WO2016125243A1 - Exosome assay method and exosome extraction method - Google Patents

Exosome assay method and exosome extraction method Download PDF

Info

Publication number
WO2016125243A1
WO2016125243A1 PCT/JP2015/052909 JP2015052909W WO2016125243A1 WO 2016125243 A1 WO2016125243 A1 WO 2016125243A1 JP 2015052909 W JP2015052909 W JP 2015052909W WO 2016125243 A1 WO2016125243 A1 WO 2016125243A1
Authority
WO
WIPO (PCT)
Prior art keywords
exosome
exosomes
gold
solution
fine particles
Prior art date
Application number
PCT/JP2015/052909
Other languages
French (fr)
Japanese (ja)
Inventor
美南 庄子
武田 健一
崇秀 横井
裕一 内保
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/052909 priority Critical patent/WO2016125243A1/en
Publication of WO2016125243A1 publication Critical patent/WO2016125243A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Definitions

  • the present invention relates to a method for measuring the amount of exosomes contained in a sample and a method for extracting exosomes from a sample.
  • Exosome is a kind of extracellular vesicle (or extracellular granule).
  • a vesicle is a bag-like structure wrapped in a membrane inside a cell, and is used not only to store the substance in the cell but also to transport the substance into and out of the cell.
  • Vesicles are naturally formed structures due to the chemical properties of lipid membranes. Most vesicles have some specialized function, and the function varies depending on the substance contained in the vesicle. Among them, exosome is a general term for vesicles of about 40 nm to 200 nm that are secreted by various cells.
  • An exosome is a vesicle covered with a lipid bilayer, and retains therein a microRNA that plays an important role in suppressing gene expression in vivo.
  • the outer membrane of exosome contains characteristic lipid components such as ceramide, unlike ordinary cell membranes.
  • Exosomes contain nucleic acid substances such as 100 kinds or more of micro RNA and 1000 kinds or more of messenger RNA.
  • the microRNA contained in the exosome is a small RNA of 18 to 25 bases, and is present not only in cells but also in body fluids such as blood. Since the expression pattern of microRNA is tissue-specific, the expression pattern differs between cancer tissue and non-cancer tissue, and further, the expression pattern differs depending on the cancer type. Thus, microRNA in blood is attracting attention as it can serve as a biomarker for identifying the primary tumor focus and identifying the cancer type.
  • microRNA contained in exosomes is highly tissue-specific, and other microRNAs and dead cells that exist in the blood can be removed in the process of separating exosomes. It is expected as a biomarker that can be identified.
  • cancer diagnosis based on the number of exosomes is expected rather than microRNA analysis.
  • An ELISA Enzyme-Linked ImmunoSorbent Assay
  • ELISA is a method used when detecting and quantifying the concentration of an antibody or antigen contained in a sample, and is used for quantitative evaluation of proteins and the like. Quantitative evaluation is possible by detecting changes in absorbance at a specific wavelength. This method has been reported to be applicable to exosomes, and it uses a highly specific antigen-antibody reaction for proteins expressed on the exosome surface to detect color development and luminescence based on enzymatic reactions. Shows that the amount of exosomes in a sample can be measured (Patent Document 1).
  • Patent Document 2 As another known exosome extraction method, there is a method in which a specimen is processed by an ultracentrifuge and extracted (Patent Document 2).
  • Patent Document 1 The technique using ELISA and the antigen-antibody reaction of Patent Document 1 can only measure exosomes having matching antigens, and cannot perform quantitative evaluation reflecting all exosomes contained in the sample.
  • the exosome measuring method includes a step of mixing a metal ion solution with a specimen containing exosome to form a mixed solution, a step of measuring an index representing the amount of metal fine particles aggregated in the mixed solution, and a measured index. And evaluating the exosome concentration based on.
  • the index absorbance of the mixed solution, scattered light generated when the mixed solution is irradiated with light, and the like can be used.
  • the specimen can be serum and plasma obtained by centrifuging a blood sample.
  • the metal ion can be a gold ion.
  • the exosome extraction method includes a step of mixing a gold ion solution into a sample containing exosome to form a mixed solution, a step of centrifuging and precipitating gold fine particles aggregated in the mixed solution, and removing the supernatant. It includes a step of dropping sodium thiosulfate, a step of centrifuging again to precipitate gold fine particles, and a step of recovering the supernatant and extracting exosomes.
  • the present invention makes it possible to measure the total amount of exosomes in a specimen. In addition, it is possible to extract all exosomes suspended in the specimen in a short time without using an antigen-antibody reaction or ultracentrifugation.
  • the schematic block diagram of an exosome measuring apparatus The flowchart of exosome amount evaluation in a sample and exosome extraction.
  • exosomes having a lipid bilayer membrane and metal ions are adsorbed, and the metal ions aggregate to form metal fine particles.
  • the amount of exosome can be quantified by measuring the metal fine particles through a change in absorbance by localized surface plasmon resonance. Specifically, this localized surface plasmon resonance changes the wavelength and absorbance at which a peak occurs depending on the size, shape, and amount of the metal fine particles.
  • the amount of the metal fine particles is measured by measuring the absorbance of the exosomes on which the metal fine particles have been adsorbed with a spectroscope after a certain period of time, and the amount of exosomes in the specimen is quantified.
  • exosomes having a lipid bilayer and gold ions are adsorbed, and gold ions aggregate to form gold fine particles.
  • Exosomes with gold fine particles with a size of 100 nm or more attached can be settled by centrifuging for about 5 minutes with a normal centrifuge ( ⁇ 10,000 rpm). After removing the supernatant, an aqueous solution of sodium thiosulfate is added dropwise. Since the binding force of gold is smaller than that of sodium thiosulfate and gold, exosomes and gold are separated. The solution in which exosome and gold-sodium thiosulfate are mixed is centrifuged again, and the exosome is extracted by collecting the supernatant.
  • FIG. 1 is a schematic configuration diagram of the exosome measuring apparatus according to the present embodiment.
  • the exosome measuring apparatus according to the present embodiment measures the absorbance of a sample as an index representing the amount of gold fine particles aggregated by exosome, and quantifies the amount of exosome based on the change in absorbance.
  • the absorbance represents the intensity ratio between incident light and transmitted light.
  • the exosome measuring apparatus of the present embodiment has a light source 1 that irradiates irradiation light 4 to a cell 2 that contains a specimen, a detector 3 that detects light that has passed through the cell 2, and a processing unit 5, and has a predetermined absorbance. Acquired every time, and the processing unit 5 stores and analyzes the data.
  • the processing unit 5 may be configured as a control module or a computer that executes a processing program.
  • FIG. 2 is a diagram showing a flow of quantitatively evaluating the amount of exosomes in a specimen in which exosomes are suspended, and then extracting exosomes in the specimen.
  • a sample containing exosomes is pretreated to remove substances having a membrane structure other than exosomes, and a specimen containing only exosomes as a substance having a membrane structure is prepared (S11).
  • a metal ion solution is mixed into the cell 2 in which the specimen prepared in this way is placed to obtain a mixed solution (S12).
  • the cell 2 is irradiated with light from the light source 1, the transmitted light spectrum of the mixed solution is detected by the detector 3, and the absorbance is measured (S 13).
  • the measurement result of the absorbance is stored in the processing unit 5, and the absorbance peak described later is calculated (S14).
  • the steps of absorbance measurement and absorbance peak calculation are repeated until the measurement end condition is satisfied in step S15.
  • the concentration of exosome is evaluated based on the result of calculating the absorbance peak (S16).
  • gold ions are used as the metal ions in step S12, and the sample prepared from the sample is irradiated with light having a wavelength of 400 nm to 1100 nm, and each wavelength by localized surface plasmon resonance generated by the substance in the sample is detected. The absorbance at was measured. In localized surface plasmon resonance, the absorption wavelength and absorption intensity are determined by the size, shape, molecule, etc. of the substance contained in the sample to be measured. In this example, the absorbance of the gold microparticles by the localized surface plasmon resonance is measured. It was measured.
  • the absorbance in the wavelength band from 400 nm to 900 nm was measured. As shown in FIG. 4, a point having the largest absorbance in the wavelength range from 400 nm to 900 nm is “maximum absorbance”, and a point having the smallest absorbance on the shorter wavelength side than the maximum absorbance in the wavelength range from 400 nm to 900 nm is called “minimum absorbance”. Defined. The difference between the maximum absorbance and the minimum absorbance was defined as “absorbance peak (h)”.
  • the absorbance of the specimen is acquired at an arbitrary sampling interval and stored in the processing unit 5, and the measurement is repeated for a predetermined time, for example, 20 to 30 minutes.
  • the absorbance measurement result is stored in the processing unit 5 every sampling, and the process of calculating the absorbance peak in the processing unit 5 is repeated until the condition for termination of measurement is satisfied.
  • the maximum absorbance peak (h max ) is identified from the acquired absorbance peaks, and the amount of exosome of the sample is calculated by comparing with the calibration data stored in the processing unit 5.
  • the sample for which the amount of exosome was measured is centrifuged at 10,000 rpm for 5 minutes by using a centrifuge, gold and gold-attached exosomes are allowed to settle, and the supernatant is removed with a pipette (S17). Next, sodium thiosulfate is added and mixed (S18). Next, the specimen is again centrifuged and centrifuged at 10,000 rpm for 5 minutes, and then the exosome is extracted by collecting the supernatant (S19).
  • step S11 If the following processing is performed in step S11 before step S12 on the sample for measuring the exosome concentration, the measurement accuracy is improved. Since gold ions in the gold ion solution have a property of non-specific adsorption to a structure having a membrane structure, it is preferable that the sample mixed with the gold ion solution is in a state where only exosomes are present. If the sample is human blood, a specimen with a membrane structure that contains only exosomes can be separated by centrifuging around 900G to 1000G with an ordinary centrifuge without using an ultracentrifuge. It is possible to prepare. As another method for separating membrane structural substances other than exosomes from the sample, only the exosomes may be extracted by passing the collected blood through a filtration filter of 500 ⁇ m or less.
