WO2016129323A1 - Laser module and laser machining apparatus - Google Patents

Laser module and laser machining apparatus Download PDF

Info

Publication number
WO2016129323A1
WO2016129323A1 PCT/JP2016/050990 JP2016050990W WO2016129323A1 WO 2016129323 A1 WO2016129323 A1 WO 2016129323A1 JP 2016050990 W JP2016050990 W JP 2016050990W WO 2016129323 A1 WO2016129323 A1 WO 2016129323A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
light beam
optical system
laser elements
Prior art date
Application number
PCT/JP2016/050990
Other languages
French (fr)
Japanese (ja)
Inventor
野田 進
正人 河▲崎▼
一樹 久場
山本 達也
西前 順一
小島 哲夫
Original Assignee
三菱電機株式会社
野田 進
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 野田 進 filed Critical 三菱電機株式会社
Publication of WO2016129323A1 publication Critical patent/WO2016129323A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers

Definitions

  • the present invention relates to a laser module and a laser processing apparatus including the laser module.
  • a conventional laser module includes a plurality of laser elements (semiconductor laser elements) as light sources, a number of collimating lenses (or lens arrays) corresponding to the number of laser elements, and a condensing lens.
  • the emitted light beam is collimated by a collimator lens, condensed by a condenser lens, and coupled to an optical fiber.
  • a vertical cavity surface emitting laser (VCSEL) element is used as a laser element, and a light beam emitted from the laser element is collimated by a microlens array and collected. It is disclosed that light is collected using an optical lens.
  • VCSEL vertical cavity surface emitting laser
  • a VCSEL element is used as in Non-Patent Document 1, and a plurality of lenses having the functions of a collimating lens and a condensing lens are used.
  • a microlens array integrated as a plurality of lenses the number of laser elements can be increased and a high output beam can be obtained.
  • Non-Patent Document 2 discloses a surface-emitting semiconductor laser element (photonic crystal surface-emitting laser element: PCSEL element) in which a periodic structure (photonic crystal structure) of the same order as the wavelength of light is provided in the vicinity of an active layer. It is disclosed.
  • PCSEL element photonic crystal surface-emitting laser element
  • the condensing property of the light beams after the fiber coupling is such that the parallel beams are in contact with each other.
  • the beam size (light emitting area) in the vicinity of the light emitting surface is generally small, thereby increasing the divergence angle of the emitted light beam. Therefore, immediately after the light beams are emitted, the adjacent light beams overlap each other, and the condensing property of the light beams after the fiber coupling is lowered.
  • This problem can be solved by increasing the arrangement interval of the laser elements or by moving the collimating lens away from the laser elements.
  • the module is increased in the direction orthogonal to the optical axis.
  • the collimating lens is moved away from the laser element, the module becomes large not only in the optical axis direction but also in the direction orthogonal to the optical axis due to the large divergence angle of the light beam. Therefore, in order to produce parallel beams in contact with each other, it is necessary to sufficiently shorten the installation position and focal length of the collimating lens.
  • the focal length of the collimating lens is shortened, the influence of the positional displacement of the collimating lens on the deviation of the light beam emission direction increases, and fine adjustment is required in the alignment of the collimating lens. Therefore, alignment is performed while observing the light beam that has passed through the collimating lens array in a state where power is supplied to the laser element to emit the light beam, and the adjustment of the optical system becomes complicated. Has occurred. At the same time, it means that problems such as a decrease in output due to the displacement of the optical elements are likely to occur after the laser module is mounted on the mount member.
  • a VCSEL element having a small light emission area is not suitable as a high-power and high-condensation laser light source.
  • EEL edge emitting semiconductor laser
  • An object of the present invention is to realize a small, high-power and high-concentration laser module.
  • a laser module includes a plurality of laser elements that respectively emit light beams, a collimating optical system that collimates the light beams emitted from the plurality of laser elements, and a light beam collimated by the collimating optical system. And a condensing optical system for condensing and forming a combined beam.
  • Each of the plurality of laser elements is a photonic crystal surface emitting laser (PCSEL) element, and is arranged in a hexagonal lattice pattern on the same plane.
  • PCSEL photonic crystal surface emitting laser
  • the present invention by using a photonic crystal surface emitting laser element having a large light emitting area and a small divergence angle, it is possible to realize a small, high output and high condensing laser module.
  • FIG. 1 It is a block diagram which shows the laser module by Embodiment 1 of this invention. It is the figure which looked at the base where a plurality of laser elements are arranged from the emission direction of the light beam. It is sectional drawing which shows the exemplary structure of a PCSEL element. It is a figure which shows the behavior of the light inside a photonic crystal layer. It is a figure which shows the behavior of the light inside a photonic crystal layer. It is a figure which shows the behavior of the light inside a photonic crystal layer. It is a figure which shows the behavior of the light inside a photonic crystal layer, Comprising: The in-plane resonance of light is shown.
  • FIG. 1 is a block diagram showing a laser module according to Embodiment 1 of the present invention.
  • the laser module 10 includes a plurality of laser elements 1, a collimating lens array 3, a condensing lens 4, and the like.
  • the laser module 10 is mounted on a mount member (not shown) together with the optical fiber 20 and is configured to couple a laser beam (light beam) emitted from the laser module 10 to the optical fiber 20.
  • the laser module 10 is used for material processing (cutting processing or welding of metal, glass, carbon fiber reinforced plastic (CFRP), resin, etc., welding), optical communication, and the like.
  • the plurality of laser elements 1 are mounted on the main surface (the same plane) of the base 2, and each emits a light beam.
  • the laser element 1 is a photonic crystal surface emitting laser (PCSEL) element.
  • the base 2 is plate-shaped, but may include a cooling mechanism for cooling the laser element, a power supply circuit for supplying power to the laser element, and the like. As shown in FIG. 2, the plurality of laser elements 1 are arranged in a hexagonal lattice shape, and thereby the emitted beams are arranged densely.
  • the laser element 1 is illustrated as a circle, but other shapes such as a rectangle and a hexagon may be used.
  • the laser elements 1 are two-dimensionally arranged, but may be arranged one-dimensionally.
  • the collimating lens array 3 converts the light beam emitted from each laser element 1 into a parallel beam.
  • a plurality of collimating lenses corresponding to the number of the laser elements 1 are integrated so that the light beams emitted from the plurality of laser elements 1 are received on the same axis.
  • the collimating lenses are arranged in a hexagonal close-packed manner corresponding to the plurality of laser elements 1 being arranged in a hexagonal lattice shape.
  • the collimating lens array 3 is disposed at a position where adjacent light beams are in contact (or substantially in contact) with each other. At this time, the distance between the laser element 1 and the collimating lens array 3 is determined based on the divergence angle of the light beam and the beam diameter on the light emitting surface of the laser element 1.
  • the collimating lens array 3 Due to the configuration of the collimating lens array 3, the light beams that are adjacent to each other out of the parallel beams are emitted from the collimating lens array 3.
  • the beam diameter of the light beams matches the effective diameter of each lens included in the collimating lens array 3.
  • the beam diameter of the light beam is 1 / e2 (13.5%) of the peak value (or the value on the optical axis) of the radiation intensity of the light beam on a plane orthogonal to the optical axis.
  • the “beam diameter” in the embodiment of the present invention is not limited to the size defined in this way, and depends on the required energy extraction rate of the light beam. Can be changed.
  • the condensing lens 4 condenses a plurality of parallel beams emitted from the collimating lens array 3 toward the coupling end surface of the core of the optical fiber 20. Since the adjacent light beams of the parallel beams emitted from the collimating lens array 3 are in contact with each other, the adjacent light beams are also in contact with each other with respect to the combined beam formed by the condenser lens 4.
  • the incident angle ⁇ of the light beam at the time of fiber coupling needs to be a value equal to or smaller than the maximum light receiving angle ⁇ max corresponding to the NA (numerical aperture) of the optical fiber 20.
  • the focal length of the condensing lens 4 is determined based on the distance between the condensing lens 4 and the optical fiber 20 so that the incident angle ⁇ is equal to or smaller than the maximum light receiving angle ⁇ max .
  • the collimating lens array 3 is an example of a collimating optical system
  • the condensing lens 4 is an example of a condensing optical system.
  • a plurality of collimating lenses may be used as the collimating optical system, or a lens that functions as a collimating optical system and a condensing optical system may be used.
  • the combined beam emitted from the laser module 10 is fiber-coupled with adjacent light beams in contact with each other. Thereby, the condensing property of the light beam after fiber coupling improves.
  • the plurality of light beams incident on the optical fiber 20 propagate through the core of the optical fiber 20 and are combined into one light beam, and are emitted from the emission end face of the optical fiber 20 as a high energy light beam.
  • the optical fiber 20 by transmitting the light beam to the outside using the optical fiber 20, a complicated beam transmission optical system is not necessary, which is convenient for various applications.
  • the intensity distribution before fiber coupling is made uniform in the course of fiber transmission, so that the beam quality can be improved.
  • the fiber transmission realizes the rotational symmetry of the light beam, which is an important factor for two-dimensional laser processing.
  • the PCSEL element is a surface emitting semiconductor laser element in which a photonic crystal structure having a period similar to the wavelength of light is provided in the vicinity of an active layer, and can emit uniform coherent light.
  • the semiconductor material used for manufacturing the PCSEL element and the period of the photonic crystal structure By adjusting the semiconductor material used for manufacturing the PCSEL element and the period of the photonic crystal structure, the wavelength of the light beam emitted from the PCSEL element can be controlled.
  • the transverse mode of the emitted beam changes according to the area of the light emitting surface, and the light beam condensing performance decreases as the light emitting surface is increased for higher output.
  • the PCSEL element can increase the output while maintaining a high light collecting property even if the light emitting surface is enlarged.
  • the longitudinal mode a conventional laser diode emits a light beam having a wavelength in a certain region corresponding to the gain width of the active layer, whereas a PCSEL element has a single mode defined by the lattice constant of the photonic crystal. Only a light beam of one wavelength is emitted.
  • FIG. 3 is a cross-sectional view illustrating an exemplary structure of a PCSEL element.
  • the light beam emission direction is defined as the z direction
  • the + z side is the front side
  • the ⁇ z side is the back side.
  • As a material of the stacked body 100 for example, GaAs (gallium arsenide) is used.
  • the PCSEL element is provided in a window formed by the laminated body 100, a window electrode 110 provided on the surface of the laminated body 100, a back electrode 120 provided on the back surface of the laminated body 100, and the window electrode 110.
  • an anti-reflection (AR) coating layer (anti-reflection coating) 130 is used.
  • This window portion becomes a light beam emission surface (light emission surface).
  • the laminate 100 includes a substrate 101, an n-type cladding layer 102, an active layer 103, a carrier block layer 104, a photonic crystal layer 105, a p-type cladding layer 106, and a p-type contact layer 107.
  • the carrier block layer 104 is an undoped layer.
  • holes 105b are formed in the slab layer denoted by reference numeral 105a.
  • the lattice shape of the photonic crystal layer 105 is arbitrary such as a square lattice, a triangular lattice, or an orthogonal lattice.
  • the order of the active layer 103, the carrier block layer 104, and the photonic crystal layer 105 may be reversed.
  • the laser oscillation wavelength is determined by the material and period of the photonic crystal.
  • the refractive index of GaAs used for the photonic crystal layer 105 is about 3.5, and the refractive index of air holes (air) is 1.
  • the effective refractive index in the vicinity of the active layer 103 is about 3.3.
  • the period of the photonic crystal is 980 nm / 3.3 ⁇ 295 nm. However, this period changes according to the laminated structure of the laminated body 100 or the like.
  • a PCSEL element including steps S1 to S4
  • steps S1 to S4 On the back surface of the substrate 101, the n-type cladding layer 102, the active layer 103, the carrier block layer 104, and the slab layer 105a are epitaxially grown by, for example, metal organic chemical vapor deposition (MOCVD).
  • MOCVD metal organic chemical vapor deposition
  • S2 The photonic crystal layer 105 is formed by patterning a resist on the slab layer 105a and etching the slab layer 105a by, for example, reactive ion etching (RIE) to form holes 105b.
  • RIE reactive ion etching
  • the p-type cladding layer 106 and the p-type contact layer 107 are epitaxially regrown by, for example, metal organic vapor phase epitaxy.
  • the window electrode 110 is provided on the surface of the n-type cladding layer 102, and the back electrode 120 is provided on the back surface of the p-type contact layer 107 by vapor deposition.
  • 4A to 4C are top views of the photonic crystal layer 105.
  • FIG. 4A to FIG. 4C the shape of the hole 105b is illustratively a perfect circle. Since the photonic crystal layer 105 is located in the vicinity of the active layer 103, the photonic crystal layer 105 exhibits a binding action on the light generated in the active layer 103.
  • the lattice shape of the photonic crystal is arbitrary, but here it is assumed that it is a square lattice shape that is easy to design.
  • the lattice constant of the photonic crystal is equal to the wavelength ⁇ of light generated in the active layer 103.
  • the light 201 having a wavelength indicated by an arrow in FIG. 4A is generated.
  • the lattice constant of the photonic crystal is ⁇
  • the light 201 is diffracted in the direction of 90 ° or 180 ° as shown in FIG. 4B to generate diffracted light 2021 and 2022, respectively.
  • the diffracted lights 2021 and 2022 are further diffracted in the direction of 90 ° or 180 ° as shown in FIG. 4C to generate diffracted lights 2031 and 2032 respectively.
  • FIG. 4C it can be seen that the diffracted light 2021 and the diffracted light 2032 and the diffracted light 2022 and the diffracted light 2032 interfere with each other to form a standing wave.
  • FIGS. 4A to 4C diffraction in the plane on which the photonic crystal is formed is considered, but naturally constructive interference also occurs in a direction perpendicular to the photonic crystal plane.
  • the light confined within the plane and resonated is extracted as a laser beam in the direction perpendicular to the plane.
  • FIG. 5A is a diagram corresponding to FIG. 4C and shows in-plane resonance of light. Diffracted lights 301 and 302 having an optical path difference equal to twice the wavelength ⁇ interfere with each other.
  • the shape of the hole 105b is a perfect circle, but in FIG. 5A, it is a triangle. It has been found that by making the shape of the air holes 105b triangular, the beam quality is improved as compared with the case of a perfect circle.
  • FIG. 5B shows the direct extraction of the light. Diffracted lights 303 and 304 having an optical path difference equal to the wavelength ⁇ interfere with each other.
  • the light beam is emitted in the two-sided direct direction (two directions).
  • the light reflection by the back electrode 120 is used as in the PCSEL element.
  • the light beam is emitted only from the surface side.
  • a conventional VCSEL device using a laser module has a small light emission area of about several ⁇ m square. Accordingly, adjacent light beams of the light beams emitted from the VCSEL element overlap each other at a position of several mm or less after the emission. Therefore, in order to produce parallel beams in contact with each other, it is necessary to shorten the installation position and focal length of the collimating lens from several hundred ⁇ m to several mm.
