumed as a virtual line (a line that does not actually exist on the optical film 400) on the optical film 400.
  • a second reference line 415 is orthogonal to each other.
  • a plurality of first reference lines 414 and a plurality of second reference lines 415 form a lattice.
  • Each dot 411 is arranged around the intersection of the first reference line 414 and the second reference line 415. That is, each dot 411 is arranged in the vicinity of each lattice point.
  • 9A to 9D are diagrams showing arrangement patterns of the dots 411.
  • FIG. Each dot 411 has an X direction from the intersection of the first reference line 414 and the second reference line 415 when the extending direction of the first reference line 414 is the X direction and the extending direction of the second reference line 415 is the Y direction. It is disposed at a position offset (shifted) to the plus side or the minus side along the direction or the Y direction.
  • the dots 411 are arranged in any one of FIGS. 9A to 9D.
  • the dot 411 is arranged at a position above the intersection of the first reference line 414 and the second reference line 415. When this arrangement is digitized, it is represented by “1”.
  • the dot 411 is arranged at a position on the right side of the intersection of the first reference line 414 and the second reference line 415. When this arrangement is digitized, it is represented by “2”.
  • the dot 411 is arranged at a position below the intersection of the first reference line 414 and the second reference line 415. When this arrangement is digitized, it is represented by “3”.
  • FIG. 9A the dot 411 is arranged at a position above the intersection of the first reference line 414 and the second reference line 415. When this arrangement is digitized, it is represented by “1”.
  • the dot 411 is arranged at a position on the right side of the intersection of the first reference line 414 and the second reference line 415. When this arrangement is digitized, it is represented by “2”.
  • the dot 411 is
  • the dot 411 is arranged at a position on the left side of the intersection of the first reference line 414 and the second reference line 415.
  • this arrangement is digitized, it is represented by “4”.
  • each dot 411 is represented by a numerical value from “1” to “4” in the digital pen 300 according to the arrangement pattern.
  • 6 dots ⁇ 6 dots are defined as one unit area 213, and one dot pattern is formed by 36 dots 411 included in the unit area 213.
  • a huge number (6 dots ⁇ In the case where 6 dots are used as one unit area, a dot pattern of 4 to the 36th power can be formed.
  • FIG. 10 is a flowchart showing the flow of the display operation.
  • the user performs a pen input (entry) on the display device 200 using the digital pen 300 will be described.
  • the display device 200 and the digital pen 300 constituting the display control system 100 are turned on.
  • the display-side microcomputer 240 is supplied with power from a power source (not shown) and completes initial operations for executing various operations.
  • the pen-side microcomputer 360 is supplied with power from a power supply (not shown), and completes initial operations for executing various operations.
  • the display device 200 and the digital pen 300 establish wireless communication with each other. As a result, communication from the transmission unit 370 of the digital pen 300 to the reception unit 230 of the display device 200 is enabled.
  • the pen-side microcomputer 360 of the digital pen 300 starts monitoring the pressure acting on the pen tip 320 (S500). This pressure is detected by the pressure sensor 330.
  • the pen-side microcomputer 360 determines that the user is pen-inputting characters or the like to the display panel 210 of the display device 200, and the illumination unit 380 Infrared light irradiation is started. While the pressure is not detected by the pressure sensor 330 (while No in S500 continues), the pen-side microcomputer 360 repeats step S500.
  • the configuration including the objective lens 340 and the image sensor 350 detects a dot pattern formed on the display panel 210 at the pen tip position (S510).
  • the infrared light emitted from the illumination unit 380 is diffusely reflected in the display panel 210, and a part of the infrared light returns to the digital pen 300 side.
  • Infrared light returning to the digital pen 300 side hardly transmits through the dot 411 of the dot pattern.
  • Infrared light that has mainly passed through the region between the dots 411 reaches the objective lens 340.
  • the infrared light is received by the image sensor 350 through the objective lens 340.
  • the objective lens 340 is disposed on the display panel 210 so as to receive reflected light from the position indicated by the pen tip portion 320.
  • the dot pattern at the indicated position of the pen tip portion 320 on the display surface of the display panel 210 is imaged by the image sensor 350.
  • the configuration including the objective lens 340 and the image sensor 350 optically reads the dot pattern.
  • An image signal generated by the imaging of the image sensor 350 is transmitted to the pen side microcomputer 360.
  • the pen side microcomputer 360 acquires the pattern shape of the dot pattern from the received image signal, and specifies the position of the pen tip on the display panel 210 based on the pattern shape (S520). Specifically, the pen side microcomputer 360 acquires the pattern shape of the dot pattern by performing predetermined image processing on the obtained image signal. Subsequently, the pen-side microcomputer 360 determines which unit area (6 dot ⁇ 6 dot unit area) from the arrangement of the dots 411 in the acquired pattern shape, and the position of the unit area from the dot pattern of the unit area. Specify coordinates (position information). The pen-side microcomputer 360 converts the dot pattern into position coordinates by a predetermined calculation corresponding to the dot pattern coding method.
  • the pen-side microcomputer 360 transmits the specified position information to the display device 200 via the transmission unit 370 (S530). Thereby, the display apparatus 200 can grasp the pen tip position of the digital pen 300.
  • the position information transmitted from the digital pen 300 is received by the receiving unit 230 of the display device 200.
  • the received position information is transmitted from the receiving unit 230 to the display-side microcomputer 240.
  • the display-side microcomputer 240 When the display-side microcomputer 240 receives the position information, the display-side microcomputer 240 performs a display operation corresponding to the display surface on the display panel 210. Specifically, the display-side microcomputer 240 controls the display panel 210 so as to change the display content of the position corresponding to the position information in the display area of the display panel 210. In this example, since a character is input, a point is displayed at a position corresponding to the position information in the display area of the display panel 210. When the pen input with the digital pen 300 is continued, the display-side microcomputer 240 continuously acquires the position information.
  • dots can be continuously displayed at the position of the pen tip portion 320 on the display area of the display panel 210. That is, characters corresponding to the locus of the pen tip portion 320 of the digital pen 300 can be displayed on the display panel 210.
  • the first embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the present invention can be applied to a display panel that forms a display control system together with an optical device that emits invisible light and receives reflected invisible light.
  • DESCRIPTION OF SYMBOLS 100 Display control system 200
  • Display apparatus 210
  • Display panel 230
  • Reception part 240
  • Display side microcomputer 250
  • Display side memory 300
  • Digital pen 310
  • Main body case 320
  • Pen tip part 330
  • Pressure sensor 340
  • Objective lens 350
  • Image sensor 360
  • Pen side microcomputer 370
  • Transmission part 380
  • Illumination 390
  • Pen side memory 400
  • Optical film 410 Dot pattern sheet (pattern layer) 411 dot 412 PET film 413 transparent medium layer 414 first reference line 415 second reference line 430 infrared reflection sheet 432 infrared reflection layer 433 uneven substrate 435 uneven surface average line (reference surface)
  • Touch sensor glass 450
  • Color filter layer 452
  • Color filter 452
  • Black matrix 460
  • Backlight device 460

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)

Abstract

A display panel that, together with an optical device equipped with an emission unit for emitting invisible light and a reception unit for receiving reflected invisible light, forms a display control system. A transparent medium (413) having a refractive index n connects an invisible light reflection layer (432) and a pattern layer of the display panel. For the dots (411) forming the pattern layer, the distance X from the tip end on the side facing the invisible light reflection layer (432) to the average line of the surface shape of the invisible light reflection layer (432) satisfies the equation W/2 ≤ X < D/tan[sin-1{sin θ/n}], where D is the average major diameter of the dots (411) forming the pattern layer, W is the average height difference of the surface shape of the invisible light reflection layer (432), and θ (0 < θ < π/2(90°)) is the angle formed by the light axis of the emission unit and the light axis of the reception unit of the optical device.