  • FIG. 3 is a diagram showing a flow for measuring the total amount of exosomes in blood and extracting and analyzing only exosomes. Steps S21 and S22 shown in FIG. 3 are preprocessing steps corresponding to step S11 of the flow shown in FIG.
  • a blood sample collected from a human is centrifuged (S21), and serum and plasma are extracted (S22).
  • the collected blood sample contains cells such as red blood cells and white blood cells in addition to exosomes. In the case of blood collected from humans, these cells are small and about 1 ⁇ m, which can be separated by centrifuging for about several minutes with a normal centrifuge.
  • exosomes When serum and plasma are extracted by centrifugation, exosomes, water, proteins (albumin, fibrinogen, immunoglobulin), lipids, saccharides (glucose), and inorganic salts exist in the serum and plasma.
  • the exosome is the only substance having a membrane structure and a structure of about several tens of nanometers. Therefore, the concentration of exosome can be evaluated by the absorbance peak due to the size of the gold fine particles. Therefore, by performing the same processes as steps S12 to S19 shown in FIG. 2 on the specimen obtained in step S22, it is possible to measure the concentration of exosomes in blood and extract exosomes.
  • HBS-N Absorbance is measured as an index indicating the amount of gold microparticles aggregated by exosomes in solutions with different exosome amounts in buffer solutions 0.01M HEPES, 0.15M NaCl (hereinafter referred to as HBS-N).
  • a halogen lamp was used as the light source 1
  • an absorbance measurement device USB2000 (Ocean Optics Co., Ltd.) equipped with a spectroscope capable of splitting the visible light wavelength was used as the detector 3.
  • the cell 2 was made of acrylic resin.
  • the specimen used was an exosome solution in which exosomes were suspended in buffer HBS-N (pH 7.4).
  • An exosome solution having a concentration of 100% and an exosome solution diluted with HBS-N so that the concentrations of the exosome solution were 10% and 30% were prepared.
  • the gold ion solution to be mixed for each concentration sample was 1/10 of the total amount of the specimen.
  • the gold ion solution to be mixed with the exosome-suspended solution (specimen) used GoldEnhance (TM) of Nanoprobes, Sakai Inc.
  • FIG. 4 shows the results of measuring samples with different exosome solution concentrations. From this, it was found that the absorbance varies depending on the exosome solution concentration.
  • FIG. 5 shows the relationship between the exosome solution concentration and the maximum absorbance peak.
  • the measurement end condition was set as the measurement time, and the gold ion solution was mixed with the specimen, and the measurement was completed after 20 minutes. After completion of the measurement, an absorbance peak was calculated for each sampling from the obtained absorbance, and the maximum absorbance peak was taken as the maximum absorbance peak h max .
  • FIG. 6 shows an SEM observation image of the HBS-N solution in which exosomes are suspended. Since the structure of 40 nm or more in this solution is only an exosome, the structure having a diameter of about 90 nm in FIG. 6 is considered an exosome.
  • FIG. 7 is an SEM observation image of the specimen 25 minutes after mixing the gold ion solution with the HBS-N solution in which exosomes are suspended. From the image of FIG. 7, it can be determined that a bright structure having a dimension of about 300 nm is a gold fine particle, and a dark structure having a diameter of about 90 nm is an exosome. Moreover, as a result of measuring exosomes and gold fine particles existing in the visual field range other than those shown in FIG.
  • FIG. 7 shows an SEM observation image of a specimen 25 minutes after the gold ion solution was mixed with the HBS-N solution. Spherical gold fine particles with a diameter of about 50 nm at the maximum could be confirmed on the substrate. Further, gold fine particles having a size of about 300 nm to 500 nm similar to those in FIG. 7 could not be confirmed. From this, it was found from FIG. 7 and FIG. 8 that there is a difference of about 10 times in the size of the gold microparticles aggregated in the presence or absence of exosomes regardless of the treatment time of the gold ion solution.
  • the amount of exosomes can be quantified by measuring the number of gold fine particles with a size of 50 nm or more.
  • gold fine particles having a size of 50 nm or more have an absorption wavelength in a wavelength region of about 530 nm or more, the absorbance in the wavelength region of 530 nm or more is considered to represent the absorbance of the gold fine particles generated in response to exosomes.
  • the gold fine particles are grown to 100 nm or more with respect to the exosome surface, it can be sedimented by a centrifuge. Therefore, after precipitating gold and gold adsorbed exosomes with a centrifuge, the solution was exchanged with an aqueous sodium thiosulfate solution and centrifuged again. As a result, a solution in which only exosomes were suspended was extracted from the supernatant. did it. This is because the gold-exosome adsorption force is very small compared to the binding force of gold-sodium thiosulfate, so that the exosome is separated from the gold microparticles, and only the gold microparticles are settled by centrifuging again. It is thought that it was present in the supernatant without settling because of its small diameter. By extracting only exosomes, PCR and RNA analysis can be performed and used for analysis of gene information and the like possessed by exosomes.
  • the solution used for the measurement was centrifuged for 5 minutes, the supernatant was removed, and an aqueous sodium thiosulfate solution was added dropwise. Then, since exosomes and gold microparticles were separated by gold-thiol bonds, this solution was centrifuged again, and the supernatant was extracted, so that exosomes were suspended and exosomes could be extracted from the solution.
  • the process from quantitative evaluation to exosome extraction was performed as a series of operations, but the quantitative analysis method and the exosome extraction method may be performed independently.
  • the process up to the step of mixing the gold ion solution with the specimen is common.
  • quantitatively analyzing exosomes it may be performed up to a quantitative evaluation step.
  • extracting an exosome it is good to start from the centrifugation process of step S17, after arbitrary time passes, after mixing a gold ion solution.
  • FIG. 9 is a diagram showing an optical system for measuring the exosome concentration of a solution in which exosomes are suspended by scattered light. Since the Rayleigh scattering of the irradiation light 4 is generated by the gold fine particles adsorbed on the exosome and the amount of scattered light is proportional to the amount of exosomes present in the specimen, the scattered light 6 is measured as an index representing the amount of exosomes, that is, the amount of gold fine particles. In particular, it is possible to measure the exosome concentration. As shown in FIG.
  • the position of the detector 3 is preferably between 1 ° and 180 ° with respect to the optical axis of the irradiation light 4 from the light source 1 starting from the cell 2.
  • the detection accuracy is best when it is installed between 1 ° and 90 °.
  • the amount of exosomes may be calculated by irradiating a solution in which exosomes are suspended with laser light and measuring the amount of gold fine particles by detecting the backscattered light generated by the gold fine particles.
  • the amount of gold fine particles may be measured by measuring the Brownian motion of the gold fine particles with a dynamic light scattering device, and the amount of exosomes may be calculated. That is, as an index representing the amount of gold fine particles aggregated by exosomes, backscattered light or dynamic light scattering based on Brownian motion can be used in addition to absorbance.
  • a gold ion solution was used for metal modification to exosomes, but a silver ion solution may be used. This is because local fine surface plasmon resonance occurs in silver fine particles.
  • the wavelength to be measured is 200 to 1000 nm.
  • the metal ion solution can be palladium or platinum in addition to silver.
  • the wavelength range to be measured is 100 nm to 1000 nm, and the lamp used as the light source may be a mercury lamp or the like that can generate ultraviolet light.
  • Nanoprobes, Inc. GoldEnhance (TM) was used as a gold ion solution for gold modification to exosomes, but other gold ion solutions may be used. However, it is better to use a neutral gold ion solution so as not to destroy the exosome morphology.
  • a halogen lamp is used as the light source, but any light source that emits light in the vicinity of the plasmon resonance wavelength of the metal ion solution to be used may be used.
  • white light sources include halogen lamps, tungsten lamps, and xenon lamps.
  • a single wavelength light source LED or laser may be used.
  • a gold ion solution one that emits light within a range of 500 to 650 nm is preferable.
  • a centrifuge was used for the separation process of exosomes adsorbed with gold fine particles, but the following method may be used. Separation of exosomes and gold fine particles is achieved by separating exosomes and gold fine particles with sodium thiosulfate and dropping them onto a substrate with thiol termination, so that only the gold fine particles are fixed by thiol bonds, so that only exosomes can be extracted. It becomes.
  • separation using a filter is possible when the particle size of the gold fine particle exceeds 400 nm, it is separated by mixing sodium thiosulfate with a solution in which exosomes are adsorbed to the gold fine particle and passing through the filter. Also good.
  • the measurement end condition is the time after mixing the gold ion solution.
  • a predetermined threshold value may be set for the obtained absorbance, and the measurement may be terminated when the predetermined threshold is exceeded. It is also possible to set a condition that the change amount of the sex is calculated, and the measurement is terminated when the change amount is greater than or less than the predetermined change amount.
  • the maximum absorbance peak h max among the obtained absorbance peaks was used for exosome quantitative evaluation data, but the absorbance peak h after a predetermined time (for example, 10 minutes later) was used for exosome quantitative evaluation. It may be used for the data. It may also be used measuring elapsed time with the maximum absorbance peak h max data for exosomes quantitatively evaluated.
  • the wavelength-dependent slope of absorbance may be used as data for quantitative evaluation of exosomes.
  • the time change of absorbance is detected by irradiating with light of a certain wavelength, and the data obtained there, for example, stable absorbance after elapse of a predetermined time after mixing the gold ion solution, is used for quantitative evaluation of exosomes. May be used for data.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A specimen containing exosomes is mixed with a metal ion solution such as a gold ion solution to obtain a mixed solution. The mixed solution is examined for the amount of fine metal particles which have been aggregated therein, by means of absorbance, etc. The concentration of exosomes is evaluated from the amount of the aggregated fine metal particles. Meanwhile, gold ions are used as metal ions, and fine gold particles which have been aggregated in the mixed solution are sedimented by centrifuging. The supernatant is removed therefrom, and sodium thiosulfate is thereafter added dropwise to the residue. The mixture is centrifuged again to sediment the fine gold particles. The supernatant is recovered therefrom to extract the exosomes.

