WO2016126138A1 - Method and device for establishing session in wireless communication system - Google Patents

Method and device for establishing session in wireless communication system Download PDF

Info

Publication number
WO2016126138A1
WO2016126138A1 PCT/KR2016/001307 KR2016001307W WO2016126138A1 WO 2016126138 A1 WO2016126138 A1 WO 2016126138A1 KR 2016001307 W KR2016001307 W KR 2016001307W WO 2016126138 A1 WO2016126138 A1 WO 2016126138A1
Authority
WO
WIPO (PCT)
Prior art keywords
wfd
transmission mode
frame
field
service
Prior art date
Application number
PCT/KR2016/001307
Other languages
French (fr)
Korean (ko)
Inventor
김동철
이병주
박기원
박현희
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2016126138A1 publication Critical patent/WO2016126138A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for establishing an application service platform (ASP) session.
  • ASP application service platform
  • WLAN is based on radio frequency technology, and can be used in homes, businesses, or businesses by using portable terminals such as personal digital assistants (PDAs), laptop computers, and portable multimedia players (PMPs). It is a technology that allows wireless access to the Internet in a specific service area.
  • PDAs personal digital assistants
  • PMPs portable multimedia players
  • Wi-Fi Direct Wi-Fi Direct
  • Wi-Fi P2P peer
  • Wi-Fi Direct devices can be connected without a complicated configuration process, and in order to provide various services to a user, they can support an operation of exchanging data with each other at a communication speed of a general WLAN system.
  • Wi-Fi Direct Service WFDS
  • ASP application service platform
  • IEEE 802.11a and b use an unlicensed band at 2.4. GHz or 5 GHz, IEEE 802.11b provides a transmission rate of 11 Mbps, and IEEE 802.11a provides a transmission rate of 54 Mbps.
  • IEEE 802.11g applies Orthogonal Frequency Division Multiplexing (OFDM) at 2.4 GHz to provide a transmission rate of 54 Mbps.
  • IEEE 802.11n provides a transmission rate of 300 Mbps by applying multiple input multiple output OFDM (MIMO-OFDM). IEEE 802.11n supports a channel bandwidth of up to 40 MHz, in which case it provides a transmission rate of 600 Mbps.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the DLS (Direct Link Setup) related protocol in a wireless LAN environment according to IEEE 802.11e is based on QBSS (Quality BSS) in which a Basic Service Set (BSS) supports Quality of Service (QoS).
  • QBSS Quality BSS
  • AP non-AP
  • QAPs QAPs
  • WLAN environment for example, WLAN environment according to IEEE 802.11a / b / g
  • the AP supports QoS even if the Non-AP STA is a QSTA (Quality STA) supporting QoS.
  • Most legacy APs do not.
  • the QSTA there is a limit that can not use the DLS service.
  • Tunneled Direct Link Setup is a newly proposed wireless communication protocol to overcome this limitation.
  • TDLS does not support QoS
  • QSTAs can set up a direct link even in a wireless LAN environment such as IEEE 802.11a / b / g, which is currently commercialized, and a direct link can be set in a power save mode (PSM). To do that. Therefore, TDLS prescribes various procedures for enabling QSTAs to establish a direct link even in a BSS managed by a legacy AP.
  • a wireless network supporting such a TDLS is called a TDLS wireless network.
  • WLANs mainly dealt with the operation of an infrastructure BSS in which a wireless access point (AP) functions as a hub.
  • the AP is responsible for supporting physical layer support for wireless / wired connection, routing for devices on the network, and providing services for adding / removing devices to and from the network.
  • the devices in the network are connected through the AP, not directly with each other.
  • Wi-Fi Direct The enactment of the Wi-Fi Direct standard has been discussed as a technology to support direct connections between devices.
  • Wi-Fi Direct networks allow Device to Device (D2D) (or Peer-to-Peer) communication with each other, even if Wi-Fi devices do not join home, office, and hotspot networks. It is proposed by the Wi-Fi Alliance as a workable network.
  • Wi-Fi Direct based communication is referred to as Wi-Fi D2D communication (simply, D2D communication) or Wi-Fi P2P communication (simply, P2P communication).
  • Wi-Fi P2P performing device is referred to as a Wi-Fi P2P device, simply P2P device.
  • the WFDS network may include at least one Wi-Fi device.
  • WFDS devices include devices supporting Wi-Fi, such as display devices, printers, digital cameras, projectors, and smartphones.
  • the WFDS device includes a Non-AP STA and an AP STA.
  • WFDS devices in the WFDS network may be directly connected to each other.
  • a signal transmission path between two WFDS devices is directly connected between the corresponding WFDS devices without passing through a third device (for example, an AP) or an existing network (for example, connecting to a WLAN through an AP). It may mean a case where it is set.
  • the signal transmission path directly established between the two WFDS devices may be limited to the data transmission path.
  • P2P communication may refer to a case where a plurality of non-STAs transmit data (eg, voice / video / text information) without passing through the AP.
  • Signal transmission paths for control information e.g., resource allocation information for P2P configuration, wireless device identification information, etc.
  • WFDS devices e.g., Non-AP STA-to-Non-AP STA, Non-AP STA-).
  • Direct-to-AP or between two WFDS devices (e.g., Non-AP STA-to-Non-AP STA) via an AP, or an AP and a corresponding WFDS device (e.g., AP- To-Non-AP STA # 1, AP-to-Non-AP STA # 2).
  • WFDS devices e.g., Non-AP STA-to-Non-AP STA
  • AP- To-Non-AP STA # 1 e.g., AP- To-Non-AP STA # 1
  • Wi-Fi Direct is a network connectivity standard that defines the behavior of the link layer. Since no standard is defined for an application that operates on the upper layer of the link configured by Wi-Fi Direct, it was difficult to support compatibility when devices that support Wi-Fi Direct run applications after they are connected to each other. To address this problem, standardization of the behavior of higher layer applications called Wi-Fi Direct Service (WFDS) is under discussion at the Wi-Fi Alliance (WFA).
  • WFDS Wi-Fi Direct Service
  • FIG. 1 is a diagram for describing a Wi-Fi Direct Service (WFDS) framework component.
  • WFDS Wi-Fi Direct Service
  • the Wi-Fi Direct layer of FIG. 1 means a MAC layer defined by the Wi-Fi Direct standard.
  • the Wi-Fi Direct layer can be configured as software that is compatible with the Wi-Fi Direct standard.
  • a wireless connection may be configured by a physical layer (not shown) compatible with the Wi-Fi PHY.
  • a platform called Application Service Platform (ASP) is defined above the Wi-Fi Direct layer.
  • ASP is a common shared platform and performs session management, command processing of services, and inter-ASP control and security functions between the upper application layer and the lower Wi-Fi Direct layer. do.
  • the service layer contains use case specific services.
  • WFA defines four basic services: Send, Play, Display, and Print.
  • the Enable (API) Application Program Interface (API) is defined to enable the ASP common platform to support third party applications in addition to basic services.
  • FIG. 1 illustrates an example of a service
  • a service defined by Send, Play, Display, Print, or a third party application is not limited thereto.
  • the term "service” refers to Wi-Fi Serial Bus (WSB), Wi-Fi docking (Wi-Fi), in addition to the services defined by the Send, Play, Display, Print, or third-party applications.
  • WB Wi-Fi Serial Bus
  • Wi-Fi docking Wi-Fi docking
  • NAN Neighbor Awareness Networking
  • Send refers to services and applications that can perform file transfers between two WFDS devices.
  • Play refers to services and applications that share or stream audio / video (A / V), photos, and music based on the Digital Living Network Alliance (DLNA) between two WFDS devices.
  • Print refers to services and applications that enable document and photo output between a printer and a device having content such as documents and photos.
  • Display refers to services and applications that enable screen sharing between WFA's Miracast sources and sinks.
  • the application layer may provide a user interface (UI), and expresses information in a form that can be recognized by a person and delivers user input to a lower layer.
  • UI user interface
  • the present invention is to provide a transmission mode according to the capability.
  • a service discovery request to a second device through an AP Transmitting; Receiving, from the AP, a service discovery response sent by the second device; Transmitting a frame related to a transmission mode negotiation to the second device; If the transmission mode negotiation is successful through the frame related to the transmission mode negotiation, the session establishment method comprising the step of transmitting a session request frame using the successful transmission mode.
  • WFDS WiFi Direct Servicea
  • ASP application service platform
  • An embodiment of the present invention provides a first device that supports a WiFi Direct Service (WFDS) and establishes an application service platform (ASP) session with a second device, comprising: a transceiver; And a processor, wherein the processor transmits a service discovery request to a second device through an AP, receives a service discovery response sent by the second device from the AP, and transmits to the second device.
  • the first device transmits a frame related to negotiation and transmits a session request frame using a transmission mode in which negotiation is successful when transmission mode negotiation is successful through the frame related to the transmission mode negotiation.
  • the transmission mode may be one of a user datagram protocol (UDP), a transmission control protocol (TCP), and a media access control (MAC).
  • UDP user datagram protocol
  • TCP transmission control protocol
  • MAC media access control
  • the frame related to the transmission mode negotiation may be a data frame including a MAC header, a frame body, and a 32-bit CRC field.
  • the frame body may include a payload type field indicating an ASP.
  • the frame body may include a Logical Link Control (LLC) field, a Sub-Network Access Protocol (SNAP) field, a payload type field, and a payload field.
  • LLC Logical Link Control
  • SNAP Sub-Network Access Protocol
  • the payload field may include a transport mode bitmap field indicating one of the UDP, TCP, and MAC.
  • the frame related to the transmission mode negotiation may be transmitted through the AP.
  • a customized transmission mode can be used for each STA through the ASP platform.
  • FIG. 1 is a diagram illustrating an exemplary structure of a WFDS system.
  • 3 is a diagram for explaining procedures required for establishing a WFD session.
  • FIG. 7 is a diagram for explaining WFD capability exchange and negotiation.
  • FIG. 8 is a diagram for explaining establishment of a WFD session.
  • 9 to 12 are diagrams for explaining a session establishment procedure according to an embodiment of the present invention.
  • 13 to 14 are block diagrams illustrating a configuration of a wireless device according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of wireless access systems IEEE 802 system, Wi-Fi system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system have. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • 2 shows examples of a WFD session.
  • 2 (a) is an audio-only session, where the WFD source may be connected to either the primary sync or the secondary sync.
  • 2 (b) is a video-only session, where the WFD source is connected to the primary sink.
  • 2 (c) is an audio and video session.
  • 2 (d) illustrates a session connection in the case of a coupled WFD Sink operation.
  • the primary sync can render the video and the secondary sync can render the audio, respectively.
  • the primary sync can render both the video and the audio.
  • Such a session may be established after performing a procedure as shown in FIG. 3. Specifically, the WFD Device Discovery (S401), WFD Service Discovery (S402), WFD Connection Setup (S403), Capability Exchange and Negotiation (S404) procedures are described. After performing, a session may be established. Hereinafter, this will be described sequentially.
  • the WFD source may find a peer device for the WFD, that is, a WFD sink, through WFD device discovery.
  • the WFD devices may include a WFD Information Element (IE) in a beacon, a probe request frame, and a probe response frame.
  • the WFD IE is an information element including information related to the WFD, such as a device type and a device state, which will be described later.
  • the WFD device may transmit a probe response frame including its own WFD IE in response thereto.
  • the probe request frame may include a WFD IE, a Wi-Fi Simple Configuration (WSC) IE, and a P2P information element.
  • WSC Wi-Fi Simple Configuration
  • the probe response frame which is a response thereto, is transmitted through a channel through which the probe request frame is received, and may include all of P2P IE, WSC IE, and WFD IE.
  • 4 illustrates a device discovery and service discovery process defined in WFDS 1.0.
  • the WFD source and / or the WFD sink that performed the WFD device discovery may discover the service capability of each other, if necessary. Specifically, when one WFD device transmits a service discovery request frame in which the WFD capability is included as an information subelement, the other WFD device responds to the service in which its WFD capability is included as an information subelement.
  • the search response frame may be transmitted.
  • the probe request frame and the response frame used in the device discovery procedure may include information indicating whether the WFD device has the capability of supporting the service discovery procedure.
  • FIG. 5 shows a process for the seeker to discover a device and a service through UDP.
  • both devices When both devices are connected to an AP, they open a specific port (or ASP Coordination Protocol port). This port allows the ASP to broadcast discovery request packets throughout the subnet.
  • the advertiser may match a corresponding service, store information about the device and the service, and transmit a discovery response to the unicast through the AP.
  • the WFD device that performs the WDF device discovery and optionally the WFD service discovery procedure may select a WDF device for WFD connection setup.
  • the WFD connection may use a connectivity scheme of one of Wi-Fi P2P and TDLS.
  • the WFD devices may determine the connection scheme based on the preferred connectivity information and the associated BSSID sub-element carried with the WFD information element.
  • 6 (a) and 6 (b) show a connection using Wi-Fi P2P and a connection using TDLS.
  • the AP may be common to or different from the WFD source and the WFD sink. Alternatively, the AP may not exist.
  • the WFD source and the WFD sink must maintain connection with the AP, as shown in FIG. 6 (b).
  • the WFD device may proceed with the WFD capability exchange and negotiation.
  • WFD capability exchange and negotiation may be performed by exchanging messages using the Real-Time Streaming Protocol (RTSP).
  • RTSP Real-Time Streaming Protocol
  • WFD capability exchange and negotiation may be by exchange of RTSP M1 to RTSP M4 messages as shown in FIG. 7.
  • the WFD source may transmit an RTSP M1 (Request) message for starting the RTSP procedure and the WFD capability negotiation (S801).
  • the RTSP M1 request message may include an RTSP OPTIONS request for determining an RTSP method set supported by the WFD sink.
  • the WFD sink may transmit an RTSP M1 response message in which RTSP methods supported by the WFD sink are enumerated (S802).
  • the WFD sink may transmit an RTSP M2 request message for determining an RTSP method set supported by the WFD source (S803).
  • the WFD source may respond with an RTSP M2 response message in which RTSP methods supported by the WFD source are enumerated (S804).
  • the WFD source may transmit an RTSP M3 request message (RTSP GET_PARAMETER request message) specifying a list of WFD capabilities to be known (S805).
  • RTSP M3 request message specifying a list of WFD capabilities to be known (S805).
  • the WFD sink may respond with an RTSP M3 response message (RTSP GET_PARAMETER response message).
  • the WFD source may determine an optimal parameter set to be used during the WFD session and transmit an RTSP M4 request message (RTSP SET_PARAMETER request message) including the determined parameter set to the WFD sink (S806).
  • the WFD sink may transmit an RTSP M4 response message (RTSP SET_PARAMETER response message) (S806).
  • the WFD devices that have performed the WFD capability exchange and negotiation may establish a WFD session through the procedure shown in FIG. 8.
  • the WFD source may transmit an RTSP SET parameter request message (RTSP M5 Trigger SETUP request) to the WFD sink (S901).
  • the WFD sink may respond with an RTSP M5 response message.
  • the WFD sink may send an RTSP SETUP request message (RTSP M6 request) to the WFD source.
  • RTSP M6 request When the RTSP M6 request message is received, the WFD source may respond with an RTSP SETUP response message (RTSP M6 response). If the status code of the RTSP M6 response message indicates 'OK', the RTSP session may have been successfully established.
  • the WFD sink may send an RTSP PLAY request message (RTSP M7 request) to the WFD source to indicate that it is ready to receive the RTP stream.
  • the WFD source may respond with an RTSP PLAY response message (RTSP M7 response).
  • RTSP M7 response the status code 'OK' of the RTSP PLAY response message indicates that the WFD session was established successfully.
  • the WFD source may perform an RTSP M3 request message (RTSP GET_PARAMETER request message), AV (Audio / Video) format update, to obtain the capability for at least one RTSP parameter supported by the WFD sink to the WFD sync.
  • RTSP M4 request message for setting at least one RTSP parameter value corresponding to the WFD session, for triggering capability renegotiation between the WFD source and the WFD sink, triggering the WFD sink to send an RTSP PAUSE request message (RTSP M9 request message) RTSP M5 request message, RTSP M12 request message indicating that the WFD source enters WFD Standby mode, RTSP M14 request message or UIBC to select input type, input device and other parameters to be used in UIBC.
  • An RTSP M15 request message for enabling or disabling may be transmitted to the WFD sink.
  • the WFD sink that has received the enumerated RTSP request message from the WFD source may respond with an RTSP response message.
  • RTSP M7 request messages RTSP PLAY request messages
  • RTSP M9 request messages RTSP
  • PAUSE request message RTSP M10 request message to request the WFD source to change the audio rendering device
  • RTSP M11 request message to instruct to change the active connector type
  • WFD sink has entered WFD standby mode.
  • An RTSP M15 request message or the like for disabling may be transmitted to the WFD source.
  • the WFD source receiving the above-listed RTSP request message from the WFD sink may respond with an RTSP response message.
  • the WFD source and the WFD sink may proceed with audio / video streaming using a codec commonly supported by both.
  • a codec commonly supported by the WFD source and the WFD sink it is possible to ensure interoperability between the two.
  • WFD communication is based on the WFD IE, and the frame format of the WFD IE is shown in Table 1 below.
  • the WFD IE is composed of an Element ID field, a Length field, a WFD-specific OUI field, an OUI type field indicating the type / version of the WFD IE, and a WFD subelement field similarly to the conventional P2P IE.
  • the WFD subelement field has a format as shown in Table 2 below.
  • Subelement ID (Decimal) Notes 0 WFD Device Information One Associated BSSID 2 WFD Audio Formats 3 WFD Video Formats 4 WFD 3D Video Formats 5 WFD Content Protection 6 Coupled Sink Information 7 WFD Extended Capability 8 Local IP Address 9 WFD Session Information 10 Alternative MAC Address 11-255 Reserved
  • the subelement ID field of one octet indicates what information this WFD subelement includes. Specifically, the values 0, 1,... Of the subelement ID field. 10, each of these subelements is a WFD Device Information subelement, Associated BSSID subelement, WFD Audio Formats subelement, WFD Video Formats subelement, WFD 3D Video Formats subelement, WFD Content Protection subelement, Coupled Sink Information subelement, WFD Extended Capability subelement, Local IP Address subelement, WFD Session Information subelement, or alternative MAC address subelement.
  • the WFD Device Information subelement includes information necessary for determining whether to attempt pairing with a WFD device and session creation.
  • the Associated BSSID subelement is used to indicate the address of the currently associated AP.
  • the WFD Audio Formats subelement, the WFD Video Formats subelement, and the WFD 3D Video Formats subelement are used to indicate capabilities of the WFD device related to audio, video, and 3D video, respectively.
  • the WFD Content Protection subelement delivers information related to the content protection scheme, and the Coupled Sink Information subelement carries information about the state of the coupled sink, MAC address, and the like.
  • the WFD Extended Capability subelement is used to convey various capability information of other WFD devices, and the Local IP Address subelement is used to deliver an IP address to the WFD peer during TDLS setup.
  • the WFD Session Information subelement contains information such as a list of WFD device information descriptors in the WFD group, and if the WFD connection scheme requires an interface (for example, a MAC address) different from that used in device discovery, the Alternative MAC Address subelement. Can convey relevant information.
  • the Subelement body field includes detailed information of the subelement corresponding to the subelement ID.
  • the subelement body field includes a WFD Device Information subfield including information about the WFD device and a Session indicating TCP port information for receiving an RTSP message, as illustrated in Table 3 below. It may include a Management Control Port subfield and a WFD Device Maximum Throughput subfield which is information on the maximum average yield.
  • WFD Device Information 2 See Table 5 Session Management Control Port 2 Valid TCP port Default 7236. TCP port at which the WFD Device listens for RTSP messages. (If a WFD Sink that is transmitting this subelement does not support the RTSP server function, this field is set to all zeros.)
  • the WFD Device can choose any value other than default 7236.
  • WFD Device Maximum Throughput 2 Maximum average throughput capability of the WFD Device represented in multiples of 1Mbps
  • Coupled Sink Operation Support at WFD Sink bit 0b0 Coupled Sink Operation not supported by WFD Sink 0b1: Coupled Sink Operation supported by WFD Sink This bit is valid for WFD Device Type bits set to value 0b01, 0b10 or 0b11. When WFD Device Type bits value is 0b00, the value of this b3 is ignored upon receiving.
  • a first device supporting Wi-Fi Direct Service may transmit a service discovery request to a second device through an AP (S901).
  • a service discovery response transmitted by the second device may be received from the AP.
  • the first device may transmit a frame related to the transmission mode negotiation to the second device (S903).
  • a transmission mode capability check for the ASP coordination protocol may be performed.
  • the first device may transmit a frame related to a transport mode negotiation (eg, a transport mode for ASP request), and receive a response (eg, an ACK) (S904).
  • the first device may receive a response frame (Transport mode for ASP response, S905) for the frame related to the transport mode negotiation from the second device, and transmit a response (for example, ACK, S906). Thereafter, the verdict check process (S907 to S9010) may be performed.
  • the transmission mode negotiation succeeds through a frame related to transmission mode negotiation
  • the first device may transmit a session request frame using the transmission mode in which negotiation is successful (S911).
  • the frame related to transmission mode negotiation may include a list of supportable (transmission modes), and may further include information on a preferred transmission mode.
  • the second device may select and respond to a plurality of devices, in which case it must listen in a separate transport mode.
  • the transmission mode may be one of User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Media Access Control (MAC). That is, the transmission mode negotiation may be understood as a negotiation process on which transmission mode, UDP, TCP, or MAC, a session is established.
  • UDP User Datagram Protocol
  • TCP Transmission Control Protocol
  • MAC Media Access Control
  • the transmission mode negotiation may be understood as a negotiation process on which transmission mode, UDP, TCP, or MAC, a session is established.
  • a transport mode that can be supported through ASP may be included.
  • the frame related to the transmission mode negotiation is composed of a MAC header, a frame body and a 32-bit CRC field (FCS field), as shown in Fig. 10 or 11 (802.11 standard) ) May be a data frame.
  • the frame body may include a Logical Link Control (LLC) field, a Sub-Network Access Protocol (SNAP) field, a payload type field, and a payload field.
  • LLC Logical Link Control
  • SNAP Sub-Network Access Protocol
  • payload type field e.g., a payload type field
  • the frame body may include a payload type field indicating an ASP. This uses 801.11 data frames to support ASP. Unique identifiers can be declared to support ASP for SNAP and Payload Types.
  • the payload type field may include the contents of Table 6 below.
  • Protocol name Payload type Subcluse Remote Request / Response One 12.10.3 (Remote Request / Response frame definition)
  • TDLS 2 10.23.2 (TDLS payload)
  • FST (11ad) 3 10.33.5 (FST payload (11ad))
  • the payload field may include a transport mode bitmap field indicating one of UDP, TCP, and MAC. That is, the payload field may include content corresponding to Table 7 below.
  • the transport mode bitmap may be set as shown in Table 8 below.
  • UDP UDP transport for ASP coordination protocol
  • MAC MAC transport for ASP coordination protocol
  • TCP TCP transport for ASP coordination protocol
  • the above-described frame format is transmitted in the form of data frames in the WLAN infrastructure, there may be frame loss.
  • normal transmission and reception confirmation may use the ACK / NACK message format defined in the ASP coordination protocol.
  • the ASP coordination protocol format can be reused, and only transport mode bitmap information can be defined and used.
  • the device A and the device B may enter a connection setup step.
  • the PD Requester may transmit Feature Capability information through the PD request frame.
  • the Feature Capability information may add a preferred transmission mode / supportable method (transmission mode) to the Feature Capability P2P Info attribute.
  • the PD Responder may select a transmission mode preferred by the service or the ASP and include the information in the Feature Capability P2P Info attribute to respond using the PD response frame.
  • the PD Requester may send a Fail message as an event.
  • Priority for transport mode may be used. You can also set the default transport mode.
  • Default Transport mode if there is no Feature Capability P2P Info attribute in PD response frame, PD requester is regarded as Default Transport mode.
  • the default transport mode may be determined by one of the methods described in the Feature Description of the PD request in Table 9. Table 9 can be used in combination with two or more transport modes.
  • PD Requester Feature Capability PD Requester: Feature Description PD Responder: Valid Feature Capability ASP Action Coordination Protocol Transport Bitmask 0x0001-0x00FF Bit (s) inoframton 0x01: UDP Transport 0x02: MAC0x03: TCP Transport0x04-0x80: Reserved for future transports. You can choose one of them and send it. Both ASPs involved in this PD exchange shall use the transport indicated in the PD response for all ASP coordination protocol messaging between the two ASPs. 0 UDP Transport One MAC 2 TCP Transport 3-7 reserved 0x0100-0xFF00 Reserved for future use
  • the PD Requester can be configured as a value / index / string in the form of a bitmap with a combination of features that can be supported.
  • PD Responder you can select Valid Feature Capability to configure information in the form of value / string / index / bit / bitmap and transmit it through PD Response frame.
  • FIG. 12 (b) illustrates a method of defining a separate feature capability request / response (defined as a new action frame).
  • Information on feature capability can be shared in advance, and a common feature capability can be selected to request and respond.
  • the pre-sharing method may add a feature capability field at the time of device / service discovery, or may be added to be mandatory for service_information. Alternatively, the information may be shared between devices at the time of PD request / response.
  • Device / Service Discovery Request / Response may use the frame format of FIG. 12.
  • payload can be used by combining the information shown in Table 10 below.
  • Service_ID is a value using SHA-256, etc., and may be used in whole or in part.
  • the first device Device B, layer 2 and layer 3 connections are established after the first device is connected to the AP.
  • the Service layer of the first device transmits a SeekService () method to the ASP layer (S1001).
  • the first device broadcasts a discovery request to a subnet through the ASP layer (S1002). Since there is no peer providing a service corresponding to the discovery request, a response cannot be received.
  • the second device which is an advertiser, may receive a discoverable notification transmitted by the first device (S1006).
  • the searchable notification may include information on a service supported by the second device for transmitting the searchable notification. Accordingly, it may be determined whether the service known through the searchable notification is a service that the first device finds. If the service found by the first device matches the service known through the searchable notification, the first device may transmit a discovery request (S1007) or a SearchResult () to the service layer (S1009). The first device may transmit the discovery request S1007 in one of broadcast or unicast. After the discovery request is received by the AP, the AP may broadcast it back to the subnet. When the discovery request is received by the second device, the second device may receive a discovery response as a response (S1008).
  • S1007 discovery request
  • S1009 SearchResult
  • knowing the details of the service can inform the user that there is a device supporting the service currently available in the network. This may be performed by the ASP layer transmitting SearchResult () to the service layer (S1009), and displaying the notification to the user (S1010).
  • the first device broadcasts a discovery request for service discovery on a currently connected connection. However, if the second device does not start the current service or does not advertise currently, the second device does not respond to the discovery request. (After a time elapses), the second device Device A, which is an advertiser, may receive a discoverable notification transmitted by the first device.
  • the searchable notification may be transmitted immediately after the second device connects to the subnet when the second device operates as a service advertisement.
  • the discoverable notification may be broadcast by the second device as soon as the second device connects to the network. That is, in FIG. 10, the second device transmits an association request to the AP (S1003), establishes an L2 / L3 connection, and then transmits a searchable notification to the AP (S1005).
  • the AdvertiseService () method is shown to be called after the network connection, but may be called before the network.
  • the searchable notification may include an IP header, a user datagram protocol (UDP) header, and a UDP datagram. That is, the searchable notification may be packetized by UDP (or TCP) and generated / delivered on the IP. This packet can be defined as ASP Coordination Protocol or a new UDP discovery protocol.
  • FIG. 11 shows an embodiment when the searchable notification is defined as an ASP Coordination Protocol (CP CP).
  • the UDP datagram may include an Opcode field, a sequence number field, and a payload field.
  • the Opcode value may indicate what message, and as illustrated in FIG. 11, it may indicate that opcode 9 is a searchable notification.
  • the UDP datagram may include one or more Type Length Value (TLV) fields.
  • TLV Type Length Value
  • the searchable notification message is a UDP packet that can be broadcast to a subnet, and may be to broadcast a service supported by the device to the network when the device joins the network.
  • all attributes may be included in the Information Element (IE) TLV field of the searchable notification in the TLV form in the Information Element (IE) defined in the P2P standard and the WFDS standard.
  • IE Information Element
  • attributes defined in the WFA and attribute types to be included in future IE may be included in the IE TLVs field.
  • it may include an advertised service information attribute defined in the WFDS P2P addendum spec.
  • Figure 13 illustrates a searchable notification procedure according to another embodiment of the present invention.
  • the discovery request and / or discovery response procedure is not performed.
  • the service seeker may not require a discovery request and a discovery response process. That is, the service seeker may send a service SearchResult () event to the service using only the searchable notification message, and notify the user that the new service search is completed.
  • FIG. 10 and 13 illustrate an example in which the searchable notification transmitted by the second device provides a service that the first device is looking for.
  • FIG. 14 relates to a case in which the searchable notification does not provide a service that the first device is looking for.
  • the service seeker may not send a discovery request and / or a SearchResult to a higher service even if the service seeker receives the searchable notification message.
  • the Seeker initially searched for a service called 'org.wi-fi.wfds.send.rx', that is, a file transfer receiving service.
  • a service seeker does not need to inform a higher level service of a service search result.
  • the service advertiser supports the service.
  • FIG. 14 is a block diagram illustrating a configuration of a wireless device according to an embodiment of the present invention.
  • the wireless device 10 may include a processor 11, a memory 12, and a transceiver 13.
  • the transceiver 13 may transmit / receive a radio signal, for example, may implement a physical layer according to the IEEE 802 system.
  • the processor 11 may be electrically connected to the transceiver 13 to implement a physical layer and / or a MAC layer according to the IEEE 802 system.
  • the processor 11 may be configured to perform one or more operations of an application, service, and ASP layer according to various embodiments of the present invention described above, or may be configured to perform an operation related to an apparatus operating as an AP / STA. .
  • a module for implementing the operation of the wireless device according to various embodiments of the present invention described above may be stored in the memory 12 and executed by the processor 11.
  • the memory 12 may be included in the processor 11 or installed outside the processor 11 and connected to the processor 11 by a known means.
  • 16 is a diagram illustrating still another configuration of a wireless device for an embodiment of the present invention.
  • the RF transceiver 21 transfers information generated in the PHY protocol module 22 to the RF spectrum, performs filtering / amplification, etc. to transmit an antenna, or transmits an RF signal received from the antenna to the PHY protocol module. It moves to the band that can be processed and handles the processes such as filtering. Such a switching function for switching the functions of transmission and reception may also be included.
  • the PHY protocol module 22 performs the process of inserting additional signals such as FEC encoding and modulation, preamble, pilot, and the like for data required for transmission by the MAC protocol module 23 and delivers them to the RF transceiver. It performs the function of delivering data to MAC protocol module through the process of demodulation, equalization, FEC decoding and removal of added signal from PHY layer.
  • the PHY protocol module may include a modulator, demodulator equalizer, FEC encoder, FEC decoder, and the like.
  • the MAC protocol module 23 performs a necessary process for transferring and transmitting data transmitted from an upper layer to the PHY protocol module, and is responsible for additional transmissions for basic communication. To this end, it processes the data required for transmission in the upper layer, processes it to be transmitted and transmitted to the PHY protocol module, and processes the received data transmitted in the PHY protocol module and delivers it to the upper layer. It is also responsible for handling the communication protocol by taking care of any additional transmission and reception necessary for this data transfer.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