  • 40 ⁇ 40 VCSEL elements are arranged in a 1 cm ⁇ 1 cm region at a pitch of 0.25 mm vertically and horizontally.
  • a microlens array having a focal length of 0.776 mm and a curvature radius of 0.357 mm is used.
  • the light beam emitted from the PCSEL element has a light emitting area of several hundred ⁇ m square or more and a small divergence angle of about 1 degree. Therefore, the distance between the laser element 1 and the collimating lens array 3 and the focal length of the collimating lens array 3 are several to several tens mm while the size in the direction orthogonal to the optical axis of the laser module 10 is kept small. It can be as large as 100 mm. At this time, since collimated lens arrays 3 emit parallel beams in contact with each other, it is possible to obtain a combined beam with high light condensing performance.
  • Non-Patent Document 1 similarly to the configuration of Non-Patent Document 1, consider a case where a plurality of laser elements 1 are arranged at a pitch of 0.25 mm. For example, when considering a PCSEL element having a light emitting area of 0.2 mm square and operating in a transverse single mode, the light beam emitted from the adjacent laser element 1 propagates by about 12.3 mm until it comes into contact. Therefore, the focal length of the collimating lens is also about 12.3 mm, which can be increased by 10 times or more compared with 0.776 mm in the case of Non-Patent Document 1.
  • the focal length of the collimating lens array 3 can be increased, the curvature of the lens does not increase as in the case where a VCSEL element is used. Does not increase.
  • it is not necessary to consider the influence of aberration it is not necessary to use an aspheric lens that is difficult to manufacture with high accuracy. Further, the problem that the adjustment of the optical system becomes complicated is also solved.
  • the beam width of each light beam is expanded to the same extent as the width of each collimating lens, and parallelization is performed. Manufacturing accuracy is also important.
  • the curvature of each lens becomes large. Therefore, when manufacturing a lens array in which lenses are arranged closely, there is a problem that the manufacturing accuracy of the indented portion of the lens array decreases. .
  • 15A and 15B show two types of plano-convex lens arrays as an example.
  • the angle of the concave portion Vb at the boundary of the lens is large and shallow, whereas in the short focal length lens array shown in FIG. 15A, there are two curved surfaces.
  • the angle of the indentation portion Va at the boundary is small and deep. Therefore, the manufacturing accuracy is reduced in a lens array having a short focal length.
  • FIG. FIG. 6 is a block diagram showing a laser module according to Embodiment 2 of the present invention.
  • the emission position and emission angle of the light beam may be shifted from each other.
  • a plurality of laser elements (discrete elements) 1 shown in FIG. 1 are integrated as a laser element array 11 on a single semiconductor substrate.
  • This utilizes the characteristic that PCSEL elements can be manufactured by a semiconductor manufacturing process and can be simultaneously manufactured and integrated on a single semiconductor substrate.
  • the emission positions and emission angles of the light beams emitted from the plurality of laser elements 1 can be made uniform.
  • FIG. 7 is a block diagram showing a laser module according to Embodiment 3 of the present invention.
  • Non-Patent Document 2 reports a CW (continuous oscillation) output of 0.5 W in a single mode from an emission surface of 0.2 mm ⁇ 0.2 mm.
  • a 1 mm ⁇ 1 mm PCSEL element has an output of 10 W, and can be applied to metal processing applications.
  • this laser element when this laser element is actually modularized, an arrangement interval of about 2 mm may be required for power supply, cooling, and the like.
  • the distance between the laser element and the collimating lens and the focal length of the collimating lens need to be about 110 mm.
  • the concave lens array 5 is disposed between the plurality of laser elements 1 and the collimating lens array 3.
  • the concave lens array 5 has a function of expanding the beam diameter (beam divergence angle) of each light beam emitted from the plurality of laser elements 1. That is, the concave lens array 5 and the collimating lens array 3 constitute a beam expander (beam expanding optical system).
  • the third embodiment by increasing the beam diameter of the light beam using the concave lens array 5, it is possible to prevent an increase in the optical path length and an increase in the size of the laser module 10 due to an increase in output.
  • the concave lens array 5 in which the same number of concave lenses (focal length 5.5 mm) as the laser elements are integrated at a position of 5.5 mm from the laser element array 11 where the laser elements are arranged at a pitch of 2 mm is used.
  • the beam divergence angle is expanded, and as a result, adjacent light beams come into contact with each other at a position of about 12.3 mm from the laser element array 11.
  • the collimating lens array 3 having a focal length of 12.3 mm at this position, it is possible to configure a multiplexing optical system of a high output module while maintaining the same optical path length as the optical system exemplified in the first embodiment. It is. With this configuration, it is possible to prevent an increase in the size of the optical system.
  • the focal length of the lens exemplified in the third embodiment is several mm or more, which is sufficiently larger than the focal length of 0.776 mm of the collimating lens described in Non-Patent Document 1. Therefore, the focal length of the third embodiment is as follows.
  • the configuration does not hinder the effect described in the first embodiment (the optical system can be easily aligned).
  • the size of the module can be further reduced.
  • the laser element array 11 is used as the laser module 10 shown in FIG. 7, but a plurality of laser elements (discrete elements) 1 shown in FIG. 1 may be used.
  • FIG. 8 is a view showing a compound lens of a laser module according to a modification of the third embodiment of the present invention.
  • the concave lens array 5 and the collimating lens array 3 are integrated as one compound lens 15.
  • the light beam L IN incident on the composite lens 15 is expanded in the compound lens 15, and emits collimated in a state of contact with each other (the light beam L OUT).
  • FIG. 9 is a diagram corresponding to FIG. 14 described later. Configurations not shown in FIG. 9 in the fourth embodiment are the same as those in the first embodiment.
  • the laser module 10 includes a control device 40 configured to selectively turn on / off each of the plurality of laser elements 1. By performing lighting control of the laser element 1 using the control device 40, the beam profile of the combined beam is controlled.
  • the control device 40 includes a storage unit that stores a lighting control pattern of each laser element 1, a processing unit that performs lighting control, and the like.
  • is the wavelength of the light beam
  • d 0 is the radius of the light beam at the beam waist
  • is the half angle of the light beam in the far field.
  • the smaller the M 2 value the smaller the beam divergence.
  • the laser element 1 closer to the center is turned on and the surrounding laser elements 1 are turned off, so that the value of M 2 becomes closer to 1.
  • a broken line 401, a one-dot chain line 402, and a two-dot chain line 403 indicate lighting ranges corresponding to M 2 to 9, M 2 to 11, and M 2 to 13, respectively.
  • the value of M 2 can be changed according to the application of the laser module 10.
  • the optimum beam shape varies depending on the processing application.
  • a high-focus Gaussian mode light beam whose intensity distribution is shown in FIG. 10A is suitable for cutting a thin metal plate. Therefore, only the laser element 1 near the center needs to be turned on.
  • a donut-shaped light beam whose intensity distribution is shown in FIG. 10B is suitable for cutting a thick metal plate. Therefore, if the laser element 1 near the center is turned off and the surrounding laser element 1 is turned on. Good.
  • a top hat type light beam having an intensity distribution shown in FIG. 10C is necessary, all the laser elements 1 may be turned on.
  • the light collecting property is excellent without mechanical change such as switching of the optical system.
  • a light collection intensity distribution suitable for each processing application can be obtained.
  • FIG. A laser module according to Embodiment 5 of the present invention will be described with reference to FIGS. 11A and 11B and FIGS. 12A and 12B.
  • configurations not shown in FIGS. 11A and 11B and FIGS. 12A and 12B are the same as those in the first embodiment.
  • the polarization control of the combined beam is performed by configuring each laser element 1 to emit light beams having different polarization directions.
  • the direction of polarized light emitted by each laser element 1 changes according to the shape of the hole 105 b formed in the photonic crystal layer 105. For example, by making the shape of the hole 105b an ellipse, the polarization direction is aligned with the major axis direction of the ellipse.
  • the combined beam 502 is along the peripheral direction of the optical axis as indicated by the arrow 503 in FIG. 11B.
  • Polarized light azimuth polarized light.
  • the S-polarized light with low absorptance and high reflectivity is incident on the inner wall of the keyhole, increasing the beam arrival rate to the bottom surface of the keyhole, and processing deep holes. It can be suitably performed.
  • each laser element 1 When each laser element 1 is arranged so as to emit a light beam whose polarization direction is represented by an arrow 601 in FIG. 12A (orthogonal to the arrow 501 in FIG. 11A), the combined beam 602 is an arrow in FIG. 12B. As indicated by reference numeral 603, the light is polarized along the radial direction from the optical axis (radial polarized light). When using radially polarized light for laser cutting, P-polarized light having a high absorptance is incident on the keyhole, so that the material cutting performance is improved.
  • the central laser element 1 may be removed if necessary.
  • a set of laser elements that produce azimuth polarization and a set of laser elements that produce radial polarization are mounted on the base 2 in a mixed state, and are combined using the control device 40 described in the fourth embodiment.
  • the polarization state of the beam can be electrically switched. This makes it possible to perform laser processing using a light beam suitable for the application.
  • the combined beam is an axially symmetric polarized beam (azimuth polarized light, radial polarized light) has been described.
  • other polarization states for example, straight lines and circles
  • straight lines and circles may be used depending on the application.
  • FIG. FIG. 13 is a block diagram showing a laser machining apparatus according to Embodiment 6 of the present invention.
  • the laser processing apparatus 1000 includes a laser module 10 according to any one of Embodiments 1 to 5 or any combination thereof, an optical fiber 20 that transmits a light beam emitted from the laser module 10, and light emitted from the optical fiber 20. And a processing head 30 for irradiating the workpiece W with the beam.
  • the processing head 30 is a hollow cylindrical member, and is provided with processing lenses 31 and 32 that collimate and collect a light beam to form a light spot at a processing point of the workpiece W.
  • the tip of the processing head 30 is formed in a nozzle shape so that the light beam collected by the processing lens 32 passes and the assist gas is supplied toward the workpiece W.
  • a carbon dioxide laser or a fiber laser having an output of about 1 kW to about 6 kW and a light condensing property of about 4 mm ⁇ mrad is often used.
  • a PCSEL element that oscillates vertically and horizontally in a wavelength band of 900 nm as a light source.
  • the multiplexing optical system described in the first to fifth embodiments is used, as shown in FIG.
  • 11 laser elements 1 are arranged in a hexagonal lattice shape in the diametrical direction, thereby collecting light of about 4 mm ⁇ mrad. Can be realized. If 9 to 13 laser elements 1 are arranged in the diametrical direction, a light beam having a condensing property suitable for sheet metal cutting can be obtained.
  • the laser output of the laser module 10 is about 1 kW. More than four times the combined beam emitted from the laser module 10 by using polarization coupling that superimposes two light beams having orthogonal polarizations and wavelength coupling that superimposes two or more light beams having different wavelengths. By superimposing the light beam, a light beam having the same output (about 1 kW to about 6 kW) and condensing performance as a conventional sheet metal cutting laser can be obtained.
  • a laser having a light condensing property of about 8 mm ⁇ mrad to about 12 mm ⁇ mrad is often used.
  • a laser module in which 25 to 41 laser elements 1 are arranged in the diameter direction a light beam having a condensing property suitable for metal welding can be obtained.
  • FIG. 14 shows a structure in which 91 laser elements 1 are arranged in a hexagonal lattice shape, the laser elements 1 are arranged so that a hexagonal shape is close to a circle bulging outward on the side. May be.
  • Embodiment 7 FIG. A laser module according to the seventh embodiment of the present invention will be described with reference to FIG. Configurations not shown in FIG. 16 in the seventh embodiment are the same as those in the first embodiment.
  • a laser element denoted by reference numeral 701 (indicated by a white circle in FIG. 16) and a laser element denoted by reference numeral 702 (indicated by a black circle in FIG. 16) are the same PCSEL elements as the laser element 1 described so far. It is.
  • the laser element 701 and the laser element 702 are different from each other in the material and period of the photonic crystal constituting the photonic crystal layer 105 (see FIG. 3).
  • the laser elements 701 and 702 emit light beams having different wavelengths ⁇ 1 and ⁇ 2.
  • Laser elements 701 and laser elements 702 are arranged alternately on the base 2 in the horizontal direction of the drawing.
  • the laser module 10 includes a control device 70 configured to switch on / off of the laser elements 701 and 702.
  • the control device 70 includes a storage unit that stores lighting control patterns of the laser elements 701 and 702, a processing unit that executes lighting control, and the like.
  • the light absorption characteristic differs depending on the material. Therefore, in laser processing, it is preferable to select an optimum wavelength of laser light according to the material of the workpiece.
  • the peak wavelength of light absorption is about 850 nm.
  • the workpiece is a copper material
  • the light absorptance monotonously decreases as the wavelength increases in a wavelength region of about 400 nm or more. Therefore, workability can be improved by using an optical laser having a wavelength of about 850 nm for processing the aluminum material and using an optical laser having a wavelength of less than about 400 nm for processing the copper material.
  • the wavelength of the combined beam becomes ⁇ 1 or ⁇ 2.
  • the example in which the laser elements 701 and 702 are alternately arranged on the base 2 in the horizontal direction on the paper surface has been described, but an arrangement pattern different from that in FIG. 16 may be used.
  • the outermost hexagon of a plurality of hexagons forming a hexagonal lattice is defined by a laser element 701 (which emits laser light having a wavelength ⁇ 1), and the inner hexagon is a laser element.
  • the laser elements 701 and 702 are alternately arranged in the radial direction on the base 2 so as to be defined by 702 (emitting a laser beam having a wavelength ⁇ 2) and the hexagon inside thereof is defined by the laser element 701. May be.
  • the laser module 10 is configured to selectively emit combined beams having two different wavelengths ( ⁇ 1 and ⁇ 2) has been described.
  • a combined beam having wavelengths ( ⁇ 1, ⁇ 2, ⁇ 3,%) May be selectively emitted.
  • control device 70 is configured to turn on the laser element that emits the light beam having any one wavelength.
  • the light beam having two or more wavelengths is emitted.
  • the laser elements to be turned on may be turned on simultaneously.
  • 1 laser element PCSEL element
  • 2 base 3 collimating lens array
  • 4 condensing lens 5 concave lens array
  • 10 laser module 11 laser element array
  • 15 compound lens 20 optical fiber
  • 30 processing head 40, 70 control Equipment, 1000 laser processing equipment

Abstract

A laser module 10 is provided with: a plurality of laser elements 1 that emit optical beams, respectively; a collimating optical system 3 that parallelizes the optical beams thus emitted; and a light collecting optical system 4 that collects the optical beams thus parallelized. The laser elements 1 are photonic crystal surface-emitting laser (PCSEL) elements, respectively. The laser elements are disposed in a hexagonal lattice shape on a same plane of a base 2.