Description

エクソソーム測定方法及びエクソソーム抽出方法Exosome measurement method and exosome extraction method
 本発明は、サンプルに含まれるエクソソーム量を測定する方法及びサンプルからエクソソームを抽出する方法に関する。 The present invention relates to a method for measuring the amount of exosomes contained in a sample and a method for extracting exosomes from a sample.
 エクソソームは細胞外小胞(または細胞外顆粒)の一種である。小胞とは、細胞内にある膜に包まれた袋状の構造であり、細胞中の物質を貯蔵する他、細胞内外に物質を輸送するために用いられる。小胞は、脂質膜の化学的な特性上、自然に形成される構造で、ほとんどの小胞は何かしらの特化した機能を持っており、その機能は小胞内に含まれる物質によって異なる。その中でもエクソソームは様々な細胞が細胞外へと分泌する、40nmから200nmほどの小胞の総称である。エクソソームは、脂質二重膜で覆われた小胞であり、生体内で遺伝子発現抑制に重要な働きを示すマイクロRNAを内部に保持している。 Exosome is a kind of extracellular vesicle (or extracellular granule). A vesicle is a bag-like structure wrapped in a membrane inside a cell, and is used not only to store the substance in the cell but also to transport the substance into and out of the cell. Vesicles are naturally formed structures due to the chemical properties of lipid membranes. Most vesicles have some specialized function, and the function varies depending on the substance contained in the vesicle. Among them, exosome is a general term for vesicles of about 40 nm to 200 nm that are secreted by various cells. An exosome is a vesicle covered with a lipid bilayer, and retains therein a microRNA that plays an important role in suppressing gene expression in vivo.
 エクソソームの外膜は通常の細胞膜とは異なりセラミドなどの特徴的な脂質成分が含まれていることが知られている。エクソソームは100種類以上のマイクロRNA、1000種類以上のメッセンジャーRNAなどの核酸物質を内包している。エクソソームに含まれるマイクロRNAとは18から25塩基の小さなRNAであり、細胞内のみではなく血液などの体液中にも存在している。マイクロRNAの発現パターンは組織特異的であるため、がん組織と非がん組織とで発現パターンが異なり、更にはがん種によって発現パターンが異なる。そこで、血液中のマイクロRNAが、がん原発巣の特定やがん種識別のバイオマーカーになり得るとして注目されている。特にエクソソームに含まれるマイクロRNAの発現は組織特異性が高く、エクソソームを分離する工程で血液中に存在する他のマイクロRNAや死細胞などを除去できることから、エクソソームマイクロRNAが、がん種を識別できるバイオマーカーとして期待されている。また、エクソソームは癌の進行度が上がると血液中での存在数が増加するという報告があることから、マイクロRNA解析ではなくエクソソームの数そのものによるがん診断も期待されている。 It is known that the outer membrane of exosome contains characteristic lipid components such as ceramide, unlike ordinary cell membranes. Exosomes contain nucleic acid substances such as 100 kinds or more of micro RNA and 1000 kinds or more of messenger RNA. The microRNA contained in the exosome is a small RNA of 18 to 25 bases, and is present not only in cells but also in body fluids such as blood. Since the expression pattern of microRNA is tissue-specific, the expression pattern differs between cancer tissue and non-cancer tissue, and further, the expression pattern differs depending on the cancer type. Thus, microRNA in blood is attracting attention as it can serve as a biomarker for identifying the primary tumor focus and identifying the cancer type. In particular, the expression of microRNA contained in exosomes is highly tissue-specific, and other microRNAs and dead cells that exist in the blood can be removed in the process of separating exosomes. It is expected as a biomarker that can be identified. In addition, since there are reports that the number of exosomes in the blood increases as the degree of cancer progression increases, cancer diagnosis based on the number of exosomes is expected rather than microRNA analysis.
 試料中のエクソソーム量の検出方法としてELISA(Enzyme-Linked ImmunoSorbent Assay)が考えられる。ELISAは試料中に含まれる抗体あるいは抗原の濃度を検出・定量する際に用いられる方法であり、たんぱく質等の定量評価に使用される。特定波長での吸光度変化を検出することで定量評価を可能としている。この手法はエクソソームに対しても適用可能であると報告されており、エクソソーム表面に発現するたんぱく質に対して特異性の高い抗原抗体反応を利用し、酵素反応に基づく発色・発光をシグナル検出することで検体中のエクソソーム量を測定できることが示されている(特許文献1)。 An ELISA (Enzyme-Linked ImmunoSorbent Assay) can be considered as a method for detecting the amount of exosomes in a sample. ELISA is a method used when detecting and quantifying the concentration of an antibody or antigen contained in a sample, and is used for quantitative evaluation of proteins and the like. Quantitative evaluation is possible by detecting changes in absorbance at a specific wavelength. This method has been reported to be applicable to exosomes, and it uses a highly specific antigen-antibody reaction for proteins expressed on the exosome surface to detect color development and luminescence based on enzymatic reactions. Shows that the amount of exosomes in a sample can be measured (Patent Document 1).
 また、エクソソーム中のマイクロRNA解析には、溶液中に懸濁したエクソソームを分離、抽出する必要がある。この分離抽出方法として、エクソソーム表面の膜表面タンパク質(エクソソームの膜表面タンパク質としては、CD9,CD63,CD81など)に蛍光抗体を結合させ、フローサイトメーターで蛍光強度を測定し、目的細胞を識別・捕集する方法がある。この手法は、エクソソームの膜表面タンパク質を特異的に認識する抗体を用いることが必要であり、エクソソームのみを回収できる。しかしながら、現在のフローサイトメーターは大きさが200nm以上の粒子に対応しているため、サイズの小さなエクソソームを捕集することは困難である。そこでClaytonらは抗体で修飾したビーズを用いて細胞培養上清中のエクソソームを捕捉した後、フローサイトメーターでビーズごとエクソソームを捕集、解析した結果を報告している(非特許文献1)。 In addition, for microRNA analysis in exosomes, it is necessary to separate and extract exosomes suspended in a solution. As this separation and extraction method, a fluorescent antibody is bound to a membrane surface protein on the exosome surface (CD9, CD63, CD81, etc. as the exosome membrane surface protein), and the fluorescence intensity is measured with a flow cytometer to identify the target cell. There is a way to collect. This technique requires the use of an antibody that specifically recognizes the exosome membrane surface protein, and only the exosome can be recovered. However, since current flow cytometers support particles having a size of 200 nm or more, it is difficult to collect small exosomes. Therefore, Clayton et al. Reported the results of capturing and analyzing exosomes together with beads using a flow cytometer after capturing exosomes in cell culture supernatant using beads modified with antibodies (Non-patent Document 1).
 また、他に知られているエクソソームの抽出方法としては、検体を超遠心機で処理し、抽出する方法がある(特許文献2)。 As another known exosome extraction method, there is a method in which a specimen is processed by an ultracentrifuge and extracted (Patent Document 2).
特表2011-510309号公報Special table 2011-510309 gazette 特表2013-545463号公報Special table 2013-545463
 ELISAや特許文献1の抗原抗体反応を利用した手法は、合致する抗原を有するエクソソームしか測定できず、検体中に含まれている全エクソソームを反映した定量評価が出来ない。 The technique using ELISA and the antigen-antibody reaction of Patent Document 1 can only measure exosomes having matching antigens, and cannot perform quantitative evaluation reflecting all exosomes contained in the sample.
 特許文献2や非特許文献1のように検体からエクソソームを抽出する手法には、超遠心分離法と抗原抗体反応法がある。超遠心分離法は処理に最大10時間も要するため、エクソソームの抽出に膨大な時間がかかる。また、抗原抗体反応法は、抗原抗体反応したたんぱく質を有したエクソソームのみしか抽出できず、検体中に含まれるエクソソームの全数取得は出来ない。 As a method of extracting exosomes from a specimen as in Patent Document 2 and Non-Patent Document 1, there are an ultracentrifugation method and an antigen-antibody reaction method. Since the ultracentrifugation method takes up to 10 hours for the treatment, exosome extraction takes an enormous amount of time. In addition, the antigen-antibody reaction method can extract only exosomes having proteins that have undergone antigen-antibody reaction, and cannot obtain the total number of exosomes contained in a sample.
 本発明によるエクソソーム測定方法は、エクソソームを含有した検体に金属イオン溶液を混合して混合溶液とする工程と、混合溶液中に凝集した金属微粒子の量を表す指標を測定する工程と、測定した指標に基づいてエクソソーム濃度を評価する工程と、を有する。 The exosome measuring method according to the present invention includes a step of mixing a metal ion solution with a specimen containing exosome to form a mixed solution, a step of measuring an index representing the amount of metal fine particles aggregated in the mixed solution, and a measured index. And evaluating the exosome concentration based on.
 指標としては、混合溶液の吸光度、混合溶液に光照射したとき発生する散乱光などを用いることができる。 As the index, absorbance of the mixed solution, scattered light generated when the mixed solution is irradiated with light, and the like can be used.
 また、検体は血液サンプルを遠心分離して得た血清及び血漿とすることができる。 Also, the specimen can be serum and plasma obtained by centrifuging a blood sample.
 金属イオンは金イオンとすることができる。 The metal ion can be a gold ion.
 また、本発明によるエクソソーム抽出方法は、エクソソームを含有した検体に金イオン溶液を混合して混合溶液とする工程と、混合溶液に凝集した金微粒子を遠心分離し沈降させる工程と、上澄み除去後、チオ硫酸ナトリウムを滴下する工程と、再び遠心分離して金微粒子を沈降させる工程と、上澄みを回収してエクソソームを抽出する工程と、を有する。 Further, the exosome extraction method according to the present invention includes a step of mixing a gold ion solution into a sample containing exosome to form a mixed solution, a step of centrifuging and precipitating gold fine particles aggregated in the mixed solution, and removing the supernatant. It includes a step of dropping sodium thiosulfate, a step of centrifuging again to precipitate gold fine particles, and a step of recovering the supernatant and extracting exosomes.
 本発明により、検体中の全エクソソーム量の測定が可能となる。また、検体中に懸濁するエクソソームを抗原抗体反応や超遠心分離を使用せずに全数、短時間で抽出することが可能となる。 The present invention makes it possible to measure the total amount of exosomes in a specimen. In addition, it is possible to extract all exosomes suspended in the specimen in a short time without using an antigen-antibody reaction or ultracentrifugation.
 上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
エクソソーム測定装置の概略構成図。The schematic block diagram of an exosome measuring apparatus. 検体中のエクソソーム量評価及びエクソソーム抽出のフロー図。The flowchart of exosome amount evaluation in a sample and exosome extraction. 血液中のエクソソーム量評価及びエクソソーム抽出のフロー図。The flow chart of exosome amount evaluation in blood and exosome extraction. エクソソームを懸濁したHBS-N溶液における吸光度の波長依存性を示す図。The figure which shows the wavelength dependence of the light absorbency in the HBS-N solution which suspended the exosome. エクソソーム溶液濃度と最大吸光度ピークの関係を示す図。The figure which shows the relationship between an exosome solution concentration and the maximum absorbance peak. エクソソームを懸濁したHBS-N溶液のSEM観察像。SEM observation image of HBS-N solution in which exosomes are suspended. エクソソームを懸濁したHBS-N溶液に金イオン溶液を混合した検体のSEM観察像。The SEM observation image of the test substance which mixed the gold ion solution with the HBS-N solution which suspended the exosome. HBS-N溶液に金イオン溶液を混合した検体のSEM観察像。An SEM observation image of a specimen in which a gold ion solution is mixed with an HBS-N solution. 散乱光によってエクソソーム濃度を測定する光学系を示す図。The figure which shows the optical system which measures an exosome density | concentration by scattered light. エクソソームを懸濁した緩衝液HBS-N溶液における単波長の吸光度の時間依存性を示す図。The figure which shows the time dependence of the light absorbency of the single wavelength in the buffer solution HBS-N solution which suspended the exosome.