One embodiment of the present invention provides a method by which a first device for supporting a WiFi direct service (WFDS) establishes an application service platform (ASP) session with a second device, the session establishing method comprising the steps of: transmitting, to a second device, a service discovery request through an AP; receiving, from the AP, a service discovery response transmitted by the second device; transmitting, to the second device, a frame relating to a transmission mode negotiation; and transmitting a session request frame by using a transmission mode which has succeeded in negotiation, if the transmission mode negotiation is successful through the frame relating to the transmission mode negotiation.

Description

무선 통신 시스템에서 세션 수립 방법 및 장치Method and apparatus for establishing session in wireless communication system
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 ASP(Application Service Platform) 세션을 수립하는 방법 및 장치에 대한 것이다.The following description relates to a wireless communication system, and more particularly, to a method and apparatus for establishing an application service platform (ASP) session.
최근 정보통신 기술의 발전과 더불어 다양한 무선 통신 기술이 개발되고 있다. 이 중에서 무선랜(WLAN)은 무선 주파수 기술을 바탕으로 개인 휴대용 정보 단말기(Personal Digital Assistant; PDA), 랩탑 컴퓨터, 휴대용 멀티미디어 플레이어(Portable Multimedia Player; PMP)등과 같은 휴대용 단말기를 이용하여 가정이나 기업 또는 특정 서비스 제공지역에서 무선으로 인터넷에 액세스할 수 있도록 하는 기술이다.Recently, with the development of information and communication technology, various wireless communication technologies have been developed. Among these, WLAN is based on radio frequency technology, and can be used in homes, businesses, or businesses by using portable terminals such as personal digital assistants (PDAs), laptop computers, and portable multimedia players (PMPs). It is a technology that allows wireless access to the Internet in a specific service area.
기존의 무선랜 시스템에서 기본적으로 요구되는 무선 액세스 포인트(AP) 없이, 장치(device)들이 서로 용이하게 연결할 수 있도록 하는 직접 통신 기술로서, 와이파이 다이렉트(Wi-Fi Direct) 또는 Wi-Fi P2P(peer-to-peer)의 도입이 논의되고 있다. 와이파이 다이렉트에 의하면 복잡한 설정과정을 거치지 않고도 장치들이 연결될 수 있고, 사용자에게 다양한 서비스를 제공하기 위해서, 일반적인 무선랜 시스템의 통신 속도로 서로 데이터를 주고 받는 동작을 지원할 수 있다. It is a direct communication technology that allows devices to easily connect with each other without a wireless access point (AP) basically required in a conventional WLAN system. Wi-Fi Direct or Wi-Fi P2P (peer) The introduction of -to-peer) is under discussion. According to Wi-Fi Direct, devices can be connected without a complicated configuration process, and in order to provide various services to a user, they can support an operation of exchanging data with each other at a communication speed of a general WLAN system.
최근 다양한 Wi-Fi 지원 장치들이 이용되며, 그 중에서도 AP 없이 Wi-Fi 장치간 통신이 가능한 Wi-Fi Direct 지원 장치의 개수가 증가하고 있다. WFA(Wi-Fi Alliance)에서는 Wi-Fi Direct 링크를 이용한 다양한 서비스(예를 들어, 센드(Send), 플레이(Play), 디스플레이(Display), 프린트(Print) 등)을 지원하는 플랫폼을 도입하는 기술이 논의되고 있다. 이를 와이파이 다이렉트 서비스(WFDS)라고 칭할 수 있다. WFDS에 따르면, 애플리케이션, 서비스 등은 ASP(Application Service Platform)이라는 서비스 플랫폼에 의해서 제어 또는 관리될 수 있다. Recently, various Wi-Fi supporting devices are used, and among them, the number of Wi-Fi Direct supporting devices that can communicate between Wi-Fi devices without an AP is increasing. The WFA (Wi-Fi Alliance) introduces a platform that supports various services (eg, Send, Play, Display, Print, etc.) using the Wi-Fi Direct link. Technology is under discussion. This may be referred to as Wi-Fi Direct Service (WFDS). According to the WFDS, applications, services, and the like may be controlled or managed by a service platform called an application service platform (ASP).
무선랜(WLAN) 기술에 대한 표준은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 그룹에서 개발되고 있다. IEEE 802.11a 및 b는 2.4.GHz 또는 5GHz에서 비면허 대역(unlicensed band)을 이용하고, IEEE 802.11b는 11Mbps의 전송 속도를 제공하고, IEEE 802.11a는 54 Mbps의 전송 속도를 제공한다. IEEE 802.11g는 2.4GHz에서 직교 주파수 분할 다중화(Orthogonal Frequency Division Multiplexing, OFDM)를 적용하여 54Mbps의 전송 속도를 제공한다. IEEE 802.11n은 다중입출력 OFDM(Multiple Input Multiple Output-OFDM, MIMO-OFDM)을 적용하여 300Mbps의 전송 속도를 제공한다. IEEE 802.11n은 채널 대역폭(channel bandwidth)을 40 MHz까지 지원하며, 이 경우 600Mbps의 전송 속도를 제공한다. Standards for WLAN technology are being developed by the Institute of Electrical and Electronics Engineers (IEEE) 802.11 group. IEEE 802.11a and b use an unlicensed band at 2.4. GHz or 5 GHz, IEEE 802.11b provides a transmission rate of 11 Mbps, and IEEE 802.11a provides a transmission rate of 54 Mbps. IEEE 802.11g applies Orthogonal Frequency Division Multiplexing (OFDM) at 2.4 GHz to provide a transmission rate of 54 Mbps. IEEE 802.11n provides a transmission rate of 300 Mbps by applying multiple input multiple output OFDM (MIMO-OFDM). IEEE 802.11n supports a channel bandwidth of up to 40 MHz, in which case it provides a transmission rate of 600 Mbps.
IEEE 802.11e에 따른 무선랜 환경에서의 DLS(Direct Link Setup) 관련 프로토콜은 BSS(Basic Service Set)가 QoS(Quality of Service)를 지원하는 QBSS(Quality BSS)를 전제로 한다. QBSS에서는 비-AP(Non-AP) STA 뿐만 아니라 AP도 QoS를 지원하는 QAP(Quality AP)이다. 그런데, 현재 상용화되어 있는 무선랜 환경(예를 들어, IEEE 802.11a/b/g 등에 따른 무선랜 환경)에서는 비록 Non-AP STA이 QoS를 지원하는 QSTA(Quality STA)이라고 하더라도 AP는 QoS를 지원하지 못하는 레거시(Legacy) AP가 대부분이다. 그 결과, 현재 상용화되어 있는 무선랜 환경에서는 QSTA이라고 하더라도 DLS 서비스를 이용할 수가 없는 한계가 있다.The DLS (Direct Link Setup) related protocol in a wireless LAN environment according to IEEE 802.11e is based on QBSS (Quality BSS) in which a Basic Service Set (BSS) supports Quality of Service (QoS). In QBSS, not only non-AP (AP) STAs but also APs are QAPs (Quality APs) that support QoS. However, in the currently commercialized WLAN environment (for example, WLAN environment according to IEEE 802.11a / b / g), the AP supports QoS even if the Non-AP STA is a QSTA (Quality STA) supporting QoS. Most legacy APs do not. As a result, even in the currently commercialized wireless LAN environment, even if the QSTA, there is a limit that can not use the DLS service.
터널 다이렉트 링크 설정(Tunneled Direct Link Setup; TDLS)은 이러한 한계를 극복하기 위하여 새롭게 제안된 무선 통신 프로토콜이다. TDLS는 QoS를 지원하지는 않지만 현재 상용화된 IEEE 802.11a/b/g 등의 무선랜 환경에서도 QSTA들이 다이렉트 링크를 설정할 수 있도록 하는 것과 전원 절약 모드(Power Save Mode; PSM)에서도 다이렉트 링크의 설정이 가능하도록 하는 것이다. 따라서 TDLS는 레거시 AP가 관리하는 BSS에서도 QSTA들이 다이렉트 링크를 설정할 수 있도록 하기 위한 제반 절차를 규정한다. 그리고 이하에서는 이러한 TDLS를 지원하는 무선 네트워크를 TDLS 무선 네트워크라고 한다.Tunneled Direct Link Setup (TDLS) is a newly proposed wireless communication protocol to overcome this limitation. Although TDLS does not support QoS, QSTAs can set up a direct link even in a wireless LAN environment such as IEEE 802.11a / b / g, which is currently commercialized, and a direct link can be set in a power save mode (PSM). To do that. Therefore, TDLS prescribes various procedures for enabling QSTAs to establish a direct link even in a BSS managed by a legacy AP. Hereinafter, a wireless network supporting such a TDLS is called a TDLS wireless network.
종래의 무선랜은 무선 액세스 포인트(AP)가 허브로서 기능하는 인프라스트럭쳐(infrastructure) BSS에 대한 동작을 주로 다루었다. AP는 무선/유선 연결을 위한 물리 계층 지원 기능과, 네트워크 상의 장치들에 대한 라우팅 기능과, 장치를 네트워크에 추가/제거하기 위한 서비스 제공 등을 담당한다. 이 경우, 네트워크 내의 장치들은 AP를 통하여 연결되는 것이지, 서로간에 직접 연결되는 것은 아니다. Conventional WLANs mainly dealt with the operation of an infrastructure BSS in which a wireless access point (AP) functions as a hub. The AP is responsible for supporting physical layer support for wireless / wired connection, routing for devices on the network, and providing services for adding / removing devices to and from the network. In this case, the devices in the network are connected through the AP, not directly with each other.
장치들 간의 직접 연결을 지원하는 기술로서 와이파이 다이렉트(Wi-Fi Direct) 표준의 제정이 논의되고 있다. The enactment of the Wi-Fi Direct standard has been discussed as a technology to support direct connections between devices.
Wi-Fi 다이렉트 네트워크는 Wi-Fi 장치들이 홈 네트워크, 오피스 네트워크 및 핫스팟 네트워크에 참가하지 않아도, 서로 장치-대-장치(Device to Device; D2D)(또는, Peer-to-Peer; P2P) 통신을 수행할 수 있는 네트워크로서 Wi-Fi 연합(Alliance)에 의해 제안되었다. 이하, Wi-Fi Direct 기반 통신을 와이파이 D2D 통신(간단히, D2D 통신) 또는 와이파이 P2P 통신(간단히, P2P 통신)이라고 지칭한다. 또한, 와이파이 P2P 수행 장치를 와이파이 P2P 장치, 간단히 P2P 장치라고 지칭한다.Wi-Fi Direct networks allow Device to Device (D2D) (or Peer-to-Peer) communication with each other, even if Wi-Fi devices do not join home, office, and hotspot networks. It is proposed by the Wi-Fi Alliance as a workable network. Hereinafter, Wi-Fi Direct based communication is referred to as Wi-Fi D2D communication (simply, D2D communication) or Wi-Fi P2P communication (simply, P2P communication). In addition, the Wi-Fi P2P performing device is referred to as a Wi-Fi P2P device, simply P2P device.
WFDS 네트워크는 적어도 하나의 Wi-Fi 장치를 포함할 수 있다. WFDS 장치는 디스플레이 장치, 프린터, 디지털 카메라, 프로젝터 및 스마트 폰 등 Wi-Fi를 지원하는 장치들을 포함한다. 또한, WFDS 장치는 Non-AP STA 및 AP STA를 포함한다. WFDS 네트워크 내의 WFDS 장치들은 서로 직접 연결될 수 있다. 구체적으로, P2P 통신은 두 WFDS 장치들간의 신호 전송 경로가 제3의 장치(예를 들어, AP) 또는 기존 네트워크(예를 들어, AP를 거쳐 WLAN에 접속)를 거치지 않고 해당 WFDS 장치들간에 직접 설정된 경우를 의미할 수 있다. 여기서, 두 WFDS 장치들 간에 직접 설정된 신호 전송 경로는 데이터 전송 경로로 제한될 수 있다. 예를 들어, P2P 통신은 복수의 Non-STA들이 AP를 거치지 않고 데이터(예, 음성/영상/문자 정보 등)를 전송하는 경우를 의미할 수 있다. 제어 정보(예, P2P 설정을 위한 자원 할당 정보, 무선 장치 식별 정보 등)를 위한 신호 전송 경로는 WFDS 장치들(예를 들어, Non-AP STA-대-Non-AP STA, Non-AP STA-대-AP) 간에 직접 설정되거나, AP를 경유하여 두 WFDS 장치들(예를 들어, Non-AP STA-대-Non-AP STA) 간에 설정되거나, AP와 해당 WFDS 장치(예를 들어, AP-대-Non-AP STA#1, AP-대-Non-AP STA#2) 간에 설정될 수 있다.The WFDS network may include at least one Wi-Fi device. WFDS devices include devices supporting Wi-Fi, such as display devices, printers, digital cameras, projectors, and smartphones. In addition, the WFDS device includes a Non-AP STA and an AP STA. WFDS devices in the WFDS network may be directly connected to each other. Specifically, in P2P communication, a signal transmission path between two WFDS devices is directly connected between the corresponding WFDS devices without passing through a third device (for example, an AP) or an existing network (for example, connecting to a WLAN through an AP). It may mean a case where it is set. Here, the signal transmission path directly established between the two WFDS devices may be limited to the data transmission path. For example, P2P communication may refer to a case where a plurality of non-STAs transmit data (eg, voice / video / text information) without passing through the AP. Signal transmission paths for control information (e.g., resource allocation information for P2P configuration, wireless device identification information, etc.) include WFDS devices (e.g., Non-AP STA-to-Non-AP STA, Non-AP STA-). Direct-to-AP, or between two WFDS devices (e.g., Non-AP STA-to-Non-AP STA) via an AP, or an AP and a corresponding WFDS device (e.g., AP- To-Non-AP STA # 1, AP-to-Non-AP STA # 2).
와이파이 다이렉트는 링크 계층(Link layer)의 동작까지 정의하는 네트워크 연결 표준 기술이다. 와이파이 다이렉트에 의해서 구성된 링크의 상위 계층에서 동작하는 애플리케이션에 대한 표준이 정의되어 있지 않기 때문에, 와이파이 다이렉트를 지원하는 장치들이 서로 연결된 후에 애플리케이션을 구동하는 경우의 호환성을 지원하기가 어려웠다. 이러한 문제를 해결하기 위해서, 와이파이 다이렉트 서비스(WFDS)라는 상위 계층 애플리케이션의 동작에 대한 표준화가 와이파이 얼라이언스(WFA)에서 논의중이다. Wi-Fi Direct is a network connectivity standard that defines the behavior of the link layer. Since no standard is defined for an application that operates on the upper layer of the link configured by Wi-Fi Direct, it was difficult to support compatibility when devices that support Wi-Fi Direct run applications after they are connected to each other. To address this problem, standardization of the behavior of higher layer applications called Wi-Fi Direct Service (WFDS) is under discussion at the Wi-Fi Alliance (WFA).
도 1은 와이파이 다이렉트 서비스(WFDS) 프레임워크 구성요소를 설명하기 위한 도면이다.FIG. 1 is a diagram for describing a Wi-Fi Direct Service (WFDS) framework component.
도 1의 Wi-Fi Direct 계층은, 와이파이 다이렉트 표준에 의해서 정의되는 MAC 계층을 의미한다. Wi-Fi Direct 계층은 와이파이 다이렉트 표준과 호환되는 소프트웨어로서 구성될 수 있다. Wi-Fi Direct 계층의 하위에는 Wi-Fi PHY와 호환되는 물리 계층(미도시)에 의해서 무선 연결이 구성될 수 있다. Wi-Fi Direct 계층의 상위에 ASP(Application Service Platform)이라는 플랫폼이 정의된다. The Wi-Fi Direct layer of FIG. 1 means a MAC layer defined by the Wi-Fi Direct standard. The Wi-Fi Direct layer can be configured as software that is compatible with the Wi-Fi Direct standard. Below the Wi-Fi Direct layer, a wireless connection may be configured by a physical layer (not shown) compatible with the Wi-Fi PHY. A platform called Application Service Platform (ASP) is defined above the Wi-Fi Direct layer.
ASP는 공통 공유 플랫폼(common shared platform)이며, 그 상위의 애플리케이션(Application) 계층과 그 하위의 Wi-Fi Direct 계층 사이에서 세션(session)관리, 서비스의 명령 처리, ASP간 제어 및 보안 기능을 수행한다. ASP is a common shared platform and performs session management, command processing of services, and inter-ASP control and security functions between the upper application layer and the lower Wi-Fi Direct layer. do.
ASP의 상위에는 서비스(Service) 계층이 정의된다. 서비스 계층은 용도(use case) 특정 서비스들을 포함한다. WFA에서는 4개의 기본 서비스인 센드(Send), 플레이(Play), 디스플레이(Display), 프린트(Print) 서비스를 정의한다. 또한, 인에이블(Enable) API(Application Program Interface)는 기본 서비스 외에 서드파티(3rd party) 애플리케이션을 지원하는 경우에 ASP 공통 플랫폼을 이용할 수 있도록 하기 위해서 정의된다. Above the ASP, a service layer is defined. The service layer contains use case specific services. WFA defines four basic services: Send, Play, Display, and Print. In addition, the Enable (API) Application Program Interface (API) is defined to enable the ASP common platform to support third party applications in addition to basic services.
도 1에서는 서비스의 예시로서, Send, Play, Display, Print, 또는 서드파티 애플리케이션에서 정의하는 서비스 등을 도시하지만, 본 발명의 적용 범위가 이에 제한되는 것은 아니다. 예를 들어, 본 문서에서 "서비스"라는 용어는 상기 Send, Play, Display, Print, 또는 서드파티 애플리케이션에서 정의하는 서비스 외에도, 와이파이 시리얼버스(Wi-Fi Serial Bus; WSB), 와이파이 도킹(Wi-Fi Docking), 또는 인접 인지 네트워크(Neighbor Awareness Networking; NAN)을 지원하기 위한 서비스 중의 어느 하나일 수도 있다.Although FIG. 1 illustrates an example of a service, a service defined by Send, Play, Display, Print, or a third party application is not limited thereto. For example, in this document, the term "service" refers to Wi-Fi Serial Bus (WSB), Wi-Fi docking (Wi-Fi), in addition to the services defined by the Send, Play, Display, Print, or third-party applications. Fi Docking) or a service for supporting Neighbor Awareness Networking (NAN).
Send는 두 WFDS 장치간 파일 전송을 수행할 수 있는 서비스 및 애플리케이션을 의미한다. Play는 두 WFDS 장치간 DLNA(Digital Living Network Alliance)를 기반으로 하는 오디오/비디오(A/V), 사진, 음악 등을 공유 또는 스트리밍하는 서비스 및 애플리케이션을 의미한다. Print는 문서, 사진 등의 콘텐츠를 가지고 있는 장치와 프린터 사이에서 문서, 사진 출력을 가능하게 하는 서비스 및 애플리케이션을 의미한다. Display는 WFA의 미라캐스트(Miracast) 소스와 싱크 사이에 화면 공유를 가능하게 하는 서비스 및 애플리케이션을 의미한다. Send refers to services and applications that can perform file transfers between two WFDS devices. Play refers to services and applications that share or stream audio / video (A / V), photos, and music based on the Digital Living Network Alliance (DLNA) between two WFDS devices. Print refers to services and applications that enable document and photo output between a printer and a device having content such as documents and photos. Display refers to services and applications that enable screen sharing between WFA's Miracast sources and sinks.
애플리케이션 계층은 사용자 인터페이스(UI)를 제공할 수 있으며, 정보를 사람이 인식 가능한 형태로 표현하고 사용자의 입력을 하위 계층에 전달하는 등의 기능을 수행한다. The application layer may provide a user interface (UI), and expresses information in a form that can be recognized by a person and delivers user input to a lower layer.