Description

表示パネルDisplay panel
 本開示は、非可視光を射出し、反射された非可視光を受光する光学装置とともに表示制御システムを形成する表示パネルに関する。 This disclosure relates to a display panel that forms a display control system together with an optical device that emits invisible light and receives reflected invisible light.
 ペン型の読み取り装置を用いて、表示装置の平面上の座標位置を表す位置情報パターンを読み取る技術が知られている。読み取り装置は、非可視光を射出した後に表示装置において反射された非可視光を受光し、その受光した非可視光に基づいて、表示装置上で指している座標位置を特定する。例えば、特許文献1のような光学フィルムを用いる実施例が知られている。 A technique for reading a position information pattern representing a coordinate position on a plane of a display device using a pen-type reading device is known. The reading device receives the invisible light reflected by the display device after emitting the invisible light, and specifies the coordinate position indicated on the display device based on the received invisible light. For example, the Example using an optical film like patent document 1 is known.
特開2008-209598号公報JP 2008-209598 A
 本開示は、材料選定や製法における制約を少なくしつつも、位置座標のより高い読み取り性能が得られる表示パネルを提供する。 This disclosure provides a display panel that can obtain higher reading performance of position coordinates while reducing restrictions on material selection and manufacturing method.
 本開示にかかる表示パネルは、非可視光を射出する射出部と、反射された非可視光を受光する受光部とを備えた光学装置とともに表示制御システムを形成する表示パネルである。表示パネルは、パターン層と、非可視光反射層と、を備える。パターン層は、光学装置が表示パネル上で指している位置情報を、光学装置により特定させるために、所定の規則に則ってドットによるパターンが形成されている。非可視光反射層は、パターン層と対向して配置され、光学装置から射出された非可視光の少なくとも一部を、パターン層を介して光学装置へと反射する。これらパターン層と非可視光反射層との間は、屈折率nの透明な媒質により接続されている。パターン層を形成する各ドットの非可視光反射層に対向する側の先端から、非可視光反射層の表面形状の平均線までの距離Xは、W/2≦X<D/tan[sin-1{sin θ/n}]の式を満たす。ここで、パターン層を形成する各ドットの平均長径をD、非可視光反射層の表面形状の平均高低差をW、光学装置の射出部の光軸と、受光部の光軸とのなす角度をθ(0<θ<π/2)とする。 The display panel according to the present disclosure is a display panel that forms a display control system together with an optical device that includes an emitting unit that emits invisible light and a light receiving unit that receives reflected invisible light. The display panel includes a pattern layer and a non-visible light reflection layer. The pattern layer is formed with a pattern of dots in accordance with a predetermined rule in order for the optical device to specify the position information pointed to by the optical device on the display panel. The non-visible light reflection layer is disposed to face the pattern layer, and reflects at least a part of the non-visible light emitted from the optical device to the optical device through the pattern layer. The pattern layer and the invisible light reflection layer are connected by a transparent medium having a refractive index n. The distance X from the tip of each dot forming the pattern layer on the side facing the non-visible light reflecting layer to the average line of the surface shape of the non-visible light reflecting layer is W / 2 ≦ X <D / tan [sin − 1 {sin θ / n}]. Here, the average major axis of each dot forming the pattern layer is D, the average height difference of the surface shape of the non-visible light reflecting layer is W, and the angle formed by the optical axis of the emitting part of the optical device and the optical axis of the light receiving part Is θ (0 <θ <π / 2).
 より好ましくは、W/2≦X<D/(2×tan[sin-1{sin θ/n}])の式を満たす。更に好ましくは、X=W/2の式を満たす。 More preferably, the expression of W / 2 ≦ X <D / (2 × tan [sin −1 {sin θ / n}]) is satisfied. More preferably, the formula of X = W / 2 is satisfied.
 また、本開示にかかる表示パネルは、非可視光を射出し、反射された非可視光を受光する光学装置が利用可能な表示パネルである。表示パネルは、パターン層と、非可視光反射層と、屈折率nの透明な媒質と、を備える。パターン層は、ドットによるパターンが形成されている。非可視光反射層は、パターン層と対向して配置され、光学装置から射出された非可視光の少なくとも一部を、パターン層を介して光学装置へと反射する。屈折率nの透明な媒質は、パターン層と非可視光反射層との間に設けられている。パターン層を形成する各ドットの非可視光反射層に対向する面から、非可視光反射層の表面形状の平均線までの距離Xは、W/2≦X<D/tan(sin-1[{sin(π/4)}/n])の式を満たす。ここで、パターン層を形成する各ドットの平均長径をD、前記非可視光反射層の表面形状の平均高低差をWとする。 The display panel according to the present disclosure is a display panel that can use an optical device that emits invisible light and receives reflected invisible light. The display panel includes a pattern layer, a non-visible light reflection layer, and a transparent medium having a refractive index n. The pattern layer is formed with a dot pattern. The non-visible light reflection layer is disposed to face the pattern layer, and reflects at least a part of the non-visible light emitted from the optical device to the optical device through the pattern layer. A transparent medium having a refractive index n is provided between the pattern layer and the non-visible light reflection layer. The distance X from the surface of each dot forming the pattern layer facing the non-visible light reflecting layer to the average line of the surface shape of the non-visible light reflecting layer is W / 2 ≦ X <D / tan (sin −1 [ {Sin (π / 4)} / n]) is satisfied. Here, the average major axis of each dot forming the pattern layer is D, and the average height difference of the surface shape of the invisible light reflecting layer is W.
 より好ましくは、W/2≦X<D/{2×tan(sin-1[{sin(π/4)}/n])}の式を満たす。更に好ましくは、X=W/2の式を満たす。 More preferably, the following formula is satisfied: W / 2 ≦ X <D / {2 × tan (sin −1 [{sin (π / 4)} / n])}. More preferably, the formula of X = W / 2 is satisfied.
図1は、表示制御システム100の外観を示すイメージ図である。FIG. 1 is an image diagram showing an appearance of the display control system 100. 図2は、表示制御システム100の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the display control system 100. 図3は、第1の実施の形態にかかる表示パネル210の断面図である。FIG. 3 is a cross-sectional view of the display panel 210 according to the first embodiment. 図4は、ドットパターンシート410と赤外反射シート430との位置関係の詳細を説明するために、第1の実施の形態にかかる表示パネル210の一部を拡大した図である。FIG. 4 is an enlarged view of a part of the display panel 210 according to the first embodiment in order to explain details of the positional relationship between the dot pattern sheet 410 and the infrared reflective sheet 430. 図5は、ドット411とドットの影の間隔を説明する図である。FIG. 5 is a diagram illustrating the interval between the dot 411 and the dot shadow. 図6は、距離Xの最適な範囲を説明するための第1の図である。FIG. 6 is a first diagram for explaining the optimum range of the distance X. In FIG. 図7は、距離Xの最適な範囲を説明するための第2の図である。FIG. 7 is a second diagram for explaining the optimum range of the distance X. In FIG. 図8Aは、ドットパターンを説明するための拡大イメージ図である。FIG. 8A is an enlarged image diagram for explaining a dot pattern. 図8Bは、ドットパターンを説明するための拡大イメージ図である。FIG. 8B is an enlarged image diagram for explaining the dot pattern. 図9Aは、ドット411の位置によって、ドット411の位置を数値化した情報が異なることを説明するための概略図である。FIG. 9A is a schematic diagram for explaining that information obtained by digitizing the position of the dot 411 differs depending on the position of the dot 411. 図9Bは、ドット411の位置によって、ドット411の位置を数値化した情報が異なることを説明するための概略図である。FIG. 9B is a schematic diagram for explaining that information obtained by digitizing the position of the dot 411 differs depending on the position of the dot 411. 図9Cは、ドット411の位置によって、ドット411の位置を数値化した情報が異なることを説明するための概略図である。FIG. 9C is a schematic diagram for explaining that information obtained by digitizing the position of the dot 411 differs depending on the position of the dot 411. 図9Dは、ドット411の位置によって、ドット411の位置を数値化した情報が異なることを説明するための概略図である。FIG. 9D is a schematic diagram for explaining that information obtained by digitizing the position of the dot 411 differs depending on the position of the dot 411. 図10は、表示制御システム100の動作を示すフローチャートである。FIG. 10 is a flowchart showing the operation of the display control system 100.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the inventor provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and is not intended to limit the claimed subject matter. .
 (第1の実施の形態)
 図1は、第1の実施の形態に係る表示制御システム100の外観を示すイメージ図である。表示制御システム100は、表示装置200と、光学式デジタルペン(以下、単に「デジタルペン」と称する)300とを備えている。表示装置200は、表示パネル210を備えている。表示パネル210の面上には、画像等を表示することができる表示面が規定されている。
(First embodiment)
FIG. 1 is an image diagram showing an appearance of a display control system 100 according to the first embodiment. The display control system 100 includes a display device 200 and an optical digital pen (hereinafter simply referred to as “digital pen”) 300. The display device 200 includes a display panel 210. On the surface of the display panel 210, a display surface capable of displaying an image or the like is defined.
 表示パネル210の表示面上には、表示パネル210上における位置に関する情報を表すドットパターンが設けられている。デジタルペン300は、当該ペン先位置にあるドットパターンを光学的に読み取ることによって、デジタルペン300の先端が位置する表示パネル210上の位置に関する情報(以下、「位置情報」ともいう)を検出することができる。表示装置200とデジタルペン300とは無線通信しており、デジタルペン300は、検出した位置情報を表示装置200に送信する。これにより、表示装置200は、デジタルペン300のペン先位置を示す位置情報を把握することができ、様々な表示制御を行う。 On the display surface of the display panel 210, a dot pattern representing information on the position on the display panel 210 is provided. The digital pen 300 optically reads the dot pattern at the pen tip position, thereby detecting information on the position on the display panel 210 where the tip of the digital pen 300 is located (hereinafter also referred to as “position information”). be able to. The display device 200 and the digital pen 300 are in wireless communication, and the digital pen 300 transmits the detected position information to the display device 200. Thereby, the display apparatus 200 can grasp position information indicating the pen tip position of the digital pen 300 and performs various display controls.
 例えば、デジタルペン300の先端を表示パネル210上で移動させた場合を想定する。このとき、デジタルペン300は、連続的に読み取ったドットパターンから、デジタルペン300の先端の軌跡として、連続的な位置情報を検出する。デジタルペン300は、検出した位置情報を、表示装置200へと逐次送信する。これにより、表示装置200は、デジタルペン300の先端の軌跡に応じて、表示パネル210に点を連続的に表示することができる。この機能を用いて、ユーザは、表示パネル210に文字や図形等をデジタルペン300で手書き入力することができる。 For example, it is assumed that the tip of the digital pen 300 is moved on the display panel 210. At this time, the digital pen 300 detects continuous position information as a locus of the tip of the digital pen 300 from the dot pattern continuously read. The digital pen 300 sequentially transmits the detected position information to the display device 200. Thereby, the display device 200 can continuously display dots on the display panel 210 according to the locus of the tip of the digital pen 300. Using this function, the user can input characters, figures, and the like on the display panel 210 by handwriting with the digital pen 300.
 [2.表示制御システム100の構成]
 続いて、表示制御システム100の構成について説明する。図2は、表示制御システム100の構成を示すブロック図である。
[2. Configuration of Display Control System 100]
Next, the configuration of the display control system 100 will be described. FIG. 2 is a block diagram illustrating a configuration of the display control system 100.
