WO2016121821A1 - Separation method, detection method, signal measurement method, method for determining disease, method for evaluating drug efficacy, kit, liquid composition, and analyte diluent - Google Patents

Separation method, detection method, signal measurement method, method for determining disease, method for evaluating drug efficacy, kit, liquid composition, and analyte diluent Download PDF

Info

Publication number
WO2016121821A1
WO2016121821A1 PCT/JP2016/052353 JP2016052353W WO2016121821A1 WO 2016121821 A1 WO2016121821 A1 WO 2016121821A1 JP 2016052353 W JP2016052353 W JP 2016052353W WO 2016121821 A1 WO2016121821 A1 WO 2016121821A1
Authority
WO
WIPO (PCT)
Prior art keywords
vesicle
antibody
complex
inorganic salt
vesicles
Prior art date
Application number
PCT/JP2016/052353
Other languages
French (fr)
Japanese (ja)
Inventor
寛也 藤井
弘喜 安倍
公子 内田
Original Assignee
Jsr株式会社
Jsrライフサイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社, Jsrライフサイエンス株式会社 filed Critical Jsr株式会社
Priority to JP2017519425A priority Critical patent/JP6777629B2/en
Priority to PCT/JP2016/065104 priority patent/WO2016186215A1/en
Priority to CN201680029121.6A priority patent/CN108271413A/en
Priority to US15/575,698 priority patent/US20180291424A1/en
Priority to EP16796608.4A priority patent/EP3299816A4/en
Publication of WO2016121821A1 publication Critical patent/WO2016121821A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a separation method, a detection method, a signal measurement method, a disease determination method, a drug efficacy evaluation method, a kit, a liquid composition, and a specimen diluent. More specifically, a method for separating vesicles having a lipid bilayer such as exosome, a method for detecting nucleic acid or protein using the method, a signal measuring method, a method for determining a disease, a method for evaluating the efficacy of a disease therapeutic agent, a disease
  • the present invention relates to a determination or medicinal effect evaluation kit, a liquid composition used in the separation method, and a specimen diluent.
  • Vesicles have a structure encased in a lipid bilayer, and exosomes are known as vesicle granules existing in body fluids in the body among such vesicles. It is known that various membrane proteins exist on the surface of exosomes as well as general cell surfaces. On the other hand, in addition to various proteins such as cytokines, microRNA (miRNA) is present inside exosomes. Has also been found to be included.
  • miRNA microRNA
  • exosomes are secreted from various cells such as cells of the immune system and various cancer cells.
  • Relevance to other diseases has attracted attention and is being investigated.
  • EpCAM which is a tumor marker
  • exosomes are isolated from circulating blood of ovarian cancer patients, and there is already a relationship between the expression level of exosome-derived miRNA and the progression of ovarian cancer. It has been reported (Non-Patent Document 1).
  • Non-patent document 2 discloses that the amount of exosomes in the plasma of melanoma patients is normal. It has been reported that this can be detected and quantified with an antibody against CD63 and an antibody against tumor-related marker Caveolin-1.
  • a signal derived from an exosome in a cancer patient is quantified and analyzed by reacting the plasma sample after centrifugation with a combination of an anti-CD63 antibody and antibodies against various membrane proteins.
  • the problem to be solved by the present invention is to provide a method capable of reducing non-specific adsorption to a solid support and selectively and efficiently separating vesicles having lipid bilayer membranes.
  • the present inventors contacted a biological sample containing a vesicle having a lipid bilayer membrane with a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of the vesicle.
  • the method of separating a vesicle having a lipid bilayer membrane comprising a complex forming step of forming a complex of the vesicle and the solid phase carrier, and a washing step of washing the complex.
  • the present invention provides the following ⁇ 1> to ⁇ 10>.
  • a biological sample containing a vesicle having a lipid bilayer membrane is contacted with a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of the vesicle, and the vesicle and the solid phase carrier are contacted
  • a complex forming step for forming a complex with the complex and a washing step for washing the complex, wherein at least one of the complex forming step and the washing step includes an inorganic salt having a final concentration of 0.15 to 2M or
  • a method for separating vesicles having a lipid bilayer membrane hereinafter, also referred to as a first separation method), which is performed in the presence of an organic salt.
  • a method for detecting a nucleic acid in a vesicle further comprising a nucleic acid detection step for detecting the nucleic acid in the vesicle after the separation method of ⁇ 1> above.
  • a method for detecting a protein derived from a vesicle further comprising a protein detection step of detecting a protein present on at least one of the inside and the surface of the vesicle after the separation method of ⁇ 1>.
  • ⁇ 4> A method for measuring a signal derived from a vesicle, further comprising a signal measurement step of measuring a signal intensity derived from a vesicle formed with the complex after the separation method of ⁇ 1>.
  • a method for determining a disease comprising a step of measuring a signal intensity derived from a prepared vesicle.
  • ⁇ 6> A method for evaluating the efficacy of a drug for treating a disease, wherein the complex is formed by the signal measurement method of ⁇ 4> above using a biological sample derived from a subject before and after administration of the drug for treating a disease.
  • a method for evaluating the efficacy of a therapeutic agent for a disease comprising a step of measuring a signal intensity derived from a vesicle.
  • a liquid composition in an amount capable of adjusting the final concentration to 0.15 to 2M.
  • a biological sample containing vesicles having a lipid bilayer membrane is contacted with a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of the vesicle, and the vesicle and the solid phase carrier are contacted
  • the complex forming step and the washing step used in a method for separating a vesicle having a lipid bilayer membrane, comprising: a complex forming step for forming a complex with the complex; and a washing step for washing the complex.
  • a liquid composition to be added to at least one of the above, wherein an inorganic salt or an organic salt is contained, and the content of the inorganic salt or organic salt can adjust the final concentration in the system to 0.15 to 2M
  • a liquid composition characterized in that
  • a specimen diluent for formation comprising an inorganic salt or an organic salt, wherein the content of the inorganic salt or organic salt is such that the final concentration in the system can be adjusted to 0.15 to 2M. Sample dilution liquid.
  • a method for separating vesicles having a lipid bilayer membrane from a biological sample containing vesicles having a lipid bilayer membrane using an insoluble carrier, the inorganic salt or organic salt containing the inorganic salt or organic salt A method for separating a vesicle having a lipid bilayer, wherein a specimen diluent having a salt content such that the final concentration in the system can be adjusted to 0.15 to 2M is added to the system ( Hereinafter, it is also referred to as a second separation method).
  • non-specific adsorption to a solid phase carrier can be reduced, and vesicles having a lipid bilayer membrane can be selectively and efficiently separated. Therefore, according to the present invention, nucleic acids in vesicles, proteins derived from vesicles, and signals derived from vesicles can be detected and measured easily and accurately. Moreover, the disease determination method and drug efficacy evaluation method of the present invention are unlikely to be false positives.
  • the kit, liquid composition, and specimen diluent of the present invention nonspecific adsorption to the solid phase carrier can be reduced, and vesicles having lipid bilayer membranes can be selectively and efficiently separated.
  • FIG. 5 is a view showing an effect of reducing nonspecific adsorption by setting the final concentration of buffer-derived sodium chloride to 0.15 to 0.35 M (Examples 1 to 5) (clinical sample: serum).
  • FIG. 5 is a view showing a nonspecific adsorption reducing action by setting the final concentration of buffer-derived sodium chloride to 0.15 to 0.35 M (Examples 1 to 5) (clinical specimen: citrated plasma).
  • FIG. 5 is a view showing a reactivity improving effect by setting the final concentration of buffer-derived sodium chloride at a reaction temperature of 25 ° C. to 0.15 to 0.35 M (Examples 1 to 5) (clinical sample: serum).
  • first separation method a biological sample containing vesicles having a lipid bilayer membrane is contacted with a solid phase carrier to which a ligand recognizing a surface antigen present on the surface of the vesicle is bound.
  • a complex forming step of forming a complex of the solid phase carrier and a washing step of washing the complex, and at least one of the complex forming step and the washing step is performed with an inorganic salt having a final concentration of 0.15 to 2M Alternatively, it is carried out in the presence of an organic salt.
  • the final concentration is a concentration of an inorganic salt derived from a biological sample (usually about 0.14M), an inorganic salt that does not contain an organic salt, or an organic salt, It refers to the final concentration of inorganic or organic salts in the system that exist artificially during the washing process.
  • the final concentration of the inorganic salt or organic salt can be adjusted by any method using a solid composition such as powder or granules or a liquid composition such as a specimen diluent. Further, the final concentration may be measured using various known measuring methods and measuring instruments.
  • a biological sample containing a vesicle having a lipid bilayer membrane is contacted with a solid phase carrier to which a ligand that recognizes a surface antigen present on the surface of the vesicle is bound, and the vesicle and the solid phase carrier are contacted. And forming a complex.
  • the vesicle is captured by the ligand, and a complex of the vesicle and the solid phase carrier is formed.
  • a ligand that recognizes a surface antigen present on the surface of a vesicle having a lipid bilayer may coexist in the reaction system of the complex formation step.
  • the biological sample is not particularly limited as long as it contains vesicles having lipid bilayer membranes, such as body fluid, fungal fluid, cell culture medium, cell culture supernatant, tissue cell disruption fluid, etc.
  • lipid bilayer membranes such as body fluid, fungal fluid, cell culture medium, cell culture supernatant, tissue cell disruption fluid, etc.
  • body fluid and a cell culture supernatant are preferable, and a body fluid is more preferable.
  • Body fluids include whole blood, serum, plasma, blood components, various blood cells, blood clots, platelets, and other blood composition components, as well as urine, semen, breast milk, sweat, interstitial fluid, interstitial lymph fluid, bone marrow fluid, tissue fluid , Saliva, gastric juice, joint fluid, pleural effusion, bile, ascites, amniotic fluid, etc., preferably blood composition components.
  • the first separation method of the present invention has low non-specific adsorption to the solid phase carrier and high reactivity of the capture reaction. According to the first separation method, vesicles can be selectively and efficiently separated from a wide variety of biological samples.
  • the blood composition component may be treated with an anticoagulant such as citric acid, heparin, EDTA or the like.
  • the biological sample may be pre-treated by adding it to a buffer composition containing an inorganic salt or an organic salt in a final concentration of 0.15 to 2M. You can also use it as it is. That is, according to the first separation method of the present invention, it is possible to easily and selectively perform separation without pretreatment by a PEG precipitation method, an isolation method using an ultracentrifuge, or the like.
  • the vesicle having the lipid bilayer examples include vesicles such as cells and exosomes released from the cells to the outside.
  • the vesicles are exosomes. In some cases, it is particularly preferably used.
  • the surface antigen present on the surface of the vesicle is not particularly limited as long as it is a substance present on the surface of the vesicle and is antigenic.
  • exosome surface antigens examples include tetraspanins such as CD9, CD63, and CD81; antigen presentation-related proteins such as MHCI and MHCII; adhesion molecules such as integrin, ICAM-1, and EpCAM; cytokines such as EGFRvIII and TGF- ⁇ / Cytokine receptors, enzymes and the like. Among these, antigenic proteins present on the exosome surface are preferable.
  • the solid phase carrier used in the first separation method of the present invention is not particularly limited as long as a ligand that recognizes a surface antigen present on the surface of the vesicle is bound thereto.
  • a ligand an antibody that recognizes a surface antigen present on the surface of a vesicle is preferable, and an antibody that recognizes a surface antigen present on the surface of an exosome is more preferable.
  • it may be a monoclonal antibody or a polyclonal antibody, it is preferably a monoclonal antibody.
  • the monoclonal antibody is not particularly limited, and a known method such as K.I. Watanabe et al.
  • Monoclonal antibodies that recognize tetraspanins such as exosome surface antigens CD9, CD63, and CD81 can be prepared with reference to International Publication No. 2013/099925.
  • the antibody class includes IgG and IgM, and IgG is preferred.
  • Examples of the material of the solid phase carrier to which the ligand is bonded include, for example, polystyrenes, polyethylenes, polypropylenes, polyesters, poly (meth) acrylonitriles, styrene-butadiene copolymers, poly (meth) acrylic esters, Polymer compounds such as fluororesin, crosslinked dextran, and polysaccharides; glass; metal; magnetic substance; resin composition containing magnetic substance; and combinations thereof.
  • the shape of the solid phase carrier is not particularly limited, and examples thereof include a tray shape, a spherical shape, a particle shape, a fiber shape, a rod shape, a disc shape, a container shape, a cell, a microplate, and a test tube. In the present invention, magnetic particles are preferred from the viewpoint of solid-liquid separation and ease of washing.
  • the magnetic particles include metals such as triiron tetroxide (Fe 3 O 4 ), iron sesquioxide ( ⁇ -Fe 2 O 3 ), various ferrites, iron, manganese, nickel, cobalt, and chromium; cobalt, nickel And magnetic fine particles made of an alloy such as manganese; magnetic particles containing these magnetic substances in a resin.
  • the resin include a hydrophobic polymer and a hydrophilic polymer. Among these, magnetic particles containing a magnetic substance in a resin are preferable, and those in which a polymer layer is formed on the surface of mother particles containing superparamagnetic fine particles are more preferable.
  • a hydrophobic first polymer layer is formed on the surface of a mother particle containing superparamagnetic fine particles described in JP-A-2008-32411, and at least the surface has a glycidyl group on the first polymer layer.
  • Examples include magnetic particles in which a second polymer layer is formed and a polar group is introduced by chemically modifying the glycidyl group.
  • ferrite represented by Li 0.5 Fe 0.5, etc.) magnetite represented by Fe 3 O 4 include ⁇ -Fe 2 O 3, strong saturation magnetization, and residual magnetization is small in terms, gamma-Fe 2 It is preferable that either one of O 3 and Fe 3 O 4 is included.
  • the monomers for forming the hydrophobic first polymer layer are roughly classified into monofunctional monomers and crosslinkable monomers.
  • the monofunctional monomer include aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, and halogenated styrene; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, stearyl acrylate, stearyl methacrylate, cyclohexyl acrylate, and cyclohexyl methacrylate.
  • ethylenically unsaturated carboxylic acid alkyl ester monomers such as isobornyl acrylate and isobornyl methacrylate.
  • crosslinkable monomer ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexa Examples include polyfunctional (meth) acrylates such as methacrylate; conjugated diolefins such as butadiene and isoprene, as well as divinylbenzene, diallyl phthalate, allyl acrylate, and allyl methacrylate.
  • the monomer for forming the second polymer layer is mainly intended to introduce a functional group to the particle surface and includes a glycidyl group-containing monomer.
  • a glycidyl group containing monomer 20 mass% or more is preferable in the monomer for forming a 2nd polymer layer.
  • examples of the copolymerizable monomer containing a glycidyl group include glycidyl acrylate, glycidyl methacrylate, and allyl glycidyl ether.
  • the polar group introduced by chemically modifying the glycidyl group of the second polymer layer is preferably a functional group capable of reacting with a ligand, and at least selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom Those containing one or more of one kind of atom are more preferable. Of these, an amino group, an aldehyde group, a carboxy group, and an active ester group are more preferable. In particular, when the second polymer layer of the magnetic particle has the polar group and 2,3-dihydroxypropyl group, the binding property to the ligand is good.
  • a solid phase carrier such as magnetic particles may have a substance having a biotin binding site immobilized on the surface thereof.
  • the substance having a biotin binding site examples include one or more compounds selected from avidin, streptavidin, tamavidin, and derivatives thereof.
  • the solid phase carrier may be bound with an antibody bound with biotins via a substance having a biotins binding site. Immobilization of a substance having a biotin-binding site on the surface of a solid phase carrier may be performed by a known method such as the method described in Japanese Patent No. 4716034.
  • a chemical binding method such as a physical adsorption method, a covalent bond method, or an ion bond method is used.
  • the physical adsorption method include a method of directly immobilizing a ligand on a solid phase carrier, a method of chemically binding to another protein such as albumin, and then adsorbing and immobilizing.
  • a chemical bonding method a method of directly bonding on a solid phase carrier using a functional group capable of reacting with a ligand introduced on the surface of the solid phase carrier, or a spacer molecule between the solid phase carrier and the ligand. Examples include a method of binding after introducing a carbodiimide compound (such as a carbodiimide compound), a method of binding a ligand to another protein such as albumin, and then chemically binding the protein to a solid phase carrier.
  • a carbodiimide compound such as a carbodiimide compound
  • a commercially available product may be used as the solid phase carrier to which a ligand that recognizes a surface antigen present on the surface of the vesicle is bound.
  • a commercially available product may be used as the solid phase carrier to which a ligand that recognizes a surface antigen present on the surface of the vesicle is bound.
  • Exosome-Human CD9 Isolation Reagent from cell culture
  • Exosome-Human CD63 Isolation / Detection Reagent from cellCultureCulture Media
  • CD81 Exo-Flow Capture kit both manufactured by SBI.
  • the amount of the solid phase carrier to which the ligand is bound is preferably 0.00001 to 0.1 mass times, more preferably 0.0001 to 0.01 mass times with respect to the biological sample.
  • the complex formation step may be performed using a surfactant; a protein such as albumin; a nucleic acid; a saccharide such as sucrose as necessary.
  • a surfactant from the viewpoint of reducing non-specific adsorption and from the viewpoint of suppressing damage to vesicles, surfactants are preferable, nonionic surfactants are more preferable, and polyethylene glycol type nonionic surfactants are particularly preferable. preferable.
  • the surfactant preferably does not contain an aromatic group in the molecule.
  • ethylene oxide adducts examples include ethylene oxide adducts.
  • polyalkylene glycol ethylene oxide adduct is preferable.
  • Specific examples include polyoxyethylene (160) polyoxypropylene (30) glycol and polyoxyethylene (196) polyoxypropylene (67) glycol.
  • the amount of the surfactant used in the final concentration is preferably 0.005 to 10% (w / v), more preferably 0.015 to 3.5% (w / v).
  • reaction temperature in the complex forming step is preferably in the range of 2 to 42 ° C, more preferably in the range of 15 to 40 ° C, and particularly preferably in the range of 20 to 37 ° C.
  • the complex formation step in the first separation method of the present invention is very simple because the reaction proceeds selectively and efficiently even at or near room temperature.
  • the reaction time is usually 1 minute to 48 hours, preferably 5 minutes to 24 hours, more preferably 10 minutes to 10 hours, and particularly preferably 10 minutes to 5 hours.
  • the pH in the system is not particularly limited, but is preferably in the range of pH 5 to 10, more preferably in the range of pH 6 to 8.
  • a buffer solution is usually used, and examples thereof include a phosphate buffer solution, a tris (hydroxymethyl) aminomethane buffer solution, a HEPES buffer solution, and a MES buffer solution.
  • the washing step is a step of washing the complex of the vesicle formed in the complex forming step and the solid phase carrier. Thereby, unreacted components, unreacted labeling substances and the like are removed. You may wash
  • the washing step is usually divided into two types depending on the shape of the solid support.
  • the solid phase carrier is in the form of particles, such as magnetic particles
  • a surfactant those similar to those that may be used in the complex forming step are preferable.
  • the washing step includes collecting the magnetic particles by a magnetic force to separate the magnetic particles from the liquid phase, and separating the magnetic particles separated in the collecting step in the washing liquid. It is preferable to include a dispersion step of dispersing in the water. As a result, unreacted substances and contaminants in the biological sample can be more efficiently washed and separated and removed from the surface of the magnetic particles. Specifically, a magnetic field was applied to the reaction vessel, and the magnetic particles were collected by adhering to the reaction vessel wall, and then the reaction supernatant was removed, and a washing solution was added as necessary to apply the magnetic field in the same manner. What is necessary is just to repeat the operation of removing the post-supernatant. As the cleaning liquid, a cleaning liquid containing the surfactant and buffer mentioned in the complex forming step is preferable.
  • At least one of the complex formation step and the washing step is performed in the presence of an inorganic salt or organic salt having a final concentration of 0.15 to 2M.
  • the complex formation step is preferably performed in the presence of an inorganic salt or organic salt having a final concentration of 0.15 to 2M.
  • inorganic salts and organic salts inorganic salts are preferred from the viewpoint of enhancing the desired effect of the present invention.
  • the inorganic salt examples include alkali metal halides; salts of inorganic acids such as carbonates and bicarbonates, alkali metal halides are preferable, and alkali metal chlorides are more preferable.
  • Specific examples of the inorganic salt include sodium chloride, potassium chloride, calcium chloride, sodium carbonate, sodium bicarbonate and the like, and one of these may be used alone or two or more may be used in combination. Good. Among these, sodium chloride, potassium chloride, and calcium chloride are preferable, sodium chloride and potassium chloride are more preferable, and sodium chloride is particularly preferable.
  • the organic salt is preferably an organic acid salt, more preferably an organic acid alkali metal salt, still more preferably a carboxylic acid alkali metal salt, and particularly preferably a carboxylic acid sodium salt.
  • organic salt include sodium acetate, sodium citrate, sodium tartrate, sodium malate, sodium succinate, sodium lactate and the like. You may use it in combination.
  • the final concentration of inorganic salt or organic salt in the system is 0.15 to 2M.
  • the final concentration defined in the present specification is less than 0.15 M or higher than 2 M, nonspecific adsorption may increase or the reactivity of the capture reaction may decrease, and the osmotic pressure difference between the inside and outside of the vesicle may occur. There is also concern that the vesicles will be destroyed.
  • the final concentration is preferably 0.2M or more, more preferably 0.25M or more, preferably 1M or less, more preferably 0.5M or less, still more preferably 0.45M or less, and particularly preferably 0.35M. It is as follows.
  • the separation method of the present invention may have a dissociation step of dissociating the captured vesicle from the ligand after the washing step.
  • a dissociation step of dissociating the captured vesicle from the ligand after the washing step.
  • various conditions are known by affinity chromatography or the like (for example, “Affinity Chromatography principles & methods” Pharmacia). See LKB Biotechnology).
  • the dissociation step may be performed according to this.
  • acidic solutions such as hydrochloric acid, sulfuric acid, propionic acid, acetic acid, glycine / hydrochloric acid buffer
  • alkaline solutions such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, ammonia aqueous solution, diethylamine
  • High ionic strength solution such as 3M sodium chloride aqueous solution and 4.5M magnesium chloride aqueous solution
  • Surfactant-containing solution such as SDS, Triton X-100, Tween 20
  • Buffer containing a substance that lowers the polarity such as dioxane, ethylene glycol
  • Trichloro In addition to chaotropic ions such as acetic acid and thiocyanic acid, buffer solutions containing urea, guanidine hydrochloride and the like can be mentioned.
  • the method for detecting a nucleic acid in a vesicle of the present invention further comprises a nucleic acid detection step for detecting the nucleic acid in the vesicle after the first separation method.
  • the method for detecting a protein derived from a vesicle of the present invention further comprises a protein detection step of detecting a protein present on at least one of the inside and the surface of the vesicle after the first separation method. These detection methods may be performed according to a conventional method except that the first separation method is performed.
  • nucleic acids and proteins are collected from the collected exosomes according to known methods such as PCR, electrophoresis, Western blotting, immunochemical methods, flow cytometry, etc. What is necessary is just to detect. Among these, flow cytometry is preferable because it can be easily detected with high sensitivity and the three-dimensional structure of the native form can be maintained.
  • nucleic acid include miRNA and mRNA.
  • the nucleic acid detection method of the present invention detects exosome-derived nucleic acids (miRNA, etc.) By analyzing, it becomes possible to determine physiological phenomena and various diseases.
  • the vesicle-derived signal measurement method of the present invention further comprises a signal measurement step of measuring the signal intensity derived from the vesicles forming the complex after the first separation method.
  • the signal intensity may be measured by immunoassay, for example, enzyme immunoassay (EIA), enzyme immunometric assay (ELISA), fluorescence immunoassay (FIA), radioimmunoassay (RIA), luminescence.
  • EIA enzyme immunoassay
  • ELISA enzyme immunometric assay
  • FIA fluorescence immunoassay
  • RIA radioimmunoassay
  • luminescence luminescence
  • Examples include immunoassay, immunoblotting, western blotting, flow cytometry, and the like. Among these, flow cytometry is preferable because it can be easily detected with high sensitivity and the three-dimensional structure of the native form can be maintained.
  • the ELISA method is preferable from the viewpoint that the antibody can be easily detected with high sensitivity.
  • Examples of the ELISA method include a competitive method and a sandwich method.
  • an example of the separation method in the case of using the sandwich ELISA method is shown.
  • a ligand that recognizes a surface antigen present on the surface of a vesicle is bound to a solid phase carrier, and then a biological sample containing a vesicle having a lipid bilayer is contacted to form a complex, followed by washing.
  • a monoclonal antibody or an antibody fragment thereof or a labeled antibody obtained by modifying a disease-specific membrane protein antibody or an antibody fragment thereof is added to form a further complex.
  • the amount of signal derived from vesicles contained in the biological sample and the amount of disease-specific vesicles contained in the biological sample can be measured.
  • a method for determining whether or not a subject of the present invention has developed a disease is a signal derived from a vesicle formed with the complex by the above signal measurement method using a biological sample derived from the subject. It includes a step of measuring strength (hereinafter also referred to as step (I)). Then, when the signal intensity measured in the step (I) is compared with the signal intensity of the biological sample derived from the control person, the signal intensity in the subject is recognized to be stronger than the signal intensity in the control person. What is necessary is just to determine with the examiner developing the disease (henceforth process (II)).
  • Diseases that can be determined by the disease determination method of the present invention include cancer diseases (colon cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, pancreatic cancer, gastric cancer, esophageal cancer, liver cancer, lung cancer, renal cancer, skin cancer. ), Inflammatory diseases (rheumatic, osteoarthritis, nephropathy, pancreatitis, hepatitis, allergy, etc.), neurodegenerative diseases such as Alzheimer, brain diseases, diseases related to immunodeficiency, infertility, depression, autism And psychiatric diseases such as Parkinson's disease, autoimmune diseases, cardiovascular diseases, blood diseases, gastrointestinal diseases, diseases associated with aging, infectious diseases and the like.
  • cancer diseases colon cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, pancreatic cancer, gastric cancer, esophageal cancer, liver cancer, lung cancer, renal cancer, skin cancer.
  • Inflammatory diseases rheumatic, osteoarthritis, nephropathy,
  • cancer diseases and immune system diseases are useful for determination of cancer diseases and immune system diseases, and particularly useful for determination of cancer diseases.
  • index of the immune activity of cytotoxic T cell (CTL) it can apply also to the effect determination with respect to the cancer disease of a cancer vaccine.
  • Step (I) may be performed according to a conventional method except that measurement is performed by the above signal measurement method.
  • step (II) the signal intensity measured in step (I) is compared based on a statistical analysis based on the signal of the biological sample derived from the control person.
  • the analysis method is not particularly limited, and a known method can be used. Further, in the subsequent determination, for example, when the signal of the biological sample derived from the subject is stronger than the signal of the control person, it is determined that the possibility of developing the disease is high.
  • the control person means the average of the same age and the same person as the subject who has not developed the disease, the signal intensity in the control person may be measured together with the signal intensity in the subject, A statistical value obtained from a separately measured value may be used.
  • the method for evaluating the efficacy of a therapeutic agent for a disease is a signal intensity derived from a vesicle formed with a complex by a signal measurement method using a biological sample derived from a subject before and after administration of a therapeutic agent for a disease. It includes a step of measuring (hereinafter also referred to as step (A)). Then, it is recognized that the signal intensity derived from the complex in the biological sample derived from the subject after administration of the disease therapeutic agent is weaker than the signal intensity derived from the complex in the biological sample derived from the subject before administration of the disease therapeutic agent.
  • the therapeutic agent for the disease has a medicinal effect (hereinafter also referred to as step (B)).
  • the disease therapeutic drug include drugs for treating a disease that can be determined by the determination method.
  • Preferred specific examples are anticancer drugs and anti-immune disease drugs.
  • Step (A) may be performed according to a conventional method except that measurement is performed by the above signal measurement method.
  • the signal intensity measured in the step (A) is compared based on a statistical analysis based on the signal in the biological sample before administration of the disease therapeutic agent.
  • the analysis method is not particularly limited, and a known method can be used. Further, in the subsequent determination, for example, when the amount of signal in the biological sample after administration of the disease therapeutic drug is small compared to the amount of signal in the biological sample before administration, the drug may have an effect of suppressing the disease. It is judged that the nature is high.
  • exosomes are secreted from various cells such as cells of the immune system and various cancer cells, changes in blood exosomes before and after administration of disease therapeutic agents (in addition to increase / decrease in abundance, membrane proteins) It is considered possible to evaluate the drug efficacy in patients.
  • a ligand for a membrane protein specific for cancer cells and a ligand for a surface antigen of exosomes, it can be expected to improve the specificity of cancer diagnosis, identify the type of cancer, etc. It is considered possible to develop new diagnostic agents.
  • the kit of the present invention comprises a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of a vesicle having a lipid bilayer membrane, and an inorganic salt or an organic salt, and the content of the inorganic salt or organic salt is And a liquid composition in an amount capable of adjusting the final concentration in the system to 0.15 to 2M.
  • a kit is useful for the first separation method, determination of the disease, and evaluation of the efficacy of the therapeutic agent for the disease.
  • Examples of the inorganic salt or organic salt contained in the solid phase carrier and the liquid composition include the same salts as those used in the first separation method.
  • the final concentration is preferably 0.2 M or more, more preferably 0.25 M or more, and preferably 1 M or less, more preferably 0.5 M or less, still more preferably 0.45 M or less, particularly preferably 0. 35M or less.
  • the content of the inorganic salt or organic salt in the liquid composition is preferably 0.3M or more, more preferably 0.4M or more, still more preferably 0.5M or more, and preferably 4M. Below, more preferably 2M or less, still more preferably 1M or less, still more preferably 0.9M or less, and particularly preferably 0.7M or less.
  • the liquid composition may contain the same surfactant as that in the first separation method.
  • the pH of the liquid composition is not particularly limited, but is preferably in the range of pH 5 to 10, more preferably in the range of pH 6 to 8.
  • a buffer solution is usually used, and examples thereof include a phosphate buffer solution, a tris (hydroxymethyl) aminomethane buffer solution, a HEPES buffer solution, and a MES buffer solution.
  • the liquid composition of the present invention comprises contacting a biological sample containing vesicles having a lipid bilayer with a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of the vesicle, Formation of a complex used in a method for separating a vesicle having a lipid bilayer membrane, comprising: a complex forming step of forming a complex between the solid phase carrier and the solid phase carrier; and a washing step of washing the complex.
  • a liquid composition to be added to at least one of the step and the washing step comprising an inorganic salt or an organic salt, the content of the inorganic salt or organic salt being 0.15 to the final concentration in the system
  • the amount can be adjusted to 2M.
  • the specimen diluent of the present invention is used in a method for separating a vesicle having a lipid bilayer from a biological sample containing a vesicle having a lipid bilayer using an insoluble carrier, Sample diluent for forming a complex with an insoluble carrier, containing an inorganic salt or organic salt, and the content of the inorganic salt or organic salt is adjusted to a final concentration in the system of 0.15 to 2M It is a quantity that can be produced.
  • the second separation method of the present invention is a method for separating vesicles having a lipid bilayer membrane from a biological sample containing vesicles having a lipid bilayer membrane using an insoluble carrier, which comprises an inorganic salt or an organic salt.
  • an insoluble carrier which comprises an inorganic salt or an organic salt.
  • a specimen diluent containing a salt and having an inorganic salt or organic salt content that can adjust the final concentration in the system to 0.15 to 2M is added to the system.
  • the composition and pH of the liquid composition and specimen diluent of the present invention are the same as those of the liquid composition provided in the kit of the present invention.
  • sample diluent of the present invention is used for vesicle separation using an insoluble carrier (for example, a gel filtration carrier or a filter) other than a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of the vesicle. It may be used. Therefore, the specimen diluent of the present invention can be used for vesicle separation using various carriers.
  • an insoluble carrier for example, a gel filtration carrier or a filter
  • Negative control particles that bind anti-mouse IgG antibodies that do not react with exosomes to magnetic particles, clinical specimens containing exosomes, and reaction buffer are mixed, washed, and CD81 expressed on the exosome membrane is recognized.
  • the non-specific adsorption reducing action of the reaction buffer was confirmed. The specific procedure is shown below.
  • reaction buffers were prepared as the reaction buffers of Reference Example 1 and Examples 1 to 5.
  • Reaction buffer of Reference Example 1 and Examples 1 to 5 Tris-buffered saline (TBS (10 ⁇ TBS manufactured by Sigma, 10 times diluted, the same shall apply hereinafter)) and polyoxyethylene (160 ) Polyoxypropylene (30) glycol (Gibco's Pluronic F-68, hereinafter the same) was added to a concentration of 0.03% (w / v), and sodium chloride (Wako) was added as an inorganic salt. , Reagent special grade) added to the concentrations shown in Table 1
  • Control buffer TBS added with polyoxyethylene (160) polyoxypropylene (30) glycol as a nonionic surfactant to a concentration of 0.03% (w / v).
  • the following specimens were prepared as 5.
  • Specimen 1 HT29 sup. In Control Buffer: HT29 cell culture supernatant 100-fold concentrated solution added to control buffer as a 20-fold dilution
  • Specimen 2 (Serum): Pool serum (manufactured by Kojin Bio) )
  • Specimen 3 HT29 sup.
  • HT29 cell culture supernatant 100-fold concentrated solution added to a pooled serum (manufactured by Kojin Bio Inc.) as a spike so as to be diluted 20-fold
  • Specimen 4 Pool quenched Acid plasma (manufactured by Kojin Bio)
  • Specimen 5 HT29 sup. In Plasma
  • a citrate plasma manufactured by Kojin Bio Inc.
  • negative control particles As described above, an anti-mouse IgG antibody (manufactured by JSR Life Sciences, the same hereinafter) was prepared by binding to magnetic particles (MS300 / Carboxyl, manufactured by JSR Life Sciences, the same hereinafter).
  • Example 1-5 pH 7.4
  • TBS washing buffer
  • ALP alkaline phosphatase
  • Test Example 2-1 An anti-CD9 antibody (abcam manufactured by Abcam, ab2215, hereinafter the same) prepared by binding to magnetic particles (hereinafter also referred to as anti-CD9 antibody-binding magnetic particles) is prepared, and a clinical specimen containing the anti-CD9 antibody-binding magnetic particles and exosomes Are mixed with the reaction buffers of Reference Example 1 and Examples 1 to 5, and after washing, the exosomes captured by ELISA are detected in the same manner as in Test Example 1, so that Reference Example 1 and Examples 1 to 5 are detected. The reactivity when each reaction buffer was used was evaluated. The specific procedure is shown below. First, the following specimens were prepared as specimens 6 to 8. Specimen 6 (HT29 sup.
  • Control Buffer A control buffer prepared in Test Example 1 added with a HT29 cell culture supernatant 100-fold concentrated solution as a spike so as to be diluted 100-fold Specimen 7 (Serum): Pool Serum (manufactured by Kojin Bio) Specimen 8 (HT29 sup. In Serum): HT29 cell culture supernatant 100-fold concentrated solution added to pooled serum (manufactured by Kojin Bio) as a 100-fold dilution
  • Example 6 0.1 mg of anti-CD9 antibody-binding magnetic particles was added to 2 mL of Protein LoBind tube (manufactured by Eppendorf, # 0030108132), and samples 6 to 8 were added to each tube, one sample per sample (sample 6: 0.1 mL, specimen 7: 0.1 mL, specimen 8: 0.1 mL).
  • the reaction buffer of Reference Example 1 was added so that the final concentration of sodium chloride was 0.07 M, and the mixture was reacted at 25 ° C. for 5 hours (pH: 7.4). Further, the same reaction was carried out using the same amount of each of the reaction buffers of Examples 1 to 5 instead of the reaction buffer of Reference Example 1 (Example 1: final concentration 0.15M, Example 2: final concentration 0).
  • Example 1-5 pH 7.4
  • Washing / Dilution Buffer manufactured by JSR Life Sciences
  • 50 ⁇ L of ALP-labeled anti-CD81 antibody 0.1 ⁇ g / mL
  • TBS containing 1% by mass of BSA was added and reacted at 25 ° C. for 20 minutes.
  • the particles after the reaction were washed using a washing buffer (TBS containing 0.1% by weight of Tween 20), and 50 ⁇ L of a luminescent substrate (Class III series Lumipulse substrate solution manufactured by Fujirebio Inc.) was added. Luminescence intensity was measured using GloMax (Promega). The results are shown in FIG. As shown in FIG. 2-1, it was found that when the final concentration of sodium chloride was 0.15 to 0.35 M (Examples 1 to 5), the reactivity of the capture reaction in serum was improved.
  • Test Example 2-2 The same test as in Test Example 2-1 was performed by changing the reaction temperature of the capture reaction from 25 ° C. to 4 ° C. The specific procedure is shown below. 0.1 mg of anti-CD9 antibody-binding magnetic particles was added to 2 mL of Protein LoBind tube (Eppendorf, # 0030108132), and samples 6 to 8 were added to each tube, one sample per sample (sample 6: 0. 1 mL, specimen 7: 0.1 mL, specimen 8: 0.1 mL). The reaction buffer of Reference Example 1 was added so that the final concentration of sodium chloride was 0.07 M, and the mixture was reacted at 4 ° C. for 5 hours (pH: 7.4).
  • reaction buffer of Example 3 was used instead of the reaction buffer of Reference Example 1, and a similar reaction was performed (Example 3: final concentration of 0.25 M (pH: 7.4)).
  • a washing buffer TBS containing 0.1% by weight of Tween 20
  • 50 ⁇ L of ALP-labeled anti-CD81 antibody 0.1 ⁇ g / mL
  • TBS containing 1% by mass of BSA was added and reacted at 25 ° C. for 20 minutes.
  • FIG. 2-2 also shows the results of tests conducted at a reaction temperature of 25 ° C. From the results of Test Example 2-2 (FIG. 2-2), when the final concentration of sodium chloride is 0.25 M (Example 3), the serum concentration is not limited regardless of whether the reaction temperature is 4 ° C. or 25 ° C. It has been found that the reactivity of the capture reaction at is improved.
  • Test Example 3 The nonspecific adsorption reducing action of the reaction buffer of Example 3 was confirmed by changing the sample. The specific procedure is shown below. First, the following specimens were prepared as specimens 9-17. Specimen 9 (HT29 sup. Spike Control Buffer): HT29 cell culture supernatant 100-fold concentrated solution added as a spike to the control buffer prepared in Test Example 1 Specimen 10 (Serum): Pool Serum (manufactured by Kojin Bio) Specimen 11 (HT29 sup.
  • Spike Serum Pool serum (manufactured by Kojin Bio Inc.) spiked with 100-fold concentrated HT29 cell culture supernatant as a spike Specimen 12 (Plasma (Heparin)) : Pooled heparin plasma (manufactured by Kojin Bio) Specimen 13 (HT29 sup.
  • Spike Plasma Pooled heparin plasma (manufactured by Kojin Bio Inc.), spiked with 100-fold concentrated HT29 cell culture supernatant as a spike Specimen 14 (Plasma (EDTA)): Pooled EDTA plasma (manufactured by Kojin Bio) Specimen 15 (HT29 sup.
  • Spike Plasma A pooled EDTA plasma (manufactured by Kojin Bio Inc.) added with HT29 cell culture supernatant 100-fold concentrated solution as a spike at a dilution of 100-fold Specimen 16 (Plasma (Citrate): Pooled citrate plasma (manufactured by Kojin Bio) Specimen 17 (HT29 sup. Spike Plasma (Citrate)): Pool citrate plasma (manufactured by Kojin Bio Inc.), spiked with HT29 cell culture supernatant 100-fold concentrated solution diluted 100-fold
  • Test Example 4 The reactivity improvement effect of the reaction buffer of Example 3 was confirmed by changing the sample. The specific procedure is shown below. To 2 mL of Protein LoBind tube (Eppendorf, # 0030108132), 0.1 mg of anti-CD9 antibody-bound magnetic particles was added, and 0.1 mL of each of Samples 9 to 13 shown in Test Example 3 was added to each tube. Seed added. The reaction buffer of Reference Example 1 was added so that the final concentration of sodium chloride was 0.07 M, and the mixture was reacted at 25 ° C. for 5 hours (pH: 7.4).
  • reaction buffer of Example 3 was used instead of the reaction buffer of Reference Example 1, and a similar reaction was performed (Example 3: final concentration of 0.25 M (pH: 7.4)).
  • a washing buffer TBS containing 0.1% by weight of Tween 20
  • 50 ⁇ L of ALP-labeled anti-CD81 antibody 0.1 ⁇ g / mL
  • TBS containing 1% by mass of BSA was added and reacted at 25 ° C. for 20 minutes.
  • the particles after the reaction were washed using a washing buffer (TBS containing 0.1% by weight of Tween 20), and 50 ⁇ L of a luminescent substrate (Class III series Lumipulse substrate solution manufactured by Fujirebio Inc.) was added. Luminescence intensity was measured using GloMax (Promega). The results are shown in FIG. As shown in FIG. 4, when the final concentration of sodium chloride was 0.25 M (Example 3), the reactivity of the capture reaction was high regardless of the type of specimen.
  • Anti-CD63 antibody manufactured by JSR Life Sciences bound to magnetic particles (hereinafter referred to as anti-CD63 antibody-bound magnetic particles), anti-CD81 antibody (Clone M38, Abnova MAB6435) bound to magnetic particles (hereinafter referred to as “anti-CD63 antibody-bound magnetic particles”) , Anti-CD81 antibody-binding magnetic particles) and anti-EpCAM antibody (manufactured by JSR Life Sciences) bonded to magnetic particles (hereinafter referred to as anti-EpCAM antibody-binding magnetic particles) were prepared.
  • the test was performed except that the anti-CD9 antibody-bound magnetic particles were changed to anti-CD63 antibody-bound magnetic particles, anti-CD81 antibody-bound magnetic particles, and anti-EpCAM antibody-bound magnetic particles, and the samples 10 to 13 shown in Test Example 3 were used as samples.
  • the reactivity improvement effect of the reaction buffer of Example 3 was examined. The results are shown in FIG. 5-1 (anti-CD63 antibody-bound magnetic particles), FIG. 5-2 (anti-CD81 antibody-bound magnetic particles), and FIG. 5-3 (anti-EpCAM antibody-bound magnetic particles).
  • Tubes 1 to 4 each contain 0.1 mg of anti-CD9 antibody-binding magnetic particles
  • tubes 5 to 8 each contain 0.5 mg of anti-CD9 antibody-binding magnetic particles
  • tubes 9 to 12 contain 1 mg of anti-CD9 antibody-binding magnetic particles.
  • Each was added.
  • 1 mL of the reaction buffer of Example 3 was added to tubes 1 to 12 so that the final concentration of sodium chloride was 0.25 M, and 1 mL of the specimen 10 shown in Test Example 3 was further added.
  • ExoCap TM Nucleic Acid Elution Buffer (manufactured by MBL, # MEX-E) was used for microRNA recovery.
  • ExoCap TM Nucleic Acid Elution Buffer (manufactured by MBL, # MEX-E) was used for microRNA recovery.
  • TaqMan MicroRNA Reverse Transcription Kit (manufactured by Life Technologies, # 4365597)
  • TaqMan MicroRNA Assays manufactured by Life Technologies, # 1867948384
  • TaqMan UniMinGunUrGianUNG Using Life Technologies, # 4440040 the recommended protocol was followed for operation.
  • nucleic acids in vesicles derived from human healthy human serum could be detected by reacting in the presence of sodium chloride having a final concentration of 0.25M. Furthermore, it was confirmed that the amount of nucleic acid detected increased depending on the amount of antibody-bound particles, temperature, and time.
  • Tubes 13-14 contain 1 mg of anti-CD9 antibody-coupled magnetic particles
  • tubes 15-16 contain 1 mg of anti-CD63 antibody-coupled magnetic particles
  • tubes 17-18 contain 1 mg of anti-CD81 antibody-coupled magnetic particles
  • tube 19 -20 to Composite antibody-bound magnetic particles (mixed anti-CD9 antibody-bound magnetic particles, anti-CD63 antibody-bound magnetic particles, anti-CD81 antibody-bound magnetic particles and anti-EpCAM antibody-bound magnetic particles in a 1: 1: 1: 1 ratio) 1 mg each was added.
  • Example 3 0.3 mL of the reaction buffer of Example 3 was added to tubes 13 to 20 so that the final concentration of sodium chloride was 0.25M.
  • the sample 10 shown in Test Example 3 was added to the odd-numbered tube, and 0.3 mL each of the sample 12 shown in Test Example 3 was added to the even-numbered tube and reacted at 25 ° C. for 24 hours.
  • each particle after the reaction was washed three times with 0.5 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), and this suspension was added to 2 mL of a new Protein LoBind tube (Eppendorf). Product, # 0030108132).
  • microRNA was recovered from the remaining 0.1 mL of the antibody-bound particle solution and quantified. The results are shown in FIGS. 7-1 and 7-2.
  • miRNeasy Serum / Plasma Kit 50 (QIAGEN, # 217184) was used for microRNA collection.
  • nucleic acids in vesicles were detected using an ultracentrifugation method, which is a standard method for recovering exosomes. Specifically, 11 mL of each of the specimens 10 and 12 shown in Test Example 3 was centrifuged at 100,000 ⁇ g and 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman). The supernatant was extracted, and 11 mL of PBS was added to the precipitate and suspended. Again, the mixture was centrifuged at 100,000 rpm at 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman).
  • FIGS. 7-1 and 7-2 MicroRNA recovery and microRNA (miR-21) quantification were performed in the same manner as described above.
  • nucleic acids in vesicles derived from serum of healthy human subjects can be detected at the same level as in ultracentrifugation by reacting in the presence of sodium chloride with a final concentration of 0.25M. It was done.
  • nucleic acids in vesicles derived from heparin plasma from healthy human subjects could not be detected using the ultracentrifugation method. It is considered that heparin plasma of healthy human subjects generally contains substances that cause PCR inhibition, and substances that inhibit PCR remain in samples collected by ultracentrifugation.
  • nucleic acids in vesicles derived from human healthy human heparin plasma could be detected. From these results, it was found that by reacting vesicles and particles in the presence of sodium chloride having a final concentration of 0.25 M, nucleic acids in the vesicles can be detected regardless of the type of specimen such as serum and plasma.
  • Tubes 21 to 22 each contain 0.2 mg of anti-CD9 antibody-binding magnetic particles
  • tubes 23 to 24 each contain 0.2 mg of anti-CD63 antibody-binding magnetic particles
  • tubes 25 to 26 contain anti-CD81 antibody-binding magnetic particles 0 mg.
  • each particle after the reaction was washed three times with 0.5 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), and this suspension was added to 2 mL of a new Protein LoBind tube (Eppendorf). Product, # 0030108132).
  • TBS washing buffer
  • Product # 0030108132
  • the antibody-bound magnetic particles were suspended in 1 ⁇ sample buffer 20 ⁇ L, and allowed to stand at 95 ° C. for 5 minutes. A total amount (20 ⁇ L) of each sample was applied, and SDS-PAGE was performed.
  • the gel was transferred to a PVDF membrane, and then shaken in a blocking buffer (TBS containing 1% (w / v) BSA and 0.1% (w / v) Tween 20) at 37 ° C. for 2 hours. This was washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20).
  • Anti-CD9 antibody, anti-CD63 antibody, and anti-CD81 antibody are used as primary antibodies, and HRP-labeled anti-mouse IgG antibody (Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP, Rockland 18-8817-33) is used as a labeled antibody.
  • proteins on the vesicle surface were detected using the ultracentrifugation method, which is a standard method for recovering exosomes. Specifically, 11 mL of each of the specimens 10 and 12 shown in Test Example 3 was centrifuged at 100,000 ⁇ g and 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman). The supernatant was extracted, and 11 mL of PBS was added to the precipitate and suspended. Again, centrifugation was performed at 100,000 ⁇ g and 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman).
  • the supernatant was extracted, and 0.11 mL of PBS was added to the precipitate for suspension.
  • 5 ⁇ L of 4 ⁇ sample buffer and 5 ⁇ L of PBS were added, and the mixture was allowed to stand at 95 ° C. for 5 minutes.
  • a total amount (20 ⁇ L) of each sample was applied, and SDS-PAGE was performed.
  • the gel was transferred to a PVDF membrane, and then shaken in a blocking buffer (TBS containing 1% (w / v) BSA and 0.1% (w / v) Tween 20) at 37 ° C. for 2 hours. This was washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20).
  • Anti-CD9 antibody, anti-CD63 antibody, and anti-CD81 antibody are used as primary antibodies, and HRP-labeled anti-mouse IgG antibody (Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP, Rockland 18-8817-33) is used as a labeled antibody. This was allowed to react for a period of time, washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20), then reacted with a luminescent substrate, and a Western blot image was obtained with a luminescence measuring device (LAS-3000, FUJIFILM). confirmed. The results are shown in FIGS. 8-1 and 8-2.
  • Tubes 31 and 32 contain 0.1 mg of anti-CD9 antibody-coupled magnetic particles
  • tubes 33 and 34 contain 0.1 mg of anti-CD63 antibody-coupled magnetic particles
  • tubes 35 and 36 contain 0.1 mg of anti-CD81 antibody-coupled magnetic particles
  • tube 37 38 0.1 mg of anti-EpCAM antibody-coupled magnetic particles was added.
  • 0.3 mL of the reaction buffer of Example 3 was added to tubes 31 to 38 so that the final concentration of sodium chloride was 0.25M.
  • PE phycoerythrin labeled anti-mouse IgG antibody
  • PE-labeled anti-CD9 antibodies manufactured by SONY
  • tubes 41, 46, 51, 56, 61, 66, 71, 76 are PE-labeled anti-CD63 antibodies ( (Sony) and tubes 42, 47, 52, 57, 62, 67, 72, 77, PE labeled anti-CD81 antibody (manufactured by SONY), tubes 43, 48, 53, 58, 63, 68, In 73 and 78, 5 ⁇ L each of PE-labeled anti-EpCAM antibody (manufactured by SONY) was added. Thereafter, the tubes 39 to 78 were suspended for 1 hour under the conditions of 25 ° C.
  • the peak detected with the anti-mouse IgG antibody and the peak detected with the anti-CD9 antibody, anti-CD63 antibody, anti-CD81 antibody, and anti-EpCAM antibody are: It didn't change much. That is, when anti-EpCAM antibody-binding magnetic particles are used as a solid phase carrier, exosomes are not obtained from a healthy subject's sample, and it is considered that nonspecific adsorption is low. In addition, it is considered that the samples used for analysis were not treated with heat, drugs, etc. that change the three-dimensional structure of the protein, and the native forms of CD9, CD63, and CD81 present on the vesicle surface could be detected. .
  • Specimen 18 (HT29 sup. Spike Serum): A sample obtained by adding HT29 cell culture supernatant 100-fold concentrated concentrate as a spike to pooled serum (manufactured by Kojin Bio Inc.) to a 10-fold dilution Specimen 19 (HT29 sup. Spike Plasma) (Heparin): Pooled heparin plasma (manufactured by Kojin Bio Inc.), spiked with HT29 cell culture supernatant 100-fold concentrated solution diluted 10-fold
  • Tubes 79 and 80 contain 0.1 mg of anti-CD9 antibody-coupled magnetic particles
  • tubes 81 and 82 contain 0.1 mg of anti-CD63 antibody-coupled magnetic particles
  • tubes 83 and 84 contain 0.1 mg of anti-CD81 antibody-coupled magnetic particles
  • tube 85 contains 0.1 mg of anti-CD81 antibody-coupled magnetic particles
  • 86 0.1 mg of anti-EpCAM antibody-coupled magnetic particles was added. 0.3 mL of the reaction buffer of Example 3 was added to tubes 79 to 86 so that the final concentration of sodium chloride was 0.25M.
  • 0.1 mL of the suspension was dispensed into the tubes 112 to 116. From the tube 85, 0.1 mL of the suspension was dispensed into tubes 117 to 121. From the tube 86, 0.1 mL of the suspension was dispensed into tubes 122 to 126. Next, in tubes 87, 92, 97, 102, 107, 112, 117, 122, PE-labeled anti-mouse IgG antibody (manufactured by SONY) was used as a control, and tubes 88, 93, 98, 103, 108, 113, 118 were used.
  • 123 is a PE-labeled anti-CD9 antibody (manufactured by SONY)
  • tubes 89, 94, 99, 104, 109, 114, 119, and 124 are PE-labeled anti-CD63 antibody (manufactured by SONY) and tube 90 , 95, 100, 105, 110, 115, 120, 125 are PE-labeled anti-CD81 antibody (manufactured by SONY)
  • tubes 91, 96, 101, 106, 111, 116, 121, 126 are labeled with PE. 5 ⁇ L of anti-EpCAM antibody (manufactured by SONY) was added.
  • FIGS. 9-3 and 9-4 by reacting vesicles and particles in the presence of sodium chloride having a final concentration of 0.25 M, human healthy human serum, human healthy heparin plasma, human colon cancer HT29 It was confirmed that CD9, CD63, and CD81 present on the surface of vesicles derived from cells can be detected. Moreover, the peak shift which confirmed that EpCAM considered to express by carcinogenesis with the anti- EpCAM antibody was able to confirm the peak shift compared with the anti-mouse IgG antibody used as control. This peak shift was not confirmed in FIGS. 9-1 and 9-2, in which only healthy subjects were used as samples, indicating that the disease can be determined using the present invention.
  • the peak detected with the anti-mouse IgG antibody and the peak detected with the anti-CD9 antibody, anti-CD63 antibody, anti-CD81 antibody, and anti-EpCAM antibody are: It didn't change much. That is, when anti-EpCAM antibody-binding magnetic particles are used as a solid phase carrier, exosomes are not obtained from a healthy subject's sample, and it is considered that nonspecific adsorption is low. In addition, it is considered that the samples used for analysis were not treated with heat, drugs, etc. that change the three-dimensional structure of the protein, and the native forms of CD9, CD63, and CD81 present on the vesicle surface could be detected. .
  • Tubes 127 to 130 each contain 0.2 mg of anti-CD9 antibody-coupled magnetic particles
  • tubes 131 to 134 each contain 0.2 mg of anti-CD63 antibody-coupled magnetic particles
  • tubes 135 to 138 contain anti-CD81 antibody-coupled magnetic particles 0 mg.
  • Samples 10 shown in Test Example 3 are placed in tubes 127, 131, 135, 139, and 143, and Samples 18 shown in Test Example 9-2 are placed in tubes 128, 132, 136, 140, and 144, and tubes 129, 133, and 137 are shown in FIG. , 141, 145, and 0.1 mL of the specimen 12 shown in Test Example 9-2 are added to the tubes 130, 134, 138, 142, 146, respectively, and the mixture is added at 25 ° C. for 24 hours. Reacted.
  • each particle after the reaction was washed three times with 0.5 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), and this suspension was added to 2 mL of a new Protein LoBind tube (Eppendorf). Product, # 0030108132).
  • TBS washing buffer
  • Product # 0030108132
  • the antibody-bound magnetic particles were suspended in 1 ⁇ sample buffer 20 ⁇ L, and allowed to stand at 95 ° C. for 5 minutes. A total amount (20 ⁇ L) of each sample was applied, and SDS-PAGE was performed.
  • the gel was transferred to a PVDF membrane, and then shaken in a blocking buffer (TBS containing 1% (w / v) BSA and 0.1% (w / v) Tween 20) at 37 ° C. for 2 hours. This was washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20).
  • TBS blocking buffer
  • Anti-CD9 antibody, anti-EpCAM antibody, and anti-Alix antibody are used as the primary antibody
  • HRP-labeled anti-mouse IgG antibody (Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP, Rockland 18-8817-33) is used as the labeled antibody.
  • proteins on the vesicle surface were detected using the ultracentrifugation method, which is a standard method for recovering exosomes. That is, 11 mL each of specimens 10, 12, 18, and 19 were centrifuged at 100,000 ⁇ g and 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman). The supernatant was extracted, and 11 mL of PBS was added to the precipitate and suspended. Again, centrifugation was performed at 100,000 ⁇ g and 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman). The supernatant was extracted, and 0.11 mL of PBS was added to the precipitate for suspension.
  • the ultracentrifugation method which is a standard method for recovering exosomes. That is, 11 mL each of specimens 10, 12, 18, and 19 were centrifuged at 100,000 ⁇ g and 4 ° C. for 70 minutes using an ultracentrifuge (Opti
  • Anti-CD9 antibody, anti-EpCAM antibody, and anti-Alix antibody are used as the primary antibody, and HRP-labeled anti-mouse IgG antibody (Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP, Rockland 18-8817-33) is used as the labeled antibody.
  • TBS washing buffer
  • LAS-3000, FUJIFILM a Western blot image was obtained with a luminescence measuring device

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The purpose of the present invention is to provide a method by which non-specific adsorption to a solid-phase carrier can be reduced, and vesicles having lipid bilayer membranes can be separated selectively and efficiently. Provided is a method for separating vesicles having lipid bilayer membranes, characterized by including a complex formation step for bringing a biological specimen that includes vesicles having lipid bilayer membranes, and a solid-phase carrier to which are bonded ligands that recognize a surface antigen present on the surfaces of the vesicles, into contact, causing a complex of the vesicles and the solid-phase carrier to form, and a washing step for washing the complex, the complex formation step and/or the washing step being carried out in the presence of an inorganic salt or organic salt at a final concentration of 0.15-2 M.