본 발명은 capability에 따른 전송 모드를 제공하는 것을 기술적 과제로 한다.The present invention is to provide a transmission mode according to the capability.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 발명의 일 실시예는, WFDS(WiFi Direct Servicea)를 지원하는 제1 장치가 제2 장치와 ASP(Application Service Platform) 세션을 수립하는 방법에 있어서, AP를 통해, 제2 장치로 서비스 디스커버리 요청을 전송하는 단계; 상기 AP로부터, 상기 제2 장치가 전송한 서비스 디스커버리 응답을 수신하는 단계; 상기 제2 장치로 전송 모드 협상에 관련된 프레임을 전송하는 단계; 상기 전송 모드 협상에 관련된 프레임을 통해 전송 모드 협상에 성공한 경우, 협상에 성공한 전송 모드를 사용하여 세션 요청 프레임을 전송하는 단계를 포함하는 세션 수립 방법이다.According to an embodiment of the present invention, in a method in which a first device supporting WiFi Direct Servicea (WFDS) establishes an application service platform (ASP) session with a second device, a service discovery request to a second device through an AP Transmitting; Receiving, from the AP, a service discovery response sent by the second device; Transmitting a frame related to a transmission mode negotiation to the second device; If the transmission mode negotiation is successful through the frame related to the transmission mode negotiation, the session establishment method comprising the step of transmitting a session request frame using the successful transmission mode.
본 발명의 일 실시예는, WFDS(WiFi Direct Service)를 지원하며, 제2 장치와 ASP(Application Service Platform) 세션을 수립하는 제1 장치에 있어서, 송수신기; 및 프로세서를 포함하며, 상기 프로세서는, AP를 통해, 제2 장치로 서비스 디스커버리 요청을 전송하고, 상기 AP로부터, 상기 제2 장치가 전송한 서비스 디스커버리 응답을 수신하며, 상기 제2 장치로 전송 모드 협상에 관련된 프레임을 전송하고, 상기 전송 모드 협상에 관련된 프레임을 통해 전송 모드 협상에 성공한 경우, 협상에 성공한 전송 모드를 사용하여 세션 요청 프레임을 전송하는, 제1 장치이다.An embodiment of the present invention provides a first device that supports a WiFi Direct Service (WFDS) and establishes an application service platform (ASP) session with a second device, comprising: a transceiver; And a processor, wherein the processor transmits a service discovery request to a second device through an AP, receives a service discovery response sent by the second device from the AP, and transmits to the second device. The first device transmits a frame related to negotiation and transmits a session request frame using a transmission mode in which negotiation is successful when transmission mode negotiation is successful through the frame related to the transmission mode negotiation.
상기 전송 모드는, UDP(User Datagram Protocol), TCP(Transmission Control Protocol), MAC(Media Access Control) 중 하나일 수 있다.The transmission mode may be one of a user datagram protocol (UDP), a transmission control protocol (TCP), and a media access control (MAC).
상기 전송 모드 협상에 관련된 프레임은 MAC header, Frame body 및 32-bit CRC 필드로 구성된 데이터 프레임일 수 있다.The frame related to the transmission mode negotiation may be a data frame including a MAC header, a frame body, and a 32-bit CRC field.
상기 Frame body는, ASP를 지시하는 페이로드 타입 필드를 포함할 수 있다.The frame body may include a payload type field indicating an ASP.
상기 Frame body는, LLC(Logical Link Control) 필드, SNAP(Sub-Network Access Protocol) 필드, 페이로드 타입 필드, 페이로드 필드를 포함할 수 있다.The frame body may include a Logical Link Control (LLC) field, a Sub-Network Access Protocol (SNAP) field, a payload type field, and a payload field.
상기 페이로드 필드는, 상기 UDP, TCP, MAC 중 하나를 지시하는 트랜스포트 모드 비트맵 필드를 포함할 수 있다.The payload field may include a transport mode bitmap field indicating one of the UDP, TCP, and MAC.
상기 전송 모드 협상에 관련된 프레임은 상기 AP를 통해 전송되는 것일 수 있다.The frame related to the transmission mode negotiation may be transmitted through the AP.
본 발명에 따르면, ASP 플랫폼을 통하여, 각 STA에 맞춤형 전송 모드를 사용할 수 있다.According to the present invention, a customized transmission mode can be used for each STA through the ASP platform.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다. BRIEF DESCRIPTION OF THE DRAWINGS The drawings appended hereto are for the purpose of providing an understanding of the present invention and for illustrating various embodiments of the present invention and for describing the principles of the present invention together with the description of the specification.
도 1은 WFDS 시스템의 예시적인 구조를 나타내는 도면이다. 1 is a diagram illustrating an exemplary structure of a WFDS system.
도 2는 WFD 세션의 예시들을 나타낸다. 2 shows examples of a WFD session.
도 3은 WFD 세션 수립을 위해 필요한 절차들을 설명하기 위한 도면이다.3 is a diagram for explaining procedures required for establishing a WFD session.
도 4는 WFDS 장치/서비스 디스커버리 절차를 예시한다.4 illustrates a WFDS device / service discovery procedure.
도 5는 UDP를 통한 디스커버리가 도시되어 있다.5 shows discovery via UDP.
도 6은 WFD 연결 토폴로지를 나타낸다.6 shows a WFD connection topology.
도 7은 WFD 능력 교환 및 협상을 설명하기 위한 도면이다. 7 is a diagram for explaining WFD capability exchange and negotiation.
도 8은 WFD 세션 수립을 설명하기 위한 도면이다. 8 is a diagram for explaining establishment of a WFD session.
도 9 내지 12는 본 발명의 실시예에 의한 세션 수립 절차를 설명하기 위한 도면이다.9 to 12 are diagrams for explaining a session establishment procedure according to an embodiment of the present invention.
도 13 내지 도 14는 본 발명의 일 실시예에 따른 무선 장치의 구성을 나타내는 블록도이다. 13 to 14 are block diagrams illustrating a configuration of a wireless device according to an embodiment of the present invention.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.Specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시된다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices are omitted or shown in block diagram form, centering on the core functions of each structure and device, in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
본 발명의 실시예들은 무선 액세스 시스템들인 IEEE 802 시스템, Wi-Fi 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. Embodiments of the present invention may be supported by standard documents disclosed in at least one of wireless access systems IEEE 802 system, Wi-Fi system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system have. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 액세스 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various radio access systems. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
도 2는 WFD 세션의 예시들을 나타낸다. 도 2(a)는 오디오-단독(audio only) 세션으로써, WFD 소스는 프라이머리 싱크 또는 세컨더리 싱크 중 어느 하나와 연결될 수 있다. 도 2(b)는 비디오-단독(video-only) 세션으로써, WFD 소스는 프라이머리 싱크와 연결된다. 도 2(c)는 오디오 및 비디오 세션으로써, 도 2(b)의 경우와 마찬가지로, WFD 소스와 연결되는 WFD 싱크는 프라이머리 싱크만 가능하다. 도 2(d)는 커플드 싱크(Coupled WFD Sink) 동작의 경우 세션 연결을 예시하고 있다. 이와 같은 경우, 프라이머리 싱크는 비디오를, 세컨더리 싱크는 오디오를 각각 렌더링할 수 있으며, 대안적으로 프라이머리 싱크가 비디오 및 오디오를 모두 렌더링 할 수도 있다.2 shows examples of a WFD session. 2 (a) is an audio-only session, where the WFD source may be connected to either the primary sync or the secondary sync. 2 (b) is a video-only session, where the WFD source is connected to the primary sink. 2 (c) is an audio and video session. As in the case of FIG. 2 (b), only a primary sync is possible for a WFD sync connected to a WFD source. 2 (d) illustrates a session connection in the case of a coupled WFD Sink operation. In such a case, the primary sync can render the video and the secondary sync can render the audio, respectively. Alternatively, the primary sync can render both the video and the audio.
이와 같은 세션은 도 3에 도시된 바와 같은 절차를 수행한 후 수립될 수 있다. 구체적으로, WFD 장치 탐색(WFD Device Discovery, S401), WFD 서비스 디스커버리(WFD Service Discovery, S402), WFD 연결 셋업(WFD Connection Setup, S403), 능력 교환 및 협상(Capability Exchange and Negotiation, S404) 절차를 수행한 후 세션이 수립될 수 있다. 이하, 이에 대해 순차적으로 살펴본다.Such a session may be established after performing a procedure as shown in FIG. 3. Specifically, the WFD Device Discovery (S401), WFD Service Discovery (S402), WFD Connection Setup (S403), Capability Exchange and Negotiation (S404) procedures are described. After performing, a session may be established. Hereinafter, this will be described sequentially.
WFDWFD 장치 디스커버리 Device discovery
WFD 소스는 WFD 장치 디스커버리를 통해 WFD를 위한 피어 장치, 즉 WFD 싱크를 찾을 수 있다. The WFD source may find a peer device for the WFD, that is, a WFD sink, through WFD device discovery.
WFD 장치 디스커버리를 위해 WFD 장치들은 비콘, 프로브 요청 프레임 및 프로브 응답 프레임 등에 WFD IE(Information Element)를 포함할 수 있다. 여기서, WFD IE는 장치 타입, 장치 상태 등의 WFD와 관련된 정보를 포함하는 정보 요소로써, 이에 대한 상세한 설명은 후술한다. WFD 장치가 WFD IE를 포함하는 프로브 요청 프레임을 수신한 경우, 이에 대한 응답으로 자신의 WFD IE를 포함하는 프로브 응답 프레임을 전송할 수 있다. 만약 WFD 장치가 인프라스트럭처 AP와 연계되어 있고 Wi-Fi P2P 장치로 동작하는 경우, 프로브 요청 프레임에는 WFD IE, WSC(Wi-Fi Simple Configuration) IE 및 P2P 정보 요소가 포함될 수 있다. 이에 대한 응답인 프로브 응답 프레임은 프로브 요청 프레임이 수신된 채널을 통해 전송되며, P2P IE, WSC IE 및 WFD IE를 모두 포함할 수 있다. 도 4에는 WFDS 1.0에 정의된 장치 디스커버리와 서비스 디스커버리 과정이 도시되어 있다.For WFD device discovery, the WFD devices may include a WFD Information Element (IE) in a beacon, a probe request frame, and a probe response frame. Here, the WFD IE is an information element including information related to the WFD, such as a device type and a device state, which will be described later. When the WFD device receives the probe request frame including the WFD IE, the WFD device may transmit a probe response frame including its own WFD IE in response thereto. If the WFD device is associated with the infrastructure AP and operates as a Wi-Fi P2P device, the probe request frame may include a WFD IE, a Wi-Fi Simple Configuration (WSC) IE, and a P2P information element. The probe response frame, which is a response thereto, is transmitted through a channel through which the probe request frame is received, and may include all of P2P IE, WSC IE, and WFD IE. 4 illustrates a device discovery and service discovery process defined in WFDS 1.0.
상술한 설명에서 언급되지 않은 WFD 장치 디스커버리에 관련된 내용들은 'Wi-Fi Display Technical Specification' 및/또는 'Wi-Fi Peer-to-Peer (P2P) Technical Specification Wi-Fi Direct Service Addendum' 문서에 따를 수 있으며, 이는 이하의 설명들에도 적용된다.Information related to WFD device discovery not mentioned in the above description may be in accordance with the 'Wi-Fi Display Technical Specification' and / or the 'Wi-Fi Peer-to-Peer (P2P) Technical Specification Wi-Fi Direct Service Addendum' document. This also applies to the following descriptions.
WFDWFD 서비스 디스커버리 Service discovery
WFD 장치 디스커버리를 수행한 WFD 소스 및/또는 WFD 싱크는, 필요한 경우, 서로의 서비스 능력을 탐색할 수 있다. 구체적으로, 어느 하나의 WFD 장치가 WFD 능력이 정보 부 요소(information subelement)로서 포함되는 서비스 탐색 요청 프레임을 전송하면, 다른 WFD 장치는 이에 대한 응답으로 자신의 WFD 능력이 정보 부 요소로서 포함되는 서비스 탐색 응답 프레임을 전송할 수 있다. 서비스 탐색 절차의 수행을 위해, 장치 탐색 절차에 이용되는 프로브 요청 프레임 및 응답 프레임에는 WFD 장치가 서비스 탐색 절차를 지원하는 능력을 갖추고 있는지 여부를 지시하는 정보가 포함될 수 있다.The WFD source and / or the WFD sink that performed the WFD device discovery may discover the service capability of each other, if necessary. Specifically, when one WFD device transmits a service discovery request frame in which the WFD capability is included as an information subelement, the other WFD device responds to the service in which its WFD capability is included as an information subelement. The search response frame may be transmitted. In order to perform the service discovery procedure, the probe request frame and the response frame used in the device discovery procedure may include information indicating whether the WFD device has the capability of supporting the service discovery procedure.
도 5에는 시커가 UDP를 통해서 장치와 서비스를 디스커버리하는 과정을 나타낸다. 두 장치는 AP에 연결되면 특정 포트 (또는 ASP Coordination Protocol port)를 열게 된다. 이 포트로 ASP는 디스커버리 요청 패킷을 서브넷 전체에 브로드캐스트할 수 있다. 이를 수신한 애드버타이저는 해당하는 서비스를 매칭하고 장치와 서비스에 대한 정보를 담아서 디스커버리 응답을 AP를 통해서 유니캐스트로 전달할 수 있다.5 shows a process for the seeker to discover a device and a service through UDP. When both devices are connected to an AP, they open a specific port (or ASP Coordination Protocol port). This port allows the ASP to broadcast discovery request packets throughout the subnet. Upon receiving the advertiser, the advertiser may match a corresponding service, store information about the device and the service, and transmit a discovery response to the unicast through the AP.
WFDWFD 연결  connect 셋업set up
WDF 장치 디스커버리 그리고 선택적으로 WFD 서비스 디스커버리 절차를 수행한 WFD 장치는 WFD 연결 셋업을 위한 WDF 장치를 선택할 수 있다. 정책 또는 사용자 입력 등에 따라 WFD 연결 셋업을 위한 WFD 장치를 선택한 후의 WFD 연결은 Wi-Fi P2P 및 TDLS 중 어느 하나의 연결 스킴(Connectivity Scheme)이 사용될 수 있다. WFD 장치들은 선호하는 연결(Preferred Connectivity) 정보 및 WFD 정보 요소와 함께 전달되는 연계된 BSSID 부 요소에 기초하여, 연결 스킴을 결정할 수 있다. 도 6(a), 6(b)에는 Wi-Fi P2P를 사용한 연결과 TDLS를 사용한 연결이 도시되어 있다. 도 6(a)에서 AP는 WFD 소스와 WFD 싱크에게 공통되는 것 또는 상이한 것일 수 있다. 또는, AP는 존재하지 않는 것일 수도 있다. TDLS를 사용하여 WFD 연결을 수행하는 경우, WFD 소스와 WFD 싱크는, 도 6(b)와 같이, AP와 연결을 유지해야 한다.The WFD device that performs the WDF device discovery and optionally the WFD service discovery procedure may select a WDF device for WFD connection setup. After selecting a WFD device for WFD connection setup according to a policy or user input, the WFD connection may use a connectivity scheme of one of Wi-Fi P2P and TDLS. The WFD devices may determine the connection scheme based on the preferred connectivity information and the associated BSSID sub-element carried with the WFD information element. 6 (a) and 6 (b) show a connection using Wi-Fi P2P and a connection using TDLS. In FIG. 6A, the AP may be common to or different from the WFD source and the WFD sink. Alternatively, the AP may not exist. When performing a WFD connection using TDLS, the WFD source and the WFD sink must maintain connection with the AP, as shown in FIG. 6 (b).
WFDWFD 능력 교환 및 협상 Ability exchange and negotiation
WFD 장치들 사이에 WFD 연결 셋업이 수행되면, WFD 장치는 WFD 능력 교환 및 협상을 진행할 수 있다. WFD 능력 협상을 통해 WFD 소스 및 WFD 싱크는 서로가 지원하는 코덱, 코덱의 프로파일 정보, 코덱의 레벨 정보 및 해상도 정보 중 적어도 하나 이상이 WFD 장치에게 전달된다. WFD 능력 교환 및 협상은 RTSP(Real-Time Streaming Protocol)를 이용한 메시지를 교환에 의해 수행될 수 있다. 또한, WFD 세션 동안의 오디오/비디오 페이로드를 정의 하는 파라미터 셋을 결정할 수 있다. WFD 능력 교환 및 협상은 도 7에 도시된 바와 같이 RTSP M1부터 RTSP M4 메시지의 교환에 의할 수 있다.If WFD connection setup is performed between WFD devices, the WFD device may proceed with the WFD capability exchange and negotiation. Through the WFD capability negotiation, at least one of the codec, the codec profile information, the codec level information, and the resolution information supported by the WFD source and the WFD sink are transmitted to the WFD device. WFD capability exchange and negotiation may be performed by exchanging messages using the Real-Time Streaming Protocol (RTSP). In addition, it is possible to determine a parameter set that defines the audio / video payload during the WFD session. WFD capability exchange and negotiation may be by exchange of RTSP M1 to RTSP M4 messages as shown in FIG. 7.
구체적으로, WFD 소스는 RTSP 절차 및 WFD 능력 협상을 시작하기 위한 RTSP M1 (요청) 메시지를 전송할 수 있다(S801). RTSP M1 요청 메시지는 WFD 싱크에서 지원하는 RTSP 메소드(methods) 셋(set)을 결정하기 위한 RTSP OPTIONS 요청을 포함할 수 있다. RTSP M1 요청 메시지를 수신한 WFD 싱크는 자신이 지원하는 RTSP 메소드가 열거된 RTSP M1 응답 메시지를 전송할 수 있다(S802).In detail, the WFD source may transmit an RTSP M1 (Request) message for starting the RTSP procedure and the WFD capability negotiation (S801). The RTSP M1 request message may include an RTSP OPTIONS request for determining an RTSP method set supported by the WFD sink. Receiving the RTSP M1 request message, the WFD sink may transmit an RTSP M1 response message in which RTSP methods supported by the WFD sink are enumerated (S802).
계속해서, WFD 싱크는 WFD 소스에서 지원하는 RTSP 메소드 셋을 결정하기 위한 RTSP M2 요청 메시지를 전송할 수 있다(S803). RTSP M2 요청 메시지가 수신되면, WFD 소스는 자신이 지원하는 RTSP 메소드가 열거된 RTSP M2 응답 메시지로 응답할 수 있다(S804).Subsequently, the WFD sink may transmit an RTSP M2 request message for determining an RTSP method set supported by the WFD source (S803). When the RTSP M2 request message is received, the WFD source may respond with an RTSP M2 response message in which RTSP methods supported by the WFD source are enumerated (S804).
WFD 소스는 알고 싶은 WFD 능력들의 목록을 명시한 RTSP M3 요청 메시지 (RTSP GET_PARAMETER 요청 메시지)를 전송할 수 있다(S805). RTSP M3 요청 메시지가 수신되면, WFD 싱크는 RTSP M3 응답 메시지(RTSP GET_PARAMETER 응답 메시지)로 응답할 수 있다.The WFD source may transmit an RTSP M3 request message (RTSP GET_PARAMETER request message) specifying a list of WFD capabilities to be known (S805). When the RTSP M3 request message is received, the WFD sink may respond with an RTSP M3 response message (RTSP GET_PARAMETER response message).