 表示装置200は、表示パネル210、受信部230、表示側マイコン240、表示装置側メモリ250を有している。表示装置200は、他に電気的構成を有していてもよいが、記載を省略する。 The display device 200 includes a display panel 210, a receiving unit 230, a display-side microcomputer 240, and a display device-side memory 250. The display device 200 may have other electrical configurations, but the description is omitted.
 表示パネル210は、表示側マイコン240からの制御に従って、映像を表示することができる。表示パネル210は、例えば、液晶表示方式や有機EL方式により実現できる。表示パネル210の層構成については、詳細を後述する。 The display panel 210 can display an image in accordance with control from the display-side microcomputer 240. The display panel 210 can be realized by, for example, a liquid crystal display method or an organic EL method. Details of the layer structure of the display panel 210 will be described later.
 受信部230は、デジタルペン300から送信された信号を受信する。受信部230は、受信した信号を、表示側マイコン240に送信する。 The receiving unit 230 receives a signal transmitted from the digital pen 300. The receiving unit 230 transmits the received signal to the display side microcomputer 240.
 表示側マイコン240は、CPU及びメモリなどから構成されている。表示側マイコン240は、デジタルペン300から送信された信号に基づいて、表示パネル210に表示させる内容を制御する。 The display-side microcomputer 240 includes a CPU and a memory. The display-side microcomputer 240 controls the content displayed on the display panel 210 based on the signal transmitted from the digital pen 300.
 表示装置側メモリ250は、表示側マイコン240のCPUを動作させるためのプログラムを格納している。表示側マイコン240は、表示装置側メモリ250から適宜情報を読み取ったり、書き込んだりすることができる。 The display device side memory 250 stores a program for operating the CPU of the display side microcomputer 240. The display-side microcomputer 240 can read and write information from the display device-side memory 250 as appropriate.
 次に、図2を用いて、デジタルペン300の詳細な構成について説明する。 Next, a detailed configuration of the digital pen 300 will be described with reference to FIG.
 デジタルペン300は、円筒状の本体ケース310、本体ケース310の先端に取り付けられたペン先部320を備えている。そして、デジタルペン300は、本体ケース310の内部に、圧力センサ330、対物レンズ340、イメージセンサ350、ペン側マイコン360、ペン側メモリ390、送信部370、照明部380を有している。 The digital pen 300 includes a cylindrical main body case 310 and a pen tip portion 320 attached to the tip of the main body case 310. The digital pen 300 includes a pressure sensor 330, an objective lens 340, an image sensor 350, a pen side microcomputer 360, a pen side memory 390, a transmission unit 370, and an illumination unit 380 inside the main body case 310.
 本体ケース310は、一般的なペンと同様の外形形状であり、円筒状に形成されている。ペン先部320は、先細形状に形成されている。ペン先部320の先端は、表示パネル210の表面を傷つけない程度の丸みを帯びている。尚、ペン先部320の形状は、ユーザが表示パネル210に表示される画像を認識しやすい形状であることが好ましい。 The main body case 310 has the same external shape as a general pen and is formed in a cylindrical shape. The pen tip portion 320 is formed in a tapered shape. The tip of the pen tip 320 is rounded to the extent that the surface of the display panel 210 is not damaged. Note that the shape of the pen tip portion 320 is preferably a shape that allows the user to easily recognize an image displayed on the display panel 210.
 圧力センサ330は、本体ケース310に内蔵され、ペン先部320の基端部に連結されている。圧力センサ330は、ペン先部320に加わる圧力を検出し、その検出結果をペン側マイコン360へ送信する。具体的には、圧力センサ330は、ユーザがデジタルペン300を用いて表示パネル210上に文字などを記入する際に、表示パネル210からペン先部320に加わる圧力を検出する。圧力センサ330は、例えば、デジタルペン300を用いたユーザの入力意思の有無を判定する際に用いられる。 The pressure sensor 330 is built in the main body case 310 and connected to the proximal end portion of the pen tip portion 320. The pressure sensor 330 detects the pressure applied to the pen tip portion 320 and transmits the detection result to the pen-side microcomputer 360. Specifically, the pressure sensor 330 detects the pressure applied from the display panel 210 to the pen tip portion 320 when the user enters characters or the like on the display panel 210 using the digital pen 300. The pressure sensor 330 is used, for example, when determining whether or not the user intends to input using the digital pen 300.
 照明部380は、本体ケース310の先端部であって、ペン先部320の近傍に設けられている。照明部380は、例えば、赤外線LEDで構成されている。照明部380は、圧力センサ330の検出結果によりユーザの入力意志が判定されたときに、本体ケース310の先端から赤外光を照射するように設けられている。 The illumination unit 380 is provided at the tip of the main body case 310 and in the vicinity of the pen tip unit 320. The illumination part 380 is comprised by infrared LED, for example. The illumination unit 380 is provided to irradiate infrared light from the tip of the main body case 310 when the user's input intention is determined based on the detection result of the pressure sensor 330.
 対物レンズ340は、ペン先側から入射してくる光をイメージセンサ350に結像させる。対物レンズ340は、本体ケース310の先端部であって、ペン先部320の近傍に設けられている。デジタルペン300の先端を表示装置200の表示面に向けた状態で照明部380から赤外光を照射すると、赤外光は表示パネル210に入射し、表示パネル210内で拡散反射する。その結果、表示パネル210を透過した赤外光の一部が、デジタルペン300側へ戻ってくる。対物レンズ340には、照明部380から射出されて表示装置200で拡散反射した赤外光が入射する。イメージセンサ350は、対物レンズ340の光軸上に設けられている。そのため、対物レンズ340を通過した赤外光は、イメージセンサ350の撮像面に結像される。 The objective lens 340 causes the image sensor 350 to form an image of light incident from the pen tip side. The objective lens 340 is provided at the distal end portion of the main body case 310 and in the vicinity of the pen tip portion 320. When infrared light is irradiated from the illumination unit 380 with the tip of the digital pen 300 facing the display surface of the display device 200, the infrared light is incident on the display panel 210 and diffusely reflected in the display panel 210. As a result, part of the infrared light transmitted through the display panel 210 returns to the digital pen 300 side. Infrared light emitted from the illumination unit 380 and diffusely reflected by the display device 200 is incident on the objective lens 340. The image sensor 350 is provided on the optical axis of the objective lens 340. Therefore, the infrared light that has passed through the objective lens 340 is imaged on the imaging surface of the image sensor 350.
 イメージセンサ350は、撮像面に結像した光学像を電気信号に変換した画像信号を、ペン側マイコン360へ出力する。イメージセンサ350は、例えば、CCDイメージセンサ又はCMOSイメージセンサで構成される。詳しくは後述するが、表示パネル210には、ドット411によるドットパターンが形成されている。ドット411は、赤外光を吸収する材料(赤外光に対する透過率が低い材料)で形成されている。そのため、ドットパターンを構成するドット411からは、デジタルペン300へ赤外光がほとんど戻ってこない。他方、ドット411間の領域からは、ドット411の領域よりも多くの赤外光が戻ってくる。その結果、ドットパターンが黒く表現された光学像が、イメージセンサ350に撮像される。 The image sensor 350 outputs an image signal obtained by converting an optical image formed on the imaging surface into an electric signal to the pen-side microcomputer 360. The image sensor 350 is configured by, for example, a CCD image sensor or a CMOS image sensor. As will be described in detail later, the display panel 210 has a dot pattern formed of dots 411. The dots 411 are formed of a material that absorbs infrared light (a material with low transmittance with respect to infrared light). Therefore, the infrared light hardly returns to the digital pen 300 from the dots 411 constituting the dot pattern. On the other hand, more infrared light returns from the area between the dots 411 than from the area of the dots 411. As a result, an optical image in which the dot pattern is expressed in black is captured by the image sensor 350.
 ペン側マイコン360は、イメージセンサ350が撮像して生成した画像信号に基づいて、デジタルペン300の表示パネル210上の位置情報を特定する。詳しくは、ペン側マイコン360は、イメージセンサ350が撮像して生成した画像信号からドットパターンのパターン形状を取得し、そのパターン形状に基づいてペン先部320の表示パネル210上の位置を特定する。 The pen-side microcomputer 360 specifies position information on the display panel 210 of the digital pen 300 based on the image signal generated by imaging by the image sensor 350. Specifically, the pen-side microcomputer 360 acquires the pattern shape of the dot pattern from the image signal generated by imaging by the image sensor 350, and specifies the position of the pen tip 320 on the display panel 210 based on the pattern shape. .
 ペン側メモリ390は、ペン側マイコン360のCPUを動作させるためのプログラムを格納している。ペン側マイコン360は、ペン側メモリ390から適宜情報を読み取ったり、書き込んだりすることができる。 The pen side memory 390 stores a program for operating the CPU of the pen side microcomputer 360. The pen side microcomputer 360 can read and write information from the pen side memory 390 as appropriate.
 送信部370は、信号を外部に送信する。具体的には、送信部370は、ペン側マイコン360により特定された位置情報を無線通信相手である表示装置200の受信部230へと送信する。 The transmission unit 370 transmits a signal to the outside. Specifically, the transmission unit 370 transmits the position information specified by the pen-side microcomputer 360 to the reception unit 230 of the display device 200 that is a wireless communication partner.
 [3.表示パネル210の構成の詳細]
 次に、表示パネル210の構成について詳細を説明する。図3は、第1の実施形態にかかる表示パネル210の断面図である。
[3. Details of Configuration of Display Panel 210]
Next, details of the configuration of the display panel 210 will be described. FIG. 3 is a cross-sectional view of the display panel 210 according to the first embodiment.
 図3に示すように、表示パネル210は、光学フィルム400、透明接着層431、タッチセンサーガラス440、液晶パネル450、バックライト装置460を有している。 As shown in FIG. 3, the display panel 210 includes an optical film 400, a transparent adhesive layer 431, a touch sensor glass 440, a liquid crystal panel 450, and a backlight device 460.
 光学フィルム400は、ドットパターンシート410と、赤外反射シート430とを、透明媒質層413を介して積層して構成されている。ドットパターンシート410は、基材としてのPETフィルム412、複数のドット411により構成されるドットパターンを有している。 The optical film 400 is configured by laminating a dot pattern sheet 410 and an infrared reflection sheet 430 via a transparent medium layer 413. The dot pattern sheet 410 has a dot pattern composed of a PET film 412 as a base material and a plurality of dots 411.
 PETフィルム412は、表示パネル210の表面を保護し、また、ドット411等の層を積層するにあたっての基材として機能する。 The PET film 412 protects the surface of the display panel 210 and also functions as a base material for laminating layers such as the dots 411.
 PETフィルム412の裏面(図3における下面)には、複数のドット411が積層されている。各ドット411は、PETフィルム412の裏面から、自身の厚みの分だけ突出している。そして、詳細を後述する単位エリア213内の複数のドット411の集合により、1つのドットパターンが形成されている。ドット411は、赤外光を吸収する材料(赤外光に対する透過率が低い材料)で形成される。 A plurality of dots 411 are laminated on the back surface of PET film 412 (the lower surface in FIG. 3). Each dot 411 protrudes from the back surface of the PET film 412 by its own thickness. One dot pattern is formed by a set of a plurality of dots 411 in the unit area 213, which will be described in detail later. The dots 411 are formed of a material that absorbs infrared light (a material with low transmittance with respect to infrared light).
 赤外反射シート430は、凹凸基材433と、凹凸基材433の凹凸面434に沿って形成された赤外反射層432とから構成されている。凹凸基材433は、赤外反射性能を高めるため、基準面(凹凸面平均線435)に対して所定の角度による傾斜が規定された微細凹凸形状よりなる凹凸面434を有している。 The infrared reflection sheet 430 includes an uneven base 433 and an infrared reflection layer 432 formed along the uneven surface 434 of the uneven base 433. The concavo-convex base material 433 has a concavo-convex surface 434 having a fine concavo-convex shape in which an inclination at a predetermined angle with respect to a reference surface (concave / convex surface average line 435) is defined in order to improve infrared reflection performance.
