WO2016104422A1 - Elastic nonwoven fabric manufacturing method - Google Patents

Elastic nonwoven fabric manufacturing method Download PDF

Info

Publication number
WO2016104422A1
WO2016104422A1 PCT/JP2015/085667 JP2015085667W WO2016104422A1 WO 2016104422 A1 WO2016104422 A1 WO 2016104422A1 JP 2015085667 W JP2015085667 W JP 2015085667W WO 2016104422 A1 WO2016104422 A1 WO 2016104422A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
gear
stretchable
pair
roll
Prior art date
Application number
PCT/JP2015/085667
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 達也
哲郎 大窪
奐奐 陳
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Priority to CN201580070959.5A priority Critical patent/CN107109734B/en
Priority claimed from JP2015248236A external-priority patent/JP6357462B2/en
Publication of WO2016104422A1 publication Critical patent/WO2016104422A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core

Definitions

  • the present invention relates to a method for producing a stretchable nonwoven fabric.
  • Patent Document 1 discloses a technique for improving stretchability by stretching a non-woven fabric by interposing a belt-shaped non-woven fabric sheet between a pair of tooth-gap rolls having mutually engaging tooth grooves.
  • the technique which manufactures the nonwoven fabric from which a stretching property differs partially is disclosed by using a tooth gap roll from which a draw ratio differs partially.
  • the stretchable nonwoven fabric that can be produced by the method described in Patent Document 1 has strong shrinkability, when used for an exterior member such as a diaper, it becomes easy to bite into the user's skin or is provided in the diaper. Problems such as shrinking the absorber may occur. Therefore, an elastic nonwoven fabric in which the contraction force is appropriately adjusted by providing not only a region having a high contraction force but also a region having a low contraction force is desired.
  • the present invention has been made in view of the above problems, and the object of the present invention is to provide a stretchable region having a high shrinkage force region and a low shrinkage force region while having good stretchability. It is in providing a non-woven fabric.
  • a main invention for achieving the above object is to provide a transporting process for transporting a nonwoven fabric containing stretchable fibers having stretchability and an extensible fiber having lower shrinkage than the stretchable fibers in the transport direction, and the nonwoven fabric.
  • a non-woven fabric is stretched in the transport direction after the first processing step of extending at least a part of the extensible fibers by passing between a pair of first gear rolls, and after the first processing step.
  • the non-woven fabric is stretched by passing between a pair of second gear rolls having a portion where teeth are formed on the peripheral surface and a portion where teeth are not formed, and at least And a second processing step of cutting some of the stretchable fibers.
  • FIG. 1 is a schematic perspective view of a stretchable nonwoven fabric 1.
  • FIG. It is a figure explaining the structure of the manufacturing apparatus 100 which manufactures the elastic nonwoven fabric 1.
  • FIG. 4 is a schematic side view showing the configuration of a first gear machining unit 120.
  • FIG. 4 is an enlarged view showing a region ⁇ in FIG. 3.
  • FIG. 5 is a schematic side view showing a configuration of a second gear machining unit 140.
  • FIG. 5 is a schematic diagram illustrating the configuration of a gear roll 246. It is a figure represented about the area
  • FIG. It is a figure explaining extending
  • a method for producing a stretchable nonwoven fabric comprising: 2 processing steps.
  • a stretchable nonwoven fabric in which the strength of the shrinkage force in the low shrinkage region is weaker than the strength of the shrinkage force in the high shrinkage region can be produced. Accordingly, it is possible to provide a stretchable nonwoven fabric having a region having a high shrinkage force and a region having a low shrinkage force while having good stretchability.
  • the stretchable fiber is easily stretched by being heated and is not easily cut in the second processing step.
  • the stretchable fiber is heated, it is distorted or deteriorated, and is easily cut. This makes it possible to efficiently cut some stretchable fibers without cutting the extensible fibers, and accurately produce a stretchable nonwoven fabric having a region having a high shrinkage force and a region having a low shrinkage force. It becomes possible.
  • the teeth of the pair of second gear rolls are preferably formed so as to be convex toward the outside of the peripheral surface.
  • the nonwoven fabric is deformed into a three-point bend by the peak portions of teeth adjacent to each other in one gear roll and the peak portion of the other gear roll entering the valley portion therebetween.
  • the stretchable fiber can be stretched in the stretching and conveying direction.
  • the tension can be adjusted so that the nonwoven fabric does not break by changing the shallowness of gear engagement or changing the tooth shape or pitch. This makes it easy to produce a high-quality stretchable nonwoven fabric.
  • teeth of one side of the gear roll are formed to be convex toward the outer side of the peripheral surface, and the pair of second gear rolls.
  • the teeth of the gear roll on the other side are formed to be concave toward the outer side of the peripheral surface.
  • the nonwoven fabric is bent in a three-point bend shape by the crest portions of the teeth adjacent to each other in the gear roll on one side and the crest portion of the gear roll on the other side entering the trough portion therebetween. It is deformed and the stretchable fiber can be stretched in the stretching and conveying direction. Moreover, since the tooth
  • the nonwoven fabric is predetermined by a pair of drive rolls provided between the pair of first gear rolls and the pair of second gear rolls in the conveying direction.
  • the nonwoven fabric is transferred to the other side of the pair of second gear rolls by a press roll that is transported in the transport direction at a speed and provided downstream of the pair of drive rolls in the transport direction. It is desirable to stretch the nonwoven fabric in the transport direction by transporting the nonwoven fabric in the transport direction at a speed faster than the predetermined speed while pressing against the outer peripheral surface.
  • the other-side gear roll of the pair of second gear rolls conveys the nonwoven fabric by rotating the nonwoven fabric around at least a part of its peripheral surface. It is desirable to convey in the direction.
  • the nonwoven fabric is wound around a part of the outer peripheral surface of a gear roll having teeth that are concave toward the outside of the outer peripheral surface of the pair of second gear rolls and rotated.
  • the nonwoven fabric can be transported smoothly.
  • a nonwoven fabric can be pinched
  • the thickness of the tip of the tooth of the other side of the pair of second gear rolls is the thickness of the one side of the pair of second gear rolls. It is desirable that it is thicker than the thickness of the tooth tip.
  • the teeth of the pair of second gear rolls are arranged along a direction parallel to the CD direction.
  • the nonwoven fabric transported in the transport direction is easily stretched with a uniform force between the teeth of two gear rolls adjacent to each other in the transport direction. It becomes difficult to occur.
  • the fibers constituting the stretchable nonwoven fabric are long fibers, and two or more of the long fibers are bonded to each other by a plurality of pressure bonding points.
  • the stretchable fibers are long fibers, at least a part of the stretchable fabric is easily arranged along the transport direction, and the nonwoven fabric is easily stretched in the transport direction. Moreover, since several long fibers are mutually crimped
  • the second processing step includes the pair of second gear rolls having teeth having a pitch wider than the shortest distance between the two crimping points adjacent in the transport direction. It is desirable to be performed using.
  • the stretchable nonwoven fabric 1 is a fabric that exhibits stretchability in a predetermined direction by subjecting the nonwoven fabric sheet S to a stretching process described later.
  • the stretchable fibers 2 having stretchability and the extensible fibers 3 having lower shrinkage than the stretchable fibers 2 are mixed, and the stretchable fibers 2 and the stretchable fibers 3 are constant.
  • FIG. 1 is a schematic perspective view of the stretchable nonwoven fabric 1.
  • the stretchable nonwoven fabric 1 is a flat strip-shaped sheet member having a longitudinal direction and a transverse direction that intersects the longitudinal direction, and is long in the longitudinal direction. Moreover, let the direction which each cross
  • the stretchable fibers 2 constituting the stretchable nonwoven fabric 1 (nonwoven fabric sheet S) are elastically stretchable thermoplastic elastomer fibers, such as urethane elastomer, polystyrene elastomer, polyolefin elastomer, polyamide elastomer, and polyester.
  • Fibers such as elastomers can be used.
  • a polyurethane elastomer can be used.
  • the extensible fiber 3 is a fiber made of a thermoplastic resin that has extensibility but is substantially inelastic and hardly shrinks.
  • a single fiber such as polypropylene fiber or polyethylene fiber, or a composite of a core-sheath structure made of polypropylene or polyethylene Fiber etc. can be used.
  • polypropylene which is a polyolefin resin can be used.
  • the nonwoven fabric sheet S is comprised by these fibers being intertwined at random.
  • the nonwoven fabric sheet S can be changed, whereby the stretchability of the nonwoven fabric sheet S is expressed and the nonwoven fabric sheet 1 can be used. A specific method for expressing the stretchability of the nonwoven fabric sheet S will be described later.
  • the stretchable nonwoven fabric 1 of this embodiment has stretchability in the vertical direction and the horizontal direction.
  • the stretchable nonwoven fabric 1 has a high shrinkage region HS that expresses a strong shrinkage force when stretched in the longitudinal direction, and a low shrinkage that has a weak shrinkage force when stretched in the longitudinal direction compared to the high shrinkage region HS.
  • the regions LS are alternately provided along the vertical direction (see FIG. 1). Since the high shrinkage region HS and the low shrinkage region LS are arranged side by side in this way, when the nonwoven fabric sheet S is stretched in the vertical direction, there are portions that are likely to shrink and portions that are difficult to shrink. Will do. Therefore, by appropriately changing the size of the high shrinkage region HS and the low shrinkage region LS and the range to be formed, it is possible to adjust the magnitude of the shrinkage force when the stretchable nonwoven fabric 1 is in the stretched state.
  • FIG. 2 is a diagram illustrating the configuration of the manufacturing apparatus 100 that manufactures the stretchable nonwoven fabric 1.
  • the manufacturing apparatus 100 includes a transport mechanism CV, a heating unit 110, a first gear processing unit 120, a stretching processing unit 130, a second gear processing unit 140, and a sheet member bonding unit 150. .
  • the transport mechanism CV is a transport unit that continuously transports the nonwoven fabric sheet S along a predetermined transport path.
  • the transport mechanism CV for example, a transport roller, a suction belt conveyor having a suction holding function on a belt surface as a placement surface, or the like is used.
  • the nonwoven fabric sheet S is conveyed in a predetermined conveyance direction as a continuous sheet continuous in the vertical direction.
  • the elastic nonwoven fabric 1 is manufactured by performing various processes mentioned later, such as a heat processing and an extending
  • the continuous sheet of the nonwoven fabric sheet S to be conveyed is referred to as a nonwoven fabric continuous sheet Sa.
  • the conveyance direction set on the manufacturing apparatus 100 is also referred to as “MD direction”.
  • the MD direction changes depending on the location. That is, the direction in which the nonwoven fabric continuous sheet Sa is conveyed is not necessarily a fixed direction.
  • one of the two directions intersecting (orthogonal) with the MD direction is referred to as “CD direction”, and the other is referred to as “Z direction”.
  • the CD direction is a direction parallel to the width direction of the nonwoven fabric continuous sheet Sa
  • the Z direction is a direction parallel to the thickness direction of the nonwoven fabric continuous sheet Sa.
  • the nonwoven fabric continuous sheet Sa is fed out from a raw fabric roll in which the nonwoven fabric continuous sheet Sa is wound in a roll shape.
  • the fed nonwoven fabric continuous sheet Sa is transported from the upstream side to the downstream side in the MD direction by the transport mechanism CV at a predetermined transport speed V1, and reaches the position where the heating unit 110 is disposed.
  • the heating unit 110 heats the conveyed nonwoven fabric continuous sheet Sa with a plurality of heating rollers (heating process).
  • the heating unit 110 of the present embodiment has four heating rollers 111 to 114.
  • the heating rollers 111 to 114 are cylindrical transport rollers having a smooth outer peripheral surface, and a heater is provided on the outer peripheral surface.
  • the nonwoven fabric continuous sheet Sa is conveyed from the heating roller 111 on the upstream side in the MD direction to the heating roller 114 on the downstream side in the MD direction while being wound in a substantially S shape around the outer peripheral surface of each of the heating rollers 111 to 114 in the sheet state.
  • the heater is heated by the heater provided on the outer peripheral surface.
  • the heaters provided on the outer peripheral surfaces of the heating rollers 111 to 114 can adjust the heating temperature of the nonwoven fabric continuous sheet Sa by adjusting the amount of heat generated.
  • the temperature at which the nonwoven fabric continuous sheet Sa is heated varies depending on the fiber configuration of the nonwoven fabric continuous sheet Sa, but when the above-described thermoplastic polypropylene is used, the temperature is equal to or lower than the melting point based on the melting point of the polypropylene fiber. Adjusted.
  • the temperature of the nonwoven fabric continuous sheet Sa is preferably equal to or lower than the melting point of the polypropylene fiber and 40 ° C. or higher. Below 40 ° C., the extensibility of the fibers is poor and the strength tends to decrease.
  • the temperature is adjusted so that the heating temperature by the heating unit 110 is 50 ° C. to 60 ° C.
  • the heating process is not an essential process, and the stretchable nonwoven fabric 1 can be manufactured even when heating is not performed.
  • FIG. 3 is a schematic side view illustrating the configuration of the first gear machining unit 120.
  • FIG. 4 is an enlarged view showing a region ⁇ in FIG.
  • the first gear processing unit 120 includes a guide roller 121 and a pair of gear rolls 125 and 126 (first gear roll) (see FIG. 1).
  • the guide roller 121 is provided between the heating unit 110 and the pair of gear rolls 125 and 126 in the MD direction, and includes a plurality of transport rollers that rotate around a rotation axis along the CD direction.
  • the circumferential speed value V121 of the guide roller 121 is substantially the same as the transport speed value V1 of the nonwoven fabric continuous sheet Sa transported from the upstream process. Accordingly, the guide roller 121 can guide the nonwoven fabric continuous sheet Sa to the gear rolls 125 and 126 in a state where the nonwoven fabric continuous sheet Sa is not stretched and is not loosened.
  • the gear rolls 125 and 126 are a pair of upper and lower roll mechanisms that rotate around a rotation axis along the CD direction with their outer peripheral surfaces facing each other.
  • crests 125m and troughs 125v are alternately formed along the rotation direction, and the crests 125m and the troughs 125v are formed to extend in the CD direction.
  • the peak part 125m and the trough part 125v do not need to be formed in the whole CD direction of the gear roll 125, and a part area
  • mountain portions 126m and valley portions 126v are alternately formed on the outer peripheral surface of the gear roll 126.
  • the gear rolls 125 and 126 are rotating, the crest portions 125m and the trough portions 126v are engaged with each other with a slight gap so that the crest portion 125m of one gear roll 125 enters the trough portion 126v of the other gear roll 126. It has become.
  • the nonwoven fabric continuous sheet Sa passes between the pair of gear rolls 125 and 126 along the MD direction.
  • the nonwoven fabric continuous sheet Sa that is passing between the pair of gear rolls 125 and 126 is adjacent to each other in the one gear roll 126, and the peak portion 125m of the other gear roll 125 that enters the trough portion 126v. And is deformed into a three-point bending shape (see FIG. 4).
  • the portion Sa12 that comes into contact with the top surface of the mountain portion 126m of the one gear roll 126 is in contact with the top surface so as not to be relatively movable, and thus is not easily stretched.
  • a portion Sa11 between two adjacent Sa12 and Sa12 is extended based on the intrusion of the mountain portion 125m. As a result, as shown in FIG.
  • the nonwoven fabric continuous sheet Sa has the stretched first portions Sa11 and the second portions Sa12 that are not stretched more than the first portions Sa11 arranged alternately in the MD direction. Processed. And in the area
  • the formation pitch Pv in the rotation direction of the valley portion 125v is the formation pitch Pm in the rotation direction of the mountain portion 125m (the peak of the mountain portion 125m). It is equivalent to the pitch Pm) on the surface.
  • the pitches Pv and Pm of the gear rolls 125 and 126 have the same value.
  • each tooth (the height from the top surface of the mountain portion 125m to the top surface of the valley portion 125v) is preferably equal to or greater than the pitch Pm, and is 5.0 mm in this embodiment. Further, the meshing height between the mountain portion 125m and the mountain portion 126m is 4.0 mm.
  • the nonwoven fabric continuous sheet Sa is heated in advance and the temperature is increased in the heating step described above, the extensible fibers 3 are easily deformed and easily stretched. Thereby, the fracture
  • the nonwoven fabric continuous sheet Sa is conveyed downstream in the MD direction and stretched in the MD direction (longitudinal direction) by the stretching unit 130 (stretching step).
  • the stretch processing unit 130 includes an upstream nip roll 131 and a downstream nip roll 132 (see FIG. 2).
  • the upstream nip roll 131 is a pair of upper and lower rollers capable of adjusting the peripheral speed value, and is continuously driven by a predetermined peripheral speed value V131 while sandwiching the nonwoven fabric continuous sheet Sa between the outer peripheral surfaces of the nonwoven fabric continuous sheet Sa.
  • the sheet Sa is conveyed downstream in the MD direction at the conveyance speed of V131.
  • the downstream nip roll 132 is a pair of upper and lower rollers similar to the upstream nip roll 131, and is driven and rotated at a predetermined peripheral speed value V132 to move the nonwoven fabric continuous sheet Sa downstream in the MD direction at the conveyance speed of V132. Transport.
  • the peripheral speed value of each nip roll is adjusted so that the conveyance speed V132 of the nonwoven fabric continuous sheet Sa by the downstream nip roll 132 is faster than the conveyance speed V131 of the nonwoven fabric continuous sheet Sa by the upstream nip roll 131. ing.
  • the nonwoven fabric continuous sheet Sa after passing through the stretched portion 130 is stretched in the MD direction at a predetermined magnification.
  • This draw ratio is determined according to the elastic limit of the stretchable fiber 2 constituting the nonwoven fabric continuous sheet Sa. Specifically, the draw ratio is determined so that the stretchable fiber 2 is stretched to such an extent that plastic deformation does not occur.
  • the stretchable fiber 2 when the length in the MD direction of the nonwoven fabric continuous sheet Sa in the no-load state is 1.0, the MD is about 2.5 times longer. Stretched in the direction. Thereby, the elastic fiber 2 will be in the state fully extended to the extent which does not fracture
  • FIG. 5 is a schematic side view illustrating the configuration of the second gear machining unit 140.
  • the second gear machining unit 140 has a pair of gear rolls 145 and 146 (second gear roll).
  • the pair of gear rolls 145 and 146 is a pair of upper and lower roll mechanisms that rotate about the rotation axis along the CD direction while facing each other's outer peripheral surfaces in substantially the same manner as the gear rolls 125 and 126 of the first gear processing unit 120. is there.
  • the gear rolls 145 and 146 of the second gear machining unit 140 are different from the gear rolls 125 and 126 of the first gear machining unit 120 in that they have a portion where teeth are formed on the outer peripheral surface and a portion where teeth are not formed. .
  • tooth surfaces 145ts that are regions where teeth are formed and smooth surfaces 145fs that are regions where teeth are not formed are alternately arranged. Then, on the tooth surface 145ts, crests 145m and troughs 145v are alternately formed along the rotation direction.
  • tooth surfaces 146ts which are regions where teeth are formed and smooth surfaces 146fs which are regions where teeth are not formed are alternately formed. And the tooth
  • the tooth surface 145ts of the gear roll 145 and the tooth surface 146ts of the gear roll 146 are arranged at positions facing each other. Thereby, when the gear rolls 145 and 146 rotate, the teeth of each other mesh with each other. Further, the smooth surface 145fs of the gear roll 145 and the smooth surface 146fs of the gear roll 146 are also arranged at positions facing each other.
  • the nonwoven fabric continuous sheet Sa passes between the pair of gear rolls 145 and 146 along the MD direction.
  • the nonwoven fabric continuous sheet Sa passes between the smooth surfaces 145fs and 146fs, since the teeth are not formed in the region, the nonwoven fabric continuous sheet Sa passes directly downstream in the MD direction without being stretched. That is, the area
  • FIG. This region becomes the high shrinkage region HS of FIG.
  • the non-woven fabric continuous sheet Sa passes between the tooth surfaces 145ts and 146ts,
  • the non-woven fabric continuous sheet Sa has three ridges 146m, 146m adjacent to each other in one gear roll 146 and the ridge 145m of the other gear roll 145 entering the valley 146v therebetween, as described in FIG. It is deformed into a point bend.
  • the stretchable fibers 2 that have been stretched to the vicinity of the elastic limit in the stretching step are further stretched until they are 4.0 times or more the length of the unwoven continuous sheet Sa in an unloaded state. Thereby, at least a part of the stretchable fibers 2 is cut, and the low shrinkage region LS of FIG. 1 is formed.
  • the shrinkage force due to the stretchable fiber 2 is less likely to be generated, and the shrinkage force in the MD direction is weaker than that in the high shrinkage region HS. .
  • the meshing height between the mountain part 125m and the mountain part 126m is 1.5 mm, and the meshing height (4. 0 mm), the meshing is shallower. Thereby, the tension is adjusted so that the nonwoven fabric continuous sheet Sa itself is not broken while the elastic fiber 2 is broken.
  • the height, shape, and pitch of the mountain portion 125m (126m) are appropriately changed according to the type of fiber that constitutes the nonwoven fabric continuous sheet Sa.
  • tooth surfaces 145ts (146ts) and smooth surfaces 145fs (146fs) are alternately formed on the outer peripheral surface of the gear roll 145 (146). In addition, the number and arrangement of the smooth surfaces can be changed as appropriate.
  • the nonwoven fabric continuous sheet Sa from which a part of the stretchable fibers 2 has been cut by the second gear processing section 140 is pasted and joined to another sheet member Sb in the thickness direction by the sheet member pasting section 150 on the downstream side in the MD direction. (Bonding process).
  • the sheet member laminating unit 150 includes an adhesive application unit 151 and a pair of upper and lower laminating rolls 152.
  • the adhesive application unit 151 applies an adhesive such as a hot-melt adhesive to the surface of the conveyed nonwoven fabric continuous sheet Sa.
  • the laminating roll 152 is driven and rotated at a predetermined peripheral speed value V152 to convey the non-woven fabric continuous sheet Sa to the downstream side in the MD direction at the conveying speed of V152, and another sheet member Sb supplied separately to the non-woven fabric.
  • the continuous sheet Sa is bonded and bonded to the surface on which the adhesive is applied.
  • the peripheral speed value V152 of the laminating roll 152 is the same value as the peripheral speed value V132 of the downstream nip roll 132 of the stretching unit 130. That is, the nonwoven fabric continuous sheet Sa is conveyed downstream in the MD direction at a constant speed after being stretched in the stretching process. Thereby, the timing at the time of bonding other sheet
  • the stretchable nonwoven fabric 1 is manufactured by sequentially executing the above-described steps using the manufacturing apparatus 100.
  • FIG. 6 is an enlarged schematic view showing the state of the stretchable fiber 2 in the high shrinkage region HS.
  • FIG. 7 is an enlarged schematic view showing the state of the stretchable fiber 2 in the low shrinkage region LS.
  • the extensible fiber 1 is the state extended
  • FIG. 7 since the extensible fiber 1 itself hardly shrinks, there is a low possibility that the extensible fiber 1 in the stretched state affects the shrinkage of the stretchable fiber 2. Accordingly, in FIG. 6 and FIG. 7, the extensible fiber 1 is not shown for simplification of description.
  • the stretchable fibers 2 in an uncut state are bonded to each other at a plurality of locations, thereby forming a network structure as shown in FIG.
  • the stretchable fibers 2a and 2b have three crimping points WP along the longitudinal direction (MD direction) and are joined to each other at the crimping points.
  • compression-bonding point WP is formed by embossing etc. with respect to the nonwoven fabric continuous sheet Sa.
  • the contraction force generated as a whole of the low contraction region LS is relatively weak.
  • the stretchable fiber 2 is cut at a plurality of locations in the longitudinal direction, the contractile force is less likely to be transmitted in the longitudinal direction, so that the contractile force generated in the low contraction region LS tends to be weaker. That is, in the low shrinkage region LS, there are a plurality of cut end portions CE formed by cutting the stretchable fiber 2. And the contraction force in the said low contraction area
  • the cut end portion CE is easily formed in the low shrinkage region LS, whereas the cut end portion CE is hardly formed in the high shrinkage region HS. That is, the ratio of the cut end portion CE existing per unit volume of the low contraction region LS is higher than the ratio of the cut end portion CE existing per unit volume of the high contraction region HS. Thereby, the contraction force generated in the low contraction region LS is weaker than the contraction force generated in the high contraction region HS.
  • the stretchable nonwoven fabric 1 contains the stretchable fiber 1 and the stretchable fiber 2
  • the stretchable fiber 2 when measuring the number of the cut ends CE of the stretchable fiber 2, only the stretchable fiber 2 is dyed. Then, after making the cut end CE conspicuous, observation may be performed using a microscope or the like.
  • a dye for dyeing the stretchable fiber 2 for example, Katsuya Fine Goods Co., Ltd., Koji Daiall can be used.
  • the dye has a property that it is difficult to dye polypropylene (extensible fiber 1) while dyeing polyurethane (stretchable fiber 2). By dyeing only the stretchable fiber 2 using such a dye, the number of cut end portions CE of the stretchable fiber 2 can be efficiently measured as necessary.
  • the stretchable fiber 2 is longitudinally oriented (MD orientation).
  • MD orientation longitudinally oriented
  • the stretchable fibers 2c and 2d are arranged in a substantially straight line along the longitudinal direction (MD direction).
  • the stretchable fibers 2c and 2d cannot maintain the network structure as shown in FIG. 6, the contraction force does not act between the plurality of fibers. Therefore, as compared with the high shrinkage region HS in which the stretchable fibers 2 maintain a network structure, the shrinkage force generated in the low shrinkage region LS tends to be relatively weak.
  • the proportion of the crimping points WP existing per unit volume of the low shrinkage region LS is lower than the proportion of the crimping points WP present per unit volume of the high shrinkage region HS. ing. Thereby, the contraction force generated in the low contraction region LS is weaker than the contraction force generated in the high contraction region HS.
  • the magnitude of the contraction force actually generated in the high contraction region HS and the low contraction region LS will be described.
  • the magnitude of the “contraction force” can be represented by “return stress”.
  • the “return stress” is a value obtained by measuring the magnitude of a force (ie, contraction force) for returning to the original state when the sheet member to be measured is stretched under a predetermined condition.
  • the measurement of “return stress” in the present embodiment was performed using a low-speed extension type tensile tester (for example, SHIMADZU autograph AG-1, hereinafter also simply referred to as “tester”).
  • a low-speed extension type tensile tester for example, SHIMADZU autograph AG-1, hereinafter also simply referred to as “tester”.
  • the testing machine is provided with a pair of chuck portions (not shown) having a predetermined interval, and while holding the sample pieces with the pair of chuck portions, the sample pieces are pulled in the direction of increasing the interval between the chuck portions. Thus, the sample piece can be extended.
  • the sample piece collected from the stretchable nonwoven fabric 1 is gripped by the chuck portion of the testing machine so that the lengthwise interval is 50 mm.
  • the sample piece is pulled at a pulling speed of 100 mm / min until the interval between the chuck portions reaches 100 mm. That is, the sample piece is extended to twice the length.
  • the sample pieces are returned so that the interval between the chuck portions becomes 50 mm, and pulled to 100 mm again. And it returns until the space
  • the force with which the sample piece attempts to return is measured and recorded as a return stress (unit is expressed as N / 50 mm).
  • the size of the sample piece that can be collected is less than 70 mm ⁇ 50 mm, measurement is performed using a sample piece having a smaller size, and conversion is performed so that the width of the sample piece corresponds to 50 mm. Calculate the return stress.
  • the return stress measured in this way indicates that the larger the value, the stronger the contraction force.
  • the MD direction in the high shrinkage region HS was measured.
  • the average value of the return stress was 0.794 (N / 50 mm), and the average value of the return stress in the CD direction was 0.172 (N / 50 mm).
  • the average value of the MD direction return stress in the low shrinkage region LS was 0.437 (N / 50 mm), and the average value of the CD direction return stress was 0.071 (N / 50 mm).
  • the return stress in the high shrinkage region HS is larger than the return stress in the low shrinkage region LS. That is, it can be seen that in the MD direction (longitudinal direction) of the stretchable nonwoven fabric 1, the stretch force generated in the low shrinkage region LS is smaller than the stretch force generated in the high shrinkage region HS. Therefore, if the manufacturing apparatus 100 of this embodiment is used, it is possible to manufacture the stretchable nonwoven fabric 1 having a region having a high shrinkage force and a region having a low shrinkage force while having good stretchability.
  • FIG. 8 is a graph showing the relationship between the stretch ratio of the nonwoven fabric and the return stress in the MD direction.
  • the horizontal axis in FIG. 8 represents the stretching ratio of the stretchable nonwoven fabric 1 in the MD direction when stretched by gear stretching or the like, and the vertical axis represents the actually measured return stress in the MD direction.
  • the point A in FIG. 8 indicates a state where the stretchable nonwoven fabric 1 is not stretched (a state when the stretch ratio is 1.0), that is, a nonwoven fabric continuous sheet Sa before being stretched (a state of a raw fabric roll) Represents the magnitude of the return stress. At this time, the return stress in the MD direction is about 1 (N / 50 mm). Further, point B in FIG.
  • 8 indicates a return stress for the high shrinkage region HS formed by the stretchable nonwoven fabric 1 being stretched about 3.3 times, that is, by being stretched by the first gear processing portion 120. Represents the size of 8 is formed by the stretchable nonwoven fabric 1 being stretched by about 4.0 times, that is, stretched by the stretched portion 130 and stretched by the second gear worked portion 140.
  • region LS is represented.
  • the second gear processing unit 140 further performs gear stretching processing on a partial region (low shrinkage region LS) of the nonwoven fabric stretched by the stretching processing unit 130, thereby reducing the elastic limit in the nonwoven fabric. Since the number of stretchable fibers 2 that are cut exceeding the number increases, the shrinkage force in the region can be reduced. As a result, as shown in FIG. 8, the return stress value decreases as the draw ratio increases, and the return stress value can be lowered to 0.6 (N / 50 mm) or less.
  • the draw ratio of 3.7 when the return stress is 0.6 (N / 50 mm) is a value that can be realized by performing the gear drawing process by the second gear processing unit 140.
  • the MD / CD ratio indicates that the larger the value, the stronger the influence of the contractive force in the MD direction. That is, as the MD / CD ratio is larger, the fiber orientation of the stretchable fiber 2 is more likely to be closer to the MD direction.
  • FIG. 9 is a graph showing the relationship between the stretch ratio of the nonwoven fabric and the MD / CD ratio.
  • the horizontal axis in FIG. 9 represents the stretch ratio of the stretchable nonwoven fabric 1, and the vertical axis represents the MD-direction return stress actually measured.
  • the point A in FIG. 9 represents the magnitude of the return stress for the nonwoven fabric continuous sheet Sa (the state of the raw fabric roll) before being subjected to stretching.
  • the point B in FIG. 9 represents the magnitude of the return stress for the high shrinkage region HS, and the point C represents the magnitude of the return stress for the low shrinkage region LS.
  • the MD / CD ratio is about 3.0, whereas in the high shrinkage region HS (point B in FIG. 9), The MD / CD ratio is 4.62, and the MD / CD ratio is 6.15 in the low-shrinkage region LS (point C in FIG. 9). Contrary to the case of FIG. 8, the MD / CD ratio increases with an increase in the draw ratio, and the MD / CD ratio in the low shrinkage region LS becomes larger than the MD / CD ratio in the high shrinkage region HS.
  • the second gear processing unit 140 further applies a gear stretching process to a partial region (low shrinkage region LS) of the non-woven fabric stretched by the stretching unit 130, so that the fibers in the low shrinkage region LS It is considered that the fiber orientation of the stretchable fiber 2 tends to be close to the MD direction.
  • the MD / CD ratio in the contraction region LS shows a high value of 5.3 or more.
  • the draw ratio of 3.7 times when the MD / CD ratio is 5.3 is a value that can be realized by performing the gear drawing process by the second gear processing unit 140.
  • the range of strain generated when the stretchable fiber 2 contracts in the low shrinkage region LS of the stretchable nonwoven fabric 1 is larger than the range of strain generated when the stretchable fiber 2 contracts in the high shrinkage region HS.
  • the sample piece collected from the low contraction region LS has a strain of 15 to 20%. This is because the network structure of the stretchable fibers 2 is not maintained in the low shrinkage region LS, and the fiber orientation of the stretchable fibers 2 is closer to the MD direction (see FIG. 7).
  • FIG. 10 is a schematic perspective view of the disposable diaper 5.
  • FIG. 11 is a schematic plan view of the disposable diaper 5 in the unfolded state.
  • the disposable diaper 5 (hereinafter also simply referred to as “diaper 5”) includes an absorbent main body 51 (first component) that is applied to the crotch portion of the wearer and absorbs excrement such as urine, and the ventral side portion of the wearer. It is a so-called three-piece type disposable diaper constituted by three parts, a ventral band member 52 (second part) that covers the back and a back side band member 53 (third part) that covers the back side of the wearer.
  • the absorbent main body 51 is fixed between the ventral band member 52 and the dorsal band member 53 arranged substantially in parallel, and the external shape is substantially H in plan view. It has a shape.
  • the absorbent main body 51 When the diaper 5 is worn, the absorbent main body 51 is folded in half at the center in the longitudinal direction, and the abdominal belt member 52 and the back belt member 53 facing each other are joined to each other at the widthwise short edges 52e and 53e.
  • the diaper 5 in the wearing state is formed with the waist opening 5HB and the pair of leg openings 5HL as shown in FIG.
  • an elastic nonwoven fabric may be used as a material for the ventral band member 52 and the dorsal band member 53 so that the ventral band member 52 and the dorsal band member 53 can expand and contract in the width direction of the diaper 5.
  • FIG.11 and FIG.10 shows, when the abdominal side band member 52 shrink
  • the absorbent main body 51 contracts, the area of the region covering the wearer's skin is reduced by the contraction.
  • the ventral belt member 52 it is necessary to adjust the strength of the contraction force to suppress the absorbent main body 51 from contracting inward in the width direction.
  • the stretchable nonwoven fabric 1 of this embodiment is used as the ventral belt member 52 of the diaper 5.
  • the stretchable nonwoven fabric 1 is disposed on the belly side of the diaper 5 so that the longitudinal direction of the stretchable nonwoven fabric 1 is aligned with the width direction of the diaper 5.
  • the stretchable nonwoven fabric 1 has a high shrinkage region HS and a low shrinkage region LS, while having stretchability, so that the shrinkage force can be weakened as a whole.
  • the stretchable nonwoven fabric 1 as the ventral belt member 52 and arranging the low shrinkage region LS and the absorbent main body 51 so as to overlap each other, the absorbent main body 51 is effectively contracted inward in the width direction. Can be suppressed.
  • the stretchable nonwoven fabric 1 can adjust the strength of shrinkage by changing the range in which the high shrinkage region HS and the low shrinkage region LS are formed. Thereby, a comfortable fit can be given to the wearer by imparting appropriate stretchability to the waist opening 5HB of the diaper 5 while suppressing the shrinkage of the absorbent main body 51.
  • the low-shrinkage region LS is disposed in a region that is not desired to be shrunk with respect to other parts, the product can be configured so that the region that does not want to shrink is not shrunk while having elasticity as a whole.
  • FIG. 12 is a diagram illustrating the configuration of the manufacturing apparatus 200 that manufactures the stretchable nonwoven fabric 1.
  • the manufacturing apparatus 200 includes a transport mechanism CV, a heating unit 210, a first gear processing unit 220, a second gear processing unit 240, and a sheet member bonding unit 250.
  • the structure of the 2nd gear process part 240 differs compared with the manufacturing apparatus 100 of 1st Embodiment. Further, the manufacturing apparatus 200 is not provided with the stretching unit 130. Other basic configurations and functions are substantially the same as those of the manufacturing apparatus 100, and thus description thereof is omitted here. Hereinafter, the 2nd gear process part 240 is demonstrated.
  • the 2nd gear process part 240 of the manufacturing apparatus 200 is a mechanism which performs the process corresponded to the extending
  • the second gear machining unit 240 includes a drive roll 241, a press roll 242, and a pair of gear rolls 245 and 246 (second gear roll).
  • the drive roll 241 is a pair of upper and lower rollers capable of adjusting the peripheral speed value, and is driven and rotated at a predetermined peripheral speed value V241 while sandwiching the nonwoven fabric continuous sheet Sa between the outer peripheral surfaces of the nonwoven fabric continuous sheet. Sa is transported downstream in the MD direction at a transport speed of V241.
  • size of the conveyance speed V241 is more than the conveyance speed V221 of the nonwoven fabric continuous sheet Sa by the 1st gear process part 220, for example, the magnitude
  • the nonwoven fabric continuous sheet Sa is slightly extended in the MD direction between the first gear processing unit 220 and the drive roll 241.
  • the nonwoven fabric continuous sheet Sa expresses stretchability in the MD direction in the first processing step in the first gear processing section 220, there is a risk that the web will be distorted during conveyance.
  • the nonwoven fabric continuous sheet Sa is conveyed in the state stretched in MD direction by adjusting the conveyance speed by the drive roll 241 and applying the tension in the MD direction to the nonwoven fabric continuous sheet Sa. It is possible to suppress the occurrence of kinking during the transport of.
  • the magnitude of the conveyance speed V241 is not limited to the above, and may be equal to V221 or may be greater than 115% of V221.
  • the conveyance speed V131 in the upstream nip roll 131 of the first embodiment may be equal to or higher than the conveyance speed V121 in the first gear machining unit 120.
  • the press roll 242 is provided downstream of the drive roll 241 in the MD direction, and rotates while pressing the nonwoven fabric continuous sheet Sa against the outer peripheral surface of the gear roll 246 described later.
  • the gear roll 246 rotates at a predetermined peripheral speed value V242, and the nonwoven fabric continuous sheet Sa is conveyed downstream in the MD direction at a conveyance speed of V242 while being sandwiched between the rolls 242.
  • the conveyance speed V242 in the press roll 242 is faster than the conveyance speed V241 in the drive roll 241 and is adjusted to be about 255% of the conveyance speed V221 by the first gear processing unit 220 in this embodiment.
  • the nonwoven fabric continuous sheet Sa is stretched in the MD direction based on the peripheral speed difference between the transport speed V241 by the drive roll 241 and the transport speed V242 by the press roll 242 (stretching process), and the stretchable fiber 2 undergoes plastic deformation. It is in a state where it has been stretched to such an extent that it does not occur (not to break).
  • the manufacturing apparatus 200 can be comprised compactly. Moreover, when a conveyance distance becomes short, it is suppressed that the nonwoven fabric continuous sheet Sa is extended too much in MD direction, and nonwoven fabric continuous sheet Sa becomes difficult to shrink
  • the width W242 of the press roll 242 in the CD direction is wider than the width WSa of the nonwoven fabric continuous sheet Sa in the CD direction (W242> WSa, see FIG. 17 described later).
  • the outer peripheral surface of the press roll 242 is formed of a non-slip material such as silicone rubber, and the second gear roll 246 has a constant force in the direction of the central axis in the radial direction (that is, in the direction perpendicular to the tangential direction of the outer peripheral surface). Pressed. Thereby, it can convey, without pressing the full width of the nonwoven fabric continuous sheet Sa, without sliding on the outer peripheral surface of the 2nd gear roll 246, and can extend the nonwoven fabric continuous sheet Sa correctly.
  • the pair of gear rolls 245 and 246 are a pair of upper and lower roll mechanisms that rotate around a rotation axis along the CD direction with their outer peripheral surfaces facing each other.
  • FIG. 13 is a schematic diagram illustrating the configuration of the gear roll 245.
  • FIG. 14 is a schematic diagram illustrating the configuration of the gear roll 246.
  • FIG. 15 is a diagram illustrating a region X in FIG.
  • FIG. 16 is a diagram illustrating a region Y in FIG.
  • the one side gear roll 245 is a tooth surface that is a region in which a plurality of teeth are formed so as to protrude outwardly from the outer peripheral surface, similar to the gear roll 145 of the first embodiment.
  • 245ts and smooth surfaces 245fs which are regions where teeth are not formed are alternately arranged.
  • the width W245 in the CD direction of the gear roll 245 is wider than the width WSa in the CD direction of the nonwoven fabric continuous sheet Sa (W245> WSa).
  • the tooth surface 245ts is alternately formed with ridges 245m and valleys 245v along the rotation direction.
  • the plurality of teeth (crest portion 245m and trough portion 245v) of the gear roll 245 are continuously formed along the CD direction, and the width W245m of the crest portion 245m (valley portion 245v) in the CD direction is the nonwoven fabric continuous sheet Sa. Is narrower than the width WSa in the CD direction (WSa> W245m). Further, the thickness t245m (the width in the MD direction of the tip portion of the peak portion 245m) of the tooth tip portion of the gear roll 245 is about 0.2 mm.
  • the gear roll 245 can heat the tooth surface 245ts to a predetermined temperature (for example, about 120 ° C.) by a heating device such as a heater. The reason for heating the teeth of the gear roll 245 will be described later.
  • the other gear roll 246 includes a tooth surface 246ts, which is a region where a plurality of teeth are formed so as to be recessed outside the outer peripheral surface, and a region where no teeth are formed.
  • the smooth surfaces 246 fs are alternately arranged.
  • the state where the teeth formed on the tooth surface 246ts are recessed outside the outer peripheral surface means that the bottom of the tooth valley 246v is inside the outer peripheral surface of the gear roll 246 as shown in FIG. This is a state in which the tip of the tooth crest 246m is formed at the same position as the outer peripheral surface of the gear roll 246.
  • the distance from the center of the gear roll 246 to the bottom of the tooth valley 246v is smaller than the radius of the gear roll 246, and the distance from the center of the gear roll 246 to the tip of the tooth peak 246m is substantially equal to the radius of the gear roll 246. .
  • the tooth surface 245ts of the gear roll 245 and the tooth surface 246ts of the gear roll 246 are formed at an equal pitch Pm and arranged at positions facing each other.
  • the nonwoven fabric continuous sheet Sa passes between the surfaces 246ts along the MD direction.
  • the non-woven fabric continuous sheet Sa is deformed and stretched in a three-point bend shape as described with reference to FIG. 4 in the portion that has passed between the tooth surfaces 245ts and 246ts (second processing step). That is, the stretchable fibers 2 that have been stretched to near the elastic limit are further stretched, whereby at least some of the stretchable fibers 2 of the plurality of stretchable fibers 2 constituting the nonwoven fabric continuous sheet Sa are cut,
  • the low-shrinkage region LS in FIG. 1 is formed by removing the pressure-bonding point where the elastic fibers 2 are pressure-bonded.
  • the gear roll 246 has a function of conveying the nonwoven fabric continuous sheet Sa in the MD direction. That is, as shown in FIG. 12, the nonwoven fabric continuous sheet Sa is wound around a part of the outer peripheral surface of the gear roll 246 and rotated to convey the nonwoven fabric continuous sheet Sa in the rotation direction. Therefore, the teeth of the gear roll 246 in the second embodiment are recessed outside the outer peripheral surface, and the tip portion of the peak portion 246m of the teeth is configured not to protrude outward from the outer peripheral surface of the gear roll 246. . With such a configuration, the nonwoven fabric continuous sheet Sa wound around the outer peripheral surface can be smoothly conveyed.
  • the nonwoven fabric continuous sheet Sa can be sandwiched between the press roll 242 and sufficiently stretched. If the nonwoven fabric continuous sheet Sa is sandwiched and conveyed between the press roll 242 and the gear roll 245 having convex teeth on the outside of the outer peripheral surface, the outer peripheral surface of the gear roll 245 is rotated when the press roll 242 rotates. The state which contacts only with the front-end
  • the behavior of the press roll 242 bouncing between the teeth of the tooth surface 246ts of the gear roll 245 (between two adjacent ridges 245m) is exhibited, and the nonwoven fabric continuous sheet Sa becomes slippery.
  • the nonwoven fabric continuous sheet Sa is sandwiched and conveyed between the press roll 242 and the gear roll 246 having concave teeth on the outside of the outer peripheral surface, the outer peripheral surface of the press roll 242 becomes the teeth (mountains) of the gear roll 246. The state where only the tip of the portion 246m) is in contact does not occur.
  • the nonwoven fabric continuous sheet Sa becomes less slippery and is stretched while stably transporting the nonwoven fabric continuous sheet Sa in the MD direction. can do.
  • the contact position (a pair of drive roll 241 is nonwoven fabric continuous sheet Sa) in the drive roll 241.
  • the height of the contact position of the nonwoven fabric continuous sheet Sa on the gear roll 246 (position where the gear roll 245 and the gear roll 246 sandwich the nonwoven fabric continuous sheet Sa) is shifted.
  • each roll is arrange
  • FIG. 17 is a schematic diagram for explaining the relationship of the width in the CD direction of the second gear machining section 240.
  • the width W246 of the gear roll 246 in the CD direction is wider than the width WSa of the nonwoven fabric continuous sheet Sa in the CD direction (W246> WSa), and is approximately the same size as the width W245 of the gear roll 245 in the CD direction.
  • the peak portion 246m and the valley portion 246v are formed continuously along the CD direction, the width W246m of the peak portion 246m of the gear roll 246 in the CD direction is narrower than the width WSa of the nonwoven fabric continuous sheet Sa in the CD direction, and The crest 245m of the gear roll 245 is wider than the width W245m in the CD direction (WSa> W246m> W245m).
  • WSa> W246m both ends in the CD direction of the nonwoven fabric continuous sheet Sa (shaded portions in FIG.
  • the thickness t246m (the width in the MD direction of the tip portion of the peak portion 246m) of the tooth tip of the gear roll 246 is about 0.5 mm. That is, the thickness t246m of the tooth tip of the gear roll 246 is thicker than the thickness t245m (0.2 mm) of the tooth tip of the gear roll 245 (t246m> t245m). This is to prevent the outer peripheral surface of the press roll 242 from being damaged when the press roll 242 is pressed against the outer peripheral surface of the gear roll 246.
  • the gear roll 246 is formed of silicone rubber or the like if the tip of the tooth is thin (that is, the teeth are sharp).
  • the traces of the teeth are likely to be attached to the outer peripheral surface of the pressed roll 242 and the conveyance accuracy may gradually deteriorate. Therefore, the outer peripheral surface of the press roll 242 is made thicker than the tip end of the tooth of the gear roll 245 that is not in contact with the press roll 242, by making the tip end of the tooth of the gear roll 246 that is in contact with the press roll 242.
  • the teeth are hard to be marked.
  • the manufacturing apparatus 100 first embodiment
  • the manufacturing apparatus 200 second embodiment
  • the manufacturing apparatus 100 extends the nonwoven fabric continuous sheet Sa to cut a part of the stretchable fibers 2 or remove the crimp points.
  • the low-shrinkage region LS of FIG. 1 is formed by cutting a part of the stretchable fiber 2 out of the stretchable fiber 2 and the stretchable fiber 3 constituting the nonwoven fabric continuous sheet Sa. .
  • the nonwoven fabric continuous sheet Sa is stretched (second processing step) while at least one of the pair of gear rolls 145 and 146 of the second gear processing unit 140 is heated to a predetermined temperature.
  • heating is performed so that the temperature of at least one of the tooth surface 145ts of the gear roll 145 and the tooth surface 146ts of the gear roll 146 is higher than normal temperature and lower than the melting point of the extensible fiber 3. Heating may be performed by a heater provided outside, or may be performed by a heater provided on the gear rolls 145 and 146 itself.
  • the stretchable fiber 2 is a thermoplastic elastomer (for example, TPU: thermoplastic polyurethane) fiber as described above, it has lower heat resistance than the extensible fiber 3 and may be distorted when heated. It becomes easy to be cut due to deterioration. Thereby, it becomes possible to efficiently cut some stretchable fibers 2 without cutting the extensible fibers 3 in the second gear processed portion 140. Moreover, it can suppress that nonwoven fabric continuous sheet Sa itself is cut
  • TPU thermoplastic polyurethane
  • the temperature at which the gear rolls 145 and 146 are heated is preferably as high as possible among the temperatures lower than the melting point (about 200 ° C.) of the extensible fiber 3.
  • the gear roll up to about 120 ° C. Is heating up.
  • the gear roll 245 having teeth protruding outward from the outer peripheral surface is heated to a predetermined temperature.
  • the nonwoven fabric continuous sheet Sa is stretched (second processing step).
  • the heating method and heating temperature conditions for the gear roll 245 are the same as in the first embodiment. Thereby, the extensible fiber 3 constituting the nonwoven fabric continuous sheet Sa is easily stretched and is not easily cut, and at least a part of the stretchable fiber 2 is easily cut.
  • the 2nd gear process part 240 of 2nd Embodiment it conveys, winding the nonwoven fabric continuous sheet Sa around a part of outer peripheral surface of the gear roll 246 which has the tooth
  • the gear roll 246 is heated, the contact area between the peripheral surface of the gear roll 246 and the nonwoven fabric continuous sheet Sa is large, so that the entire nonwoven fabric continuous sheet Sa is easily heated, and the stretchable fiber 2 is excessively distorted. Problems such as becoming larger are likely to occur. Therefore, in the second embodiment, only the gear roll 245 side of the pair of gear rolls 245 and 246 is heated, and the gear roll 246 is not heated.
  • the teeth of the gear rolls 145 and 146 (first embodiment) and the gear rolls 245 and 246 (second embodiment) used in the second processing step are each continuously formed in the CD direction. That is, the peak portions 145m, 146m, 245m, and 246m of each tooth are formed to have a predetermined width in the CD direction. Since the teeth of each gear roll are continuously formed in the CD direction, the stretchable fibers 2 can be efficiently stretched over a wide range in the CD direction (width direction) of the nonwoven fabric continuous sheet Sa (see FIG. 17). ).
  • FIG. 18 is a diagram for explaining stretching of the stretchable fiber 2 performed in the second processing step.
  • FIG. 18 schematically shows an enlarged view of a state in which the plurality of stretchable fibers 2c to 2g constituting the nonwoven fabric continuous sheet Sa are crimped while being intertwined with each other.
  • the stretchable fiber 2c and the stretchable fiber 2d are crimped to each other at a crimping point WP1.
  • the stretchable fibers 2d and 2e are crimped to each other by the crimping point WP2
  • the stretchable fibers 2e and 2f are crimped to each other by the crimping point WP2
  • the stretchable fibers 2f and 2g are crimped to each other by the crimping point WP4.
  • the elastic fiber 2 which comprises the nonwoven fabric continuous sheet Sa is a long fiber, and at least one part is arrange
  • such long fibers are crimped
  • the stretchable fibers 2c and 2d are in the MD direction.
  • the stretchable fibers 2e and 2f are not stretched.
  • the teeth of the gear roll (mountain portion 145m1 and peak portion 145m2) are arranged in parallel to the CD direction.
  • the nonwoven fabric continuous sheet Sa is arranged in a direction perpendicular to the conveyance direction (MD direction). If it is such arrangement
  • the stretchable fibers 2c to 2g in FIG. 18 are stretched in the MD direction with a uniform force in the same region in the MD direction (the region between the peak portions 145m1 and 145m2). Distortion is less likely to occur.
  • the gear roll teeth do not necessarily have to be arranged in a direction parallel to the CD direction. For example, the gear roll teeth can be stretched even if they are arranged at an angle with respect to the CD direction. It is.
  • the interval (pitch) in the MD direction of two teeth arranged adjacent to each other in the MD direction in each gear roll is wider than the pitch in the MD direction of the crimping point WP for crimping the stretchable fibers 2 to each other.
  • the pitch Pm the distance in the MD direction
  • the peak part 145m1 and the peak part 145m2 is wider than the shortest distance Pwp in the MD direction between the crimping point WP1 and the crimping point WP2 (P1).
  • the stretchable fiber between the two teeth is not included.
  • the gap in the MD direction of the teeth of the gear roll is set to be wider than the pitch in the MD direction of the crimping points WP for crimping the stretchable fibers 2 to each other.
  • the crimping point WP is formed by embossing the nonwoven fabric continuous sheet Sa, the size of the shortest distance Pwp in the MD direction of the crimping point WP and the teeth of the second gear roll. It is possible to adjust the size of the pitch Pm.
  • the pair of gear rolls provided in the first gear processing unit 120 and the second gear processing unit 140 has been described with reference to FIG. 4 and FIG. That is not the case.
  • a convex portion is formed on the outer peripheral surface of one gear roll
  • a groove portion (concave portion) corresponding to the convex portion is formed on the outer peripheral surface of the other gear roll.
  • the structure may be such that the non-woven fabric sheet passing between the portions and the groove portions are stretched by meshing with each other.
  • the three-piece type diaper 5 has been described as an example of using the stretchable nonwoven fabric 1, but the use example of the stretchable nonwoven fabric 1 is not limited thereto.
  • the stretchable nonwoven fabric 1 can be used for all absorbent articles using nonwoven fabric such as pants-type disposable diapers, napkins, and cage sheets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