RTSP M3 응답 메시지에 기초하여, WFD 소스는 WFD 세션 동안 사용될 최적의 파라미터 셋을 결정하고, 결정된 파라미터 셋을 포함하는 RTSP M4 요청 메시지(RTSP SET_PARAMETER 요청 메시지)를 WFD 싱크로 전송할 수 있다(S806). 이를 수신한 WFD 싱크는 RTSP M4 응답 메시지(RTSP SET_PARAMETER 응답 메시지)를 전송할 수 있다(S806).Based on the RTSP M3 response message, the WFD source may determine an optimal parameter set to be used during the WFD session and transmit an RTSP M4 request message (RTSP SET_PARAMETER request message) including the determined parameter set to the WFD sink (S806). Upon receiving this, the WFD sink may transmit an RTSP M4 response message (RTSP SET_PARAMETER response message) (S806).
WFDWFD 세션 수립 Session establishment
WFD 능력 교환 및 협상을 수행한 WFD 장치들은 도 8에 도시된 바와 같은 절차를 통해 WFD 세션을 수립할 수 있다. 구체적으로, WFD 소스는 RTSP SET 파라미터 요청 메시지(RTSP M5 Trigger SETUP request)를 WFD 싱크로 전송할 수 있다(S901). 이에 대해 WFD 싱크는 RTSP M5 응답 메시지(RTSP M5 response)로 응답할 수 있다. The WFD devices that have performed the WFD capability exchange and negotiation may establish a WFD session through the procedure shown in FIG. 8. In detail, the WFD source may transmit an RTSP SET parameter request message (RTSP M5 Trigger SETUP request) to the WFD sink (S901). In response, the WFD sink may respond with an RTSP M5 response message.
트리거 파라미터 SETUP을 포함하는 RTSP M5 메시지가 성공적으로 교환되면, WFD 싱크는 RTSP SETUP 요청 메시지(RTSP M6 request)를 WFD 소스로 전송할 수 있다. RTSP M6 요청 메시지가 수신되면, WFD 소스는 RTSP SETUP 응답 메시지(RTSP M6 response)로 응답할 수 있다. RTSP M6 응답 메시지의 상태 코드가 'OK'를 지시한다면, RTSP 세션은 성공적으로 구축된 것일 수 있다.If the RTSP M5 message including the trigger parameter SETUP is successfully exchanged, the WFD sink may send an RTSP SETUP request message (RTSP M6 request) to the WFD source. When the RTSP M6 request message is received, the WFD source may respond with an RTSP SETUP response message (RTSP M6 response). If the status code of the RTSP M6 response message indicates 'OK', the RTSP session may have been successfully established.
RTSP M6 메시지의 성공적인 교환 이후, WFD 싱크는 RTP 스트림을 수신할 준비가 되었을 알리기 위해 RTSP PLAY 요청 메시지(RTSP M7 request)를 WFD 소스로 전송할 수 있다. WFD 소스는 RTSP PLAY 응답 메시지(RTSP M7 response)로 응답할 수 있다. 여기서, RTSP PLAY 응답 메시지의 상태 코드 'OK'는 WFD 세션이 성공적으로 수립되었음을 나타낸다. WFD 세션이 수립된 후, WFD 소스는, WFD 싱크로 WFD 싱크에서 지원하는 적어도 하나의 RTSP 파라미터에 대한 능력을 획득하기 위한 RTSP M3 요청 메시지(RTSP GET_PARAMETER 요청 메시지), AV(Audio/Video) 포맷 갱신을 위한 WFD 소스 및 WFD 싱크 사이의 능력 재협상을 위해, WFD 세션에 대응하는 적어도 하나의 RTSP 파라미터 값을 설정하기 위한 RTSP M4 요청 메시지, WFD 싱크가 RTSP PAUSE 요청 메시지(RTSP M9 요청 메시지)를 전송하도록 트리거하는 RTSP M5 요청 메시지, WFD 소스가 WFD 대기 모드(Standby mode)로 진입함을 지시하는 RTSP M12 요청 메시지, UIBC에서 사용될 입력 타입, 입력 장치 및 다른 파라미터들을 선택하기 위한 RTSP M14 요청 메시지 또는 UIBC를 이네이블(enable) 또는 디세이블(disable)하기 위한 RTSP M15 요청 메시지 등을 WFD 싱크로 전송할 수 있다. WFD 소스로부터 상기 열거된 RTSP 요청 메시지를 수신한 WFD 싱크는 RTSP 응답 메시지로 응답할 수 있다.After successful exchange of RTSP M6 messages, the WFD sink may send an RTSP PLAY request message (RTSP M7 request) to the WFD source to indicate that it is ready to receive the RTP stream. The WFD source may respond with an RTSP PLAY response message (RTSP M7 response). Here, the status code 'OK' of the RTSP PLAY response message indicates that the WFD session was established successfully. After the WFD session is established, the WFD source may perform an RTSP M3 request message (RTSP GET_PARAMETER request message), AV (Audio / Video) format update, to obtain the capability for at least one RTSP parameter supported by the WFD sink to the WFD sync. RTSP M4 request message for setting at least one RTSP parameter value corresponding to the WFD session, for triggering capability renegotiation between the WFD source and the WFD sink, triggering the WFD sink to send an RTSP PAUSE request message (RTSP M9 request message) RTSP M5 request message, RTSP M12 request message indicating that the WFD source enters WFD Standby mode, RTSP M14 request message or UIBC to select input type, input device and other parameters to be used in UIBC. An RTSP M15 request message for enabling or disabling may be transmitted to the WFD sink. The WFD sink that has received the enumerated RTSP request message from the WFD source may respond with an RTSP response message.
계속해서, WFD 싱크는 오디오/비디오 스트리밍을 시작(또는 재개)하기 위한 RTSP M7 요청 메시지(RTSP PLAY 요청 메시지), WFD 소스로부터 WFD 싱크로의 오디오/비디오 스트리밍의 일시 중단을 위한 RTSP M9 요청 메시지(RTSP PAUSE 요청 메시지), WFD 소스에게 오디오 렌더링 장치를 변경할 것을 요청하기 위한 RTSP M10 요청 메시지, 활성 커넥터 타입(active connector type)의 변경을 지시하는 RTSP M11 요청 메시지, WFD 싱크가 WFD 대기 모드로 진입하였음을 지시하는 RTSP M12 요청 메시지, WFD 소스에게 IDR을 리프레시할 것을 요청하는 M13 요청 메시지, UIBC에서 사용될 입력 타입, 입력 장치 및 다른 파라미터들을 선택하기 위한 RTSP M14 요청 메시지 또는 UIBC를 이네이블(enable) 또는 디세이블(disable)하기 위한 RTSP M15 요청 메시지 등을 WFD 소스로 전송할 수 있다. WFD 싱크로부터 상기 열거된 RTSP 요청 메시지를 수신한 WFD 소스는 RTSP 응답 메시지로 응답할 수 있다.Subsequently, the WFD Sink will continue to perform RTSP M7 request messages (RTSP PLAY request messages) to start (or resume) audio / video streaming, and RTSP M9 request messages (RTSP) to suspend audio / video streaming from the WFD source to the WFD sink. PAUSE request message), RTSP M10 request message to request the WFD source to change the audio rendering device, RTSP M11 request message to instruct to change the active connector type, WFD sink has entered WFD standby mode. Enable or deactivate the UISP M12 request message, the M13 request message requesting the WFD source to refresh the IDR, the input type to be used in UIBC, the input device and other parameters, or the UIBC to select UIBC. An RTSP M15 request message or the like for disabling may be transmitted to the WFD source. The WFD source receiving the above-listed RTSP request message from the WFD sink may respond with an RTSP response message.
WFD 세션이 구축되어, 오디오/비디오 스트리밍이 시작되면, WFD 소스 및 WFD 싱크는 양자가 공통으로 지원하는 코덱을 이용하여 오디오/비디오 스트리밍을 진행할 수 있다. WFD 소스와 WFD 싱크가 공통으로 지원하는 코덱을 이용함에 따라, 양자간의 상호 운용성(interoperability)을 보장할 수 있다. When a WFD session is established and audio / video streaming starts, the WFD source and the WFD sink may proceed with audio / video streaming using a codec commonly supported by both. By using a codec commonly supported by the WFD source and the WFD sink, it is possible to ensure interoperability between the two.
WFDWFD 정보 요소(Information Element) Information Element
WFD 통신은 WFD IE에 기초하는데, WFD IE의 프레임 포맷은 다음 표 1과 같다.WFD communication is based on the WFD IE, and the frame format of the WFD IE is shown in Table 1 below.
FieldField Size (octets)Size (octets) Value (Hexadecimal)Value (Hexadecimal) DescriptionDescription
Element IDElement ID 1One DDDD IEEE 802.11 vendor specific usageIEEE 802.11 vendor specific usage
LengthLength 1One VariableVariable Length of the following fields in the IE in octets. The length field is variable and set to 4 plus the total length of WFD subelements.Length of the following fields in the IE in octets. The length field is variable and set to 4 plus the total length of WFD subelements.
OUI OUI 33 50-6F-9A50-6F-9A WFA Specific OUI(Organizationally Unique Identifier)WFA Specific Organizationally Unique Identifier (OUI)
OUI TypeOUI Type 1One 0A0A Identifying the type or version of the WFD IE. Setting to 0x0A indicates WFA WFD v1.0Identifying the type or version of the WFD IE. Setting to 0x0A indicates WFA WFD v1.0
WFD subelementsWFD subelements VariableVariable One or more WFD subelements appear in the WFD IEOne or more WFD subelements appear in the WFD IE
상기 표 1과 같이, WFD IE는 종래의 P2P IE와 유사하게 Element ID 필드, Length 필드, WFD 특정의 OUI 필드, WFD IE의 타입/버전을 나타내는 OUI type 필드 및 WFD subelement 필드로 이루어진다. WFD subelement 필드는 다음 표 2와 같은 형식을 가진다.As shown in Table 1, the WFD IE is composed of an Element ID field, a Length field, a WFD-specific OUI field, an OUI type field indicating the type / version of the WFD IE, and a WFD subelement field similarly to the conventional P2P IE. The WFD subelement field has a format as shown in Table 2 below.
FieldField Size (octets)Size (octets) Value (Hexadecimal)Value (Hexadecimal) DescriptionDescription
Subelement IDSubelement ID 1One Identifying the type of WFD subelement. (구체적 값은 표3 참조)Identifying the type of WFD subelement. (Refer to Table 3 for specific values)
Length Length 22 VariableVariable Length of the following fields in the subelementLength of the following fields in the subelement
Subelements body fieldSubelements body field VariableVariable Subelement specific information fieldsSubelement specific information fields
Subelement ID (Decimal)Subelement ID (Decimal) NotesNotes
00 WFD Device InformationWFD Device Information
1 One Associated BSSIDAssociated BSSID
22 WFD Audio FormatsWFD Audio Formats
33 WFD Video FormatsWFD Video Formats
44 WFD 3D Video Formats WFD 3D Video Formats
55 WFD Content Protection WFD Content Protection
66 Coupled Sink Information Coupled Sink Information
77 WFD Extended CapabilityWFD Extended Capability
88 Local IP Address Local IP Address
9 9 WFD Session Information WFD Session Information
1010 Alternative MAC AddressAlternative MAC Address
11-25511-255 ReservedReserved
1옥텟의 subelement ID 필드는 이 WFD subelement가 어떤 정보를 포함하는 것인지를 지시한다. 구체적으로, subelement ID 필드의 값 0, 1, … 10은, 이 subelement가 각각 WFD Device Information subelement, Associated BSSID subelement, WFD Audio Formats subelement, WFD Video Formats subelement, WFD 3D Video Formats subelement, WFD Content Protection subelement, Coupled Sink Information subelement, WFD Extended Capability subelement, Local IP Address subelement, WFD Session Information subelement, Alternative MAC Address subelement 임을 나타낼 수 있다. 여기서, WFD Device Information subelement는 WFD 장치와의 페어링 및 세션 생성을 시도할 지 결정하는데 필요한 정보들을 포함한다. Associated BSSID subelement는 현재 연계된 AP의 주소를 지시하는데 사용된다. WFD Audio Formats subelement, WFD Video Formats subelement, WFD 3D Video Formats subelement는 각각 오디오, 비디오, 3D 비디오에 관련된 WFD 장치의 능력(capability)를 지시하는데 사용된다. WFD Content Protection subelement는 컨텐츠 보호 스킴에 관련된 정보를 전달하며, Coupled Sink Information subelement는 coupled 싱크의 상태, MAC 주소 등에 관한 정보를 전달한다. WFD Extended Capability subelement는 기타 WFD 장치의 다양한 능력 정보를, Local IP Address subelement는 TDLS 셋업 과정에서 WFD 피어에게 IP 주소를 전달하는데 사용된다. WFD Session Information subelement는 WFD 그룹 내 WFD 장치 정보 기술자의 리스트 등의 정보를 포함하며, WFD 연결 스킴이 장치 디스커버리에서 사용되는 것과 다른 인터페이스(예를 들어, MAC 주소)를 필요로 하는 경우 Alternative MAC Address subelement가 관련 정보를 전달할 수 있다.The subelement ID field of one octet indicates what information this WFD subelement includes. Specifically, the values 0, 1,... Of the subelement ID field. 10, each of these subelements is a WFD Device Information subelement, Associated BSSID subelement, WFD Audio Formats subelement, WFD Video Formats subelement, WFD 3D Video Formats subelement, WFD Content Protection subelement, Coupled Sink Information subelement, WFD Extended Capability subelement, Local IP Address subelement, WFD Session Information subelement, or alternative MAC address subelement. Here, the WFD Device Information subelement includes information necessary for determining whether to attempt pairing with a WFD device and session creation. The Associated BSSID subelement is used to indicate the address of the currently associated AP. The WFD Audio Formats subelement, the WFD Video Formats subelement, and the WFD 3D Video Formats subelement are used to indicate capabilities of the WFD device related to audio, video, and 3D video, respectively. The WFD Content Protection subelement delivers information related to the content protection scheme, and the Coupled Sink Information subelement carries information about the state of the coupled sink, MAC address, and the like. The WFD Extended Capability subelement is used to convey various capability information of other WFD devices, and the Local IP Address subelement is used to deliver an IP address to the WFD peer during TDLS setup. The WFD Session Information subelement contains information such as a list of WFD device information descriptors in the WFD group, and if the WFD connection scheme requires an interface (for example, a MAC address) different from that used in device discovery, the Alternative MAC Address subelement. Can convey relevant information.
계속해서, Subelement body 필드는 subelement ID에 해당하는 subelement의 구체적인 정보를 포함한다. 예를 들어, WFD Device Information subelement의 경우, subelement body 필드는 다음 표 3에 예시된 바와 같이, WFD 장치에 관한 정보를 포함하는 WFD Device Information 서브필드, RTSP 메시지를 수신하기 위한 TCP 포트 정보를 나타내는 Session Management Control Port 서브필드 및 최대 평균 수율에 대한 정보인 WFD Device Maximum Throughput 서브필드를 포함할 수 있다.Subsequently, the Subelement body field includes detailed information of the subelement corresponding to the subelement ID. For example, in the case of the WFD Device Information subelement, the subelement body field includes a WFD Device Information subfield including information about the WFD device and a Session indicating TCP port information for receiving an RTSP message, as illustrated in Table 3 below. It may include a Management Control Port subfield and a WFD Device Maximum Throughput subfield which is information on the maximum average yield.
FieldField Size (octets)Size (octets) ValueValue DescriptionDescription
Subelement IDSubelement ID 1One 00 Identifying the type of WFD subelement. (구체적 값은 표3 참조)Identifying the type of WFD subelement. (Refer to Table 3 for specific values)
Length Length 22 66 Length of the following fields of the subelement.Length of the following fields of the subelement.
WFD Device Information WFD Device Information 22 표 5 참조See Table 5
Session Management Control PortSession Management Control Port 22 Valid TCP portValid TCP port Default 7236. TCP port at which the WFD Device listens for RTSP messages. (If a WFD Sink that is transmitting this subelement does not support the RTSP server function, this field is set to all zeros.) The WFD Device can choose any value other than default 7236.Default 7236. TCP port at which the WFD Device listens for RTSP messages. (If a WFD Sink that is transmitting this subelement does not support the RTSP server function, this field is set to all zeros.) The WFD Device can choose any value other than default 7236.
WFD Device Maximum ThroughputWFD Device Maximum Throughput 22 Maximum average throughput capability of the WFD Device represented in multiples of 1MbpsMaximum average throughput capability of the WFD Device represented in multiples of 1Mbps
BitsBits NameName InterpretationInterpretation
1:01: 0 WFD Device Type bitsWFD Device Type bits 0b00: WFD Source0b01: Primary Sink0b10: Secondary Sink0b11: dual-role possible, i.e., either a WFD Source or a Primary Sink0b00: WFD Source 0b01: Primary Sink 0b10: Secondary Sink 0b11: dual-role possible, i.e., either a WFD Source or a Primary Sink
22 Coupled Sink Operation Support at WFD Source bitCoupled Sink Operation Support at WFD Source bit 0b0: Coupled Sink Operation not supported by WFD Source. 0b1: Coupled Sink Operation supported by WFD SourceThis bit is valid for WFD Device Type bits set to value 0b00 or 0b11. When WFD Device Type bits value is 0b01 or 0b10, the value of this b2 is ignored upon receiving.0b0: Coupled Sink Operation not supported by WFD Source. 0b1: Coupled Sink Operation supported by WFD SourceThis bit is valid for WFD Device Type bits set to value 0b00 or 0b11. When WFD Device Type bits value is 0b01 or 0b10, the value of this b2 is ignored upon receiving.
33 Coupled Sink Operation Support at WFD Sink bitCoupled Sink Operation Support at WFD Sink bit 0b0: Coupled Sink Operation not supported by WFD Sink0b1: Coupled Sink Operation supported by WFD SinkThis bit is valid for WFD Device Type bits set to value 0b01, 0b10 or 0b11. When WFD Device Type bits value is 0b00, the value of this b3 is ignored upon receiving.0b0: Coupled Sink Operation not supported by WFD Sink 0b1: Coupled Sink Operation supported by WFD Sink This bit is valid for WFD Device Type bits set to value 0b01, 0b10 or 0b11. When WFD Device Type bits value is 0b00, the value of this b3 is ignored upon receiving.