 一例として、赤外反射シート430(凹凸基材433)は、凹凸面434の絶対傾斜角度αが25°のときの分布率f(α=25°)が0.5(%/°)以上であり、かつ、赤外反射シート430の有効総面積において凹凸面434の絶対傾斜角度αが40°以上である領域の占める投影面積の割合が20%以下としている。ここで、基準面435に対して凹凸面434の各凹凸形状が傾斜する絶対角度(<90°)を絶対傾斜角度αとし、分布率f(α)は、下記数1で表される。なお、αの単位は、[°]となる。 As an example, in the infrared reflective sheet 430 (uneven base material 433), the distribution rate f (α = 25 °) when the absolute inclination angle α of the uneven surface 434 is 25 ° is 0.5 (% / °) or more. In addition, in the effective total area of the infrared reflective sheet 430, the ratio of the projected area occupied by the region where the absolute inclination angle α of the uneven surface 434 is 40 ° or more is 20% or less. Here, an absolute angle (<90 °) at which each uneven shape of the uneven surface 434 is inclined with respect to the reference surface 435 is an absolute inclination angle α, and the distribution rate f (α) is expressed by the following formula 1. The unit of α is [°].
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、Saは、赤外反射シート430の有効総面積を示す。有効総面積とは、凹凸面434の凹凸形状がほぼ均一に形成されている領域(有効面)の総投影面積である。dαは、絶対傾斜角度αの近傍の微小角度を示す。dsは、有効面内で凹凸面434の絶対傾斜角度がαからα+dαの範囲である領域の占める投影面積を示す。投影面積とは、凹凸面434の凹凸形状に沿った曲面の面積ではなく、凹凸面434を平均化した平面(基準面)に投影した平面の面積である。 Sa represents the effective total area of the infrared reflection sheet 430. The effective total area is the total projected area of a region (effective surface) where the uneven shape of the uneven surface 434 is formed substantially uniformly. dα represents a minute angle near the absolute inclination angle α. ds indicates a projected area occupied by a region where the absolute inclination angle of the uneven surface 434 is in the range of α to α + dα in the effective plane. The projected area is not the area of the curved surface along the concavo-convex shape of the concavo-convex surface 434 but the area of the plane projected on the flat surface (reference surface) obtained by averaging the concavo-convex surface 434.
 こうすることにより、赤外反射シート430に赤外線の拡散反射特性を付与できる。そして、デジタルペン300に内蔵された照明部380から射出した赤外光を、赤外反射シート430で拡散反射させ、デジタルペン300に内蔵されたイメージセンサ350に赤外反射光を入射させることができる。なお、上記の凹凸形状は一例であり、他の条件により凹凸形状を形成してもよい。 By so doing, infrared diffuse reflection characteristics can be imparted to the infrared reflection sheet 430. The infrared light emitted from the illumination unit 380 built in the digital pen 300 is diffusely reflected by the infrared reflection sheet 430, and the infrared reflected light is incident on the image sensor 350 built in the digital pen 300. it can. In addition, said uneven | corrugated shape is an example and you may form uneven | corrugated shape by other conditions.
 赤外反射層432は、赤外線を反射する一方で可視光を透過する層である。ミクロに見たとき、赤外反射層432は赤外線を鏡面反射する。一方、マクロに見たとき、赤外反射シート430は、凹凸面434に沿って赤外反射層432が形成されているため、赤外線を拡散反射する赤外拡散反射部材として機能する。 The infrared reflective layer 432 is a layer that reflects infrared light while transmitting visible light. When viewed microscopically, the infrared reflection layer 432 specularly reflects infrared rays. On the other hand, when viewed macroscopically, the infrared reflection sheet 430 functions as an infrared diffuse reflection member that diffuses and reflects infrared rays because the infrared reflection layer 432 is formed along the uneven surface 434.
 透明媒質層413は、ドットパターンシート410と赤外反射シート430とを接着させるための層である。また、透明媒質層413は、複数のドット411の間を埋めるように、ドットパターンシート410と赤外反射シート430の間に積層されている。透明媒質層413は、可視光と赤外光をともに透過する材料により形成されている。透明媒質層413は、PETフィルム412、ドット411および凹凸基材433の材料の屈折率とほぼ等しい屈折率(屈折率n)を有する。赤外反射シート430のドットパターンシート410側の表面は、凹凸面434による凹凸形状を有している。そのため、透明媒質層413は、ドットパターンシート410と赤外反射シート430とを接着するにあたって、凹凸形状を平坦化させることにより間を埋めて光学的に結合する働きをする。 The transparent medium layer 413 is a layer for bonding the dot pattern sheet 410 and the infrared reflective sheet 430. Further, the transparent medium layer 413 is laminated between the dot pattern sheet 410 and the infrared reflection sheet 430 so as to fill a space between the plurality of dots 411. The transparent medium layer 413 is formed of a material that transmits both visible light and infrared light. The transparent medium layer 413 has a refractive index (refractive index n) substantially equal to the refractive index of the material of the PET film 412, the dots 411, and the uneven substrate 433. The surface of the infrared reflective sheet 430 on the dot pattern sheet 410 side has an uneven shape due to the uneven surface 434. Therefore, when the dot pattern sheet 410 and the infrared reflection sheet 430 are bonded to each other, the transparent medium layer 413 fills the gap by flattening the concavo-convex shape and functions to optically couple.
 タッチセンサーガラス440は、公知の技術により、表示パネル210に対するユーザのタッチ操作による指の接触を検出するセンサを備えたガラスである。タッチセンサーガラス440は、赤外反射シート430の裏面(図3における下面)に配置される。タッチセンサーガラス440の表面と、赤外反射シート430の裏面は透明接着層431により接着されている。 The touch sensor glass 440 is a glass including a sensor that detects contact of a finger by a user's touch operation with respect to the display panel 210 by a known technique. The touch sensor glass 440 is disposed on the back surface (the bottom surface in FIG. 3) of the infrared reflective sheet 430. The surface of the touch sensor glass 440 and the back surface of the infrared reflective sheet 430 are bonded by a transparent adhesive layer 431.
 液晶パネル450は、液晶分子の配向を制御することにより、バックライト装置460を光源とする可視光照射に基づいて画像を表示する装置である。液晶パネル450はブラックマトリックス453を含むカラーフィルタ層451、液晶層などを有している。ブラックマトリックス453は、例えばRGBそれぞれのカラーフィルタ452を区画する格子構造(画素構造)を形成する。液晶パネル450の裏面には、液晶パネル450に光を照射するバックライト装置460が配置されている。液晶パネル450は、表示側マイコン240による表示制御に基づき、液晶層の液晶配向を変化させるための電圧を掛ける。これにより、液晶パネル450は、バックライト装置460からの光の透過量を制御して、各種の表示動作を実行する。液晶パネル450は、タッチセンサーガラス440の裏面(図3における下面)に配置される。 The liquid crystal panel 450 is a device that displays an image based on visible light irradiation using the backlight device 460 as a light source by controlling the orientation of liquid crystal molecules. The liquid crystal panel 450 includes a color filter layer 451 including a black matrix 453, a liquid crystal layer, and the like. The black matrix 453 forms, for example, a lattice structure (pixel structure) that partitions the RGB color filters 452. On the back surface of the liquid crystal panel 450, a backlight device 460 for irradiating the liquid crystal panel 450 with light is disposed. The liquid crystal panel 450 applies a voltage for changing the liquid crystal alignment of the liquid crystal layer based on display control by the display-side microcomputer 240. Accordingly, the liquid crystal panel 450 controls the amount of light transmitted from the backlight device 460 and executes various display operations. The liquid crystal panel 450 is disposed on the back surface of the touch sensor glass 440 (the lower surface in FIG. 3).
 続いて、ドットパターンシート410と赤外反射シート430との位置関係の詳細について説明する。図4は、ドットパターンシート410と赤外反射シート430との位置関係の詳細を説明するために、表示パネル210の一部を拡大した図である。 Subsequently, details of the positional relationship between the dot pattern sheet 410 and the infrared reflection sheet 430 will be described. FIG. 4 is an enlarged view of a part of the display panel 210 in order to explain the details of the positional relationship between the dot pattern sheet 410 and the infrared reflection sheet 430.
 赤外反射シート430上にドット411を直接形成する構成とした場合、素材間の密着性、表面ぬれ性、各素材による加工温度の差異などを考慮する必要があり、このため材料選定上、製造方法の制約があった。そこで、実施の形態1にかかる表示パネル210では、ドットパターンシート410と赤外反射シート430とをそれぞれ個別に作製し、それぞれを透明媒質層413で接着した構成とする。これにより、材料選定上、製造方法の制約が少ない表示パネル210を提供できる。なお、透明媒質層413には、例えば光硬化性の透明性接着剤あるいは透明性粘着材が用いられる。 When the dot 411 is directly formed on the infrared reflecting sheet 430, it is necessary to consider the adhesiveness between the materials, the surface wettability, the difference in processing temperature depending on each material, etc. There were method limitations. Therefore, in the display panel 210 according to the first embodiment, the dot pattern sheet 410 and the infrared reflection sheet 430 are individually manufactured and bonded to each other with a transparent medium layer 413. Thereby, the display panel 210 with few restrictions of a manufacturing method can be provided in material selection. For the transparent medium layer 413, for example, a photocurable transparent adhesive or a transparent adhesive is used.
 ここで、ドットパターンシート410を形成する各ドット411の赤外反射シート430(赤外反射層432)に対向する側の先端から、赤外反射シート430の凹凸面434の平均線までの距離をXとする。この距離Xが大きいとデジタルペン300の照明部380からの赤外光で照らされたドット411の影が赤外反射シート430の表面部分に投影される。これが本来のドット411の像と重なった2重像となって、デジタルペン300において読取りエラーが発生する可能性がある。 Here, the distance from the tip of each dot 411 forming the dot pattern sheet 410 on the side facing the infrared reflection sheet 430 (infrared reflection layer 432) to the average line of the uneven surface 434 of the infrared reflection sheet 430 is determined. Let X be. When this distance X is large, the shadow of the dot 411 illuminated by the infrared light from the illumination unit 380 of the digital pen 300 is projected onto the surface portion of the infrared reflection sheet 430. This becomes a double image that overlaps the original image of the dot 411, and a reading error may occur in the digital pen 300.
 ここで、赤外反射シート430(赤外反射層432)の凹凸面434の平均高低差をWとする。このとき、ドット411が凹凸面434に最も近接する距離X=W/2では2重像の発生が無く、最も望ましい条件である。しかし、距離X=W/2とまではしなくとも、距離Xを適切な範囲に設定しさえすれば、ドット411の影響を低減でき、読取りエラーの発生を防ぐことができることを発見した。以下、読取りエラーの発生を防ぐための、距離Xの適切な範囲について説明する。 Here, the average height difference of the uneven surface 434 of the infrared reflection sheet 430 (infrared reflection layer 432) is defined as W. At this time, at the distance X = W / 2 where the dot 411 is closest to the uneven surface 434, the double image is not generated, which is the most desirable condition. However, it has been found that even if the distance X is not set to W / 2, the influence of the dots 411 can be reduced and the occurrence of a reading error can be prevented if the distance X is set to an appropriate range. Hereinafter, an appropriate range of the distance X for preventing occurrence of a reading error will be described.
 ここで、表示パネル210に対するデジタルペン300の傾き角度(照明部380光軸とイメージセンサ350光軸とのなす角度)をθ(0<θ<π/2(90°)とする。このとき、距離Xの適切な範囲は、ドット411の長径サイズD、角度θ、透明媒質層413の屈折率nから算定することができる。 Here, an inclination angle of the digital pen 300 with respect to the display panel 210 (an angle formed by the illumination unit 380 optical axis and the image sensor 350 optical axis) is θ (0 <θ <π / 2 (90 °)). An appropriate range of the distance X can be calculated from the major axis size D of the dots 411, the angle θ, and the refractive index n of the transparent medium layer 413.