Description

レーザモジュールおよびレーザ加工装置Laser module and laser processing apparatus
 本発明は、レーザモジュール、およびレーザモジュールを備えたレーザ加工装置に関する。 The present invention relates to a laser module and a laser processing apparatus including the laser module.
 従来のレーザモジュールは、光源としての複数のレーザ素子(半導体レーザ素子)と、レーザ素子の数に対応した数のコリメートレンズ(またはレンズアレイ)と、集光レンズとを備えており、レーザ素子が放出する光ビームをコリメートレンズで平行化するとともに集光レンズにより集光し、光ファイバに結合している。 A conventional laser module includes a plurality of laser elements (semiconductor laser elements) as light sources, a number of collimating lenses (or lens arrays) corresponding to the number of laser elements, and a condensing lens. The emitted light beam is collimated by a collimator lens, condensed by a condenser lens, and coupled to an optical fiber.
 例えば非特許文献1に開示されたレーザモジュールでは、レーザ素子として垂直共振器面発光レーザ(VCSEL)素子が用いられており、レーザ素子から放出される光ビームをマイクロレンズアレイで平行化するとともに集光レンズを用いて集光することが開示されている。 For example, in the laser module disclosed in Non-Patent Document 1, a vertical cavity surface emitting laser (VCSEL) element is used as a laser element, and a light beam emitted from the laser element is collimated by a microlens array and collected. It is disclosed that light is collected using an optical lens.
 特許文献1に開示されたレーザモジュールでは、非特許文献1と同じくVCSEL素子が用いられており、また、コリメートレンズと集光レンズの機能を兼ねる複数のレンズが用いられている。特に、複数のレンズとして集積化されたマイクロレンズアレイを用いることにより、レーザ素子の数を増やすことができ、高出力ビームが得られるとのことである。 In the laser module disclosed in Patent Document 1, a VCSEL element is used as in Non-Patent Document 1, and a plurality of lenses having the functions of a collimating lens and a condensing lens are used. In particular, by using a microlens array integrated as a plurality of lenses, the number of laser elements can be increased and a high output beam can be obtained.
 非特許文献2には、光の波長と同程度の周期構造(フォトニック結晶構造)が活性層近傍に設けられた面発光型の半導体レーザ素子(フォトニック結晶面発光レーザ素子:PCSEL素子)が開示されている。 Non-Patent Document 2 discloses a surface-emitting semiconductor laser element (photonic crystal surface-emitting laser element: PCSEL element) in which a periodic structure (photonic crystal structure) of the same order as the wavelength of light is provided in the vicinity of an active layer. It is disclosed.
特開2007-248581号公報(12頁1~8行、29~31行、図18)Japanese Patent Application Laid-Open No. 2007-244851 (page 12, lines 1-8, lines 29-31, FIG. 18)
 ところで、複数の光ビームのファイバ結合を行う際、集光レンズにより集光される平行ビームが互いに接しない状態であると、ファイバ結合後の光ビームの集光性は、平行ビームが互いに接する状態である場合に比べて低下する。従って、複数の光ビームを1本の光ファイバに結合する場合、集光性の高い結合ビームを得るために互いに接した状態の平行ビームを作ることが望ましい。 By the way, when performing the fiber coupling of a plurality of light beams, if the parallel beams collected by the condensing lens are not in contact with each other, the condensing property of the light beams after the fiber coupling is such that the parallel beams are in contact with each other. Compared to the case of Therefore, when a plurality of light beams are combined into a single optical fiber, it is desirable to create parallel beams in contact with each other in order to obtain a combined beam with high light collecting properties.
 特許文献1と非特許文献1で用いられるVCSEL素子では、一般に発光面近傍のビームサイズ(発光面積)が小さく、これにより出射する光ビームの発散角が大きくなる。従って、光ビームが出射した後すぐに、隣り合う光ビームどうしが互いに重なり合うことになってしまい、ファイバ結合後の光ビームの集光性が低下してしまう。 In the VCSEL element used in Patent Document 1 and Non-Patent Document 1, the beam size (light emitting area) in the vicinity of the light emitting surface is generally small, thereby increasing the divergence angle of the emitted light beam. Therefore, immediately after the light beams are emitted, the adjacent light beams overlap each other, and the condensing property of the light beams after the fiber coupling is lowered.
 この問題は、レーザ素子の配置間隔を広げる、あるいはコリメートレンズをレーザ素子から遠ざけることより解消可能である。しかし、レーザ素子の配置間隔を広げると、光軸に対して直交する方向にモジュールが大型化してしまう。また、コリメートレンズをレーザ素子から遠ざけると、光ビームの発散角が大きいことに起因して、光軸方向だけでなく、光軸に対して直交する方向にもモジュールが大型化してしまう。そこで、互いに接した状態の平行ビームを作るために、コリメートレンズの設置位置と焦点距離を充分に短くする必要がある。 This problem can be solved by increasing the arrangement interval of the laser elements or by moving the collimating lens away from the laser elements. However, if the arrangement interval of the laser elements is increased, the module is increased in the direction orthogonal to the optical axis. Further, when the collimating lens is moved away from the laser element, the module becomes large not only in the optical axis direction but also in the direction orthogonal to the optical axis due to the large divergence angle of the light beam. Therefore, in order to produce parallel beams in contact with each other, it is necessary to sufficiently shorten the installation position and focal length of the collimating lens.
 しかし、コリメートレンズの焦点距離を短くすると曲率が大きくなるため、レンズの作製要求精度が高くなってしまう。また、焦点距離が約1mm以下の短焦点レンズを用いる場合には、非球面レンズを用いて収差を抑えることが必要となるが、非球面レンズは高精度な作製が困難であり好ましくない。 However, if the focal length of the collimating lens is shortened, the curvature increases, so that the required accuracy of lens production increases. In addition, when a short focus lens having a focal length of about 1 mm or less is used, it is necessary to suppress aberration by using an aspheric lens. However, it is difficult to manufacture an aspheric lens with high accuracy, which is not preferable.
 また、コリメートレンズの焦点距離が短くなると、コリメートレンズの位置ずれが光ビームの出射方向のずれに与える影響が大きくなることから、コリメートレンズのアライメントにおいて微調整が必要となる。従って、レーザ素子に電力を供給して光ビームを出射させた状態で、コリメートレンズアレイを透過した後の光ビームを観察しながらアライメントが行われており、光学系の調整が複雑化するという問題が生じていた。これは同時に、レーザモジュールをマウント部材の上に実装した後に、各光学素子の位置ずれによる出力低下等の問題が起こりやすいことを意味する。 Also, if the focal length of the collimating lens is shortened, the influence of the positional displacement of the collimating lens on the deviation of the light beam emission direction increases, and fine adjustment is required in the alignment of the collimating lens. Therefore, alignment is performed while observing the light beam that has passed through the collimating lens array in a state where power is supplied to the laser element to emit the light beam, and the adjustment of the optical system becomes complicated. Has occurred. At the same time, it means that problems such as a decrease in output due to the displacement of the optical elements are likely to occur after the laser module is mounted on the mount member.
 さらに、VCSEL素子では、発光面積が大きくなると集光性が悪化することが知られている。発光面積が小さいままで高出力化を行うと、発光面でのエネルギ密度が増大し、レーザ素子の破壊につながる。従って、発光面積の小さいVCSEL素子は、高出力かつ高集光のレーザ光源としては不向きである。 Furthermore, it is known that in the VCSEL device, the light condensing property is deteriorated when the light emitting area is increased. If the output is increased while the light emitting area is small, the energy density on the light emitting surface increases, leading to the destruction of the laser element. Therefore, a VCSEL element having a small light emission area is not suitable as a high-power and high-condensation laser light source.
 以上の問題は、レーザ素子として端面発光型半導体レーザ(EEL)を用いた場合にも同様に生じる。 The above problems also occur when an edge emitting semiconductor laser (EEL) is used as the laser element.
 このように、先行技術では、高い集光性を保ったままでの高出力化が光源の制約、光学系の調整の面で難しく、半導体レーザアレイを板金切断等の高出力を要する用途に使用することが困難であった。 As described above, in the prior art, it is difficult to achieve high output while maintaining high light condensing performance in terms of light source restrictions and optical system adjustment, and semiconductor laser arrays are used for applications that require high output such as sheet metal cutting. It was difficult.
 本発明は、小型であって高出力かつ高集光のレーザモジュールを実現することを課題とする。 An object of the present invention is to realize a small, high-power and high-concentration laser module.
 本発明に係るレーザモジュールは、光ビームをそれぞれ放出する複数のレーザ素子と、複数のレーザ素子から放出された光ビームを平行化するコリメート光学系と、コリメート光学系により平行化された光ビームを集光して合波ビームを成形する集光光学系とを備える。複数のレーザ素子は、それぞれフォトニック結晶面発光レーザ(PCSEL)素子であり、同一平面上で六方格子状に配置されている。 A laser module according to the present invention includes a plurality of laser elements that respectively emit light beams, a collimating optical system that collimates the light beams emitted from the plurality of laser elements, and a light beam collimated by the collimating optical system. And a condensing optical system for condensing and forming a combined beam. Each of the plurality of laser elements is a photonic crystal surface emitting laser (PCSEL) element, and is arranged in a hexagonal lattice pattern on the same plane.
 本発明によれば、発光面積が大きく発散角の小さいフォトニック結晶面発光レーザ素子を用いることにより、小型であって高出力かつ高集光のレーザモジュールを実現することができる。 According to the present invention, by using a photonic crystal surface emitting laser element having a large light emitting area and a small divergence angle, it is possible to realize a small, high output and high condensing laser module.
本発明の実施の形態1によるレーザモジュールを示す構成図である。It is a block diagram which shows the laser module by Embodiment 1 of this invention. 複数のレーザ素子が配置されたベースを光ビームの出射方向から見た図である。It is the figure which looked at the base where a plurality of laser elements are arranged from the emission direction of the light beam. PCSEL素子の例示的な構造を示す断面図ある。It is sectional drawing which shows the exemplary structure of a PCSEL element. フォトニック結晶層内部における光の振る舞いを示す図である。It is a figure which shows the behavior of the light inside a photonic crystal layer. フォトニック結晶層内部における光の振る舞いを示す図である。It is a figure which shows the behavior of the light inside a photonic crystal layer. フォトニック結晶層内部における光の振る舞いを示す図である。It is a figure which shows the behavior of the light inside a photonic crystal layer. フォトニック結晶層内部における光の振る舞いを示す図であって、光の面内共振を示す。It is a figure which shows the behavior of the light inside a photonic crystal layer, Comprising: The in-plane resonance of light is shown. フォトニック結晶層内部における光の振る舞いを示す図であって、光の面直取り出しを示す。It is a figure which shows the behavior of the light inside a photonic crystal layer, Comprising: The surface extraction of light is shown. 本発明の実施の形態2によるレーザモジュールを示す構成図である。It is a block diagram which shows the laser module by Embodiment 2 of this invention. 本発明の実施の形態3によるレーザモジュールを示す構成図である。It is a block diagram which shows the laser module by Embodiment 3 of this invention. 本発明の実施の形態3の変形例によるレーザモジュールの複合レンズを示す図である。It is a figure which shows the compound lens of the laser module by the modification of Embodiment 3 of this invention. 本発明の実施の形態4によるレーザモジュールで行われるレーザ素子の点灯制御を説明するための図である。It is a figure for demonstrating lighting control of the laser element performed with the laser module by Embodiment 4 of this invention. 高集束ガウスモードの光ビームの強度分布を示す図である。It is a figure which shows intensity distribution of the light beam of highly focused Gaussian mode. ドーナツ型の光ビームの強度分布を示す図である。It is a figure which shows intensity distribution of a donut-shaped light beam. トップハット型の光ビームの強度分布を示す図である。It is a figure which shows intensity distribution of a top hat type light beam. 本発明の実施の形態5によるレーザモジュールで行われる合波ビームの偏光制御を説明するための図である。It is a figure for demonstrating the polarization control of the combined beam performed with the laser module by Embodiment 5 of this invention. 本発明の実施の形態5によるレーザモジュールで行われる合波ビームの偏光制御を説明するための図である。It is a figure for demonstrating the polarization control of the combined beam performed with the laser module by Embodiment 5 of this invention. 本発明の実施の形態5によるレーザモジュールで行われる合波ビームの偏光制御を説明するための図である。It is a figure for demonstrating the polarization control of the combined beam performed with the laser module by Embodiment 5 of this invention. 本発明の実施の形態5によるレーザモジュールで行われる合波ビームの偏光制御を説明するための図である。It is a figure for demonstrating the polarization control of the combined beam performed with the laser module by Embodiment 5 of this invention. 本発明の実施の形態6によるレーザ加工装置を示す構成図である。It is a block diagram which shows the laser processing apparatus by Embodiment 6 of this invention. レーザ加工装置に適したレーザ素子の配置を示す図である。It is a figure which shows arrangement | positioning of the laser element suitable for a laser processing apparatus. 焦点距離の長い平凸レンズを示す。A plano-convex lens with a long focal length is shown. 焦点距離の短い平凸レンズを示す。A plano-convex lens with a short focal length is shown. 本発明の実施の形態7によるレーザモジュールで行われる合波ビームの波長制御を説明するための図である。It is a figure for demonstrating wavelength control of the combined beam performed with the laser module by Embodiment 7 of this invention. 図16の変形例を示す図である。It is a figure which shows the modification of FIG.
 以下、本発明の実施の形態について、図面を参照しながら説明する。各図において、同一または同様の構成には同一の符号を付しており、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or similar components are denoted by the same reference numerals, and redundant description is omitted.
実施の形態1.
 図1は、本発明の実施の形態1によるレーザモジュールを示す構成図である。
 レーザモジュール10は、複数のレーザ素子1、コリメートレンズアレイ3、集光レンズ4などを備える。例えば、レーザモジュール10は、光ファイバ20と一緒にマウント部材(図示せず)の上に実装され、レーザモジュール10から出射するレーザビーム(光ビーム)を光ファイバ20に結合するように構成されている。このレーザモジュール10は、材料加工(金属、ガラス、炭素繊維強化プラスチック(CFRP)、樹脂などの切断加工、溶接)、光通信などに利用される。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a laser module according to Embodiment 1 of the present invention.
The laser module 10 includes a plurality of laser elements 1, a collimating lens array 3, a condensing lens 4, and the like. For example, the laser module 10 is mounted on a mount member (not shown) together with the optical fiber 20 and is configured to couple a laser beam (light beam) emitted from the laser module 10 to the optical fiber 20. Yes. The laser module 10 is used for material processing (cutting processing or welding of metal, glass, carbon fiber reinforced plastic (CFRP), resin, etc., welding), optical communication, and the like.
 複数のレーザ素子1は、ベース2の主面(同一平面)上に実装されており、それぞれ光ビームを放出する。レーザ素子1は、フォトニック結晶面発光レーザ(PCSEL)素子である。ベース2は板状であるが、レーザ素子を冷却するための冷却機構、レーザ素子に電力を供給するための給電回路などを含んでもよい。図2に示すように、複数のレーザ素子1は六方格子状に配置されており、これにより出射ビームが稠密に並ぶ。 The plurality of laser elements 1 are mounted on the main surface (the same plane) of the base 2, and each emits a light beam. The laser element 1 is a photonic crystal surface emitting laser (PCSEL) element. The base 2 is plate-shaped, but may include a cooling mechanism for cooling the laser element, a power supply circuit for supplying power to the laser element, and the like. As shown in FIG. 2, the plurality of laser elements 1 are arranged in a hexagonal lattice shape, and thereby the emitted beams are arranged densely.
 なお、図2はレーザ素子1の配置を概略的に示したものであり、レーザ素子の形状、個数、配置間隔はこれに限定されない。例えば、図2ではレーザ素子1を円形に図示しているが、四角形、六角形など他の形状であってもよい。図2では、レーザ素子1は2次元状に配置されているが、1次元状に配置されてもよい。 2 schematically shows the arrangement of the laser elements 1, and the shape, number, and arrangement interval of the laser elements are not limited to this. For example, in FIG. 2, the laser element 1 is illustrated as a circle, but other shapes such as a rectangle and a hexagon may be used. In FIG. 2, the laser elements 1 are two-dimensionally arranged, but may be arranged one-dimensionally.
 コリメートレンズアレイ3は、各レーザ素子1から放出された光ビームを平行ビームに変換する。コリメートレンズアレイ3では、複数のレーザ素子1が放出する光ビームをそれぞれ同軸上で受けるように、レーザ素子1の数に対応した複数のコリメートレンズが集積されている。また、コリメートレンズアレイ3では、複数のレーザ素子1が六方格子状に配置されていることに対応して、コリメートレンズが六方稠密に配列されている。また、コリメートレンズアレイ3は、隣り合う光ビームどうしが互いに接する(または略接する)位置に配置される。このとき、レーザ素子1とコリメートレンズアレイ3との間の距離は、光ビームの発散角とレーザ素子1の発光面でのビーム径とに基づいて決定される。 The collimating lens array 3 converts the light beam emitted from each laser element 1 into a parallel beam. In the collimating lens array 3, a plurality of collimating lenses corresponding to the number of the laser elements 1 are integrated so that the light beams emitted from the plurality of laser elements 1 are received on the same axis. In the collimating lens array 3, the collimating lenses are arranged in a hexagonal close-packed manner corresponding to the plurality of laser elements 1 being arranged in a hexagonal lattice shape. The collimating lens array 3 is disposed at a position where adjacent light beams are in contact (or substantially in contact) with each other. At this time, the distance between the laser element 1 and the collimating lens array 3 is determined based on the divergence angle of the light beam and the beam diameter on the light emitting surface of the laser element 1.