 エクソソームが懸濁された水溶液中に金イオン水溶液等の金属イオン溶液を混合すると、脂質二重膜を有するエクソソームと金属イオンが吸着し、金属イオンが凝集して金属微粒子となる。この金属微粒子を局在型表面プラズモン共鳴による吸光度変化を介して測定することでエクソソーム量の定量化が可能となる。具体的には、この局在型表面プラズモン共鳴は金属微粒子のサイズや形状、量によってピークが立つ波長や吸光度が変化する。この現象を利用して、金属微粒子が吸着したエクソソームを一定時間経過後に分光器で吸光度測定するなどして金属微粒子の量を測定し、検体中のエクソソーム量を定量化する。 When a metal ion solution such as a gold ion aqueous solution is mixed in an aqueous solution in which exosomes are suspended, exosomes having a lipid bilayer membrane and metal ions are adsorbed, and the metal ions aggregate to form metal fine particles. The amount of exosome can be quantified by measuring the metal fine particles through a change in absorbance by localized surface plasmon resonance. Specifically, this localized surface plasmon resonance changes the wavelength and absorbance at which a peak occurs depending on the size, shape, and amount of the metal fine particles. Using this phenomenon, the amount of the metal fine particles is measured by measuring the absorbance of the exosomes on which the metal fine particles have been adsorbed with a spectroscope after a certain period of time, and the amount of exosomes in the specimen is quantified.
 また、エクソソームが懸濁された水溶液中に金イオン水溶液を混合すると、脂質二重膜を有するエクソソームと金イオンが吸着し、金イオンが凝集して金微粒子となる。寸法が100nm以上の金微粒子が付着したエクソソームは通常の遠心分離機(<10,000rpm)で5分間程度遠心処理することで沈降可能であり、上澄み除去後にチオ硫酸ナトリウム水溶液を滴下すると、エクソソーム-金の結合力はチオ硫酸ナトリウムと金の結合力と比較して小さいため、エクソソームと金は分離する。このエクソソームと金-チオ硫酸ナトリウムが混合した溶液を再び遠心分離し、上澄みを回収することでエクソソームを抽出する。 In addition, when a gold ion aqueous solution is mixed in an aqueous solution in which exosomes are suspended, exosomes having a lipid bilayer and gold ions are adsorbed, and gold ions aggregate to form gold fine particles. Exosomes with gold fine particles with a size of 100 nm or more attached can be settled by centrifuging for about 5 minutes with a normal centrifuge (<10,000 rpm). After removing the supernatant, an aqueous solution of sodium thiosulfate is added dropwise. Since the binding force of gold is smaller than that of sodium thiosulfate and gold, exosomes and gold are separated. The solution in which exosome and gold-sodium thiosulfate are mixed is centrifuged again, and the exosome is extracted by collecting the supernatant.
 以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施例では、金イオンの非特異吸着性を利用した検体中のエクソソーム量の定量法、及び、エクソソームを単離して抽出するための基本構成、濃度判定・抽出方法について説明する。 In this example, a method for quantifying the amount of exosomes in a specimen using the nonspecific adsorption property of gold ions, a basic configuration for isolating and extracting exosomes, and a concentration determination / extraction method will be described.
[装置構成・測定原理]
 図1は、本実施例のエクソソーム測定装置の概略構成図である。本実施例のエクソソーム測定装置は、エクソソームにより凝集した金微粒子の量を表す指標として検体の吸光度を測定し、その吸光度変化に基づいてエクソソーム量を定量する。本実施例で、吸光度とは入射光と透過光の強度比を表す。
[Device configuration and measurement principle]
FIG. 1 is a schematic configuration diagram of the exosome measuring apparatus according to the present embodiment. The exosome measuring apparatus according to the present embodiment measures the absorbance of a sample as an index representing the amount of gold fine particles aggregated by exosome, and quantifies the amount of exosome based on the change in absorbance. In this embodiment, the absorbance represents the intensity ratio between incident light and transmitted light.
 本実施例のエクソソーム測定装置は、検体を収めるセル2に対して照射光4を照射する光源1、セル2を通過した光を検出する検出器3及び処理部5を有し、吸光度を所定の時間ごとに取得し、処理部5でデータを保存、解析する。処理部5は、制御モジュールとして構成しても良いし、処理プログラムを実行するコンピュータとして構成しても良い。 The exosome measuring apparatus of the present embodiment has a light source 1 that irradiates irradiation light 4 to a cell 2 that contains a specimen, a detector 3 that detects light that has passed through the cell 2, and a processing unit 5, and has a predetermined absorbance. Acquired every time, and the processing unit 5 stores and analyzes the data. The processing unit 5 may be configured as a control module or a computer that executes a processing program.
[測定手法]
 図2は、エクソソームが懸濁された検体のエクソソーム量を定量評価し、その後、検体中のエクソソームを抽出するフローを示す図である。
[Measurement method]
FIG. 2 is a diagram showing a flow of quantitatively evaluating the amount of exosomes in a specimen in which exosomes are suspended, and then extracting exosomes in the specimen.
 最初に、エクソソームを含むサンプルを前処理してエクソソーム以外の膜構造を有する物質を除去し、膜構造を有する物質としてエクソソームのみが含まれる検体を調製する(S11)。次に、こうして調製した検体が入れられたセル2に金属イオン溶液を混合し混合溶液とする(S12)。その後、セル2に光源1から光照射し、検出器3で混合溶液の透過光スペクトルを検出して吸光度測定を行う(S13)。吸光度の測定結果を処理部5に保存し、後述する吸光度ピークの算出を行う(S14)。この吸光度測定と吸光度ピーク算出の工程を、ステップS15で測定終了条件が満たされるまで反復実行する。その後、吸光度ピーク算出の結果に基づいてエクソソームの濃度評価を行う(S16)。 First, a sample containing exosomes is pretreated to remove substances having a membrane structure other than exosomes, and a specimen containing only exosomes as a substance having a membrane structure is prepared (S11). Next, a metal ion solution is mixed into the cell 2 in which the specimen prepared in this way is placed to obtain a mixed solution (S12). Thereafter, the cell 2 is irradiated with light from the light source 1, the transmitted light spectrum of the mixed solution is detected by the detector 3, and the absorbance is measured (S 13). The measurement result of the absorbance is stored in the processing unit 5, and the absorbance peak described later is calculated (S14). The steps of absorbance measurement and absorbance peak calculation are repeated until the measurement end condition is satisfied in step S15. Thereafter, the concentration of exosome is evaluated based on the result of calculating the absorbance peak (S16).
 本実施例では、ステップS12の金属イオンとして金イオンを用い、サンプルから調製した検体に対して波長400nmから1100nmの光を照射して、検体内の物質により生じる局在型表面プラズモン共鳴による各波長での吸光度を測定した。局在型表面プラズモン共鳴は、計測する検体内に含まれる物質のサイズや形状、分子等によって吸光波長や吸収強度が決まっており、本実施例では金微粒子の局在型表面プラズモン共鳴による吸光度を測定した。 In this example, gold ions are used as the metal ions in step S12, and the sample prepared from the sample is irradiated with light having a wavelength of 400 nm to 1100 nm, and each wavelength by localized surface plasmon resonance generated by the substance in the sample is detected. The absorbance at was measured. In localized surface plasmon resonance, the absorption wavelength and absorption intensity are determined by the size, shape, molecule, etc. of the substance contained in the sample to be measured. In this example, the absorbance of the gold microparticles by the localized surface plasmon resonance is measured. It was measured.
 ステップS13の吸光度測定では、400nmから900nmの波長帯における吸光度を測定した。図4に示すように、400nmから900nmの波長域で吸光度が最も大きい点を“最大吸光度”、400nmから900nmの波長域で最大吸光度より短波長側で最も吸光度が小さい点を“最小吸光度”と定義した。また、この最大吸光度と最小吸光度の差を“吸光度ピーク(h)”と定義した。 In the absorbance measurement in step S13, the absorbance in the wavelength band from 400 nm to 900 nm was measured. As shown in FIG. 4, a point having the largest absorbance in the wavelength range from 400 nm to 900 nm is “maximum absorbance”, and a point having the smallest absorbance on the shorter wavelength side than the maximum absorbance in the wavelength range from 400 nm to 900 nm is called “minimum absorbance”. Defined. The difference between the maximum absorbance and the minimum absorbance was defined as “absorbance peak (h)”.
 検体の吸光度を任意のサンプリング間隔で取得して処理部5に保存し、所定の時間、例えば20分~30分にわたって測定を反復する。測定中は1サンプリング毎に吸光度の測定結果を処理部5に保存し、処理部5で吸光度ピークを算出する工程を測定終了の条件が満たされるまで繰り返す。測定終了後、ステップS16において、取得した吸光度ピークの中で最大吸光度ピーク(hmax)を特定し、処理部5に記憶されている校正用データと照合して検体のエクソソーム量を算出する。 The absorbance of the specimen is acquired at an arbitrary sampling interval and stored in the processing unit 5, and the measurement is repeated for a predetermined time, for example, 20 to 30 minutes. During the measurement, the absorbance measurement result is stored in the processing unit 5 every sampling, and the process of calculating the absorbance peak in the processing unit 5 is repeated until the condition for termination of measurement is satisfied. After the measurement is completed, in step S16, the maximum absorbance peak (h max ) is identified from the acquired absorbance peaks, and the amount of exosome of the sample is calculated by comparing with the calibration data stored in the processing unit 5.
 次に、エクソソーム量を計測した検体よりエクソソームを単離して抽出する工程について説明する。エクソソーム量を計測した検体を遠心分離機にかけて10000rpmで5分間遠心処理し、金及び金が付着したエクソソームを沈降させ、上澄みをピペットで除去する(S17)。次に、チオ硫酸ナトリウムを入れ混合する(S18)。次に、検体を再度遠心分離機にかけ10000rpmで5分間遠心処理した後、上澄みを回収することでエクソソームを抽出する(S19)。 Next, the process of isolating and extracting exosomes from a sample whose exosome amount has been measured will be described. The sample for which the amount of exosome was measured is centrifuged at 10,000 rpm for 5 minutes by using a centrifuge, gold and gold-attached exosomes are allowed to settle, and the supernatant is removed with a pipette (S17). Next, sodium thiosulfate is added and mixed (S18). Next, the specimen is again centrifuged and centrifuged at 10,000 rpm for 5 minutes, and then the exosome is extracted by collecting the supernatant (S19).
 エクソソーム濃度を測定するサンプルに対して、ステップS12の前にステップS11で以下の処理を行うと測定精度が向上する。金イオン溶液中の金イオンは膜構造を有する構造体に対して非特異吸着する性質を持つため、金イオン溶液を混合する検体はエクソソームのみが存在する状態にするのが好ましい。サンプルがヒト血液の場合には、超遠心分離機を使わずに通常の遠心分離機で900G~1000G程度の遠心を行うことで血小板や赤血球を分離でき、膜構造がエクソソームのみしか存在しない検体を調製することが可能である。サンプルからエクソソーム以外の膜構造物質を分離する方法として他に、採取した血液を500μm以下のろ過フィルタに通すことでエクソソームのみ抽出してもいい。 If the following processing is performed in step S11 before step S12 on the sample for measuring the exosome concentration, the measurement accuracy is improved. Since gold ions in the gold ion solution have a property of non-specific adsorption to a structure having a membrane structure, it is preferable that the sample mixed with the gold ion solution is in a state where only exosomes are present. If the sample is human blood, a specimen with a membrane structure that contains only exosomes can be separated by centrifuging around 900G to 1000G with an ordinary centrifuge without using an ultracentrifuge. It is possible to prepare. As another method for separating membrane structural substances other than exosomes from the sample, only the exosomes may be extracted by passing the collected blood through a filtration filter of 500 μm or less.