 図5はドット411とドットの影の間隔を説明する図である。図5に示すように、デジタルペン300の照明部380からの赤外光を、ドット411の直上から照らす場合、その直下に破線で示すような影が生じる。その影部分では照明光の拡散反射は無く、それ以外の領域から拡散反射光が放射されるため、傾きθ方向のイメージセンサ350からは、本来のドット411から離れた位置に影が観察される。このドット411とドットの影の間隔をLとする。このとき、間隔Lは、角度θの透明媒質層413内の換算角度をφとして数2により表される。なお、θおよびφの単位は、[rad]となる。 FIG. 5 is a diagram illustrating the interval between the dot 411 and the dot shadow. As shown in FIG. 5, when the infrared light from the illumination unit 380 of the digital pen 300 is illuminated from directly above the dot 411, a shadow as indicated by a broken line is generated immediately below the dot 411. In the shadow portion, there is no diffuse reflection of the illumination light, and diffuse reflection light is radiated from other areas, so that the shadow is observed at a position away from the original dot 411 from the image sensor 350 in the inclination θ direction. . Let L be the distance between the dot 411 and the dot shadow. At this time, the interval L is expressed by Equation 2 where φ is the converted angle in the transparent medium layer 413 of the angle θ. The units of θ and φ are [rad].
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、空気層の屈折率を1.0としたとき、スネルの法則により、数3が成立する。 Also, when the refractive index of the air layer is 1.0, Equation 3 is established according to Snell's law.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 従って、換算角度φは、次の数4が成立する。 Therefore, the following equation 4 is established for the conversion angle φ.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 数2に数4を代入して、数5が成立する。 Substituting equation 4 into equation 2 results in equation 5.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 デジタルペン300は、用途から考慮すると、携帯性および操作性が求められる小型デバイスである。そのため、デジタルペン300が太くなることは考えられず、デジタルペン300内に設けられている照明部380光軸とイメージセンサ350光軸とのなす角度θも大きな角度にはならない。実質的には、角度θは、π/4(45°)以下になると考えられる。好ましくは、デジタルペン300の携帯性および操作性を考慮すると、角度θは、π/9(20°)以下がよい。角度θが大きいほど2重像が出やすくなるため、ここではワーストケースを想定してθ=π/4として算定した例を説明する。なお、ここではデジタルペン300の長軸と、イメージセンサ350光軸は同一であると仮定する。 The digital pen 300 is a small device that requires portability and operability in consideration of usage. Therefore, the digital pen 300 is not expected to be thick, and the angle θ formed by the illumination unit 380 optical axis provided in the digital pen 300 and the image sensor 350 optical axis is not a large angle. In reality, the angle θ is considered to be π / 4 (45 °) or less. Preferably, considering the portability and operability of the digital pen 300, the angle θ is preferably π / 9 (20 °) or less. Since the double image is more likely to appear as the angle θ is larger, an example will be described in which the worst case is calculated and θ = π / 4. Here, it is assumed that the major axis of the digital pen 300 and the optical axis of the image sensor 350 are the same.
 図6は、距離Xの最適な範囲を説明するための第1の図である。図6に示すように、デジタルペン300の照明部380からの赤外光を、ドット411の直上から照らす場合、ペン角度θは、ドットパターンシート410(表示パネル210)の法線に対してπ/4となる。そして、数5の間隔Lがドット径Dと等しくなったとき、ドット411の像と、ドット411の影の像はそれぞれ1個ずつに分離されて、イメージセンサ350に撮像される。数5において間隔Lがドット径Dと等しいとき、θ=π/4とすると、次の数6が導かれる。 FIG. 6 is a first diagram for explaining the optimum range of the distance X. As shown in FIG. 6, when the infrared light from the illumination unit 380 of the digital pen 300 is illuminated from directly above the dots 411, the pen angle θ is π with respect to the normal line of the dot pattern sheet 410 (display panel 210). / 4. When the interval L in Formula 5 becomes equal to the dot diameter D, the image of the dot 411 and the shadow image of the dot 411 are separated into one image and captured by the image sensor 350. When the interval L is equal to the dot diameter D in Equation 5, assuming that θ = π / 4, the following Equation 6 is derived.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 このとき、本来1個のドット411として撮像されるべき像が2個のドット像となって撮像されるため、ドット411の読取りエラーが発生する。 At this time, since an image that should originally be captured as one dot 411 is captured as two dot images, a reading error of the dot 411 occurs.
 図7は、距離Xの最適な範囲を説明するための第2の図である。図7に示すように、間隔Lがドット径Dの半分D/2のとき、ドット411の像と、ドット411の影の像は約半分程度が重なりあった二重像として、イメージセンサ350に撮像される。その条件を上記数6の導出と同様に距離Xについて解くと、次の数7が導かれる。 FIG. 7 is a second diagram for explaining the optimum range of the distance X. As shown in FIG. 7, when the interval L is half D / 2 of the dot diameter D, the image of the dot 411 and the shadow image of the dot 411 are displayed on the image sensor 350 as a double image in which about half are overlapped. Imaged. When the condition is solved with respect to the distance X in the same manner as the derivation of Equation 6, the following Equation 7 is derived.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 この場合は、本来サイズのドット411が2重像として太った大きなサイズとして撮像されるので、先の図6で説明した2個のドット像のような読み取りエラー発生は減少する。しかしながら、デジタルペン300の筆記スピードを速めた場合に、隣り合うドット411間がつながって撮像され、読み取りエラーが発生する懸念が残る。 In this case, since the originally sized dots 411 are picked up as a large and thick image as a double image, the occurrence of reading errors such as the two dot images described with reference to FIG. 6 is reduced. However, when the writing speed of the digital pen 300 is increased, there is a concern that adjacent dots 411 are connected and imaged, and a reading error occurs.
 以上の検討から、距離Xの設定は、次の数8に示す範囲が好適である。 From the above examination, the range shown in the following equation 8 is suitable for setting the distance X.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 更に好ましくは、距離Xの設定は、次の数9に示す範囲が好適である。 More preferably, the distance X is set in the range shown in the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 このように、距離Xの範囲を適切に設定すれば、デジタルペン300による読取り性能に優れ、かつ製造しやすいシステムを構築することができる。なお、この距離Xを設定するには、所定の厚みに設定されたシート状の粘着材フィルムなどを用いればよい。これにより、距離Xの範囲が適切に設定されたシートを、簡便に製造することができる。 As described above, if the range of the distance X is appropriately set, it is possible to construct a system that is excellent in reading performance by the digital pen 300 and is easy to manufacture. In order to set the distance X, a sheet-like adhesive film set to a predetermined thickness may be used. Thereby, the sheet | seat in which the range of the distance X was set appropriately can be manufactured simply.
 ここで、実施例としての実数値は、ドット411の径Dは80~200μm程度、透明媒質層413の屈折率nは、1.4~1.6程度、凹凸面434の平均高低差をWは1~10μmである。例えば、照明部380光軸とイメージセンサ350光軸とのなす角度θ=π/4、ドット長径サイズD=120μm、透明媒質層の屈折率n=1.5、W=5μmとする。このとき、距離Xの適切な範囲は、数10、更に好ましくは数11に示す範囲となる。 Here, the real value as an example is that the diameter D of the dot 411 is about 80 to 200 μm, the refractive index n of the transparent medium layer 413 is about 1.4 to 1.6, and the average height difference of the uneven surface 434 is W. Is 1 to 10 μm. For example, the angle θ between the illumination unit 380 optical axis and the optical axis of the image sensor 350 = π / 4, the dot major axis size D = 120 μm, the refractive index n = 1.5 of the transparent medium layer, and W = 5 μm. At this time, an appropriate range of the distance X is a range shown in Formula 10, more preferably in Formula 11.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 [4.ドットパターンの詳細]
 以下に、ドットパターンの詳細について説明する。図8A及び図8Bは、光学フィルム400を正面から見たときの拡大図である。図8A及び図8Bには、ドットパターンのドット411の位置を説明するために、光学フィルム400上に、仮想の線(光学フィルム400上に実際には存在しない線)として、第1基準線414と第2基準線415とを記載している。第1基準線414と第2基準線415は互いに直交している。図8A及び図8Bでは、複数の第1基準線414と複数の第2基準線415により格子が形成されている。
[4. Details of dot pattern]
Details of the dot pattern will be described below. 8A and 8B are enlarged views when the optical film 400 is viewed from the front. 8A and 8B, in order to explain the position of the dot 411 of the dot pattern, the first reference line 414 is assumed as a virtual line (a line that does not actually exist on the optical film 400) on the optical film 400. And a second reference line 415. The first reference line 414 and the second reference line 415 are orthogonal to each other. 8A and 8B, a plurality of first reference lines 414 and a plurality of second reference lines 415 form a lattice.
 各ドット411は、第1基準線414と第2基準線415との交点の周辺に配置される。つまり、各ドット411は、各格子点の近傍に配置される。図9A~9Dは、ドット411の配置パターンを示す図である。各ドット411は、第1基準線414の延伸方向をX方向とし、第2基準線415の延伸方向をY方向とした場合に、第1基準線414と第2基準線415の交点から、X方向又はY方向に沿って、プラス側又はマイナス側へオフセット(シフト)した位置に配置される。具体的には、光学フィルム400では、ドット411が、図9A~9Dの何れかの配置をとる。図9Aの配置では、ドット411は、第1基準線414と第2基準線415との交点の上側の位置に配置される。この配置を数値化する際には「1」で表す。図9Bの配置では、ドット411は、第1基準線414と第2基準線415との交点の右側の位置に配置される。この配置を数値化する際には「2」で表す。図9Cの配置では、ドット411は、第1基準線414と第2基準線415との交点の下側の位置に配置される。この配置を数値化する際には「3」で表す。図9Dの配置では、ドット411は、第1基準線414と第2基準線415との交点の左側の位置に配置される。この配置を数値化する際には「4」で表す。以上のように、各ドット411は、その配置パターンに応じて、デジタルペン300において「1」から「4」の数値で表される。 Each dot 411 is arranged around the intersection of the first reference line 414 and the second reference line 415. That is, each dot 411 is arranged in the vicinity of each lattice point. 9A to 9D are diagrams showing arrangement patterns of the dots 411. FIG. Each dot 411 has an X direction from the intersection of the first reference line 414 and the second reference line 415 when the extending direction of the first reference line 414 is the X direction and the extending direction of the second reference line 415 is the Y direction. It is disposed at a position offset (shifted) to the plus side or the minus side along the direction or the Y direction. Specifically, in the optical film 400, the dots 411 are arranged in any one of FIGS. 9A to 9D. In the arrangement of FIG. 9A, the dot 411 is arranged at a position above the intersection of the first reference line 414 and the second reference line 415. When this arrangement is digitized, it is represented by “1”. In the arrangement of FIG. 9B, the dot 411 is arranged at a position on the right side of the intersection of the first reference line 414 and the second reference line 415. When this arrangement is digitized, it is represented by “2”. In the arrangement of FIG. 9C, the dot 411 is arranged at a position below the intersection of the first reference line 414 and the second reference line 415. When this arrangement is digitized, it is represented by “3”. In the arrangement of FIG. 9D, the dot 411 is arranged at a position on the left side of the intersection of the first reference line 414 and the second reference line 415. When this arrangement is digitized, it is represented by “4”. As described above, each dot 411 is represented by a numerical value from “1” to “4” in the digital pen 300 according to the arrangement pattern.