 上記コリメートレンズアレイ3の構成により、平行ビームのうち隣り合う光ビームどうしが互いに接する状態でコリメートレンズアレイ3から出射する。 Due to the configuration of the collimating lens array 3, the light beams that are adjacent to each other out of the parallel beams are emitted from the collimating lens array 3.
 ここで、光ビームどうしが互いに接するとは、光ビームのビーム径がコリメートレンズアレイ3に含まれる各レンズの有効径に一致することをいう。また、一般的に、光ビームのビーム径は、光軸に対して直交する面において、光ビームの放射強度がピーク値(または光軸上の値)の1/e2(13.5%)となるときの強度分布の幅と定義されるが、本発明の実施形態における「ビーム径」はこのように定義された大きさに限定されることなく、必要な光ビームのエネルギ切出し率に応じて変化させることができる。 Here, that the light beams are in contact with each other means that the beam diameter of the light beams matches the effective diameter of each lens included in the collimating lens array 3. In general, the beam diameter of the light beam is 1 / e2 (13.5%) of the peak value (or the value on the optical axis) of the radiation intensity of the light beam on a plane orthogonal to the optical axis. However, the “beam diameter” in the embodiment of the present invention is not limited to the size defined in this way, and depends on the required energy extraction rate of the light beam. Can be changed.
 集光レンズ4は、コリメートレンズアレイ3から出射した複数の平行ビームを、光ファイバ20のコアの結合端面に向けて集光する。コリメートレンズアレイ3から出射する平行ビームのうち隣り合う光ビームどうしが互いに接しているので、集光レンズ4が成形する合波ビームについても、隣り合う光ビームどうしが互いに接することになる。ここで、ファイバ結合時の光ビームの入射角θは、光ファイバ20のNA(開口数)に対応する最大受光角θmax以下の値である必要がある。集光レンズ4の焦点距離は、入射角θが最大受光角θmax以下の値となるように、集光レンズ4と光ファイバ20との間の距離に基づいて決定される。 The condensing lens 4 condenses a plurality of parallel beams emitted from the collimating lens array 3 toward the coupling end surface of the core of the optical fiber 20. Since the adjacent light beams of the parallel beams emitted from the collimating lens array 3 are in contact with each other, the adjacent light beams are also in contact with each other with respect to the combined beam formed by the condenser lens 4. Here, the incident angle θ of the light beam at the time of fiber coupling needs to be a value equal to or smaller than the maximum light receiving angle θ max corresponding to the NA (numerical aperture) of the optical fiber 20. The focal length of the condensing lens 4 is determined based on the distance between the condensing lens 4 and the optical fiber 20 so that the incident angle θ is equal to or smaller than the maximum light receiving angle θ max .
 なお、コリメートレンズアレイ3はコリメート光学系の一例であり、集光レンズ4は集光光学系の一例である。例えば、コリメート光学系として複数のコリメートレンズが用いられてもよいし、コリメート光学系と集光光学系の機能を兼ねるレンズが用いられてもよい。 The collimating lens array 3 is an example of a collimating optical system, and the condensing lens 4 is an example of a condensing optical system. For example, a plurality of collimating lenses may be used as the collimating optical system, or a lens that functions as a collimating optical system and a condensing optical system may be used.
 上記レーザモジュール10から出射した合波ビームは、隣り合う光ビームが互いに接した状態でファイバ結合される。これにより、ファイバ結合後の光ビームの集光性が向上する。光ファイバ20に入射した複数の光ビームは、光ファイバ20のコアを伝搬して1本の光ビームに結合され、光ファイバ20の出射端面から高エネルギの光ビームとして出射する。 The combined beam emitted from the laser module 10 is fiber-coupled with adjacent light beams in contact with each other. Thereby, the condensing property of the light beam after fiber coupling improves. The plurality of light beams incident on the optical fiber 20 propagate through the core of the optical fiber 20 and are combined into one light beam, and are emitted from the emission end face of the optical fiber 20 as a high energy light beam.
 本実施形態1のように、光ファイバ20を用いて光ビームを外部に伝送することにより、複雑なビーム伝送光学系が必要とならず、これはさまざまな応用にとって好都合である。また、ファイバ結合前の強度分布が、ファイバ伝送の過程で均一化され、従ってビーム品質を向上させることができる。特に、ファイバ伝送により、2次元レーザ加工にとって重要な要素である光ビームの回転対称性が実現される。 As in the first embodiment, by transmitting the light beam to the outside using the optical fiber 20, a complicated beam transmission optical system is not necessary, which is convenient for various applications. In addition, the intensity distribution before fiber coupling is made uniform in the course of fiber transmission, so that the beam quality can be improved. In particular, the fiber transmission realizes the rotational symmetry of the light beam, which is an important factor for two-dimensional laser processing.
 次に、PCSEL素子について説明する。
 PCSEL素子は、光の波長と同程度の周期を有するフォトニック結晶構造が活性層近傍に設けられた面発光型の半導体レーザ素子であり、一様なコヒーレント光を放出可能である。PCSEL素子の作製に用いられる半導体材料とフォトニック結晶構造の周期とを調節することにより、PCSEL素子から出射する光ビームの波長を制御できる。
Next, the PCSEL element will be described.
The PCSEL element is a surface emitting semiconductor laser element in which a photonic crystal structure having a period similar to the wavelength of light is provided in the vicinity of an active layer, and can emit uniform coherent light. By adjusting the semiconductor material used for manufacturing the PCSEL element and the period of the photonic crystal structure, the wavelength of the light beam emitted from the PCSEL element can be controlled.
 具体的には、従来のレーザダイオードでは、出射ビームの横モードが発光面の面積に応じて変化し、高出力化のために発光面を大きくするほど光ビームの集光性が低下するという問題があった。これに対してPCSEL素子では、発光面を大きくしても高い集光性を維持したまま高出力化しうることが知られている。また、縦モードについては、従来のレーザダイオードでは活性層のゲイン幅に応じた一定領域の波長を含む光ビームが出射するのに対して、PCSEL素子ではフォトニック結晶の格子定数で規定された単一波長の光ビームのみが出射する。 Specifically, in the conventional laser diode, the transverse mode of the emitted beam changes according to the area of the light emitting surface, and the light beam condensing performance decreases as the light emitting surface is increased for higher output. was there. On the other hand, it is known that the PCSEL element can increase the output while maintaining a high light collecting property even if the light emitting surface is enlarged. As for the longitudinal mode, a conventional laser diode emits a light beam having a wavelength in a certain region corresponding to the gain width of the active layer, whereas a PCSEL element has a single mode defined by the lattice constant of the photonic crystal. Only a light beam of one wavelength is emitted.
 図3は、PCSEL素子の例示的な構造を示す断面図である。図3中、光ビームの放出方向をz方向と規定し、+z側を表側、-z側を裏側とする。
 積層体100の材料としては、例えばGaAs(ガリウムヒ素)が用いられる。PCSEL素子は、積層体100と、積層体100の表面に設けられた窓状電極110と、積層体100の裏面に設けられた裏面電極120と、窓状電極110により形成される窓部に設けられたAR(anti reflection)コート(無反射コート)層130とを備える。この窓部が光ビームの出射面(発光面)となる。
FIG. 3 is a cross-sectional view illustrating an exemplary structure of a PCSEL element. In FIG. 3, the light beam emission direction is defined as the z direction, the + z side is the front side, and the −z side is the back side.
As a material of the stacked body 100, for example, GaAs (gallium arsenide) is used. The PCSEL element is provided in a window formed by the laminated body 100, a window electrode 110 provided on the surface of the laminated body 100, a back electrode 120 provided on the back surface of the laminated body 100, and the window electrode 110. And an anti-reflection (AR) coating layer (anti-reflection coating) 130. This window portion becomes a light beam emission surface (light emission surface).
 積層体100は、基板101、n型クラッド層102、活性層103、キャリアブロック層104、フォトニック結晶層105、p型クラッド層106およびp型コンタクト層107を有する。キャリアブロック層104はアンドープ層である。フォトニック結晶層105では、符号105aで表されるスラブ層に空孔105bが形成されている。フォトニック結晶層105の格子形状は、正方格子、三角格子、直交格子など任意である。 The laminate 100 includes a substrate 101, an n-type cladding layer 102, an active layer 103, a carrier block layer 104, a photonic crystal layer 105, a p-type cladding layer 106, and a p-type contact layer 107. The carrier block layer 104 is an undoped layer. In the photonic crystal layer 105, holes 105b are formed in the slab layer denoted by reference numeral 105a. The lattice shape of the photonic crystal layer 105 is arbitrary such as a square lattice, a triangular lattice, or an orthogonal lattice.
 なお、上記PCSEL素子の構成において、活性層103、キャリアブロック層104、フォトニック結晶層105層の順序は逆転していてもよい。 In the configuration of the PCSEL element, the order of the active layer 103, the carrier block layer 104, and the photonic crystal layer 105 may be reversed.
 窓状電極110と裏面電極120との間にバイアス電圧を印加すると、活性層103で発光が生じ、フォトニック結晶層105により変調され、基板面に垂直な方向(z方向)にレーザビームとして放出される。 When a bias voltage is applied between the window electrode 110 and the back electrode 120, light is emitted from the active layer 103, modulated by the photonic crystal layer 105, and emitted as a laser beam in a direction perpendicular to the substrate surface (z direction). Is done.
 レーザの発振波長は、フォトニック結晶の材料と周期により決定される。上記PCSEL素子では、フォトニック結晶層105に用いられるGaAsの屈折率は約3.5であり、空孔(空気)の屈折率は1である。空孔105bの占める体積(16%)とPCSEL素子の積層構造とを考慮すると、活性層103付近の実効屈折率は約3.3程度となる。このとき、フォトニック結晶の周期は980nm/3.3≒295nmとなる。ただし、この周期は、積層体100の積層構造等に応じて変化する。 The laser oscillation wavelength is determined by the material and period of the photonic crystal. In the PCSEL element, the refractive index of GaAs used for the photonic crystal layer 105 is about 3.5, and the refractive index of air holes (air) is 1. Considering the volume occupied by the holes 105b (16%) and the laminated structure of the PCSEL elements, the effective refractive index in the vicinity of the active layer 103 is about 3.3. At this time, the period of the photonic crystal is 980 nm / 3.3≈295 nm. However, this period changes according to the laminated structure of the laminated body 100 or the like.
 次に、PCSEL素子の例示的な製造方法(工程S1~S4を含む)について簡単に説明する。
(S1)基板101の裏面に、n型クラッド層102、活性層103、キャリアブロック層104およびスラブ層105aを例えば有機金属気相成長法(MOCVD)によりエピタキシャル成長させる。
(S2)スラブ層105aの上でレジストをパターニングし、例えば反応性イオンエッチング(RIE)によりスラブ層105aをエッチングして空孔105bを形成することにより、フォトニック結晶層105を作製する。
(S3)フォトニック結晶層105の裏面に、p型クラッド層106とp型コンタクト層107を例えば有機金属気相成長法によりエピタキシャル再成長させる。
(S4)n型クラッド層102の表面に窓状電極110を、p型コンタクト層107の裏面に裏面電極120をそれぞれ蒸着により設ける。
Next, an exemplary method for manufacturing a PCSEL element (including steps S1 to S4) will be briefly described.
(S1) On the back surface of the substrate 101, the n-type cladding layer 102, the active layer 103, the carrier block layer 104, and the slab layer 105a are epitaxially grown by, for example, metal organic chemical vapor deposition (MOCVD).
(S2) The photonic crystal layer 105 is formed by patterning a resist on the slab layer 105a and etching the slab layer 105a by, for example, reactive ion etching (RIE) to form holes 105b.
(S3) On the back surface of the photonic crystal layer 105, the p-type cladding layer 106 and the p-type contact layer 107 are epitaxially regrown by, for example, metal organic vapor phase epitaxy.
(S4) The window electrode 110 is provided on the surface of the n-type cladding layer 102, and the back electrode 120 is provided on the back surface of the p-type contact layer 107 by vapor deposition.
 次に、フォトニック結晶内部における光の振る舞いを示す図4Aから図4C、図5A、図5Bを用いて、PCSELが面発光レーザ光源として動作する原理について説明する。
 図4Aから図4Cは、フォトニック結晶層105の上面図である。図4Aから図4Cでは、例示的に空孔105bの形状を真円としている。フォトニック結晶層105は活性層103の近傍に位置するので、活性層103で生じた光に対する束縛作用を示す。フォトニック結晶の格子形状は任意であるが、ここでは設計が容易な正方格子状であるとする。フォトニック結晶の格子定数は、活性層103で生じる光の波長λと等しい。
Next, the principle by which the PCSEL operates as a surface emitting laser light source will be described with reference to FIGS. 4A to 4C, 5A, and 5B showing the behavior of light inside the photonic crystal.
4A to 4C are top views of the photonic crystal layer 105. FIG. In FIG. 4A to FIG. 4C, the shape of the hole 105b is illustratively a perfect circle. Since the photonic crystal layer 105 is located in the vicinity of the active layer 103, the photonic crystal layer 105 exhibits a binding action on the light generated in the active layer 103. The lattice shape of the photonic crystal is arbitrary, but here it is assumed that it is a square lattice shape that is easy to design. The lattice constant of the photonic crystal is equal to the wavelength λ of light generated in the active layer 103.
 例えば、図4Aに矢印で示す波長の光201が生じた場合を考える。フォトニック結晶の格子定数がλのとき、光201は図4Bに示すように90°または180°の方向に回折され、それぞれ回折光2021,2022が生じる。回折光2021,2022はさらに図4Cに示すように90°または180°の方向に回折され、それぞれ回折光2031,2032が生じる。図4Cでは、回折光2021と回折光2032、および回折光2022と回折光2032がそれぞれ干渉して定在波を形成することが判る。このように90°、180°方向の回折が繰り返され、回折光が互いに干渉することで、フォトニック結晶内部には結晶方向に沿った定在波が生じることになる。その結果、光が閉じ込められて活性層103で光の共振が起こる。 For example, consider a case where light 201 having a wavelength indicated by an arrow in FIG. 4A is generated. When the lattice constant of the photonic crystal is λ, the light 201 is diffracted in the direction of 90 ° or 180 ° as shown in FIG. 4B to generate diffracted light 2021 and 2022, respectively. The diffracted lights 2021 and 2022 are further diffracted in the direction of 90 ° or 180 ° as shown in FIG. 4C to generate diffracted lights 2031 and 2032 respectively. In FIG. 4C, it can be seen that the diffracted light 2021 and the diffracted light 2032 and the diffracted light 2022 and the diffracted light 2032 interfere with each other to form a standing wave. As described above, diffraction in the 90 ° and 180 ° directions is repeated, and the diffracted light interferes with each other, so that a standing wave along the crystal direction is generated inside the photonic crystal. As a result, light is confined and light resonance occurs in the active layer 103.
 ところで、図4Aから図4Cではフォトニック結晶が形成された平面内での回折を考えたが、フォトニック結晶面に対して垂直な方向にも、当然に強め合いの干渉が生じる。その結果、面内で閉じ込められて共振した光は、面直方向にレーザビームとして取り出されることになる。 By the way, in FIGS. 4A to 4C, diffraction in the plane on which the photonic crystal is formed is considered, but naturally constructive interference also occurs in a direction perpendicular to the photonic crystal plane. As a result, the light confined within the plane and resonated is extracted as a laser beam in the direction perpendicular to the plane.
 図5Aは図4Cに対応する図であり、光の面内共振を示す。光路差が波長λの2倍に等しい回折光301,302が互いに干渉する。なお、図4Aから図4Cでは空孔105bの形状を真円としたが、図5Aでは三角形としている。空孔105bの形状を三角形とすることにより、真円としたときよりもビーム品質が向上することが判っている。図5Bは上記光の面直取り出しを示す。光路差が波長λに等しい回折光303,304が互いに干渉する。 FIG. 5A is a diagram corresponding to FIG. 4C and shows in-plane resonance of light. Diffracted lights 301 and 302 having an optical path difference equal to twice the wavelength λ interfere with each other. 4A to 4C, the shape of the hole 105b is a perfect circle, but in FIG. 5A, it is a triangle. It has been found that by making the shape of the air holes 105b triangular, the beam quality is improved as compared with the case of a perfect circle. FIG. 5B shows the direct extraction of the light. Diffracted lights 303 and 304 having an optical path difference equal to the wavelength λ interfere with each other.
 なお、PCSEL素子において光ビームは両面直方向(2方向)に放出されるところ、1方向のみから出射すればよい用途の場合には、上記PCSEL素子のように裏面電極120による光の反射を利用し、表面側のみから光ビームが出射するような構成とされる。 Note that in the PCSEL element, the light beam is emitted in the two-sided direct direction (two directions). In the case where the light beam only needs to be emitted from one direction, the light reflection by the back electrode 120 is used as in the PCSEL element. The light beam is emitted only from the surface side.
 次に、本実施形態1の利点について説明する。 Next, the advantages of the first embodiment will be described.