5:45: 4 WFD Session Availability bitsWFD Session Availability bits 0b00: Not available for WFD Session0b01: Available for WFD Session0b10, 0b11: Reserved0b00: Not available for WFD Session0b01: Available for WFD Session0b10, 0b11: Reserved
66 WSD Support bitWSD Support bit 0b0: WFD Service Discovery (WSD): Not supported0b1: WFD Service Discovery (WSD): Supported0b0: WFD Service Discovery (WSD): Supported
77 PC bitPC bit 0b0: Preferred Connectivity (PC): P2P0b1: Preferred Connectivity (PC): TDLS0b0: Preferred Connectivity (PC): P2P0b1: Preferred Connectivity (PC): TDLS
88 CP Support bitCP Support bit 0b0: Content Protection using the HDCP system 2.0/2.1: Not supported0b1:Content Protection using the HDCP system 2.0/2.1: Supported0b0: Content Protection using the HDCP system 2.0 / 2.1: Not supported
99 Time Synchronization Support bitTime Synchronization Support bit 0b0: Time Synchronization using 802.1AS: Not supported0b1: Time Synchronization using 802.1AS: Supported0b1: Time Synchronization using 802.1AS: Supported
1010 Audio un-supported at Primary Sink bitAudio un-supported at Primary Sink bit 0b0: all cases except below0b1: If B1B0=0b01 or 0b11, and this WFD Device does not support audio rendering when acting as a Primary Sink0b0: all cases except below 0b1: If B1B0 = 0b01 or 0b11, and this WFD Device does not support audio rendering when acting as a Primary Sink
1111 Audio only support at WFD Source bitAudio only support at WFD Source bit 0b0: all cases except below0b1: If B1B0=0b00 or 0b11, and this WFD Device supports transmitting audio only elementary stream when acting as a WFD Source0b0: all cases except below 0b1: If B1B0 = 0b00 or 0b11, and this WFD Device supports transmitting audio only elementary stream when acting as a WFD Source
이하에서는 상술한 설명을 바탕으로, 본 발명의 실시예에 의한 세션 수립 방법에 대해 설명한다.Hereinafter, a session establishment method according to an embodiment of the present invention will be described based on the above description.
실시예Example 1  One
도 9를 참조하면, WFDS(WiFi Direct Service)를 지원하는 제1 장치는, AP를 통해, 제2 장치로 서비스 디스커버리 요청을 전송(S901)할 수 있다. 그리고, AP로부터, 제2 장치가 전송한 서비스 디스커버리 응답을 수신(S902)할 수 있다. 제1 장치는, 제2 장치로 전송 모드 협상에 관련된 프레임을 전송(S903)할 수 있다. 이후, ASP coordination protocol을 위한 전송 모드 능력(capability) 체크를 수행할 수 있다. 구체적으로, 제1 장치는 전송 모드 협상에 관련된 프레임(예를 들어, Transport mode for ASP request)을 전송하고, 이에 대한 응답(예를 들어, ACK)을 수신(S904)할 수 있다. 제1 장치는 제2 장치로부터 전송 모드 협상에 관련된 프레임에 대한 응답 프레임(Transport mode for ASP response, S905)를 수신하고, 이에 대한 응답(예를 들어, ACK, S906)을 전송할 수 있다. 이후, 버천 체크(S907~S9010) 과정을 수행할 수 있다. 제1 장치는, 전송 모드 협상에 관련된 프레임을 통해 전송 모드 협상에 성공한 경우, 협상에 성공한 전송 모드를 사용하여 세션 요청 프레임을 전송(S911)할 수 있다. 전송 모드 협상에 관련된 프레임은, 지원 가능한 (전송 모드) 리스트를 포함할 수 있고, 또한 선호하는 전송 모드에 대한 정보를 추가로 포함할 수 있다. 제2 장치는 복수 개를 선택하여 응답할 수 있으며, 이 경우 개별 transport mode에서 listen하고 있어야 한다.Referring to FIG. 9, a first device supporting Wi-Fi Direct Service (WFDS) may transmit a service discovery request to a second device through an AP (S901). In operation S902, a service discovery response transmitted by the second device may be received from the AP. The first device may transmit a frame related to the transmission mode negotiation to the second device (S903). Thereafter, a transmission mode capability check for the ASP coordination protocol may be performed. In detail, the first device may transmit a frame related to a transport mode negotiation (eg, a transport mode for ASP request), and receive a response (eg, an ACK) (S904). The first device may receive a response frame (Transport mode for ASP response, S905) for the frame related to the transport mode negotiation from the second device, and transmit a response (for example, ACK, S906). Thereafter, the verdict check process (S907 to S9010) may be performed. When the transmission mode negotiation succeeds through a frame related to transmission mode negotiation, the first device may transmit a session request frame using the transmission mode in which negotiation is successful (S911). The frame related to transmission mode negotiation may include a list of supportable (transmission modes), and may further include information on a preferred transmission mode. The second device may select and respond to a plurality of devices, in which case it must listen in a separate transport mode.
상술한 설명에서, 전송 모드는, UDP(User Datagram Protocol), TCP(Transmission Control Protocol), MAC(Media Access Control) 중 하나일 수 있다. 즉, 전송 모드 협상은 UDP, TCP, MAC 중 어느 전송 모드를 사용하여 세션을 수립할지에 대한 협상 과정으로 이해될 수 있다. 여기서, UDP, TCP, MAC 외에도 ASP를 통해 지원 가능한 전송 모드가 포함될 수 있다. In the above description, the transmission mode may be one of User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Media Access Control (MAC). That is, the transmission mode negotiation may be understood as a negotiation process on which transmission mode, UDP, TCP, or MAC, a session is established. Here, in addition to UDP, TCP, and MAC, a transport mode that can be supported through ASP may be included.
전송 모드 협상에 관련된 프레임에 대해 보다 상세히 살펴보면, 전송 모드 협상에 관련된 프레임은 도 10 또는 도 11에 도시된 바와 같은, MAC header, Frame body 및 32-bit CRC 필드(FCS 필드)로 구성된 (802.11 규격) 데이터 프레임일 수 있다. Frame body는, LLC(Logical Link Control) 필드, SNAP(Sub-Network Access Protocol) 필드, 페이로드 타입 필드, 페이로드 필드를 포함할 수 있다. 예를 들어, Frame body는, ASP를 지시하는 페이로드 타입 필드를 포함할 수 있다. 이는 801.11 데이터 프레임을 사용하되, ASP를 지원하기 위함이다. SNAP와 Payload Type에 ASP를 지원 할 수 있도록 고유 식별자를 선언할 수 있다. ASP Coordination Protocol 프레임을 전송하기 위한 프레임 포맷으로 LLC (3 Octets) : 1 for DSAP, 1 for SSAP, 1 for Control, SNAP (5Octets): 3 for WFA OUI, 2 for ASP 와 같이 설정될 수 있다. 페이로드 타입 필드는 다음 표 6의 내용을 포함할 수 있다.Looking at the frame related to the transmission mode negotiation in more detail, the frame related to the transmission mode negotiation is composed of a MAC header, a frame body and a 32-bit CRC field (FCS field), as shown in Fig. 10 or 11 (802.11 standard) ) May be a data frame. The frame body may include a Logical Link Control (LLC) field, a Sub-Network Access Protocol (SNAP) field, a payload type field, and a payload field. For example, the frame body may include a payload type field indicating an ASP. This uses 801.11 data frames to support ASP. Unique identifiers can be declared to support ASP for SNAP and Payload Types. As a frame format for transmitting an ASP Coordination Protocol frame, LLC (3 Octets): 1 for DSAP, 1 for SSAP, 1 for Control, SNAP (5 Octets): 3 for WFA OUI, 2 for ASP can be set. The payload type field may include the contents of Table 6 below.
Protocol nameProtocol name Payload typePayload type SubcluseSubcluse
Remote Request/ResponseRemote Request / Response 1One 12.10.3(Remote Request/Response frame definition)12.10.3 (Remote Request / Response frame definition)
TDLS TDLS 22 10.23.2(TDLS payload)10.23.2 (TDLS payload)
FST(11ad)FST (11ad) 33 10.33.5(FST payload(11ad))10.33.5 (FST payload (11ad))
ASP ASP 44 xxxxxx
Reserved Reserved 5-2555-255
계속해서, 페이로드 필드는, UDP, TCP, MAC 중 하나를 지시하는 트랜스포트 모드 비트맵 필드를 포함할 수 있다. 즉, 페이로드 필드는 다음 표 7에 해당하는 내용을 포함할 수 있다.Subsequently, the payload field may include a transport mode bitmap field indicating one of UDP, TCP, and MAC. That is, the payload field may include content corresponding to Table 7 below.
FieldField Size(octets)Size (octets) ValueValue DescriptionDescription
OpcodeOpcode 1One 0x??0x ??
Sequence NumberSequence Number 1One VariableVariable
Transport mode bitmapTransport mode bitmap 1One variablevariable 0x01 : UDP0x02 : MAC0x03 : TCP0x4~0xFF: Reserved0x01: UDP0x02: MAC0x03: TCP0x4 ~ 0xFF: Reserved
트랜트포트 모드 비트맵은 다음 표 8과 같이 설정될 수 있다.The transport mode bitmap may be set as shown in Table 8 below.
Bit(s)Bit (s) Information Information
00 UDPUDP The UDP field shall be set 1 if the ASP device supports UDP transport for ASP coordination protocol, and is set to 0 otherwiseThe UDP field shall be set 1 if the ASP device supports UDP transport for ASP coordination protocol, and is set to 0 otherwise
1One MACMAC The MAC field shall be set 1 if the ASP device supports MAC transport for ASP coordination protocol, and is set to 0 otherwiseThe MAC field shall be set 1 if the ASP device supports MAC transport for ASP coordination protocol, and is set to 0 otherwise
22 TCPTCP The TCP field shall be set 1 if the ASP device supports TCP transport for ASP coordination protocol, and is set to 0 otherwiseThe TCP field shall be set 1 if the ASP device supports TCP transport for ASP coordination protocol, and is set to 0 otherwise
3-73-7 ReservedReserved
상술한 프레임 포맷은 WLAN Infrastructure에서 데이터 프레임 형태로 전송되기 때문에 프레임 손실이 있을 수 있다. 이를 보완하기 위해, 정상적인 송수신 확인은 ASP coordination protocol에 정의된 ACK/NACK message format을 사용할 수 있다. 상술한 내용에서 ASP coordination protocol format을 재사용 할 수도 있고 transport mode bitmap 정보만 정의하여 사용할 수 있다. Since the above-described frame format is transmitted in the form of data frames in the WLAN infrastructure, there may be frame loss. To compensate for this, normal transmission and reception confirmation may use the ACK / NACK message format defined in the ASP coordination protocol. In the above description, the ASP coordination protocol format can be reused, and only transport mode bitmap information can be defined and used.
실시예Example 2 2
도 12(a)를 참조하면, 장치 A와 장치 B는 P2P Probe Request/Response, P2P Service Discovery Request/Response를 주고 받은, 다음 원하는 디바이스를 선택하면 connection setup 단계로 진입할 수 있다. 이때 ASP method중 ConnectSessions()이 호출될 때, PD Requester가 Feature Capability 정보를 PD request frame을 통해 전송할 수 있다. 여기서, Feature Capability 정보는 Feature Capability P2P Info attribute에 선호하는 전송 모드/지원 가능한 방법(전송 모드)을 추가될 수 있다. PD Responder는 서비스 또는 ASP가 선호하는 전송 모드를 선택하고 Feature Capability P2P Info attribute에 그 정보를 포함시켜, PD response frame을 이용하여 응답할 수 있다. 이때 PD Responder가 Feature Capability P2P Info attribute 를 PD response frame에 포함 시키지 않는 경우 PD Requester는 Fail 메시지를 이벤트로 올려 보낼 수 있다. Transport mode에 대한 우선 순위가 사용될 수도 있다. 또한 Default Transport mode를 정해서 사용 할 수 있다. Default Transport mode를 사용하는 경우 PD response frame에 Feature Capability P2P Info attribute가 없으면 PD requester는 Default Transport mode로 간주한다. Default Transport mode는 표 9의 PD request의 Feature Description에 기술된 방법 중의 하나로 정할 수 있다. 표 9는 2개 이상의 transport mode 조합으로 사용할 수 있다.Referring to FIG. 12 (a), when the device A and the device B exchange P2P Probe Request / Response and P2P Service Discovery Request / Response, and then select a desired device, the device A and the device B may enter a connection setup step. At this time, when ConnectSessions () is called in the ASP method, the PD Requester may transmit Feature Capability information through the PD request frame. Here, the Feature Capability information may add a preferred transmission mode / supportable method (transmission mode) to the Feature Capability P2P Info attribute. The PD Responder may select a transmission mode preferred by the service or the ASP and include the information in the Feature Capability P2P Info attribute to respond using the PD response frame. At this time, if the PD Responder does not include the Feature Capability P2P Info attribute in the PD response frame, the PD Requester may send a Fail message as an event. Priority for transport mode may be used. You can also set the default transport mode. In case of using Default Transport mode, if there is no Feature Capability P2P Info attribute in PD response frame, PD requester is regarded as Default Transport mode. The default transport mode may be determined by one of the methods described in the Feature Description of the PD request in Table 9. Table 9 can be used in combination with two or more transport modes.
PD Requester: Feature Capability PD Requester: Feature Capability PD Requester: Feature Description PD Requester: Feature Description PD Responder: Valid Feature Capability PD Responder: Valid Feature Capability ASP Action ASP Action
Coordination Protocol Transport Bitmask 0x0001-0x00FF Coordination Protocol Transport Bitmask 0x0001-0x00FF Bit(s)Bit (s) inoframtoninoframton 0x01: UDP Transport 0x02: MAC0x03: TCP Transport0x04-0x80: Reserved for future transports. 이중 하나를 선택하여 보낼 수 있다. 0x01: UDP Transport 0x02: MAC0x03: TCP Transport0x04-0x80: Reserved for future transports. You can choose one of them and send it. Both ASPs involved in this PD exchange shall use the transport indicated in the PD response for all ASP coordination protocol messaging between the two ASPs. Both ASPs involved in this PD exchange shall use the transport indicated in the PD response for all ASP coordination protocol messaging between the two ASPs.
00 UDP TransportUDP Transport
1One
MACMAC
22 TCP TransportTCP Transport
3-73-7 reservedreserved
0x0100-0xFF00 0x0100-0xFF00 Reserved for future use Reserved for future use
PD Requester에는 지원 가능한 Feature 들의 조합으로 비트맵 형태로 value/index/string로 구성할 수 있다. PD Responder에서는 Valid Feature Capability를 선택하여 value/string/index/bit/bitmap형태로 정보를 구성하여 PD Response frame을 통해 전송할 수 있다.The PD Requester can be configured as a value / index / string in the form of a bitmap with a combination of features that can be supported. In PD Responder, you can select Valid Feature Capability to configure information in the form of value / string / index / bit / bitmap and transmit it through PD Response frame.
도 12(b)는 별도의 Feature capability request/response (새로운 Action Frame으로 정의)를 정의하는 방식이다. Feature capability에 대한 정보를 사전에 미리 공유 하고 공통된 Feature capability를 선택해서 request 하고 response할 수도 있다. 미리 공유하는 방법은 장치/Service Discovery시에 Feature capability 필드를 추가 하거나, service_information에 의무적으로 사용되도록 추가할 수 있다. 또는 PD request/response시에 디바이스간 상기 정보를 공유할 수 있다.12 (b) illustrates a method of defining a separate feature capability request / response (defined as a new action frame). Information on feature capability can be shared in advance, and a common feature capability can be selected to request and respond. The pre-sharing method may add a feature capability field at the time of device / service discovery, or may be added to be mandatory for service_information. Alternatively, the information may be shared between devices at the time of PD request / response.
도 12(c)는 Feature capability Info.를 먼저 명시적으로 공유하는 과정을 수행하는 방식을 도시한다.12 (c) illustrates a method of performing a process of explicitly sharing Feature capability Info. First.
실시예 1에 대한 설명에서, Device/Service Discovery Request/Response는 도 12의 프레임 포맷을 사용할 수 있다. 이 때, payload부분에 다음 표 10과 같은 정보들을 조합하여 사용 할 수 있다. Service_ID는 SHA-256등을 이용한 값으로 일부 또는 전체가 사용될 수 있다.In the description of the first embodiment, Device / Service Discovery Request / Response may use the frame format of FIG. 12. At this time, payload can be used by combining the information shown in Table 10 below. Service_ID is a value using SHA-256, etc., and may be used in whole or in part.
Device/Service Discovery Request/ResponseDevice / Service Discovery Request / Response NoteNote
Service Name/Service_IDService Name / Service_ID
Service StatusService status 1. Available2. Or notAvailable2. Or not
Preferred bandPreferred band
Operating bandsOperating bands 1. 2.4 GHz2. 5GHz3. 60GHz2.4 GHz 2. 5 GHz 3. 60 GHz
Network Type for ASPNetwork Type for ASP 1. UDP2. MAC3. TCPUDP2. MAC3. TCP
Network Type for ServiceNetwork type for service 1. UDP2. MAC3. TCPUDP2. MAC3. TCP
Service InformationService information Service info. Provided by a serviceService info. Provided by a service
Connectivity methodConnectivity method 1. WLAN Infrastructure2. P2P3. BTWLAN Infrastructure2. P2P3. BT