Description

分離方法、検出方法、シグナル測定方法、疾患の判定方法、薬効評価方法、キット、液状組成物及び検体希釈液Separation method, detection method, signal measurement method, disease determination method, drug efficacy evaluation method, kit, liquid composition, and specimen diluent
 本発明は、分離方法、検出方法、シグナル測定方法、疾患の判定方法、薬効評価方法、キット、液状組成物及び検体希釈液に関する。より詳細には、エクソソームなどの脂質二重膜を有する小胞の分離方法、該方法を利用した核酸又はタンパク質の検出方法、シグナル測定方法、疾患の判定方法、疾患治療薬の薬効評価方法、疾患判定又は薬効評価用キット、上記分離方法に用いる液状組成物、及び検体希釈液に関する。 The present invention relates to a separation method, a detection method, a signal measurement method, a disease determination method, a drug efficacy evaluation method, a kit, a liquid composition, and a specimen diluent. More specifically, a method for separating vesicles having a lipid bilayer such as exosome, a method for detecting nucleic acid or protein using the method, a signal measuring method, a method for determining a disease, a method for evaluating the efficacy of a disease therapeutic agent, a disease The present invention relates to a determination or medicinal effect evaluation kit, a liquid composition used in the separation method, and a specimen diluent.
 小胞は脂質二重膜に包まれた構造を有するものであり、斯様な小胞のうち、生体内の体液中に存在する小胞顆粒としてエクソソームが知られている。エクソソームの表面には、一般的な細胞表面と同様に、種々の膜タンパク質が存在することが知られており、その一方で、エクソソームの内部には、サイトカイン等各種タンパク質以外にもmicroRNA(miRNA)が含まれることも分かってきた。 Vesicles have a structure encased in a lipid bilayer, and exosomes are known as vesicle granules existing in body fluids in the body among such vesicles. It is known that various membrane proteins exist on the surface of exosomes as well as general cell surfaces. On the other hand, in addition to various proteins such as cytokines, microRNA (miRNA) is present inside exosomes. Has also been found to be included.
 また、免疫系の細胞や各種癌細胞等の種々の細胞からエクソソームが分泌されることが知られており、生体内の細胞間コミュニケーションの媒介役としてのエクソソームの機能、エクソソームと生理現象や癌等の疾患との関連性が注目され、これについて検討が進められている。例えば、腫瘍マーカーであるEpCAMの抗体を用いた場合に、卵巣癌患者の循環血中からエクソソームが分離され、エクソソーム由来のmiRNA発現量と卵巣癌の進行との間に関連性があることが既に報告されている(非特許文献1)。 In addition, it is known that exosomes are secreted from various cells such as cells of the immune system and various cancer cells. The function of exosomes as a mediator of intercellular communication in vivo, exosomes and physiological phenomena, cancer, etc. Relevance to other diseases has attracted attention and is being investigated. For example, when using an antibody of EpCAM, which is a tumor marker, exosomes are isolated from circulating blood of ovarian cancer patients, and there is already a relationship between the expression level of exosome-derived miRNA and the progression of ovarian cancer. It has been reported (Non-Patent Document 1).
 また、エクソソーム上に発現する4回膜貫通型の膜タンパク質として、テトラスパニンファミリーに属するCD9、CD63及びCD81があり、非特許文献2には、メラノーマ患者の血漿中のエクソソーム量が健常者のものと比べて高く、これがCD63に対する抗体や腫瘍関連マーカーのCaveolin-1に対する抗体で検出・定量化できることが報告されている。また、遠心分離後の血漿サンプルに、抗CD63抗体や種々の膜タンパク質に対する抗体等を組み合わせて反応させることで、癌患者におけるエクソソームに由来するシグナルを定量して解析することが行われている(特許文献1)。 Further, there are CD9, CD63, and CD81 belonging to the tetraspanin family as four-transmembrane membrane proteins expressed on exosomes. Non-patent document 2 discloses that the amount of exosomes in the plasma of melanoma patients is normal. It has been reported that this can be detected and quantified with an antibody against CD63 and an antibody against tumor-related marker Caveolin-1. In addition, a signal derived from an exosome in a cancer patient is quantified and analyzed by reacting the plasma sample after centrifugation with a combination of an anti-CD63 antibody and antibodies against various membrane proteins. Patent Document 1).
 上記のように、血清、血漿、血液などの臨床検体からエクソソームを特異的に捕捉し、エクソソームに含まれるタンパク質やmiRNAを新たなバイオマーカーとして疾患の早期診断や再発の発見に利用する試みがされている。 As described above, attempts have been made to specifically capture exosomes from clinical specimens such as serum, plasma, blood, etc., and use proteins and miRNAs contained in exosomes as new biomarkers for early diagnosis of disease and discovery of recurrence. ing.
国際公開第2010/065968号International Publication No. 2010/065968
 しかしながら、上記臨床検体は、アルブミンおよびグロブリン等の高濃度のタンパク質を含んでいるため、臨床検体から分離したエクソソームを疾患の判定に用いる際に、固相担体や反応容器内壁に対する非特異吸着に起因して、抗原抗体反応などの特異反応が検体成分により阻害をうけることや陰性と判定されるべき検体が誤って陽性と判定される(以下、偽陽性)ことが大きな問題となる。この問題は臨床検体が血清や血漿の場合に特に顕著となる。
 この偽陽性を減少させるために、反応中に界面活性剤を添加する、或いは固相担体にタンパク質やポリマーをオーバーコートするなどの手法が用いられてきたが、これまでの手法だけでは非特異吸着に起因する偽陽性を減少させるには限界があった。偽陽性を減少させることは、エクソソームをはじめとする小胞を利用した疾患の判定や疾患治療薬の薬効評価において、ますます重要な課題となってくる。
 また、エクソソームの分離に先立ち、抗原抗体反応を阻害しうる検体成分を取り除き、エクソソームを濃縮するなどの前処理をすることが提案されており、斯様な前処理法として、ポリエチレングリコール(PEG)沈殿法による単離法、超遠心機を用いた単離法等が一般的に行われているが、このような前処理を行っても非特異吸着を十分に低減することは困難であり、また手間がかかるという問題があった。
 本発明が解決しようとする課題は、固相担体への非特異吸着を低減でき、脂質二重膜を有する小胞を選択的かつ効率よく分離できる方法を提供することにある。
However, since the above clinical specimen contains high-concentration proteins such as albumin and globulin, when using exosomes separated from the clinical specimen for disease determination, it is caused by nonspecific adsorption to the solid phase carrier or the inner wall of the reaction vessel. Thus, it is a serious problem that a specific reaction such as an antigen-antibody reaction is inhibited by a sample component, or a sample to be determined to be negative is erroneously determined to be positive (hereinafter false positive). This problem is particularly noticeable when the clinical specimen is serum or plasma.
In order to reduce this false positive, methods such as adding a surfactant during the reaction or overcoating a solid phase carrier with a protein or polymer have been used. There was a limit to reducing false positives caused by. Decreasing false positives becomes an increasingly important issue in the determination of diseases using vesicles such as exosomes and the evaluation of drug efficacy.
In addition, prior to exosome separation, it has been proposed to perform a pretreatment such as removing a sample component that can inhibit the antigen-antibody reaction and concentrating the exosome. As such a pretreatment method, polyethylene glycol (PEG) is proposed. Although the isolation method using a precipitation method, the isolation method using an ultracentrifuge, etc. are generally performed, it is difficult to sufficiently reduce nonspecific adsorption even if such pretreatment is performed, There was also a problem that it took time and effort.
The problem to be solved by the present invention is to provide a method capable of reducing non-specific adsorption to a solid support and selectively and efficiently separating vesicles having lipid bilayer membranes.
 そこで、本発明者らは鋭意検討した結果、脂質二重膜を有する小胞を含む生体試料と、前記小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体とを接触させ、前記小胞と前記固相担体との複合体を形成させる複合体形成工程と、前記複合体を洗浄する洗浄工程を含む、脂質二重膜を有する小胞の分離方法において、前記複合体形成工程及び前記洗浄工程の少なくともいずれかを、終濃度0.15~2Mの無機塩又は有機塩の存在下で行うことにより、固相担体への非特異吸着を低減でき、脂質二重膜を有する小胞を選択的かつ効率よく分離できることを見出し、本発明を完成した。 Thus, as a result of intensive studies, the present inventors contacted a biological sample containing a vesicle having a lipid bilayer membrane with a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of the vesicle. In the method of separating a vesicle having a lipid bilayer membrane, comprising a complex forming step of forming a complex of the vesicle and the solid phase carrier, and a washing step of washing the complex. By performing at least one of the step and the washing step in the presence of an inorganic salt or organic salt having a final concentration of 0.15 to 2M, nonspecific adsorption to the solid support can be reduced, and a lipid bilayer membrane is provided. The inventors have found that vesicles can be selectively and efficiently separated, thereby completing the present invention.
 すなわち、本発明は、以下の<1>~<10>を提供するものである。 That is, the present invention provides the following <1> to <10>.
 <1>脂質二重膜を有する小胞を含む生体試料と、前記小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体とを接触させ、前記小胞と前記固相担体との複合体を形成させる複合体形成工程と、前記複合体を洗浄する洗浄工程を含み、前記複合体形成工程及び前記洗浄工程の少なくともいずれかを、終濃度0.15~2Mの無機塩又は有機塩の存在下で行うことを特徴とする、脂質二重膜を有する小胞の分離方法(以下、第1の分離方法ともいう)。 <1> A biological sample containing a vesicle having a lipid bilayer membrane is contacted with a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of the vesicle, and the vesicle and the solid phase carrier are contacted A complex forming step for forming a complex with the complex, and a washing step for washing the complex, wherein at least one of the complex forming step and the washing step includes an inorganic salt having a final concentration of 0.15 to 2M or A method for separating vesicles having a lipid bilayer membrane (hereinafter, also referred to as a first separation method), which is performed in the presence of an organic salt.
 <2>上記<1>の分離方法の後に、さらに小胞中の核酸を検出する核酸検出工程を含むことを特徴とする、小胞中の核酸の検出方法。 <2> A method for detecting a nucleic acid in a vesicle, further comprising a nucleic acid detection step for detecting the nucleic acid in the vesicle after the separation method of <1> above.
 <3>上記<1>の分離方法の後に、さらに小胞の内側及び表面の少なくとも一方に存在するタンパク質を検出するタンパク質検出工程を含むことを特徴とする、小胞由来のタンパク質の検出方法。 <3> A method for detecting a protein derived from a vesicle, further comprising a protein detection step of detecting a protein present on at least one of the inside and the surface of the vesicle after the separation method of <1>.
 <4>上記<1>の分離方法の後に、さらに前記複合体を形成した小胞由来のシグナル強度を測定するシグナル測定工程を含むことを特徴とする、小胞由来のシグナル測定方法。 <4> A method for measuring a signal derived from a vesicle, further comprising a signal measurement step of measuring a signal intensity derived from a vesicle formed with the complex after the separation method of <1>.
 <5>被検者が疾患を発症しているか否かを判定するための方法であって、被検者由来の生体試料を用いて、上記<4>のシグナル測定方法により前記複合体を形成した小胞由来のシグナル強度を測定する工程を含むことを特徴とする、疾患の判定方法。 <5> A method for determining whether or not a subject has developed a disease, wherein the complex is formed by the signal measurement method of <4> above using a biological sample derived from the subject. A method for determining a disease, comprising a step of measuring a signal intensity derived from a prepared vesicle.
 <6>疾患治療薬の薬効評価方法であって、疾患治療薬の投与前及び投与後の被検者由来の生体試料を用いて、上記<4>のシグナル測定方法により、前記複合体を形成した小胞由来のシグナル強度を測定する工程を含むことを特徴とする、疾患治療薬の薬効評価方法。 <6> A method for evaluating the efficacy of a drug for treating a disease, wherein the complex is formed by the signal measurement method of <4> above using a biological sample derived from a subject before and after administration of the drug for treating a disease. A method for evaluating the efficacy of a therapeutic agent for a disease, comprising a step of measuring a signal intensity derived from a vesicle.
 <7>脂質二重膜を有する小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体と、無機塩又は有機塩を含み該無機塩又は有機塩の含有量が系内の終濃度を0.15~2Mに調整できる量である液状組成物とを備えることを特徴とする、キット。 <7> A solid phase carrier to which a ligand that recognizes a surface antigen existing on the surface of a vesicle having a lipid bilayer is bound, and an inorganic salt or an organic salt, and the content of the inorganic salt or organic salt is within the system And a liquid composition in an amount capable of adjusting the final concentration to 0.15 to 2M.
 <8>脂質二重膜を有する小胞を含む生体試料と、前記小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体とを接触させ、前記小胞と前記固相担体との複合体を形成させる複合体形成工程と、前記複合体を洗浄する洗浄工程とを含む、脂質二重膜を有する小胞の分離方法に使用される、前記複合体形成工程及び前記洗浄工程の少なくともいずれかに添加するための液状組成物であって、無機塩又は有機塩を含み、該無機塩又は有機塩の含有量が、系内の終濃度を0.15~2Mに調整できる量であることを特徴とする、液状組成物。 <8> A biological sample containing vesicles having a lipid bilayer membrane is contacted with a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of the vesicle, and the vesicle and the solid phase carrier are contacted The complex forming step and the washing step used in a method for separating a vesicle having a lipid bilayer membrane, comprising: a complex forming step for forming a complex with the complex; and a washing step for washing the complex. A liquid composition to be added to at least one of the above, wherein an inorganic salt or an organic salt is contained, and the content of the inorganic salt or organic salt can adjust the final concentration in the system to 0.15 to 2M A liquid composition, characterized in that
 <9>不溶性担体を用いて脂質二重膜を有する小胞を含む生体試料から脂質二重膜を有する小胞を分離する方法に使用される、前記小胞と前記不溶性担体との複合体を形成させるための検体希釈液であって、無機塩又は有機塩を含み、該無機塩又は有機塩の含有量が、系内の終濃度を0.15~2Mに調整できる量であることを特徴とする、検体希釈液。 <9> A complex of the vesicle and the insoluble carrier used in a method of separating a vesicle having a lipid bilayer membrane from a biological sample containing the vesicle having a lipid bilayer membrane using an insoluble carrier. A specimen diluent for formation, comprising an inorganic salt or an organic salt, wherein the content of the inorganic salt or organic salt is such that the final concentration in the system can be adjusted to 0.15 to 2M. Sample dilution liquid.
 <10>不溶性担体を用いて脂質二重膜を有する小胞を含む生体試料から脂質二重膜を有する小胞を分離する方法であって、無機塩又は有機塩を含み、該無機塩又は有機塩の含有量が、系内の終濃度を0.15~2Mに調整できる量である検体希釈液を系内に添加することを特徴とする、脂質二重膜を有する小胞の分離方法(以下、第2の分離方法ともいう)。 <10> A method for separating vesicles having a lipid bilayer membrane from a biological sample containing vesicles having a lipid bilayer membrane using an insoluble carrier, the inorganic salt or organic salt containing the inorganic salt or organic salt A method for separating a vesicle having a lipid bilayer, wherein a specimen diluent having a salt content such that the final concentration in the system can be adjusted to 0.15 to 2M is added to the system ( Hereinafter, it is also referred to as a second separation method).
 本発明の脂質二重膜を有する小胞の分離方法によれば、固相担体への非特異吸着を低減でき、脂質二重膜を有する小胞を選択的かつ効率よく分離できる。
 したがって、本発明によれば小胞中の核酸、小胞由来のタンパク質、小胞由来のシグナルを、簡便且つ正確に検出・測定できる。また、本発明の疾患の判定方法、薬効評価方法は、偽陽性になりにくい。また、本発明のキット、液状組成物、検体希釈液を用いることにより、固相担体への非特異吸着を低減でき、脂質二重膜を有する小胞を選択的かつ効率よく分離できる。
According to the method for separating vesicles having a lipid bilayer membrane of the present invention, non-specific adsorption to a solid phase carrier can be reduced, and vesicles having a lipid bilayer membrane can be selectively and efficiently separated.
Therefore, according to the present invention, nucleic acids in vesicles, proteins derived from vesicles, and signals derived from vesicles can be detected and measured easily and accurately. Moreover, the disease determination method and drug efficacy evaluation method of the present invention are unlikely to be false positives. In addition, by using the kit, liquid composition, and specimen diluent of the present invention, nonspecific adsorption to the solid phase carrier can be reduced, and vesicles having lipid bilayer membranes can be selectively and efficiently separated.
バッファー由来の塩化ナトリウムの終濃度を0.15~0.35M(実施例1~5)とすることによる非特異吸着低減作用を示す図である(臨床検体:血清)。FIG. 5 is a view showing an effect of reducing nonspecific adsorption by setting the final concentration of buffer-derived sodium chloride to 0.15 to 0.35 M (Examples 1 to 5) (clinical sample: serum). バッファー由来の塩化ナトリウムの終濃度を0.15~0.35M(実施例1~5)とすることによる非特異吸着低減作用を示す図である(臨床検体:クエン酸血漿)。FIG. 5 is a view showing a nonspecific adsorption reducing action by setting the final concentration of buffer-derived sodium chloride to 0.15 to 0.35 M (Examples 1 to 5) (clinical specimen: citrated plasma). 反応温度25℃におけるバッファー由来の塩化ナトリウムの終濃度を0.15~0.35M(実施例1~5)とすることによる反応性向上作用を示す図である(臨床検体:血清)。FIG. 5 is a view showing a reactivity improving effect by setting the final concentration of buffer-derived sodium chloride at a reaction temperature of 25 ° C. to 0.15 to 0.35 M (Examples 1 to 5) (clinical sample: serum). 反応温度4℃におけるバッファー由来の塩化ナトリウムの終濃度を0.25M(実施例3)とすることによる反応性向上作用を示す図である(臨床検体:血清)。It is a figure which shows the reactivity improvement effect by making final concentration of the sodium chloride derived from the buffer in reaction temperature 4 degreeC into 0.25M (Example 3) (clinical sample: serum). 種々の臨床検体を用いた場合の非特異吸着低減作用を確認した図である。It is the figure which confirmed the nonspecific adsorption | suction reduction effect | action at the time of using various clinical specimens. 種々の臨床検体を用いた場合の反応性向上作用を確認した図である。It is the figure which confirmed the reactivity improvement effect at the time of using various clinical specimens. 固相担体として抗CD63抗体結合磁性粒子を用いた場合の反応性向上作用を確認した図である。It is the figure which confirmed the reactivity improvement effect at the time of using an anti-CD63 antibody coupling | bonding magnetic particle as a solid-phase carrier. 固相担体として抗CD81抗体結合磁性粒子を用いた場合の反応性向上作用を確認した図である。It is the figure which confirmed the reactivity improvement effect at the time of using an anti-CD81 antibody coupling | bonding magnetic particle as a solid-phase carrier. 固相担体として抗EpCAM抗体結合磁性粒子を用いた場合の反応性向上作用を確認した図である。It is the figure which confirmed the reactivity improvement effect at the time of using an anti- EpCAM antibody coupling | bonding magnetic particle as a solid-phase carrier. 固相担体として抗CD9抗体結合磁性粒子を用いてヒト健常者血清と反応させた場合の小胞中の核酸の検出結果を示す図である。It is a figure which shows the detection result of the nucleic acid in a vesicle at the time of making it react with human healthy subject serum using an anti-CD9 antibody coupling | bonding magnetic particle as a solid-phase carrier. ヒト健常者血清に由来する小胞中の核酸の検出結果を示す図である。It is a figure which shows the detection result of the nucleic acid in the vesicle derived from a human healthy subject serum. ヒト健常者ヘパリン血漿に由来する小胞中の核酸の検出結果を示す図である。It is a figure which shows the detection result of the nucleic acid in the vesicle derived from human healthy subject heparin plasma. ヒト健常者血清に由来する小胞表面のタンパクの検出結果を示す図である。It is a figure which shows the detection result of the protein of the vesicle surface originating in human healthy subject serum. ヒト健常者ヘパリン血漿に由来する小胞表面のタンパクの検出結果を示す図である。It is a figure which shows the detection result of the protein of the vesicle surface originating in human healthy subject heparin plasma. ヒト健常者血清に由来する小胞表面のネイティブフォームの立体構造を維持したタンパクの検出結果を示す図である。It is a figure which shows the detection result of the protein which maintained the three-dimensional structure of the native form of the vesicle surface derived from a human healthy subject serum. ヒト健常者ヘパリン血漿に由来する小胞表面のネイティブフォームの立体構造を維持したタンパクの検出結果を示す図である。It is a figure which shows the detection result of the protein which maintained the three-dimensional structure of the native form of the vesicle surface derived from human healthy person heparin plasma. ヒト結腸がんHT29細胞より調製したエクソソーム含有培養上清をヒト健常者血清に添加した、擬似的な疾患由来生体試料から、小胞表面のタンパクをネイティブフォームの立体構造を維持したまま検出した結果を示す図である。Results of detection of proteins on the surface of vesicles from a pseudo-disease-derived biological sample in which exosome-containing culture supernatant prepared from human colon cancer HT29 cells was added to the serum of healthy human subjects while maintaining the native structure of the native form FIG. ヒト結腸がんHT29細胞より調製したエクソソーム含有培養上清をヒト健常者ヘパリン血漿に添加した、擬似的な疾患由来生体試料から、小胞表面のタンパクをネイティブフォームの立体構造を維持したまま検出した結果を示す図である。The exosome-containing culture supernatant prepared from human colon cancer HT29 cells was added to heparin plasma of healthy human subjects, and the protein on the vesicle surface was detected while maintaining the native form of the three-dimensional structure. It is a figure which shows a result. ヒト結腸がんHT29細胞より調製したエクソソーム含有培養上清をヒト健常者血清に添加した、擬似的な疾患由来生体試料から、小胞表面のタンパクを検出した結果を示す図である。It is a figure which shows the result of having detected the protein of the vesicle surface from the pseudo-disease origin biological sample which added the exosome containing culture supernatant prepared from the human colon cancer HT29 cell to human healthy subject serum. ヒト結腸がんHT29細胞より調製したエクソソーム含有培養上清をヒト健常者ヘパリン血漿に添加した、擬似的な疾患由来生体試料から、小胞表面のタンパクを検出した結果を示す図である。It is a figure which shows the result of having detected the protein of the vesicle surface from the pseudo-disease origin biological sample which added the exosome containing culture supernatant prepared from the human colon cancer HT29 cell to human healthy person heparin plasma.
〔脂質二重膜を有する小胞の分離方法(第1の分離方法)〕
 本発明の第1の分離方法は、脂質二重膜を有する小胞を含む生体試料と、小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体とを接触させ、小胞と固相担体との複合体を形成させる複合体形成工程と、複合体を洗浄する洗浄工程を含み、複合体形成工程及び洗浄工程の少なくともいずれかを、終濃度0.15~2Mの無機塩又は有機塩の存在下で行うことを特徴とするものである。ここで、本明細書において終濃度(最終濃度)とは、生体試料由来の無機塩(通常0.14M程度)や有機塩を含まない無機塩、有機塩の濃度であり、複合体形成工程、洗浄工程の際における人為的に存在させた系内の無機塩又は有機塩の最終濃度をいう。無機塩又は有機塩の終濃度は、粉状、粒状等の固形物や検体希釈液等の液状組成物によるいずれの方法においても調整することが可能である。また、終濃度の測定は、公知の各種の測定方法や測定機器等を用いて行えばよい。
[Separation method of vesicles having lipid bilayer membrane (first separation method)]
In the first separation method of the present invention, a biological sample containing vesicles having a lipid bilayer membrane is contacted with a solid phase carrier to which a ligand recognizing a surface antigen present on the surface of the vesicle is bound. A complex forming step of forming a complex of the solid phase carrier and a washing step of washing the complex, and at least one of the complex forming step and the washing step is performed with an inorganic salt having a final concentration of 0.15 to 2M Alternatively, it is carried out in the presence of an organic salt. Here, in this specification, the final concentration (final concentration) is a concentration of an inorganic salt derived from a biological sample (usually about 0.14M), an inorganic salt that does not contain an organic salt, or an organic salt, It refers to the final concentration of inorganic or organic salts in the system that exist artificially during the washing process. The final concentration of the inorganic salt or organic salt can be adjusted by any method using a solid composition such as powder or granules or a liquid composition such as a specimen diluent. Further, the final concentration may be measured using various known measuring methods and measuring instruments.
(複合体形成工程)
 複合体形成工程は、脂質二重膜を有する小胞を含む生体試料と、小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体とを接触させ、小胞と固相担体との複合体を形成させる工程である。上記接触により、リガンドに小胞が捕捉され、小胞と固相担体との複合体が形成される。なお、複合体形成工程の反応系には、上記固相担体に結合したリガンド以外に、脂質二重膜を有する小胞の表面に存在する表面抗原を認識するリガンドも共存していてもよい。
(Composite formation process)
In the complex formation step, a biological sample containing a vesicle having a lipid bilayer membrane is contacted with a solid phase carrier to which a ligand that recognizes a surface antigen present on the surface of the vesicle is bound, and the vesicle and the solid phase carrier are contacted. And forming a complex. By the contact, the vesicle is captured by the ligand, and a complex of the vesicle and the solid phase carrier is formed. In addition to the ligand bound to the solid phase carrier, a ligand that recognizes a surface antigen present on the surface of a vesicle having a lipid bilayer may coexist in the reaction system of the complex formation step.
 上記生体試料は脂質二重膜を有する小胞を含むものであれば特に限定されるものではなく、例えば、体液、菌体液、細胞培養の培地、細胞培養上清、組織細胞の破砕液等の各種液体が挙げられる。この中でも、体液、細胞培養上清が好ましく、体液がより好ましい。体液としては、全血、血清、血漿、血液成分、各種血球、血餅、血小板等の血液組成成分の他、尿、精液、母乳、汗、間質液、間質性リンパ液、骨髄液、組織液、唾液、胃液、関節液、胸水、胆汁、腹水、羊水等が挙げられ、好ましくは血液組成成分である。本発明の第1の分離方法は、斯様な臨床検体を生体試料として用いた場合であっても、固相担体への非特異吸着が低く、捕捉反応の反応性が高いため、本発明の第1の分離方法によれば、広範な種類の生体試料から選択的かつ効率よく小胞を分離できる。例えば、生体試料として血漿を用いた場合でも非特異吸着が起こりにくく、血清を用いた場合でも捕捉反応の反応性が高い。
 なお、血液組成成分は、クエン酸、ヘパリン、EDTA等の抗凝固剤で処理されたものでもよい。
The biological sample is not particularly limited as long as it contains vesicles having lipid bilayer membranes, such as body fluid, fungal fluid, cell culture medium, cell culture supernatant, tissue cell disruption fluid, etc. Various liquids are mentioned. Among these, a body fluid and a cell culture supernatant are preferable, and a body fluid is more preferable. Body fluids include whole blood, serum, plasma, blood components, various blood cells, blood clots, platelets, and other blood composition components, as well as urine, semen, breast milk, sweat, interstitial fluid, interstitial lymph fluid, bone marrow fluid, tissue fluid , Saliva, gastric juice, joint fluid, pleural effusion, bile, ascites, amniotic fluid, etc., preferably blood composition components. Even if such a clinical specimen is used as a biological sample, the first separation method of the present invention has low non-specific adsorption to the solid phase carrier and high reactivity of the capture reaction. According to the first separation method, vesicles can be selectively and efficiently separated from a wide variety of biological samples. For example, nonspecific adsorption hardly occurs even when plasma is used as the biological sample, and the reactivity of the capture reaction is high even when serum is used.
The blood composition component may be treated with an anticoagulant such as citric acid, heparin, EDTA or the like.