 図3は、血液中のエクソソーム総量を測定し、エクソソームのみ抽出、解析するためのフローを示す図である。図3に示したステップS21及びステップS22は、図2に示したフローのステップS11に相当する前処理工程である。図3に示すように、ヒトから採取した血液サンプルを遠心分離器にかけ(S21)、血清及び血漿を抽出する(S22)。採取した血液サンプル内にはエクソソームの他に赤血球や白血球等の細胞が含まれている。ヒトから採取した血液の場合、これらの細胞は小さいもので約1μmであり、これは通常の遠心分離機で数分程度遠心処理することで分離可能である。 FIG. 3 is a diagram showing a flow for measuring the total amount of exosomes in blood and extracting and analyzing only exosomes. Steps S21 and S22 shown in FIG. 3 are preprocessing steps corresponding to step S11 of the flow shown in FIG. As shown in FIG. 3, a blood sample collected from a human is centrifuged (S21), and serum and plasma are extracted (S22). The collected blood sample contains cells such as red blood cells and white blood cells in addition to exosomes. In the case of blood collected from humans, these cells are small and about 1 μm, which can be separated by centrifuging for about several minutes with a normal centrifuge.
 遠心分離にて、血清及び血漿を抽出すると、血清及び血漿の中にはエクソソームと水・蛋白質(アルブミン、フィブリノーゲン、免疫グロブリン)・脂質・糖類(グルコース)・無機塩類が存在する。この中で膜構造を有し、かつ、数十nm程度の構造体を有する物質はエクソソームのみであるため、金微粒子のサイズによる吸光度ピークによりエクソソームの濃度評価が可能である。従って、ステップS22によって得た検体に対して、図2に示したステップS12~S19と同様の工程を実行することにより、血液中のエクソソームの濃度測定及びエクソソームの抽出が可能となる。 When serum and plasma are extracted by centrifugation, exosomes, water, proteins (albumin, fibrinogen, immunoglobulin), lipids, saccharides (glucose), and inorganic salts exist in the serum and plasma. Among them, the exosome is the only substance having a membrane structure and a structure of about several tens of nanometers. Therefore, the concentration of exosome can be evaluated by the absorbance peak due to the size of the gold fine particles. Therefore, by performing the same processes as steps S12 to S19 shown in FIG. 2 on the specimen obtained in step S22, it is possible to measure the concentration of exosomes in blood and extract exosomes.
[検証実験]
 図2に示したフローに基づいて、HBS-N中のエクソソーム量を測定し、エクソソームを抽出する実験を行った。
[Verification experiment]
Based on the flow shown in FIG. 2, the amount of exosomes in HBS-N was measured, and an experiment was conducted to extract exosomes.
 緩衝液0.01M HEPES, 0.15M NaCl(以下、HBS-Nという)中のエクソソーム量が異なる溶液で、エクソソームによって凝集した金微粒子の量を表す指標として吸光度を測定し、エクソソーム量の違いによる吸光度ピークの変化を評価した。本実施例では、光源1としてハロゲンランプを、検出器3には可視光波長を分光可能な分光器が搭載された吸光度測定装置USB2000((株)オーシャンオプティクス)を使用した。また、セル2はアクリル樹脂製のものを使用した。 Absorbance is measured as an index indicating the amount of gold microparticles aggregated by exosomes in solutions with different exosome amounts in buffer solutions 0.01M HEPES, 0.15M NaCl (hereinafter referred to as HBS-N). Was evaluated for changes. In this example, a halogen lamp was used as the light source 1, and an absorbance measurement device USB2000 (Ocean Optics Co., Ltd.) equipped with a spectroscope capable of splitting the visible light wavelength was used as the detector 3. The cell 2 was made of acrylic resin.
 使用した検体は、緩衝液HBS-N(pH7.4)中にエクソソームを懸濁したエクソソーム溶液である。エクソソーム溶液の濃度が100%のものと、エクソソーム溶液の濃度がそれぞれ10%,30%になるようHBS-Nで希釈したものを用意した。各濃度のサンプルに対して混合させる金イオン溶液は、検体総量の1/10の量とした。また、エクソソーム懸濁された液(検体)に混合させる金イオン溶液はNanoprobes, Inc.のGoldEnhance(TM)を使用した。 The specimen used was an exosome solution in which exosomes were suspended in buffer HBS-N (pH 7.4). An exosome solution having a concentration of 100% and an exosome solution diluted with HBS-N so that the concentrations of the exosome solution were 10% and 30% were prepared. The gold ion solution to be mixed for each concentration sample was 1/10 of the total amount of the specimen. The gold ion solution to be mixed with the exosome-suspended solution (specimen) used GoldEnhance (TM) of Nanoprobes, Sakai Inc.
 エクソソーム溶液濃度が10%,30%,100%の検体を400μリットル用意し、検体に対してそれぞれ40μリットルの金イオン溶液を混合、検体をセルに入れ、図1に示したエクソソーム測定装置に設置して吸光度測定を行った。図4に、エクソソーム溶液濃度が異なる検体を測定した結果を示す。これより、エクソソーム溶液濃度によって吸光度に違いがあることが分かった。図5に、エクソソーム溶液濃度と最大吸光度ピークの関係を示す。また、本実施例では測定終了条件を測定時間として、検体に金イオン溶液を混合して20分経過後に測定を終了した。測定終了後、得られた吸光度から1サンプリング毎に吸光度ピークを算出し、その中で最大の吸光度ピークを最大吸光度ピークhmaxとした。 Prepare 400 μL of specimens with 10%, 30%, and 100% exosome solution concentration, mix 40 μL of gold ion solution with each specimen, put the specimen into the cell, and place it in the exosome measuring device shown in FIG. Then, the absorbance was measured. FIG. 4 shows the results of measuring samples with different exosome solution concentrations. From this, it was found that the absorbance varies depending on the exosome solution concentration. FIG. 5 shows the relationship between the exosome solution concentration and the maximum absorbance peak. In this example, the measurement end condition was set as the measurement time, and the gold ion solution was mixed with the specimen, and the measurement was completed after 20 minutes. After completion of the measurement, an absorbance peak was calculated for each sampling from the obtained absorbance, and the maximum absorbance peak was taken as the maximum absorbance peak h max .
 この結果より、エクソソーム量によって最大吸光度ピークhmaxに違いがあることが分かった。よって、最大吸光度ピークhmaxから検体中のエクソソーム量を算出可能であることを確認した。 From this result, it was found that there was a difference in the maximum absorbance peak h max depending on the amount of exosome. Therefore, it was confirmed that the amount of exosome in the sample can be calculated from the maximum absorbance peak h max .
 金イオンのエクソソームへの非特異吸着性を確認するため、以下の3つの検体を用意した。第1にHBS-N溶液にエクソソームを懸濁した検体、第2に、エクソソームを懸濁したHBS-N溶液に金イオン溶液混合後25分経過した検体、第3に、HBS-N溶液に金イオン溶液混合後25分経過した検体である。それぞれの検体をSi基板上に滴下して、乾燥後に走査型電顕微鏡(SEM)で観察した。図6、図7、図8にSEMによる観察結果を示す。SEM観察には、重元素である金はコントラストが高く、軽元素で出来ているエクソソームはコントラストが低くなる観察方法を適用した。 In order to confirm the nonspecific adsorption of gold ions to exosomes, the following three specimens were prepared. First, a sample in which exosomes are suspended in an HBS-N solution, second, a sample that has passed 25 minutes after mixing a gold ion solution in an HBS-N solution in which exosomes are suspended, and third, gold in an HBS-N solution This is a sample that has passed 25 minutes after mixing the ionic solution. Each specimen was dropped on a Si substrate, dried, and observed with a scanning electron microscope (SEM). The observation results by SEM are shown in FIGS. For SEM observation, an observation method was applied in which gold, which is a heavy element, has a high contrast, and exosomes made of a light element have a low contrast.
 図6は、エクソソームを懸濁したHBS-N溶液のSEM観察像を示す。この溶液中にある40nm以上の構造体はエクソソームのみであることから、図6中の直径90nm程度の構造体はエクソソームと考えられる。図7は、エクソソームを懸濁したHBS-N溶液に金イオン溶液を混合後25分経過した検体のSEM観察像である。図7の画像から、寸法300nm程度の明るい構造体は金微粒子、直径90nm程度の暗い構造体はエクソソームと判断できる。また、図7に示した以外の視野範囲に存在するエクソソーム及び金微粒子を測定した結果、300nm以上のサイズになった金凝集体にはすべてエクソソームが付着していることを確認した。これより、図6と図7の結果から、エクソソーム表面に対して金イオンが凝集し、金微粒子を形成していることが分かる。図8は、HBS-N溶液に金イオン溶液を混合後25分経過した検体のSEM観察像を示す。基板上には最大で直径50nm程度の球状の金微粒子が確認できた。また、図7と同程度の寸法300nmから500nmの金微粒子は確認できなかった。これより、図7と図8から、金イオン溶液の処理時間によらず、エクソソーム有無で凝集する金微粒子のサイズに10倍程度の違いがあることが分かった。 FIG. 6 shows an SEM observation image of the HBS-N solution in which exosomes are suspended. Since the structure of 40 nm or more in this solution is only an exosome, the structure having a diameter of about 90 nm in FIG. 6 is considered an exosome. FIG. 7 is an SEM observation image of the specimen 25 minutes after mixing the gold ion solution with the HBS-N solution in which exosomes are suspended. From the image of FIG. 7, it can be determined that a bright structure having a dimension of about 300 nm is a gold fine particle, and a dark structure having a diameter of about 90 nm is an exosome. Moreover, as a result of measuring exosomes and gold fine particles existing in the visual field range other than those shown in FIG. 7, it was confirmed that exosomes were attached to all gold aggregates having a size of 300 nm or more. From this, it can be seen from the results of FIGS. 6 and 7 that gold ions aggregate on the exosome surface to form gold fine particles. FIG. 8 shows an SEM observation image of a specimen 25 minutes after the gold ion solution was mixed with the HBS-N solution. Spherical gold fine particles with a diameter of about 50 nm at the maximum could be confirmed on the substrate. Further, gold fine particles having a size of about 300 nm to 500 nm similar to those in FIG. 7 could not be confirmed. From this, it was found from FIG. 7 and FIG. 8 that there is a difference of about 10 times in the size of the gold microparticles aggregated in the presence or absence of exosomes regardless of the treatment time of the gold ion solution.
 以上のことから、寸法50nm以上の金微粒子はエクソソームが含まれていないと発生しないため、寸法50nm以上の金微粒子の数を測定することでエクソソーム量の定量化が可能となる。また、寸法50nm以上の金微粒子は、約530nm以上の波長域に吸収波長をもつため、波長域530nm以上の吸光度はエクソソームに反応して発生する金微粒子の吸光度を表していると考えられる。 From the above, since gold fine particles with a size of 50 nm or more do not occur unless exosomes are contained, the amount of exosomes can be quantified by measuring the number of gold fine particles with a size of 50 nm or more. In addition, since gold fine particles having a size of 50 nm or more have an absorption wavelength in a wavelength region of about 530 nm or more, the absorbance in the wavelength region of 530 nm or more is considered to represent the absorbance of the gold fine particles generated in response to exosomes.
 また、このときエクソソーム表面に対して金微粒子が100nm以上に成長しているため、遠心分離機で沈降可能である。そこで、遠心分離機で金と金が吸着したエクソソームを沈降させたのちに、溶液をチオ硫酸ナトリウム水溶液に交換し、再度遠心分離機にかけた結果、上澄みからエクソソームのみが懸濁された溶液を抽出できた。これは金-チオ硫酸ナトリウムの結合力と比較して金-エクソソームの吸着力はごく小さいため、金微粒子からエクソソームが分離し、再び遠心分離処理を行うことで金微粒子のみが沈降、エクソソームは粒径が小さいため沈降せずに上澄み内に存在していたためと考えられる。エクソソームのみを抽出することで、PCRやRNA解析を行い、エクソソームが有する遺伝子情報等の解析に使用できる。 Also, at this time, since the gold fine particles are grown to 100 nm or more with respect to the exosome surface, it can be sedimented by a centrifuge. Therefore, after precipitating gold and gold adsorbed exosomes with a centrifuge, the solution was exchanged with an aqueous sodium thiosulfate solution and centrifuged again. As a result, a solution in which only exosomes were suspended was extracted from the supernatant. did it. This is because the gold-exosome adsorption force is very small compared to the binding force of gold-sodium thiosulfate, so that the exosome is separated from the gold microparticles, and only the gold microparticles are settled by centrifuging again. It is thought that it was present in the supernatant without settling because of its small diameter. By extracting only exosomes, PCR and RNA analysis can be performed and used for analysis of gene information and the like possessed by exosomes.