This elastic nonwoven fabric manufacturing method involves: a conveyance step for conveying, in a conveyance direction, a nonwoven fabric that contains elastic fibers which are elastic, and extensible fibers which are less elastic than the elastic fibers; a first processing step in which the nonwoven fabric is extended by being passed through a pair of first gear rollers and in which at least some of the extensible fibers are stretched; a stretching step in which, after the first processing step, the nonwoven fabric is stretched in the conveyance direction; and a second processing step in which, after the stretching step, the nonwoven fabric is stretched by being passed through a pair of second gear rollers that include an area where teeth are formed on the peripheral surface and an area where no teeth are formed, and at least some of the elastic fibers are cut.

Description

伸縮性不織布の製造方法Method for producing elastic nonwoven fabric
 本発明は、伸縮性不織布の製造方法に関する。 The present invention relates to a method for producing a stretchable nonwoven fabric.
 従来、不織布は、使い捨ておむつや生理用ナプキン等の吸収性物品、ワイパー等の清掃用品、マスク等の医療用品と、幅広い分野において使用されている。このように不織布は、異なる様々な分野で使用されるが、実際に各分野の製品に使用される場合には、それぞれの製品の用途に適した性質や構造となるよう製造されることが必要である。
 例えば、特許文献1には、互いに噛み合う歯溝を有する一対の歯溝ロール間に帯状の不織布シートを噛み込ませることで不織布を延伸させて、伸縮性を向上させる技術が開示されている。また、同特許文献1では、不織布を延伸させる際に延伸倍率が部分的に異なる歯溝ロールを用いることで、伸縮特性が部分的に異なる不織布を製造する技術が開示されている。
Conventionally, non-woven fabrics are used in a wide range of fields, such as absorbent articles such as disposable diapers and sanitary napkins, cleaning articles such as wipers, and medical articles such as masks. In this way, non-woven fabrics are used in various different fields, but when actually used in products in each field, they must be manufactured to have properties and structures suitable for the use of each product. It is.
For example, Patent Document 1 discloses a technique for improving stretchability by stretching a non-woven fabric by interposing a belt-shaped non-woven fabric sheet between a pair of tooth-gap rolls having mutually engaging tooth grooves. Moreover, in the said patent document 1, when extending | stretching a nonwoven fabric, the technique which manufactures the nonwoven fabric from which a stretching property differs partially is disclosed by using a tooth gap roll from which a draw ratio differs partially.
特許第479285号公報Japanese Patent No. 479285
 特許文献1に記載された方法によって製造可能な伸縮性不織布は、強い収縮性を有することから、おむつ等の外装部材に使用した場合に、使用者の肌に食い込みやすくなったり、おむつに備えられる吸収体を収縮させてしまったりする等の問題が生じる場合がある。そのため、収縮力が高い領域だけでなく収縮力の低い領域を設けることにより、収縮力が適度に調整された伸縮性不織布が望まれている。
 本発明は、上記のような問題に鑑みてなされたものであって、その目的とするところは、良好な伸縮性を有しつつ、収縮力の高い領域と収縮力の低い領域とを有する伸縮性の不織布を提供することにある。
Since the stretchable nonwoven fabric that can be produced by the method described in Patent Document 1 has strong shrinkability, when used for an exterior member such as a diaper, it becomes easy to bite into the user's skin or is provided in the diaper. Problems such as shrinking the absorber may occur. Therefore, an elastic nonwoven fabric in which the contraction force is appropriately adjusted by providing not only a region having a high contraction force but also a region having a low contraction force is desired.
The present invention has been made in view of the above problems, and the object of the present invention is to provide a stretchable region having a high shrinkage force region and a low shrinkage force region while having good stretchability. It is in providing a non-woven fabric.
 上記目的を達成するための主たる発明は、伸縮性を有する伸縮性繊維と、前記伸縮性繊維よりも収縮性の低い伸長性繊維とを含む不織布を搬送方向に搬送する搬送工程と、前記不織布を1対の第1ギアロール間に通過させることで延伸させ、少なくとも一部の前記伸長性繊維を伸長させる第1加工工程と、前記第1加工工程の後で、前記不織布を前記搬送方向に延伸させる延伸工程と、前記延伸工程の後で、前記不織布を、周面に歯が形成されている部分と形成されていない部分とを有する1対の第2ギアロール間に通過させることで延伸させ、少なくとも一部の前記伸縮性繊維を切断する第2加工工程と、を有することを特徴とする、伸縮性不織布の製造方法である。
 本発明の他の特徴については、本明細書及び添付図面の記載により明らかにする。
A main invention for achieving the above object is to provide a transporting process for transporting a nonwoven fabric containing stretchable fibers having stretchability and an extensible fiber having lower shrinkage than the stretchable fibers in the transport direction, and the nonwoven fabric. A non-woven fabric is stretched in the transport direction after the first processing step of extending at least a part of the extensible fibers by passing between a pair of first gear rolls, and after the first processing step. After the stretching step and after the stretching step, the non-woven fabric is stretched by passing between a pair of second gear rolls having a portion where teeth are formed on the peripheral surface and a portion where teeth are not formed, and at least And a second processing step of cutting some of the stretchable fibers.
Other features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
 本発明によれば、良好な伸縮性を有しつつ、収縮力の高い領域と収縮力の低い領域とを有する伸縮性の不織布を提供することができる。 According to the present invention, it is possible to provide a stretchable nonwoven fabric having a region having a high shrinkage force and a region having a low shrinkage force while having good stretchability.
伸縮性不織布1の概略斜視図である。1 is a schematic perspective view of a stretchable nonwoven fabric 1. FIG. 伸縮性不織布1を製造する製造装置100の構成について説明する図である。It is a figure explaining the structure of the manufacturing apparatus 100 which manufactures the elastic nonwoven fabric 1. FIG. 第1ギア加工部120の構成を表す概略側面図である。4 is a schematic side view showing the configuration of a first gear machining unit 120. FIG. 図3中の領域αについて拡大して示す図である。FIG. 4 is an enlarged view showing a region α in FIG. 3. 第2ギア加工部140の構成を表す概略側面図である。FIG. 5 is a schematic side view showing a configuration of a second gear machining unit 140. 高収縮領域HSにおける伸縮性繊維2の状態について拡大して表した模式図である。It is the schematic diagram expanded and represented about the state of the elastic fiber 2 in the high shrinkage area | region HS. 低収縮領域LSにおける伸縮性繊維2の状態について拡大して表した模式図である。It is the schematic diagram expanded and represented about the state of the elastic fiber 2 in the low shrinkage | contraction area | region LS. 不織布の延伸倍率とMD方向の戻り応力との関係を表したグラフである。It is the graph showing the relationship between the draw ratio of a nonwoven fabric, and the return stress of MD direction. 不織布の延伸倍率とMD/CD比との関係を表したグラフである。It is a graph showing the relationship between the draw ratio of a nonwoven fabric and MD / CD ratio. 使い捨ておむつ5の概略斜視図である。It is a schematic perspective view of the disposable diaper 5. FIG. 展開状態の使い捨ておむつ5の概略平面図である。It is a schematic plan view of the disposable diaper 5 in the unfolded state. 伸縮性不織布1を製造する製造装置200の構成について説明する図である。It is a figure explaining the structure of the manufacturing apparatus 200 which manufactures the elastic nonwoven fabric 1. FIG. ギアロール245の構成について説明する概略図である。It is the schematic explaining the structure of the gear roll 245. FIG. ギアロール246の構成について説明する概略図である。FIG. 5 is a schematic diagram illustrating the configuration of a gear roll 246. 図13中の領域Xについて表す図である。It is a figure represented about the area | region X in FIG. 図14中の領域Yについて表す図である。It is a figure represented about the area | region Y in FIG. 第2ギア加工部240のCD方向の幅の関係について説明する概略図である。It is the schematic explaining the relationship of the width | variety of the CD direction of the 2nd gear process part 240. FIG. 第2加工工程で行われる伸縮性繊維2の延伸について説明する図である。It is a figure explaining extending | stretching of the elastic fiber 2 performed at a 2nd process process.
 本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。
 伸縮性を有する伸縮性繊維と、前記伸縮性繊維よりも収縮性の低い伸長性繊維とを含む不織布を搬送方向に搬送する搬送工程と、前記不織布を1対の第1ギアロール間に通過させることで延伸させ、少なくとも一部の前記伸長性繊維を伸長させる第1加工工程と、前記第1加工工程の後で、前記不織布を前記搬送方向に延伸させる延伸工程と、前記延伸工程の後で、前記不織布を、周面に歯が形成されている部分と形成されていない部分とを有する1対の第2ギアロール間に通過させることで延伸させ、少なくとも一部の前記伸縮性繊維を切断する第2加工工程と、を有する、ことを特徴とする伸縮性不織布の製造方法。
At least the following matters will become apparent from the description of the present specification and the accompanying drawings.
A transporting step of transporting a non-woven fabric including stretchable fibers having stretchability and an extensible fiber having lower contractibility than the stretchable fibers in a transport direction; and passing the non-woven fabric between a pair of first gear rolls. A first processing step for stretching at least a part of the extensible fibers, a stretching step for stretching the nonwoven fabric in the transport direction after the first processing step, and after the stretching step, The non-woven fabric is stretched by passing between a pair of second gear rolls having a portion where teeth are formed on a peripheral surface and a portion where teeth are not formed, and at least a part of the stretchable fibers is cut. A method for producing a stretchable nonwoven fabric, comprising: 2 processing steps.
 このような伸縮性不織布の製造方法によれば、低収縮領域における収縮力の強さが、高収縮領域における収縮力の強さよりも弱い伸縮性不織布を製造することができる。これにより、良好な伸縮性を有しつつ、収縮力の高い領域と収縮力の低い領域とを有する伸縮性の不織布を提供することができる。 According to such a method for producing a stretchable nonwoven fabric, a stretchable nonwoven fabric in which the strength of the shrinkage force in the low shrinkage region is weaker than the strength of the shrinkage force in the high shrinkage region can be produced. Accordingly, it is possible to provide a stretchable nonwoven fabric having a region having a high shrinkage force and a region having a low shrinkage force while having good stretchability.
 かかる伸縮性不織布の製造方法であって、前記1対の第2ギアロールのうち、少なくとも一方のギアロールを前記伸長性繊維の融点よりも低い温度に加熱する、ことが望ましい。 In this stretchable nonwoven fabric manufacturing method, it is desirable that at least one of the pair of second gear rolls is heated to a temperature lower than the melting point of the extensible fibers.
 このような伸縮性不織布の製造方法によれば、伸長性繊維が加熱されることによって伸びやすくなり第2加工工程において切断されにくくなる。一方、伸縮性繊維が加熱されることによって歪が生じたり、劣化したりして切断されやすくなる。これにより、伸長性繊維を切断することなく一部の伸縮性繊維を効率よく切断することが可能となり、収縮力の高い領域と収縮力の低い領域とを有する伸縮性の不織布を精度よく製造することが可能となる。 According to such a method for producing a stretchable nonwoven fabric, the stretchable fiber is easily stretched by being heated and is not easily cut in the second processing step. On the other hand, when the stretchable fiber is heated, it is distorted or deteriorated, and is easily cut. This makes it possible to efficiently cut some stretchable fibers without cutting the extensible fibers, and accurately produce a stretchable nonwoven fabric having a region having a high shrinkage force and a region having a low shrinkage force. It becomes possible.
 かかる伸縮性不織布の製造方法であって、前記1対の第2ギアロールの歯は、いずれも周面の外側に向かって凸となるように形成されている、ことが望ましい。 In this stretchable nonwoven fabric manufacturing method, the teeth of the pair of second gear rolls are preferably formed so as to be convex toward the outside of the peripheral surface.
 このような伸縮性不織布の製造方法によれば、一方のギアロールにおいて互いに隣り合う歯の山部と、その間の谷部に入り込む他方のギアロールの山部とによって、不織布が三点曲げ状に変形され、伸縮性繊維を延伸搬送方向に延伸することができる。また、不織布を構成する伸縮性繊維の種類に応じて、ギアの噛み合いの浅さを変更したり、歯の形状やピッチを変更したりすることで、不織布が破断しないようにテンションを調整することが可能となり、良質な伸縮性不織布を製造しやすくなる。 According to such a method for producing a stretchable nonwoven fabric, the nonwoven fabric is deformed into a three-point bend by the peak portions of teeth adjacent to each other in one gear roll and the peak portion of the other gear roll entering the valley portion therebetween. The stretchable fiber can be stretched in the stretching and conveying direction. Also, according to the type of stretchable fibers that make up the nonwoven fabric, the tension can be adjusted so that the nonwoven fabric does not break by changing the shallowness of gear engagement or changing the tooth shape or pitch. This makes it easy to produce a high-quality stretchable nonwoven fabric.
 かかる伸縮性不織布の製造方法であって、前記1対の第2ギアロールのうち、一方側のギアロールの歯は周面の外側に向かって凸となるように形成されており、前記1対の第2ギアロールのうち、他方側のギアロールの歯は周面の外側に向かって凹となるように形成されている、ことが望ましい。 In such a method for producing a stretchable nonwoven fabric, of the pair of second gear rolls, teeth of one side of the gear roll are formed to be convex toward the outer side of the peripheral surface, and the pair of second gear rolls. Of the two gear rolls, it is desirable that the teeth of the gear roll on the other side are formed to be concave toward the outer side of the peripheral surface.
 このような伸縮性不織布の製造方法によれば、一方側のギアロールにおいて互いに隣り合う歯の山部と、その間の谷部に入り込む他方側のギアロールの山部とによって、不織布が三点曲げ状に変形され、伸縮性繊維を延伸搬送方向に延伸することができる。また、他方側のギアロールの歯が外周面から突出していないため、当該他方側のギアロールに不織布を巻き付けて搬送することが可能となる。これにより、他方側のギアロールによって不織布の搬送と延伸を行うことが可能となり、装置の構成が単純になる。 According to such a method for producing a stretchable nonwoven fabric, the nonwoven fabric is bent in a three-point bend shape by the crest portions of the teeth adjacent to each other in the gear roll on one side and the crest portion of the gear roll on the other side entering the trough portion therebetween. It is deformed and the stretchable fiber can be stretched in the stretching and conveying direction. Moreover, since the tooth | gear of the other side gear roll does not protrude from an outer peripheral surface, it becomes possible to wind and convey a nonwoven fabric around the said other side gear roll. Thereby, the non-woven fabric can be conveyed and stretched by the gear roll on the other side, and the configuration of the apparatus is simplified.
 かかる伸縮性不織布の製造方法であって、前記1対の第1ギアロールと前記1対の第2ギアロールとの前記搬送方向の間に設けられた1対の駆動ロールによって、前記前記不織布を所定の速度で前記搬送方向に搬送し、前記1対の駆動ロールよりも前記搬送方向の下流側に設けられたプレスロールによって、前記不織布を、前記1対の第2ギアロールのうち前記他方側のギアロールの外周面に押し付けながら前記不織布を前記所定の速度よりも速い速度で前記搬送方向に搬送することにより、前記不織布を前記搬送方向に延伸させる、ことが望ましい。 In this stretchable nonwoven fabric manufacturing method, the nonwoven fabric is predetermined by a pair of drive rolls provided between the pair of first gear rolls and the pair of second gear rolls in the conveying direction. The nonwoven fabric is transferred to the other side of the pair of second gear rolls by a press roll that is transported in the transport direction at a speed and provided downstream of the pair of drive rolls in the transport direction. It is desirable to stretch the nonwoven fabric in the transport direction by transporting the nonwoven fabric in the transport direction at a speed faster than the predetermined speed while pressing against the outer peripheral surface.
 このような伸縮性不織布の製造方法によれば、プレスロールを1つだけ設けることにより、別途の延伸手段が不要となるため、第1加工工程と第2加工工程との間の搬送距離をより短く構成することが可能となる。これにより、不織布が搬送方向に過度に伸ばされることが抑制され、当該不織布が幅方向に縮むことを抑制しやすくなる。また、プレスロールを用いて延伸が行われたすぐ後に、第2ギアロールを用いた第2加工工程が行われるため、伸縮性繊維の一部を第2加工工程で効率よく切断することができるようになる。 According to such a method for producing a stretchable nonwoven fabric, since only one press roll is provided, no separate stretching means is required, and therefore the transport distance between the first processing step and the second processing step is further increased. It becomes possible to make it short. Thereby, it is suppressed that a nonwoven fabric is extended too much in a conveyance direction, and it becomes easy to suppress that the said nonwoven fabric shrinks in the width direction. Moreover, since the 2nd process process using a 2nd gear roll is performed immediately after extending | stretching using a press roll, it seems that a part of elastic fiber can be efficiently cut | disconnected by a 2nd process process. become.
 かかる伸縮性不織布の製造方法であって、前記1対の第2ギアロールのうち前記一方側のギアロールを前記伸長性繊維の融点よりも低い温度に加熱する、ことが望ましい。 In this stretchable nonwoven fabric manufacturing method, it is desirable to heat the one side gear roll of the pair of second gear rolls to a temperature lower than the melting point of the extensible fibers.
 このような伸縮性不織布の製造方法によれば、第2加工工程において不織布が加熱されることにより、伸長性繊維は伸びやすく切断されにくくなり、伸縮性繊維は切断されやすくなる。また、1対の第2ギアロールのうち周面の外側に向かって凸となる歯を有するギアロールによって不織布を加熱することにより、ギアロールの周面と不織布との接触面積が大きくなり過ぎず、不織の全体が加熱されてしまうことが抑制される。したがって、第2加工工程において伸縮性繊維の歪が過度に大きくなる等の問題が生じにくくなる。 According to such a method for producing a stretchable nonwoven fabric, when the nonwoven fabric is heated in the second processing step, the stretchable fibers are easily stretched and are not easily cut, and the stretchable fibers are easily cut. Further, by heating the nonwoven fabric with a gear roll having teeth convex toward the outside of the circumferential surface of the pair of second gear rolls, the contact area between the circumferential surface of the gear roll and the nonwoven fabric does not become too large, and the nonwoven fabric is not woven. It is suppressed that the whole is heated. Therefore, problems such as excessive strain in the stretchable fiber are less likely to occur in the second processing step.
 かかる伸縮性不織布の製造方法であって、前記1対の第2ギアロールのうち前記他方側のギアロールは、前記不織布を、周面の少なくとも一部に巻き付けた状態で回転することによって前記不織布を搬送方向に搬送する、ことが望ましい。 In this stretchable nonwoven fabric manufacturing method, the other-side gear roll of the pair of second gear rolls conveys the nonwoven fabric by rotating the nonwoven fabric around at least a part of its peripheral surface. It is desirable to convey in the direction.
 このような伸縮性不織布の製造方法によれば、1対の第2ギアロールのうち外周面の外側に向かって凹となる歯を有するギアロールの外周面の一部に不織布を巻き付けて回転することにより、該不織布をスムーズに搬送することが可能となる。また、プレスロールとの間に不織布をしっかりと挟み込むことができるため、不織布を安定して搬送しつつ延伸することができる。 According to such a method for producing a stretchable nonwoven fabric, the nonwoven fabric is wound around a part of the outer peripheral surface of a gear roll having teeth that are concave toward the outside of the outer peripheral surface of the pair of second gear rolls and rotated. The nonwoven fabric can be transported smoothly. Moreover, since a nonwoven fabric can be pinched | interposed firmly between press rolls, it can extend | stretch, conveying a nonwoven fabric stably.
 かかる伸縮性不織布の製造方法であって、前記1対の第2ギアロールのうち前記他方側のギアロールの歯の先端部の厚さは、前記1対の第2ギアロールのうち前記一方側のギアロールの歯の先端部の厚さよりも厚い、ことが望ましい。 In this method of manufacturing a stretchable nonwoven fabric, the thickness of the tip of the tooth of the other side of the pair of second gear rolls is the thickness of the one side of the pair of second gear rolls. It is desirable that it is thicker than the thickness of the tooth tip.
 このような伸縮性不織布の製造方法によれば、外周面の外側に向かって凹となる歯を有する他方側のギアロールの外周面にプレスロールを押し付ける際に、歯の先端が鋭利に形成されていないため、プレスロールの表面に歯の跡が付きにくい。これにより、プレスロールの搬送精度が悪化することを抑制しやすくなる。 According to such a method for producing a stretchable nonwoven fabric, when the press roll is pressed against the outer peripheral surface of the other gear roll having teeth that are concave toward the outer side of the outer peripheral surface, the tips of the teeth are formed sharply. As a result, there is no trace of teeth on the surface of the press roll. Thereby, it becomes easy to suppress that the conveyance accuracy of a press roll deteriorates.
 かかる伸縮性不織布の製造方法であって、前記1対の第2ギアロールの歯は、それぞれ前記搬送方向と直行する方向であるCD方向に連続的に形成されている、ことが望ましい。 In this stretchable nonwoven fabric manufacturing method, it is desirable that the teeth of the pair of second gear rolls are continuously formed in the CD direction, which is a direction perpendicular to the transport direction.
 このような伸縮性不織布の製造方法によれば、搬送方向に隣り合って設けられた2つのギアロールの歯の間の領域に存在する全ての伸縮性繊維が搬送方向に延伸されやすくなる。これにより、不織布を構成している複数の伸縮性繊維のうち、延伸される繊維と延伸されない繊維とが発生し、均一な延伸効果が得られない等の問題を抑制しやすくなる。これにより、CD方向において伸縮性に偏りが少ない伸縮性不織布を製造することができる。 According to such a method for producing a stretchable nonwoven fabric, all stretchable fibers existing in the region between the teeth of two gear rolls provided adjacent to each other in the transport direction are easily stretched in the transport direction. Thereby, among the plurality of stretchable fibers constituting the nonwoven fabric, stretched fibers and unstretched fibers are generated, and it becomes easy to suppress problems such as the inability to obtain a uniform stretching effect. Thereby, an elastic nonwoven fabric with little bias in elasticity in the CD direction can be produced.
 かかる伸縮性不織布の製造方法であって、前記1対の第2ギアロールの歯は、前記CD方向と平行な方向に沿って配置されている、ことが望ましい。 In this stretchable nonwoven fabric manufacturing method, it is preferable that the teeth of the pair of second gear rolls are arranged along a direction parallel to the CD direction.
 このような伸縮性不織布の製造方法によれば、搬送方向に隣り合う2つのギアロールの歯の間で、搬送方向に搬送される不織布が均一な力で延伸されやすくなるため、不織布に歪等が生じにくくなる。 According to such a method for producing a stretchable nonwoven fabric, the nonwoven fabric transported in the transport direction is easily stretched with a uniform force between the teeth of two gear rolls adjacent to each other in the transport direction. It becomes difficult to occur.
 かかる伸縮性不織布の製造方法であって、前記伸縮性不織布を構成する繊維は長繊維であり、2以上の前記長繊維同士が、複数の圧着点によって互いに圧着されている、ことが望ましい。 In this stretchable nonwoven fabric manufacturing method, it is desirable that the fibers constituting the stretchable nonwoven fabric are long fibers, and two or more of the long fibers are bonded to each other by a plurality of pressure bonding points.
 このような伸縮性不織布の製造方法によれば、伸縮性繊維が長繊維であることから、少なくとも一部は搬送方向に沿うように配置されやすく、不織布が搬送方向へ伸縮しやすくなる。また、複数の長繊維同士が複数の圧着点によって互いに圧着されていることにより、互いに伸縮性を及ぼし合い、不織布全体が良好な伸縮性を発現しやすくなる。 According to such a method for producing a stretchable nonwoven fabric, since the stretchable fibers are long fibers, at least a part of the stretchable fabric is easily arranged along the transport direction, and the nonwoven fabric is easily stretched in the transport direction. Moreover, since several long fibers are mutually crimped | bonded by the some crimping | compression-bonding point, mutually exert elasticity and it becomes easy for the whole nonwoven fabric to express favorable elasticity.
 かかる伸縮性不織布の製造方法であって、前記第2加工工程は、前記搬送方向に隣り合う2つの前記圧着点の間の最短距離よりも広いピッチの歯を有する前記1対の第2ギアロールを用いて行われる、ことが望ましい。 In this stretchable nonwoven fabric manufacturing method, the second processing step includes the pair of second gear rolls having teeth having a pitch wider than the shortest distance between the two crimping points adjacent in the transport direction. It is desirable to be performed using.
 このような伸縮性不織布の製造方法によれば、ギアロールの歯のピッチの間には、伸縮性繊維同士を圧着する圧着点が少なくとも1以上含まれる確率が高くなる。これにより、第2加工工程において、ギアロールの歯のピッチの間に含まれる圧着点が外れやすくなるため、不織布の搬送方向における伸縮性がより弱くなり、伸縮性不織布において低収縮領域を効率的に形成することができる。 According to such a method for producing a stretchable nonwoven fabric, there is a high probability that at least one or more crimping points for crimping stretchable fibers are included between the pitches of the gear roll teeth. Thereby, in the 2nd processing process, since the crimping point included between the pitches of the teeth of the gear roll is easily removed, the stretchability in the conveyance direction of the nonwoven fabric becomes weaker, and the low-shrinkage region is efficiently formed in the stretchable nonwoven fabric. Can be formed.
 ===第1実施形態===
 <伸縮性不織布の概要>
 はじめに、本実施形態に係る伸縮性を有する不織布として伸縮性不織布1の概要について説明する。伸縮性不織布1は、不織布シートSに対して後述する延伸加工を施すことにより、所定の方向に伸縮性を発現させたものである。不織布シートSは、伸縮性を有する伸縮性繊維2と、当該伸縮性繊維2よりも収縮性の低い伸長性繊維3とが混合し、伸縮性繊維2及び伸長性繊維3の相互間が一定の間隔を置いて配置された多数の圧着点において、軟化又は溶融による自己融着によって接合されている潜在伸縮性不織布である。
=== First Embodiment ===
<Outline of stretchable nonwoven fabric>
First, an outline of the stretchable nonwoven fabric 1 will be described as a stretchable nonwoven fabric according to this embodiment. The stretchable nonwoven fabric 1 is a fabric that exhibits stretchability in a predetermined direction by subjecting the nonwoven fabric sheet S to a stretching process described later. In the nonwoven fabric sheet S, the stretchable fibers 2 having stretchability and the extensible fibers 3 having lower shrinkage than the stretchable fibers 2 are mixed, and the stretchable fibers 2 and the stretchable fibers 3 are constant. It is a latent stretchable nonwoven fabric joined by self-bonding by softening or melting at a number of spaced-apart crimp points.
 図1は伸縮性不織布1の概略斜視図である。伸縮性不織布1は図1のように縦方向と、縦方向と交差する方向である横方向とを有し、縦方向に長い平面帯状のシート部材である。また、伸縮性不織布1の縦方向及び横方向とそれぞれ交差する方向を厚さ方向とする。伸縮性不織布1(不織布シートS)を構成する伸縮性繊維2は弾性的に伸縮可能な熱可塑性エラストマー製繊維であり、例えばウレタン系エラストマー、ポリスチレン系エラストマー、ポリオレフィン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、等の繊維を使用することができる。具体的には、ポリウレタン系エラストマーを用いることができる。伸長性繊維3は伸長性を有しつつ実質的には非弾性で収縮しにくい熱可塑性樹脂製繊維であり、例えばポリプロピレン繊維やポリエチレン繊維などの単独繊維やポリプロピレンやポリエチレンからなる芯鞘構造の複合繊維などを使用することができる。具体的には、ポリオレフィン系樹脂であるポリプロピレンを用いることができる。これらの繊維が無作為に絡み合うことにより不織布シートSが構成されている。 FIG. 1 is a schematic perspective view of the stretchable nonwoven fabric 1. As shown in FIG. 1, the stretchable nonwoven fabric 1 is a flat strip-shaped sheet member having a longitudinal direction and a transverse direction that intersects the longitudinal direction, and is long in the longitudinal direction. Moreover, let the direction which each cross | intersects the vertical direction and the horizontal direction of the elastic nonwoven fabric 1 be a thickness direction. The stretchable fibers 2 constituting the stretchable nonwoven fabric 1 (nonwoven fabric sheet S) are elastically stretchable thermoplastic elastomer fibers, such as urethane elastomer, polystyrene elastomer, polyolefin elastomer, polyamide elastomer, and polyester. Fibers such as elastomers can be used. Specifically, a polyurethane elastomer can be used. The extensible fiber 3 is a fiber made of a thermoplastic resin that has extensibility but is substantially inelastic and hardly shrinks. For example, a single fiber such as polypropylene fiber or polyethylene fiber, or a composite of a core-sheath structure made of polypropylene or polyethylene Fiber etc. can be used. Specifically, polypropylene which is a polyolefin resin can be used. The nonwoven fabric sheet S is comprised by these fibers being intertwined at random.