 上記生体試料は、終濃度が0.15~2Mとなる量の無機塩又は有機塩を含むバッファー組成物に添加しておくなどして予め前処理したものを用いてもよいが、生体から摂取したものをそのまま用いることもできる。すなわち、本発明の第1の分離方法によれば、PEG沈殿法、超遠心機等を用いた単離法等による前処理を行わず簡便に選択的な分離をすることも可能である。 The biological sample may be pre-treated by adding it to a buffer composition containing an inorganic salt or an organic salt in a final concentration of 0.15 to 2M. You can also use it as it is. That is, according to the first separation method of the present invention, it is possible to easily and selectively perform separation without pretreatment by a PEG precipitation method, an isolation method using an ultracentrifuge, or the like.
 また、上記脂質二重膜を有する小胞としては、細胞、細胞から細胞外に放出されるエクソソームのような小胞が挙げられるが、本発明の第1の分離方法は、小胞がエクソソームである場合に特に好ましく用いられる。
 また、小胞の表面に存在する表面抗原は、小胞の表面に存在する物質で抗原性のあるものであれば特に限定されない。エクソソームの表面抗原を例に挙げると、CD9、CD63、CD81等のテトラスパニン類;MHCI、MHCII等の抗原提示関連タンパク質;インテグリン、ICAM-1、EpCAMなどの接着分子;EGFRvIII、TGF-βなどのサイトカイン/サイトカイン受容体、酵素類等が挙げられる。これらの中でも、エクソソーム表面に存在する抗原タンパク質が好ましい。
Examples of the vesicle having the lipid bilayer include vesicles such as cells and exosomes released from the cells to the outside. In the first separation method of the present invention, the vesicles are exosomes. In some cases, it is particularly preferably used.
The surface antigen present on the surface of the vesicle is not particularly limited as long as it is a substance present on the surface of the vesicle and is antigenic. Examples of exosome surface antigens include tetraspanins such as CD9, CD63, and CD81; antigen presentation-related proteins such as MHCI and MHCII; adhesion molecules such as integrin, ICAM-1, and EpCAM; cytokines such as EGFRvIII and TGF-β / Cytokine receptors, enzymes and the like. Among these, antigenic proteins present on the exosome surface are preferable.
 また、本発明の第1の分離方法に用いる固相担体は、小胞の表面に存在する表面抗原を認識するリガンドが結合したものであれば特に限定されない。
 リガンドとしては、小胞の表面に存在する表面抗原を認識する抗体が好ましく、エクソソームの表面に存在する表面抗原を認識する抗体がより好ましい。また、モノクローナル抗体でもポリクローナル抗体でもよいが、好ましくはモノクローナル抗体である。
 上記モノクローナル抗体は、特に限定されるものではなく、公知の方法、例えば、K.Watanabe et al.,Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis,J.Clin.Invest.114(2004),898-907に記載された方法に従って調製したものでよい。また、エクソソームの表面抗原CD9、CD63、CD81等のテトラスパニン類を認識するモノクローナル抗体は、国際公開第2013/099925号等を参照して作製できる。
 なお、上記抗体のクラスとしては、IgG、IgMが挙げられるが、IgGが好ましい。また、これらを低分子化したフラグメントを用いてもよい。例えば、F(ab')2、Fab'、Fab等が挙げられる。
The solid phase carrier used in the first separation method of the present invention is not particularly limited as long as a ligand that recognizes a surface antigen present on the surface of the vesicle is bound thereto.
As the ligand, an antibody that recognizes a surface antigen present on the surface of a vesicle is preferable, and an antibody that recognizes a surface antigen present on the surface of an exosome is more preferable. Moreover, although it may be a monoclonal antibody or a polyclonal antibody, it is preferably a monoclonal antibody.
The monoclonal antibody is not particularly limited, and a known method such as K.I. Watanabe et al. , Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis, J. et al. Clin. Invest. 114 (2004), 898-907. Monoclonal antibodies that recognize tetraspanins such as exosome surface antigens CD9, CD63, and CD81 can be prepared with reference to International Publication No. 2013/099925.
The antibody class includes IgG and IgM, and IgG is preferred. Moreover, you may use the fragment which reduced these molecules. For example, F (ab ′) 2, Fab ′, Fab and the like can be mentioned.
 上記リガンドを結合させる固相担体の材質としては、例えば、ポリスチレン類、ポリエチレン類、ポリプロピレン類、ポリエステル類、ポリ(メタ)アクリロニトリル類、スチレン-ブタジエン共重合体、ポリ(メタ)アクリル酸エステル類、フッ素樹脂、架橋デキストラン、ポリサッカライド等の高分子化合物;ガラス;金属;磁性体;磁性体を含む樹脂組成物;これらの組み合わせ等が挙げられる。
 また、固相担体の形状は特に限定されるものではなく、例えば、トレイ状、球状、粒子状、繊維状、棒状、盤状、容器状、セル、マイクロプレート、試験管等が挙げられる。
 本発明においては、固液分離や洗浄の容易性の観点から、磁性粒子が好ましい。
Examples of the material of the solid phase carrier to which the ligand is bonded include, for example, polystyrenes, polyethylenes, polypropylenes, polyesters, poly (meth) acrylonitriles, styrene-butadiene copolymers, poly (meth) acrylic esters, Polymer compounds such as fluororesin, crosslinked dextran, and polysaccharides; glass; metal; magnetic substance; resin composition containing magnetic substance; and combinations thereof.
The shape of the solid phase carrier is not particularly limited, and examples thereof include a tray shape, a spherical shape, a particle shape, a fiber shape, a rod shape, a disc shape, a container shape, a cell, a microplate, and a test tube.
In the present invention, magnetic particles are preferred from the viewpoint of solid-liquid separation and ease of washing.
 上記磁性粒子としては、例えば、四三酸化鉄(Fe34)、三二酸化鉄(γ-Fe23)、各種フェライト、鉄、マンガン、ニッケル、コバルト、クロムなどの金属;コバルト、ニッケル、マンガンなどの合金からなる磁性体微粒子;これら磁性体を樹脂中に含む磁性粒子が挙げられる。樹脂としては、疎水性重合体、親水性重合体などが挙げられる。
 中でも、磁性体を樹脂中に含む磁性粒子が好ましく、超常磁性微粒子を含む母粒子の表面にポリマー層が形成されたものがより好ましい。例えば、特開2008-32411号公報に記載の、超常磁性微粒子を含む母粒子の表面に、疎水性の第1ポリマー層が形成され、当該第1ポリマー層上に、少なくとも表面にグリシジル基を有する第2ポリマー層が形成され、当該グリシジル基を化学修飾することにより極性基が導入された磁性粒子が挙げられる。
Examples of the magnetic particles include metals such as triiron tetroxide (Fe 3 O 4 ), iron sesquioxide (γ-Fe 2 O 3 ), various ferrites, iron, manganese, nickel, cobalt, and chromium; cobalt, nickel And magnetic fine particles made of an alloy such as manganese; magnetic particles containing these magnetic substances in a resin. Examples of the resin include a hydrophobic polymer and a hydrophilic polymer.
Among these, magnetic particles containing a magnetic substance in a resin are preferable, and those in which a polymer layer is formed on the surface of mother particles containing superparamagnetic fine particles are more preferable. For example, a hydrophobic first polymer layer is formed on the surface of a mother particle containing superparamagnetic fine particles described in JP-A-2008-32411, and at least the surface has a glycidyl group on the first polymer layer. Examples include magnetic particles in which a second polymer layer is formed and a polar group is introduced by chemically modifying the glycidyl group.
 ここで、超常磁性微粒子としては、粒子径20nm以下(好ましくは粒子径5~20nm)の酸化鉄系の微粒子が代表的であり、XFe24(X=Mn、Co、Ni、Mg、Cu、Li0.5Fe0.5等)で表現されるフェライト、Fe34で表現されるマグネタイト、γ-Fe23が挙げられ、飽和磁化が強く、かつ残留磁化が少ない点で、γ-Fe23及びFe34のいずれか一方を含むことが好ましい。 Here, as the superparamagnetic fine particles, iron oxide-based fine particles having a particle size of 20 nm or less (preferably a particle size of 5 to 20 nm) are typical, and XFe 2 O 4 (X = Mn, Co, Ni, Mg, Cu). ferrite represented by Li 0.5 Fe 0.5, etc.), magnetite represented by Fe 3 O 4, include γ-Fe 2 O 3, strong saturation magnetization, and residual magnetization is small in terms, gamma-Fe 2 It is preferable that either one of O 3 and Fe 3 O 4 is included.
 また、上記疎水性の第1ポリマー層を形成するためのモノマーは、単官能性モノマー、架橋性モノマーに大別される。
 上記単官能性モノマーとして、例えば、スチレン、α-メチルスチレン、ハロゲン化スチレンなどの芳香族ビニル系モノマー;メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ステアリルアクリレート、ステアリルメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレート、イソボニルアクリレート、イソボニルメタクリレート等のエチレン性不飽和カルボン酸アルキルエステル系モノマーを例示することができる。また、上記架橋性モノマーとして、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート等の多官能性(メタ)アクリレート;ブタジエン、イソプレン等の共役ジオレフィンの他、ジビニルベンゼン、ジアリルフタレート、アリルアクリレート、アリルメタクリレートなどを例示することができる。
The monomers for forming the hydrophobic first polymer layer are roughly classified into monofunctional monomers and crosslinkable monomers.
Examples of the monofunctional monomer include aromatic vinyl monomers such as styrene, α-methylstyrene, and halogenated styrene; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, stearyl acrylate, stearyl methacrylate, cyclohexyl acrylate, and cyclohexyl methacrylate. And ethylenically unsaturated carboxylic acid alkyl ester monomers such as isobornyl acrylate and isobornyl methacrylate. In addition, as the crosslinkable monomer, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexa Examples include polyfunctional (meth) acrylates such as methacrylate; conjugated diolefins such as butadiene and isoprene, as well as divinylbenzene, diallyl phthalate, allyl acrylate, and allyl methacrylate.
 また、上記第2ポリマー層を形成するためのモノマーは、粒子表面への官能基導入を主目的とするものであり、グリシジル基含有モノマーを含むものである。グリシジル基含有モノマーの含有量としては、第2ポリマー層を形成するためのモノマー中、20質量%以上が好ましい。ここで、グリシジル基を含む共重合性モノマーとしては、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル等が挙げられる。 The monomer for forming the second polymer layer is mainly intended to introduce a functional group to the particle surface and includes a glycidyl group-containing monomer. As content of a glycidyl group containing monomer, 20 mass% or more is preferable in the monomer for forming a 2nd polymer layer. Here, examples of the copolymerizable monomer containing a glycidyl group include glycidyl acrylate, glycidyl methacrylate, and allyl glycidyl ether.
 第2ポリマー層のグリシジル基を化学修飾することにより導入される極性基としては、リガンドと反応可能な官能基であることが好ましく、酸素原子、窒素原子及び硫黄原子からなる群より選ばれた少なくとも1種の原子を1個以上含むものがより好ましい。中でも、アミノ基、アルデヒド基、カルボキシ基、活性エステル基がより好ましい。特に、磁性粒子の第2ポリマー層が前記極性基及び2,3-ジヒドロキシプロピル基を有する場合、リガンドとの結合性が良好となる。
 また、磁性粒子等の固相担体は、その表面にビオチン類結合部位を有する物質が固定されていてもよい。ビオチン類結合部位を有する物質としては、例えば、アビジン、ストレプトアビジン、タマビジン、及びそれらの誘導体から選ばれる1種又は2種以上の化合物等が挙げられる。さらに、この場合、固相担体は、ビオチン類結合部位を有する物質を介してビオチン類を結合した抗体等が結合されていてもよい。固相担体の表面へのビオチン類結合部位を有する物質の固定は、日本国特許第4716034号公報に記載された方法等の公知の方法により行えばよい。
The polar group introduced by chemically modifying the glycidyl group of the second polymer layer is preferably a functional group capable of reacting with a ligand, and at least selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom Those containing one or more of one kind of atom are more preferable. Of these, an amino group, an aldehyde group, a carboxy group, and an active ester group are more preferable. In particular, when the second polymer layer of the magnetic particle has the polar group and 2,3-dihydroxypropyl group, the binding property to the ligand is good.
In addition, a solid phase carrier such as magnetic particles may have a substance having a biotin binding site immobilized on the surface thereof. Examples of the substance having a biotin binding site include one or more compounds selected from avidin, streptavidin, tamavidin, and derivatives thereof. Furthermore, in this case, the solid phase carrier may be bound with an antibody bound with biotins via a substance having a biotins binding site. Immobilization of a substance having a biotin-binding site on the surface of a solid phase carrier may be performed by a known method such as the method described in Japanese Patent No. 4716034.
 リガンドを固相担体に結合する方法としては、物理的吸着法や、共有結合法、イオン結合法といった化学的に結合する方法などが用いられる。物理的吸着法としては、固相担体にリガンドを直接固定する方法、アルブミンなどの他のタンパク質に化学的に結合させてから吸着させて固定する方法などが挙げられる。化学的に結合させる方法としては、固相担体表面に導入した、リガンドと反応可能な官能基を利用して、固相担体上に直接結合する方法、固相担体とリガンドとの間にスペーサー分子(カルボジイミド化合物など)を化学結合で導入してから結合する方法、アルブミンなどの他のタンパク質にリガンドを結合させた後、そのタンパク質を固相担体に化学結合する方法などが挙げられる。 As a method for binding a ligand to a solid phase carrier, a chemical binding method such as a physical adsorption method, a covalent bond method, or an ion bond method is used. Examples of the physical adsorption method include a method of directly immobilizing a ligand on a solid phase carrier, a method of chemically binding to another protein such as albumin, and then adsorbing and immobilizing. As a chemical bonding method, a method of directly bonding on a solid phase carrier using a functional group capable of reacting with a ligand introduced on the surface of the solid phase carrier, or a spacer molecule between the solid phase carrier and the ligand. Examples include a method of binding after introducing a carbodiimide compound (such as a carbodiimide compound), a method of binding a ligand to another protein such as albumin, and then chemically binding the protein to a solid phase carrier.
 また、小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体は、市販品を用いてもよい。例えば、Exosome-Human CD9 Isolation Reagent(from cell culture)、Exosome-Human CD63 Isolation/Detection Reagent(from cell culture media)(いずれもLife technologies社製)、CD9 Exo-Flow Capture kit、CD63 Exo-Flow Capture kit、CD81 Exo-Flow Capture kit(いずれもSBI社製)等が挙げられる。 Further, a commercially available product may be used as the solid phase carrier to which a ligand that recognizes a surface antigen present on the surface of the vesicle is bound. For example, Exosome-Human CD9 Isolation Reagent (from cell culture), Exosome-Human CD63 Isolation / Detection Reagent (from cellCultureCulture Media) (both from Lifetech Corporation CD) CD81 Exo-Flow Capture kit (both manufactured by SBI).
 また、上記リガンドが結合した固相担体の使用量は、生体試料に対し、好ましくは0.00001~0.1質量倍、より好ましくは0.0001~0.01質量倍である。 The amount of the solid phase carrier to which the ligand is bound is preferably 0.00001 to 0.1 mass times, more preferably 0.0001 to 0.01 mass times with respect to the biological sample.
 複合体形成工程は、上記各成分の他に、必要に応じて、界面活性剤;アルブミン等のタンパク質;核酸;ショ糖等の糖類等を用いて行ってもよい。
 これらの中では、非特異吸着の低減の観点、小胞へのダメージを抑える観点から、界面活性剤が好ましく、非イオン性界面活性剤がより好ましく、ポリエチレングリコール型非イオン性界面活性剤が特に好ましい。また、界面活性剤は、芳香族基を分子中に含まないものが好ましい。
 例えば、高級アルコールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪酸アミドエチレンオキサイド付加物、油脂のエチレンオキサイド付加物、ポリアルキレングリコールエチレンオキサイド付加物等が挙げられる。これらの中でも、ポリアルキレングリコールエチレンオキサイド付加物が好ましい。具体的には、ポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール、ポリオキシエチレン(196)ポリオキシプロピレン(67)グリコール等が挙げられる。
 界面活性剤の使用量は、終濃度で、好ましくは0.005~10%(w/v)、より好ましくは0.015~3.5%(w/v)である。
In addition to the above components, the complex formation step may be performed using a surfactant; a protein such as albumin; a nucleic acid; a saccharide such as sucrose as necessary.
Among these, from the viewpoint of reducing non-specific adsorption and from the viewpoint of suppressing damage to vesicles, surfactants are preferable, nonionic surfactants are more preferable, and polyethylene glycol type nonionic surfactants are particularly preferable. preferable. Further, the surfactant preferably does not contain an aromatic group in the molecule.
For example, higher alcohol ethylene oxide adduct, fatty acid ethylene oxide adduct, polyhydric alcohol fatty acid ester ethylene oxide adduct, higher alkylamine ethylene oxide adduct, fatty acid amide ethylene oxide adduct, fat and oil ethylene oxide adduct, polyalkylene glycol Examples include ethylene oxide adducts. Among these, polyalkylene glycol ethylene oxide adduct is preferable. Specific examples include polyoxyethylene (160) polyoxypropylene (30) glycol and polyoxyethylene (196) polyoxypropylene (67) glycol.
The amount of the surfactant used in the final concentration is preferably 0.005 to 10% (w / v), more preferably 0.015 to 3.5% (w / v).
 また、複合体形成工程における反応温度は、好ましくは2~42℃の範囲内であり、より好ましくは15~40℃の範囲内、特に好ましくは20~37℃の範囲内である。本発明の第1の分離方法における複合体形成工程は常温又は常温付近でも反応が選択的かつ効率よく進行するため、非常に簡便である。また、反応時間は、通常、1分間~48時間であるが、好ましくは5分間~24時間、より好ましくは10分間~10時間、特に好ましくは10分間~5時間である。 In addition, the reaction temperature in the complex forming step is preferably in the range of 2 to 42 ° C, more preferably in the range of 15 to 40 ° C, and particularly preferably in the range of 20 to 37 ° C. The complex formation step in the first separation method of the present invention is very simple because the reaction proceeds selectively and efficiently even at or near room temperature. The reaction time is usually 1 minute to 48 hours, preferably 5 minutes to 24 hours, more preferably 10 minutes to 10 hours, and particularly preferably 10 minutes to 5 hours.
 複合体形成工程において、系中のpHは特に限定されないが、好ましくはpH5~10の範囲、より好ましくはpH6~8の範囲である。目的のpHを維持するために、通常、緩衝液が用いられ、例えば、リン酸緩衝液、トリス(ヒドロキシメチル)アミノメタン緩衝液、HEPES緩衝液、MES緩衝液等が挙げられる。 In the complex formation step, the pH in the system is not particularly limited, but is preferably in the range of pH 5 to 10, more preferably in the range of pH 6 to 8. In order to maintain the target pH, a buffer solution is usually used, and examples thereof include a phosphate buffer solution, a tris (hydroxymethyl) aminomethane buffer solution, a HEPES buffer solution, and a MES buffer solution.
(洗浄工程)
 洗浄工程は、上記複合体形成工程で形成された小胞と固相担体との複合体を洗浄する工程である。これによって、未反応の成分や未反応の標識物質等が除去される。複合体形成工程における複合体を含む系をそのまま洗浄してもよい。
(Washing process)
The washing step is a step of washing the complex of the vesicle formed in the complex forming step and the solid phase carrier. Thereby, unreacted components, unreacted labeling substances and the like are removed. You may wash | clean the system containing the composite_body | complex in a composite_body | complex formation process as it is.
 上記洗浄工程は、通常、固相担体の形状により2種類に分けられる。磁性粒子のように固相担体が粒子状である場合には、例えば洗浄液中に磁性粒子を分散させて洗浄する方法が挙げられ、一方、固相担体がマイクロプレートのような形態である場合には、その表面に洗浄液を接触させて洗浄する方法が挙げられる。いずれの態様であっても、本発明においては、洗浄液として、界面活性剤を含む洗浄液を使用することが好ましい。界面活性剤としては、上記複合体形成工程で使用してもよいものと同様のものが好ましい。 The washing step is usually divided into two types depending on the shape of the solid support. In the case where the solid phase carrier is in the form of particles, such as magnetic particles, for example, there is a method in which the magnetic particles are dispersed in a cleaning solution for washing, while the solid phase carrier is in the form of a microplate. Can be cleaned by bringing a cleaning liquid into contact with the surface. In any embodiment, in the present invention, it is preferable to use a cleaning liquid containing a surfactant as the cleaning liquid. As the surfactant, those similar to those that may be used in the complex forming step are preferable.
 また、固相担体が磁性粒子の場合、洗浄工程としては、磁性粒子を磁力により集めて磁性粒子と液相とを分離する集磁工程、及び該集磁工程で分離された磁性粒子を洗浄液中に分散させる分散工程とを含むことが好ましい。これによって、未反応の物質や生体試料中の夾雑物を磁性粒子表面からさらに効率よく洗浄・分離除去できる。
 具体的には、反応容器に磁場を作用させ、磁性粒子を反応容器壁に付着させて集めた後、反応上清を除去し、さらに必要に応じて洗浄液を加え、同様に磁場を作用させた後上清を除去する操作を繰り返すことにより行えばよい。洗浄液としては、上記複合体形成工程で挙げた界面活性剤と緩衝液を含む洗浄液が好ましい。
When the solid phase carrier is a magnetic particle, the washing step includes collecting the magnetic particles by a magnetic force to separate the magnetic particles from the liquid phase, and separating the magnetic particles separated in the collecting step in the washing liquid. It is preferable to include a dispersion step of dispersing in the water. As a result, unreacted substances and contaminants in the biological sample can be more efficiently washed and separated and removed from the surface of the magnetic particles.
Specifically, a magnetic field was applied to the reaction vessel, and the magnetic particles were collected by adhering to the reaction vessel wall, and then the reaction supernatant was removed, and a washing solution was added as necessary to apply the magnetic field in the same manner. What is necessary is just to repeat the operation of removing the post-supernatant. As the cleaning liquid, a cleaning liquid containing the surfactant and buffer mentioned in the complex forming step is preferable.
(無機塩又は有機塩)
 本発明の第1の分離方法は、複合体形成工程及び洗浄工程の少なくともいずれかを、終濃度0.15~2Mの無機塩又は有機塩の存在下で行うものであるが、捕捉反応の反応性の観点から、複合体形成工程を、終濃度0.15~2Mの無機塩又は有機塩の存在下で行うのが好ましい。また、無機塩、有機塩の中では、本発明の所望の効果を高める観点から、無機塩が好ましい。
(Inorganic salt or organic salt)
In the first separation method of the present invention, at least one of the complex formation step and the washing step is performed in the presence of an inorganic salt or organic salt having a final concentration of 0.15 to 2M. From the viewpoint of properties, the complex formation step is preferably performed in the presence of an inorganic salt or organic salt having a final concentration of 0.15 to 2M. Among inorganic salts and organic salts, inorganic salts are preferred from the viewpoint of enhancing the desired effect of the present invention.
 上記無機塩としては、アルカリ金属ハロゲン化物;炭酸塩、重炭酸塩等の無機酸の塩が挙げられ、アルカリ金属ハロゲン化物が好ましく、アルカリ金属塩化物がより好ましい。無機塩としては、具体的には、塩化ナトリウム、塩化カリウム、塩化カルシウム、炭酸ナトリウム、重炭酸ナトリウム等が挙げられ、これらのうち1種を単独で用いても2種以上を組み合わせて用いてもよい。これらの中でも、塩化ナトリウム、塩化カリウム、塩化カルシウムが好ましく、塩化ナトリウム、塩化カリウムがより好ましく、塩化ナトリウムが特に好ましい。 Examples of the inorganic salt include alkali metal halides; salts of inorganic acids such as carbonates and bicarbonates, alkali metal halides are preferable, and alkali metal chlorides are more preferable. Specific examples of the inorganic salt include sodium chloride, potassium chloride, calcium chloride, sodium carbonate, sodium bicarbonate and the like, and one of these may be used alone or two or more may be used in combination. Good. Among these, sodium chloride, potassium chloride, and calcium chloride are preferable, sodium chloride and potassium chloride are more preferable, and sodium chloride is particularly preferable.
 上記有機塩としては、有機酸の塩が好ましく、有機酸のアルカリ金属塩がより好ましく、カルボン酸のアルカリ金属塩が更に好ましく、カルボン酸のナトリウム塩が特に好ましい。有機塩としては、具体的には、酢酸ナトリウム、クエン酸ナトリウム、酒石酸ナトリウム、リンゴ酸ナトリウム、コハク酸ナトリウム、乳酸ナトリウム等が挙げられ、これらのうち1種を単独で用いても2種以上を組み合わせて用いてもよい。 The organic salt is preferably an organic acid salt, more preferably an organic acid alkali metal salt, still more preferably a carboxylic acid alkali metal salt, and particularly preferably a carboxylic acid sodium salt. Specific examples of the organic salt include sodium acetate, sodium citrate, sodium tartrate, sodium malate, sodium succinate, sodium lactate and the like. You may use it in combination.
 また、系内の無機塩又は有機塩の終濃度は、0.15~2Mである。本明細書で規定する終濃度が0.15M未満の場合及び2Mよりも高い場合は、非特異吸着の増大や捕捉反応の反応性の低下が生じることがあり、また、小胞内外の浸透圧差によって、小胞が破壊されることも懸念される。終濃度は、好ましくは0.2M以上、より好ましくは0.25M以上であり、また、好ましくは1M以下、より好ましくは0.5M以下、更に好ましくは0.45M以下、特に好ましくは0.35M以下である。 Also, the final concentration of inorganic salt or organic salt in the system is 0.15 to 2M. When the final concentration defined in the present specification is less than 0.15 M or higher than 2 M, nonspecific adsorption may increase or the reactivity of the capture reaction may decrease, and the osmotic pressure difference between the inside and outside of the vesicle may occur. There is also concern that the vesicles will be destroyed. The final concentration is preferably 0.2M or more, more preferably 0.25M or more, preferably 1M or less, more preferably 0.5M or less, still more preferably 0.45M or less, and particularly preferably 0.35M. It is as follows.
(解離工程)
 本発明の分離方法は、洗浄工程後、捕捉された小胞をリガンドから解離する解離工程を有していてもよい。
 リガンドが特定の抗体である場合に抗原・抗体反応による特異的な結合を解離される条件としては、アフィニティークロマトグラフィー等で種々のものが知られている(例えば、"Afinity Chromatography principles & methods"  Pharmacia LKB Biotechnology参照)。上記解離工程はこれに準じて行えばよい。即ち、本発明で使用される解離液としては、塩酸、硫酸、プロピオン酸、酢酸、グリシン/塩酸バッファー等の酸性溶液;水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水溶液、ジエチルアミン等のアルカリ性溶液;3M塩化ナトリウム水溶液、4.5M塩化マグネシウム水溶液等の高イオン強度溶液;SDS、TritonX-100、Tween20等の界面活性剤含有溶液;ジオキサン、エチレングリコール等の極性を下げる物質を含有する緩衝液;トリクロロ酢酸、チオシアン酸などのカオトロピックイオンの他、尿素、塩酸グアニジン等を含有する緩衝液が挙げられる。
(Dissociation process)
The separation method of the present invention may have a dissociation step of dissociating the captured vesicle from the ligand after the washing step.
As conditions for releasing specific binding due to antigen-antibody reaction when the ligand is a specific antibody, various conditions are known by affinity chromatography or the like (for example, “Affinity Chromatography principles & methods” Pharmacia). See LKB Biotechnology). The dissociation step may be performed according to this. That is, as the dissociation solution used in the present invention, acidic solutions such as hydrochloric acid, sulfuric acid, propionic acid, acetic acid, glycine / hydrochloric acid buffer; alkaline solutions such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, ammonia aqueous solution, diethylamine; High ionic strength solution such as 3M sodium chloride aqueous solution and 4.5M magnesium chloride aqueous solution; Surfactant-containing solution such as SDS, Triton X-100, Tween 20; Buffer containing a substance that lowers the polarity such as dioxane, ethylene glycol; Trichloro; In addition to chaotropic ions such as acetic acid and thiocyanic acid, buffer solutions containing urea, guanidine hydrochloride and the like can be mentioned.
〔核酸の検出方法及びタンパク質の検出方法〕
 本発明の小胞中の核酸の検出方法は、上記第1の分離方法の後に、さらに小胞中の核酸を検出する核酸検出工程を含むものである。
 また、本発明の小胞由来のタンパク質の検出方法は、上記第1の分離方法の後に、さらに小胞の内側及び表面の少なくとも一方に存在するタンパク質を検出するタンパク質検出工程を含むものである。
 これら検出方法は、上記第1の分離方法を行う以外は常法にしたがっておこなえばよい。上記脂質二重膜を有する小胞がエクソソームである場合、回収されたエクソソームから核酸やタンパク質を、PCR法、電気泳動法、ウェスタンブロッティング法、免疫化学的方法、フローサイトメトリー等の公知の方法に従って検出すればよい。これらの中でも、簡便に感度よく検出でき、且つネイティブフォームの立体構造を維持できる点からは、フローサイトメトリーが好ましい。また、核酸としては、miRNAやmRNA等が挙げられる。
 特に、エクソソームは、種々の細胞、例えば免疫系の細胞や各種癌細胞から分泌されることから、本発明の核酸の検出方法によれば、エクソソーム由来の核酸(miRNA等)を検出し、それを解析することによって、生理現象や各種疾患の判定が可能になる。
[Nucleic acid detection method and protein detection method]
The method for detecting a nucleic acid in a vesicle of the present invention further comprises a nucleic acid detection step for detecting the nucleic acid in the vesicle after the first separation method.
The method for detecting a protein derived from a vesicle of the present invention further comprises a protein detection step of detecting a protein present on at least one of the inside and the surface of the vesicle after the first separation method.