 まず、従来のレーザモジュールによるVCSEL素子では、発光面積が数μm四方程度と小さい。従って、出射した後の数mm以下の位置で、VCSEL素子から出射した光ビームのうち隣り合う光ビームどうしが互いに重なり合う。そこで、互いに接した状態の平行ビームを作るために、コリメートレンズの設置位置と焦点距離を数百μmから数mmまで短くする必要がある。 First, a conventional VCSEL device using a laser module has a small light emission area of about several μm square. Accordingly, adjacent light beams of the light beams emitted from the VCSEL element overlap each other at a position of several mm or less after the emission. Therefore, in order to produce parallel beams in contact with each other, it is necessary to shorten the installation position and focal length of the collimating lens from several hundred μm to several mm.
 例えば、非特許文献1に記載のVCSELアレイでは、1cm×1cmの領域に40×40個のVCSEL素子が縦横0.25mmピッチで配置されている。このVCSELアレイから放出される光ビームを平行化するために、焦点距離が0.776mm、曲率半径が0.357mmのマイクロレンズアレイが用いられている。 For example, in the VCSEL array described in Non-Patent Document 1, 40 × 40 VCSEL elements are arranged in a 1 cm × 1 cm region at a pitch of 0.25 mm vertically and horizontally. In order to collimate the light beam emitted from the VCSEL array, a microlens array having a focal length of 0.776 mm and a curvature radius of 0.357 mm is used.
 一方、PCSEL素子が出射する光ビームは、発光面積が数百μm四方以上で、発散角が1度程度と小さい。従って、レーザモジュール10の光軸に対して直交する方向のサイズを小さく保ったまま、レーザ素子1とコリメートレンズアレイ3との間の距離、およびコリメートレンズアレイ3の焦点距離を数十mmから数百mmと大きくすることができる。また、このとき、コリメートレンズアレイ3からは互いに接した状態の平行ビームが出射するので、集光性の高い結合ビームを得ることができる。 On the other hand, the light beam emitted from the PCSEL element has a light emitting area of several hundred μm square or more and a small divergence angle of about 1 degree. Therefore, the distance between the laser element 1 and the collimating lens array 3 and the focal length of the collimating lens array 3 are several to several tens mm while the size in the direction orthogonal to the optical axis of the laser module 10 is kept small. It can be as large as 100 mm. At this time, since collimated lens arrays 3 emit parallel beams in contact with each other, it is possible to obtain a combined beam with high light condensing performance.
 例えば非特許文献1の構成と同様に、複数のレーザ素子1を0.25mmピッチで配置した場合を考える。例えば発光面積が0.2mm四方で横シングルモード動作するPCSEL素子を考えると、隣り合うレーザ素子1から放出される光ビームが接する状態になるまでに約12.3mm伝搬することになる。従って、コリメートレンズの焦点距離も約12.3mmとなり、非特許文献1の場合の0.776mmに比べて10倍以上大きくすることが可能である。 For example, similarly to the configuration of Non-Patent Document 1, consider a case where a plurality of laser elements 1 are arranged at a pitch of 0.25 mm. For example, when considering a PCSEL element having a light emitting area of 0.2 mm square and operating in a transverse single mode, the light beam emitted from the adjacent laser element 1 propagates by about 12.3 mm until it comes into contact. Therefore, the focal length of the collimating lens is also about 12.3 mm, which can be increased by 10 times or more compared with 0.776 mm in the case of Non-Patent Document 1.
 このように、本実施形態1によれば、コリメートレンズアレイ3の焦点距離を大きくすることができるので、VCSEL素子を用いた場合のようにレンズの曲率が大きくなることがなく、従って作製要求精度が高くならない。また、収差の影響を考慮しなくてよいので、高精度な作製が困難な非球面レンズなどを用いる必要がない。また、光学系の調整が複雑化するという問題についても解消する。 As described above, according to the first embodiment, since the focal length of the collimating lens array 3 can be increased, the curvature of the lens does not increase as in the case where a VCSEL element is used. Does not increase. In addition, since it is not necessary to consider the influence of aberration, it is not necessary to use an aspheric lens that is difficult to manufacture with high accuracy. Further, the problem that the adjustment of the optical system becomes complicated is also solved.
 ここで、光ビームの結合を行う場合には、個々のコリメートレンズの幅と同程度まで、各光ビームのビーム幅を拡げて平行化を行うため、レンズの中心部分だけでなく、周辺部分の作製精度も重要となる。焦点距離が短いコリメートレンズアレイでは、各レンズの曲率が大きくなるため、レンズを密に並べたレンズアレイを作製する場合には、レンズアレイのくぼみ部分の作製精度が低下するという問題も想定される。 Here, when combining light beams, the beam width of each light beam is expanded to the same extent as the width of each collimating lens, and parallelization is performed. Manufacturing accuracy is also important. In a collimating lens array with a short focal length, the curvature of each lens becomes large. Therefore, when manufacturing a lens array in which lenses are arranged closely, there is a problem that the manufacturing accuracy of the indented portion of the lens array decreases. .
 図15A、図15Bに、例として2種類の平凸レンズアレイを示す。図15Bに示す長焦点距離のレンズアレイでは、レンズの境界のくぼみ部分Vbの角度が大きく、浅いくぼみになっているのに対して、図15Aに示す短焦点距離のレンズアレイでは、2つの曲面の境界のくぼみ部分Vaの角度が小さく、深いくぼみになっている。従って、短焦点距離のレンズアレイでは作製精度が低下する。 15A and 15B show two types of plano-convex lens arrays as an example. In the long focal length lens array shown in FIG. 15B, the angle of the concave portion Vb at the boundary of the lens is large and shallow, whereas in the short focal length lens array shown in FIG. 15A, there are two curved surfaces. The angle of the indentation portion Va at the boundary is small and deep. Therefore, the manufacturing accuracy is reduced in a lens array having a short focal length.
 さらに、上記の通り、PCSEL素子では、発光面積を大きくした場合にも、高い集光性を維持したまま高出力化することができ、従来技術では実現困難であった、高出力かつ高集光のレーザモジュール10が実現される。 Furthermore, as described above, in the PCSEL element, even when the light emitting area is increased, a high output and high condensing laser can be achieved while maintaining high light condensing property, which is difficult to realize with the conventional technology. Module 10 is realized.
実施の形態2.
 図6は、本発明の実施の形態2によるレーザモジュールを示す構成図である。
Embodiment 2. FIG.
FIG. 6 is a block diagram showing a laser module according to Embodiment 2 of the present invention.
 複数のレーザ素子1をベース2の上に実装する際、互いの配置(位置、角度)がずれると、光ビームの出射位置、出射角度が互いにずれるおそれがある。 When mounting a plurality of laser elements 1 on the base 2, if the arrangement (position, angle) of each other is shifted, the emission position and emission angle of the light beam may be shifted from each other.
 そこで、本実施形態2では、図1に示す複数のレーザ素子(ディスクリート素子)1が単一の半導体基板の上にレーザ素子アレイ11として集積されている。これは、PCSEL素子は半導体製造プロセスにより作製可能であり、単一の半導体基板上に同時に多数作製して集積化できるという特性を利用したものである。 Therefore, in the second embodiment, a plurality of laser elements (discrete elements) 1 shown in FIG. 1 are integrated as a laser element array 11 on a single semiconductor substrate. This utilizes the characteristic that PCSEL elements can be manufactured by a semiconductor manufacturing process and can be simultaneously manufactured and integrated on a single semiconductor substrate.
 本実施形態2によれば、複数のレーザ素子1の配置が互いにずれることがなくなるので、複数のレーザ素子1から放出される光ビームの出射位置、出射角度を一様にすることができる。 According to the second embodiment, since the arrangement of the plurality of laser elements 1 is not shifted from each other, the emission positions and emission angles of the light beams emitted from the plurality of laser elements 1 can be made uniform.
実施の形態3.
 図7は、本発明の実施の形態3によるレーザモジュールを示す構成図である。
Embodiment 3 FIG.
FIG. 7 is a block diagram showing a laser module according to Embodiment 3 of the present invention.
 PCSEL素子は、従来の半導体レーザとは異なり、原理的に高い集光性を保ったまま高出力化することができる。PCSEL素子では、原理的に出力と発光面積がほぼ比例し、発光面積を大きくすることによる高出力化が試みられている。例えば非特許文献2では、0.2mm×0.2mmの出射面からシングルモードで0.5WのCW(連続発振)出力が報告されている。例えば1mm×1mmのPCSEL素子では、出力が10W級となり、金属加工用途への適用が可能となる。 Unlike conventional semiconductor lasers, the PCSEL element can increase the output while maintaining high condensing performance in principle. In the PCSEL element, in principle, the output and the light emission area are substantially proportional, and attempts have been made to increase the output by increasing the light emission area. For example, Non-Patent Document 2 reports a CW (continuous oscillation) output of 0.5 W in a single mode from an emission surface of 0.2 mm × 0.2 mm. For example, a 1 mm × 1 mm PCSEL element has an output of 10 W, and can be applied to metal processing applications.
 ただし、このレーザ素子を実際にモジュール化する際には、給電、冷却等のために2mm程度の配置間隔が必要となることがある。この配置において、隣り合う光ビームどうしがコリメートレンズで接する状態にするためには、レーザ素子とコリメートレンズとの間の距離とコリメートレンズの焦点距離を約110mmとする必要がある。 However, when this laser element is actually modularized, an arrangement interval of about 2 mm may be required for power supply, cooling, and the like. In this arrangement, in order to bring adjacent light beams into contact with each other with a collimating lens, the distance between the laser element and the collimating lens and the focal length of the collimating lens need to be about 110 mm.
 コリメートレンズの焦点距離を大きくすることにより、光学系のアライメントが容易になる一方、レーザモジュールの出力変更時に光路長を伸ばす必要があるため、拡張性に課題が残る。また、モジュール全体が大型化するおそれもある。 ¡By increasing the focal length of the collimating lens, the alignment of the optical system is facilitated. On the other hand, it is necessary to extend the optical path length when changing the output of the laser module. Moreover, there is a possibility that the whole module becomes large.
 そこで、本実施形態3では、レーザモジュール10において、複数のレーザ素子1とコリメートレンズアレイ3との間に凹レンズアレイ5が配置される。この凹レンズアレイ5は、複数のレーザ素子1から放出された各光ビームのビーム径(ビーム発散角)を拡大する機能を有する。すなわち、凹レンズアレイ5とコリメートレンズアレイ3によりビームエキスパンダ(ビーム拡張光学系)が構成される。 Therefore, in the third embodiment, in the laser module 10, the concave lens array 5 is disposed between the plurality of laser elements 1 and the collimating lens array 3. The concave lens array 5 has a function of expanding the beam diameter (beam divergence angle) of each light beam emitted from the plurality of laser elements 1. That is, the concave lens array 5 and the collimating lens array 3 constitute a beam expander (beam expanding optical system).
 本実施形態3によれば、凹レンズアレイ5を用いて光ビームのビーム径を拡大することにより、高出力化に伴う光路長の増大とレーザモジュール10の大型化を防止できる。 According to the third embodiment, by increasing the beam diameter of the light beam using the concave lens array 5, it is possible to prevent an increase in the optical path length and an increase in the size of the laser module 10 due to an increase in output.
 例えば、2mmピッチでレーザ素子が配置されたレーザ素子アレイ11から5.5mmの位置に、レーザ素子と同数の凹レンズ(焦点距離5.5mm)が集積化された凹レンズアレイ5を、各レンズが光ビームと同軸上に位置するように設ける。これによりビーム発散角が拡がるため、結果としてレーザ素子アレイ11から約12.3mmの位置で、隣り合う光ビームどうしが互いに接することになる。この位置に焦点距離12.3mmのコリメートレンズアレイ3を配置することにより、実施形態1で例示した光学系と同じ光路長を維持したまま、高出力モジュールの合波光学系を構成することが可能である。この構成により、光学系の大型化を防ぐことが可能となる。 For example, the concave lens array 5 in which the same number of concave lenses (focal length 5.5 mm) as the laser elements are integrated at a position of 5.5 mm from the laser element array 11 where the laser elements are arranged at a pitch of 2 mm is used. Provided to be coaxial with the beam. As a result, the beam divergence angle is expanded, and as a result, adjacent light beams come into contact with each other at a position of about 12.3 mm from the laser element array 11. By arranging the collimating lens array 3 having a focal length of 12.3 mm at this position, it is possible to configure a multiplexing optical system of a high output module while maintaining the same optical path length as the optical system exemplified in the first embodiment. It is. With this configuration, it is possible to prevent an increase in the size of the optical system.
 なお、本実施形態3で例示しているレンズの焦点距離は数mm以上であり、非特許文献1に記載のコリメートレンズの焦点距離0.776mmに比べて充分に大きく、従って本実施形態3の構成は、実施形態1で説明した効果(光学系のアライメントが容易になる)を阻害するものではない。また、凹レンズアレイ5とコリメートレンズアレイ3の焦点距離を適当に設計することにより、モジュールのサイズをさらに小型化することも可能である。 The focal length of the lens exemplified in the third embodiment is several mm or more, which is sufficiently larger than the focal length of 0.776 mm of the collimating lens described in Non-Patent Document 1. Therefore, the focal length of the third embodiment is as follows. The configuration does not hinder the effect described in the first embodiment (the optical system can be easily aligned). In addition, by appropriately designing the focal lengths of the concave lens array 5 and the collimating lens array 3, the size of the module can be further reduced.
 なお、本実施形態3では、図7に示すレーザモジュール10としてレーザ素子アレイ11を用いているが、図1に示す複数のレーザ素子(ディスクリート素子)1を用いてもよい。 In the third embodiment, the laser element array 11 is used as the laser module 10 shown in FIG. 7, but a plurality of laser elements (discrete elements) 1 shown in FIG. 1 may be used.
 図8は、本発明の実施の形態3の変形例によるレーザモジュールの複合レンズを示す図である。
 この変形例では、凹レンズアレイ5とコリメートレンズアレイ3が1つの複合レンズ15として一体化される。複合レンズ15に入射した光ビームLINは複合レンズ15内で拡げられて、互いに接した状態で平行化されて出射する(光ビームLOUT)。
FIG. 8 is a view showing a compound lens of a laser module according to a modification of the third embodiment of the present invention.
In this modification, the concave lens array 5 and the collimating lens array 3 are integrated as one compound lens 15. The light beam L IN incident on the composite lens 15 is expanded in the compound lens 15, and emits collimated in a state of contact with each other (the light beam L OUT).
実施の形態4.
 図9を用いて、本発明の実施の形態4によるレーザモジュールについて説明する。図9は、後述する図14に対応する図である。本実施形態4において図9に示されない構成については、実施形態1と同様である。
Embodiment 4 FIG.
A laser module according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 9 is a diagram corresponding to FIG. 14 described later. Configurations not shown in FIG. 9 in the fourth embodiment are the same as those in the first embodiment.
 本実施形態4で、レーザモジュール10は、複数のレーザ素子1をそれぞれ選択的に点灯/消灯させるように構成された制御装置40を備える。制御装置40を用いてレーザ素子1の点灯制御を行うことにより、合波ビームのビームプロファイルは制御される。制御装置40は、各レーザ素子1の点灯制御パターンを記憶する記憶部、点灯制御を実行する処理部などで構成される。 In the fourth embodiment, the laser module 10 includes a control device 40 configured to selectively turn on / off each of the plurality of laser elements 1. By performing lighting control of the laser element 1 using the control device 40, the beam profile of the combined beam is controlled. The control device 40 includes a storage unit that stores a lighting control pattern of each laser element 1, a processing unit that performs lighting control, and the like.
 ここで、ビーム品質を表す量としてM(エムスクエア)が知られている。光ビームの波長をλ、ビームウェストにおける光ビームの半径をd、光ビームの遠視野での拡がり半角をθとしてM=πdθ/λで計算できる。同一ビーム径の光ビームで比較すると、M値が小さいほどビームの発散が小さくなる。図9に示す複数のレーザ素子1において、より中央に近いレーザ素子1を点灯させ、その周囲のレーザ素子1を消灯することにより、Mの値はより1に近づく。 Here, M 2 (Msquare) is known as a quantity representing the beam quality. It is possible to calculate M 2 = πd 0 θ / λ, where λ is the wavelength of the light beam, d 0 is the radius of the light beam at the beam waist, and θ is the half angle of the light beam in the far field. When comparing light beams having the same beam diameter, the smaller the M 2 value, the smaller the beam divergence. In the plurality of laser elements 1 shown in FIG. 9, the laser element 1 closer to the center is turned on and the surrounding laser elements 1 are turned off, so that the value of M 2 becomes closer to 1.
 図9で、破線401、一点鎖線402、二点鎖線403は、それぞれM~9、M~11、M~13に相当する点灯範囲を示す。この点灯範囲内のレーザ素子1のみを点灯させることにより、レーザモジュール10の用途に応じてMの値は変更可能である。 In FIG. 9, a broken line 401, a one-dot chain line 402, and a two-dot chain line 403 indicate lighting ranges corresponding to M 2 to 9, M 2 to 11, and M 2 to 13, respectively. By turning on only the laser element 1 within the lighting range, the value of M 2 can be changed according to the application of the laser module 10.