 そして、該不織布シートSに含まれる伸長性繊維3を塑性変形させたり、繊維同士の圧着点(接合点)を破壊したりすれば、伸縮性繊維2の弾性的な変形を阻害し難い構造に当該不織布シートSを変化させることができ、これにより、不織布シートSの伸縮性が発現し、伸縮性不織布1として使用可能な状態となる。不織布シートSの伸縮性を発現させる具体的な方法については、後で説明する。 And if the extensible fiber 3 contained in the nonwoven fabric sheet S is plastically deformed, or the crimping point (joining point) between the fibers is destroyed, the elastic deformation of the stretchable fiber 2 is hardly hindered. The nonwoven fabric sheet S can be changed, whereby the stretchability of the nonwoven fabric sheet S is expressed and the nonwoven fabric sheet 1 can be used. A specific method for expressing the stretchability of the nonwoven fabric sheet S will be described later.
 本実施形態の伸縮性不織布1は縦方向、及び、横方向について伸縮性を有する。また、伸縮性不織布1は、縦方向に伸長させた際に強い収縮力を発現する高収縮領域HSと、高収縮領域HSと比較して縦方向に伸長させた際の収縮力が弱い低収縮領域LSとを、縦方向に沿って交互に有する(図1参照)。このように高収縮領域HSと低収縮領域LSとが縦方向に並んで配置されているため、不織布シートSを縦方向に伸長させた場合に、収縮しやすい部分と収縮しにくい部分とが存在することになる。したがって、高収縮領域HS及び低収縮領域LSの大きさや形成される範囲を適宜変更することにより、伸縮性不織布1を伸長状態にしたときの収縮力の大きさを調整することが可能となる。 The stretchable nonwoven fabric 1 of this embodiment has stretchability in the vertical direction and the horizontal direction. The stretchable nonwoven fabric 1 has a high shrinkage region HS that expresses a strong shrinkage force when stretched in the longitudinal direction, and a low shrinkage that has a weak shrinkage force when stretched in the longitudinal direction compared to the high shrinkage region HS. The regions LS are alternately provided along the vertical direction (see FIG. 1). Since the high shrinkage region HS and the low shrinkage region LS are arranged side by side in this way, when the nonwoven fabric sheet S is stretched in the vertical direction, there are portions that are likely to shrink and portions that are difficult to shrink. Will do. Therefore, by appropriately changing the size of the high shrinkage region HS and the low shrinkage region LS and the range to be formed, it is possible to adjust the magnitude of the shrinkage force when the stretchable nonwoven fabric 1 is in the stretched state.
 <伸縮性不織布1の製造方法>
 不織布シートSに伸縮性を付与して伸縮性不織布1を製造する方向について説明する。図2は、伸縮性不織布1を製造する製造装置100の構成について説明する図である。本実施系形態の製造装置100は、搬送機構CVと、加熱部110と、第1ギア加工部120と、延伸加工部130と、第2ギア加工部140と、シート部材張り合わせ部150とを有する。
<Method for producing stretchable nonwoven fabric 1>
The direction in which stretchability is imparted to the nonwoven fabric sheet S to produce the stretchable nonwoven fabric 1 will be described. FIG. 2 is a diagram illustrating the configuration of the manufacturing apparatus 100 that manufactures the stretchable nonwoven fabric 1. The manufacturing apparatus 100 according to the present embodiment includes a transport mechanism CV, a heating unit 110, a first gear processing unit 120, a stretching processing unit 130, a second gear processing unit 140, and a sheet member bonding unit 150. .
 搬送機構CVは、不織布シートSを所定の搬送経路に沿って連続して搬送する搬送部である。搬送機構CVとしては、例えば、搬送ローラーや、載置面たるベルト面に吸着保持機能を有したサクションベルトコンベア等が使用される。本実施形態の搬送機構CVにおいて、不織布シートSは縦方向に連なった連続シートとして所定の搬送方向へ搬送される。そして、不織布シートSが搬送方向(縦方向)に搬送される過程において、加熱加工や延伸加工等、後述する各種処理を施されることにより、伸縮性不織布1が製造される。以下の説明では、搬送される不織布シートSの連続シートのことを不織布連続シートSaと呼ぶ。 The transport mechanism CV is a transport unit that continuously transports the nonwoven fabric sheet S along a predetermined transport path. As the transport mechanism CV, for example, a transport roller, a suction belt conveyor having a suction holding function on a belt surface as a placement surface, or the like is used. In the conveyance mechanism CV of the present embodiment, the nonwoven fabric sheet S is conveyed in a predetermined conveyance direction as a continuous sheet continuous in the vertical direction. And in the process in which the nonwoven fabric sheet S is conveyed in a conveyance direction (longitudinal direction), the elastic nonwoven fabric 1 is manufactured by performing various processes mentioned later, such as a heat processing and an extending | stretching process. In the following description, the continuous sheet of the nonwoven fabric sheet S to be conveyed is referred to as a nonwoven fabric continuous sheet Sa.
 また、以下の説明では、製造装置100上に設定された上記の搬送方向のことを「MD方向」とも言う。このMD方向は、図1に示されるように、場所によってその方向が変化する。すなわち、不織布連続シートSaが搬送される方向は一定の方向であるとは限らない。また、MD方向と交差(直交)する方向の2方向のうちの一方を「CD方向」と言い、他方を「Z方向」と言う。CD方向は、不織布連続シートSaの幅方向と平行な方向であり、図2では、紙面を貫通する方向を向いている。また、Z方向は、不織布連続シートSaの厚さ方向と平行な方向である。 In the following description, the conveyance direction set on the manufacturing apparatus 100 is also referred to as “MD direction”. As shown in FIG. 1, the MD direction changes depending on the location. That is, the direction in which the nonwoven fabric continuous sheet Sa is conveyed is not necessarily a fixed direction. Further, one of the two directions intersecting (orthogonal) with the MD direction is referred to as “CD direction”, and the other is referred to as “Z direction”. The CD direction is a direction parallel to the width direction of the nonwoven fabric continuous sheet Sa, and in FIG. The Z direction is a direction parallel to the thickness direction of the nonwoven fabric continuous sheet Sa.
 不織布1を製造する際には、先ず、不織布連続シートSaがロール状に巻き付けられた原反ロールから、不織布連続シートSaが繰り出される。繰り出された不織布連続シートSaは、搬送機構CVによってMD方向の上流側から下流側へ所定の搬送速度V1で搬送され、加熱部110が配置されている位置へ到達する。 When the nonwoven fabric 1 is manufactured, first, the nonwoven fabric continuous sheet Sa is fed out from a raw fabric roll in which the nonwoven fabric continuous sheet Sa is wound in a roll shape. The fed nonwoven fabric continuous sheet Sa is transported from the upstream side to the downstream side in the MD direction by the transport mechanism CV at a predetermined transport speed V1, and reaches the position where the heating unit 110 is disposed.
 加熱部110は、搬送される不織布連続シートSaを複数の加熱ローラーによって加熱する(加熱工程)。図2に示されるように、本実施形態の加熱部110は4つの加熱ローラー111~114を有する。加熱ローラー111~114は、平滑な外周面を有する円筒状の搬送ローラーであり、その外周面にはヒーターが設けられている。不織布連続シートSaは、シート状態で各加熱ローラー111~114の外周面に略S字状に巻き付きながら、MD方向上流側の加熱ローラー111からMD方向下流側の加熱ローラー114へと搬送される。そして、加熱部110を搬送される過程で、各加熱ローラー111~114の外周面と接触している間に、当該外周面に設けられたヒーターによって加熱される。 The heating unit 110 heats the conveyed nonwoven fabric continuous sheet Sa with a plurality of heating rollers (heating process). As shown in FIG. 2, the heating unit 110 of the present embodiment has four heating rollers 111 to 114. The heating rollers 111 to 114 are cylindrical transport rollers having a smooth outer peripheral surface, and a heater is provided on the outer peripheral surface. The nonwoven fabric continuous sheet Sa is conveyed from the heating roller 111 on the upstream side in the MD direction to the heating roller 114 on the downstream side in the MD direction while being wound in a substantially S shape around the outer peripheral surface of each of the heating rollers 111 to 114 in the sheet state. In the process of transporting the heating unit 110, while being in contact with the outer peripheral surface of each of the heating rollers 111 to 114, the heater is heated by the heater provided on the outer peripheral surface.
 加熱ローラー111~114の外周面に設けられたヒーターは、それぞれ発熱量を調整することにより、不織布連続シートSaの加熱温度を調節することが可能である。不織布連続シートSaを加熱する際の温度は、不織布連続シートSaの繊維構成によって異なるが、上述した熱可塑性のポリプロピレンが用いられる場合、ポリプロピレン繊維の融点に基づいてその融点以下の温度となるように調整される。例えば、不織布連続シートSaの温度は、ポリプロピレン繊維の融点以下であり、かつ、40℃以上にすることが好ましい。40℃以下では、繊維の伸長性が悪く強度が低下しやすく、また、ポリプロピレン繊維の融点以上になると、不織布連続シートSaの繊維が加熱ローラー111~114等に貼り付いてしまったり、後述する延伸加工時に切断されてしまうおそれがあるからである。本実施形態では、加熱部110による加熱温度が50℃~60℃となるように温度が調整されている。なお、加熱工程は必須の工程ではなく、加熱を行わない場合でも伸縮性不織布1を製造することは可能である。 The heaters provided on the outer peripheral surfaces of the heating rollers 111 to 114 can adjust the heating temperature of the nonwoven fabric continuous sheet Sa by adjusting the amount of heat generated. The temperature at which the nonwoven fabric continuous sheet Sa is heated varies depending on the fiber configuration of the nonwoven fabric continuous sheet Sa, but when the above-described thermoplastic polypropylene is used, the temperature is equal to or lower than the melting point based on the melting point of the polypropylene fiber. Adjusted. For example, the temperature of the nonwoven fabric continuous sheet Sa is preferably equal to or lower than the melting point of the polypropylene fiber and 40 ° C. or higher. Below 40 ° C., the extensibility of the fibers is poor and the strength tends to decrease. When the melting point of the polypropylene fibers is exceeded, the fibers of the nonwoven fabric continuous sheet Sa may stick to the heating rollers 111 to 114, etc. This is because there is a risk of being cut during processing. In the present embodiment, the temperature is adjusted so that the heating temperature by the heating unit 110 is 50 ° C. to 60 ° C. The heating process is not an essential process, and the stretchable nonwoven fabric 1 can be manufactured even when heating is not performed.
 不織布連続シートSaは、加熱部110によって加熱された後で、第1ギア加工部120によって1回目のギア延伸加工が施される(第1加工工程)。図3は、第1ギア加工部120の構成を表す概略側面図である。また、図4は、図3中の領域αについて拡大して示す図である。 The nonwoven fabric continuous sheet Sa is heated by the heating unit 110 and then subjected to the first gear stretching by the first gear processing unit 120 (first processing step). FIG. 3 is a schematic side view illustrating the configuration of the first gear machining unit 120. FIG. 4 is an enlarged view showing a region α in FIG.
 第1ギア加工部120は、ガイドローラー121と、1対のギアロール125及び126(第1ギアロール)とを有する(図1参照)。ガイドローラー121は、MD方向において加熱部110と1対のギアロール125及び126との間に設けられ、CD方向に沿った回転軸回りに回転する複数の搬送ローラーによって構成される。ガイドローラー121の周速値V121は、上流工程から搬送される不織布連続シートSaの搬送速度値V1と概ね同値とされている。これにより、ガイドローラー121は、不織布連続シートSaを概ね伸長せずに、かつ、弛まない程度に張った状態でギアロール125及び126へと導くことができる。 The first gear processing unit 120 includes a guide roller 121 and a pair of gear rolls 125 and 126 (first gear roll) (see FIG. 1). The guide roller 121 is provided between the heating unit 110 and the pair of gear rolls 125 and 126 in the MD direction, and includes a plurality of transport rollers that rotate around a rotation axis along the CD direction. The circumferential speed value V121 of the guide roller 121 is substantially the same as the transport speed value V1 of the nonwoven fabric continuous sheet Sa transported from the upstream process. Accordingly, the guide roller 121 can guide the nonwoven fabric continuous sheet Sa to the gear rolls 125 and 126 in a state where the nonwoven fabric continuous sheet Sa is not stretched and is not loosened.
 ギアロール125及び126は、互いの外周面を対向させつつCD方向に沿った回転軸回りに回転する上下一対のロール機構である。ギアロール125の外周面には、それぞれ回転方向に沿って山部125mと谷部125vとが交互に形成されているとともに、各山部125m及び各谷部125vは、それぞれ、CD方向に延びて形成されている。なお、山部125m及び谷部125vはギアロール125のCD方向全体に形成されている必要は無く、ギアロール125の外周面でCD方向の一部の領域(例えば、不織布連続シートSaと当接する領域)のみに形成されていたり、CD方向に間欠的に形成されていたりするのであっても良い。また、ギアロール126の外周面にも同様の山部126mと谷部126vとが交互に形成されている。ギアロール125及び126が回転しているときには、一方のギアロール125の山部125mが他方のギアロール126の谷部126vに入り込むように互いの山部125mと谷部126vとが若干の隙間をもって噛み合うようになっている。そして、当該回転中に、1対のギアロール125及び126の間を不織布連続シートSaがMD方向に沿って通過する。 The gear rolls 125 and 126 are a pair of upper and lower roll mechanisms that rotate around a rotation axis along the CD direction with their outer peripheral surfaces facing each other. On the outer peripheral surface of the gear roll 125, crests 125m and troughs 125v are alternately formed along the rotation direction, and the crests 125m and the troughs 125v are formed to extend in the CD direction. Has been. In addition, the peak part 125m and the trough part 125v do not need to be formed in the whole CD direction of the gear roll 125, and a part area | region (for example, area | region contact | abutted with the nonwoven fabric continuous sheet Sa) in the CD direction in the outer peripheral surface of the gear roll 125. It may be formed only in the CD direction or intermittently in the CD direction. In addition, similar mountain portions 126m and valley portions 126v are alternately formed on the outer peripheral surface of the gear roll 126. When the gear rolls 125 and 126 are rotating, the crest portions 125m and the trough portions 126v are engaged with each other with a slight gap so that the crest portion 125m of one gear roll 125 enters the trough portion 126v of the other gear roll 126. It has become. During the rotation, the nonwoven fabric continuous sheet Sa passes between the pair of gear rolls 125 and 126 along the MD direction.
 1対のギアロール125及び126の間を通過中の不織布連続シートSaは、一方のギアロール126において互いに隣り合う山部126m,126m同士と、その間の谷部126vに入り込む他方のギアロール125の山部125mとによって、三点曲げ状に変形される(図4参照)。このとき、不織布連続シートSaにおいて一方のギアロール126の山部126mの頂面と当接する部分Sa12は、当該頂面に概ね相対移動不能に当接するため、延伸されにくい。一方、隣り合う二つのSa12,Sa12同士の間の部分Sa11は、山部125mの入り込みに基づいて延伸される。その結果、不織布連続シートSaは、図4に示されるように、延伸された第1部分Sa11と、第1部分Sa11よりも延伸されていない第2部分Sa12とがMD方向に交互に並ぶように加工される。そして、第1部分Sa11の領域では、不織布連続シートSaを構成する伸長性繊維3が部分的に引き延ばされる。つまり、1対のギアロール125及び126の間を通過することにより、不織布連続シートSaにおいて、少なくとも一部の伸長性繊維3が伸長された状態となる。これにより伸長性繊維3は、伸縮性繊維2の弾性的な変形を阻害し得ない状態となり、不織布連続シートSaは伸縮性繊維2の弾性変形に基づいて伸縮性を発現する。 The nonwoven fabric continuous sheet Sa that is passing between the pair of gear rolls 125 and 126 is adjacent to each other in the one gear roll 126, and the peak portion 125m of the other gear roll 125 that enters the trough portion 126v. And is deformed into a three-point bending shape (see FIG. 4). At this time, in the nonwoven fabric continuous sheet Sa, the portion Sa12 that comes into contact with the top surface of the mountain portion 126m of the one gear roll 126 is in contact with the top surface so as not to be relatively movable, and thus is not easily stretched. On the other hand, a portion Sa11 between two adjacent Sa12 and Sa12 is extended based on the intrusion of the mountain portion 125m. As a result, as shown in FIG. 4, the nonwoven fabric continuous sheet Sa has the stretched first portions Sa11 and the second portions Sa12 that are not stretched more than the first portions Sa11 arranged alternately in the MD direction. Processed. And in the area | region of 1st part Sa11, the extensible fiber 3 which comprises the nonwoven fabric continuous sheet Sa is partially extended. That is, by passing between the pair of gear rolls 125 and 126, at least a part of the extensible fibers 3 is stretched in the nonwoven fabric continuous sheet Sa. Thereby, the extensible fiber 3 becomes a state in which the elastic deformation of the stretchable fiber 2 cannot be inhibited, and the nonwoven fabric continuous sheet Sa exhibits stretchability based on the elastic deformation of the stretchable fiber 2.
 なお、ギアロール125において、谷部125vの回転方向の形成ピッチPv(谷部125vの頂面に相当する位置でのピッチPv)は、山部125mの回転方向の形成ピッチPm(山部125mの頂面でのピッチPm)と同値である。また、ギアロール125及び126でピッチPv、Pmはそれぞれ同値である。かかる山部125m(126m)の回転方向の形成ピッチPmは、例えば1.0mm~5.0mmの範囲であることが望ましい。本実施形態では、Pm=2.72mmとしている。また、それぞれの歯の高さ(山部125mの頂面から谷部125vの頂面までの高さ)はピッチPm以上であることが好ましく、本実施形態では5.0mmである。また、山部125mと山部126mとの噛み合い高さは4.0mmである。 In the gear roll 125, the formation pitch Pv in the rotation direction of the valley portion 125v (pitch Pv at a position corresponding to the top surface of the valley portion 125v) is the formation pitch Pm in the rotation direction of the mountain portion 125m (the peak of the mountain portion 125m). It is equivalent to the pitch Pm) on the surface. Further, the pitches Pv and Pm of the gear rolls 125 and 126 have the same value. The formation pitch Pm in the rotational direction of the mountain portions 125m (126m) is preferably in the range of 1.0 mm to 5.0 mm, for example. In this embodiment, Pm = 2.72 mm. Further, the height of each tooth (the height from the top surface of the mountain portion 125m to the top surface of the valley portion 125v) is preferably equal to or greater than the pitch Pm, and is 5.0 mm in this embodiment. Further, the meshing height between the mountain portion 125m and the mountain portion 126m is 4.0 mm.
 本実施形態では、前述の加熱工程において、不織布連続シートSaが予め加熱され、温度が高まっているため、伸長性繊維3は変形し易い状態となり、延伸されやすくなっている。これにより、第1加工工程における不織布連続シートSaの破断を防ぐことができる。なお、第1加工工程における延伸倍率は、他の諸条件に応じて適宜変更してもよい。 In this embodiment, since the nonwoven fabric continuous sheet Sa is heated in advance and the temperature is increased in the heating step described above, the extensible fibers 3 are easily deformed and easily stretched. Thereby, the fracture | rupture of the nonwoven fabric continuous sheet Sa in a 1st process process can be prevented. In addition, you may change suitably the draw ratio in a 1st process process according to other conditions.
 第1加工工程によって伸縮性を発現された後、不織布連続シートSaはMD方向下流側へ搬送され、延伸加工部130によってMD方向(縦方向)に延伸される(延伸工程)。延伸加工部130は、上流側ニップロール131と、下流側ニップロール132とを有する(図2参照)。上流側ニップロール131は、周速値を調整可能な上下1対のローラーであり、不織布連続シートSaを互いの外周面で挟み込みながら、所定の周速値V131で駆動回転することにより、同不織布連続シートSaをV131の搬送速度でMD方向の下流側へ搬送する。下流側ニップロール132は、上流側ニップロール131と同様の上下1対のローラーであり、所定の周速値V132で駆動回転することにより、不織布連続シートSaをV132の搬送速度でMD方向の下流側へ搬送する。 After exhibiting stretchability by the first processing step, the nonwoven fabric continuous sheet Sa is conveyed downstream in the MD direction and stretched in the MD direction (longitudinal direction) by the stretching unit 130 (stretching step). The stretch processing unit 130 includes an upstream nip roll 131 and a downstream nip roll 132 (see FIG. 2). The upstream nip roll 131 is a pair of upper and lower rollers capable of adjusting the peripheral speed value, and is continuously driven by a predetermined peripheral speed value V131 while sandwiching the nonwoven fabric continuous sheet Sa between the outer peripheral surfaces of the nonwoven fabric continuous sheet Sa. The sheet Sa is conveyed downstream in the MD direction at the conveyance speed of V131. The downstream nip roll 132 is a pair of upper and lower rollers similar to the upstream nip roll 131, and is driven and rotated at a predetermined peripheral speed value V132 to move the nonwoven fabric continuous sheet Sa downstream in the MD direction at the conveyance speed of V132. Transport.
 本実施形態では、上流側ニップロール131による不織布連続シートSaの搬送速度V131よりも、下流側ニップロール132による不織布連続シートSaの搬送速度V132の方が早くなるように各ニップロールの周速値が調整されている。これにより、延伸加工部130を通過した後の不織布連続シートSaは、所定の倍率でMD方向に延伸される。この延伸倍率は、不織布連続シートSaを構成する伸縮性繊維2の弾性限界に応じて決定される。具体的には、伸縮性繊維2が塑性変形を生じない程度に伸長した状態となるように延伸倍率が決定される。例えば、本実施形態で伸縮性繊維2としてポリウレタンを用いる場合、不織布連続シートSaの無負荷状態におけるMD方向長さを1.0としたときに、2.5倍程度の長さになるまでMD方向に延伸される。これにより、伸縮性繊維2は、破断しない程度に伸びきった状態となる。 In this embodiment, the peripheral speed value of each nip roll is adjusted so that the conveyance speed V132 of the nonwoven fabric continuous sheet Sa by the downstream nip roll 132 is faster than the conveyance speed V131 of the nonwoven fabric continuous sheet Sa by the upstream nip roll 131. ing. Thereby, the nonwoven fabric continuous sheet Sa after passing through the stretched portion 130 is stretched in the MD direction at a predetermined magnification. This draw ratio is determined according to the elastic limit of the stretchable fiber 2 constituting the nonwoven fabric continuous sheet Sa. Specifically, the draw ratio is determined so that the stretchable fiber 2 is stretched to such an extent that plastic deformation does not occur. For example, in the case where polyurethane is used as the stretchable fiber 2 in this embodiment, when the length in the MD direction of the nonwoven fabric continuous sheet Sa in the no-load state is 1.0, the MD is about 2.5 times longer. Stretched in the direction. Thereby, the elastic fiber 2 will be in the state fully extended to the extent which does not fracture | rupture.
 延伸工程によって延伸された後、不織布連続シートSaはMD方向下流側へ搬送され、第2ギア加工部140によって、2回目のギア延伸加工が施される(第2加工工程)。図5は、第2ギア加工部140の構成を表す概略側面図である。第2ギア加工部140は、1対のギアロール145及び146(第2ギアロール)を有する。1対のギアロール145及び146は、第1ギア加工部120のギアロール125及び126と略同様に、互いの外周面を対向させつつCD方向に沿った回転軸回りに回転する上下一対のロール機構である。但し、第2ギア加工部140のギアロール145及び146は、外周面に歯が形成されている部分と形成されていない部分とを有する点で、第1ギア加工部120のギアロール125及び126と異なる。 After being stretched by the stretching process, the nonwoven fabric continuous sheet Sa is conveyed downstream in the MD direction, and subjected to the second gear stretching process by the second gear processing unit 140 (second processing process). FIG. 5 is a schematic side view illustrating the configuration of the second gear machining unit 140. The second gear machining unit 140 has a pair of gear rolls 145 and 146 (second gear roll). The pair of gear rolls 145 and 146 is a pair of upper and lower roll mechanisms that rotate about the rotation axis along the CD direction while facing each other's outer peripheral surfaces in substantially the same manner as the gear rolls 125 and 126 of the first gear processing unit 120. is there. However, the gear rolls 145 and 146 of the second gear machining unit 140 are different from the gear rolls 125 and 126 of the first gear machining unit 120 in that they have a portion where teeth are formed on the outer peripheral surface and a portion where teeth are not formed. .
 図5のように、ギアロール145の外周面には、歯が形成された領域である歯面145tsと、歯が形成されていない領域である平滑面145fsとが交互に配置されている。そして、歯面145tsには、回転方向に沿って山部145mと谷部145vとが交互に形成されている。同様に、ギアロール146の外周面には、歯が形成された領域である歯面146tsと、歯が形成されていない領域である平滑面146fsとが交互に形成されている。そして、歯面146tsには、回転方向に沿って山部146mと谷部146vとが交互に形成されている。 As shown in FIG. 5, on the outer peripheral surface of the gear roll 145, tooth surfaces 145ts that are regions where teeth are formed and smooth surfaces 145fs that are regions where teeth are not formed are alternately arranged. Then, on the tooth surface 145ts, crests 145m and troughs 145v are alternately formed along the rotation direction. Similarly, on the outer peripheral surface of the gear roll 146, tooth surfaces 146ts which are regions where teeth are formed and smooth surfaces 146fs which are regions where teeth are not formed are alternately formed. And the tooth | gear surface 146ts is alternately formed with the peak part 146m and the trough part 146v along the rotation direction.
 第2ギア加工部140で、ギアロール145の歯面145ts及びギアロール146の歯面146tsは、互いに対向する位置に配置されている。これにより、ギアロール145及び146が回転すると互いの歯が噛み合うようになっている。また、ギアロール145の平滑面145fs及びギアロール146の平滑面146fsも互いに対向する位置に配置されている。そして、このような1対のギアロール145及び146の間を不織布連続シートSaがMD方向に沿って通過する。 In the second gear machining unit 140, the tooth surface 145ts of the gear roll 145 and the tooth surface 146ts of the gear roll 146 are arranged at positions facing each other. Thereby, when the gear rolls 145 and 146 rotate, the teeth of each other mesh with each other. Further, the smooth surface 145fs of the gear roll 145 and the smooth surface 146fs of the gear roll 146 are also arranged at positions facing each other. The nonwoven fabric continuous sheet Sa passes between the pair of gear rolls 145 and 146 along the MD direction.
 不織布連続シートSaが平滑面145fs、及び146fsの間を通過する場合、当該領域には歯が形成されていないため、不織布連続シートSaは延伸されることなくそのままMD方向下流側へ通過する。すなわち、不織布連続シートSaのうち平滑面145fs、及び146fsの間を通過した領域は、第2ギア加工部140によって延伸されない領域である。この領域が、図1の高収縮領域HSとなる。 When the nonwoven fabric continuous sheet Sa passes between the smooth surfaces 145fs and 146fs, since the teeth are not formed in the region, the nonwoven fabric continuous sheet Sa passes directly downstream in the MD direction without being stretched. That is, the area | region which passed between smooth surface 145fs and 146fs of nonwoven fabric continuous sheet Sa is an area | region which is not extended | stretched by the 2nd gear process part 140. FIG. This region becomes the high shrinkage region HS of FIG.
 一方、不織布連続シートSaが歯面145ts、及び146tsの間を通過する場合、
不織布連続シートSaは、一方のギアロール146において互いに隣り合う山部146m,146m同士と、その間の谷部146vに入り込む他方のギアロール145の山部145mとによって、図4で説明したのと同様に三点曲げ状に変形される。その結果、延伸工程で弾性限界付近まで延伸されていた伸縮性繊維2は、不織布連続シートSaの無負荷状態の長さの4.0倍以上になるまでさらに延伸される。これにより、少なくとも一部の伸縮性繊維2が切断されて、図1の低収縮領域LSが形成される。低収縮領域LSでは、伸縮性繊維2の一部が切断されているため、伸縮性繊維2による収縮力が生じにくくなり、高収縮領域HSと比較してMD方向の収縮力が弱くなっている。
On the other hand, when the nonwoven fabric continuous sheet Sa passes between the tooth surfaces 145ts and 146ts,
The non-woven fabric continuous sheet Sa has three ridges 146m, 146m adjacent to each other in one gear roll 146 and the ridge 145m of the other gear roll 145 entering the valley 146v therebetween, as described in FIG. It is deformed into a point bend. As a result, the stretchable fibers 2 that have been stretched to the vicinity of the elastic limit in the stretching step are further stretched until they are 4.0 times or more the length of the unwoven continuous sheet Sa in an unloaded state. Thereby, at least a part of the stretchable fibers 2 is cut, and the low shrinkage region LS of FIG. 1 is formed. In the low shrinkage region LS, since a part of the stretchable fiber 2 is cut, the shrinkage force due to the stretchable fiber 2 is less likely to be generated, and the shrinkage force in the MD direction is weaker than that in the high shrinkage region HS. .