These detection methods may be performed according to a conventional method except that the first separation method is performed. When the vesicles having the lipid bilayer are exosomes, nucleic acids and proteins are collected from the collected exosomes according to known methods such as PCR, electrophoresis, Western blotting, immunochemical methods, flow cytometry, etc. What is necessary is just to detect. Among these, flow cytometry is preferable because it can be easily detected with high sensitivity and the three-dimensional structure of the native form can be maintained. Examples of the nucleic acid include miRNA and mRNA.
In particular, since exosomes are secreted from various cells such as cells of the immune system and various cancer cells, the nucleic acid detection method of the present invention detects exosome-derived nucleic acids (miRNA, etc.) By analyzing, it becomes possible to determine physiological phenomena and various diseases.
〔シグナル測定方法〕
 本発明の小胞由来のシグナル測定方法は、上記第1の分離方法の後に、さらに前記複合体を形成した小胞由来のシグナル強度を測定するシグナル測定工程を含むものである。
 上記シグナル強度の測定は免疫測定法により行えばよく、例えば、酵素免疫測定法(EIA)、酵素イムノメトリックアッセイ法(ELISA)、蛍光免疫測定法(FIA)、放射線免疫測定法(RIA)、発光免疫測定法、イムノブロット法、ウェスタンブロット法、フローサイトメトリー等が挙げられる。これらの中でも、簡便に感度よく検出でき、且つネイティブフォームの立体構造を維持できる点からは、フローサイトメトリーが好ましい。また、簡便に感度よく抗体を検出できる点からは、ELISA法が好ましい。ELISA法としては、競合法、サンドイッチ法などが挙げられる。
 ここで、サンドイッチELISA法を使用する場合の分離方法の一例を示す。まず、小胞の表面に存在する表面抗原を認識するリガンドを固相担体に結合した後、脂質二重膜を有する小胞を含む生体試料を接触させて複合体を形成させ、その後洗浄する。そこに、モノクローナル抗体又はその抗体断片や疾患特異的膜タンパク質抗体又はその抗体断片を修飾した標識抗体を添加して、さらなる複合体を形成させる。そして、形成された複合体中の標識量を検出することにより、生体試料に含まれる小胞に由来するシグナル量や、生体試料に含まれる疾患特異的小胞量を測定することができる。
[Signal measurement method]
The vesicle-derived signal measurement method of the present invention further comprises a signal measurement step of measuring the signal intensity derived from the vesicles forming the complex after the first separation method.
The signal intensity may be measured by immunoassay, for example, enzyme immunoassay (EIA), enzyme immunometric assay (ELISA), fluorescence immunoassay (FIA), radioimmunoassay (RIA), luminescence. Examples include immunoassay, immunoblotting, western blotting, flow cytometry, and the like. Among these, flow cytometry is preferable because it can be easily detected with high sensitivity and the three-dimensional structure of the native form can be maintained. The ELISA method is preferable from the viewpoint that the antibody can be easily detected with high sensitivity. Examples of the ELISA method include a competitive method and a sandwich method.
Here, an example of the separation method in the case of using the sandwich ELISA method is shown. First, a ligand that recognizes a surface antigen present on the surface of a vesicle is bound to a solid phase carrier, and then a biological sample containing a vesicle having a lipid bilayer is contacted to form a complex, followed by washing. To this, a monoclonal antibody or an antibody fragment thereof or a labeled antibody obtained by modifying a disease-specific membrane protein antibody or an antibody fragment thereof is added to form a further complex. Then, by detecting the amount of label in the formed complex, the amount of signal derived from vesicles contained in the biological sample and the amount of disease-specific vesicles contained in the biological sample can be measured.
〔疾患の判定方法〕
 本発明の被検者が疾患を発症しているか否かを判定するための方法は、被検者由来の生体試料を用いて、上記シグナル測定方法により前記複合体を形成した小胞由来のシグナル強度を測定する工程(以下、工程(I)ともいう)を含むことを特徴とするものである。
 そして、工程(I)で測定されたシグナル強度と、対照者由来の生体試料のシグナル強度とを対比して、被検者におけるシグナル強度が対照者におけるシグナル強度より強いと認められる場合に、被検者が疾患を発症していると判定すればよい(以下、工程(II)ともいう)。
 本発明の疾患の判定方法で判定可能な疾患としては、癌疾患(大腸癌、乳癌、子宮体癌、子宮頸癌、卵巣癌、膵癌、胃癌、食道癌、肝癌、肺癌、腎癌、皮膚癌など)、炎症系疾患(リウマチ、変形性関節症、腎症、膵炎、肝炎、アレルギーなど)、アルツハイマー等の神経変性疾患、脳疾患、免疫不全に関連する疾患、不妊、うつ病、自閉症等の精神疾患、パーキンソン病等の難治療性疾患、自己免疫性疾患、循環器疾患、血液疾患、消化器疾患、老化に伴う疾患、感染症等が例示される。これらの中でも、癌疾患、免疫系疾患の判定に有用であり、特に癌疾患の判定に特に有用である。
 また、細胞障害性T細胞(CTL)の免疫活性の指標に応用すれば、癌ワクチンの癌疾患に対する効果判定にも応用できる。
[Disease determination method]
A method for determining whether or not a subject of the present invention has developed a disease is a signal derived from a vesicle formed with the complex by the above signal measurement method using a biological sample derived from the subject. It includes a step of measuring strength (hereinafter also referred to as step (I)).
Then, when the signal intensity measured in the step (I) is compared with the signal intensity of the biological sample derived from the control person, the signal intensity in the subject is recognized to be stronger than the signal intensity in the control person. What is necessary is just to determine with the examiner developing the disease (henceforth process (II)).
Diseases that can be determined by the disease determination method of the present invention include cancer diseases (colon cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, pancreatic cancer, gastric cancer, esophageal cancer, liver cancer, lung cancer, renal cancer, skin cancer. ), Inflammatory diseases (rheumatic, osteoarthritis, nephropathy, pancreatitis, hepatitis, allergy, etc.), neurodegenerative diseases such as Alzheimer, brain diseases, diseases related to immunodeficiency, infertility, depression, autism And psychiatric diseases such as Parkinson's disease, autoimmune diseases, cardiovascular diseases, blood diseases, gastrointestinal diseases, diseases associated with aging, infectious diseases and the like. Among these, it is useful for determination of cancer diseases and immune system diseases, and particularly useful for determination of cancer diseases.
Moreover, if it applies to the parameter | index of the immune activity of cytotoxic T cell (CTL), it can apply also to the effect determination with respect to the cancer disease of a cancer vaccine.
 工程(I)は、上記シグナル測定方法で測定を行うこと以外は常法にしたがって行えばよい。
 また、工程(II)は、工程(I)で測定されたシグナル強度について、対照者由来の生体試料のシグナルに基づいて統計学的な解析を行って比較を行う。解析方法は特に限定されるものではなく、公知の方法を用いることができる。また、その後の判定は、例えば、被検者由来の生体試料のシグナルが対照者におけるシグナルと比べて強い場合に、疾患を発症している可能性が高いと判断される。なお、本発明において、対照者とは、疾患を発症していない被検者と同年代・同性の者の平均をいい、対照者におけるシグナル強度は被検者におけるシグナル強度と共に測定してもよく、別途予め測定した値から得られた統計値を用いてもよい。
Step (I) may be performed according to a conventional method except that measurement is performed by the above signal measurement method.
In step (II), the signal intensity measured in step (I) is compared based on a statistical analysis based on the signal of the biological sample derived from the control person. The analysis method is not particularly limited, and a known method can be used. Further, in the subsequent determination, for example, when the signal of the biological sample derived from the subject is stronger than the signal of the control person, it is determined that the possibility of developing the disease is high. In the present invention, the control person means the average of the same age and the same person as the subject who has not developed the disease, the signal intensity in the control person may be measured together with the signal intensity in the subject, A statistical value obtained from a separately measured value may be used.
〔疾患治療薬の薬効評価方法〕
 本発明の疾患治療薬の薬効評価方法は、疾患治療薬の投与前及び投与後の被検者由来の生体試料を用いて、上記シグナル測定方法により、複合体を形成した小胞由来のシグナル強度を測定する工程(以下、工程(A)ともいう)を含むことを特徴とするものである。
 そして、疾患治療薬の投与後の被検者由来の生体試料における複合体由来のシグナル強度が、疾患治療薬の投与前の被検者由来の生体試料における複合体由来のシグナル強度より弱いと認められる場合に、疾患治療薬が薬効を示している可能性が高いと判定すればよい(以下、工程(B)ともいう)。
 上記疾患治療薬としては、上記判定方法で判定可能な疾患を治療する薬物が挙げられる。好適な具体例は、抗癌剤、抗免疫系疾患薬である。
[Methods for evaluating the efficacy of drugs for treating diseases]
The method for evaluating the efficacy of a therapeutic agent for a disease according to the present invention is a signal intensity derived from a vesicle formed with a complex by a signal measurement method using a biological sample derived from a subject before and after administration of a therapeutic agent for a disease. It includes a step of measuring (hereinafter also referred to as step (A)).
Then, it is recognized that the signal intensity derived from the complex in the biological sample derived from the subject after administration of the disease therapeutic agent is weaker than the signal intensity derived from the complex in the biological sample derived from the subject before administration of the disease therapeutic agent. In such a case, it may be determined that there is a high possibility that the therapeutic agent for the disease has a medicinal effect (hereinafter also referred to as step (B)).
Examples of the disease therapeutic drug include drugs for treating a disease that can be determined by the determination method. Preferred specific examples are anticancer drugs and anti-immune disease drugs.
 工程(A)は、上記シグナル測定方法で測定を行うこと以外は常法にしたがって行えばよい。
 また、工程(B)は、工程(A)で測定されたシグナル強度について、疾患治療薬の投与前の生体試料におけるシグナルに基づいて統計学的な解析を行って比較を行う。解析方法は特に限定されるものではなく、公知の方法を用いることができる。また、その後の判定は、例えば、疾患治療薬の投与後の生体試料におけるシグナル量が投与前の生体試料におけるシグナル量と比べて少ない場合に、該薬が疾患を抑える効果を有している可能性が高いと判断される。
 特に、エクソソームは、種々の細胞、例えば免疫系の細胞や各種癌細胞から分泌されることから、疾患治療薬の投与の前後での血中エクソソームの変化(存在量の増減だけに加え、膜タンパク質の量の変動を含む)を測定することにより、患者における薬効を評価することが可能になると考えられる。また、例えば、癌細胞に特異的な膜タンパク質に対するリガンドとエクソソームの表面抗原に対するリガンドとを組み合わせれば、癌診断の特異性の向上や癌種の特定などが期待でき、より癌疾患に特異的な診断薬の開発が可能となると考えられる。
Step (A) may be performed according to a conventional method except that measurement is performed by the above signal measurement method.
In the step (B), the signal intensity measured in the step (A) is compared based on a statistical analysis based on the signal in the biological sample before administration of the disease therapeutic agent. The analysis method is not particularly limited, and a known method can be used. Further, in the subsequent determination, for example, when the amount of signal in the biological sample after administration of the disease therapeutic drug is small compared to the amount of signal in the biological sample before administration, the drug may have an effect of suppressing the disease. It is judged that the nature is high.
In particular, since exosomes are secreted from various cells such as cells of the immune system and various cancer cells, changes in blood exosomes before and after administration of disease therapeutic agents (in addition to increase / decrease in abundance, membrane proteins) It is considered possible to evaluate the drug efficacy in patients. In addition, for example, by combining a ligand for a membrane protein specific for cancer cells and a ligand for a surface antigen of exosomes, it can be expected to improve the specificity of cancer diagnosis, identify the type of cancer, etc. It is considered possible to develop new diagnostic agents.
〔キット〕
 本発明のキットは、脂質二重膜を有する小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体と、無機塩又は有機塩を含み該無機塩又は有機塩の含有量が系内の終濃度を0.15~2Mに調整できる量である液状組成物とを備えることを特徴とするものである。斯かるキットは、上記第1の分離方法、上記疾患の判定、上記疾患治療薬の薬効評価に有用である。
 固相担体、液状組成物に含まれる無機塩又は有機塩としては、上記第1の分離方法で用いるものと同様のものが挙げられる。
 上記終濃度は、好ましくは0.2M以上、より好ましくは0.25M以上であり、また、好ましくは1M以下、より好ましくは0.5M以下、更に好ましくは0.45M以下、特に好ましくは0.35M以下である。
 具体的には、液状組成物中における無機塩又は有機塩の含有量は、好ましくは0.3M以上、より好ましくは0.4M以上、更に好ましくは0.5M以上であり、また、好ましくは4M以下、より好ましくは2M以下、更に好ましくは1M以下、更に好ましくは0.9M以下、特に好ましくは0.7M以下である。
 また、液状組成物は、上記第1の分離方法と同様の界面活性剤を含んでいてもよい。また、液状組成物のpHは特に限定されないが、好ましくはpH5~10の範囲、より好ましくはpH6~8の範囲である。目的のpHを維持するために、通常、緩衝液が用いられ、例えば、リン酸緩衝液、トリス(ヒドロキシメチル)アミノメタン緩衝液、HEPES緩衝液、MES緩衝液等が挙げられる。
〔kit〕
The kit of the present invention comprises a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of a vesicle having a lipid bilayer membrane, and an inorganic salt or an organic salt, and the content of the inorganic salt or organic salt is And a liquid composition in an amount capable of adjusting the final concentration in the system to 0.15 to 2M. Such a kit is useful for the first separation method, determination of the disease, and evaluation of the efficacy of the therapeutic agent for the disease.
Examples of the inorganic salt or organic salt contained in the solid phase carrier and the liquid composition include the same salts as those used in the first separation method.
The final concentration is preferably 0.2 M or more, more preferably 0.25 M or more, and preferably 1 M or less, more preferably 0.5 M or less, still more preferably 0.45 M or less, particularly preferably 0. 35M or less.
Specifically, the content of the inorganic salt or organic salt in the liquid composition is preferably 0.3M or more, more preferably 0.4M or more, still more preferably 0.5M or more, and preferably 4M. Below, more preferably 2M or less, still more preferably 1M or less, still more preferably 0.9M or less, and particularly preferably 0.7M or less.
Moreover, the liquid composition may contain the same surfactant as that in the first separation method. The pH of the liquid composition is not particularly limited, but is preferably in the range of pH 5 to 10, more preferably in the range of pH 6 to 8. In order to maintain the target pH, a buffer solution is usually used, and examples thereof include a phosphate buffer solution, a tris (hydroxymethyl) aminomethane buffer solution, a HEPES buffer solution, and a MES buffer solution.
〔液状組成物、検体希釈液及び第2の分離方法〕
 本発明の液状組成物は、脂質二重膜を有する小胞を含む生体試料と、前記小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体とを接触させ、前記小胞と前記固相担体との複合体を形成させる複合体形成工程と、前記複合体を洗浄する洗浄工程とを含む、脂質二重膜を有する小胞の分離方法に使用される、前記複合体形成工程及び前記洗浄工程の少なくともいずれかに添加するための液状組成物であって、無機塩又は有機塩を含み、該無機塩又は有機塩の含有量が、系内の終濃度を0.15~2Mに調整できる量であることを特徴とするものである。
 また、本発明の検体希釈液は、不溶性担体を用いて脂質二重膜を有する小胞を含む生体試料から脂質二重膜を有する小胞を分離する方法に使用される、前記小胞と前記不溶性担体との複合体を形成させるための検体希釈液であって、無機塩又は有機塩を含み、該無機塩又は有機塩の含有量が、系内の終濃度を0.15~2Mに調整できる量であることを特徴とするものである。
 また、本発明の第2の分離方法は、不溶性担体を用いて脂質二重膜を有する小胞を含む生体試料から脂質二重膜を有する小胞を分離する方法であって、無機塩又は有機塩を含み、該無機塩又は有機塩の含有量が、系内の終濃度を0.15~2Mに調整できる量である検体希釈液を系内に添加することを特徴とするものである。
 本発明の液状組成物及び検体希釈液の組成、pHは、上記本発明のキットが備える液状組成物と同様である。また、本発明の検体希釈液は、小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体以外の不溶性担体(例えば、ゲル濾過担体やフィルター等)を用いた小胞分離に用いてもよい。したがって、本発明の検体希釈液は、種々の担体を用いた小胞分離に利用することができる。
[Liquid composition, specimen diluent and second separation method]
The liquid composition of the present invention comprises contacting a biological sample containing vesicles having a lipid bilayer with a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of the vesicle, Formation of a complex used in a method for separating a vesicle having a lipid bilayer membrane, comprising: a complex forming step of forming a complex between the solid phase carrier and the solid phase carrier; and a washing step of washing the complex. A liquid composition to be added to at least one of the step and the washing step, comprising an inorganic salt or an organic salt, the content of the inorganic salt or organic salt being 0.15 to the final concentration in the system The amount can be adjusted to 2M.
In addition, the specimen diluent of the present invention is used in a method for separating a vesicle having a lipid bilayer from a biological sample containing a vesicle having a lipid bilayer using an insoluble carrier, Sample diluent for forming a complex with an insoluble carrier, containing an inorganic salt or organic salt, and the content of the inorganic salt or organic salt is adjusted to a final concentration in the system of 0.15 to 2M It is a quantity that can be produced.
The second separation method of the present invention is a method for separating vesicles having a lipid bilayer membrane from a biological sample containing vesicles having a lipid bilayer membrane using an insoluble carrier, which comprises an inorganic salt or an organic salt. A specimen diluent containing a salt and having an inorganic salt or organic salt content that can adjust the final concentration in the system to 0.15 to 2M is added to the system.
The composition and pH of the liquid composition and specimen diluent of the present invention are the same as those of the liquid composition provided in the kit of the present invention. In addition, the sample diluent of the present invention is used for vesicle separation using an insoluble carrier (for example, a gel filtration carrier or a filter) other than a solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of the vesicle. It may be used. Therefore, the specimen diluent of the present invention can be used for vesicle separation using various carriers.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
(試験例1)
 エクソソームとは反応しない抗マウスIgG抗体を磁性粒子に結合させた陰性対照粒子と、エクソソームを含む臨床検体と、反応バッファーとを混合し、洗浄後、エクソソームの膜上に発現しているCD81を認識する抗体を用いたELISAにより陰性対照粒子に非特異吸着したエクソソームを検出することで、反応バッファーの非特異吸着低減作用を確認した。具体的手順を以下に示す。
(Test Example 1)
Negative control particles that bind anti-mouse IgG antibodies that do not react with exosomes to magnetic particles, clinical specimens containing exosomes, and reaction buffer are mixed, washed, and CD81 expressed on the exosome membrane is recognized. By detecting exosomes that were non-specifically adsorbed to the negative control particles by ELISA using the antibody to be detected, the non-specific adsorption reducing action of the reaction buffer was confirmed. The specific procedure is shown below.
 まず、参考例1及び実施例1~5の反応バッファーとして、以下の反応バッファーを準備した。
 参考例1及び実施例1~5の反応バッファー:トリス緩衝生理食塩水(TBS(Sigma社製10×TBSを10倍希釈、以下同じ))に、非イオン性界面活性剤としてポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール(gibco社製 Pluronic F-68、以下同じ)を濃度が0.03%(w/v)になるように添加し、更に、無機塩として塩化ナトリウム(Wako社製、試薬特級)を表1に示す濃度になるように添加したもの
First, the following reaction buffers were prepared as the reaction buffers of Reference Example 1 and Examples 1 to 5.
Reaction buffer of Reference Example 1 and Examples 1 to 5: Tris-buffered saline (TBS (10 × TBS manufactured by Sigma, 10 times diluted, the same shall apply hereinafter)) and polyoxyethylene (160 ) Polyoxypropylene (30) glycol (Gibco's Pluronic F-68, hereinafter the same) was added to a concentration of 0.03% (w / v), and sodium chloride (Wako) was added as an inorganic salt. , Reagent special grade) added to the concentrations shown in Table 1
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、コントロールバッファーとして、以下のバッファーを準備した。
 コントロールバッファー:TBSに、非イオン性界面活性剤としてポリオキシエチレン(160)ポリオキシプロピレン(30)グリコールを濃度が0.03%(w/v)になるように添加したもの
 また、検体1~5として、以下の検体を準備した。
 検体1(HT29 sup. in Control Buffer):コントロールバッファーに、スパイクとしてHT29細胞培養上清100倍濃縮液を20倍希釈となるように添加したもの
 検体2(Serum):プール血清(コージンバイオ社製)
 検体3(HT29 sup. in Serum):プール血清(コージンバイオ社製)に、スパイクとしてHT29細胞培養上清100倍濃縮液を20倍希釈となるように添加したもの
 検体4(Plasma):プールクエン酸血漿(コージンバイオ社製)
 検体5(HT29 sup. in Plasma):プールクエン酸血漿(コージンバイオ社製)に、スパイクとしてHT29細胞培養上清100倍濃縮液を20倍希釈となるように添加したもの
 次に、陰性対照粒子として、抗マウスIgG抗体(JSRライフサイエンス社製、以下同じ)を磁性粒子(JSRライフサイエンス社製MS300/Carboxyl、以下同じ)に結合させたものを準備した。
Next, the following buffers were prepared as control buffers.
Control buffer: TBS added with polyoxyethylene (160) polyoxypropylene (30) glycol as a nonionic surfactant to a concentration of 0.03% (w / v). The following specimens were prepared as 5.
Specimen 1 (HT29 sup. In Control Buffer): HT29 cell culture supernatant 100-fold concentrated solution added to control buffer as a 20-fold dilution Specimen 2 (Serum): Pool serum (manufactured by Kojin Bio) )
Specimen 3 (HT29 sup. In Serum): A HT29 cell culture supernatant 100-fold concentrated solution added to a pooled serum (manufactured by Kojin Bio Inc.) as a spike so as to be diluted 20-fold Specimen 4 (Plasma): Pool quenched Acid plasma (manufactured by Kojin Bio)
Specimen 5 (HT29 sup. In Plasma): a citrate plasma (manufactured by Kojin Bio Inc.) added with a 100-fold concentrated HT29 cell culture supernatant as a spike so as to be diluted 20-fold. Next, negative control particles As described above, an anti-mouse IgG antibody (manufactured by JSR Life Sciences, the same hereinafter) was prepared by binding to magnetic particles (MS300 / Carboxyl, manufactured by JSR Life Sciences, the same hereinafter).
 次いで、96ウェル白色プレート(コーニング社製 #23711007)に、陰性対照粒子0.0125mgを加え、各ウェルに、コントロールバッファー、検体1~5を25μL、1ウェルあたりに1種ずつ添加した。参考例1の反応バッファーを、塩化ナトリウムの終濃度が0.07Mになるように加え、25℃で20分反応させた(pH:7.4)。また、参考例1の反応バッファーに代えて実施例1~5の反応バッファーをそれぞれ等量使用し、同様の反応を行った(実施例1:終濃度0.15M、実施例2:終濃度0.2M、実施例3:終濃度0.25M、実施例4:終濃度0.3M、実施例5:終濃度0.35M(実施例1~5:pH7.4))。
 次に、洗浄バッファー(Tween20を0.1質量%含むTBS)を用いて反応後の陰性対照粒子を洗浄し、BSAを1質量%含むTBSで希釈したアルカリホスファターゼ(以下、ALP)標識抗CD81抗体(0.1μg/mL)を50μL添加し、25℃で20分反応させた。上記と同様の洗浄バッファーで洗浄した後、発光基質(富士レビオ社製クラスIIIシリーズ ルミパルス基質液)を50μL添加し、5分後に発光測定機(Promega社製 GloMax)を用いて発光強度を測定した。結果を図1-1、図1-2に示す。
 図1-1、図1-2に示すとおり、塩化ナトリウムの終濃度が0.07Mの場合(参考例1)は、検体成分の非特異吸着に起因すると考えられるバックグラウンドシグナルが検出されたが、塩化ナトリウムの終濃度が0.15~0.35Mの場合(実施例1~5)には非特異吸着が低減され、バックグラウンドシグナルが減少していた。
Next, 0.0125 mg of negative control particles were added to a 96-well white plate (Corning # 2371007), and 25 μL of control buffer and samples 1 to 5 were added to each well, one type per well. The reaction buffer of Reference Example 1 was added so that the final concentration of sodium chloride was 0.07 M, and the mixture was reacted at 25 ° C. for 20 minutes (pH: 7.4). Further, the same reaction was carried out using the same amount of each of the reaction buffers of Examples 1 to 5 instead of the reaction buffer of Reference Example 1 (Example 1: final concentration 0.15M, Example 2: final concentration 0). 2M, Example 3: final concentration of 0.25M, Example 4: final concentration of 0.3M, Example 5: final concentration of 0.35M (Examples 1-5: pH 7.4)).
Next, the negative control particles after the reaction were washed with a washing buffer (TBS containing 0.1% by mass of Tween 20), and diluted with TBS containing 1% by mass of BSA. An alkaline phosphatase (hereinafter, ALP) -labeled anti-CD81 antibody 50 μL of (0.1 μg / mL) was added and reacted at 25 ° C. for 20 minutes. After washing with the same washing buffer as described above, 50 μL of a luminescent substrate (Fujirebio Class III series Lumipulse substrate solution) was added, and after 5 minutes, the luminescence intensity was measured using a luminescence measuring device (Promega GloMax). . The results are shown in FIGS. 1-1 and 1-2.
As shown in FIGS. 1-1 and 1-2, when the final concentration of sodium chloride was 0.07 M (Reference Example 1), a background signal that was thought to be due to nonspecific adsorption of the analyte components was detected. When the final concentration of sodium chloride was 0.15 to 0.35 M (Examples 1 to 5), nonspecific adsorption was reduced and the background signal was reduced.
(試験例2-1)
 抗CD9抗体(アブカム社製 ab2215、以下同じ)を磁性粒子に結合させたもの(以下、抗CD9抗体結合磁性粒子ともいう)を準備し、この抗CD9抗体結合磁性粒子と、エクソソームを含む臨床検体と、参考例1及び実施例1~5の各反応バッファーとを混合し、洗浄後、試験例1と同様にELISAにより捕捉されたエクソソームを検出することで、参考例1及び実施例1~5の各反応バッファーを用いた場合の反応性を評価した。具体的手順を以下に示す。
 まず、検体6~8として、以下の検体を準備した。
 検体6(HT29 sup. in Control Buffer):試験例1で作製したコントロールバッファーに、スパイクとしてHT29細胞培養上清100倍濃縮液を100倍希釈となるように添加したもの
 検体7(Serum):プール血清(コージンバイオ社製)
 検体8(HT29 sup. in Serum):プール血清(コージンバイオ社製)に、スパイクとしてHT29細胞培養上清100倍濃縮液を100倍希釈となるように添加したもの
(Test Example 2-1)
An anti-CD9 antibody (abcam manufactured by Abcam, ab2215, hereinafter the same) prepared by binding to magnetic particles (hereinafter also referred to as anti-CD9 antibody-binding magnetic particles) is prepared, and a clinical specimen containing the anti-CD9 antibody-binding magnetic particles and exosomes Are mixed with the reaction buffers of Reference Example 1 and Examples 1 to 5, and after washing, the exosomes captured by ELISA are detected in the same manner as in Test Example 1, so that Reference Example 1 and Examples 1 to 5 are detected. The reactivity when each reaction buffer was used was evaluated. The specific procedure is shown below.
First, the following specimens were prepared as specimens 6 to 8.
Specimen 6 (HT29 sup. In Control Buffer): A control buffer prepared in Test Example 1 added with a HT29 cell culture supernatant 100-fold concentrated solution as a spike so as to be diluted 100-fold Specimen 7 (Serum): Pool Serum (manufactured by Kojin Bio)
Specimen 8 (HT29 sup. In Serum): HT29 cell culture supernatant 100-fold concentrated solution added to pooled serum (manufactured by Kojin Bio) as a 100-fold dilution
 次いで、Protein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)に、抗CD9抗体結合磁性粒子を0.1mg加え、各チューブに、検体6~8を1チューブあたりに1種ずつ添加した(検体6:0.1mL、検体7:0.1mL、検体8:0.1mL)。参考例1の反応バッファーを、塩化ナトリウムの終濃度が0.07Mになるように加え、25℃で5時間反応させた(pH:7.4)。また、参考例1の反応バッファーに代えて実施例1~5の反応バッファーをそれぞれ等量使用し、同様の反応を行った(実施例1:終濃度0.15M、実施例2:終濃度0.2M、実施例3:終濃度0.25M、実施例4:終濃度0.3M、実施例5:終濃度0.35M(実施例1~5:pH7.4))。
 次に、Washing/Dilution Buffer(JSRライフサイエンス社製)0.5mLで洗浄した後、96ウェル白色プレート(コーニング社製 #23711007)に、0.0125mg/wellとなるように分注した。これに、BSAを1質量%含むTBSで希釈したALP標識抗CD81抗体(0.1μg/mL)を50μL添加し、25℃で20分反応させた。洗浄バッファー(Tween20を0.1質量%含むTBS)を用いて反応後の粒子を洗浄し、発光基質(富士レビオ社製クラスIIIシリーズ ルミパルス基質液)を50μL添加し、5分後に発光測定機(Promega社製 GloMax)を用いて発光強度を測定した。結果を図2-1に示す。
 図2-1に示すとおり、塩化ナトリウムの終濃度が0.15~0.35Mの場合(実施例1~5)は、血清中での捕捉反応の反応性が向上することがわかった。