도 13에는 본 발명의 일 실시예에 의한 디스커버리 절차가 예시되어 있다. 우선, 시커인 제1 장치(Device B)의 입장에서 살펴보면, 제1 장치가 AP에 연결된 후 레이어 2 및 레이어 3 연결이 수립된다. 제1 장치의 Service 계층은 ASP 계층으로 SeekService() 메소드를 전송한다(S1001). 제1 장치는, ASP 계층을 통해, 서브넷에 디스커버리 요청을 브로드캐스트한다 (S1002). 상기 디스커버리 요청에 해당하는 서비스를 제공하는 피어가 없으므로, 응답을 수신할 수 없다. 이와 같은 상태에서 (시간이 경과한 후), 애드버타이저인 제2 장치(Device)는 제1 장치가 전송한 탐색가능 알림(discoverable notification)을 수신할 수 있다(S1006). 13 illustrates a discovery procedure according to an embodiment of the present invention. First, from the standpoint of the seeker, the first device Device B, layer 2 and layer 3 connections are established after the first device is connected to the AP. The Service layer of the first device transmits a SeekService () method to the ASP layer (S1001). The first device broadcasts a discovery request to a subnet through the ASP layer (S1002). Since there is no peer providing a service corresponding to the discovery request, a response cannot be received. In this state (after time elapses), the second device, which is an advertiser, may receive a discoverable notification transmitted by the first device (S1006).
여기서, 상기 탐색가능 알림은 상기 탐색가능 알림을 전송하는 제2 장치가 지원하는 서비스에 대한 정보를 포함할 수 있다. 따라서, 탐색가능 알림을 통해 알려지는 서비스가, 상기 제1 장치가 찾는 서비스인지 판단할 수 있다. 제1 장치가 찾는 서비스가 상기 탐색가능 알림을 통해 알려지는 서비스와 일치하는 경우, 제1 장치는 디스커버리 요청(S1007) 또는 서비스 계층으로의 SearchResult() 을 전송(S1009)할 수 있다. 제1 장치는 디스커버리 요청(S1007)을 브로드캐스트 또는 유니캐스트 중 하나의 방식으로 전송할 수 있다. 디스커버리 요청은 AP에 의해 수신된 후, AP가 이를 서브넷에 다시 브로드캐스트할 수도 있다. 디스커버리 요청을 제2 장치가 수신한 경우, 제2 장치는 이에 대한 응답으로써 디스커버리 응답(discovery response)을 수신할 수 있다(S1008). 디스커버리 응답을 수신한 후, 세부 서비스 내용을 알게되면 사용자에게 현재 네트워크에 사용 가능한 서비스를 지원하는 장치가 있다는 사실을 알릴 수 있다. 이는 ASP 계층이 SearchResult()를 서비스 계층에 전송(S1009)하고, 서비스 계층이 notification을 사용자에게 표시(S1010)함으로써 수행될 수 있다.Here, the searchable notification may include information on a service supported by the second device for transmitting the searchable notification. Accordingly, it may be determined whether the service known through the searchable notification is a service that the first device finds. If the service found by the first device matches the service known through the searchable notification, the first device may transmit a discovery request (S1007) or a SearchResult () to the service layer (S1009). The first device may transmit the discovery request S1007 in one of broadcast or unicast. After the discovery request is received by the AP, the AP may broadcast it back to the subnet. When the discovery request is received by the second device, the second device may receive a discovery response as a response (S1008). After receiving the discovery response, knowing the details of the service can inform the user that there is a device supporting the service currently available in the network. This may be performed by the ASP layer transmitting SearchResult () to the service layer (S1009), and displaying the notification to the user (S1010).
도 10에서는 본 발명의 또 다른 실시 예를 나타낸다. 제1 장치(Device B)와 제 2장치(Device A)가 이미 Wi-Fi Direct연결을 가지고 있는 경우에도 동일하게 적용될 수 있다. 도 10과 같이 제 1 장치는 현재 연결된 연결에 대해서 서비스 검색을 위해서 디스커버리 요청(Discovery Request)을 브로드케스트하게 된다. 하지만 제 2 장치는 현재 서비스를 시작하지 않았거나, 현재 광고 하지 않는 상태이면 디스커버리 요청 에 대해서 응답하지 않게 된다. (시간이 경과한 후), 애드버타이저인 제2 장치(Device A)는 제1 장치가 전송한 탐색가능 알림(discoverable notification)을 수신할 수 있다10 shows another embodiment of the present invention. The same applies to the case where the first device B and the second device A already have a Wi-Fi Direct connection. As shown in FIG. 10, the first device broadcasts a discovery request for service discovery on a currently connected connection. However, if the second device does not start the current service or does not advertise currently, the second device does not respond to the discovery request. (After a time elapses), the second device Device A, which is an advertiser, may receive a discoverable notification transmitted by the first device.
상술한 설명에서, 탐색 가능 알림은 제2 장치가 서비스 애드버타이즈로 동작하는 경우, 제2 장치가 서브넷에 접속한 직후 전송한 것일 수 있다. 또는, 탐색 가능 알림은 제2 장치가 네트워크에 접속하자 마자 제2 장치가 브로드캐스트한 것일 수 있다. 즉, 도 10에서, 제2 장치는 AP로 연관 요청(Association request)를 전송(S1003)하고 L2/L3 연결을 수립한 후, AP로 탐색가능 알림을 전송할 수 있다(S1005). 도 10에서 AdvertiseService() 메소드는 네트워크 연결 후에 호출되는 것으로 도시되어 있으나, 네트워크 이전에 호출된 것일 수도 있다.In the above description, the searchable notification may be transmitted immediately after the second device connects to the subnet when the second device operates as a service advertisement. Alternatively, the discoverable notification may be broadcast by the second device as soon as the second device connects to the network. That is, in FIG. 10, the second device transmits an association request to the AP (S1003), establishes an L2 / L3 connection, and then transmits a searchable notification to the AP (S1005). In FIG. 10, the AdvertiseService () method is shown to be called after the network connection, but may be called before the network.
상술한 설명에서, 탐색가능 알림은, IP 헤더, UDP(user datagram protocol) 헤더, UDP 데이터 그램을 포함할 수 있다. 즉, 탐색가능 알림은 UDP(또는 TCP)로 패킷화되어 IP 상위에서 생성/전달되는 것일 수 있다. 이 패킷은 ASP Coordination Protocol 또는 새로운 UDP 디스커버리 프로토콜로 정의될 수 있다. 도 11에는 탐색가능 알림이 ASP CP(Coordination Protocol)로 정의되는 경우에 실시 예를 보여준다. 도 11에 도시된 바와 같이, UDP 데이터그램은 Opcode 필드, 시퀀스 번호(sequence number) 필드, 페이로드 필드를 포함할 수 있다. 여기서, Opcode 값은 어떤 메시지인지를 나타낼 수 있으며, 도 11에 예시된 바와 같이, opcode 9가 탐색가능 알림임을 나타낼 수 있다. In the above description, the searchable notification may include an IP header, a user datagram protocol (UDP) header, and a UDP datagram. That is, the searchable notification may be packetized by UDP (or TCP) and generated / delivered on the IP. This packet can be defined as ASP Coordination Protocol or a new UDP discovery protocol. FIG. 11 shows an embodiment when the searchable notification is defined as an ASP Coordination Protocol (CP CP). As illustrated in FIG. 11, the UDP datagram may include an Opcode field, a sequence number field, and a payload field. Here, the Opcode value may indicate what message, and as illustrated in FIG. 11, it may indicate that opcode 9 is a searchable notification.
UDP 데이터 그램은 하나 이상의 TLV(Type Length Value) 필드를 포함할 수 있다. 이에 대한 예가 도 12에 도시되어 있다. 앞서 설명된 바와 같이, 탐색가능 알림 메시지는 서브넷에 브로드캐스트될 수 있는 UDP 패킷으로써, 장치가 네트워크에 조인하는 경우 자신이 지원하는 서비스를 네트워크에 브로드캐스트하는 것일 수 있다. 이러한 탐색가능 알림 메시지를 위해, 탐색가능 알림의 IE(Information Element) TLV 필드에는 P2P 규격과 WFDS 규격에 정의된 IE(Information Element)에 모든 어트리뷰트가 TLV 형태로 포함될 수 있다. P2P 규격 외에 WFA에 정의한 어트리뷰트와 향후 IE에 포함될 어트리뷰트 형태의 정보는 모두 IE TLVs 필드에 포함될 수 있다. 특히 WFDS P2P addendum spec에 정의된 애드버타이즈된 서비스 정보 어트리뷰트가 포함될 수 있다. The UDP datagram may include one or more Type Length Value (TLV) fields. An example of this is shown in FIG. 12. As described above, the searchable notification message is a UDP packet that can be broadcast to a subnet, and may be to broadcast a service supported by the device to the network when the device joins the network. For such a searchable notification message, all attributes may be included in the Information Element (IE) TLV field of the searchable notification in the TLV form in the Information Element (IE) defined in the P2P standard and the WFDS standard. In addition to the P2P specification, attributes defined in the WFA and attribute types to be included in future IE may be included in the IE TLVs field. In particular, it may include an advertised service information attribute defined in the WFDS P2P addendum spec.
도 13에는 본 발명의 또 다른 실시예에 의한 탐색가능 알림 절차가 예시되어 있다. 도 13에 예시된 절차에서는, 도 12에서와 달리 디스커버리 요청 및/또는 디스커버리 응답 절차가 수행되지 않는다. 탐색가능 알림 메시지 내에 IE TLV 필드 내에 서비스를 초기화(initiation)하기에 충분한 정보가 포함되는 경우, 서비스 시커는 디스커버리 요청와 디스커버리 응답 과정을 요구하지 않을 수 있다. 즉 서비스 시커는 탐색가능 알림 메시지 만으로 서비스에 서비스 SearchResult() event를 보내고, 사용자에게 새로운 서비스 검색이 완료됨을 알릴 수 있다.Figure 13 illustrates a searchable notification procedure according to another embodiment of the present invention. In the procedure illustrated in FIG. 13, unlike in FIG. 12, the discovery request and / or discovery response procedure is not performed. If the searchable notification message includes enough information to initialize the service in the IE TLV field, the service seeker may not require a discovery request and a discovery response process. That is, the service seeker may send a service SearchResult () event to the service using only the searchable notification message, and notify the user that the new service search is completed.
앞서 도 10 및 도 13에서는 제2 장치가 전송한 탐색 가능 알림이 제1 장치가 찾고 있는 서비스를 제공하는 경우에 대한 예시였다. 도 14에는 이와 달리, 탐색 가능 알림이 제1 장치가 찾고 있는 서비스를 제공하지 못하는 경우에 관한 것이다. 구체적으로, 서비스 시커는 탐색 가능 알림 메시지를 받더라도 디스커버리 요청 및/또는 상위 서비스에게 SearchResult를 보내지 않을 수 있다. 예를 들어, 시커는 초기에 'org.wi-fi.wfds.send.rx'라는 서비스, 즉 파일전송 수신 서비스를 검색하였으나, 새롭게 조인한 장치가 'org.wi-fi.wfds.print.rx'라는 프린트 수신 서비스를 지원하는 경우, 서비스 시커의 입장에서는 상위 서비스에게 서비스 검색 결과를 알릴 필요가 없게 된다. 10 and 13 illustrate an example in which the searchable notification transmitted by the second device provides a service that the first device is looking for. In contrast, FIG. 14 relates to a case in which the searchable notification does not provide a service that the first device is looking for. In detail, the service seeker may not send a discovery request and / or a SearchResult to a higher service even if the service seeker receives the searchable notification message. For example, the Seeker initially searched for a service called 'org.wi-fi.wfds.send.rx', that is, a file transfer receiving service. In the case of supporting a print reception service, a service seeker does not need to inform a higher level service of a service search result.
상기 설명된 본 발명의 실시예에 의할 경우, 이미 네트워크에 연결된 서비스 시커가 별도의 Seek 동작을 하지 않더라도 (passive 하게) 서비스 애드버타이저가 지원하는 서비스를 알 수 있다.According to the embodiment of the present invention described above, even if the service seeker already connected to the network does not perform a separate Seek operation (passive), the service advertiser supports the service.
도 14는 본 발명의 일 실시예에 따른 무선 장치의 구성을 나타내는 블록도이다. 14 is a block diagram illustrating a configuration of a wireless device according to an embodiment of the present invention.
무선 장치(10)는 프로세서(11), 메모리(12), 송수신기(13)를 포함할 수 있다. 송수신기(13)는 무선 신호를 송신/수신할 수 있고, 예를 들어, IEEE 802 시스템에 따른 물리 계층을 구현할 수 있다. 프로세서(11)는 송수신기(13)와 전기적으로 연결되어 IEEE 802 시스템에 따른 물리 계층 및/또는 MAC 계층을 구현할 수 있다. 또한, 프로세서(11)는 전술한 본 발명의 다양한 실시예에 따른 애플리케이션, 서비스, ASP 계층 중의 하나 이상의 동작을 수행하도록 구성되거나 또는 AP/STA로 동작하는 장치에 관련된 동작을 수행하도록 구성될 수 있다. 또한, 전술한 본 발명의 다양한 실시예에 따른 무선 장치의 동작을 구현하는 모듈이 메모리(12)에 저장되고, 프로세서(11)에 의하여 실행될 수도 있다. 메모리(12)는 프로세서(11)의 내부에 포함되거나 또는 프로세서(11)의 외부에 설치되어 프로세서(11)와 공지의 수단에 의해 연결될 수 있다. The wireless device 10 may include a processor 11, a memory 12, and a transceiver 13. The transceiver 13 may transmit / receive a radio signal, for example, may implement a physical layer according to the IEEE 802 system. The processor 11 may be electrically connected to the transceiver 13 to implement a physical layer and / or a MAC layer according to the IEEE 802 system. In addition, the processor 11 may be configured to perform one or more operations of an application, service, and ASP layer according to various embodiments of the present invention described above, or may be configured to perform an operation related to an apparatus operating as an AP / STA. . In addition, a module for implementing the operation of the wireless device according to various embodiments of the present invention described above may be stored in the memory 12 and executed by the processor 11. The memory 12 may be included in the processor 11 or installed outside the processor 11 and connected to the processor 11 by a known means.
도 14의 무선 장치(10)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다. Specific configuration of the wireless device 10 of FIG. 14 may be implemented so that the above-described matters described in various embodiments of the present invention may be independently applied or two or more embodiments may be applied at the same time. Omit.
도 16은 본 발명의 실시예를 위한 무선 장치의 또 다른 구성을 도시한 도면이다.16 is a diagram illustrating still another configuration of a wireless device for an embodiment of the present invention.
도 16을 참조하면, RF 트랜시버(21)는 PHY 프로토콜 모듈(22)에서 만들어진 정보를 RF 스펙트럼으로 옮기고, 필터링/증폭 등을 수행하여 안테나를 송신하거나, 안테나에서 수신되는 RF 신호를 PHY 프로토콜 모듈에서 처리가 가능한 대역으로 옮기고, 이를 위한 필터링 등의 과정을 처리하는 기능을 담당한다. 이러한 송신과 수신의 기능을 전환하기 위한 스위칭 기능 등도 포함될 수 있다.Referring to FIG. 16, the RF transceiver 21 transfers information generated in the PHY protocol module 22 to the RF spectrum, performs filtering / amplification, etc. to transmit an antenna, or transmits an RF signal received from the antenna to the PHY protocol module. It moves to the band that can be processed and handles the processes such as filtering. Such a switching function for switching the functions of transmission and reception may also be included.
PHY 프로토콜 모듈(22)은 MAC 프로토콜 모듈(23)에서 전송을 요구하는 데이터에 대하여 FEC 인코딩 및 변조, 프리앰블, 파일럿 등의 부가 신호를 삽입하는 등의 처리를 하여 RF 트랜시버로 전달하는 역할과 동시에 RF 트랜시버에서 전달되는 수신 신호를 복조, 등화, FEC 디코딩 및 PHY 계층에서 부가된 신호의 제거 등의 과정을 통해 MAC 프로토콜 모듈로 데이터를 전달하는 역할을 수행한다. 이를 위하여 PHY 프로토콜 모듈 내에는 모듈레이터, 디모듈레이터 등화기, FEC 인코더, FEC 디코더 등이 포함될 수 있다.The PHY protocol module 22 performs the process of inserting additional signals such as FEC encoding and modulation, preamble, pilot, and the like for data required for transmission by the MAC protocol module 23 and delivers them to the RF transceiver. It performs the function of delivering data to MAC protocol module through the process of demodulation, equalization, FEC decoding and removal of added signal from PHY layer. To this end, the PHY protocol module may include a modulator, demodulator equalizer, FEC encoder, FEC decoder, and the like.
MAC 프로토콜 모듈(23)은 상위 계층에서 전달되는 데이터를 PHY 프로토콜 모듈로 전달, 전송하기 위하여 필요한 과정을 수행하기도 하고, 기본적인 통신이 이루어지기 위한 부가적인 전송들을 담당한다. 이를 위해서 상위 계층에서 전송 요구되는 데이터를 전송하기에 적합하게 가공하여 PHY 프로토콜 모듈로 전달 및 전송하도록 처리하고, 또 PHY 프로토콜 모듈 에서 전달된 수신 데이터를 가공하여 상위 계층로 전달하는 역할을 수행한다. 또한, 이러한 데이터 전달을 위해서 필요한 여타의 부가적인 송수신을 담당함으로써 통신 프로토콜을 처리하는 역할 또한 담당한다.The MAC protocol module 23 performs a necessary process for transferring and transmitting data transmitted from an upper layer to the PHY protocol module, and is responsible for additional transmissions for basic communication. To this end, it processes the data required for transmission in the upper layer, processes it to be transmitted and transmitted to the PHY protocol module, and processes the received data transmitted in the PHY protocol module and delivers it to the upper layer. It is also responsible for handling the communication protocol by taking care of any additional transmission and reception necessary for this data transfer.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. Embodiments of the present invention described above may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.For implementation in hardware, a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above. The software code may be stored in a memory unit and driven by a processor. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable any person skilled in the art to make and practice the invention. Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art will variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. I can understand that you can. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
상술한 바와 같은 본 발명의 다양한 실시형태들은 IEEE 802.11 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.Various embodiments of the present invention as described above have been described with reference to the IEEE 802.11 system, but can be applied to various mobile communication systems in the same manner.