 なお、第2ギア加工部140では、山部125mと山部126mとの噛み合い高さは1.5mmであり、第1ギア加工部120の1対のギアロール125、126における噛み合い高さ(4.0mm)と比較して噛み合いを浅くしている。これにより、伸縮性繊維2を破断させつつ、不織布連続シートSa自体が破断しないように、テンションを調整している。山部125m(126m)の高さや形状、ピッチは不織布連続シートSaを構成する繊維の種類等に応じて適宜変更される。また、図5では、ギアロール145(146)の外周面に歯面145ts(146ts)と平滑面145fs(146fs)とが交互に2つずつ形成されているが、当該外周面に形成される歯面や平滑面の数や配置も適宜変更可能である。 In the second gear machining unit 140, the meshing height between the mountain part 125m and the mountain part 126m is 1.5 mm, and the meshing height (4. 0 mm), the meshing is shallower. Thereby, the tension is adjusted so that the nonwoven fabric continuous sheet Sa itself is not broken while the elastic fiber 2 is broken. The height, shape, and pitch of the mountain portion 125m (126m) are appropriately changed according to the type of fiber that constitutes the nonwoven fabric continuous sheet Sa. In FIG. 5, tooth surfaces 145ts (146ts) and smooth surfaces 145fs (146fs) are alternately formed on the outer peripheral surface of the gear roll 145 (146). In addition, the number and arrangement of the smooth surfaces can be changed as appropriate.
 第2ギア加工部140によって一部の伸縮性繊維2が切断された不織布連続シートSaは、MD方向下流側においてシート部材張り合わせ部150によって、他のシート部材Sbと厚さ方向に張り合わされ接合される(張り合わせ工程)。シート部材張り合わせ部150は、接着剤塗布部151と、上下一対の張り合わせロール152を有する。接着剤塗布部151は、搬送される不織布連続シートSaの表面にホットメルト型接着剤等の接着剤を塗布する。張り合わせロール152は、所定の周速値V152で駆動回転することにより、不織布連続シートSaをV152の搬送速度でMD方向の下流側へ搬送しつつ、別途供給される他のシート部材Sbを、不織布連続シートSaで接着剤が塗布された側の面に張り合わせて接合する。 The nonwoven fabric continuous sheet Sa from which a part of the stretchable fibers 2 has been cut by the second gear processing section 140 is pasted and joined to another sheet member Sb in the thickness direction by the sheet member pasting section 150 on the downstream side in the MD direction. (Bonding process). The sheet member laminating unit 150 includes an adhesive application unit 151 and a pair of upper and lower laminating rolls 152. The adhesive application unit 151 applies an adhesive such as a hot-melt adhesive to the surface of the conveyed nonwoven fabric continuous sheet Sa. The laminating roll 152 is driven and rotated at a predetermined peripheral speed value V152 to convey the non-woven fabric continuous sheet Sa to the downstream side in the MD direction at the conveying speed of V152, and another sheet member Sb supplied separately to the non-woven fabric. The continuous sheet Sa is bonded and bonded to the surface on which the adhesive is applied.
 シート部材張り合わせ部150において、張り合わせロール152の周速値V152は、延伸加工部130の下流側ニップロール132の周速値V132と同値である。つまり、不織布連続シートSaは延伸工程で延伸された後は一定の速度でMD方向下流側へ搬送される。これにより、張り合わせロール152において不織布連続シートSaに対して他のシート部材Sbを張り合わせる際のタイミングを合わせやすくすることができる。なお、本張り合わせ工程は必須の工程ではなく、不織布連続シートSaと他のシート部材Sbとの貼り合わせが行われなくても良い。 In the sheet member laminating portion 150, the peripheral speed value V152 of the laminating roll 152 is the same value as the peripheral speed value V132 of the downstream nip roll 132 of the stretching unit 130. That is, the nonwoven fabric continuous sheet Sa is conveyed downstream in the MD direction at a constant speed after being stretched in the stretching process. Thereby, the timing at the time of bonding other sheet | seat member Sb with respect to the nonwoven fabric continuous sheet Sa in the bonding roll 152 can be made easy to match. In addition, this bonding process is not an essential process, and the nonwoven fabric continuous sheet Sa and the other sheet member Sb may not be bonded.
 本実施形態では、製造装置100を用いて上述の各工程を順次実行することにより、伸縮性不織布1が製造される。 In the present embodiment, the stretchable nonwoven fabric 1 is manufactured by sequentially executing the above-described steps using the manufacturing apparatus 100.
 <伸縮性不織布1の収縮特性について>
 従来の伸縮性不織布では、上述した第1加工工程に相当するギア延伸加工によって高収縮領域HSのみが形成されていた。これに対して、本実施形態の伸縮性不織布1では、高収縮領域HSよりも収縮力の弱い低収縮領域LSを有することにより、収縮力の強い部分と弱い部分とが形成される。また、従来の伸縮性不織布と比較して、全体として収縮力を弱くすることもできる。そのため、吸収性物品(例えば後述する使い捨ておむつ)等の製品に使用した場合、必要な箇所に適正な収縮力を与えることができるようになる。以下、伸縮性不織布1の収縮特性について具体的に説明する。
<Shrinkage characteristics of stretchable nonwoven fabric 1>
In the conventional stretchable nonwoven fabric, only the high shrinkage region HS is formed by the gear stretching process corresponding to the first processing step described above. On the other hand, in the stretchable nonwoven fabric 1 of the present embodiment, a portion having a strong contraction force and a portion having a weak contraction force are formed by having the low contraction region LS having a contraction force lower than that of the high contraction region HS. Moreover, compared with the conventional elastic nonwoven fabric, the contraction force can be weakened as a whole. Therefore, when it uses for products, such as an absorptive article (for example, disposable diaper mentioned below), an appropriate contraction force can be given to a required part. Hereinafter, the shrinkage | contraction characteristic of the elastic nonwoven fabric 1 is demonstrated concretely.
 まず、伸縮性不織布1で高収縮領域HSと低収縮領域LSとの構造の違いについて説明する。伸縮性不織布1では、伸縮性繊維2を伸長させた時に、該伸縮性繊維2が元の状態に戻ろうとする際の収縮力によって、伸縮性が発現される。本実施形態では、この伸縮性繊維2の状態が、高収縮領域HSと低収縮領域LSとで異なる。図6は、高収縮領域HSにおける伸縮性繊維2の状態について拡大して表した模式図である。図7は、低収縮領域LSにおける伸縮性繊維2の状態について拡大して表した模式図である。なお、伸縮性不織布1を構成する繊維のうち伸長性繊維1は上述の第1加工工程において延伸されることで伸長した状態となっている。そして、伸長性繊維1自体はほとんど収縮しないため、伸長状態の伸長性繊維1が伸縮性繊維2の収縮に影響を及ぼす可能性は低い。したがって、図6及び図7では説明の簡略化のため、伸長性繊維1については非表示としている。 First, the difference in structure between the high shrinkage region HS and the low shrinkage region LS of the stretchable nonwoven fabric 1 will be described. In the stretchable nonwoven fabric 1, when the stretchable fiber 2 is stretched, stretchability is expressed by the contraction force when the stretchable fiber 2 tries to return to its original state. In the present embodiment, the state of the stretchable fiber 2 is different between the high shrinkage region HS and the low shrinkage region LS. FIG. 6 is an enlarged schematic view showing the state of the stretchable fiber 2 in the high shrinkage region HS. FIG. 7 is an enlarged schematic view showing the state of the stretchable fiber 2 in the low shrinkage region LS. In addition, the extensible fiber 1 is the state extended | stretched by extending | stretching in the above-mentioned 1st process process among the fibers which comprise the elastic nonwoven fabric 1. FIG. And since the extensible fiber 1 itself hardly shrinks, there is a low possibility that the extensible fiber 1 in the stretched state affects the shrinkage of the stretchable fiber 2. Accordingly, in FIG. 6 and FIG. 7, the extensible fiber 1 is not shown for simplification of description.
 高収縮領域HSでは、切断されていない状態の伸縮性繊維2同士が複数箇所で互いに圧着されることにより、図6に示されるような網目状の構造となっている。例えば、図6において伸縮性繊維2aと2bとは縦方向(MD方向)に沿って3か所の圧着点WPを有し、当該圧着点において互いに接合されている。なお、この圧着点WPは、不織布連続シートSaに対してエンボス加工等を施すことによって形成されたものである。 In the high shrinkage region HS, the stretchable fibers 2 in an uncut state are bonded to each other at a plurality of locations, thereby forming a network structure as shown in FIG. For example, in FIG. 6, the stretchable fibers 2a and 2b have three crimping points WP along the longitudinal direction (MD direction) and are joined to each other at the crimping points. In addition, this crimping | compression-bonding point WP is formed by embossing etc. with respect to the nonwoven fabric continuous sheet Sa.
 図6で伸縮性繊維2a及び2bが縦方向に伸長された場合、網目状構造を維持しながら互いの収縮力が作用し合うことによって、伸縮性繊維2a及び2bがそれぞれ単独で収縮を行う時と比較してより強い収縮力が発生する。そして、このような網目状の構造が高収縮領域HSの全領域に亘って形成されることにより、高収縮領域HSでは縦方向について大きな収縮力が発生する。また、当該網目構造によって、高収縮領域HSの伸縮性繊維2は横方向についても収縮力が発生するため、伸縮性不織布1は横方向にも伸縮可能となる。これにより、伸縮性不織布1の用途が広くなる。 When the stretchable fibers 2a and 2b are stretched in the longitudinal direction in FIG. 6, when the stretchable fibers 2a and 2b contract by themselves by the mutual contraction force acting while maintaining the network structure. A stronger contraction force is generated compared to. Then, by forming such a network structure over the entire region of the high shrinkage region HS, a large shrinkage force is generated in the vertical direction in the high shrinkage region HS. Moreover, since the stretchable fiber 2 in the high shrinkage region HS generates a shrinkage force in the lateral direction by the network structure, the stretchable nonwoven fabric 1 can be stretched in the lateral direction. Thereby, the use of the elastic nonwoven fabric 1 becomes wide.
 一方、図7に示される低収縮領域LSでは、上述の第2加工工程によって一部の伸縮性繊維2が切断されているため、収縮力を発現可能な伸縮性繊維2の数量が少なくなっている。そのため、低収縮領域LS全体として発生する収縮力は相対的に弱くなる。さらに、伸縮性繊維2が縦方向の複数箇所で切断されている場合、収縮力が縦方向に伝達しにくくなるため、低収縮領域LSで発生する収縮力はより弱くなりやすい。つまり、低収縮領域LSでは、伸縮性繊維2が切断されることによって形成された切断端部CEが複数存在している。そして、低収縮領域LSに含まれる切断端部CEが多いほど、当該低収縮領域LSにおける収縮力が弱くなる。 On the other hand, in the low shrinkage region LS shown in FIG. 7, since some of the stretchable fibers 2 are cut by the above-described second processing step, the number of stretchable fibers 2 that can develop shrinkage force is reduced. Yes. Therefore, the contraction force generated as a whole of the low contraction region LS is relatively weak. Furthermore, when the stretchable fiber 2 is cut at a plurality of locations in the longitudinal direction, the contractile force is less likely to be transmitted in the longitudinal direction, so that the contractile force generated in the low contraction region LS tends to be weaker. That is, in the low shrinkage region LS, there are a plurality of cut end portions CE formed by cutting the stretchable fiber 2. And the contraction force in the said low contraction area | region LS becomes weak, so that there are many cutting | disconnection edge parts CE contained in the low contraction area | region LS.
 本実施形態の伸縮性不織布1では、低収縮領域LSにおいて切断端部CEが形成されやすいのに対して、高収縮領域HSでは切断端部CEはほとんど形成されない。すなわち、低収縮領域LSの単位体積当たりに存在する切断端部CEの割合が、高収縮領域HSの単位体積当たりに存在する切断端部CEの割合よりも高くなっている。これにより、低収縮領域LSで生じる収縮力は高収縮領域HSで生じる収縮力よりも弱くなる。 In the stretchable nonwoven fabric 1 of the present embodiment, the cut end portion CE is easily formed in the low shrinkage region LS, whereas the cut end portion CE is hardly formed in the high shrinkage region HS. That is, the ratio of the cut end portion CE existing per unit volume of the low contraction region LS is higher than the ratio of the cut end portion CE existing per unit volume of the high contraction region HS. Thereby, the contraction force generated in the low contraction region LS is weaker than the contraction force generated in the high contraction region HS.
 なお、伸縮性不織布1には伸長性繊維1と伸縮性繊維2とが含まれているため、伸縮性繊維2の切断端部CEの数を測定する際には、伸縮性繊維2のみを染色して切断端部CEを目立ち易い状態にしてから、顕微鏡等を用いて観察を行うと良い。伸縮性繊維2を染色する染料としては、例えば、桂屋ファイングッズ製 コールダイオール等を用いることができる。当該染料は、ポリウレタン(伸縮性繊維2)を染色させる一方で、ポリプロピレン(伸長性繊維1)を染色させにくい性質を有する。このような染料を用いて伸縮性繊維2のみを染色することで、伸縮性繊維2の切断端部CEの数を必要に応じて効率的に測定することができる。 In addition, since the stretchable nonwoven fabric 1 contains the stretchable fiber 1 and the stretchable fiber 2, when measuring the number of the cut ends CE of the stretchable fiber 2, only the stretchable fiber 2 is dyed. Then, after making the cut end CE conspicuous, observation may be performed using a microscope or the like. As a dye for dyeing the stretchable fiber 2, for example, Katsuya Fine Goods Co., Ltd., Koji Daiall can be used. The dye has a property that it is difficult to dye polypropylene (extensible fiber 1) while dyeing polyurethane (stretchable fiber 2). By dyeing only the stretchable fiber 2 using such a dye, the number of cut end portions CE of the stretchable fiber 2 can be efficiently measured as necessary.
 また、低収縮領域LSでは、伸縮性繊維2同士の圧着点WPが外れ、図7に示されるように、切断されていない伸縮性繊維2が縦方向に沿って配置された構造となっている。すなわち、伸縮性繊維2が縦配向(MD配向)となっている。例えば、図7において伸縮性繊維2cと2dとはそれぞれ縦方向(MD方向)に沿って略直線状に配置されている。この場合、伸縮性繊維2c,2dは、図6のような網目状構造を維持することができないため、複数の繊維間で収縮力が互いに作用し合うことはない。そのため、伸縮性繊維2が網目状構造を維持している高収縮領域HSと比較して、低収縮領域LSで発生する収縮力は相対的に弱くなりやすい。 Moreover, in the low shrinkage | contraction area | region LS, the crimping | compression-bonding point WP of the elastic fibers 2 comes off, and it has the structure where the elastic fiber 2 which is not cut | disconnected is arrange | positioned along the vertical direction, as FIG. 7 shows. . That is, the stretchable fiber 2 is longitudinally oriented (MD orientation). For example, in FIG. 7, the stretchable fibers 2c and 2d are arranged in a substantially straight line along the longitudinal direction (MD direction). In this case, since the stretchable fibers 2c and 2d cannot maintain the network structure as shown in FIG. 6, the contraction force does not act between the plurality of fibers. Therefore, as compared with the high shrinkage region HS in which the stretchable fibers 2 maintain a network structure, the shrinkage force generated in the low shrinkage region LS tends to be relatively weak.
 つまり、本実施形態の伸縮性不織布1では、低収縮領域LSの単位体積当たりに存在する圧着点WPの割合が、高収縮領域HSの単位体積当たりに存在する圧着点WPの割合よりも低くなっている。これにより、低収縮領域LSで生じる収縮力は高収縮領域HSで生じる収縮力よりも弱くなる。 That is, in the stretchable nonwoven fabric 1 of the present embodiment, the proportion of the crimping points WP existing per unit volume of the low shrinkage region LS is lower than the proportion of the crimping points WP present per unit volume of the high shrinkage region HS. ing. Thereby, the contraction force generated in the low contraction region LS is weaker than the contraction force generated in the high contraction region HS.
 次に、高収縮領域HS及び低収縮領域LSにおいて実際に発生する収縮力の大きさについて説明する。「収縮力」の大きさは、「戻り応力」で表すことができる。「戻り応力」とは、被測定対象たるシート部材を所定の条件で伸長させたときに、元の状態に戻ろうとする力(すなわち収縮力)の大きさを測定した値である。 Next, the magnitude of the contraction force actually generated in the high contraction region HS and the low contraction region LS will be described. The magnitude of the “contraction force” can be represented by “return stress”. The “return stress” is a value obtained by measuring the magnitude of a force (ie, contraction force) for returning to the original state when the sheet member to be measured is stretched under a predetermined condition.
 本実施形態における「戻り応力」の測定は、低速伸長型引張試験機(例えば、SHIMADZU製オートグラフ AG-1、以下単に「試験機」とも呼ぶ)を用いて行った。まず、伸縮性不織布1のMD方向、CD方向それぞれについて、長さ70mm、幅50mmのサンプル片を所定枚数ずつ採取する。試験機には所定の間隔を有する1対のチャック部(不図示)が備えられており、当該1対のチャック部でサンプル片を把持しつつ、チャック部の間隔を広げる方向にサンプル片を引っ張ることで、当該サンプル片を伸長させることができる。 The measurement of “return stress” in the present embodiment was performed using a low-speed extension type tensile tester (for example, SHIMADZU autograph AG-1, hereinafter also simply referred to as “tester”). First, for each of the MD direction and the CD direction of the stretchable nonwoven fabric 1, a predetermined number of sample pieces having a length of 70 mm and a width of 50 mm are collected. The testing machine is provided with a pair of chuck portions (not shown) having a predetermined interval, and while holding the sample pieces with the pair of chuck portions, the sample pieces are pulled in the direction of increasing the interval between the chuck portions. Thus, the sample piece can be extended.
 まず、伸縮性不織布1から採取したサンプル片について、長さ方向の間隔が50mmとなるように試験機のチャック部により把持する。この状態で、チャック部の間隔が100mmになるまで、引っ張り速度100mm/minにて当該サンプル片を引っ張る。つまり、サンプル片を2倍の長さまで伸長させる。続いて、チャック部の間隔が50mmとなるようにサンプル片を戻し、再度100mmまで引っ張る。そして、チャック部の間隔が87.5mmの状態になるまで戻す。つまり、引っ張り動作を2回繰り返した後、サンプル片が元の長さの1.75倍の長さとなる状態で固定する。このときサンプル片が元に戻ろうとする力を測定して戻り応力として記録する(単位はN/50mmで表される)。なお、採取可能なサンプル片の大きさが70mm×50mmに満たない場合は、それよりも小さいサイズのサンプル片を用いて測定を行い、サンプル片の幅が50mmに相当するように換算することで戻り応力を算出する。 First, the sample piece collected from the stretchable nonwoven fabric 1 is gripped by the chuck portion of the testing machine so that the lengthwise interval is 50 mm. In this state, the sample piece is pulled at a pulling speed of 100 mm / min until the interval between the chuck portions reaches 100 mm. That is, the sample piece is extended to twice the length. Subsequently, the sample pieces are returned so that the interval between the chuck portions becomes 50 mm, and pulled to 100 mm again. And it returns until the space | interval of a chuck | zipper part will be in the state of 87.5 mm. That is, after the pulling operation is repeated twice, the sample piece is fixed in a state where the length of the sample piece is 1.75 times the original length. At this time, the force with which the sample piece attempts to return is measured and recorded as a return stress (unit is expressed as N / 50 mm). In addition, when the size of the sample piece that can be collected is less than 70 mm × 50 mm, measurement is performed using a sample piece having a smaller size, and conversion is performed so that the width of the sample piece corresponds to 50 mm. Calculate the return stress.
 このようにして測定された戻り応力は、その値が大きいほど収縮力が強いことを表す。本実施形態では、伸縮性不織布1からMD方向(縦方向)、CD方向(横方向)についてそれぞれ3片ずつサンプルを採取して戻り応力の測定を行ったところ、高収縮領域HSにおけるMD方向の戻り応力の平均値は0.794(N/50mm)、CD方向の戻り応力の平均値は0.172(N/50mm)であった。また、低収縮領域LSにおけるMD方向の戻り応力の平均値は0.437(N/50mm)、CD方向の戻り応力の平均値は0.071(N/50mm)であった。この結果から、高収縮領域HSにおける戻り応力の方が、低収縮領域LSにおける戻り応力よりも大きいことが明らかとなった。つまり、伸縮性不織布1のMD方向(縦方向)において、低収縮領域LSで発生する伸縮力の方が高収縮領域HSで発生する伸縮力よりも小さくなっていることが分る。したがって、本実施形態の製造装置100を用いれば、良好な伸縮性を有しつつ、収縮力の高い領域と収縮力の低い領域とを有する伸縮性不織布1を製造することが可能である。 The return stress measured in this way indicates that the larger the value, the stronger the contraction force. In the present embodiment, when three samples were taken from the stretchable nonwoven fabric 1 in the MD direction (longitudinal direction) and the CD direction (transverse direction) to measure the return stress, the MD direction in the high shrinkage region HS was measured. The average value of the return stress was 0.794 (N / 50 mm), and the average value of the return stress in the CD direction was 0.172 (N / 50 mm). Further, the average value of the MD direction return stress in the low shrinkage region LS was 0.437 (N / 50 mm), and the average value of the CD direction return stress was 0.071 (N / 50 mm). From this result, it became clear that the return stress in the high shrinkage region HS is larger than the return stress in the low shrinkage region LS. That is, it can be seen that in the MD direction (longitudinal direction) of the stretchable nonwoven fabric 1, the stretch force generated in the low shrinkage region LS is smaller than the stretch force generated in the high shrinkage region HS. Therefore, if the manufacturing apparatus 100 of this embodiment is used, it is possible to manufacture the stretchable nonwoven fabric 1 having a region having a high shrinkage force and a region having a low shrinkage force while having good stretchability.
 図8は、不織布の延伸倍率とMD方向の戻り応力との関係を表したグラフである。図8の横軸は、ギア延伸加工等によって延伸されたときのMD方向における伸縮性不織布1の延伸倍率を表し、縦軸は実際に測定されたMD方向の戻り応力を表している。図8のA点は、伸縮性不織布1が延伸されていない状態(延伸倍率1.0のときの状態)、すなわち、延伸加工が施される前の不織布連続シートSa(原反ロールの状態)についての戻り応力の大きさを表している。このとき、MD方向の戻り応力は約1(N/50mm)である。また、図8のB点は、伸縮性不織布1が3.3倍程度に延伸された状態、すなわち、第1ギア加工部120によって延伸されることによって形成された高収縮領域HSについての戻り応力の大きさを表している。また、図8のC点は、伸縮性不織布1が4.0倍程度に延伸された状態、すなわち、延伸加工部130によって延伸され、かつ、第2ギア加工部140によって延伸されることによって形成された低収縮領域LSについての戻り応力の大きさを表している。 FIG. 8 is a graph showing the relationship between the stretch ratio of the nonwoven fabric and the return stress in the MD direction. The horizontal axis in FIG. 8 represents the stretching ratio of the stretchable nonwoven fabric 1 in the MD direction when stretched by gear stretching or the like, and the vertical axis represents the actually measured return stress in the MD direction. The point A in FIG. 8 indicates a state where the stretchable nonwoven fabric 1 is not stretched (a state when the stretch ratio is 1.0), that is, a nonwoven fabric continuous sheet Sa before being stretched (a state of a raw fabric roll) Represents the magnitude of the return stress. At this time, the return stress in the MD direction is about 1 (N / 50 mm). Further, point B in FIG. 8 indicates a return stress for the high shrinkage region HS formed by the stretchable nonwoven fabric 1 being stretched about 3.3 times, that is, by being stretched by the first gear processing portion 120. Represents the size of 8 is formed by the stretchable nonwoven fabric 1 being stretched by about 4.0 times, that is, stretched by the stretched portion 130 and stretched by the second gear worked portion 140. The magnitude | size of the return stress about the made low shrinkage area | region LS is represented.
 本実施形態では、延伸加工部130によって延伸された不織布の一部の領域(低収縮領域LS)に対して、第2ギア加工部140によってさらにギア延伸加工を施すことにより、不織布において弾性限界を超えて切断される伸縮性繊維2の数が増加するため、当該領域における収縮力を小さくすることができる。その結果、図8に示されるように延伸倍率の増加とともに戻り応力値も降下し、戻り応力値を0.6(N/50mm)以下まで下げることが可能となる。なお、戻り応力が0.6(N/50mm)となるときの延伸倍率3.7倍は、第2ギア加工部140によってギア延伸加工を施すことによって実現可能な値である。 In the present embodiment, the second gear processing unit 140 further performs gear stretching processing on a partial region (low shrinkage region LS) of the nonwoven fabric stretched by the stretching processing unit 130, thereby reducing the elastic limit in the nonwoven fabric. Since the number of stretchable fibers 2 that are cut exceeding the number increases, the shrinkage force in the region can be reduced. As a result, as shown in FIG. 8, the return stress value decreases as the draw ratio increases, and the return stress value can be lowered to 0.6 (N / 50 mm) or less. The draw ratio of 3.7 when the return stress is 0.6 (N / 50 mm) is a value that can be realized by performing the gear drawing process by the second gear processing unit 140.
 次に、CD方向(横方向)の戻り応力に対するMD方向(縦方向)の戻り応力の大きさ(以下、MD/CD比とも呼ぶ)について検討する。MD/CD比は、その値が大きいほど、MD方向の収縮力の影響が強いことを表している。すなわち、MD/CD比が大きいほど伸縮性繊維2の繊維配向がMD方向寄りになりやすいことを表している。 Next, the magnitude of the return stress in the MD direction (longitudinal direction) with respect to the return stress in the CD direction (lateral direction) (hereinafter also referred to as MD / CD ratio) will be examined. The MD / CD ratio indicates that the larger the value, the stronger the influence of the contractive force in the MD direction. That is, as the MD / CD ratio is larger, the fiber orientation of the stretchable fiber 2 is more likely to be closer to the MD direction.
 図9は、不織布の延伸倍率とMD/CD比との関係を表したグラフである。図9の横軸は伸縮性不織布1の延伸倍率を表し、縦軸は実際に測定されたMD方向の戻り応力を表している。また、上述した図8の場合と同様、図9のA点は延伸加工が施される前の不織布連続シートSa(原反ロールの状態)についての戻り応力の大きさを表している。図9のB点は高収縮領域HSについての戻り応力の大きさを表し、C点は低収縮領域LSについての戻り応力の大きさを表している。 FIG. 9 is a graph showing the relationship between the stretch ratio of the nonwoven fabric and the MD / CD ratio. The horizontal axis in FIG. 9 represents the stretch ratio of the stretchable nonwoven fabric 1, and the vertical axis represents the MD-direction return stress actually measured. Similarly to the case of FIG. 8 described above, the point A in FIG. 9 represents the magnitude of the return stress for the nonwoven fabric continuous sheet Sa (the state of the raw fabric roll) before being subjected to stretching. The point B in FIG. 9 represents the magnitude of the return stress for the high shrinkage region HS, and the point C represents the magnitude of the return stress for the low shrinkage region LS.
 延伸加工が施される前の不織布連続シートSa(図9のA点)では、MD/CD比が約3.0であるのに対して、高収縮領域HS(図9のB点)では、MD/CD比が4.62、低収縮領域LS(図9のC点)では、MD/CD比が6.15となっている。図8の場合とは逆に延伸倍率の増加とともにMD/CD比が増加し、低収縮領域LSにおけるMD/CD比は、高収縮領域HSにおけるMD/CD比よりも大きくなる。これは、延伸加工部130によって延伸された不織布の一部の領域(低収縮領域LS)に対して、第2ギア加工部140によってさらにギア延伸加工を施すことにより、低収縮領域LSにおいて繊維同士の圧着点が外れるため、伸縮性繊維2の繊維配向がMD方向寄りになりやすいためと考えられる。その結果、収縮領域LSにおけるMD/CD比は5.3以上の高い値を示す。なお、MD/CD比が5.3となるときの延伸倍率3.7倍は、第2ギア加工部140によってギア延伸加工を施すことによって実現可能な値である。 In the nonwoven fabric continuous sheet Sa (point A in FIG. 9) before being stretched, the MD / CD ratio is about 3.0, whereas in the high shrinkage region HS (point B in FIG. 9), The MD / CD ratio is 4.62, and the MD / CD ratio is 6.15 in the low-shrinkage region LS (point C in FIG. 9). Contrary to the case of FIG. 8, the MD / CD ratio increases with an increase in the draw ratio, and the MD / CD ratio in the low shrinkage region LS becomes larger than the MD / CD ratio in the high shrinkage region HS. This is because the second gear processing unit 140 further applies a gear stretching process to a partial region (low shrinkage region LS) of the non-woven fabric stretched by the stretching unit 130, so that the fibers in the low shrinkage region LS It is considered that the fiber orientation of the stretchable fiber 2 tends to be close to the MD direction. As a result, the MD / CD ratio in the contraction region LS shows a high value of 5.3 or more. The draw ratio of 3.7 times when the MD / CD ratio is 5.3 is a value that can be realized by performing the gear drawing process by the second gear processing unit 140.