Next, 0.1 mg of anti-CD9 antibody-binding magnetic particles was added to 2 mL of Protein LoBind tube (manufactured by Eppendorf, # 0030108132), and samples 6 to 8 were added to each tube, one sample per sample (sample 6: 0.1 mL, specimen 7: 0.1 mL, specimen 8: 0.1 mL). The reaction buffer of Reference Example 1 was added so that the final concentration of sodium chloride was 0.07 M, and the mixture was reacted at 25 ° C. for 5 hours (pH: 7.4). Further, the same reaction was carried out using the same amount of each of the reaction buffers of Examples 1 to 5 instead of the reaction buffer of Reference Example 1 (Example 1: final concentration 0.15M, Example 2: final concentration 0). 2M, Example 3: final concentration of 0.25M, Example 4: final concentration of 0.3M, Example 5: final concentration of 0.35M (Examples 1-5: pH 7.4)).
Next, after washing with 0.5 mL of Washing / Dilution Buffer (manufactured by JSR Life Sciences), it was dispensed to a 96-well white plate (# 23711007, manufactured by Corning) at 0.0125 mg / well. To this, 50 μL of ALP-labeled anti-CD81 antibody (0.1 μg / mL) diluted with TBS containing 1% by mass of BSA was added and reacted at 25 ° C. for 20 minutes. The particles after the reaction were washed using a washing buffer (TBS containing 0.1% by weight of Tween 20), and 50 μL of a luminescent substrate (Class III series Lumipulse substrate solution manufactured by Fujirebio Inc.) was added. Luminescence intensity was measured using GloMax (Promega). The results are shown in FIG.
As shown in FIG. 2-1, it was found that when the final concentration of sodium chloride was 0.15 to 0.35 M (Examples 1 to 5), the reactivity of the capture reaction in serum was improved.
(試験例2-2)
 捕捉反応の反応温度を25℃から4℃に変更して、試験例2-1と同様の試験を行った。具体的手順を以下に示す。
 Protein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)に、抗CD9抗体結合磁性粒子を0.1mg加え、各チューブに、検体6~8を1チューブあたりに1種ずつ添加した(検体6:0.1mL、検体7:0.1mL、検体8:0.1mL)。参考例1の反応バッファーを、塩化ナトリウムの終濃度が0.07Mになるように加え、4℃で5時間反応させた(pH:7.4)。また、参考例1の反応バッファーに代えて実施例3の反応バッファーを等量使用し、同様の反応を行った(実施例3:終濃度0.25M(pH:7.4))。
 次に、洗浄バッファー(Tween20を0.1質量%含むTBS)0.5mLで洗浄した後、96ウェル白色プレート(コーニング社製 #23711007)に、0.0125mg/wellとなるように分注した。これに、BSAを1質量%含むTBSで希釈したALP標識抗CD81抗体(0.1μg/mL)を50μL添加し、25℃で20分反応させた。洗浄バッファー(Tween20を0.1質量%含むTBS)を用いて反応後の粒子を洗浄し、発光基質(富士レビオ社製クラスIIIシリーズ ルミパルス基質液)を50μL添加し、5分後に発光測定機(Promega社製 GloMax)を用いて発光強度を測定した。結果を図2-2に示す。なお、図2-2には反応温度25℃で行った試験結果もあわせて示す。
 試験例2-2の結果(図2-2)から、塩化ナトリウムの終濃度が0.25Mの場合(実施例3)は、反応温度が4℃、25℃のいずれであっても、血清中での捕捉反応の反応性が良好となることがわかった。
(Test Example 2-2)
The same test as in Test Example 2-1 was performed by changing the reaction temperature of the capture reaction from 25 ° C. to 4 ° C. The specific procedure is shown below.
0.1 mg of anti-CD9 antibody-binding magnetic particles was added to 2 mL of Protein LoBind tube (Eppendorf, # 0030108132), and samples 6 to 8 were added to each tube, one sample per sample (sample 6: 0. 1 mL, specimen 7: 0.1 mL, specimen 8: 0.1 mL). The reaction buffer of Reference Example 1 was added so that the final concentration of sodium chloride was 0.07 M, and the mixture was reacted at 4 ° C. for 5 hours (pH: 7.4). In addition, an equivalent amount of the reaction buffer of Example 3 was used instead of the reaction buffer of Reference Example 1, and a similar reaction was performed (Example 3: final concentration of 0.25 M (pH: 7.4)).
Next, after washing with 0.5 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), it was dispensed to a 96-well white plate (Corning # 2371007) at 0.0125 mg / well. To this, 50 μL of ALP-labeled anti-CD81 antibody (0.1 μg / mL) diluted with TBS containing 1% by mass of BSA was added and reacted at 25 ° C. for 20 minutes. The particles after the reaction were washed using a washing buffer (TBS containing 0.1% by weight of Tween 20), and 50 μL of a luminescent substrate (Class III series Lumipulse substrate solution manufactured by Fujirebio Inc.) was added. Luminescence intensity was measured using GloMax (Promega). The results are shown in Fig. 2-2. FIG. 2-2 also shows the results of tests conducted at a reaction temperature of 25 ° C.
From the results of Test Example 2-2 (FIG. 2-2), when the final concentration of sodium chloride is 0.25 M (Example 3), the serum concentration is not limited regardless of whether the reaction temperature is 4 ° C. or 25 ° C. It has been found that the reactivity of the capture reaction at is improved.
(試験例3)
 実施例3の反応バッファーの非特異吸着低減作用を、検体を変更して確認した。具体的手順を以下に示す。
 まず、検体9~17として、以下の検体を準備した。
 検体9(HT29 sup. spike Control Buffer):試験例1で作製したコントロールバッファーに、スパイクとしてHT29細胞培養上清100倍濃縮液を100倍希釈となるように添加したもの
 検体10(Serum):プール血清(コージンバイオ社製)
 検体11(HT29 sup. spike Serum):プール血清(コージンバイオ社製)に、スパイクとしてHT29細胞培養上清100倍濃縮液を100倍希釈となるように添加したもの
 検体12(Plasma(Heparin)):プールヘパリン血漿(コージンバイオ社製)
 検体13(HT29 sup. spike Plasma(Heparin)):プールヘパリン血漿(コージンバイオ社製)に、スパイクとしてHT29細胞培養上清100倍濃縮液を100倍希釈となるように添加したもの
 検体14(Plasma(EDTA)):プールEDTA血漿(コージンバイオ社製)
 検体15(HT29 sup. spike Plasma(EDTA)):プールEDTA血漿(コージンバイオ社製)に、スパイクとしてHT29細胞培養上清100倍濃縮液を100倍希釈となるように添加したもの
 検体16(Plasma(Citrate)):プールクエン酸血漿(コージンバイオ社製)
 検体17(HT29 sup. spike Plasma(Citrate)):プールクエン酸血漿(コージンバイオ社製)に、スパイクとしてHT29細胞培養上清100倍濃縮液を100倍希釈となるように添加したもの
(Test Example 3)
The nonspecific adsorption reducing action of the reaction buffer of Example 3 was confirmed by changing the sample. The specific procedure is shown below.
First, the following specimens were prepared as specimens 9-17.
Specimen 9 (HT29 sup. Spike Control Buffer): HT29 cell culture supernatant 100-fold concentrated solution added as a spike to the control buffer prepared in Test Example 1 Specimen 10 (Serum): Pool Serum (manufactured by Kojin Bio)
Specimen 11 (HT29 sup. Spike Serum): Pool serum (manufactured by Kojin Bio Inc.) spiked with 100-fold concentrated HT29 cell culture supernatant as a spike Specimen 12 (Plasma (Heparin)) : Pooled heparin plasma (manufactured by Kojin Bio)
Specimen 13 (HT29 sup. Spike Plasma (Heparin)): Pooled heparin plasma (manufactured by Kojin Bio Inc.), spiked with 100-fold concentrated HT29 cell culture supernatant as a spike Specimen 14 (Plasma (EDTA)): Pooled EDTA plasma (manufactured by Kojin Bio)
Specimen 15 (HT29 sup. Spike Plasma (EDTA)): A pooled EDTA plasma (manufactured by Kojin Bio Inc.) added with HT29 cell culture supernatant 100-fold concentrated solution as a spike at a dilution of 100-fold Specimen 16 (Plasma (Citrate): Pooled citrate plasma (manufactured by Kojin Bio)
Specimen 17 (HT29 sup. Spike Plasma (Citrate)): Pool citrate plasma (manufactured by Kojin Bio Inc.), spiked with HT29 cell culture supernatant 100-fold concentrated solution diluted 100-fold
 次いで、Protein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)に、試験例1で作製した陰性対照粒子0.1mgを加え、各チューブに検体9~17を0.1mL、1チューブあたりに1種ずつ添加した。参考例1の反応バッファーを、塩化ナトリウムの終濃度が0.07Mになるように加え、25℃で5時間反応させた(pH:7.4)。また、参考例1の反応バッファーに代えて実施例3の反応バッファーを等量使用し、同様の反応を行った(実施例3:終濃度0.25M(pH:7.4))。
 次に、洗浄バッファー(Tween20を0.1質量%含むTBS)0.5mLで洗浄した後、96ウェル白色プレート(コーニング社製 #23711007)に、0.0125mg/wellとなるように分注した。これに、BSAを1質量%含むTBSで希釈したALP標識抗CD81抗体(0.1μg/mL)を50μL添加し、25℃で20分反応させた。洗浄バッファー(Tween20を0.1質量%含むTBS)を用いて反応後の粒子を洗浄し、発光基質(富士レビオ社製クラスIIIシリーズ ルミパルス基質液)を50μL添加し、5分後に発光測定機(Promega社製 GloMax)を用いて発光強度を測定した。
 図3に示すとおり、塩化ナトリウムの終濃度が0.25Mの場合(実施例3)は、検体の種類によらずバックグラウンドシグナルが少なかった。
Next, 0.1 mg of the negative control particles prepared in Test Example 1 were added to 2 mL of Protein LoBind tube (manufactured by Eppendorf, # 0030108132), and 0.1 mL of specimens 9 to 17 were added to each tube, one type per tube. Added. The reaction buffer of Reference Example 1 was added so that the final concentration of sodium chloride was 0.07 M, and the mixture was reacted at 25 ° C. for 5 hours (pH: 7.4). In addition, an equivalent amount of the reaction buffer of Example 3 was used instead of the reaction buffer of Reference Example 1, and a similar reaction was performed (Example 3: final concentration of 0.25 M (pH: 7.4)).
Next, after washing with 0.5 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), it was dispensed to a 96-well white plate (Corning # 2371007) at 0.0125 mg / well. To this, 50 μL of ALP-labeled anti-CD81 antibody (0.1 μg / mL) diluted with TBS containing 1% by mass of BSA was added and reacted at 25 ° C. for 20 minutes. The particles after the reaction were washed using a washing buffer (TBS containing 0.1% by weight of Tween 20), and 50 μL of a luminescent substrate (Class III series Lumipulse substrate solution manufactured by Fujirebio Inc.) was added. Luminescence intensity was measured using GloMax (Promega).
As shown in FIG. 3, when the final concentration of sodium chloride was 0.25 M (Example 3), the background signal was small regardless of the type of specimen.
(試験例4)
 実施例3の反応バッファーの反応性向上作用を、検体を変更して確認した。具体的手順を以下に示す。
 Protein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)に、抗CD9抗体結合磁性粒子を0.1mg加え、各チューブに、試験例3で示した検体9~13を0.1mL、1チューブあたりに1種ずつ添加した。参考例1の反応バッファーを、塩化ナトリウムの終濃度が0.07Mになるように加え、25℃で5時間反応させた(pH:7.4)。また、参考例1の反応バッファーに代えて実施例3の反応バッファーを等量使用し、同様の反応を行った(実施例3:終濃度0.25M(pH:7.4))。
 次に、洗浄バッファー(Tween20を0.1質量%含むTBS)0.5mLで洗浄した後、96ウェル白色プレート(コーニング社製 #23711007)に、0.0125mg/wellとなるように分注した。これに、BSAを1質量%含むTBSで希釈したALP標識抗CD81抗体(0.1μg/mL)を50μL添加し、25℃で20分反応させた。洗浄バッファー(Tween20を0.1質量%含むTBS)を用いて反応後の粒子を洗浄し、発光基質(富士レビオ社製クラスIIIシリーズ ルミパルス基質液)を50μL添加し、5分後に発光測定機(Promega社製 GloMax)を用いて発光強度を測定した。結果を図4に示す。
 図4に示すとおり、塩化ナトリウムの終濃度が0.25Mの場合(実施例3)は、検体の種類によらず捕捉反応の反応性が高かった。
(Test Example 4)
The reactivity improvement effect of the reaction buffer of Example 3 was confirmed by changing the sample. The specific procedure is shown below.
To 2 mL of Protein LoBind tube (Eppendorf, # 0030108132), 0.1 mg of anti-CD9 antibody-bound magnetic particles was added, and 0.1 mL of each of Samples 9 to 13 shown in Test Example 3 was added to each tube. Seed added. The reaction buffer of Reference Example 1 was added so that the final concentration of sodium chloride was 0.07 M, and the mixture was reacted at 25 ° C. for 5 hours (pH: 7.4). In addition, an equivalent amount of the reaction buffer of Example 3 was used instead of the reaction buffer of Reference Example 1, and a similar reaction was performed (Example 3: final concentration of 0.25 M (pH: 7.4)).
Next, after washing with 0.5 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), it was dispensed to a 96-well white plate (Corning # 2371007) at 0.0125 mg / well. To this, 50 μL of ALP-labeled anti-CD81 antibody (0.1 μg / mL) diluted with TBS containing 1% by mass of BSA was added and reacted at 25 ° C. for 20 minutes. The particles after the reaction were washed using a washing buffer (TBS containing 0.1% by weight of Tween 20), and 50 μL of a luminescent substrate (Class III series Lumipulse substrate solution manufactured by Fujirebio Inc.) was added. Luminescence intensity was measured using GloMax (Promega). The results are shown in FIG.
As shown in FIG. 4, when the final concentration of sodium chloride was 0.25 M (Example 3), the reactivity of the capture reaction was high regardless of the type of specimen.
(試験例5)
 抗CD63抗体(JSRライフサイエンス社製)を磁性粒子に結合させたもの(以下、抗CD63抗体結合磁性粒子という)、抗CD81抗体(Clone M38、Abnova MAB6435)を磁性粒子に結合させたもの(以下、抗CD81抗体結合磁性粒子という)、抗EpCAM抗体(JSRライフサイエンス社製)を磁性粒子に結合させたもの(以下、抗EpCAM抗体結合磁性粒子という)を、それぞれ準備した。
 抗CD9抗体結合磁性粒子を、抗CD63抗体結合磁性粒子、抗CD81抗体結合磁性粒子、抗EpCAM抗体結合磁性粒子に変更し、検体として試験例3で示した検体10~13を用いた以外は試験例4と同様にして、実施例3の反応バッファーの反応性向上作用の検討を行った。結果を図5-1(抗CD63抗体結合磁性粒子)、図5-2(抗CD81抗体結合磁性粒子)、図5-3(抗EpCAM抗体結合磁性粒子)に示す。
(Test Example 5)
Anti-CD63 antibody (manufactured by JSR Life Sciences) bound to magnetic particles (hereinafter referred to as anti-CD63 antibody-bound magnetic particles), anti-CD81 antibody (Clone M38, Abnova MAB6435) bound to magnetic particles (hereinafter referred to as “anti-CD63 antibody-bound magnetic particles”) , Anti-CD81 antibody-binding magnetic particles) and anti-EpCAM antibody (manufactured by JSR Life Sciences) bonded to magnetic particles (hereinafter referred to as anti-EpCAM antibody-binding magnetic particles) were prepared.
The test was performed except that the anti-CD9 antibody-bound magnetic particles were changed to anti-CD63 antibody-bound magnetic particles, anti-CD81 antibody-bound magnetic particles, and anti-EpCAM antibody-bound magnetic particles, and the samples 10 to 13 shown in Test Example 3 were used as samples. In the same manner as in Example 4, the reactivity improvement effect of the reaction buffer of Example 3 was examined. The results are shown in FIG. 5-1 (anti-CD63 antibody-bound magnetic particles), FIG. 5-2 (anti-CD81 antibody-bound magnetic particles), and FIG. 5-3 (anti-EpCAM antibody-bound magnetic particles).
(試験例6 小胞中の核酸の検出)
 Protein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)を12本用意し、チューブ1~12とナンバリングした。チューブ1~4に、抗CD9抗体結合磁性粒子を0.1mgずつ、チューブ5~8に、抗CD9抗体結合磁性粒子を0.5mgずつ、チューブ9~12に、抗CD9抗体結合磁性粒子を1mgずつ、それぞれ加えた。
 次いで、チューブ1~12に、実施例3の反応バッファーを、塩化ナトリウムの終濃度が0.25Mになるように1mLずつ加え、更に試験例3で示した検体10を1mLずつ加えた。チューブ1,5,9については25℃で1時間、チューブ2,6,10については25℃で5時間、チューブ3,7,11については25℃で24時間、チューブ4,8,12については4℃で24時間反応させた。
 次に、反応後の各粒子を洗浄バッファー(Tween20を0.1質量%含むTBS)0.5mLで3回洗浄し、この懸濁液を、上記とは別の新しいProtein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)に0.5mL分注した。集磁ラックを用いて、抗体結合磁性粒子を集磁後、上清を0.4mL抜き取り、残った抗体結合粒子液0.1mLからmicroRNAを回収し定量した。結果を図6に示す。
 なお、microRNAの回収にはExoCapTM Nucleic Acid Elution Buffer(MBL社製、#MEX-E)を用いた。また、microRNA(miR-21)の定量には、TaqMan MicroRNA Reverse Transcription Kit(ライフテクノロジーズ社製、#4366597)、TaqMan MicroRNA Assays(ライフテクノロジーズ社製、#186948384)、TaqMan Universal Master Mix II, no UNG(ライフテクノロジーズ社製、#4440040)を用い、操作については推奨プロトコールに従った。
(Test Example 6 Detection of nucleic acids in vesicles)
Twelve 2 ml of Protein LoBind tubes (Eppendorf, # 0030108132) were prepared and numbered with tubes 1-12. Tubes 1 to 4 each contain 0.1 mg of anti-CD9 antibody-binding magnetic particles, tubes 5 to 8 each contain 0.5 mg of anti-CD9 antibody-binding magnetic particles, and tubes 9 to 12 contain 1 mg of anti-CD9 antibody-binding magnetic particles. Each was added.
Next, 1 mL of the reaction buffer of Example 3 was added to tubes 1 to 12 so that the final concentration of sodium chloride was 0.25 M, and 1 mL of the specimen 10 shown in Test Example 3 was further added. 1 hour at 25 ° C for tubes 1, 5, 9; 5 hours at 25 ° C for tubes 2, 6, 10; 24 hours at 25 ° C for tubes 3, 7, 11; The reaction was performed at 4 ° C. for 24 hours.
Next, each particle after the reaction was washed three times with 0.5 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), and this suspension was added to 2 mL of a new Protein LoBind tube (Eppendorf). Product, # 0030108132). After collecting antibody-bound magnetic particles using a magnetic flux collecting rack, 0.4 mL of the supernatant was extracted, and microRNA was recovered from the remaining 0.1 mL of the antibody-bound particle solution and quantified. The results are shown in FIG.
In addition, ExoCap Nucleic Acid Elution Buffer (manufactured by MBL, # MEX-E) was used for microRNA recovery. In addition, for quantification of microRNA (miR-21), TaqMan MicroRNA Reverse Transcription Kit (manufactured by Life Technologies, # 4365597), TaqMan MicroRNA Assays (manufactured by Life Technologies, # 1867948384), TaqMan UniMinGunUrGianUNG Using Life Technologies, # 4440040), the recommended protocol was followed for operation.
 図6に示すとおり、終濃度0.25Mの塩化ナトリウム存在下で反応させることによって、ヒト健常者血清に由来する小胞中の核酸を検出できた。さらに検出された核酸量は、抗体結合粒子量、温度、時間に依存して上昇することが確認された。 As shown in FIG. 6, nucleic acids in vesicles derived from human healthy human serum could be detected by reacting in the presence of sodium chloride having a final concentration of 0.25M. Furthermore, it was confirmed that the amount of nucleic acid detected increased depending on the amount of antibody-bound particles, temperature, and time.
(試験例7 小胞中の核酸の検出)
 Protein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)を8本用意し、チューブ13~20とナンバリングした。チューブ13~14に、抗CD9抗体結合磁性粒子を1mgずつ、チューブ15~16に、抗CD63抗体結合磁性粒子を1mgずつ、チューブ17~18に、抗CD81抗体結合磁性粒子を1mgずつ、チューブ19~20に、Composite抗体結合磁性粒子(抗CD9抗体結合磁性粒子と抗CD63抗体結合磁性粒子と抗CD81抗体結合磁性粒子と抗EpCAM抗体結合磁性粒子を1:1:1:1で混合したもの)を1mgずつ、それぞれ加えた。
 次いで、チューブ13~20に、実施例3の反応バッファーを、塩化ナトリウムの終濃度が0.25Mになるように0.3mLずつ添加した。奇数番号のチューブに試験例3で示した検体10を、偶数番号のチューブに試験例3で示した検体12を、それぞれ0.3mLずつ加え、25℃で24時間反応させた。
 次に、反応後の各粒子を洗浄バッファー(Tween20を0.1質量%含むTBS)0.5mLで3回洗浄し、この懸濁液を、上記とは別の新しいProtein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)に0.5mL分注した。集磁ラックを用いて、抗体結合磁性粒子を集磁後、上清を0.4mL抜き取り、残った抗体結合粒子液0.1mLからmicroRNAを回収し定量した。結果を図7-1、図7-2に示す。
 なお、microRNAの回収にはmiRNeasy Serum/Plasma Kit(50)(QIAGEN社製、#217184)を用いた。また、microRNA(miR-21)の定量には、TaqMan MicroRNA Reverse Transcription Kit(ライフテクノロジーズ社製、#4366597)、TaqMan MicroRNA Assays(ライフテクノロジーズ社製、#186948384)、TaqMan Universal Master Mix II, no UNG(ライフテクノロジーズ社製、#4440040)を用い、操作については推奨プロトコールに従った。
(Test Example 7 Detection of nucleic acids in vesicles)
Eight 8 ml of Protein LoBind tubes (Eppendorf, # 0030108132) were prepared and numbered with tubes 13-20. Tubes 13-14 contain 1 mg of anti-CD9 antibody-coupled magnetic particles, tubes 15-16 contain 1 mg of anti-CD63 antibody-coupled magnetic particles, tubes 17-18 contain 1 mg of anti-CD81 antibody-coupled magnetic particles, tube 19 -20 to Composite antibody-bound magnetic particles (mixed anti-CD9 antibody-bound magnetic particles, anti-CD63 antibody-bound magnetic particles, anti-CD81 antibody-bound magnetic particles and anti-EpCAM antibody-bound magnetic particles in a 1: 1: 1: 1 ratio) 1 mg each was added.
Next, 0.3 mL of the reaction buffer of Example 3 was added to tubes 13 to 20 so that the final concentration of sodium chloride was 0.25M. The sample 10 shown in Test Example 3 was added to the odd-numbered tube, and 0.3 mL each of the sample 12 shown in Test Example 3 was added to the even-numbered tube and reacted at 25 ° C. for 24 hours.
Next, each particle after the reaction was washed three times with 0.5 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), and this suspension was added to 2 mL of a new Protein LoBind tube (Eppendorf). Product, # 0030108132). After collecting antibody-bound magnetic particles using a magnetic flux collecting rack, 0.4 mL of the supernatant was extracted, and microRNA was recovered from the remaining 0.1 mL of the antibody-bound particle solution and quantified. The results are shown in FIGS. 7-1 and 7-2.
In addition, miRNeasy Serum / Plasma Kit (50) (QIAGEN, # 217184) was used for microRNA collection. In addition, for quantification of microRNA (miR-21), TaqMan MicroRNA Reverse Transcription Kit (manufactured by Life Technologies, # 4365597), TaqMan MicroRNA Assays (manufactured by Life Technologies, # 1867948384), TaqMan UniMinGunUrGianUNG Using Life Technologies, # 4440040), the recommended protocol was followed for operation.
 また、比較対象として、エクソソームを回収する標準的な方法である超遠心分離法を利用して小胞中の核酸の検出を行った。すなわち、試験例3で示した検体10、12それぞれ11mLずつについて、超遠心分離機(ベックマン社製 Optima XE-90)を用い、100,000×g、4℃で70分間遠心した。上清を抜き取り、沈殿にPBSを11mL加え、懸濁した。再度、超遠心分離機(ベックマン社製 Optima XE-90)を用い、100,000rpm、4℃で70分間遠心した。上清を抜き取り、沈殿にPBSを0.11mL加え、懸濁した。懸濁液のうち3μLをmicroRNAの回収、定量に用いた。結果を図7-1、図7-2に示す。
 なお、microRNAの回収、microRNA(miR-21)の定量は、上記と同様にして行った。
For comparison, nucleic acids in vesicles were detected using an ultracentrifugation method, which is a standard method for recovering exosomes. Specifically, 11 mL of each of the specimens 10 and 12 shown in Test Example 3 was centrifuged at 100,000 × g and 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman). The supernatant was extracted, and 11 mL of PBS was added to the precipitate and suspended. Again, the mixture was centrifuged at 100,000 rpm at 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman). The supernatant was extracted, and 0.11 mL of PBS was added to the precipitate for suspension. 3 μL of the suspension was used for collecting and quantifying microRNA. The results are shown in FIGS. 7-1 and 7-2.
MicroRNA recovery and microRNA (miR-21) quantification were performed in the same manner as described above.
 図7-1に示すとおり、終濃度0.25Mの塩化ナトリウム存在下で反応させることによって、ヒト健常者血清に由来する小胞中の核酸を、超遠心分離法と同等レベルで検出できることが確認された。
 図7-2に示すとおり、ヒト健常者ヘパリン血漿に由来する小胞中の核酸は、超遠心分離法を利用した場合では検出できなかった。ヒト健常者ヘパリン血漿は一般的にPCR阻害を起こす物質を含むと考えられており、超遠心分離法により回収したサンプルではPCRを阻害する物質が残存するためと考えられる。これに対し、終濃度0.25Mの塩化ナトリウム存在下で反応させた場合にはヒト健常者ヘパリン血漿に由来する小胞中の核酸を検出できた。
 これらの結果から、終濃度0.25Mの塩化ナトリウム存在下で小胞と粒子を反応させることによって、血清、血漿といった検体の種類を問わず小胞中の核酸を検出できることがわかった。
As shown in Fig. 7-1, it was confirmed that nucleic acids in vesicles derived from serum of healthy human subjects can be detected at the same level as in ultracentrifugation by reacting in the presence of sodium chloride with a final concentration of 0.25M. It was done.
As shown in FIG. 7-2, nucleic acids in vesicles derived from heparin plasma from healthy human subjects could not be detected using the ultracentrifugation method. It is considered that heparin plasma of healthy human subjects generally contains substances that cause PCR inhibition, and substances that inhibit PCR remain in samples collected by ultracentrifugation. In contrast, when the reaction was carried out in the presence of sodium chloride having a final concentration of 0.25 M, nucleic acids in vesicles derived from human healthy human heparin plasma could be detected.
From these results, it was found that by reacting vesicles and particles in the presence of sodium chloride having a final concentration of 0.25 M, nucleic acids in the vesicles can be detected regardless of the type of specimen such as serum and plasma.
(試験例8 小胞表面のタンパクの検出)
 Protein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)を10本用意し、チューブ21~30とナンバリングした。チューブ21~22に、抗CD9抗体結合磁性粒子を0.2mgずつ、チューブ23~24に、抗CD63抗体結合磁性粒子を0.2mgずつ、チューブ25~26に、抗CD81抗体結合磁性粒子を0.2mgずつ、チューブ27~28に、抗EpCAM抗体結合磁性粒子を0.2mgずつ、チューブ29~30に、Composite抗体結合磁性粒子(抗CD9抗体結合磁性粒子と抗CD63抗体結合磁性粒子と抗CD81抗体結合磁性粒子と抗EpCAM抗体結合磁性粒子を1:1:1:1で混合したもの)を0.2mgずつ、それぞれ加えた。
 次いで、チューブ21~30に、実施例3の反応バッファーを、塩化ナトリウムの終濃度が0.25Mになるように1.0mLずつ添加した。奇数番号のチューブに試験例3で示した検体10を、偶数番号のチューブに試験例3で示した検体12を、それぞれ1.0mLずつ加え、25℃で3時間反応させた。
 次に、反応後の各粒子を洗浄バッファー(Tween20を0.1質量%含むTBS)0.5mLで3回洗浄し、この懸濁液を、上記とは別の新しいProtein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)に0.5mL分注した。
 次いで集磁して洗浄液を廃棄後、抗体結合磁性粒子を1×サンプルバッファー20μLで懸濁し、95℃で5分間静置処理した。各サンプルを全量(20μL)アプライし、SDS-PAGEを行った。ゲルをPVDF膜に転写後、ブロッキングバッファー(1%(w/v)BSA及び0.1%(w/v)Tween20含有TBS)にて37℃で2時間振とうした。これを洗浄バッファー(0.1%(w/v)Tween20含有TBS)にて洗浄した。
 一次抗体として抗CD9抗体、抗CD63抗体、抗CD81抗体を、標識抗体としてHRP標識抗マウスIgG抗体(Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP、Rockland 18-8817-33)を、それぞれ25℃で1時間反応させ、これを洗浄バッファー(0.1%(w/v)Tween20含有TBS)にて洗浄した後、発光基質を反応させ、発光測定器(LAS-3000,FUJIFILM)にてウェスタンブロット像を確認した。結果を図8-1、図8-2に示す。
(Test Example 8 Detection of protein on vesicle surface)
Ten 2 ml of Protein LoBind tubes (Eppendorf, # 0030108132) were prepared and numbered with tubes 21-30. Tubes 21 to 22 each contain 0.2 mg of anti-CD9 antibody-binding magnetic particles, tubes 23 to 24 each contain 0.2 mg of anti-CD63 antibody-binding magnetic particles, and tubes 25 to 26 contain anti-CD81 antibody-binding magnetic particles 0 mg. 0.2 mg each in tubes 27-28, 0.2 mg each in anti-EpCAM antibody-coupled magnetic particles, and tubes 29-30 in Composite antibody-coupled magnetic particles (anti-CD9 antibody-coupled magnetic particles, anti-CD63 antibody-coupled magnetic particles and anti-CD81 0.2 mg each of antibody-bound magnetic particles and anti-EpCAM antibody-bound magnetic particles mixed at 1: 1: 1: 1) was added.
Next, 1.0 mL of the reaction buffer of Example 3 was added to tubes 21 to 30 so that the final concentration of sodium chloride was 0.25M. The sample 10 shown in Test Example 3 was added to the odd-numbered tube, and 1.0 mL each of the sample 12 shown in Test Example 3 was added to the even-numbered tube, and reacted at 25 ° C. for 3 hours.
Next, each particle after the reaction was washed three times with 0.5 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), and this suspension was added to 2 mL of a new Protein LoBind tube (Eppendorf). Product, # 0030108132).
Next, after collecting the magnetic flux and discarding the washing solution, the antibody-bound magnetic particles were suspended in 1 × sample buffer 20 μL, and allowed to stand at 95 ° C. for 5 minutes. A total amount (20 μL) of each sample was applied, and SDS-PAGE was performed. The gel was transferred to a PVDF membrane, and then shaken in a blocking buffer (TBS containing 1% (w / v) BSA and 0.1% (w / v) Tween 20) at 37 ° C. for 2 hours. This was washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20).