 以上示したように、エクソソームが懸濁された溶液中に、金イオン溶液を混合することで、エクソソームに金イオンが吸着、凝集し金微粒子となるため、この金微粒子の量を表す指標として吸光度を測定した。その結果、金微粒子が吸着したエクソソームを一定時間経過後に分光器で吸光度測定し、吸光度ピークに基づいて検体中のエクソソーム量の定量化ができた。 As shown above, by mixing a gold ion solution in a solution in which exosomes are suspended, gold ions are adsorbed and aggregated on exosomes to form gold fine particles. Was measured. As a result, the exosome adsorbed with the gold fine particles was measured for absorbance with a spectroscope after a lapse of time, and the amount of exosome in the sample could be quantified based on the absorbance peak.
 また、その測定に使用した溶液に遠心分離処理を5分間実施後、上澄みを除去しチオ硫酸ナトリウム水溶液を滴下した。すると、金-チオール結合によりエクソソームと金微粒子は分離するため、この溶液を再び遠心分離し、上澄みを抽出することで、エクソソームが懸濁されて溶液中からエクソソームを抽出できた。 The solution used for the measurement was centrifuged for 5 minutes, the supernatant was removed, and an aqueous sodium thiosulfate solution was added dropwise. Then, since exosomes and gold microparticles were separated by gold-thiol bonds, this solution was centrifuged again, and the supernatant was extracted, so that exosomes were suspended and exosomes could be extracted from the solution.
 本実施例では、定量評価からエクソソーム抽出までを一連の作業として行ったが、定量解析方法とエクソソームの抽出方法は独立して行われても良い。その場合、検体に対して金イオン溶液を混合する工程までは共通である。その後、エクソソームを定量解析する場合は定量評価の工程まで行えば良い。また、エクソソームを抽出する場合には、金イオン溶液を混合後、任意の時間が経過してからステップS17の遠心分離の工程から始めると良い。 In this example, the process from quantitative evaluation to exosome extraction was performed as a series of operations, but the quantitative analysis method and the exosome extraction method may be performed independently. In this case, the process up to the step of mixing the gold ion solution with the specimen is common. Thereafter, when quantitatively analyzing exosomes, it may be performed up to a quantitative evaluation step. Moreover, when extracting an exosome, it is good to start from the centrifugation process of step S17, after arbitrary time passes, after mixing a gold ion solution.
 本実施例では、エクソソームが懸濁した溶液の吸光度測定において、セルを透過した光を検出したが、検出する光はセル内に存在する物質により散乱した散乱光でも構わない。図9は、散乱光でエクソソームが懸濁した溶液のエクソソーム濃度を測定する光学系を示す図である。エクソソームに吸着した金微粒子により照射光4のレーリー散乱が発生し、その散乱光量は検体中に存在するエクソソーム量に比例するため、エクソソーム量すなわち金微粒子の量を表す指標として散乱光6を測定することでもエクソソーム濃度を測定することが可能である。図9に示すように、検出器3の位置は、セル2を起点として、光源1からの照射光4の光軸に対して1°~180°の間にあることが好ましい。特に、1°~90°の間に設置すると検出正確性が最も良い。 In this example, in the absorbance measurement of the solution in which the exosome is suspended, the light transmitted through the cell is detected. However, the detected light may be scattered light scattered by a substance present in the cell. FIG. 9 is a diagram showing an optical system for measuring the exosome concentration of a solution in which exosomes are suspended by scattered light. Since the Rayleigh scattering of the irradiation light 4 is generated by the gold fine particles adsorbed on the exosome and the amount of scattered light is proportional to the amount of exosomes present in the specimen, the scattered light 6 is measured as an index representing the amount of exosomes, that is, the amount of gold fine particles. In particular, it is possible to measure the exosome concentration. As shown in FIG. 9, the position of the detector 3 is preferably between 1 ° and 180 ° with respect to the optical axis of the irradiation light 4 from the light source 1 starting from the cell 2. In particular, the detection accuracy is best when it is installed between 1 ° and 90 °.
 本実施例では、エクソソーム量の定量評価にあたり、エクソソームに付着した金微粒子の局在型表面プラズモン共鳴を利用し定量評価したが、以下の方法でも良い。エクソソームが懸濁した溶液にレーザー光を照射し、金微粒子によって発生する後方散乱光を検出することで金微粒子の量を測定し、エクソソーム量を算出しても良い。また、金微粒子のブラウン運動を動的光散乱装置で測定することで、金微粒子の量を測定し、エクソソーム量を算出しても良い。すなわち、エクソソームによって凝集した金微粒子の量を表す指標としては、吸光度の他に、後方散乱光やブラウン運動に基づく動的光散乱を利用することもできる。 In this example, for quantitative evaluation of the amount of exosome, quantitative evaluation was performed using localized surface plasmon resonance of gold fine particles attached to the exosome, but the following method may be used. The amount of exosomes may be calculated by irradiating a solution in which exosomes are suspended with laser light and measuring the amount of gold fine particles by detecting the backscattered light generated by the gold fine particles. Alternatively, the amount of gold fine particles may be measured by measuring the Brownian motion of the gold fine particles with a dynamic light scattering device, and the amount of exosomes may be calculated. That is, as an index representing the amount of gold fine particles aggregated by exosomes, backscattered light or dynamic light scattering based on Brownian motion can be used in addition to absorbance.
 本実施例では、エクソソームへの金属修飾に金イオン溶液を使用したが、銀イオン溶液でも構わない。これは銀微粒子も局在型表面プラズモン共鳴が発生するためである。また、このとき銀微粒子は吸光波長が400nm付近に存在するため、測定する波長は200~1000nmとする。また、金属イオン溶液は銀以外にもパラジウムや白金でも可能である。この場合には、低波長側に吸光度ピークがあるため測定する波長域は100nmから1000nmとし、光源に使用するランプは紫外光を発生可能な水銀ランプ等を利用すると良い。 In this example, a gold ion solution was used for metal modification to exosomes, but a silver ion solution may be used. This is because local fine surface plasmon resonance occurs in silver fine particles. At this time, since the silver fine particles have an absorption wavelength in the vicinity of 400 nm, the wavelength to be measured is 200 to 1000 nm. The metal ion solution can be palladium or platinum in addition to silver. In this case, since there is an absorbance peak on the low wavelength side, the wavelength range to be measured is 100 nm to 1000 nm, and the lamp used as the light source may be a mercury lamp or the like that can generate ultraviolet light.
 本実施例では、エクソソームへの金修飾用の金イオン溶液としてNanoprobes, Inc.のGoldEnhance(TM)を使用したが、他の金イオン溶液でも良い。ただし、エクソソームの形態を破壊しないよう金イオン溶液は中性のものを使用したほうが良い。 In this example, Nanoprobes, Inc. GoldEnhance (TM) was used as a gold ion solution for gold modification to exosomes, but other gold ion solutions may be used. However, it is better to use a neutral gold ion solution so as not to destroy the exosome morphology.
 本実施例では、光源にハロゲンランプを使用したが、使用する金属イオン溶液のプラズモン共鳴波長近傍で発光する光源であれば良い。例えば、白色光源だとハロゲンランプやタングステンランプ、キセノンランプ等がある。また、単波長光源のLEDやレーザーでも良い。例えば、金イオン溶液の場合は、500~650nmの範囲内で発光するものが良い。 In this embodiment, a halogen lamp is used as the light source, but any light source that emits light in the vicinity of the plasmon resonance wavelength of the metal ion solution to be used may be used. For example, white light sources include halogen lamps, tungsten lamps, and xenon lamps. Alternatively, a single wavelength light source LED or laser may be used. For example, in the case of a gold ion solution, one that emits light within a range of 500 to 650 nm is preferable.
 本実施例では、金微粒子が吸着したエクソソームの分離工程に遠心分離機を使用したが、以下の方法でも良い。エクソソームと金微粒子の分離方法は、エクソソームと金微粒子をチオ硫酸ナトリウムで分離し、チオール終端を持った基板上に滴下すると、金微粒子のみがチオール結合により固定されるため、エクソソームのみが抽出が可能となる。また、金微粒子の粒径が400nmを超える場合にはフィルタを使用した分離も可能なため、エクソソームが金微粒子に吸着した状態の溶液にチオ硫酸ナトリウムを混合してフィルタに通すことで分離しても良い。 In this example, a centrifuge was used for the separation process of exosomes adsorbed with gold fine particles, but the following method may be used. Separation of exosomes and gold fine particles is achieved by separating exosomes and gold fine particles with sodium thiosulfate and dropping them onto a substrate with thiol termination, so that only the gold fine particles are fixed by thiol bonds, so that only exosomes can be extracted. It becomes. In addition, since separation using a filter is possible when the particle size of the gold fine particle exceeds 400 nm, it is separated by mixing sodium thiosulfate with a solution in which exosomes are adsorbed to the gold fine particle and passing through the filter. Also good.
 本実施例では、測定終了条件は金イオン溶液混合後の時間としたが、得られる吸光度に所定の閾値を設け、それを超えたら測定を終了するという条件にしても良いし、吸光度の波長依存性の変化量を算出し、所定の変化量以上もしくは以下になったら測定を終了するという条件にしても良い。 In this example, the measurement end condition is the time after mixing the gold ion solution. However, a predetermined threshold value may be set for the obtained absorbance, and the measurement may be terminated when the predetermined threshold is exceeded. It is also possible to set a condition that the change amount of the sex is calculated, and the measurement is terminated when the change amount is greater than or less than the predetermined change amount.
 本実施例は、取得した吸光度ピークの中で最大吸光度ピークhmaxをエクソソーム定量評価用のデータに使用していたが、所定の時間後(例えば10分後)の吸光度ピークhをエクソソーム定量評価用のデータに使用しても良い。また、最大吸光度ピークhmaxとなる測定経過時間をエクソソーム定量評価用のデータに使用しても良い。他に、吸光度の波長依存性の傾きをエクソソーム定量評価用のデータに使用しても良い。他に、図10に示すように、ある単波長の光を照射して吸光度の時間変化を検出し、そこで得たデータ、例えば金イオン溶液混合後所定時間経過後に安定した吸光度をエクソソーム定量評価のデータに使用しても良い。 In this example, the maximum absorbance peak h max among the obtained absorbance peaks was used for exosome quantitative evaluation data, but the absorbance peak h after a predetermined time (for example, 10 minutes later) was used for exosome quantitative evaluation. It may be used for the data. It may also be used measuring elapsed time with the maximum absorbance peak h max data for exosomes quantitatively evaluated. In addition, the wavelength-dependent slope of absorbance may be used as data for quantitative evaluation of exosomes. In addition, as shown in FIG. 10, the time change of absorbance is detected by irradiating with light of a certain wavelength, and the data obtained there, for example, stable absorbance after elapse of a predetermined time after mixing the gold ion solution, is used for quantitative evaluation of exosomes. May be used for data.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1 光源
2 セル
3 検出器
4 照射光
5 処理部
6 散乱光
DESCRIPTION OF SYMBOLS 1 Light source 2 Cell 3 Detector 4 Irradiation light 5 Processing part 6 Scattered light