 また、伸縮性不織布1の低収縮領域LSにおいて伸縮性繊維2が収縮する際に生じる歪の範囲は、高収縮領域HSにおいて伸縮性繊維2が収縮する際に生じる歪の範囲よりも大きくなる。例えば、上述の戻り応力測定において、戻り応力の測定後に解放されたサンプル片についてMD方向に発生する歪を測定すると、高収縮領域HSから採取されたサンプル片では7~8%の歪が生じるのに対して、低収縮領域LSから採取されたサンプル片では15~20%の歪が生じる。これは、低収縮領域LSでは伸縮性繊維2の網目状構造が維持されず、伸縮性繊維2の繊維配向がMD方向寄りになっているため(図7参照)、伸縮性繊維2の長手方向に歪が発生した場合にその歪の影響が直接MD方向に現れやすくなるためと考えられる。伸縮性繊維2のMD方向の歪が大きいということは、伸縮性繊維2がMD方向に収縮しにくいということを示しているため、このことからも、低収縮領域LSは高収縮領域HSよりも収縮力が弱くなっているということが分る。 In addition, the range of strain generated when the stretchable fiber 2 contracts in the low shrinkage region LS of the stretchable nonwoven fabric 1 is larger than the range of strain generated when the stretchable fiber 2 contracts in the high shrinkage region HS. For example, in the above-described return stress measurement, when the strain generated in the MD direction is measured for a sample piece released after the return stress measurement, a strain of 7 to 8% is generated in the sample piece taken from the high shrinkage region HS. On the other hand, the sample piece collected from the low contraction region LS has a strain of 15 to 20%. This is because the network structure of the stretchable fibers 2 is not maintained in the low shrinkage region LS, and the fiber orientation of the stretchable fibers 2 is closer to the MD direction (see FIG. 7). This is considered to be because when the distortion occurs, the influence of the distortion tends to appear directly in the MD direction. Since the strain in the MD direction of the stretchable fiber 2 indicates that the stretchable fiber 2 is difficult to shrink in the MD direction, the low shrinkage region LS is higher than the high shrinkage region HS. It can be seen that the contraction force is weakened.
 <伸縮性不織布1の使用例>
 伸縮性不織布1の具体的な使用方法の一例として、使い捨ておむつの外装材として伸縮性不織布1を使用する例について説明する。図10は、使い捨ておむつ5の概略斜視図である。図11は、展開状態の使い捨ておむつ5の概略平面図である。
<Usage example of stretchable nonwoven fabric 1>
As an example of a specific method for using the stretchable nonwoven fabric 1, an example in which the stretchable nonwoven fabric 1 is used as a packaging material for disposable diapers will be described. FIG. 10 is a schematic perspective view of the disposable diaper 5. FIG. 11 is a schematic plan view of the disposable diaper 5 in the unfolded state.
 使い捨ておむつ5(以下、単に「おむつ5」とも呼ぶ)は、着用者の股間部にあてがわれ尿等の排泄物を吸収する吸収性本体51(第1部品)と、着用者の腹側部を覆う腹側帯部材52(第2部品)と、着用者の背側部を覆う背側帯部材53(第3部品)と、の3つの部品によって構成される所謂3ピースタイプの使い捨ておむつである。図11の展開状態では、略平行に配置された腹側帯部材52と背側帯部材53との間に吸収性本体51が掛け渡された状態で固定されており、その外観形状は平面視略H形状をなしている。おむつ5の着用時には、吸収性本体51がその長手方向の中央部で二つ折りされ、互いに対向する腹側帯部材52と背側帯部材53とが、幅方向短縁部52e及び53eで互いに接合されることにより、図10に示されるような胴周り開口5HB及び一対の脚周り開口5HLが形成された着用状態のおむつ5となる。 The disposable diaper 5 (hereinafter also simply referred to as “diaper 5”) includes an absorbent main body 51 (first component) that is applied to the crotch portion of the wearer and absorbs excrement such as urine, and the ventral side portion of the wearer. It is a so-called three-piece type disposable diaper constituted by three parts, a ventral band member 52 (second part) that covers the back and a back side band member 53 (third part) that covers the back side of the wearer. In the unfolded state of FIG. 11, the absorbent main body 51 is fixed between the ventral band member 52 and the dorsal band member 53 arranged substantially in parallel, and the external shape is substantially H in plan view. It has a shape. When the diaper 5 is worn, the absorbent main body 51 is folded in half at the center in the longitudinal direction, and the abdominal belt member 52 and the back belt member 53 facing each other are joined to each other at the widthwise short edges 52e and 53e. Thus, the diaper 5 in the wearing state is formed with the waist opening 5HB and the pair of leg openings 5HL as shown in FIG.
 このおむつ5では、腹側帯部材52及び背側帯部材53がおむつ5の幅方向に伸縮可能となるように、腹側帯部材52及び背側帯部材53の材料として伸縮性不織布が用いられる場合がある。これにより、胴周り開口5HBに伸縮性(収縮性)が付与され、おむつ5の着用時において着用者の胴回り(腰回り)に適度なフィット感を与えることができる。 In this diaper 5, an elastic nonwoven fabric may be used as a material for the ventral band member 52 and the dorsal band member 53 so that the ventral band member 52 and the dorsal band member 53 can expand and contract in the width direction of the diaper 5. Thereby, stretchability (shrinkability) is provided to the waistline opening 5HB, and an appropriate fit can be given to the wearer's waistline (waistline) when the diaper 5 is worn.
 ところで、図11及び、図10に示されるように、おむつ5の腹側部において、腹側帯部材52が幅方向に内側に収縮すると、腹側帯部材52と接合されている吸収性本体51も幅方向内側に収縮する。吸収性本体51が収縮すると、当該収縮分だけ着用者の肌を覆う領域の面積が減少する。特に、吸収性本体51の腹側部において尿を吸収する部分の面積が減少すると、尿漏れ等の問題が生じるおそれがある。したがって、腹側帯部材52では、収縮力の強さを調整して吸収性本体51が幅方向内側に収縮してしまうことを抑制する必要がある。 By the way, as FIG.11 and FIG.10 shows, when the abdominal side band member 52 shrink | contracts inside in the width direction in the abdominal side part of the diaper 5, the absorptive main body 51 joined to the abdominal side band member 52 will also be wide. Shrink inward direction. When the absorbent main body 51 contracts, the area of the region covering the wearer's skin is reduced by the contraction. In particular, if the area of the portion that absorbs urine in the abdominal side of the absorbent main body 51 is reduced, there is a risk of problems such as urine leakage. Therefore, in the ventral belt member 52, it is necessary to adjust the strength of the contraction force to suppress the absorbent main body 51 from contracting inward in the width direction.
 そこで、おむつ5の腹側帯部材52として本実施形態の伸縮性不織布1を用いる。具体的には、伸縮性不織布1の縦方向がおむつ5の幅方向と揃うように伸縮性不織布1をおむつ5の腹側に配置する。上述したように伸縮性不織布1は、伸縮性を有しつつ、高収縮領域HSと低収縮領域LSとを有することにより、全体として収縮力を弱くすることが可能である。特に、腹側帯部材52として伸縮性不織布1を使用して低収縮領域LSと吸収性本体51とが重なるように配置することにより、吸収性本体51が幅方向内側に収縮するのを効果的に抑制することができる。また、伸縮性不織布1で、高収縮領域HSと低収縮領域LSとが形成される範囲を変更することで、収縮性の強さを調整することができる。これにより、吸収性本体51の収縮を抑制しつつ、おむつ5の胴周り開口5HBに適度な伸縮性を付与することで、着用者に快適なフィット感を与えることができる。また、他の部位についても、縮めたくない領域に低収縮領域LSを配置すれば、全体として伸縮性を有しつつ、縮めたくない領域は縮めないように製品を構成することができる。 Therefore, the stretchable nonwoven fabric 1 of this embodiment is used as the ventral belt member 52 of the diaper 5. Specifically, the stretchable nonwoven fabric 1 is disposed on the belly side of the diaper 5 so that the longitudinal direction of the stretchable nonwoven fabric 1 is aligned with the width direction of the diaper 5. As described above, the stretchable nonwoven fabric 1 has a high shrinkage region HS and a low shrinkage region LS, while having stretchability, so that the shrinkage force can be weakened as a whole. In particular, by using the stretchable nonwoven fabric 1 as the ventral belt member 52 and arranging the low shrinkage region LS and the absorbent main body 51 so as to overlap each other, the absorbent main body 51 is effectively contracted inward in the width direction. Can be suppressed. Moreover, the stretchable nonwoven fabric 1 can adjust the strength of shrinkage by changing the range in which the high shrinkage region HS and the low shrinkage region LS are formed. Thereby, a comfortable fit can be given to the wearer by imparting appropriate stretchability to the waist opening 5HB of the diaper 5 while suppressing the shrinkage of the absorbent main body 51. In addition, if the low-shrinkage region LS is disposed in a region that is not desired to be shrunk with respect to other parts, the product can be configured so that the region that does not want to shrink is not shrunk while having elasticity as a whole.
 ===第2実施形態===
 続いて、第2実施形態の製造装置200を用いて、伸縮性不織布1を製造する方向について説明する。図12は、伸縮性不織布1を製造する製造装置200の構成について説明する図である。製造装置200は、搬送機構CVと、加熱部210と、第1ギア加工部220と、第2ギア加工部240と、シート部材張り合わせ部250とを有する。
=== Second Embodiment ===
Then, the direction which manufactures the elastic nonwoven fabric 1 is demonstrated using the manufacturing apparatus 200 of 2nd Embodiment. FIG. 12 is a diagram illustrating the configuration of the manufacturing apparatus 200 that manufactures the stretchable nonwoven fabric 1. The manufacturing apparatus 200 includes a transport mechanism CV, a heating unit 210, a first gear processing unit 220, a second gear processing unit 240, and a sheet member bonding unit 250.
 製造装置200では、第1実施形態の製造装置100と比較して第2ギア加工部240の構成が異なる。また、製造装置200には延伸加工部130が設けられていない。その他の基本的な構成・機能は、製造装置100と略同様であるため、ここでは説明を省略する。以下、第2ギア加工部240について説明する。 In the manufacturing apparatus 200, the structure of the 2nd gear process part 240 differs compared with the manufacturing apparatus 100 of 1st Embodiment. Further, the manufacturing apparatus 200 is not provided with the stretching unit 130. Other basic configurations and functions are substantially the same as those of the manufacturing apparatus 100, and thus description thereof is omitted here. Hereinafter, the 2nd gear process part 240 is demonstrated.
 製造装置200の第2ギア加工部240は、第1実施形態における延伸工程及び第2加工工程に相当する加工を行う機構である。第2ギア加工部240は、駆動ロール241と、プレスロール242と、1対のギアロール245及び246(第2ギアロール)とを有する。 The 2nd gear process part 240 of the manufacturing apparatus 200 is a mechanism which performs the process corresponded to the extending | stretching process and 2nd process process in 1st Embodiment. The second gear machining unit 240 includes a drive roll 241, a press roll 242, and a pair of gear rolls 245 and 246 (second gear roll).
 駆動ロール241は、周速値を調整可能な上下1対のローラーであり、不織布連続シートSaを互いの外周面で挟み込みながら、所定の周速値V241で駆動回転することにより、同不織布連続シートSaをV241の搬送速度でMD方向の下流側へ搬送する。搬送速度V241の大きさは、第1ギア加工部220による不織布連続シートSaの搬送速度V221以上であり、例えば、V221の115%程度の大きさが望ましい。搬送速度V241を搬送速度V221よりも大きくすることにより、不織布連続シートSaは、第1ギア加工部220と駆動ロール241との間でMD方向にわずかに伸長される。第1ギア加工部220における第1加工工程で不織布連続シートSaがMD方向に伸縮性を発現しているため、搬送中によれが発生するおそれがある。これに対して、駆動ロール241による搬送速度を調整して不織布連続シートSaにMD方向の張力を作用させることにより、不織布連続シートSaをMD方向に張った状態で搬送させ、該不織布連続シートSaの搬送中によれが発生することを抑制することができる。但し、搬送速度V241の大きさは上述の限りでなく、V221と同等の大きさでもよいし、V221の115%よりも大きくても良い。 The drive roll 241 is a pair of upper and lower rollers capable of adjusting the peripheral speed value, and is driven and rotated at a predetermined peripheral speed value V241 while sandwiching the nonwoven fabric continuous sheet Sa between the outer peripheral surfaces of the nonwoven fabric continuous sheet. Sa is transported downstream in the MD direction at a transport speed of V241. The magnitude | size of the conveyance speed V241 is more than the conveyance speed V221 of the nonwoven fabric continuous sheet Sa by the 1st gear process part 220, for example, the magnitude | size of about 115% of V221 is desirable. By making the conveyance speed V241 greater than the conveyance speed V221, the nonwoven fabric continuous sheet Sa is slightly extended in the MD direction between the first gear processing unit 220 and the drive roll 241. Since the nonwoven fabric continuous sheet Sa expresses stretchability in the MD direction in the first processing step in the first gear processing section 220, there is a risk that the web will be distorted during conveyance. On the other hand, the nonwoven fabric continuous sheet Sa is conveyed in the state stretched in MD direction by adjusting the conveyance speed by the drive roll 241 and applying the tension in the MD direction to the nonwoven fabric continuous sheet Sa. It is possible to suppress the occurrence of kinking during the transport of. However, the magnitude of the conveyance speed V241 is not limited to the above, and may be equal to V221 or may be greater than 115% of V221.
 なお、このような搬送速度の関係は第1実施形態にも当てはまる。すなわち、第1実施形態の上流側ニップロール131における搬送速度V131を、第1ギア加工部120における搬送速度V121以上としてもよい。不織布連続シートSaにMD方向の張力をかけながら搬送するようにすることで、伸縮性が発現した不織布連続シートSaの搬送時におけるよれの発生を抑制しやすくなる。 Note that such a relationship of the conveyance speed also applies to the first embodiment. That is, the conveyance speed V131 in the upstream nip roll 131 of the first embodiment may be equal to or higher than the conveyance speed V121 in the first gear machining unit 120. By transporting the nonwoven fabric continuous sheet Sa while applying tension in the MD direction, it becomes easy to suppress the occurrence of warp during transportation of the nonwoven fabric continuous sheet Sa exhibiting stretchability.
 プレスロール242は、駆動ロール241よりもMD方向の下流側に設けられ、後述するギアロール246の外周面に不織布連続シートSaを押し付けながら回転する。ギアロール246は所定の周速値V242で回転しており、不織布連続シートSaは、プレスロール242との間に挟み込まれた状態でV242の搬送速度でMD方向の下流側へ搬送される。プレスロール242における搬送速度V242は、駆動ロール241における搬送速度V241よりも速く、本実施形態では第1ギア加工部220による搬送速度V221の255%程度の速さとなるように調整されている。したがって、不織布連続シートSaは、駆動ロール241による搬送速度V241とプレスロール242による搬送速度V242との周速差に基づいてMD方向に延伸され(延伸工程)、伸縮性繊維2は、塑性変形を生じない程度(破断しない程度)に伸びきった状態となる。 The press roll 242 is provided downstream of the drive roll 241 in the MD direction, and rotates while pressing the nonwoven fabric continuous sheet Sa against the outer peripheral surface of the gear roll 246 described later. The gear roll 246 rotates at a predetermined peripheral speed value V242, and the nonwoven fabric continuous sheet Sa is conveyed downstream in the MD direction at a conveyance speed of V242 while being sandwiched between the rolls 242. The conveyance speed V242 in the press roll 242 is faster than the conveyance speed V241 in the drive roll 241 and is adjusted to be about 255% of the conveyance speed V221 by the first gear processing unit 220 in this embodiment. Therefore, the nonwoven fabric continuous sheet Sa is stretched in the MD direction based on the peripheral speed difference between the transport speed V241 by the drive roll 241 and the transport speed V242 by the press roll 242 (stretching process), and the stretchable fiber 2 undergoes plastic deformation. It is in a state where it has been stretched to such an extent that it does not occur (not to break).
 このようなプレスロール242を設けることにより、第1実施形態における延伸加工部130(図2参照)を設けることなく、不織布連続シートSaを延伸させることが可能となり、第1加工工程と第2加工工程との間の搬送距離を第1実施形態よりも短くすることができる。これにより、製造装置200をコンパクトに構成することができる。また、搬送距離が短くなることにより、不織布連続シートSaがMD方向に過度に伸ばされることが抑制され、不織布連続シートSaがCD方向(幅方向)に縮み難くなる。さらに、プレスロール242を用いて延伸工程が行われたすぐ後に、ギアロール245,246を用いた第2加工工程が行われるため(図12参照)、延伸工程で弾性限界付近まで延伸された伸縮性繊維2の一部を第2加工工程で効率よく切断することができる。 By providing such a press roll 242, it is possible to stretch the nonwoven fabric continuous sheet Sa without providing the stretching portion 130 (see FIG. 2) in the first embodiment, and the first processing step and the second processing are performed. The conveyance distance between processes can be made shorter than in the first embodiment. Thereby, the manufacturing apparatus 200 can be comprised compactly. Moreover, when a conveyance distance becomes short, it is suppressed that the nonwoven fabric continuous sheet Sa is extended too much in MD direction, and nonwoven fabric continuous sheet Sa becomes difficult to shrink | contract in CD direction (width direction). Furthermore, immediately after the stretching process is performed using the press roll 242, the second processing process using the gear rolls 245 and 246 is performed (see FIG. 12), so that the stretchability stretched to near the elastic limit in the stretching process. A part of the fiber 2 can be efficiently cut in the second processing step.
 本実施形態において、プレスロール242のCD方向の幅W242は不織布連続シートSaのCD方向の幅WSaよりも広くなっている(W242>WSa、後述する図17参照)。また、プレスロール242の外周面はシリコーンゴム等の滑りにくい素材で形成され、第2ギアロール246の半径方向の中心軸の向きに(すなわち外周面の接線方向と垂直な方向に)一定の力で押し付けられる。これにより、不織布連続シートSaの全幅を第2ギアロール246の外周面に滑ることなく押し付けながら搬送することができ、不織布連続シートSaを正確に延伸させることができる。 In this embodiment, the width W242 of the press roll 242 in the CD direction is wider than the width WSa of the nonwoven fabric continuous sheet Sa in the CD direction (W242> WSa, see FIG. 17 described later). Further, the outer peripheral surface of the press roll 242 is formed of a non-slip material such as silicone rubber, and the second gear roll 246 has a constant force in the direction of the central axis in the radial direction (that is, in the direction perpendicular to the tangential direction of the outer peripheral surface). Pressed. Thereby, it can convey, without pressing the full width of the nonwoven fabric continuous sheet Sa, without sliding on the outer peripheral surface of the 2nd gear roll 246, and can extend the nonwoven fabric continuous sheet Sa correctly.
 1対のギアロール245及び246は、互いの外周面を対向させつつCD方向に沿った回転軸回りに回転する上下一対のロール機構である。図13は、ギアロール245の構成について説明する概略図である。図14は、ギアロール246の構成について説明する概略図である。図15は、図13中の領域Xについて表す図である。図16は、図14中の領域Yについて表す図である。 The pair of gear rolls 245 and 246 are a pair of upper and lower roll mechanisms that rotate around a rotation axis along the CD direction with their outer peripheral surfaces facing each other. FIG. 13 is a schematic diagram illustrating the configuration of the gear roll 245. FIG. 14 is a schematic diagram illustrating the configuration of the gear roll 246. FIG. 15 is a diagram illustrating a region X in FIG. FIG. 16 is a diagram illustrating a region Y in FIG.
 1対の第2ギアロールのうち、一方側のギアロール245は、第1実施形態のギアロール145と略同様に、外周面の外側に凸となるように複数の歯が形成された領域である歯面245tsと、歯が形成されていない領域である平滑面245fsとが交互に配置されている。ギアロール245のCD方向の幅W245は不織布連続シートSaのCD方向の幅WSaよりも広くなっている(W245>WSa)。図15に示されるように、歯面245tsには、回転方向に沿って山部245mと谷部245vとが交互に形成されている。ギアロール245の複数の歯(山部245m及び谷部245v)はそれぞれCD方向に沿って連続的に形成されており、山部245m(谷部245v)のCD方向の幅W245mは、不織布連続シートSaのCD方向の幅WSaよりも狭くなっている(WSa>W245m)。また、ギアロール245の歯の先端部の厚さt245m(山部245mの先端部のMD方向の幅)は0.2mm程度である。また、ギアロール245は、ヒーター等の加熱装置によって歯面245tsを所定の温度(例えば120℃程度)に加熱することができるようになっている。ギアロール245の歯を加熱する理由については後で説明する。 Of the pair of second gear rolls, the one side gear roll 245 is a tooth surface that is a region in which a plurality of teeth are formed so as to protrude outwardly from the outer peripheral surface, similar to the gear roll 145 of the first embodiment. 245ts and smooth surfaces 245fs which are regions where teeth are not formed are alternately arranged. The width W245 in the CD direction of the gear roll 245 is wider than the width WSa in the CD direction of the nonwoven fabric continuous sheet Sa (W245> WSa). As shown in FIG. 15, the tooth surface 245ts is alternately formed with ridges 245m and valleys 245v along the rotation direction. The plurality of teeth (crest portion 245m and trough portion 245v) of the gear roll 245 are continuously formed along the CD direction, and the width W245m of the crest portion 245m (valley portion 245v) in the CD direction is the nonwoven fabric continuous sheet Sa. Is narrower than the width WSa in the CD direction (WSa> W245m). Further, the thickness t245m (the width in the MD direction of the tip portion of the peak portion 245m) of the tooth tip portion of the gear roll 245 is about 0.2 mm. The gear roll 245 can heat the tooth surface 245ts to a predetermined temperature (for example, about 120 ° C.) by a heating device such as a heater. The reason for heating the teeth of the gear roll 245 will be described later.
 また、1対の第2ギアロールのうち、他方側のギアロール246は、外周面の外側に凹となるように複数の歯が形成された領域である歯面246tsと、歯が形成されていない領域である平滑面246fsとが交互に配置されている。本実施形態で、歯面246tsに形成される歯が外周面の外側に凹となる状態とは、図16に示されるように、歯の谷部246vの底がギアロール246の外周面よりも内側(ギアロール246の中心軸側)に形成され、歯の山部246mの先端部がギアロール246の外周面と同じ位置に形成される状態である。言い換えると、ギアロール246の中心から歯の谷部246vの底までの距離はギアロール246の半径よりも小さく、ギアロール246の中心から歯の山部246mの先端までの距離はギアロール246の半径とほぼ等しい。 Of the pair of second gear rolls, the other gear roll 246 includes a tooth surface 246ts, which is a region where a plurality of teeth are formed so as to be recessed outside the outer peripheral surface, and a region where no teeth are formed. The smooth surfaces 246 fs are alternately arranged. In the present embodiment, the state where the teeth formed on the tooth surface 246ts are recessed outside the outer peripheral surface means that the bottom of the tooth valley 246v is inside the outer peripheral surface of the gear roll 246 as shown in FIG. This is a state in which the tip of the tooth crest 246m is formed at the same position as the outer peripheral surface of the gear roll 246. In other words, the distance from the center of the gear roll 246 to the bottom of the tooth valley 246v is smaller than the radius of the gear roll 246, and the distance from the center of the gear roll 246 to the tip of the tooth peak 246m is substantially equal to the radius of the gear roll 246. .
 ギアロール245の歯面245ts及びギアロール246の歯面246tsは、等ピッチPmで形成され、互いに対向する位置に配置されており、ギアロール245及び246が回転すると互いの歯が噛み合い、歯面245ts及び歯面246tsの間を不織布連続シートSaがMD方向に沿って通過する。不織布連続シートSaは、歯面245ts及び246tsの間を通過した部分において図4で説明したように三点曲げ状に変形され、延伸される(第2加工工程)。すなわち、弾性限界付近まで延伸されていた伸縮性繊維2がさらに延伸されることにより、不織布連続シートSaを構成する複数の伸縮性繊維2のうち少なくとも一部の伸縮性繊維2が切断されたり、伸縮性繊維2同士を圧着していた圧着点が外れたりして、図1の低収縮領域LSが形成される。 The tooth surface 245ts of the gear roll 245 and the tooth surface 246ts of the gear roll 246 are formed at an equal pitch Pm and arranged at positions facing each other. The nonwoven fabric continuous sheet Sa passes between the surfaces 246ts along the MD direction. The non-woven fabric continuous sheet Sa is deformed and stretched in a three-point bend shape as described with reference to FIG. 4 in the portion that has passed between the tooth surfaces 245ts and 246ts (second processing step). That is, the stretchable fibers 2 that have been stretched to near the elastic limit are further stretched, whereby at least some of the stretchable fibers 2 of the plurality of stretchable fibers 2 constituting the nonwoven fabric continuous sheet Sa are cut, The low-shrinkage region LS in FIG. 1 is formed by removing the pressure-bonding point where the elastic fibers 2 are pressure-bonded.
 製造装置200において、ギアロール246は不織布連続シートSaをMD方向に搬送する機能を有している。すなわち、図12に示されるように、ギアロール246の外周面の一部に不織布連続シートSaを巻き付けて回転することにより、不織布連続シートSaを回転方向に搬送する。そのため、第2実施形態におけるギアロール246の歯は外周面の外側に凹となっており、当該歯の山部246mの先端部がギアロール246の外周面よりも外側に突出しないように構成されている。このような構成により、外周面に巻き付けた不織布連続シートSaをスムーズに搬送することが可能となる。また、ギアロール246の歯が外周面の外側に突出していないことにより、プレスロール242との間に不織布連続シートSaを挟み込んで十分に延伸することが可能となっている。仮に、外周面の外側に凸となる歯を有するギアロール245とプレスロール242との間に不織布連続シートSaを挟み込んで搬送しようとすると、プレスロール242が回転する際にその外周面がギアロール245の歯(山部245m)の先端部とのみ接触する状態が発生する。この場合、ギアロール245の歯面246tsの歯と歯の間(隣り合う2つの山部245mの間)でプレスロール242がバウンドするような挙動を示し、不織布連続シートSaが滑りやすくなる。これに対して、外周面の外側に凹となる歯を有するギアロール246とプレスロール242との間に不織布連続シートSaを挟み込んで搬送すれば、プレスロール242の外周面がギアロール246の歯(山部246m)の先端部とのみ接触している状態は生じない。すなわち、プレスロール242の外周面は少なくともギアロール246の外周面の一部に常に押し付けられているため、不織布連続シートSaが滑りにくくなり、不織布連続シートSaをMD方向に安定して搬送しながら延伸することができる。 In the manufacturing apparatus 200, the gear roll 246 has a function of conveying the nonwoven fabric continuous sheet Sa in the MD direction. That is, as shown in FIG. 12, the nonwoven fabric continuous sheet Sa is wound around a part of the outer peripheral surface of the gear roll 246 and rotated to convey the nonwoven fabric continuous sheet Sa in the rotation direction. Therefore, the teeth of the gear roll 246 in the second embodiment are recessed outside the outer peripheral surface, and the tip portion of the peak portion 246m of the teeth is configured not to protrude outward from the outer peripheral surface of the gear roll 246. . With such a configuration, the nonwoven fabric continuous sheet Sa wound around the outer peripheral surface can be smoothly conveyed. Further, since the teeth of the gear roll 246 do not protrude to the outside of the outer peripheral surface, the nonwoven fabric continuous sheet Sa can be sandwiched between the press roll 242 and sufficiently stretched. If the nonwoven fabric continuous sheet Sa is sandwiched and conveyed between the press roll 242 and the gear roll 245 having convex teeth on the outside of the outer peripheral surface, the outer peripheral surface of the gear roll 245 is rotated when the press roll 242 rotates. The state which contacts only with the front-end | tip part of a tooth | gear (peak part 245m) generate | occur | produces. In this case, the behavior of the press roll 242 bouncing between the teeth of the tooth surface 246ts of the gear roll 245 (between two adjacent ridges 245m) is exhibited, and the nonwoven fabric continuous sheet Sa becomes slippery. On the other hand, if the nonwoven fabric continuous sheet Sa is sandwiched and conveyed between the press roll 242 and the gear roll 246 having concave teeth on the outside of the outer peripheral surface, the outer peripheral surface of the press roll 242 becomes the teeth (mountains) of the gear roll 246. The state where only the tip of the portion 246m) is in contact does not occur. That is, since the outer peripheral surface of the press roll 242 is always pressed against at least a part of the outer peripheral surface of the gear roll 246, the nonwoven fabric continuous sheet Sa becomes less slippery and is stretched while stably transporting the nonwoven fabric continuous sheet Sa in the MD direction. can do.