Anti-CD9 antibody, anti-CD63 antibody, and anti-CD81 antibody are used as primary antibodies, and HRP-labeled anti-mouse IgG antibody (Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP, Rockland 18-8817-33) is used as a labeled antibody. This was allowed to react for a period of time, washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20), then reacted with a luminescent substrate, and a Western blot image was obtained with a luminescence measuring device (LAS-3000, FUJIFILM). confirmed. The results are shown in FIGS. 8-1 and 8-2.
 また、比較対象として、エクソソームを回収する標準的な方法である超遠心分離法を利用して小胞表面のタンパクの検出を行った。すなわち、試験例3で示した検体10、12それぞれ11mLずつについて、超遠心分離機(ベックマン社製 Optima XE-90)を用い、100,000×g、4℃で70分間遠心した。上清を抜き取り、沈殿にPBSを11mL加え、懸濁した。再度、超遠心分離機(ベックマン社製 Optima XE-90)を用い、100,000×g、4℃で70分間遠心した。上清を抜き取り、沈殿にPBSを0.11mL加え、懸濁した。懸濁液のうち10μLに4×サンプルバッファー5μL、PBS5μLを添加し、95℃で5分間静置処理した。各サンプルを全量(20μL)アプライし、SDS-PAGEを行った。ゲルをPVDF膜に転写後、ブロッキングバッファー(1%(w/v)BSA及び0.1%(w/v)Tween20含有TBS)にて37℃で2時間振とうした。これを洗浄バッファー(0.1%(w/v)Tween20含有TBS)にて洗浄した。
 一次抗体として抗CD9抗体、抗CD63抗体、抗CD81抗体を、標識抗体としてHRP標識抗マウスIgG抗体(Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP、Rockland 18-8817-33)を、それぞれ25℃で1時間反応させ、これを洗浄バッファー(0.1%(w/v)Tween20含有TBS)にて洗浄した後、発光基質を反応させ、発光測定器(LAS-3000,FUJIFILM)にてウェスタンブロット像を確認した。結果を図8-1、図8-2に示す。
For comparison, proteins on the vesicle surface were detected using the ultracentrifugation method, which is a standard method for recovering exosomes. Specifically, 11 mL of each of the specimens 10 and 12 shown in Test Example 3 was centrifuged at 100,000 × g and 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman). The supernatant was extracted, and 11 mL of PBS was added to the precipitate and suspended. Again, centrifugation was performed at 100,000 × g and 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman). The supernatant was extracted, and 0.11 mL of PBS was added to the precipitate for suspension. To 10 μL of the suspension, 5 μL of 4 × sample buffer and 5 μL of PBS were added, and the mixture was allowed to stand at 95 ° C. for 5 minutes. A total amount (20 μL) of each sample was applied, and SDS-PAGE was performed. The gel was transferred to a PVDF membrane, and then shaken in a blocking buffer (TBS containing 1% (w / v) BSA and 0.1% (w / v) Tween 20) at 37 ° C. for 2 hours. This was washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20).
Anti-CD9 antibody, anti-CD63 antibody, and anti-CD81 antibody are used as primary antibodies, and HRP-labeled anti-mouse IgG antibody (Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP, Rockland 18-8817-33) is used as a labeled antibody. This was allowed to react for a period of time, washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20), then reacted with a luminescent substrate, and a Western blot image was obtained with a luminescence measuring device (LAS-3000, FUJIFILM). confirmed. The results are shown in FIGS. 8-1 and 8-2.
 図8-1、図8-2に示すとおり、終濃度0.25Mの塩化ナトリウム存在下で小胞と粒子を反応させることによって、ヒト健常者血清、ヒト健常者ヘパリン血漿に由来する小胞表面のタンパクを、超遠心分離法と同等レベルで検出できることが確認された。また、抗EpCAM抗体結合磁性粒子を用いた場合には、小胞表面タンパクは検出されなかった。EpCAMタンパク質は健常者の血液中にはほとんど存在せず、癌などの疾患によりその血中濃度が上昇すると考えられている。終濃度0.25Mの塩化ナトリウム存在下で小胞と粒子を反応させることによって、非特異反応を抑制できていることが確認された。 As shown in FIGS. 8-1 and 8-2, by reacting vesicles with particles in the presence of sodium chloride having a final concentration of 0.25M, the surface of vesicles derived from human healthy human serum or human healthy heparin plasma It was confirmed that this protein can be detected at the same level as the ultracentrifugation method. In addition, when anti-EpCAM antibody-binding magnetic particles were used, no vesicle surface protein was detected. EpCAM protein is hardly present in the blood of healthy individuals, and its blood concentration is thought to increase due to diseases such as cancer. It was confirmed that nonspecific reaction could be suppressed by reacting vesicles and particles in the presence of sodium chloride having a final concentration of 0.25M.
(試験例9-1 小胞表面のネイティブフォームの立体構造を維持したタンパクの検出(1))
 Protein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)を8本用意し、チューブ31~38とナンバリングした。チューブ31,32に抗CD9抗体結合磁性粒子を0.1mg、チューブ33,34に抗CD63抗体結合磁性粒子を0.1mg、チューブ35,36に抗CD81抗体結合磁性粒子を0.1mg、チューブ37,38に抗EpCAM抗体結合磁性粒子を0.1mg加えた。実施例3の反応バッファーを、塩化ナトリウムの終濃度が0.25Mになるようにチューブ31~38に0.3mLずつ添加した。
 次いで、チューブ31,33,35,37には試験例3で示した検体10を0.3mL添加し、25℃で一晩反応させた。また、チューブ32,34,36,38には試験例3で示した検体12を0.3mL添加し、25℃で一晩反応させた。
 次に、反応後の各粒子を洗浄バッファー(Tween20を0.1質量%含むTBS)0.25mLで2回洗浄し、集磁後、上清を取り除き、リン酸緩衝生理食塩水1mLに懸濁した。
 上記とは別の新しいProtein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)を40本用意し、チューブ39~78とナンバリングした。チューブ31より、チューブ39~43へ、懸濁液を0.1mLずつ分注した。チューブ32より、チューブ44~48へ、懸濁液を0.1mLずつ分注した。チューブ33より、チューブ49~53へ、懸濁液を0.1mLずつ分注した。チューブ34より、チューブ54~58へ、懸濁液を0.1mLずつ分注した。チューブ35より、チューブ59~63へ、懸濁液を0.1mLずつ分注した。チューブ36より、チューブ64~68へ、懸濁液を0.1mLずつ分注した。チューブ37より、チューブ69~73へ、懸濁液を0.1mLずつ分注した。チューブ38より、チューブ74~78へ、懸濁液を0.1mLずつ分注した。
 次いで、チューブ39,44,49,54,59,64,69,74には、コントロールとして、フィコエリスリン(以下、PE)標識抗マウスIgG抗体(SONY社製)を、チューブ40,45,50,55,60,65,70,75には、PE標識抗CD9抗体(SONY社製)を、チューブ41,46,51,56,61,66,71,76には、PE標識抗CD63抗体(SONY社製)を、チューブ42,47,52,57,62,67,72,77には、PE標識抗CD81抗体(SONY社製)を、チューブ43,48,53,58,63,68,73,78には、PE標識抗EpCAM抗体(SONY社製)を、それぞれ5μLずつ添加した。その後、チューブ39~78を、25℃、1000rpmの条件で、1時間懸濁した。
 次に、反応後の各粒子をリン酸緩衝生理食塩水0.5mLで2回洗浄した後、フローサイトメーター(BD社製、BD Accuri C6)を用いて、各サンプルの蛍光シグナルを確認した。結果を図9-1、図9-2に示す。
(Test Example 9-1 Detection of Protein Maintaining Three-dimensional Structure of Native Foam on Vesicle Surface (1))
Eight 8 ml of Protein LoBind tubes (Eppendorf, # 0030108132) were prepared and numbered with tubes 31-38. Tubes 31 and 32 contain 0.1 mg of anti-CD9 antibody-coupled magnetic particles, tubes 33 and 34 contain 0.1 mg of anti-CD63 antibody-coupled magnetic particles, tubes 35 and 36 contain 0.1 mg of anti-CD81 antibody-coupled magnetic particles, and tube 37 38, 0.1 mg of anti-EpCAM antibody-coupled magnetic particles was added. 0.3 mL of the reaction buffer of Example 3 was added to tubes 31 to 38 so that the final concentration of sodium chloride was 0.25M.
Next, 0.3 mL of the specimen 10 shown in Test Example 3 was added to the tubes 31, 33, 35, and 37 and reacted at 25 ° C. overnight. In addition, 0.3 mL of the specimen 12 shown in Test Example 3 was added to the tubes 32, 34, 36, and 38, and the reaction was performed overnight at 25 ° C.
Next, each particle after the reaction is washed twice with 0.25 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), and after collecting the magnetic flux, the supernatant is removed and suspended in 1 mL of phosphate buffered saline. did.
40 new 2 ml Protein LoBind tubes (Eppendorf, # 0030108132) prepared separately from the above were prepared and numbered with tubes 39-78. From the tube 31, 0.1 mL of the suspension was dispensed into tubes 39 to 43. From the tube 32, 0.1 mL of the suspension was dispensed into tubes 44 to 48. From the tube 33, 0.1 mL of the suspension was dispensed into tubes 49 to 53. From the tube 34, 0.1 mL of the suspension was dispensed into tubes 54 to 58. From the tube 35, 0.1 mL of the suspension was dispensed into tubes 59 to 63. From the tube 36, 0.1 mL of the suspension was dispensed into tubes 64-68. From the tube 37, 0.1 mL of the suspension was dispensed into tubes 69 to 73. From the tube 38, 0.1 mL of the suspension was dispensed into tubes 74 to 78.
Next, as a control, phycoerythrin (hereinafter referred to as PE) labeled anti-mouse IgG antibody (manufactured by SONY) was added to the tubes 39, 44, 49, 54, 59, 64, 69, 74 as tubes 40, 45, 50. , 55, 60, 65, 70, 75 are PE-labeled anti-CD9 antibodies (manufactured by SONY), and tubes 41, 46, 51, 56, 61, 66, 71, 76 are PE-labeled anti-CD63 antibodies ( (Sony) and tubes 42, 47, 52, 57, 62, 67, 72, 77, PE labeled anti-CD81 antibody (manufactured by SONY), tubes 43, 48, 53, 58, 63, 68, In 73 and 78, 5 μL each of PE-labeled anti-EpCAM antibody (manufactured by SONY) was added. Thereafter, the tubes 39 to 78 were suspended for 1 hour under the conditions of 25 ° C. and 1000 rpm.
Next, each particle after the reaction was washed twice with 0.5 mL of phosphate buffered saline, and then the fluorescence signal of each sample was confirmed using a flow cytometer (BD Accuri C6, manufactured by BD). The results are shown in FIGS. 9-1 and 9-2.
 図9-1、図9-2に示すとおり、終濃度0.25Mの塩化ナトリウム存在下で小胞と粒子を反応させることによって、ヒト健常者血清、ヒト健常者ヘパリン血漿に由来する小胞表面のCD9、CD63、CD81が検出できることが確認された。
 また、抗CD9抗体結合磁性粒子、抗CD63抗体結合磁性粒子、抗CD81抗体結合磁性粒子を用いた場合において、発癌により発現すると考えられているEpCAMを抗EpCAM抗体で検出したピークが、コントロールとした抗マウスIgG抗体と比較してピークシフトしておらず、健常者の検体からは検出されないものと考えられる。
 さらに、固相担体として抗EpCAM抗体結合磁性粒子を用いた場合には、抗マウスIgG抗体で検出されたピークと抗CD9抗体、抗CD63抗体、抗CD81抗体、抗EpCAM抗体で検出されたピークはさほど変わらなかった。すなわち、固相担体として抗EpCAM抗体結合磁性粒子を用いた場合に、健常者の検体よりエクソソームは得られておらず、非特異吸着が低いものと考えられる。
 また、解析に用いたサンプルにはタンパク質の立体構造を変化させる熱、薬剤等の処理をしておらず、小胞表面に存在するネイティブフォームのCD9、CD63、CD81が検出できたものと考えられる。
As shown in FIGS. 9-1 and 9-2, by reacting vesicles and particles in the presence of sodium chloride having a final concentration of 0.25M, the surface of vesicles derived from human healthy human serum and human healthy human heparin plasma It was confirmed that CD9, CD63, and CD81 can be detected.
In addition, in the case of using anti-CD9 antibody-binding magnetic particles, anti-CD63 antibody-binding magnetic particles, and anti-CD81 antibody-binding magnetic particles, the peak detected by anti-EpCAM antibody that was thought to be expressed by carcinogenesis was used as a control. It is considered that the peak is not shifted compared with the anti-mouse IgG antibody, and it is not detected from the specimen of a healthy person.
Furthermore, when anti-EpCAM antibody-binding magnetic particles are used as the solid phase carrier, the peak detected with the anti-mouse IgG antibody and the peak detected with the anti-CD9 antibody, anti-CD63 antibody, anti-CD81 antibody, and anti-EpCAM antibody are: It didn't change much. That is, when anti-EpCAM antibody-binding magnetic particles are used as a solid phase carrier, exosomes are not obtained from a healthy subject's sample, and it is considered that nonspecific adsorption is low.
In addition, it is considered that the samples used for analysis were not treated with heat, drugs, etc. that change the three-dimensional structure of the protein, and the native forms of CD9, CD63, and CD81 present on the vesicle surface could be detected. .
(試験例9-2 小胞表面のネイティブフォームの立体構造を維持したタンパクの検出(2))
 試験に先立ち、以下に示す検体18、19を用意した。
 検体18(HT29 sup. spike Serum):プール血清(コージンバイオ社製)に、スパイクとしてHT29細胞培養上清100倍濃縮液を10倍希釈となるように添加したもの
 検体19(HT29 sup. spike Plasma(Heparin)):プールヘパリン血漿(コージンバイオ社製)に、スパイクとしてHT29細胞培養上清100倍濃縮液を10倍希釈となるように添加したもの
(Test Example 9-2 Detection of Protein Maintaining Three-dimensional Structure of Native Foam on Vesicle Surface (2))
Prior to the test, the following specimens 18 and 19 were prepared.
Specimen 18 (HT29 sup. Spike Serum): A sample obtained by adding HT29 cell culture supernatant 100-fold concentrated concentrate as a spike to pooled serum (manufactured by Kojin Bio Inc.) to a 10-fold dilution Specimen 19 (HT29 sup. Spike Plasma) (Heparin): Pooled heparin plasma (manufactured by Kojin Bio Inc.), spiked with HT29 cell culture supernatant 100-fold concentrated solution diluted 10-fold
 Protein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)を8本用意し、チューブ79~86とナンバリングした。チューブ79,80に抗CD9抗体結合磁性粒子を0.1mg、チューブ81,82に抗CD63抗体結合磁性粒子を0.1mg、チューブ83,84に抗CD81抗体結合磁性粒子を0.1mg、チューブ85,86に抗EpCAM抗体結合磁性粒子を0.1mg加えた。実施例3の反応バッファーを、塩化ナトリウムの終濃度が0.25Mになるようにチューブ79~86に0.3mLずつ添加した。
 次いで、チューブ79,81,83,85には検体18を0.3mL添加し、25℃で一晩反応させた。また、チューブ80,82,84,86には検体19を0.3mL添加し、25℃で一晩反応させた。
 次に、反応後の各粒子を洗浄バッファー(Tween20を0.1質量%含むTBS)0.25mLで2回洗浄し、集磁後、上清を取り除き、リン酸緩衝生理食塩水1mLに懸濁した。
 上記とは別の新しいProtein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)を40本用意し、チューブ87~126とナンバリングした。チューブ79より、チューブ87~91へ、懸濁液を0.1mLずつ分注した。チューブ80より、チューブ92~96へ、懸濁液を0.1mLずつ分注した。チューブ81より、チューブ97~101へ、懸濁液を0.1mLずつ分注した。チューブ82より、チューブ102~106へ、懸濁液を0.1mLずつ分注した。チューブ83より、チューブ107~111へ、懸濁液を0.1mLずつ分注した。チューブ84より、チューブ112~116へ、懸濁液を0.1mLずつ分注した。チューブ85より、チューブ117~121へ、懸濁液を0.1mLずつ分注した。チューブ86より、チューブ122~126へ、懸濁液を0.1mLずつ分注した。
 次いで、チューブ87,92,97,102,107,112,117,122には、コントロールとしてPE標識抗マウスIgG抗体(SONY社製)を、チューブ88,93,98,103,108,113,118,123には、PE標識抗CD9抗体(SONY社製)を、チューブ89,94,99,104,109,114,119,124には、PE標識抗CD63抗体(SONY社製)を、チューブ90,95,100,105,110,115,120,125には、PE標識抗CD81抗体(SONY社製)を、チューブ91,96,101,106,111,116,121,126には、PE標識抗EpCAM抗体(SONY社製)を、それぞれ5μLずつ添加した。その後、チューブ87~126を、25℃、1000rpmの条件で、1時間懸濁した。
 次に、反応後の各粒子をリン酸緩衝生理食塩水0.5mLで2回洗浄した後、フローサイトメーター(BD社製、BD Accuri C6)を用いて、各サンプルの蛍光シグナルを確認した。結果を図9-3、図9-4に示す。
Eight 8 ml of Protein LoBind tubes (Eppendorf, # 0030108132) were prepared and numbered with tubes 79-86. Tubes 79 and 80 contain 0.1 mg of anti-CD9 antibody-coupled magnetic particles, tubes 81 and 82 contain 0.1 mg of anti-CD63 antibody-coupled magnetic particles, tubes 83 and 84 contain 0.1 mg of anti-CD81 antibody-coupled magnetic particles, and tube 85. 86, 0.1 mg of anti-EpCAM antibody-coupled magnetic particles was added. 0.3 mL of the reaction buffer of Example 3 was added to tubes 79 to 86 so that the final concentration of sodium chloride was 0.25M.
Next, 0.3 mL of the specimen 18 was added to the tubes 79, 81, 83, and 85 and reacted at 25 ° C. overnight. In addition, 0.3 mL of the specimen 19 was added to the tubes 80, 82, 84, and 86, and reacted at 25 ° C. overnight.
Next, each particle after the reaction is washed twice with 0.25 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), and after collecting the magnetic flux, the supernatant is removed and suspended in 1 mL of phosphate buffered saline. did.
40 new 2 ml Protein LoBind tubes (Eppendorf, # 0030108132) other than the above were prepared and numbered with tubes 87-126. From the tube 79, 0.1 mL of the suspension was dispensed into tubes 87 to 91. From the tube 80, 0.1 mL of the suspension was dispensed into tubes 92 to 96. From the tube 81, 0.1 mL of the suspension was dispensed into tubes 97 to 101. From the tube 82, 0.1 mL of the suspension was dispensed into the tubes 102 to 106. From the tube 83, 0.1 mL of the suspension was dispensed into the tubes 107 to 111. From the tube 84, 0.1 mL of the suspension was dispensed into the tubes 112 to 116. From the tube 85, 0.1 mL of the suspension was dispensed into tubes 117 to 121. From the tube 86, 0.1 mL of the suspension was dispensed into tubes 122 to 126.
Next, in tubes 87, 92, 97, 102, 107, 112, 117, 122, PE-labeled anti-mouse IgG antibody (manufactured by SONY) was used as a control, and tubes 88, 93, 98, 103, 108, 113, 118 were used. , 123 is a PE-labeled anti-CD9 antibody (manufactured by SONY), and tubes 89, 94, 99, 104, 109, 114, 119, and 124 are PE-labeled anti-CD63 antibody (manufactured by SONY) and tube 90 , 95, 100, 105, 110, 115, 120, 125 are PE-labeled anti-CD81 antibody (manufactured by SONY), and tubes 91, 96, 101, 106, 111, 116, 121, 126 are labeled with PE. 5 μL of anti-EpCAM antibody (manufactured by SONY) was added. Thereafter, the tubes 87 to 126 were suspended for 1 hour at 25 ° C. and 1000 rpm.
Next, each particle after the reaction was washed twice with 0.5 mL of phosphate buffered saline, and then the fluorescence signal of each sample was confirmed using a flow cytometer (BD Accuri C6, manufactured by BD). The results are shown in FIGS. 9-3 and 9-4.
 図9-3、図9-4に示すとおり、終濃度0.25Mの塩化ナトリウム存在下で小胞と粒子を反応させることによって、ヒト健常者血清、ヒト健常者ヘパリン血漿、ヒト結腸がんHT29細胞に由来する小胞表面に存在するCD9、CD63、CD81が検出できることが確認された。
 また発癌により発現すると考えられているEpCAMを抗EpCAM抗体で検出したピークについて、コントロールとした抗マウスIgG抗体と比較してピークシフトが確認できた。サンプルに健常者検体のみを用いている図9-1、図9-2ではこのピークシフトは確認されなかったことから、本発明を利用して疾患を判定できることがわかった。
 さらに、固相担体として抗EpCAM抗体結合磁性粒子を用いた場合には、抗マウスIgG抗体で検出されたピークと抗CD9抗体、抗CD63抗体、抗CD81抗体、抗EpCAM抗体で検出されたピークはさほど変わらなかった。すなわち、固相担体として抗EpCAM抗体結合磁性粒子を用いた場合に、健常者の検体よりエクソソームは得られておらず、非特異吸着が低いものと考えられる。
 また、解析に用いたサンプルにはタンパク質の立体構造を変化させる熱、薬剤等の処理をしておらず、小胞表面に存在するネイティブフォームのCD9、CD63、CD81が検出できたものと考えられる。
As shown in FIGS. 9-3 and 9-4, by reacting vesicles and particles in the presence of sodium chloride having a final concentration of 0.25 M, human healthy human serum, human healthy heparin plasma, human colon cancer HT29 It was confirmed that CD9, CD63, and CD81 present on the surface of vesicles derived from cells can be detected.
Moreover, the peak shift which confirmed that EpCAM considered to express by carcinogenesis with the anti- EpCAM antibody was able to confirm the peak shift compared with the anti-mouse IgG antibody used as control. This peak shift was not confirmed in FIGS. 9-1 and 9-2, in which only healthy subjects were used as samples, indicating that the disease can be determined using the present invention.
Furthermore, when anti-EpCAM antibody-binding magnetic particles are used as the solid phase carrier, the peak detected with the anti-mouse IgG antibody and the peak detected with the anti-CD9 antibody, anti-CD63 antibody, anti-CD81 antibody, and anti-EpCAM antibody are: It didn't change much. That is, when anti-EpCAM antibody-binding magnetic particles are used as a solid phase carrier, exosomes are not obtained from a healthy subject's sample, and it is considered that nonspecific adsorption is low.
In addition, it is considered that the samples used for analysis were not treated with heat, drugs, etc. that change the three-dimensional structure of the protein, and the native forms of CD9, CD63, and CD81 present on the vesicle surface could be detected. .
(試験例10)
 Protein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)を20本用意し、チューブ127~146とナンバリングした。チューブ127~130に、抗CD9抗体結合磁性粒子を0.2mgずつ、チューブ131~134に、抗CD63抗体結合磁性粒子を0.2mgずつ、チューブ135~138に、抗CD81抗体結合磁性粒子を0.2mgずつ、チューブ139~142に、抗EpCAM抗体結合磁性粒子を0.2mgずつ、チューブ143~146に、Composite抗体結合磁性粒子(抗CD9抗体結合磁性粒子と抗CD63抗体結合磁性粒子と抗CD81抗体結合磁性粒子と抗EpCAM抗体結合磁性粒子を1:1:1:1で混合したもの)を0.2mgずつ、それぞれ加えた。
 次いで、チューブ127~146に、実施例3の反応バッファーを、塩化ナトリウムの終濃度が0.25Mになるように0.1mLずつ添加した。チューブ127,131,135,139,143に試験例3で示した検体10を、チューブ128,132,136,140,144に試験例9-2で示した検体18を、チューブ129,133,137,141,145に試験例3で示した検体12を、チューブ130,134,138,142,146に試験例9-2で示した検体19を、それぞれ0.1mLずつ加え、25℃で24時間反応させた。
 次に、反応後の各粒子を洗浄バッファー(Tween20を0.1質量%含むTBS)0.5mLで3回洗浄し、この懸濁液を、上記とは別の新しいProtein LoBindチューブ 2mL(エッペンドルフ社製、#0030108132)に0.5mL分注した。
 次いで集磁して洗浄液を廃棄後、抗体結合磁性粒子を1×サンプルバッファー20μLで懸濁し、95℃で5分間静置処理した。各サンプルを全量(20μL)アプライし、SDS-PAGEを行った。ゲルをPVDF膜に転写後、ブロッキングバッファー(1%(w/v)BSA及び0.1%(w/v)Tween20含有TBS)にて37℃で2時間振とうした。これを洗浄バッファー(0.1%(w/v)Tween20含有TBS)にて洗浄した。
 一次抗体として抗CD9抗体、抗EpCAM抗体、抗Alix抗体を、標識抗体としてHRP標識抗マウスIgG抗体(Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP、Rockland 18-8817-33)を、それぞれ25℃で1時間反応させ、これを洗浄バッファー(0.1%(w/v)Tween20含有TBS)にて洗浄した後、発光基質を反応させ、発光測定器(LAS-3000,FUJIFILM)にてウェスタンブロット像を確認した。結果を図10-1、図10-2に示す。
(Test Example 10)
Twenty 20 mL of Protein LoBind tubes (Eppendorf, # 0030108132) were prepared and numbered with tubes 127-146. Tubes 127 to 130 each contain 0.2 mg of anti-CD9 antibody-coupled magnetic particles, tubes 131 to 134 each contain 0.2 mg of anti-CD63 antibody-coupled magnetic particles, and tubes 135 to 138 contain anti-CD81 antibody-coupled magnetic particles 0 mg. 0.2 mg each in tubes 139-142, 0.2 mg each in anti-EpCAM antibody-coupled magnetic particles and tubes 143-146 in Composite antibody-coupled magnetic particles (anti-CD9 antibody-coupled magnetic particles, anti-CD63 antibody-coupled magnetic particles and anti-CD81 0.2 mg each of antibody-bound magnetic particles and anti-EpCAM antibody-bound magnetic particles mixed at 1: 1: 1: 1) was added.
Next, 0.1 mL of the reaction buffer of Example 3 was added to tubes 127 to 146 so that the final concentration of sodium chloride was 0.25M. Samples 10 shown in Test Example 3 are placed in tubes 127, 131, 135, 139, and 143, and Samples 18 shown in Test Example 9-2 are placed in tubes 128, 132, 136, 140, and 144, and tubes 129, 133, and 137 are shown in FIG. , 141, 145, and 0.1 mL of the specimen 12 shown in Test Example 9-2 are added to the tubes 130, 134, 138, 142, 146, respectively, and the mixture is added at 25 ° C. for 24 hours. Reacted.
Next, each particle after the reaction was washed three times with 0.5 mL of a washing buffer (TBS containing 0.1% by weight of Tween 20), and this suspension was added to 2 mL of a new Protein LoBind tube (Eppendorf). Product, # 0030108132).
Next, after collecting the magnetic flux and discarding the washing solution, the antibody-bound magnetic particles were suspended in 1 × sample buffer 20 μL, and allowed to stand at 95 ° C. for 5 minutes. A total amount (20 μL) of each sample was applied, and SDS-PAGE was performed. The gel was transferred to a PVDF membrane, and then shaken in a blocking buffer (TBS containing 1% (w / v) BSA and 0.1% (w / v) Tween 20) at 37 ° C. for 2 hours. This was washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20).
Anti-CD9 antibody, anti-EpCAM antibody, and anti-Alix antibody are used as the primary antibody, and HRP-labeled anti-mouse IgG antibody (Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP, Rockland 18-8817-33) is used as the labeled antibody. This was allowed to react for a period of time, washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20), then reacted with a luminescent substrate, and a Western blot image was obtained with a luminescence measuring device (LAS-3000, FUJIFILM). confirmed. The results are shown in FIGS. 10-1 and 10-2.
 また、比較対象として、エクソソームを回収する標準的な方法である超遠心分離法を利用して小胞表面のタンパクの検出を行った。すなわち、検体10、12、18、19それぞれ11mLずつについて、超遠心分離機(ベックマン社製 Optima XE-90)を用い、100,000×g、4℃で70分間遠心した。上清を抜き取り、沈殿にPBSを11mL加え、懸濁した。再度、超遠心分離機(ベックマン社製 Optima XE-90)を用い、100,000×g、4℃で70分間遠心した。上清を抜き取り、沈殿にPBSを0.11mL加え、懸濁した。懸濁液のうち1μLに4×サンプルバッファー5μL、PBS14μLを添加し、95℃で5分間静置処理した。各サンプルを全量(20μL)アプライし、SDS-PAGEを行った。ゲルをPVDF膜に転写後、ブロッキングバッファー(1%(w/v)BSA及び0.1%(w/v)Tween20含有TBS)にて37℃で2時間振とうした。これを洗浄バッファー(0.1%(w/v)Tween20含有TBS)にて洗浄した。
 一次抗体として抗CD9抗体、抗EpCAM抗体、抗Alix抗体を、標識抗体としてHRP標識抗マウスIgG抗体(Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP、Rockland 18-8817-33)を、それぞれ25℃で1時間反応させ、これを洗浄バッファー(0.1%(w/v)Tween20含有TBS)にて洗浄した後、発光基質を反応させ、発光測定器(LAS-3000,FUJIFILM)にてウェスタンブロット像を確認した。結果を図10-1、図10-2に示す。
For comparison, proteins on the vesicle surface were detected using the ultracentrifugation method, which is a standard method for recovering exosomes. That is, 11 mL each of specimens 10, 12, 18, and 19 were centrifuged at 100,000 × g and 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman). The supernatant was extracted, and 11 mL of PBS was added to the precipitate and suspended. Again, centrifugation was performed at 100,000 × g and 4 ° C. for 70 minutes using an ultracentrifuge (Optima XE-90 manufactured by Beckman). The supernatant was extracted, and 0.11 mL of PBS was added to the precipitate for suspension. 5 μL of 4 × sample buffer and 14 μL of PBS were added to 1 μL of the suspension, and the mixture was allowed to stand at 95 ° C. for 5 minutes. A total amount (20 μL) of each sample was applied, and SDS-PAGE was performed. The gel was transferred to a PVDF membrane, and then shaken in a blocking buffer (TBS containing 1% (w / v) BSA and 0.1% (w / v) Tween 20) at 37 ° C. for 2 hours. This was washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20).
Anti-CD9 antibody, anti-EpCAM antibody, and anti-Alix antibody are used as the primary antibody, and HRP-labeled anti-mouse IgG antibody (Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP, Rockland 18-8817-33) is used as the labeled antibody. This was allowed to react for a period of time, washed with a washing buffer (TBS containing 0.1% (w / v) Tween 20), then reacted with a luminescent substrate, and a Western blot image was obtained with a luminescence measuring device (LAS-3000, FUJIFILM). confirmed. The results are shown in FIGS. 10-1 and 10-2.
 図10-1、図10-2に示すとおり、終濃度0.25Mの塩化ナトリウム存在下で小胞と粒子を反応させることによって、ヒト健常者血清、ヒト健常者ヘパリン血漿、ヒト結腸がんHT29細胞に由来する小胞表面のタンパクを、超遠心分離法と同等レベルもしくはそれ以上で検出できることが確認された。また、抗EpCAM抗体を用いて検出した場合に、ヒト健常者血清、ヘパリン血漿ではバンドが検出されず、これらにヒト結腸がんHT29細胞の培養上清を添加した場合にはバンドが検出されることから、本発明を利用して疾患を判定できることがわかった。 As shown in FIGS. 10-1 and 10-2, by reacting vesicles and particles in the presence of sodium chloride having a final concentration of 0.25 M, human healthy human serum, human healthy heparin plasma, human colon cancer HT29 It was confirmed that proteins on the surface of vesicles derived from cells could be detected at a level equivalent to or higher than that of ultracentrifugation. In addition, when detected using an anti-EpCAM antibody, no band is detected in the serum of human healthy subjects or heparin plasma, and when a culture supernatant of human colon cancer HT29 cells is added thereto, a band is detected. Therefore, it was found that the disease can be determined using the present invention.