 また、レーザモジュール10を同じレーザ加工に用いる場合であっても、加工用途によって最適ビーム形状は異なる。例えば、金属薄板切断には、図10Aに強度分布を示すような高集束ガウスモードの光ビームが適しており、従って中央付近のレーザ素子1のみを点灯させればよい。一方、金属厚板切断には図10Bに強度分布を示すようなドーナツ型の光ビームが適しており、従って中央付近のレーザ素子1を消灯させて、その周囲のレーザ素子1を点灯させればよい。また、図10Cに強度分布を示すようなトップハット型の光ビームが必要な場合には、すべてのレーザ素子1を点灯させればよい。 In addition, even when the laser module 10 is used for the same laser processing, the optimum beam shape varies depending on the processing application. For example, a high-focus Gaussian mode light beam whose intensity distribution is shown in FIG. 10A is suitable for cutting a thin metal plate. Therefore, only the laser element 1 near the center needs to be turned on. On the other hand, a donut-shaped light beam whose intensity distribution is shown in FIG. 10B is suitable for cutting a thick metal plate. Therefore, if the laser element 1 near the center is turned off and the surrounding laser element 1 is turned on. Good. When a top hat type light beam having an intensity distribution shown in FIG. 10C is necessary, all the laser elements 1 may be turned on.
 本実施形態4によれば、レーザ素子1を選択的に点灯させ、合波ビームのビームプロファイルを制御することにより、光学系の切り替えなどの機械的な変更を行うことなく、集光性に優れ、かつ各加工用途に適した集光強度分布が得られる。 According to the fourth embodiment, by selectively turning on the laser element 1 and controlling the beam profile of the combined beam, the light collecting property is excellent without mechanical change such as switching of the optical system. In addition, a light collection intensity distribution suitable for each processing application can be obtained.
実施の形態5.
 図11A、図11Bと図12A、図12Bを用いて、本発明の実施の形態5によるレーザモジュールについて説明する。本実施形態5において図11A、図11Bと図12A、図12Bに示されない構成については、実施形態1と同様である。
Embodiment 5 FIG.
A laser module according to Embodiment 5 of the present invention will be described with reference to FIGS. 11A and 11B and FIGS. 12A and 12B. In the fifth embodiment, configurations not shown in FIGS. 11A and 11B and FIGS. 12A and 12B are the same as those in the first embodiment.
 一般に、光と物質の相互作用において、光の偏光状態によって吸収率などの特性が変化する。そこで、本実施形態5では、互いに偏光方向の異なる光ビームを放出するように各レーザ素子1を構成することにより、合波ビームの偏光制御が行われる。各レーザ素子1が放出する偏光の方向は、フォトニック結晶層105に形成された空孔105bの形状に応じて変化する。例えば空孔105bの形状を楕円にすることにより、偏光方向は楕円の長径方向に揃えられる。 Generally, in the interaction between light and a substance, characteristics such as absorptance change depending on the polarization state of light. Therefore, in the fifth embodiment, the polarization control of the combined beam is performed by configuring each laser element 1 to emit light beams having different polarization directions. The direction of polarized light emitted by each laser element 1 changes according to the shape of the hole 105 b formed in the photonic crystal layer 105. For example, by making the shape of the hole 105b an ellipse, the polarization direction is aligned with the major axis direction of the ellipse.
 偏光方向が図11Aの矢印501で表される光ビームを放出するように各レーザ素子1を配置した場合、合波ビーム502は、図11Bの矢印503に示すように光軸の周囲方向に沿った偏光(アジマス偏光)となる。アジマス偏光をレーザ穴開けに利用する場合、キーホール内壁に対して吸収率が低く反射率が高いS偏光が入射するため、キーホール底面へのビーム到達率が高くなり、深孔の加工などを好適に行うことができる。 When the laser elements 1 are arranged such that the polarization direction emits the light beam represented by the arrow 501 in FIG. 11A, the combined beam 502 is along the peripheral direction of the optical axis as indicated by the arrow 503 in FIG. 11B. Polarized light (azimuth polarized light). When using azimuth polarized light for laser drilling, the S-polarized light with low absorptance and high reflectivity is incident on the inner wall of the keyhole, increasing the beam arrival rate to the bottom surface of the keyhole, and processing deep holes. It can be suitably performed.
 偏光方向が図12Aの矢印601(図11Aの矢印501に対して直交する)で表される光ビームを放出するように各レーザ素子1を配置した場合、合波ビーム602は、図12Bの矢印603に示すように光軸から半径方向に沿った偏光(ラジアル偏光)となる。ラジアル偏光をレーザ切断に利用する場合、キーホールに対して吸収率が高いP偏光が入射するため、物質の切断性能が向上する。 When each laser element 1 is arranged so as to emit a light beam whose polarization direction is represented by an arrow 601 in FIG. 12A (orthogonal to the arrow 501 in FIG. 11A), the combined beam 602 is an arrow in FIG. 12B. As indicated by reference numeral 603, the light is polarized along the radial direction from the optical axis (radial polarized light). When using radially polarized light for laser cutting, P-polarized light having a high absorptance is incident on the keyhole, so that the material cutting performance is improved.
 なお、中央のレーザ素子1は必要に応じて取り除かれてもよい。 The central laser element 1 may be removed if necessary.
 また、アジマス偏光を作るレーザ素子の組とラジアル偏光を作るレーザ素子の組とを、これらが混在した状態でベース2の上に実装し、実施形態4で説明した制御装置40を用いて合波ビームの偏光状態を電気的にスイッチングすることができる。これにより、用途に合わせた光ビームを利用してレーザ加工を行うことが可能となる。 Also, a set of laser elements that produce azimuth polarization and a set of laser elements that produce radial polarization are mounted on the base 2 in a mixed state, and are combined using the control device 40 described in the fourth embodiment. The polarization state of the beam can be electrically switched. This makes it possible to perform laser processing using a light beam suitable for the application.
 なお、本実施形態5では、合波ビームが軸対称偏光ビーム(アジマス偏光、ラジアル偏光)となる例について説明したが、用途に応じて他の偏光状態(例えば直線、円)としてもよい。 In the fifth embodiment, the example in which the combined beam is an axially symmetric polarized beam (azimuth polarized light, radial polarized light) has been described. However, other polarization states (for example, straight lines and circles) may be used depending on the application.
実施の形態6.
 図13は、本発明の実施の形態6によるレーザ加工装置を示す構成図である。
 レーザ加工装置1000は、上記実施形態1~5のいずれか、またはその任意の組み合わせによるレーザモジュール10と、レーザモジュール10から出射した光ビームを伝送する光ファイバ20と、光ファイバ20から出射した光ビームを被加工材Wに向けて照射するための加工ヘッド30とを備える。
Embodiment 6 FIG.
FIG. 13 is a block diagram showing a laser machining apparatus according to Embodiment 6 of the present invention.
The laser processing apparatus 1000 includes a laser module 10 according to any one of Embodiments 1 to 5 or any combination thereof, an optical fiber 20 that transmits a light beam emitted from the laser module 10, and light emitted from the optical fiber 20. And a processing head 30 for irradiating the workpiece W with the beam.
 加工ヘッド30は中空筒状の部材であり、光ビームを平行化、集光して被加工材Wの加工点で光スポットを形成する加工レンズ31,32が内部に設けられている。加工レンズ32により集光された光ビームを通過させるとともにワークWに向けてアシストガスを供給するように、加工ヘッド30の先端はノズル状に形成されている。 The processing head 30 is a hollow cylindrical member, and is provided with processing lenses 31 and 32 that collimate and collect a light beam to form a light spot at a processing point of the workpiece W. The tip of the processing head 30 is formed in a nozzle shape so that the light beam collected by the processing lens 32 passes and the assist gas is supplied toward the workpiece W.
 次に、本実施形態6によるレーザ加工装置1000に適したレーザ素子1の配置について、図14を用いて説明する。
 例えば板金切断加工用レーザでは、一般に出力約1kW~約6kW、集光性が約4mm・mradの炭酸ガスレーザまたはファイバレーザが用いられることが多い。このとき、例えば波長900nm帯で縦横シングルモード発振するPCSEL素子を光源として用いることを考える。このとき、実施形態1~5で説明した合波光学系を用いると、図14に示すように直径方向に11個のレーザ素子1を六方格子状に並べることにより、約4mm・mradの集光性を実現可能である。なお、直径方向に9個から13個のレーザ素子1が並んだ配置であれば、板金切断加工に適した集光性を有する光ビームが得られる。
Next, the arrangement of the laser elements 1 suitable for the laser processing apparatus 1000 according to the sixth embodiment will be described with reference to FIG.
For example, in a sheet metal cutting laser, a carbon dioxide laser or a fiber laser having an output of about 1 kW to about 6 kW and a light condensing property of about 4 mm · mrad is often used. At this time, for example, consider using a PCSEL element that oscillates vertically and horizontally in a wavelength band of 900 nm as a light source. At this time, when the multiplexing optical system described in the first to fifth embodiments is used, as shown in FIG. 14, 11 laser elements 1 are arranged in a hexagonal lattice shape in the diametrical direction, thereby collecting light of about 4 mm · mrad. Can be realized. If 9 to 13 laser elements 1 are arranged in the diametrical direction, a light beam having a condensing property suitable for sheet metal cutting can be obtained.
 図14に示す配置で、レーザ素子1として出力10Wのものを用いた場合、レーザモジュール10のレーザ出力は約1kWとなる。レーザモジュール10の出射する合波ビームに対して、偏光が直交した2つの光ビームを重畳する偏光結合と、波長の異なる2つ以上の光ビームを重畳する波長結合とを用いて4倍以上に光ビームを重畳することにより、従来の板金切断レーザと同等の出力(約1kW~約6kW)と集光性を有する光ビームが得られる。 In the arrangement shown in FIG. 14, when the laser element 1 having an output of 10 W is used, the laser output of the laser module 10 is about 1 kW. More than four times the combined beam emitted from the laser module 10 by using polarization coupling that superimposes two light beams having orthogonal polarizations and wavelength coupling that superimposes two or more light beams having different wavelengths. By superimposing the light beam, a light beam having the same output (about 1 kW to about 6 kW) and condensing performance as a conventional sheet metal cutting laser can be obtained.
 また、例えばレーザビームを用いた金属溶接では、集光性が約8mm・mrad~約12mm・mradのレーザが用いられることが多い。上記板金切断加工の場合と同様に、直径方向にレーザ素子1が25個から41個並んだレーザモジュールを用いることにより、金属溶接に適した集光性を有する光ビームが得られる。 For example, in metal welding using a laser beam, a laser having a light condensing property of about 8 mm · mrad to about 12 mm · mrad is often used. As in the case of the sheet metal cutting process, by using a laser module in which 25 to 41 laser elements 1 are arranged in the diameter direction, a light beam having a condensing property suitable for metal welding can be obtained.
 なお、図14では、91個のレーザ素子1が六方格子状に配置された構造を示したが、レーザ素子1は、六角形が辺の外方に膨らんだ円形に近い形状を成すように配置されてもよい。 Although FIG. 14 shows a structure in which 91 laser elements 1 are arranged in a hexagonal lattice shape, the laser elements 1 are arranged so that a hexagonal shape is close to a circle bulging outward on the side. May be.
実施の形態7.
 図16を用いて、本発明の実施の形態7によるレーザモジュールについて説明する。本実施形態7において図16に示されない構成については、実施形態1と同様である。
Embodiment 7 FIG.
A laser module according to the seventh embodiment of the present invention will be described with reference to FIG. Configurations not shown in FIG. 16 in the seventh embodiment are the same as those in the first embodiment.
 符号701を付して示すレーザ素子(図16に白丸で示す)と符号702を付して示すレーザ素子(図16に黒丸で示す)は、これまでに説明したレーザ素子1と同様のPCSEL素子である。本実施形態7で、レーザ素子701とレーザ素子702とは、フォトニック結晶層105(図3を参照)を構成するフォトニック結晶の材料、周期が互いに異なる。これにより、レーザ素子701,702は、互いに異なる波長λ1,λ2の光ビームを放出する。レーザ素子701とレーザ素子702は、ベース2上で紙面横方向に交互に並んで配列されている。 A laser element denoted by reference numeral 701 (indicated by a white circle in FIG. 16) and a laser element denoted by reference numeral 702 (indicated by a black circle in FIG. 16) are the same PCSEL elements as the laser element 1 described so far. It is. In the seventh embodiment, the laser element 701 and the laser element 702 are different from each other in the material and period of the photonic crystal constituting the photonic crystal layer 105 (see FIG. 3). As a result, the laser elements 701 and 702 emit light beams having different wavelengths λ1 and λ2. Laser elements 701 and laser elements 702 are arranged alternately on the base 2 in the horizontal direction of the drawing.
 また、本実施形態7で、レーザモジュール10は、レーザ素子701,702の点灯/消灯を切り替えるように構成された制御装置70を備える。制御装置70は、各レーザ素子701,702の点灯制御パターンを記憶する記憶部、点灯制御を実行する処理部などで構成される。 Further, in the seventh embodiment, the laser module 10 includes a control device 70 configured to switch on / off of the laser elements 701 and 702. The control device 70 includes a storage unit that stores lighting control patterns of the laser elements 701 and 702, a processing unit that executes lighting control, and the like.
 ここで一般に、光の吸収特性(吸収スペクトル)は材料に応じて異なる。従って、レーザ加工では、被加工材の材料に応じて最適なレーザ光の波長を選択することが好ましい。例えば被加工材がアルミニウム材である場合、光吸収率のピーク波長は約850nmである。一方、被加工材が銅材である場合、約400nm以上の波長領域で、光吸収率は波長の増大に応じて単調減少する。従って、アルミニウム材の加工には波長が約850nmの光レーザを用い、銅材の加工には波長が約400nm未満の光レーザを用いることで、加工性を向上させることができる。 Here, generally, the light absorption characteristic (absorption spectrum) differs depending on the material. Therefore, in laser processing, it is preferable to select an optimum wavelength of laser light according to the material of the workpiece. For example, when the workpiece is an aluminum material, the peak wavelength of light absorption is about 850 nm. On the other hand, when the workpiece is a copper material, the light absorptance monotonously decreases as the wavelength increases in a wavelength region of about 400 nm or more. Therefore, workability can be improved by using an optical laser having a wavelength of about 850 nm for processing the aluminum material and using an optical laser having a wavelength of less than about 400 nm for processing the copper material.
 本実施形態7によれば、制御装置70を用いてレーザ素子701,702の点灯/消灯を切り替えることにより、合波ビームの波長はλ1またはλ2となる。これにより、被加工材の材料に応じて異なるレーザモジュールを用いることなく、1つのレーザモジュール10を用いて、複数種類の被加工材について高い加工性を得ることができる。 According to the seventh embodiment, by switching on / off of the laser elements 701 and 702 using the control device 70, the wavelength of the combined beam becomes λ1 or λ2. Thereby, high workability can be obtained for a plurality of types of workpieces using one laser module 10 without using different laser modules depending on the material of the workpiece.
 なお、図16では、レーザ素子701,702がベース2上で紙面横方向に交互に配列される例について説明したが、図16とは異なる配列パターンが用いられてもよい。例えば、図17に示すように、六方格子を成す複数の六角形のうち最も外側の六角形がレーザ素子701(波長λ1のレーザ光を放出する)により画定され、その内側の六角形がレーザ素子702(波長λ2のレーザ光を放出する)により画定され、またその内側の六角形がレーザ素子701により画定されるというように、レーザ素子701,702がベース2上で径方向に交互に配列されてもよい。 In FIG. 16, the example in which the laser elements 701 and 702 are alternately arranged on the base 2 in the horizontal direction on the paper surface has been described, but an arrangement pattern different from that in FIG. 16 may be used. For example, as shown in FIG. 17, the outermost hexagon of a plurality of hexagons forming a hexagonal lattice is defined by a laser element 701 (which emits laser light having a wavelength λ1), and the inner hexagon is a laser element. The laser elements 701 and 702 are alternately arranged in the radial direction on the base 2 so as to be defined by 702 (emitting a laser beam having a wavelength λ 2) and the hexagon inside thereof is defined by the laser element 701. May be.
 また、本実施形態7では、レーザモジュール10が、互いに異なる2つの波長(λ1,λ2)の合波ビームを選択的に出射させるように構成された例について説明したが、互いに異なる3つ以上の波長(λ1,λ2,λ3,…)の合波ビームを選択的に出射させるように構成されてもよい。 In the seventh embodiment, an example in which the laser module 10 is configured to selectively emit combined beams having two different wavelengths (λ1 and λ2) has been described. A combined beam having wavelengths (λ1, λ2, λ3,...) May be selectively emitted.
 また、本実施形態7では、制御装置70が、いずれか1つの波長の光ビームを放出するレーザ素子を点灯するように構成された例について説明したが、2つ以上の波長の光ビームを放出するレーザ素子を同時に点灯するように構成されてもよい。 Further, in the seventh embodiment, the example in which the control device 70 is configured to turn on the laser element that emits the light beam having any one wavelength has been described. However, the light beam having two or more wavelengths is emitted. The laser elements to be turned on may be turned on simultaneously.
 以上、上記実施形態を挙げて本発明を説明したが、本発明は上記実施形態に限定されない。また、各実施形態の特徴を任意に組み合わせて別の実施形態が構成されてよい。また、上記実施形態には種々の変形、改良が加えられてよく、従って本発明には種々の変形例が存在する。 As mentioned above, although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment. Further, another embodiment may be configured by arbitrarily combining the features of the embodiments. In addition, various modifications and improvements may be added to the above-described embodiment, and therefore there are various modifications in the present invention.
1 レーザ素子(PCSEL素子)、 2 ベース、 3 コリメートレンズアレイ、 4 集光レンズ、 5 凹レンズアレイ、 10 レーザモジュール、 11 レーザ素子アレイ、 15 複合レンズ、 20 光ファイバ、 30 加工ヘッド、 40,70 制御装置、 1000 レーザ加工装置 1 laser element (PCSEL element), 2 base, 3 collimating lens array, 4 condensing lens, 5 concave lens array, 10 laser module, 11 laser element array, 15 compound lens, 20 optical fiber, 30 processing head, 40, 70 control Equipment, 1000 laser processing equipment