 なお、第2ギア加工部240では、ギアロール246の一部に不織布連続シートSaを巻き付けて搬送するために、駆動ロール241における不織布連続シートSaの接触位置(一対の駆動ロール241が不織布連続シートSaを挟み込む位置)の高さと、ギアロール246における不織布連続シートSaの接触位置(ギアロール245とギアロール246とが不織布連続シートSaを挟み込む位置)の高さとをずらして配置している。図12では、駆動ロール241の位置が低く、ギアロール246の位置が高くなるようにそれぞれのロールが配置されている。これにより、駆動ロール241とギアロール246との間において不織布連続シートSaに縦方向のテンションが生じ、同不織布連続シートSaにはギアロール246の外周面の外側から内側に向かう力が作用する。したがって、ギアロール246の外周面に不織布連続シートSaをずれなく巻き付けながら搬送することができるようになる。 In addition, in the 2nd gear process part 240, in order to wind and convey the nonwoven fabric continuous sheet Sa to a part of gear roll 246, the contact position (a pair of drive roll 241 is nonwoven fabric continuous sheet Sa) in the drive roll 241. The height of the contact position of the nonwoven fabric continuous sheet Sa on the gear roll 246 (position where the gear roll 245 and the gear roll 246 sandwich the nonwoven fabric continuous sheet Sa) is shifted. In FIG. 12, each roll is arrange | positioned so that the position of the drive roll 241 may be low and the position of the gear roll 246 may be high. As a result, longitudinal tension is generated in the nonwoven fabric continuous sheet Sa between the drive roll 241 and the gear roll 246, and a force directed from the outside to the inside of the outer peripheral surface of the gear roll 246 acts on the nonwoven fabric continuous sheet Sa. Therefore, the nonwoven fabric continuous sheet Sa can be conveyed while being wound around the outer peripheral surface of the gear roll 246 without deviation.
 図17は、第2ギア加工部240のCD方向の幅の関係について説明する概略図である。ギアロール246のCD方向の幅W246は、不織布連続シートSaのCD方向の幅WSaよりも広く(W246>WSa)、ギアロール245のCD方向の幅W245とほぼ同じ大きさである。山部246m及び谷部246vはCD方向に沿って連続的に形成されており、ギアロール246の山部246mのCD方向の幅W246mは、不織布連続シートSaのCD方向の幅WSaよりも狭く、かつ、ギアロール245の山部245mのCD方向の幅W245mよりも広くなっている(WSa>W246m>W245m)。これにより、CD方向について、不織布連続シートSaの幅WSaのうちギアロール245の歯が配置されているW245mの範囲が延伸される。このとき、WSa>W246mであることから、不織布連続シートSaのCD方向の両端部(図17の斜線部)は、搬送時においてギアロール245及びギアロール246の外周面によって常に挟み込まれた状態となっている。これにより、不織布連続シートSaが搬送中にずれにくくなる。そして、不織布連続シートSaが歯面245ts及び歯面246tsの間をずれなく通過することにより、伸縮性繊維2がしっかりと延伸される。 FIG. 17 is a schematic diagram for explaining the relationship of the width in the CD direction of the second gear machining section 240. The width W246 of the gear roll 246 in the CD direction is wider than the width WSa of the nonwoven fabric continuous sheet Sa in the CD direction (W246> WSa), and is approximately the same size as the width W245 of the gear roll 245 in the CD direction. The peak portion 246m and the valley portion 246v are formed continuously along the CD direction, the width W246m of the peak portion 246m of the gear roll 246 in the CD direction is narrower than the width WSa of the nonwoven fabric continuous sheet Sa in the CD direction, and The crest 245m of the gear roll 245 is wider than the width W245m in the CD direction (WSa> W246m> W245m). Thereby, the range of W245m where the teeth of the gear roll 245 are arranged in the width WSa of the nonwoven fabric continuous sheet Sa is extended in the CD direction. At this time, since WSa> W246m, both ends in the CD direction of the nonwoven fabric continuous sheet Sa (shaded portions in FIG. 17) are always sandwiched between the outer peripheral surfaces of the gear roll 245 and the gear roll 246 during conveyance. Yes. Thereby, the nonwoven fabric continuous sheet Sa becomes difficult to shift during conveyance. Then, the nonwoven fabric continuous sheet Sa passes between the tooth surface 245ts and the tooth surface 246ts without deviation, whereby the stretchable fiber 2 is firmly stretched.
 また、本実施形態において、ギアロール246の歯の先端部の厚さt246m(山部246mの先端部のMD方向の幅)は0.5mm程度である。つまり、ギアロール246の歯の先端部の厚さt246mは、ギアロール245の歯の先端部の厚さt245m(0.2mm)よりも厚くなっている(t246m>t245m)。これは、ギアロール246の外周面にプレスロール242を押し付ける際に、プレスロール242の外周面が傷つくのを抑制するためである。不織布連続シートSaを挟み込んだ状態で、プレスロール242がギアロール246の外周面に押しつけられたとき、ギアロール246の歯の先端部が細いと(すなわち、歯が鋭利であると)シリコーンゴム等で形成されたプレスロール242の外周面に当該歯の跡が付きやすくなり、搬送精度が徐々に悪化して行くおそれがある。そこで、プレスロール242と当接する側であるギアロール246の歯の先端部を、プレスロール242と当接しない側であるギアロール245の歯の先端部よりも厚くすることにより、プレスロール242の外周面に歯の跡が付きにくいようにしている。 In this embodiment, the thickness t246m (the width in the MD direction of the tip portion of the peak portion 246m) of the tooth tip of the gear roll 246 is about 0.5 mm. That is, the thickness t246m of the tooth tip of the gear roll 246 is thicker than the thickness t245m (0.2 mm) of the tooth tip of the gear roll 245 (t246m> t245m). This is to prevent the outer peripheral surface of the press roll 242 from being damaged when the press roll 242 is pressed against the outer peripheral surface of the gear roll 246. When the press roll 242 is pressed against the outer peripheral surface of the gear roll 246 while the nonwoven fabric continuous sheet Sa is sandwiched, the gear roll 246 is formed of silicone rubber or the like if the tip of the tooth is thin (that is, the teeth are sharp). The traces of the teeth are likely to be attached to the outer peripheral surface of the pressed roll 242 and the conveyance accuracy may gradually deteriorate. Therefore, the outer peripheral surface of the press roll 242 is made thicker than the tip end of the tooth of the gear roll 245 that is not in contact with the press roll 242, by making the tip end of the tooth of the gear roll 246 that is in contact with the press roll 242. The teeth are hard to be marked.
 ===第2加工工程について===
 製造装置100(第1実施形態)及び製造装置200(第2実施形態)は、第2加工工程において、不織布連続シートSaを延伸させて伸縮性繊維2の一部を切断したり圧着点を外したりする動作を精度よく行うために、上述の各実施形態で説明した構成に加えて、以下のような特徴を有している。
=== About the second machining step ===
In the second processing step, the manufacturing apparatus 100 (first embodiment) and the manufacturing apparatus 200 (second embodiment) extend the nonwoven fabric continuous sheet Sa to cut a part of the stretchable fibers 2 or remove the crimp points. In addition to the configurations described in the above embodiments, the following features are provided.
 <ギアロールの加熱>
 第2加工工程では、不織布連続シートSaを構成する伸縮性繊維2及び伸長性繊維3のうち、伸縮性繊維2の一部を切断することにより、図1の低収縮領域LSを形成している。このとき、伸長性繊維3を切断することなく、伸縮性繊維2のみを切断できることが望ましい。そのため、第2ギア加工部140,240において、搬送される不織布連続シートSaに対して熱を加えることにより、伸長性繊維3を伸びやすくして切断されにくくすると共に、伸縮性繊維2の一部の構造を劣化させ切断されやすくする。
<Gear roll heating>
In the second processing step, the low-shrinkage region LS of FIG. 1 is formed by cutting a part of the stretchable fiber 2 out of the stretchable fiber 2 and the stretchable fiber 3 constituting the nonwoven fabric continuous sheet Sa. . At this time, it is desirable that only the stretchable fiber 2 can be cut without cutting the extensible fiber 3. Therefore, in the 2nd gear process part 140,240, while applying heat with respect to the nonwoven fabric continuous sheet Sa conveyed, while making the extensible fiber 3 easy to stretch and being hard to cut | disconnect, it is a part of elastic fiber 2 Deteriorate the structure and make it easier to cut.
 第1実施形態の製造装置100では、第2ギア加工部140の1対のギアロール145及び146のうち少なくとも一方を所定の温度まで加熱した状態で不織布連続シートSaの延伸(第2加工工程)を行う。具体的には、ギアロール145の歯面145ts及びギアロール146の歯面146tsのうち少なくとも一方の温度を、常温よりも高く、かつ、伸長性繊維3の融点よりも低くなるように加熱する。加熱は、外部に設けられたヒーターによって行われても良いし、ギアロール145及び146自体に設けられたヒーターによって行われても良い。 In the manufacturing apparatus 100 of the first embodiment, the nonwoven fabric continuous sheet Sa is stretched (second processing step) while at least one of the pair of gear rolls 145 and 146 of the second gear processing unit 140 is heated to a predetermined temperature. Do. Specifically, heating is performed so that the temperature of at least one of the tooth surface 145ts of the gear roll 145 and the tooth surface 146ts of the gear roll 146 is higher than normal temperature and lower than the melting point of the extensible fiber 3. Heating may be performed by a heater provided outside, or may be performed by a heater provided on the gear rolls 145 and 146 itself.
 不織布連続シートSaは、ギアロール145及び146の間を通過する際に加熱されることにより、伸長性繊維3が熱によって伸びやすくなり第2加工工程において切断されにくくなる。一方、伸縮性繊維2は、上述したような熱可塑性エラストマー(例えばTPU:熱可塑性ポリウレタン)繊維であるため、伸長性繊維3と比較して耐熱性が低く、加熱されることによって歪が生じたり、劣化したりして切断されやすくなる。これにより、第2ギア加工部140において伸長性繊維3を切断することなく一部の伸縮性繊維2を効率よく切断することが可能となる。また、不織布連続シートSa自体が搬送中に切断されてしまうことを抑制することができるようになる。ギアロール145,146を加熱する際の温度は、伸長性繊維3の融点(約200℃)より低い温度のうち、なるべく高い温度とすることが望ましく、第1実施形態では、例えば120℃程度までギアロールを加熱している。 When the nonwoven fabric continuous sheet Sa is heated when passing between the gear rolls 145 and 146, the extensible fibers 3 are easily stretched by heat and are not easily cut in the second processing step. On the other hand, since the stretchable fiber 2 is a thermoplastic elastomer (for example, TPU: thermoplastic polyurethane) fiber as described above, it has lower heat resistance than the extensible fiber 3 and may be distorted when heated. It becomes easy to be cut due to deterioration. Thereby, it becomes possible to efficiently cut some stretchable fibers 2 without cutting the extensible fibers 3 in the second gear processed portion 140. Moreover, it can suppress that nonwoven fabric continuous sheet Sa itself is cut | disconnected during conveyance. The temperature at which the gear rolls 145 and 146 are heated is preferably as high as possible among the temperatures lower than the melting point (about 200 ° C.) of the extensible fiber 3. In the first embodiment, for example, the gear roll up to about 120 ° C. Is heating up.
 第2実施形態の製造装置200では、第2ギア加工部240の1対のギアロール245及び246のうち、外周面の外側に凸となった歯を有するギアロール245を所定の温度まで加熱した状態で不織布連続シートSaの延伸(第2加工工程)を行う。ギアロール245の加熱方法や加熱温度の条件は、第1実施形態の場合と同様である。これにより、不織布連続シートSaを構成する伸長性繊維3は伸びやすく切断されにくくなり、伸縮性繊維2の少なくとも一部が切断されやすくなる。 In the manufacturing apparatus 200 of the second embodiment, among the pair of gear rolls 245 and 246 of the second gear machining unit 240, the gear roll 245 having teeth protruding outward from the outer peripheral surface is heated to a predetermined temperature. The nonwoven fabric continuous sheet Sa is stretched (second processing step). The heating method and heating temperature conditions for the gear roll 245 are the same as in the first embodiment. Thereby, the extensible fiber 3 constituting the nonwoven fabric continuous sheet Sa is easily stretched and is not easily cut, and at least a part of the stretchable fiber 2 is easily cut.
 なお、上述したように第2実施形態の第2ギア加工部240では、外側に凹となった歯を有するギアロール246の外周面の一部に不織布連続シートSaを巻き付けながら搬送を行う。その際、ギアロール246が加熱されていると、ギアロール246の周面と不織布連続シートSaとの接触面積が大きいため、不織布連続シートSaの全体が加熱されやすくなり、伸縮性繊維2の歪が過度に大きくなる等の問題が生じやすくなる。そのため、第2実施形態では、1対のギアロール245及び246のうちギアロール245側のみを加熱して、ギアロール246は加熱しないようにしている。 In addition, as mentioned above, in the 2nd gear process part 240 of 2nd Embodiment, it conveys, winding the nonwoven fabric continuous sheet Sa around a part of outer peripheral surface of the gear roll 246 which has the tooth | gear which became concave on the outer side. At this time, if the gear roll 246 is heated, the contact area between the peripheral surface of the gear roll 246 and the nonwoven fabric continuous sheet Sa is large, so that the entire nonwoven fabric continuous sheet Sa is easily heated, and the stretchable fiber 2 is excessively distorted. Problems such as becoming larger are likely to occur. Therefore, in the second embodiment, only the gear roll 245 side of the pair of gear rolls 245 and 246 is heated, and the gear roll 246 is not heated.
 <ギアロールの歯の配置>
 第2加工工程で用いられるギアロール145,146(第1実施形態)及びギアロール245,246(第2実施形態)の歯は、それぞれCD方向に連続的に形成されている。すなわち、各々の歯の山部145m,146m,245m,246mがCD方向に所定の幅を有するように形成されている。各ギアロールの歯がCD方向に連続的に形成されているため、不織布連続シートSaのCD方向(幅方向)の広範囲に亘って伸縮性繊維2を効率的に延伸させることができる(図17参照)。
<Arrangement of gear roll teeth>
The teeth of the gear rolls 145 and 146 (first embodiment) and the gear rolls 245 and 246 (second embodiment) used in the second processing step are each continuously formed in the CD direction. That is, the peak portions 145m, 146m, 245m, and 246m of each tooth are formed to have a predetermined width in the CD direction. Since the teeth of each gear roll are continuously formed in the CD direction, the stretchable fibers 2 can be efficiently stretched over a wide range in the CD direction (width direction) of the nonwoven fabric continuous sheet Sa (see FIG. 17). ).
図18は、第2加工工程で行われる伸縮性繊維2の延伸について説明する図である。同図18では、不織布連続シートSaを構成する複数の伸縮性繊維2c~2gが互いに絡み合いながら圧着された状態の拡大図を模式的に表している。複数の伸縮性繊維2のうち、伸縮性繊維2cと伸縮性繊維2dとは圧着点WP1にて互いに圧着している。同様に、伸縮性繊維2d及び2eは圧着点WP2によって互いに圧着され、伸縮性繊維2e及び2fは圧着点WP2によって互いに圧着され、伸縮性繊維2f及び2gは圧着点WP4によって互いに圧着されているとする。なお、不織布連続シートSaを構成する伸縮性繊維2は長繊維であり、少なくとも一部はMD方向に沿うように配置されるため、MD方向へ伸縮しやすくなっている。さらにそのような長繊維同士が圧着点WPによって圧着されていることにより、互いに伸縮性を及ぼし合い、不織布連続シートSa全体としてMD方向について良好な伸縮性を発現する。 FIG. 18 is a diagram for explaining stretching of the stretchable fiber 2 performed in the second processing step. FIG. 18 schematically shows an enlarged view of a state in which the plurality of stretchable fibers 2c to 2g constituting the nonwoven fabric continuous sheet Sa are crimped while being intertwined with each other. Among the plurality of stretchable fibers 2, the stretchable fiber 2c and the stretchable fiber 2d are crimped to each other at a crimping point WP1. Similarly, the stretchable fibers 2d and 2e are crimped to each other by the crimping point WP2, the stretchable fibers 2e and 2f are crimped to each other by the crimping point WP2, and the stretchable fibers 2f and 2g are crimped to each other by the crimping point WP4. To do. In addition, since the elastic fiber 2 which comprises the nonwoven fabric continuous sheet Sa is a long fiber, and at least one part is arrange | positioned along MD direction, it is easy to expand / contract to MD direction. Furthermore, since such long fibers are crimped | bonded by the crimping | compression-bonding point WP, mutually exerts a stretching property, and the nonwoven fabric continuous sheet Sa whole expresses a favorable stretching property about MD direction.
 このような不織布連続シートSaをMD方向に延伸する際に、MD方向に隣り合って設けられた2つのギアロールの歯が、CD方向に連続的に形成されていれば、当該2つの歯の間の領域に存在する全ての伸縮性繊維2がMD方向に延伸される。例えば、図18の山部145m1及び山部145m2の間のピッチPmの間の領域において伸縮性繊維2c~2g及び、圧着点WP1~WP4の全体がMD方向に延伸される。これに対して、仮に、ギアロールの歯がCD方向に断続的に形成されていた場合、複数の伸縮性繊維2のうち、延伸される繊維と延伸されない繊維とが発生し、均一な延伸効果が得られないおそれがある。例えば、図18において山部145m1及び山部145m2がCD方向においてそれぞれ伸縮性繊維2c及び2dと重複し、伸縮性繊維2e及び2fと重複していないとすると、伸縮性繊維2c及び2dはMD方向に延伸されるが、伸縮性繊維2e及び2fは延伸されない。この場合、CD方向の領域によって不織布連続シートSaの伸縮性に差が生じたり、不織布連続シートSaに歪が発生したりするおそれがある。したがって、第2加工工程で用いられる各ギアロール145,146,245,246の歯は、それぞれCD方向に連続的に形成されていることが望ましい。 When such a nonwoven fabric continuous sheet Sa is stretched in the MD direction, if the teeth of two gear rolls provided adjacent to each other in the MD direction are continuously formed in the CD direction, the distance between the two teeth All the stretchable fibers 2 existing in the region are stretched in the MD direction. For example, the stretchable fibers 2c to 2g and the entire crimping points WP1 to WP4 are stretched in the MD direction in a region between the pitches Pm between the peak portions 145m1 and 145m2 in FIG. On the other hand, if the teeth of the gear roll are intermittently formed in the CD direction, a stretched fiber and a non-stretched fiber are generated among the plurality of stretchable fibers 2, and a uniform stretching effect is obtained. May not be obtained. For example, in FIG. 18, if the peak portions 145m1 and the peak portions 145m2 overlap with the stretchable fibers 2c and 2d in the CD direction and do not overlap with the stretchable fibers 2e and 2f, the stretchable fibers 2c and 2d are in the MD direction. The stretchable fibers 2e and 2f are not stretched. In this case, there may be a difference in stretchability of the nonwoven fabric continuous sheet Sa depending on the region in the CD direction, or the nonwoven fabric continuous sheet Sa may be distorted. Therefore, it is desirable that the teeth of the respective gear rolls 145, 146, 245, and 246 used in the second processing step are continuously formed in the CD direction.
 さらに、ギアロールの歯(山部145m1及び山部145m2)はCD方向に平行に配置されている。言い換えると、不織布連続シートSaの搬送方向(MD方向)と垂直な方向に配置されている。このような配置であれば、MD方向に隣り合う2つのギアロールの歯の間で、不織布連続シートSaをMD方向に沿って正確に延伸することができる。例えば、図18の伸縮性繊維2c~2gは、MD方向の同じ領域(山部145m1と山部145m2との間の領域)において均一な力でMD方向に延伸されるため、不織布連続シートSaに歪等が生じにくくなる。但し、ギアロールの歯は、必ずしもCD方向と平行な方向に配置されている必要は無く、例えばCD方向に対して所定の角度を有するように斜めに配置されていても延伸加工を施すことは可能である。 Furthermore, the teeth of the gear roll (mountain portion 145m1 and peak portion 145m2) are arranged in parallel to the CD direction. In other words, the nonwoven fabric continuous sheet Sa is arranged in a direction perpendicular to the conveyance direction (MD direction). If it is such arrangement | positioning, the nonwoven fabric continuous sheet Sa can be correctly extended | stretched along MD direction between the teeth of two gear rolls adjacent to MD direction. For example, the stretchable fibers 2c to 2g in FIG. 18 are stretched in the MD direction with a uniform force in the same region in the MD direction (the region between the peak portions 145m1 and 145m2). Distortion is less likely to occur. However, the gear roll teeth do not necessarily have to be arranged in a direction parallel to the CD direction. For example, the gear roll teeth can be stretched even if they are arranged at an angle with respect to the CD direction. It is.
 また、各ギアロールでMD方向に隣り合って配置される2つの歯のMD方向の間隔(ピッチ)は、伸縮性繊維2同士を圧着する圧着点WPのMD方向のピッチよりも広くなっている。このような構成であれば、第2加工工程において、第2ギアロールの歯のピッチの間には、伸縮性繊維2同士を圧着する圧着点WPが少なくとも1以上含まれる確率が高くなる。図18では、山部145m1と山部145m2との間のピッチPm(MD方向の距離)は、圧着点WP1と圧着点WP2との間のMD方向の最短距離Pwpよりも広くなっており(P1>Pwp)、ギアロールの歯の間に4つの圧着点WP1~WP4が含まれている。この状態でPmの領域がMD方向に延伸されると、伸縮性繊維2同士を圧着していた圧着点WP1~WP4が外れやすくなるため、MD方向の伸縮性が弱くなり、図1の低収縮領域LSが形成されやすくなる。 Moreover, the interval (pitch) in the MD direction of two teeth arranged adjacent to each other in the MD direction in each gear roll is wider than the pitch in the MD direction of the crimping point WP for crimping the stretchable fibers 2 to each other. With such a configuration, in the second processing step, there is a high probability that at least one or more crimping points WP for crimping the stretchable fibers 2 are included between the tooth pitches of the second gear roll. In FIG. 18, the pitch Pm (the distance in the MD direction) between the peak part 145m1 and the peak part 145m2 is wider than the shortest distance Pwp in the MD direction between the crimping point WP1 and the crimping point WP2 (P1). > Pwp), four crimping points WP1 to WP4 are included between the teeth of the gear roll. If the Pm region is stretched in the MD direction in this state, the crimping points WP1 to WP4 that have crimped the stretchable fibers 2 are likely to come off, so that the stretchability in the MD direction becomes weak and the low shrinkage of FIG. The region LS is easily formed.
 一方、2つの歯のMD方向の間隔(図18においてPm)が圧着点WPのMD方向の間隔(図18においてPwp)以下であると(Pm≦Pwp)、2つの歯の間に伸縮性繊維2同士を圧着する圧着点WPが含まれなくなる可能性がある。この場合、Pmの領域がMD方向に延伸されたとしても当該領域に圧着点WPが存在しないため、伸縮性繊維2同士が圧着されたままとなり、上述の場合と比較してMD方向の伸縮性は弱くなり難い。したがって、製造装置100及び製造装置200では、ギアロールの歯のMD方向の間隔が、伸縮性繊維2同士を圧着する圧着点WPのMD方向のピッチよりも広くなるようにしている。 On the other hand, when the distance between the two teeth in the MD direction (Pm in FIG. 18) is equal to or smaller than the distance between the crimp points WP in the MD direction (Pwp in FIG. 18) (Pm ≦ Pwp), the stretchable fiber between the two teeth There is a possibility that the crimping point WP for crimping the two is not included. In this case, even if the Pm region is stretched in the MD direction, there is no crimp point WP in the region, so the stretchable fibers 2 remain crimped, and the stretchability in the MD direction compared to the above case. Is difficult to weaken. Therefore, in the manufacturing apparatus 100 and the manufacturing apparatus 200, the gap in the MD direction of the teeth of the gear roll is set to be wider than the pitch in the MD direction of the crimping points WP for crimping the stretchable fibers 2 to each other.
 なお、上述の実施形態において、圧着点WPは不織布連続シートSaに対してエンボス加工等を施すことによって形成されるため、圧着点WPのMD方向の最短距離Pwpの大きさと第2ギアロールの歯のピッチPmの大きさとを調整することが可能である。 In addition, in the above-mentioned embodiment, since the crimping point WP is formed by embossing the nonwoven fabric continuous sheet Sa, the size of the shortest distance Pwp in the MD direction of the crimping point WP and the teeth of the second gear roll. It is possible to adjust the size of the pitch Pm.
 ===その他===
 上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更・改良され得ると共に、本発明には、その等価物が含まれることは言うまでもない。
=== Others ===
The above-described embodiments are for facilitating the understanding of the present invention, and are not intended to limit the present invention. The present invention can be modified and improved without departing from the gist thereof, and it goes without saying that the present invention includes equivalents thereof.
 上述の実施形態では、第1ギア加工部120、及び、第2ギア加工部140に備えられた1対のギアロールについて、図4や図6を用いて説明されていたが、ギアの形状や大きさはこの限りではない。例えば、1対のギアロールのうち、一方のギアロールの外周面には凸部が形成されており、他方のギアロールの外周面には当該凸部に対応した溝部(凹部)が形成されており、凸部と溝部とが噛み合うことで、その間を通過する不織布シートを延伸させるような構造であっても良い。また、それぞれのギアロールに形成されている歯の高さや噛合いの長さを変更することによって、不織布の延伸倍率が調整されるようにしても良い。 In the above-described embodiment, the pair of gear rolls provided in the first gear processing unit 120 and the second gear processing unit 140 has been described with reference to FIG. 4 and FIG. That is not the case. For example, in one pair of gear rolls, a convex portion is formed on the outer peripheral surface of one gear roll, and a groove portion (concave portion) corresponding to the convex portion is formed on the outer peripheral surface of the other gear roll. The structure may be such that the non-woven fabric sheet passing between the portions and the groove portions are stretched by meshing with each other. Moreover, you may make it adjust the draw ratio of a nonwoven fabric by changing the height of the tooth | gear currently formed in each gear roll, and the length of meshing.
 上述の実施形態では、伸縮性不織布1の使用例として、3ピースタイプのおむつ5について説明されていたが、伸縮性不織布1の使用例はこの限りではない。例えばパンツ型の使い捨ておむつや、ナプキン、おりものシート等、不織布を用いた吸収性物品全般に伸縮性不織布1を使用することができる。 In the above-described embodiment, the three-piece type diaper 5 has been described as an example of using the stretchable nonwoven fabric 1, but the use example of the stretchable nonwoven fabric 1 is not limited thereto. For example, the stretchable nonwoven fabric 1 can be used for all absorbent articles using nonwoven fabric such as pants-type disposable diapers, napkins, and cage sheets.
1 伸縮性不織布、
2 伸縮性繊維、2a~2g 伸縮性繊維、
3 伸長性繊維、
5 使い捨ておむつ(おむつ)、
51 吸収性本体、
52 腹側帯部材、52e 幅方向短縁部、
53 背側帯部材、53e 幅方向短縁部、
5HB 胴周り開口、5HL 脚周り開口、
100 製造装置、
110 加熱部、
111~114 加熱ローラー、
120 第1ギア加工部、
121 ガイドローラー、
125 ギアロール、125m 山部、125v 谷部、
126 ギアロール、126m 山部、126v 谷部、
130 延伸加工部、
131 上流側ニップロール、132 下流側ニップロール、
140 第2ギア加工部、
145 ギアロール、
145ts 歯面、145m 山部、145m1・145m2 山部、145v 谷部、
145fs 平滑面、
146 ギアロール、
146ts 歯面、146m 山部、146v 谷部、
146fs 平滑面、
150 シート部材張り合わせ部、
151 接着剤塗布部、152 張り合わせロール、
200 製造装置、
210 加熱部、
211~214 加熱ローラー、
220 第1ギア加工部、
221 ガイドローラー、
225 ギアロール、
226 ギアロール、
240 第2ギア加工部、
241 駆動ロール、
242 プレスロール、
245 ギアロール、
245ts 歯面、245m 山部、245v 谷部、
245fs 平滑面、
246 ギアロール、
246ts 歯面、246m 山部、246v 谷部、
246fs 平滑面、
250 シート部材張り合わせ部、
251 接着剤塗布部、252 張り合わせロール、
CV 搬送機構、
HS 高収縮領域、LS 低収縮領域、
S 不織布シート、Sa 不織布連続シート、Sb 他のシート部材、
WP 圧着点、CE 切断端部
1 stretchable nonwoven fabric,
2 stretchable fiber, 2a-2g stretchable fiber,
3 extensible fibers,
5 disposable diapers (diapers),
51 absorbent body,
52 ventral side band member, 52e width direction short edge part,
53 back side belt member, 53e width direction short edge part,
5HB waist opening, 5HL leg opening,
100 manufacturing equipment,
110 heating section,
111-114 heating roller,
120 first gear machining section,
121 guide roller,
125 gear roll, 125m mountain, 125v valley,
126 gear roll, 126m mountain, 126v valley,
130 stretch processing section,
131 upstream nip roll, 132 downstream nip roll,
140 Second gear machining section,
145 Gear roll,
145ts tooth surface, 145m peak, 145m1 / 145m2 peak, 145v valley,
145fs smooth surface,
146 Gear roll,
146ts tooth surface, 146m mountain, 146v valley,
146fs smooth surface,
150 sheet member lamination part,
151 Adhesive application part, 152 Laminating roll,
200 manufacturing equipment,
210 heating section,
211-214 Heating roller,
220 first gear machining section,
221 guide roller,
225 gear roll,
226 gear roll,
240 Second gear machining section,
241 drive roll,
242 press roll,
245 gear roll,
245ts tooth surface, 245m mountain, 245v valley,
245fs smooth surface,
246 Gear roll,
246ts tooth surface, 246m mountain, 246v valley,
246fs smooth surface,
250 sheet material lamination part,
251 adhesive application part, 252 laminating roll,
CV transport mechanism,
HS high shrinkage area, LS low shrinkage area,
S non-woven sheet, Sa non-woven continuous sheet, Sb other sheet members,
WP crimping point, CE cutting edge