Claims (23)

  1.  脂質二重膜を有する小胞を含む生体試料と、前記小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体とを接触させ、前記小胞と前記固相担体との複合体を形成させる複合体形成工程と、
     前記複合体を洗浄する洗浄工程を含み、
     前記複合体形成工程及び前記洗浄工程の少なくともいずれかを、終濃度0.15~2Mの無機塩又は有機塩の存在下で行うことを特徴とする、
     脂質二重膜を有する小胞の分離方法。
    A biological sample containing a vesicle having a lipid bilayer membrane is contacted with a solid phase carrier to which a ligand that recognizes a surface antigen present on the surface of the vesicle is bound, and the vesicle and the solid phase carrier are combined. A complex forming step for forming a body;
    A washing step of washing the complex,
    At least one of the complex formation step and the washing step is performed in the presence of an inorganic salt or organic salt having a final concentration of 0.15 to 2M,
    A method for separating vesicles having a lipid bilayer membrane.
  2.  前記複合体形成工程を、終濃度0.15~2Mの無機塩又は有機塩の存在下で行う、請求項1に記載の分離方法。 2. The separation method according to claim 1, wherein the complex forming step is performed in the presence of an inorganic salt or organic salt having a final concentration of 0.15 to 2M.
  3.  前記生体試料が、体液又は細胞培養上清である、請求項1又は2に記載の分離方法。 The separation method according to claim 1 or 2, wherein the biological sample is a body fluid or a cell culture supernatant.
  4.  前記生体試料が、体液である、請求項1~3のいずれか1項に記載の分離方法。 The separation method according to any one of claims 1 to 3, wherein the biological sample is a body fluid.
  5.  前記無機塩又は有機塩が、無機塩である、請求項1~4のいずれか1項に記載の分離方法。 The separation method according to any one of claims 1 to 4, wherein the inorganic salt or organic salt is an inorganic salt.
  6.  前記無機塩が、アルカリ金属ハロゲン化物である、請求項5に記載の分離方法。 The separation method according to claim 5, wherein the inorganic salt is an alkali metal halide.
  7.  前記複合体形成工程における複合体形成反応の反応温度が、2~42℃の範囲内である、請求項1~6のいずれか1項に記載の分離方法。 The separation method according to any one of claims 1 to 6, wherein a reaction temperature of the complex formation reaction in the complex formation step is in a range of 2 to 42 ° C.
  8.  前記リガンドが、小胞の表面に存在する表面抗原を認識する抗体である、請求項1~7のいずれか1項に記載の分離方法。 The separation method according to any one of claims 1 to 7, wherein the ligand is an antibody that recognizes a surface antigen present on the surface of a vesicle.
  9.  前記小胞が、エクソソームである、請求項1~8のいずれか1項に記載の分離方法。 The separation method according to any one of claims 1 to 8, wherein the vesicle is an exosome.
  10.  前記固相担体が、磁性粒子である、請求項1~9のいずれか1項に記載の分離方法。 The separation method according to any one of claims 1 to 9, wherein the solid phase carrier is a magnetic particle.
  11.  前記洗浄工程が、前記磁性粒子を磁力により集めて磁性粒子と液相とを分離する集磁工程、及び該集磁工程で分離された磁性粒子を洗浄液中に分散させる分散工程を含む、請求項10に記載の分離方法。 The cleaning step includes a magnetic flux collecting step of collecting the magnetic particles by a magnetic force to separate the magnetic particles from a liquid phase, and a dispersing step of dispersing the magnetic particles separated in the magnetic flux collecting step in the cleaning liquid. The separation method according to 10.
  12.  請求項1~11のいずれか1項に記載の分離方法の後に、
     さらに小胞中の核酸を検出する核酸検出工程を含むことを特徴とする、
     小胞中の核酸の検出方法。
    After the separation method according to any one of claims 1 to 11,
    The method further comprises a nucleic acid detection step of detecting nucleic acid in the vesicle,
    A method for detecting nucleic acids in vesicles.
  13.  請求項1~11のいずれか1項に記載の分離方法の後に、
     さらに小胞の内側及び表面の少なくとも一方に存在するタンパク質を検出するタンパク質検出工程を含むことを特徴とする、
     小胞由来のタンパク質の検出方法。
    After the separation method according to any one of claims 1 to 11,
    The method further comprises a protein detection step of detecting a protein present on at least one of the inside and the surface of the vesicle,
    A method for detecting a protein derived from a vesicle.
  14.  請求項1~11のいずれか1項に記載の分離方法の後に、
     さらに前記複合体を形成した小胞由来のシグナル強度を測定するシグナル測定工程を含むことを特徴とする、
     小胞由来のシグナル測定方法。
    After the separation method according to any one of claims 1 to 11,
    The method further comprises a signal measurement step of measuring a signal intensity derived from a vesicle forming the complex.
    Signal measurement method derived from vesicles.
  15.  被検者が疾患を発症しているか否かを判定するための方法であって、
     被検者由来の生体試料を用いて、請求項14に記載のシグナル測定方法により前記複合体を形成した小胞由来のシグナル強度を測定する工程を含むことを特徴とする、
     疾患の判定方法。
    A method for determining whether a subject has developed a disease,
    Using a biological sample derived from a subject, and measuring a signal intensity derived from a vesicle formed with the complex by the signal measurement method according to claim 14,
    How to determine the disease.
  16.  疾患治療薬の薬効評価方法であって、
     疾患治療薬の投与前及び投与後の被検者由来の生体試料を用いて、請求項14に記載のシグナル測定方法により、前記複合体を形成した小胞由来のシグナル強度を測定する工程を含むことを特徴とする、
     疾患治療薬の薬効評価方法。
    A method for evaluating the efficacy of a drug for treating a disease,
    Using a biological sample derived from a subject before and after administration of a drug for treating a disease, by the signal measurement method according to claim 14, comprising measuring a signal intensity derived from a vesicle forming the complex. It is characterized by
    A method for evaluating the efficacy of a drug for treating a disease.
  17.  脂質二重膜を有する小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体と、
     無機塩又は有機塩を含み該無機塩又は有機塩の含有量が系内の終濃度を0.15~2Mに調整できる量である液状組成物とを備えることを特徴とする、
     キット。
    A solid phase carrier bound with a ligand that recognizes a surface antigen present on the surface of a vesicle having a lipid bilayer; and
    A liquid composition containing an inorganic salt or an organic salt, and the content of the inorganic salt or organic salt is such that the final concentration in the system can be adjusted to 0.15 to 2M,
    kit.
  18.  疾患の判定用又は疾患治療薬の薬効評価用である、請求項17に記載のキット。 The kit according to claim 17, which is used for disease determination or evaluation of drug efficacy.
  19.  脂質二重膜を有する小胞を含む生体試料と、前記小胞の表面に存在する表面抗原を認識するリガンドが結合した固相担体とを接触させ、前記小胞と前記固相担体との複合体を形成させる複合体形成工程と、前記複合体を洗浄する洗浄工程とを含む、脂質二重膜を有する小胞の分離方法に使用される、前記複合体形成工程及び前記洗浄工程の少なくともいずれかに添加するための液状組成物であって、
     無機塩又は有機塩を含み、該無機塩又は有機塩の含有量が、系内の終濃度を0.15~2Mに調整できる量であることを特徴とする、
     液状組成物。
    A biological sample containing a vesicle having a lipid bilayer membrane is contacted with a solid phase carrier to which a ligand that recognizes a surface antigen present on the surface of the vesicle is bound, and the vesicle and the solid phase carrier are combined. At least one of the complex forming step and the washing step used in a method for separating a vesicle having a lipid bilayer, comprising a complex forming step for forming a body and a washing step for washing the complex. A liquid composition for adding crab,
    Including an inorganic salt or an organic salt, and the content of the inorganic salt or organic salt is an amount capable of adjusting the final concentration in the system to 0.15 to 2M,
    Liquid composition.
  20.  不溶性担体を用いて脂質二重膜を有する小胞を含む生体試料から脂質二重膜を有する小胞を分離する方法に使用される、前記小胞と前記不溶性担体との複合体を形成させるための検体希釈液であって、
     無機塩又は有機塩を含み、該無機塩又は有機塩の含有量が、系内の終濃度を0.15~2Mに調整できる量であることを特徴とする、
     検体希釈液。
    In order to form a complex of the vesicle and the insoluble carrier used in a method of separating a vesicle having a lipid bilayer membrane from a biological sample containing the vesicle having a lipid bilayer membrane using an insoluble carrier A sample dilution solution of
    Including an inorganic salt or an organic salt, and the content of the inorganic salt or organic salt is an amount capable of adjusting the final concentration in the system to 0.15 to 2M,
    Sample diluent.
  21.  前記無機塩又は有機塩が、無機塩である、請求項20に記載の検体希釈液。 21. The specimen diluent according to claim 20, wherein the inorganic salt or organic salt is an inorganic salt.
  22.  前記無機塩が、アルカリ金属ハロゲン化物である、請求項21に記載の検体希釈液。 The specimen diluent according to claim 21, wherein the inorganic salt is an alkali metal halide.
  23.  不溶性担体を用いて脂質二重膜を有する小胞を含む生体試料から脂質二重膜を有する小胞を分離する方法であって、
     無機塩又は有機塩を含み、該無機塩又は有機塩の含有量が、系内の終濃度を0.15~2Mに調整できる量である検体希釈液を系内に添加することを特徴とする、
     脂質二重膜を有する小胞の分離方法。
    A method for separating vesicles having a lipid bilayer from a biological sample containing vesicles having a lipid bilayer using an insoluble carrier,
    A specimen diluent containing an inorganic salt or an organic salt and having an inorganic salt or organic salt content that can adjust the final concentration in the system to 0.15 to 2M is added to the system. ,
    A method for separating vesicles having a lipid bilayer membrane.
PCT/JP2016/052353 2015-01-27 2016-01-27 Separation method, detection method, signal measurement method, method for determining disease, method for evaluating drug efficacy, kit, liquid composition, and analyte diluent WO2016121821A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017519425A JP6777629B2 (en) 2015-05-20 2016-05-20 Separation method, detection method, signal measurement method, disease determination method, drug efficacy evaluation method, kit, liquid composition and sample diluent
PCT/JP2016/065104 WO2016186215A1 (en) 2015-05-20 2016-05-20 Separation method, detection method, signal measurement method, disease determination method, drug efficacy assessment method, kit, liquid composition, and specimen diluent
CN201680029121.6A CN108271413A (en) 2015-05-20 2016-05-20 Separation method, detection method, signal measuring method, the determination method of disease, method of evaluating drug effect, kit, fluid composition and specimen dilution
US15/575,698 US20180291424A1 (en) 2015-05-20 2016-05-20 Separation method, detection method, signal measurement method, disease determination method, drug efficacy assessment method, kit, liquid composition, and specimen diluent
EP16796608.4A EP3299816A4 (en) 2015-05-20 2016-05-20 Separation method, detection method, signal measurement method, disease determination method, drug efficacy assessment method, kit, liquid composition, and specimen diluent