Claims (8)

  1.  エクソソームを含有した検体に金属イオン溶液を混合して混合溶液とする工程と、
     前記混合溶液中に凝集した金属微粒子の量を表す指標を測定する工程と、
     前記測定した指標に基づいてエクソソーム濃度を評価する工程と、
    を有するエクソソーム測定方法。
    Mixing a metal ion solution with a specimen containing exosome to form a mixed solution;
    Measuring an index representing the amount of metal fine particles aggregated in the mixed solution;
    Evaluating the exosome concentration based on the measured index;
    A method for measuring exosomes.
  2.  請求項1記載のエクソソーム測定方法において、
     前記指標として前記混合溶液の吸光度を用いるエクソソーム測定方法。
    In the exosome measuring method according to claim 1,
    An exosome measurement method using the absorbance of the mixed solution as the indicator.
  3.  請求項1記載のエクソソーム測定方法において、
     前記指標として前記混合溶液に光照射したとき発生する散乱光を用いるエクソソーム測定方法。
    In the exosome measuring method according to claim 1,
    An exosome measurement method using scattered light generated when the mixed solution is irradiated with light as the indicator.
  4.  請求項1記載のエクソソーム測定方法において、
     前記検体は血液サンプルを遠心分離して得た血清及び血漿であるエクソソーム測定方法。
    In the exosome measuring method according to claim 1,
    The exosome measuring method, wherein the specimen is serum and plasma obtained by centrifuging a blood sample.
  5.  請求項1記載のエクソソーム測定方法において、
     前記金属イオンは金イオンであるエクソソーム測定方法。
    In the exosome measuring method according to claim 1,
    The exosome measuring method, wherein the metal ion is a gold ion.
  6.  請求項5記載のエクソソーム測定方法において、
     前記混合溶液中に凝集した金微粒子を遠心分離し沈降させる工程と、
     上澄み除去後、チオ硫酸ナトリウムを滴下する工程と、
     再び遠心分離して前記金微粒子を沈降させる工程と、
     上澄みを回収してエクソソームを抽出する工程と、
    を有するエクソソーム測定方法。
    In the exosome measuring method according to claim 5,
    Centrifuging and precipitating gold fine particles aggregated in the mixed solution;
    After removing the supernatant, dropping sodium thiosulfate dropwise;
    Centrifuging again to settle the gold fine particles;
    Recovering the supernatant and extracting exosomes;
    A method for measuring exosomes.
  7.  エクソソームを含有した検体に金イオン溶液を混合して混合溶液とする工程と、
     前記混合溶液に凝集した金微粒子を遠心分離し沈降させる工程と、
     上澄み除去後、チオ硫酸ナトリウムを滴下する工程と、
     再び遠心分離して前記金微粒子を沈降させる工程と、
     上澄みを回収してエクソソームを抽出する工程と、
    を有するエクソソーム抽出方法。
    Mixing a gold ion solution with a specimen containing exosome to form a mixed solution;
    Centrifuging and precipitating the gold fine particles aggregated in the mixed solution;
    After removing the supernatant, dropping sodium thiosulfate dropwise;
    Centrifuging again to settle the gold fine particles;
    Recovering the supernatant and extracting exosomes;
    An exosome extraction method comprising:
  8.  請求項7記載のエクソソーム抽出方法において、
     前記検体は血液サンプルを遠心分離して得た血清及び血漿であるエクソソーム抽出方法。
    The exosome extraction method according to claim 7,
    The exosome extraction method, wherein the specimen is serum and plasma obtained by centrifuging a blood sample.
PCT/JP2015/052909 2015-02-03 2015-02-03 Exosome assay method and exosome extraction method WO2016125243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052909 WO2016125243A1 (en) 2015-02-03 2015-02-03 Exosome assay method and exosome extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052909 WO2016125243A1 (en) 2015-02-03 2015-02-03 Exosome assay method and exosome extraction method