Claims (14)

  1. WFDS(WiFi Direct Servicea)를 지원하는 제1 장치가 제2 장치와 ASP(Application Service Platform) 세션을 수립하는 방법에 있어서,In a method for a first device supporting WiFi Direct Servicea (WFDS) to establish an Application Service Platform (ASP) session with a second device,
    AP를 통해, 제2 장치로 서비스 디스커버리 요청을 전송하는 단계;Sending, via the AP, a service discovery request to a second device;
    상기 AP로부터, 상기 제2 장치가 전송한 서비스 디스커버리 응답을 수신하는 단계;Receiving, from the AP, a service discovery response sent by the second device;
    상기 제2 장치로 전송 모드 협상에 관련된 프레임을 전송하는 단계;Transmitting a frame related to a transmission mode negotiation to the second device;
    상기 전송 모드 협상에 관련된 프레임을 통해 전송 모드 협상에 성공한 경우, 협상에 성공한 전송 모드를 사용하여 세션 요청 프레임을 전송하는 단계;When the transmission mode negotiation is successful through the frame related to the transmission mode negotiation, transmitting a session request frame using the transmission mode in which the negotiation is successful;
    를 포함하는 세션 수립 방법.Session establishment method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 전송 모드는, UDP(User Datagram Protocol), TCP(Transmission Control Protocol), MAC(Media Access Control) 중 하나인, 세션 수립 방법.The transmission mode is one of User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Media Access Control (MAC).
  3. 제2항에 있어서,The method of claim 2,
    상기 전송 모드 협상에 관련된 프레임은 MAC header, Frame body 및 32-bit CRC 필드로 구성된 데이터 프레임인, 세션 수립 방법.The frame related to the transmission mode negotiation is a data frame consisting of a MAC header, a frame body and a 32-bit CRC field.
  4. 제3항에 있어서,The method of claim 3,
    상기 Frame body는, ASP를 지시하는 페이로드 타입 필드를 포함하는, 세션 수립 방법.The frame body includes a payload type field indicating an ASP.
  5. 제3항에 있어서,The method of claim 3,
    상기 Frame body는, LLC(Logical Link Control) 필드, SNAP(Sub-Network Access Protocol) 필드, 페이로드 타입 필드, 페이로드 필드를 포함하는, 세션 수립 방법.The frame body includes a Logical Link Control (LLC) field, a Sub-Network Access Protocol (SNAP) field, a payload type field, and a payload field.
  6. 제5항에 있어서,The method of claim 5,
    상기 페이로드 필드는, 상기 UDP, TCP, MAC 중 하나를 지시하는 트랜스포트 모드 비트맵 필드를 포함하는, 세션 수립 방법.The payload field includes a transport mode bitmap field indicating one of the UDP, TCP, and MAC.
  7. 제1항에 있어서,The method of claim 1,
    상기 전송 모드 협상에 관련된 프레임은 상기 AP를 통해 전송되는 것인, 세션 수립 방법.And a frame related to the transmission mode negotiation is transmitted through the AP.
  8. WFDS(WiFi Direct Service)를 지원하며, 제2 장치와 ASP(Application Service Platform) 세션을 수립하는 제1 장치에 있어서,In the first device that supports the WiFi Direct Service (WFDS), and establishes an Application Service Platform (ASP) session with the second device,
    송수신기; 및Transceiver; And
    프로세서;A processor;
    를 포함하며,Including;
    상기 프로세서는, AP를 통해, 제2 장치로 서비스 디스커버리 요청을 전송하고, 상기 AP로부터, 상기 제2 장치가 전송한 서비스 디스커버리 응답을 수신하며, 상기 제2 장치로 전송 모드 협상에 관련된 프레임을 전송하고, 상기 전송 모드 협상에 관련된 프레임을 통해 전송 모드 협상에 성공한 경우, 협상에 성공한 전송 모드를 사용하여 세션 요청 프레임을 전송하는, 제1 장치.The processor transmits a service discovery request to a second device through an AP, receives a service discovery response sent by the second device from the AP, and transmits a frame related to a transmission mode negotiation to the second device. And when the transmission mode negotiation is successful through the frame related to the transmission mode negotiation, transmitting the session request frame using the transmission mode in which the negotiation is successful.
  9. 제8항에 있어서,The method of claim 8,
    상기 전송 모드는, UDP(User Datagram Protocol), TCP(Transmission Control Protocol), MAC(Media Access Control) 중 하나인, 제1 장치.The transmission mode is one of the User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Media Access Control (MAC).
  10. 제9항에 있어서,The method of claim 9,
    상기 전송 모드 협상에 관련된 프레임은 MAC header, Frame body 및 32-bit CRC 필드로 구성된 데이터 프레임인, 제1 장치.The frame related to the transmission mode negotiation is a data frame consisting of a MAC header, a frame body and a 32-bit CRC field.
  11. 제10항에 있어서,The method of claim 10,
    상기 Frame body는, ASP를 지시하는 페이로드 타입 필드를 포함하는, 제1 장치.And the frame body includes a payload type field indicating an ASP.
  12. 제10항에 있어서,The method of claim 10,
    상기 Frame body는, LLC(Logical Link Control) 필드, SNAP(Sub-Network Access Protocol) 필드, 페이로드 타입 필드, 페이로드 필드를 포함하는, 제1 장치.The frame body includes a Logical Link Control (LLC) field, a Sub-Network Access Protocol (SNAP) field, a payload type field, and a payload field.
  13. 제12항에 있어서,The method of claim 12,
    상기 페이로드 필드는, 상기 UDP, TCP, MAC 중 하나를 지시하는 트랜스포트 모드 비트맵 필드를 포함하는, 제1 장치.The payload field includes a transport mode bitmap field indicating one of the UDP, TCP, and MAC.
  14. 제8항에 있어서,The method of claim 8,
    상기 전송 모드 협상에 관련된 프레임은 상기 AP를 통해 전송되는 것인, 제1 장치.And the frame related to the transmission mode negotiation is transmitted through the AP.
PCT/KR2016/001307 2015-02-05 2016-02-05 Method and device for establishing session in wireless communication system WO2016126138A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562112604P 2015-02-05 2015-02-05
US62/112,604 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016126138A1 true WO2016126138A1 (en) 2016-08-11