 そして、図8Bに示すように、6ドット×6ドットを1つの単位エリア213として、単位エリア213に含まれる36個のドット411で、1つのドットパターンを形成する。単位エリア213に含まれる36個のドット411のそれぞれを、図9A~9Dに示す「1」~「4」の何れかの配置とすることによって、互いに異なる情報を持つ膨大な数(6ドット×6ドットを1つの単位エリアとした場合、4の36乗個通り)のドットパターンを形成することができる。 8B, 6 dots × 6 dots are defined as one unit area 213, and one dot pattern is formed by 36 dots 411 included in the unit area 213. By arranging each of the 36 dots 411 included in the unit area 213 in any one of “1” to “4” shown in FIGS. 9A to 9D, a huge number (6 dots × In the case where 6 dots are used as one unit area, a dot pattern of 4 to the 36th power can be formed.
 [5.表示制御システム100の表示動作]
 続いて、このように構成された表示制御システム100の表示動作について説明する。図10は、表示動作の流れを示すフローチャートである。以下では、ユーザが、デジタルペン300を用いて表示装置200に文字をペン入力(記入)する場合について説明する。
[5. Display Operation of Display Control System 100]
Subsequently, a display operation of the display control system 100 configured as described above will be described. FIG. 10 is a flowchart showing the flow of the display operation. In the following, a case where the user performs a pen input (entry) on the display device 200 using the digital pen 300 will be described.
 まず、表示制御システム100を構成する表示装置200及び、デジタルペン300の電源をオンにする。これにより、表示側マイコン240は、不図示の電源から電力が供給され、各種の動作を実行するための初期動作を完了させる。同様に、ペン側マイコン360は、不図示の電源から電力が供給され、各種の動作を実行するための初期動作を完了させる。表示装置200と、デジタルペン300とは、お互いに無線通信を確立させる。これにより、デジタルペン300の送信部370から、表示装置200の受信部230への通信が可能な状態となる。 First, the display device 200 and the digital pen 300 constituting the display control system 100 are turned on. As a result, the display-side microcomputer 240 is supplied with power from a power source (not shown) and completes initial operations for executing various operations. Similarly, the pen-side microcomputer 360 is supplied with power from a power supply (not shown), and completes initial operations for executing various operations. The display device 200 and the digital pen 300 establish wireless communication with each other. As a result, communication from the transmission unit 370 of the digital pen 300 to the reception unit 230 of the display device 200 is enabled.
 続いて、デジタルペン300のペン側マイコン360は、ペン先部320に作用する圧力の監視を開始する(S500)。この圧力の検出は、圧力センサ330が行う。圧力センサ330によって圧力が検出されると(S500におけるYes)、ペン側マイコン360は、ユーザが表示装置200の表示パネル210に対して文字などをペン入力していると判定し、照明部380に赤外光の照射を開始させる。圧力センサ330によって圧力が検出されていない間(S500におけるNoが続く間)は、ペン側マイコン360は、ステップS500を繰り返す。 Subsequently, the pen-side microcomputer 360 of the digital pen 300 starts monitoring the pressure acting on the pen tip 320 (S500). This pressure is detected by the pressure sensor 330. When the pressure is detected by the pressure sensor 330 (Yes in S500), the pen-side microcomputer 360 determines that the user is pen-inputting characters or the like to the display panel 210 of the display device 200, and the illumination unit 380 Infrared light irradiation is started. While the pressure is not detected by the pressure sensor 330 (while No in S500 continues), the pen-side microcomputer 360 repeats step S500.
 次に、対物レンズ340及びイメージセンサ350によりなる構成は、ペン先位置にある表示パネル210に形成されたドットパターンを検出する(S510)。ここで、照明部380から照射された赤外光は、表示パネル210内で拡散反射し、一部の赤外光がデジタルペン300側へ戻ってくる。 Next, the configuration including the objective lens 340 and the image sensor 350 detects a dot pattern formed on the display panel 210 at the pen tip position (S510). Here, the infrared light emitted from the illumination unit 380 is diffusely reflected in the display panel 210, and a part of the infrared light returns to the digital pen 300 side.
 デジタルペン300側へ戻る赤外光は、ドットパターンのドット411をほとんど透過しない。対物レンズ340には主にドット411間の領域を透過した赤外光が到達する。そして、赤外光は、対物レンズ340を介してイメージセンサ350に受光される。対物レンズ340は、表示パネル210上においてペン先部320が指示している位置からの反射光を受光するように配置されている。その結果、表示パネル210の表示面上におけるペン先部320の指示位置のドットパターンがイメージセンサ350により撮像される。このようにして、対物レンズ340及びイメージセンサ350によりなる構成は、ドットパターンを光学的に読み取る。イメージセンサ350の撮像により生成された画像信号は、ペン側マイコン360に送信される。 赤 外 Infrared light returning to the digital pen 300 side hardly transmits through the dot 411 of the dot pattern. Infrared light that has mainly passed through the region between the dots 411 reaches the objective lens 340. The infrared light is received by the image sensor 350 through the objective lens 340. The objective lens 340 is disposed on the display panel 210 so as to receive reflected light from the position indicated by the pen tip portion 320. As a result, the dot pattern at the indicated position of the pen tip portion 320 on the display surface of the display panel 210 is imaged by the image sensor 350. Thus, the configuration including the objective lens 340 and the image sensor 350 optically reads the dot pattern. An image signal generated by the imaging of the image sensor 350 is transmitted to the pen side microcomputer 360.
 次に、ペン側マイコン360は、受信した画像信号からドットパターンのパターン形状を取得し、そのパターン形状に基づいて、表示パネル210上におけるペン先の位置を特定する(S520)。詳しくは、ペン側マイコン360は、得られた画像信号に所定の画像処理を施すことにより、ドットパターンのパターン形状を取得する。続いて、ペン側マイコン360は、取得したパターン形状におけるドット411の配列からどの単位エリア(6ドット×6ドットの単位エリア)であるかを割り出すと共に、単位エリアのドットパターンからその単位エリアの位置座標(位置情報)を特定する。ペン側マイコン360は、ドットパターンのコーディング方法に対応した所定の演算により、ドットパターンを位置座標に変換する。 Next, the pen side microcomputer 360 acquires the pattern shape of the dot pattern from the received image signal, and specifies the position of the pen tip on the display panel 210 based on the pattern shape (S520). Specifically, the pen side microcomputer 360 acquires the pattern shape of the dot pattern by performing predetermined image processing on the obtained image signal. Subsequently, the pen-side microcomputer 360 determines which unit area (6 dot × 6 dot unit area) from the arrangement of the dots 411 in the acquired pattern shape, and the position of the unit area from the dot pattern of the unit area. Specify coordinates (position information). The pen-side microcomputer 360 converts the dot pattern into position coordinates by a predetermined calculation corresponding to the dot pattern coding method.
 そして、ペン側マイコン360は、特定した位置情報を、送信部370を介して表示装置200へ送信する(S530)。これにより、表示装置200は、デジタルペン300のペン先位置を把握することができる。 Then, the pen-side microcomputer 360 transmits the specified position information to the display device 200 via the transmission unit 370 (S530). Thereby, the display apparatus 200 can grasp the pen tip position of the digital pen 300.
 デジタルペン300から送信された位置情報は、表示装置200の受信部230により受信される。受信された位置情報は、受信部230から表示側マイコン240に送信される。 The position information transmitted from the digital pen 300 is received by the receiving unit 230 of the display device 200. The received position information is transmitted from the receiving unit 230 to the display-side microcomputer 240.
 表示側マイコン240は、位置情報を受信すると表示パネル210に対して表示面に対応する表示動作を実行する。具体的には、表示側マイコン240は、表示パネル210の表示領域において位置情報に対応する位置の表示内容を変更するように表示パネル210を制御する。この例では、文字の入力なので、表示パネル210の表示領域において位置情報に対応する位置に点を表示する。デジタルペン300でのペン入力が継続されている場合、表示側マイコン240は、位置情報を継続的に取得する。これにより、デジタルペン300のペン先部320の移動に追従して、表示パネル210の表示領域上におけるペン先部320の位置に、点を連続的に表示することができる。すなわち、デジタルペン300のペン先部320の軌跡に応じた文字を表示パネル210に表示できる。 When the display-side microcomputer 240 receives the position information, the display-side microcomputer 240 performs a display operation corresponding to the display surface on the display panel 210. Specifically, the display-side microcomputer 240 controls the display panel 210 so as to change the display content of the position corresponding to the position information in the display area of the display panel 210. In this example, since a character is input, a point is displayed at a position corresponding to the position information in the display area of the display panel 210. When the pen input with the digital pen 300 is continued, the display-side microcomputer 240 continuously acquires the position information. Thereby, following the movement of the pen tip portion 320 of the digital pen 300, dots can be continuously displayed at the position of the pen tip portion 320 on the display area of the display panel 210. That is, characters corresponding to the locus of the pen tip portion 320 of the digital pen 300 can be displayed on the display panel 210.
 なお、以上の説明では、表示面上において文字を記入する場合について説明したが、表示制御システム100の使い方は、これに限られるものでない。文字(数字など)に限らず、記号及び図形等を記入できることはもちろんのことであるが、デジタルペン300を消しゴムのように用いて、表示パネル210に表示された文字、及び図形等を消すこともできる。さらには、デジタルペン300をマウスのように用いて、表示パネル210に表示されるカーソルを移動させたり、表示パネル210に表示されるアイコンを選択したりすることもできる。すなわち、デジタルペン300を用いて、グラフィッカルユーザインターフェイス(GUI)を操作することができる。 In the above description, the case where characters are entered on the display surface has been described. However, the use of the display control system 100 is not limited to this. Of course, not only characters (numbers etc.) but also symbols and figures can be entered, but the digital pen 300 can be used like an eraser to erase characters and figures displayed on the display panel 210. You can also. Furthermore, using the digital pen 300 like a mouse, the cursor displayed on the display panel 210 can be moved, or the icon displayed on the display panel 210 can be selected. In other words, a graphical user interface (GUI) can be operated using the digital pen 300.
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, the first embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiment is for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be performed within the scope of the claims or an equivalent scope thereof.
 本発明は、非可視光を射出し、反射された非可視光を受光する光学装置とともに表示制御システムを形成する表示パネルに適用できる。 The present invention can be applied to a display panel that forms a display control system together with an optical device that emits invisible light and receives reflected invisible light.
100 表示制御システム
200 表示装置
210 表示パネル
230 受信部
240 表示側マイコン
250 表示装置側メモリ
300 デジタルペン
310 本体ケース
320 ペン先部
330 圧力センサ
340 対物レンズ
350 イメージセンサ
360 ペン側マイコン
370 送信部
380 照明部
390 ペン側メモリ
400 光学フィルム
410 ドットパターンシート(パターン層)
411 ドット
412 PETフィルム
413 透明媒質層
414 第1基準線
415 第2基準線
430 赤外反射シート
432 赤外反射層
433 凹凸基材
435 凹凸面平均線(基準面)
440 タッチセンサーガラス
450 液晶パネル
451 カラーフィルタ層
452 カラーフィルタ
453 ブラックマトリックス
460 バックライト装置
DESCRIPTION OF SYMBOLS 100 Display control system 200 Display apparatus 210 Display panel 230 Reception part 240 Display side microcomputer 250 Display side memory 300 Digital pen 310 Main body case 320 Pen tip part 330 Pressure sensor 340 Objective lens 350 Image sensor 360 Pen side microcomputer 370 Transmission part 380 Illumination 390 Pen side memory 400 Optical film 410 Dot pattern sheet (pattern layer)
411 dot 412 PET film 413 transparent medium layer 414 first reference line 415 second reference line 430 infrared reflection sheet 432 infrared reflection layer 433 uneven substrate 435 uneven surface average line (reference surface)
440 Touch sensor glass 450 Liquid crystal panel 451 Color filter layer 452 Color filter 453 Black matrix 460 Backlight device