Claims (10)

  1.  光ビームをそれぞれ放出する複数のレーザ素子と、
     前記複数のレーザ素子から放出された光ビームを平行化するコリメート光学系と、
     前記コリメート光学系により平行化された光ビームを集光して合波ビームを成形する集光光学系とを備え、
     前記複数のレーザ素子は、それぞれフォトニック結晶面発光レーザ素子であり、同一平面上で六方格子状に配置された
      ことを特徴とするレーザモジュール。
    A plurality of laser elements each emitting a light beam;
    A collimating optical system for collimating light beams emitted from the plurality of laser elements;
    A condensing optical system that condenses the light beam collimated by the collimating optical system and forms a combined beam;
    The plurality of laser elements are photonic crystal surface emitting laser elements, and are arranged in a hexagonal lattice pattern on the same plane.
  2.  前記コリメート光学系は、前記平行化された光ビームのうち隣り合う光ビームどうしが互いに接する状態で出射するように構成されたことを特徴とする、
     請求項1に記載のレーザモジュール。
    The collimating optical system is configured to emit light in a state where adjacent light beams out of the collimated light beams are in contact with each other.
    2. The laser module according to claim 1.
  3.  前記複数のレーザ素子は、単一の半導体基板の上に集積されたことを特徴とする、
     請求項1または2に記載のレーザモジュール。
    The plurality of laser elements are integrated on a single semiconductor substrate,
    The laser module according to claim 1.
  4.  前記複数のレーザ素子と前記コリメート光学系との間に配置され、前記複数のレーザ素子から放出された光ビームのビーム径を拡大する凹レンズアレイを備えたことを特徴とする、
     請求項1から3のいずれか1項に記載のレーザモジュール。
    It is disposed between the plurality of laser elements and the collimating optical system, and includes a concave lens array that expands a beam diameter of a light beam emitted from the plurality of laser elements.
    The laser module according to any one of claims 1 to 3.
  5.  前記凹レンズアレイと前記コリメート光学系は、複合レンズとして一体化されたことを特徴とする、
     請求項4に記載のレーザモジュール。
    The concave lens array and the collimating optical system are integrated as a compound lens,
    The laser module according to claim 4.
  6.  前記複数のレーザ素子をそれぞれ選択的に点灯させ、前記合波ビームのプロファイルを制御する制御装置を備えたことを特徴とする、
     請求項1から5のいずれか1項に記載のレーザモジュール。
    Each of the plurality of laser elements is selectively turned on, and includes a control device that controls a profile of the combined beam.
    The laser module according to any one of claims 1 to 5.
  7.  前記複数のレーザ素子の少なくとも一部は、前記合波ビームが軸対称偏光ビームとなるように、互いに偏光方向の異なる光ビームを放出することを特徴とする、
     請求項1から6のいずれか1項に記載のレーザモジュール。
    At least some of the plurality of laser elements emit light beams having different polarization directions so that the combined beam becomes an axially symmetric polarized beam,
    The laser module according to claim 1.
  8.  前記複数のレーザ素子は、第1波長の光ビームを放出するレーザ素子と、該第1波長とは異なる波長の光ビームを放出するレーザ素子とを含むことを特徴とする、
     請求項1から7のいずれか1項に記載のレーザモジュール。
    The plurality of laser elements include a laser element that emits a light beam having a first wavelength and a laser element that emits a light beam having a wavelength different from the first wavelength.
    The laser module according to claim 1.
  9.  請求項1から8のいずれか1項に記載のレーザモジュールと、
     前記集光光学系により集光された光ビームを一端側で受け、外部へ伝送する光ファイバと、
     前記光ファイバから出射した光ビームを被加工材に向けて照射するための加工ヘッドとを備えた
     ことを特徴とするレーザ加工装置。
    The laser module according to any one of claims 1 to 8,
    An optical fiber that receives the light beam collected by the condensing optical system on one end side and transmits the light beam to the outside;
    A laser processing apparatus comprising: a processing head for irradiating a workpiece with a light beam emitted from the optical fiber.
  10.  同一平面上に配置され、光ビームをそれぞれ放出する複数のレーザ素子と、
     前記複数のレーザ素子から放出された光ビームを平行化するコリメート光学系と、
     前記コリメート光学系により平行化された光ビームを集光する集光光学系と、
     前記複数のレーザ素子をそれぞれ選択的に点灯させ、前記合波ビームのプロファイルを制御する制御装置を備えた
     ことを特徴とするレーザモジュール。
    A plurality of laser elements arranged on the same plane, each emitting a light beam;
    A collimating optical system for collimating light beams emitted from the plurality of laser elements;
    A condensing optical system for condensing the light beam collimated by the collimating optical system;
    A laser module comprising: a control device that selectively turns on each of the plurality of laser elements and controls a profile of the combined beam.
PCT/JP2016/050990 2015-02-09 2016-01-14 Laser module and laser machining apparatus WO2016129323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-022851 2015-02-09
JP2015022851A JP2018056148A (en) 2015-02-09 2015-02-09 Laser module and laser processing device