Claims (12)

  1.  伸縮性を有する伸縮性繊維と、前記伸縮性繊維よりも収縮性の低い伸長性繊維とを含む不織布を搬送方向に搬送する搬送工程と、
     前記不織布を1対の第1ギアロール間に通過させることで延伸させ、少なくとも一部の前記伸長性繊維を伸長させる第1加工工程と、
     前記第1加工工程の後で、前記不織布を前記搬送方向に延伸させる延伸工程と、
     前記延伸工程の後で、前記不織布を、周面に歯が形成されている部分と形成されていない部分とを有する1対の第2ギアロール間に通過させることで延伸させ、少なくとも一部の前記伸縮性繊維を切断する第2加工工程と、
     を有する、ことを特徴とする伸縮性不織布の製造方法。
    A transporting step for transporting a nonwoven fabric comprising stretchable fibers having stretchability and extensible fibers having lower shrinkage than the stretchable fibers in the transport direction;
    A first processing step in which the nonwoven fabric is stretched by passing between a pair of first gear rolls, and at least some of the extensible fibers are stretched;
    After the first processing step, a stretching step for stretching the nonwoven fabric in the transport direction;
    After the stretching step, the nonwoven fabric is stretched by passing it between a pair of second gear rolls having a portion where teeth are formed on a peripheral surface and a portion where teeth are not formed, and at least a part of the A second processing step of cutting the elastic fiber;
    The manufacturing method of the elastic nonwoven fabric characterized by having.
  2.  請求項1に記載の伸縮性不織布の製造方法であって、
     前記1対の第2ギアロールのうち、少なくとも一方のギアロールを前記伸長性繊維の融点よりも低い温度に加熱する、ことを特徴とする伸縮性不織布の製造方法。
    It is a manufacturing method of the elastic nonwoven fabric according to claim 1,
    A method for producing a stretchable nonwoven fabric, wherein at least one of the pair of second gear rolls is heated to a temperature lower than the melting point of the stretchable fiber.
  3.  請求項1または2に記載の伸縮性不織布の製造方法であって、
     前記1対の第2ギアロールの歯は、いずれも周面の外側に向かって凸となるように形成されている、ことを特徴とする伸縮性不織布の製造方法。
    It is a manufacturing method of the elastic nonwoven fabric according to claim 1 or 2,
    The tooth | gear of a pair of said 2nd gear roll is formed so that all may become convex toward the outer side of a surrounding surface, The manufacturing method of the elastic nonwoven fabric characterized by the above-mentioned.
  4.  請求項1または2に記載の伸縮性不織布の製造方法であって、
     前記1対の第2ギアロールのうち、一方側のギアロールの歯は周面の外側に向かって凸となるように形成されており、
     前記1対の第2ギアロールのうち、他方側のギアロールの歯は周面の外側に向かって凹となるように形成されている、ことを特徴とする伸縮性不織布の製造方法。
    It is a manufacturing method of the elastic nonwoven fabric according to claim 1 or 2,
    Of the pair of second gear rolls, the teeth of the gear roll on one side are formed to be convex toward the outside of the peripheral surface,
    Of the pair of second gear rolls, the teeth of the other side of the gear roll are formed so as to be concave toward the outside of the peripheral surface.
  5.  請求項4に記載の伸縮性不織布の製造方法であって、
     前記1対の第1ギアロールと前記1対の第2ギアロールとの前記搬送方向の間に設けられた1対の駆動ロールによって、前記前記不織布を所定の速度で前記搬送方向に搬送し、
     前記1対の駆動ロールよりも前記搬送方向の下流側に設けられたプレスロールによって、前記不織布を、前記1対の第2ギアロールのうち前記他方側のギアロールの外周面に押し付けながら前記不織布を前記所定の速度よりも速い速度で前記搬送方向に搬送することにより、
     前記不織布を前記搬送方向に延伸させる、ことを特徴とする伸縮性不織布の製造方法。
    It is a manufacturing method of the elastic nonwoven fabric according to claim 4,
    The nonwoven fabric is transported in the transport direction at a predetermined speed by a pair of drive rolls provided between the transport direction of the pair of first gear rolls and the pair of second gear rolls,
    The non-woven fabric is pressed against the outer peripheral surface of the gear roll on the other side of the pair of second gear rolls by a press roll provided downstream of the pair of drive rolls in the transport direction. By transporting in the transport direction at a speed faster than a predetermined speed,
    A method for producing a stretchable nonwoven fabric, wherein the nonwoven fabric is stretched in the transport direction.
  6.  請求項4または5に記載の伸縮性不織布の製造方法であって、
     前記1対の第2ギアロールのうち前記一方側のギアロールを前記伸長性繊維の融点よりも低い温度に加熱する、ことを特徴とする伸縮性不織布の製造方法。
    It is a manufacturing method of the elastic nonwoven fabric according to claim 4 or 5,
    The method for producing a stretchable nonwoven fabric, wherein the one side of the pair of second gear rolls is heated to a temperature lower than the melting point of the stretchable fibers.
  7.  請求項4~6のいずれかに記載の伸縮性不織布の製造方法であって、
     前記1対の第2ギアロールのうち前記他方側のギアロールは、前記不織布を、周面の少なくとも一部に巻き付けた状態で回転することによって前記不織布を搬送方向に搬送する、ことを特徴とする伸縮性不織布の製造方法。
    A method for producing a stretchable nonwoven fabric according to any one of claims 4 to 6,
    The other-side gear roll of the pair of second gear rolls conveys the nonwoven fabric in the conveyance direction by rotating the nonwoven fabric around at least a part of a circumferential surface thereof. For producing a conductive nonwoven fabric.
  8.  請求項4~7のいずれかに記載の伸縮性不織布の製造方法であって、
     前記1対の第2ギアロールのうち前記他方側のギアロールの歯の先端部の厚さは、
     前記1対の第2ギアロールのうち前記一方側のギアロールの歯の先端部の厚さよりも厚い、ことを特徴とする伸縮性不織布の製造方法。
    A method for producing a stretchable nonwoven fabric according to any one of claims 4 to 7,
    Of the pair of second gear rolls, the thickness of the tooth tip of the other side gear roll is:
    The manufacturing method of the elastic nonwoven fabric characterized by being thicker than the thickness of the front-end | tip part of the tooth | gear of the said one side gear roll among a pair of said 2nd gear rolls.
  9.  請求項1~8のいずれかに記載の伸縮性不織布の製造方法であって、
     前記1対の第2ギアロールの歯は、それぞれ前記搬送方向と直行する方向であるCD方向に連続的に形成されている、ことを特徴とする伸縮性不織布の製造方法。
    A method for producing a stretchable nonwoven fabric according to any one of claims 1 to 8,
    The method for producing a stretchable nonwoven fabric, wherein the teeth of the pair of second gear rolls are continuously formed in a CD direction which is a direction perpendicular to the transport direction.
  10.  請求項9に記載の伸縮性不織布の製造方法であって、
     前記1対の第2ギアロールの歯は、前記CD方向と平行な方向に沿って配置されている、ことを特徴とする伸縮性不織布の製造方法。
    It is a manufacturing method of the elastic nonwoven fabric according to claim 9,
    The method for producing a stretchable nonwoven fabric, wherein the teeth of the pair of second gear rolls are arranged along a direction parallel to the CD direction.
  11.  請求項1~10のいずれかに記載の伸縮性不織布の製造方法であって、
     前記伸縮性不織布を構成する繊維は長繊維であり、
     2以上の前記長繊維同士が、複数の圧着点によって互いに圧着されている、ことを特徴とする伸縮性不織布の製造方法。
    A method for producing a stretchable nonwoven fabric according to any one of claims 1 to 10,
    The fibers constituting the stretchable nonwoven fabric are long fibers,
    Two or more said long fibers are mutually crimped | bonded by the several crimping | compression-bonding point, The manufacturing method of the elastic nonwoven fabric characterized by the above-mentioned.
  12.  請求項11に記載の伸縮性不織布の製造方法であって、
     前記第2加工工程は、
     前記搬送方向に隣り合う2つの前記圧着点の間の最短距離よりも広いピッチの歯を有する前記1対の第2ギアロールを用いて行われる、ことを特徴とする伸縮性不織布の製造方法。
    It is a manufacturing method of the elastic nonwoven fabric according to claim 11,
    The second processing step includes
    The method for producing a stretchable nonwoven fabric, wherein the pair of second gear rolls has teeth having a pitch wider than the shortest distance between two crimping points adjacent in the transport direction.
PCT/JP2015/085667 2014-12-26 2015-12-21 Elastic nonwoven fabric manufacturing method WO2016104422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580070959.5A CN107109734B (en) 2014-12-26 2015-12-21 The manufacturing method of flexible nonwoven fabrics