Family

ID=56564380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001307 WO2016126138A1 (en) 2015-02-05 2016-02-05 Method and device for establishing session in wireless communication system

Country Status (1)

Country Link
WO (1) WO2016126138A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120155350A1 (en) * 2010-11-19 2012-06-21 Qualcomm Incorporated Probe messaging for direct link connections
WO2014069868A1 (en) * 2012-10-29 2014-05-08 엘지전자 주식회사 Wi-fi direct service method using nfc and device therefor
US20140196125A1 (en) * 2013-01-04 2014-07-10 Qualcomm Incorporated Deploying wireless docking as a service
WO2014171956A1 (en) * 2013-04-17 2014-10-23 Intel Corporation Techniques enabling use of a wi-fi direct services (wfds) application services platform (asp) for layer 2 services
US20140351444A1 (en) * 2013-05-22 2014-11-27 Emily H. Qi Systems and methods for enabling service interoperability functionality for wifi direct devices connected to a network via a wireless access point

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120155350A1 (en) * 2010-11-19 2012-06-21 Qualcomm Incorporated Probe messaging for direct link connections
WO2014069868A1 (en) * 2012-10-29 2014-05-08 엘지전자 주식회사 Wi-fi direct service method using nfc and device therefor
US20140196125A1 (en) * 2013-01-04 2014-07-10 Qualcomm Incorporated Deploying wireless docking as a service
WO2014171956A1 (en) * 2013-04-17 2014-10-23 Intel Corporation Techniques enabling use of a wi-fi direct services (wfds) application services platform (asp) for layer 2 services
US20140351444A1 (en) * 2013-05-22 2014-11-27 Emily H. Qi Systems and methods for enabling service interoperability functionality for wifi direct devices connected to a network via a wireless access point

Similar Documents

Publication Publication Date Title
WO2014088378A1 (en) Method and device for session initialization in wireless communication system
WO2014123383A1 (en) Method and apparatus for establishing session in wireless communication system
WO2014109513A1 (en) Discovery method and device in a wireless communication system
WO2015152657A1 (en) Method and apparatus for transceiving signal by nan terminal in wireless communication system
WO2015167269A1 (en) Service discovery method and device in wireless communication system
EP3128718B1 (en) Service discovery method and device
KR101838079B1 (en) Method and apparatus for performing discovery in wireless communication system
KR20160026866A (en) Method for searching for device in direct communication system and apparatus therefor
WO2017014579A1 (en) Method and apparatus for performing discovery in wireless communication system
WO2014129844A1 (en) Method for finding instrument for wi-fi direct p2p (peer to peer) communication and apparatus therefor
WO2015119329A1 (en) Method and device for conducting discovery in wireless communication system
US10051673B2 (en) Method and apparatus for session initiation in wireless communication system
WO2016148523A1 (en) Method and device for executing service discovery in wireless communication system
WO2017039376A1 (en) Method and device for exchanging connection capability information in wireless communication system
WO2017018823A1 (en) Method and device for forming application service platform session in wireless communication system
WO2014010962A1 (en) Scheme for device discovery and p2p group formation
WO2016148550A1 (en) Method and apparatus for establishing application service platform session in wireless communication system
WO2017155271A1 (en) Method and apparatus for receiving streaming via transport protocol in wireless communication system
WO2020085539A1 (en) Method for establishing peer to peer service session over infrastructure link
KR101901951B1 (en) METHOD AND APPARATUS FOR WIRELESS COMMUNICATION SYSTEMS WIPO-DIRECT SUPPORTED DEVICE PERFORMING DISCOVERY
WO2016126138A1 (en) Method and device for establishing session in wireless communication system
WO2016126148A1 (en) Method and apparatus for establishing session in wi-fi display device
WO2016048065A1 (en) Method and device by which wfd source transmits and receives signal relating to dual screen in wireless communication system
WO2017105071A1 (en) Method and apparatus for performing service discovery using nfc in wireless communication system
WO2017007183A1 (en) Power control method in wireless communication system and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746879

Country of ref document: EP

Kind code of ref document: A1