Claims (6)

  1.  非可視光を射出する射出部と、反射された非可視光を受光する受光部とを備えた光学装置とともに表示制御システムを形成する表示パネルであって、
     前記光学装置が前記表示パネル上で指している位置情報を、前記光学装置により特定させるために、所定の規則に則ってドットによるパターンが形成されたパターン層と、
     前記パターン層と対向して配置され、前記光学装置から射出された非可視光の少なくとも一部を、前記パターン層を介して前記光学装置へと反射する非可視光反射層と、を備え、
     前記パターン層と前記非可視光反射層との間は、屈折率nの透明な媒質により接続されており、前記パターン層を形成する各ドットの前記非可視光反射層に対向する側の先端から、前記非可視光反射層の表面形状の平均線までの距離Xは、前記パターン層を形成する各ドットの平均長径をD、前記非可視光反射層の表面形状の平均高低差をW、前記光学装置の前記射出部の光軸と、前記受光部の光軸とのなす角度をθ(0<θ<π/2)としたときに、W/2≦X<D/tan[sin-1{sin θ/n}]の式を満たす表示パネル。
    A display panel that forms a display control system together with an optical device that includes an emission unit that emits invisible light and a light receiving unit that receives reflected invisible light,
    In order for the optical device to specify the position information that the optical device points on the display panel, a pattern layer in which a pattern of dots is formed according to a predetermined rule;
    A non-visible light reflecting layer that is disposed to face the pattern layer and reflects at least a part of the non-visible light emitted from the optical device to the optical device through the pattern layer;
    The pattern layer and the non-visible light reflecting layer are connected by a transparent medium having a refractive index n, and from the tip of each dot forming the pattern layer on the side facing the non-visible light reflecting layer. The distance X to the average line of the surface shape of the invisible light reflecting layer is D, the average major axis of each dot forming the pattern layer, W, the average height difference of the surface shape of the invisible light reflecting layer, W / 2 ≦ X <D / tan [sin −1 , where θ (0 <θ <π / 2) is an angle formed by the optical axis of the emission unit and the optical axis of the light receiving unit of the optical device. A display panel that satisfies the expression {sin θ / n}].
  2.  前記距離Xが、W/2≦X<D/(2×tan[sin-1{sin θ/n}])の式を満たす、請求項1に記載の表示パネル。 The display panel according to claim 1, wherein the distance X satisfies an expression of W / 2 ≦ X <D / (2 × tan [sin −1 {sin θ / n}]).
  3.  前記距離Xが、X=W/2の式を満たす、請求項1に記載の表示パネル。 The display panel according to claim 1, wherein the distance X satisfies an equation of X = W / 2.
  4.  非可視光を射出し、反射された非可視光を受光する光学装置が利用可能な表示パネルであって、
     ドットによるパターンが形成されたパターン層と、
     前記パターン層と対向して配置され、前記光学装置から射出された非可視光の少なくとも一部を、前記パターン層を介して前記光学装置へと反射する非可視光反射層と、
     前記パターン層と前記非可視光反射層との間に設けた屈折率nの透明な媒質と、
    を備え、
     前記パターン層を形成する各ドットの前記非可視光反射層に対向する面から、前記非可視光反射層の表面形状の平均線までの距離Xは、前記パターン層を形成する各ドットの平均長径をD、前記非可視光反射層の表面形状の平均高低差をWとしたときに、W/2≦X<D/tan(sin-1[{sin(π/4)}/n])の式を満たす表示パネル。
    A display panel that can use an optical device that emits invisible light and receives reflected invisible light,
    A pattern layer in which a pattern of dots is formed;
    A non-visible light reflecting layer disposed opposite to the pattern layer and reflecting at least part of the non-visible light emitted from the optical device to the optical device through the pattern layer;
    A transparent medium having a refractive index n provided between the pattern layer and the invisible light reflection layer;
    With
    The distance X from the surface facing each non-visible light reflecting layer of each dot forming the pattern layer to the average line of the surface shape of the non-visible light reflecting layer is the average major axis of each dot forming the pattern layer Where D is the average height difference of the surface shape of the invisible light reflecting layer, and W / 2 ≦ X <D / tan (sin −1 [{sin (π / 4)} / n]) A display panel that satisfies the formula.
  5.  前記距離Xが、W/2≦X<D/{2×tan(sin-1[{sin(π/4)}/n])}の式を満たす、請求項4に記載の表示パネル。 The display panel according to claim 4, wherein the distance X satisfies an expression of W / 2 ≦ X <D / {2 × tan (sin −1 [{sin (π / 4)} / n])}.
  6.  前記距離Xが、X=W/2の式を満たす、請求項4に記載の表示パネル。 The display panel according to claim 4, wherein the distance X satisfies a formula of X = W / 2.
PCT/JP2016/000780 2015-02-18 2016-02-16 Display panel WO2016132732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-029139 2015-02-18
JP2015029139 2015-02-18