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-012956 2015-01-27
JP2015012956 2015-01-27
JP2015102515 2015-05-20
JP2015-102515 2015-05-20
JP2015-133031 2015-07-01
JP2015133031 2015-07-01

Publications (1)

Publication Number Publication Date
WO2016121821A1 true WO2016121821A1 (en) 2016-08-04

Family

ID=56543431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052353 WO2016121821A1 (en) 2015-01-27 2016-01-27 Separation method, detection method, signal measurement method, method for determining disease, method for evaluating drug efficacy, kit, liquid composition, and analyte diluent

Country Status (1)

Country Link
WO (1) WO2016121821A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062263A1 (en) * 2016-09-27 2018-04-05 Jsr株式会社 Method for analyzing nucleic acid
CN110275015A (en) * 2018-03-16 2019-09-24 优志旺电机株式会社 Immune chromatograph measurement method, immune chromatograph dilution and immunologic test box
JP2020523559A (en) * 2017-05-24 2020-08-06 ナノソミックス・インコーポレイテッドNanoSomiX, Inc. Detection of biomarkers on vesicles for diagnosis and prognosis of diseases and disorders

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052620A1 (en) * 2009-10-30 2011-05-05 協和メデックス株式会社 Method for assaying component to be assayed in specimen and assay kit
JP2012508577A (en) * 2008-11-12 2012-04-12 カリス ライフ サイエンシズ ルクセンブルク ホールディングス Method and system for using exosomes to determine phenotype
JP2014522993A (en) * 2011-08-08 2014-09-08 カリス ライフ サイエンシズ ルクセンブルク ホールディングス エス.アー.エール.エル. Biomarker compositions and methods
WO2015182580A1 (en) * 2014-05-28 2015-12-03 国立研究開発法人 医薬基盤・健康・栄養研究所 Colorectal cancer metastasis detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508577A (en) * 2008-11-12 2012-04-12 カリス ライフ サイエンシズ ルクセンブルク ホールディングス Method and system for using exosomes to determine phenotype
WO2011052620A1 (en) * 2009-10-30 2011-05-05 協和メデックス株式会社 Method for assaying component to be assayed in specimen and assay kit
JP2014522993A (en) * 2011-08-08 2014-09-08 カリス ライフ サイエンシズ ルクセンブルク ホールディングス エス.アー.エール.エル. Biomarker compositions and methods
WO2015182580A1 (en) * 2014-05-28 2015-12-03 国立研究開発法人 医薬基盤・健康・栄養研究所 Colorectal cancer metastasis detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062263A1 (en) * 2016-09-27 2018-04-05 Jsr株式会社 Method for analyzing nucleic acid
JP2020523559A (en) * 2017-05-24 2020-08-06 ナノソミックス・インコーポレイテッドNanoSomiX, Inc. Detection of biomarkers on vesicles for diagnosis and prognosis of diseases and disorders
JP7399712B2 (en) 2017-05-24 2023-12-18 ナノソミックス・インコーポレイテッド Detection of biomarkers on vesicles for diagnosis and prognosis of diseases and disorders
CN110275015A (en) * 2018-03-16 2019-09-24 优志旺电机株式会社 Immune chromatograph measurement method, immune chromatograph dilution and immunologic test box

Similar Documents

Publication Publication Date Title
JP6255035B2 (en) Separation method, detection method, signal measurement method, disease determination method, drug efficacy evaluation method for disease treatment, kit and liquid composition
WO2016186215A1 (en) Separation method, detection method, signal measurement method, disease determination method, drug efficacy assessment method, kit, liquid composition, and specimen diluent
US5891651A (en) Methods of recovering colorectal epithelial cells or fragments thereof from stool
EP3246703A1 (en) Method and kit for capturing extracellular vesicles (evs) on a solid surface
JP6348553B2 (en) Pretreatment reagent kit for detecting HBs antigen and reagent kit for HBs antigen detection
JP2017151120A (en) Immunoassay methods and reagents for decreasing nonspecific binding
US20220206000A1 (en) Methods and compositions using extracellular vesicles for the detection of disease and disorders
CN106814187B (en) Dissociate application of the excretion body in preparing liquid biopsy tumour diagnostic reagent for periphery
Wang et al. Rapid and quantitative analysis of exosomes by a chemiluminescence immunoassay using superparamagnetic iron oxide particles
JP6042937B2 (en) Method for measuring soluble interleukin-2 receptor and reagent for measurement
WO2016121821A1 (en) Separation method, detection method, signal measurement method, method for determining disease, method for evaluating drug efficacy, kit, liquid composition, and analyte diluent
WO2019075769A1 (en) Method for detecting hypersensitive c-reactive protein
JP2023100770A (en) Manufacturing device and manufacturing method for exosome liquid biopsy sample
WO2018062263A1 (en) Method for analyzing nucleic acid
US20220373551A1 (en) Method for separating and detecting exosomes, and kit for separation and detection thereof
US20220308057A1 (en) Method for determining onset risk of cardiovascular disease in subject, and method for determining vascular calcification in subject
WO2013118844A1 (en) Method and kit for detecting and quantifying detection subject
KR102498862B1 (en) Method for analyzing exosomes in liquid biopsy sample
JP2022533778A (en) Affinity separation system and method using switchable attachment reactions
CN115004031A (en) Method for aiding diagnosis of metastatic androgen-blockade therapy resistant prostate cancer
CN116144602A (en) Anti-human aldehyde ketone reductase 1B10 protein monoclonal antibody and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16743424

Country of ref document: EP

Kind code of ref document: A1