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-265424 2014-12-26
JP2014265424 2014-12-26
JP2015-248236 2015-12-21
JP2015248236A JP6357462B2 (en) 2014-12-26 2015-12-21 Method for producing elastic nonwoven fabric

Publications (1)

Publication Number Publication Date
WO2016104422A1 true WO2016104422A1 (en) 2016-06-30

Family

ID=56150441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085667 WO2016104422A1 (en) 2014-12-26 2015-12-21 Elastic nonwoven fabric manufacturing method

Country Status (1)

Country Link
WO (1) WO2016104422A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10966874B2 (en) 2016-12-20 2021-04-06 The Procter & Gamble Company Absorbent article(s) chassis comprising beamed elastics
US11129753B2 (en) 2017-09-01 2021-09-28 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates
US11147718B2 (en) 2017-09-01 2021-10-19 The Procter & Gamble Company Beamed elastomeric laminate structure, fit, and texture
CN113737508A (en) * 2021-08-30 2021-12-03 黄山富田精工智造股份有限公司 Method and structure for cutting spandex filaments in non-woven fabric interlayer
US11547613B2 (en) 2017-12-05 2023-01-10 The Procter & Gamble Company Stretch laminate with beamed elastics and formed nonwoven layer
EP4144417A4 (en) * 2020-04-30 2023-09-20 Zuiko Corporation Mask ear loop member production method and mask ear loop member production apparatus
US11819393B2 (en) 2019-06-19 2023-11-21 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
US11925537B2 (en) 2017-09-01 2024-03-12 The Procter & Gamble Company Beamed elastomeric laminate structure, fit, and texture
US11969325B2 (en) 2018-01-25 2024-04-30 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273808A (en) * 2001-03-16 2002-09-25 Daio Paper Corp Method for manufacturing elastic sheet and paper diaper using the same
WO2006115259A1 (en) * 2005-04-25 2006-11-02 Kao Corporation Stretch sheet and process for producing the same
JP2008061692A (en) * 2006-09-05 2008-03-21 Kao Corp Production method of stretching sheet
JP2008061691A (en) * 2006-09-05 2008-03-21 Kao Corp Production method of stretching sheet
JP2011505178A (en) * 2007-11-19 2011-02-24 ザ プロクター アンド ギャンブル カンパニー Device for activating the web
WO2011065264A1 (en) * 2009-11-27 2011-06-03 ユニ・チャーム株式会社 Manufacturing method of composite sheet and manufacturing device
JP2012077401A (en) * 2010-09-30 2012-04-19 Uni Charm Corp Nonwoven cloth, and absorbent article comprising the same nonwoven cloth, and formation method of the sane nonwoven cloth
JP2013208386A (en) * 2012-03-30 2013-10-10 Unicharm Corp Absorbent article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273808A (en) * 2001-03-16 2002-09-25 Daio Paper Corp Method for manufacturing elastic sheet and paper diaper using the same
WO2006115259A1 (en) * 2005-04-25 2006-11-02 Kao Corporation Stretch sheet and process for producing the same
JP2008061692A (en) * 2006-09-05 2008-03-21 Kao Corp Production method of stretching sheet
JP2008061691A (en) * 2006-09-05 2008-03-21 Kao Corp Production method of stretching sheet
JP2011505178A (en) * 2007-11-19 2011-02-24 ザ プロクター アンド ギャンブル カンパニー Device for activating the web
WO2011065264A1 (en) * 2009-11-27 2011-06-03 ユニ・チャーム株式会社 Manufacturing method of composite sheet and manufacturing device
JP2012077401A (en) * 2010-09-30 2012-04-19 Uni Charm Corp Nonwoven cloth, and absorbent article comprising the same nonwoven cloth, and formation method of the sane nonwoven cloth
JP2013208386A (en) * 2012-03-30 2013-10-10 Unicharm Corp Absorbent article

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11219555B2 (en) 2016-12-20 2022-01-11 The Procter & Gamble Company Apparatuses and methods for making absorbent articles with elastomeric laminates
US11147717B2 (en) 2016-12-20 2021-10-19 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands
US10966874B2 (en) 2016-12-20 2021-04-06 The Procter & Gamble Company Absorbent article(s) chassis comprising beamed elastics
US10987253B2 (en) 2016-12-20 2021-04-27 The Procter & Gamble Company Beamed elastic laminate properties
US10993851B2 (en) 2016-12-20 2021-05-04 The Procter & Gamble Company Hip-to-waist and waist-to-crotch silhouette(s) of absorbent article(s) comprising beamed elastics
US11000420B2 (en) 2016-12-20 2021-05-11 The Procter & Gamble Company Laminate(s) comprising beamed elastics and absorbent article(s) comprising said laminate(s)
US11000426B2 (en) 2016-12-20 2021-05-11 The Procter & Gamble Company Disposable absorbent articles having cuffs of improved stretch laminate structure
US11000421B2 (en) 2016-12-20 2021-05-11 The Procter & Gamble Company Length-to-waist silhouette(s) of absorbent article(s) comprising beamed elastics
US11344453B2 (en) 2016-12-20 2022-05-31 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands unwound from spools on surface unwinders
US11141321B2 (en) 2016-12-20 2021-10-12 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands provided with a spin finish
US11141322B2 (en) 2016-12-20 2021-10-12 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates
US11654060B2 (en) 2016-12-20 2023-05-23 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands provided with a spin finish
US11318052B2 (en) 2016-12-20 2022-05-03 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands unwound from beams
US11944523B2 (en) 2016-12-20 2024-04-02 The Procter & Gamble Company Elastomeric laminate(s) for absorbent article donning
US10973699B2 (en) 2016-12-20 2021-04-13 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands unwound from beams
US11737927B2 (en) 2016-12-20 2023-08-29 The Procter & Gamble Company Laminate(s) comprising beamed elastics and absorbent article(s) comprising said laminate(s)
US10966873B2 (en) 2016-12-20 2021-04-06 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands unwound from spools on surface unwinders
US11737928B2 (en) 2016-12-20 2023-08-29 The Procter & Gamble Company Laminate(s) comprising beamed elastics and absorbent article(s) comprising said laminate(s)
US11660235B2 (en) 2016-12-20 2023-05-30 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands
US11642249B2 (en) 2016-12-20 2023-05-09 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands provided with a spin finish
US11654059B2 (en) 2016-12-20 2023-05-23 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates
US11129753B2 (en) 2017-09-01 2021-09-28 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates
US11607348B2 (en) 2017-09-01 2023-03-21 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates
US11925537B2 (en) 2017-09-01 2024-03-12 The Procter & Gamble Company Beamed elastomeric laminate structure, fit, and texture
US11944524B2 (en) 2017-09-01 2024-04-02 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates
US11147718B2 (en) 2017-09-01 2021-10-19 The Procter & Gamble Company Beamed elastomeric laminate structure, fit, and texture
US11547613B2 (en) 2017-12-05 2023-01-10 The Procter & Gamble Company Stretch laminate with beamed elastics and formed nonwoven layer
US11969325B2 (en) 2018-01-25 2024-04-30 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
US11819393B2 (en) 2019-06-19 2023-11-21 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
EP4144417A4 (en) * 2020-04-30 2023-09-20 Zuiko Corporation Mask ear loop member production method and mask ear loop member production apparatus
CN113737508A (en) * 2021-08-30 2021-12-03 黄山富田精工智造股份有限公司 Method and structure for cutting spandex filaments in non-woven fabric interlayer

Similar Documents

Publication Publication Date Title
WO2016104422A1 (en) Elastic nonwoven fabric manufacturing method
JP6446264B2 (en) Method for producing stretchable nonwoven fabric and method for producing absorbent article
TWI441966B (en) A stretchable nonwoven fabric, a composite sheet provided with the nonwoven fabric, an absorbent article having the composite sheet, and a method of manufacturing the stretchable nonwoven fabric
KR101445092B1 (en) Method of producing wearing article
JP6357462B2 (en) Method for producing elastic nonwoven fabric
KR101290233B1 (en) Sheet processing device and sheet production method
EP2095939B1 (en) Composite sheet and absorbent article comprising composite sheet
KR100239274B1 (en) Improved method and apparatus for sequentially stretching zero strain stretch laminate web to impart elasticity
US9126372B2 (en) Method of manufacturing a body adhering absorbent article orientated in the cross-machine direction with reduced curl
JP2002253605A (en) Production method of composite stretchable member
JP5186386B2 (en) Composite sheet and absorbent article using composite sheet
WO2011065264A1 (en) Manufacturing method of composite sheet and manufacturing device
JP4979419B2 (en) Manufacturing method of pant-type absorbent article
JP5337688B2 (en) Disposable diaper manufacturing method
EP2522487A1 (en) Drawing device and method of manufacturing absorptive article
WO2011025032A1 (en) Method for producing absorbent article and stretching device
JP6864502B2 (en) How to manufacture elastic sheet
JP5655116B2 (en) Elastic nonwoven fabric
JP2008012742A (en) Method for producing composite sheet
JP5426340B2 (en) Method for manufacturing worn article
WO2023033084A1 (en) Elastic sheet, underpants-type absorbent article, and method for manufacturing elastic sheet
JP7037990B2 (en) Telescopic sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872990

Country of ref document: EP

Kind code of ref document: A1