Publications (1)

Publication Number Publication Date
WO2016132732A1 true WO2016132732A1 (en) 2016-08-25

Family

ID=56688912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000780 WO2016132732A1 (en) 2015-02-18 2016-02-16 Display panel

Country Status (1)

Country Link
WO (1) WO2016132732A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154893A1 (en) * 2017-02-24 2018-08-30 パナソニックIpマネジメント株式会社 Optical device, optical system, and method for manufacturing optical device
WO2024009344A1 (en) * 2022-07-04 2024-01-11 シャープディスプレイテクノロジー株式会社 Foldable display and flexible film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234423A (en) * 2011-05-06 2012-11-29 Dainippon Printing Co Ltd Electronic pen, input system and program
JP2014041594A (en) * 2012-07-27 2014-03-06 Panasonic Corp Display device and display control system
WO2014103274A1 (en) * 2012-12-28 2014-07-03 パナソニック株式会社 Display control system and reading apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234423A (en) * 2011-05-06 2012-11-29 Dainippon Printing Co Ltd Electronic pen, input system and program
JP2014041594A (en) * 2012-07-27 2014-03-06 Panasonic Corp Display device and display control system
WO2014103274A1 (en) * 2012-12-28 2014-07-03 パナソニック株式会社 Display control system and reading apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154893A1 (en) * 2017-02-24 2018-08-30 パナソニックIpマネジメント株式会社 Optical device, optical system, and method for manufacturing optical device
WO2024009344A1 (en) * 2022-07-04 2024-01-11 シャープディスプレイテクノロジー株式会社 Foldable display and flexible film

Similar Documents

Publication Publication Date Title
JP5902198B2 (en) Products with coding patterns
JP6539816B2 (en) Multi-modal gesture based interactive system and method using one single sensing system
US20130314313A1 (en) Display with coding pattern
TWI571769B (en) Contactless input device and method
JP3962084B2 (en) Information display input device
KR20110038120A (en) Multi-touch touchscreen incorporating pen tracking
TWI657367B (en) Touch display device and touch position detecting system
US20140362054A1 (en) Display control system and reading device
US20150042625A1 (en) Display control system and display devices
US20140184507A1 (en) Display device and display control system
US9128538B2 (en) Optical film, display panel, and display device
WO2016132732A1 (en) Display panel
US20130321357A1 (en) Display panel and display device
US20110102371A1 (en) Optical Touch Panel
JP2002082771A (en) Display medium, coordinate input system and information processing system
JP6340082B2 (en) Optical film and digital pen system using the same
US20150035811A1 (en) Display control system, display device, and display panel
US20160349422A1 (en) Optical film, display panel, and display device
KR101538490B1 (en) Optical film and digital pen system using the same
US20160364039A1 (en) Optical film, display panel, and display device
TWI607365B (en) Handwriting interactive display device and handwriting interactive reading device
KR20120025335A (en) Infrared touch screen devices
JP2016119065A (en) Display panel and display control system
JP2016151769A (en) Display panel
TWI396113B (en) Optical control device and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16752121

Country of ref document: EP

Kind code of ref document: A1