Publications (1)

Publication Number Publication Date
WO2016129323A1 true WO2016129323A1 (en) 2016-08-18

Family

ID=56615096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050990 WO2016129323A1 (en) 2015-02-09 2016-01-14 Laser module and laser machining apparatus

Country Status (2)

Country Link
JP (1) JP2018056148A (en)
WO (1) WO2016129323A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785895A (en) * 2016-11-30 2017-05-31 中国科学院半导体研究所 A kind of device that beam is closed based on photon crystal laser
WO2020059664A1 (en) * 2018-09-18 2020-03-26 三菱電機株式会社 Multiplexing optical system
CN112260064A (en) * 2020-10-21 2021-01-22 中国科学院半导体研究所 Light beam shrinking device and method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190324281A1 (en) * 2018-04-24 2019-10-24 Becton, Dickinson And Company Multi-laser systems having modified beam profiles and methods of use thereof
FR3081738B1 (en) * 2018-06-05 2020-09-04 Imagine Optic METHODS AND SYSTEMS FOR THE GENERATION OF LASER PULSES OF HIGH PEAK POWER
JPWO2020194625A1 (en) * 2019-03-27 2021-04-30 三菱電機株式会社 Laser equipment and laser processing machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117268A (en) * 1997-06-23 1999-01-22 Res Dev Corp Of Japan Semiconductor laser array device
JP2002026466A (en) * 2000-07-11 2002-01-25 Toyota Central Res & Dev Lab Inc Condensing optical system and light source for laser machines
JP2005177825A (en) * 2003-12-22 2005-07-07 Sumitomo Electric Hardmetal Corp Optical system for long distance transmission, and scan lens for long distance transmission
WO2007007766A1 (en) * 2005-07-13 2007-01-18 The Furukawa Electric Co., Ltd. Light irradiating device and welding method
JP2007275908A (en) * 2006-04-03 2007-10-25 Nippon Sharyo Seizo Kaisha Ltd Laser machining apparatus
JP2010263062A (en) * 2009-05-07 2010-11-18 Canon Inc Surface light-emitting laser array and method for manufacturing the same
JP2013502717A (en) * 2009-08-20 2013-01-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Laser device with brightness distribution that can be changed
WO2013058072A1 (en) * 2011-10-20 2013-04-25 新日鐵住金株式会社 Laser processing device and laser processing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117268A (en) * 1997-06-23 1999-01-22 Res Dev Corp Of Japan Semiconductor laser array device
JP2002026466A (en) * 2000-07-11 2002-01-25 Toyota Central Res & Dev Lab Inc Condensing optical system and light source for laser machines
JP2005177825A (en) * 2003-12-22 2005-07-07 Sumitomo Electric Hardmetal Corp Optical system for long distance transmission, and scan lens for long distance transmission
WO2007007766A1 (en) * 2005-07-13 2007-01-18 The Furukawa Electric Co., Ltd. Light irradiating device and welding method
JP2007275908A (en) * 2006-04-03 2007-10-25 Nippon Sharyo Seizo Kaisha Ltd Laser machining apparatus
JP2010263062A (en) * 2009-05-07 2010-11-18 Canon Inc Surface light-emitting laser array and method for manufacturing the same
JP2013502717A (en) * 2009-08-20 2013-01-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Laser device with brightness distribution that can be changed
WO2013058072A1 (en) * 2011-10-20 2013-04-25 新日鐵住金株式会社 Laser processing device and laser processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785895A (en) * 2016-11-30 2017-05-31 中国科学院半导体研究所 A kind of device that beam is closed based on photon crystal laser
WO2020059664A1 (en) * 2018-09-18 2020-03-26 三菱電機株式会社 Multiplexing optical system
JPWO2020059664A1 (en) * 2018-09-18 2021-01-07 三菱電機株式会社 Combined wave optics
CN112673294A (en) * 2018-09-18 2021-04-16 三菱电机株式会社 Multiplexing optical system
US11822125B2 (en) 2018-09-18 2023-11-21 Mitsubishi Electric Corporation Multiplexing optical system
CN112260064A (en) * 2020-10-21 2021-01-22 中国科学院半导体研究所 Light beam shrinking device and method thereof

Also Published As

Publication number Publication date
JP2018056148A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
WO2016129323A1 (en) Laser module and laser machining apparatus
JP6132995B2 (en) Laser module and laser processing apparatus
JP6374017B2 (en) Semiconductor laser oscillator
CN107611775B (en) Semiconductor laser and manufacturing method thereof
US20160094016A1 (en) Increasing the spatial and spectral brightness of laser diode arrays
US20080101429A1 (en) System and method for generating intense laser light from laser diode arrays
JP6157194B2 (en) Laser apparatus and light beam wavelength coupling method
US11108214B2 (en) Wavelength combining laser apparatus
US10732426B2 (en) Two-dimensional coherent beam combination using circular or spiral diffraction grating
WO2020078197A1 (en) Semiconductor laser
CN102208753A (en) External cavity semiconductor laser with multi-wavelength combination
US20070217466A1 (en) Two-dimensional photonic crystal surface light emitting laser
JP2007258260A (en) Two-dimensional photonic crystal surface-emitting laser
JP2007194597A (en) External resonator surface emitting laser
JP4002286B2 (en) Semiconductor laser device
US20070268941A1 (en) Vertical external cavity surface emitting laser and method thereof
JP2023099577A (en) Light source device, direct diode laser apparatus, and optical coupler
JP6522166B2 (en) Laser device
JP7280498B2 (en) Light source device
JP4744895B2 (en) Terahertz wave generator
JP5717989B2 (en) Laser equipment
JP2007300015A (en) Optical unit
JPH1168197A (en) Solid laser device excited by semiconductor laser
Sills et al. In-phase coherently-coupled optically-pumped VECSEL array
US20230187907A1 (en) Wavelength beam combining device, direct diode laser device, and laser processing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16748968

Country of ref document: EP

Kind code of ref document: A1