Publications (1)

Publication Number Publication Date
WO2016125243A1 true WO2016125243A1 (en) 2016-08-11

Family

ID=56563608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052909 WO2016125243A1 (en) 2015-02-03 2015-02-03 Exosome assay method and exosome extraction method

Country Status (1)

Country Link
WO (1) WO2016125243A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141947A1 (en) * 2016-02-15 2017-08-24 凸版印刷株式会社 Exosome-complex forming method
CN111148828A (en) * 2017-07-26 2020-05-12 罗塞塔外排体株式会社 Method for separating extracellular vesicles using cations
JP2021506324A (en) * 2017-12-19 2021-02-22 ウニヴェルシタ デリ ストゥディ ディ トレント Methods for Isolating Extracellular Vesicles from Biomaterials and Fixed Phase

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507300A (en) * 2008-10-30 2012-03-29 カリス ライフ サイエンシズ ルクセンブルク ホールディングス Method for evaluating RNA patterns
WO2014030590A1 (en) * 2012-08-24 2014-02-27 国立大学法人東京大学 Exosome analysis method, exosome analysis apparatus, antibody-exosome complex, and exosome electrophoresis chip
JP2014519331A (en) * 2011-06-10 2014-08-14 日立化成株式会社 Vesicle capture device and method for using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507300A (en) * 2008-10-30 2012-03-29 カリス ライフ サイエンシズ ルクセンブルク ホールディングス Method for evaluating RNA patterns
JP2014519331A (en) * 2011-06-10 2014-08-14 日立化成株式会社 Vesicle capture device and method for using the same
WO2014030590A1 (en) * 2012-08-24 2014-02-27 国立大学法人東京大学 Exosome analysis method, exosome analysis apparatus, antibody-exosome complex, and exosome electrophoresis chip

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141947A1 (en) * 2016-02-15 2017-08-24 凸版印刷株式会社 Exosome-complex forming method
CN111148828A (en) * 2017-07-26 2020-05-12 罗塞塔外排体株式会社 Method for separating extracellular vesicles using cations
JP2020528766A (en) * 2017-07-26 2020-10-01 ロゼッタ エクソソーム Isolation method of extracellular endoplasmic reticulum using cations
EP3660142A4 (en) * 2017-07-26 2021-05-05 Rosetta Exosome Method for isolating extracellular vesicles using cations
US11904259B2 (en) 2017-07-26 2024-02-20 Rosetta Exosome Method for isolating extracellular vesicles using cations
JP2021506324A (en) * 2017-12-19 2021-02-22 ウニヴェルシタ デリ ストゥディ ディ トレント Methods for Isolating Extracellular Vesicles from Biomaterials and Fixed Phase

Similar Documents

Publication Publication Date Title
Dong et al. Comprehensive evaluation of methods for small extracellular vesicles separation from human plasma, urine and cell culture medium
Chia et al. Advances in exosome quantification techniques
Rupert et al. Methods for the physical characterization and quantification of extracellular vesicles in biological samples
US20230324375A1 (en) Novel assays for detecting analytes in samples and kits and compositions related thereto
JP2019045509A (en) Image analysis and measurement of biological samples
Kuiper et al. Reliable measurements of extracellular vesicles by clinical flow cytometry
JP2013531787A (en) Holographic fluctuation microscope apparatus and method for determining particle motility and / or cell dispersion
Zhang et al. Characterization and applications of extracellular vesicle proteome with post-translational modifications
WO2019118495A1 (en) Nanosensors and methods of making and using nanosensors
JP7356891B2 (en) Particle analyzer and particle analysis method
Bano et al. A perspective on the isolation and characterization of extracellular vesicles from different biofluids
Gualerzi et al. Biophotonics for diagnostic detection of extracellular vesicles
US20220347688A1 (en) Microfluidic device for size and deformability measurements and applications thereof
CN108732145B (en) Information acquisition method for detected substance
WO2016125243A1 (en) Exosome assay method and exosome extraction method
Kwon et al. Methods to analyze extracellular vesicles at single particle level
JP7444386B2 (en) Method for isolating and analyzing microvesicles from human urine
JP2010281595A (en) Method for detecting ligand molecule
JP6272327B2 (en) Use of antioxidants in methods and means for detecting target molecules in blood samples
Berezin et al. The promises, methodological discrepancies and pitfalls in measurement of cell-derived extracellular vesicles in diseases
US20230221319A1 (en) A Method, A System, An Article, A Kit And Use Thereof For Biomolecule, Bioorganelle, Bioparticle, Cell And Microorganism Detection
WO2014104019A1 (en) Method for detecting podocytes in urine
WO2017056844A1 (en) Method for estimating pathological tissue diagnosis result (gleason score) of prostate cancer
JP6881564B2 (en) Particle surface condition evaluation method and evaluation system
CN108139400B (en) Method for determining the concentration of epithelial cells in a blood sample or aspirated sample

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP