WO2016103966A1 - Insulating paper - Google Patents

Insulating paper Download PDF

Info

Publication number
WO2016103966A1
WO2016103966A1 PCT/JP2015/081978 JP2015081978W WO2016103966A1 WO 2016103966 A1 WO2016103966 A1 WO 2016103966A1 JP 2015081978 W JP2015081978 W JP 2015081978W WO 2016103966 A1 WO2016103966 A1 WO 2016103966A1
Authority
WO
WIPO (PCT)
Prior art keywords
aramid
insulating paper
fibrid
floc
present
Prior art date
Application number
PCT/JP2015/081978
Other languages
French (fr)
Japanese (ja)
Inventor
秀 筒井
政司 安武
野田 弘之
Original Assignee
特種東海製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 特種東海製紙株式会社 filed Critical 特種東海製紙株式会社
Priority to KR1020177020180A priority Critical patent/KR20170099968A/en
Priority to JP2016566027A priority patent/JPWO2016103966A1/en
Publication of WO2016103966A1 publication Critical patent/WO2016103966A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/48Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials
    • H01B3/52Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials wood; paper; press board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/06Single tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present invention relates to an electrical insulating paper used for electrical devices such as a transformer, a generator, and an electric motor.
  • insulating paper With the expansion of applications of electronic parts and electrical equipment, the usage forms of insulating paper are diversifying. Paper made of cellulose fibers is excellent in electrical insulation, and is therefore often used as an inexpensive electrical insulation material, and is used in capacitors, transformers, wire coating materials, and the like.
  • insulating paper based on cellulose fiber is made with deionized water for the purpose of removing residual ions in the insulating paper. Underneath, there is a problem that the equilibrium moisture content in the insulating paper is increased due to the moisture absorption of the cellulose fibers, and the electrical insulation is lowered.
  • An object of the present invention is to provide an insulating paper having improved characteristics, particularly an insulating paper having improved electrical insulation and strength.
  • the present invention comprises an aramid floc having an average fiber diameter of 10 to 30 ⁇ m and an aramid fibrid having an average width of 5 to 30 ⁇ m, a dielectric strength of 16 kV / mm or more, and a specific tear strength of 30 mN ⁇
  • the present invention relates to insulating paper that is m 2 / g or more.
  • fine aramid fibrids having a width of 15 ⁇ m or less are contained in the aramid fibrids in a proportion of 30 fibers or more by number.
  • the fine aramid fibrid is preferably subjected to a homogenizer treatment or a refiner treatment.
  • the aramid floc is preferably made of meta-aramid.
  • the aramid fibrid is preferably made of meta-aramid.
  • the insulating paper of the present invention preferably contains 20 to 80% by weight of the aramid floc relative to the total weight of the insulating paper.
  • the insulating paper of the present invention preferably contains 20 to 80% by weight of the aramid fibrid based on the total weight of the insulating paper.
  • the weight ratio of the aramid floc to the aramid fibrid is preferably 20:80 to 80:20.
  • the insulating paper of the present invention can further contain at least one binder made of a polymer other than aramid.
  • the insulating paper of the present invention can further contain at least one filler.
  • a part of the aramid floc and a part of the aramid fibrid are thermally bonded.
  • the insulating paper of the present invention preferably has a basis weight of 20 to 500 g / m 2 .
  • the present invention also relates to an electrical insulator including the insulating paper and an electrical device including the electrical insulator, such as a transformer, a generator, or an electric motor.
  • the insulating paper of the present invention has excellent properties as an electrical insulating paper.
  • the insulating paper of the present invention has improved electrical insulation and strength.
  • an insulating paper made of an aramid floc having an average fiber diameter of 10 to 30 ⁇ m and an aramid fibrid having an average width of 5 to 30 ⁇ m has a dielectric strength of 16 kV / mm or more. It was found that an insulating paper having a specific tear strength of 30 mN ⁇ m 2 / g or more can be realized, and the present invention was completed.
  • the present inventors have found that when a relatively thin aramid fibrid having a predetermined width or less is present in the aramid fibrid at a predetermined ratio, characteristics as an electric insulating paper, particularly electric insulating properties and strength are improved. It was. Therefore, in the insulating paper of the present invention, it is preferable that fine aramid fibrids having a width of 15 ⁇ m or less are contained in the aramid fibrids in a proportion of 30 fibers or more.
  • the “number of fibers%” means the ratio of the number of fine aramid fibrids to the total number of aramid fibrids present on the surface of the insulating paper of the present invention. It means the ratio of the number of fine aramid fibrids to the total number of aramid fibrids existing in a predetermined area range (for example, 60,000 ⁇ m 2 ) on the paper surface.
  • the “number of fibers%” can be determined by, for example, SEM (scanning electron microscope) observation. Therefore, in other words, 30% or more of the aramid fibrids in the insulating paper of the present invention is 30% or more of the fine aramid fibrids.
  • the insulating paper of the present invention is composed of an aramid floc and an aramid fibrid.
  • the insulating paper of the present invention is composed of only the aramid floc and the aramid fibrid, and from the aramid floc and the aramid fibrid. It is meant to include both of the cases where components other than these are included.
  • aramid means an aromatic polyamide.
  • the term “aramid” means, in terms of chemical structure, 60 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more of the amide bond in the aromatic ring. It means a linear polymer compound bonded directly.
  • Aramids are classified into para-aramid, meta-aramid and copolymers thereof depending on the substitution position of the amide group on the benzene ring.
  • Para-aramid includes polyparaphenylene terephthalamide and its copolymer, poly (paraphenylene) -copoly (3,4'-diphenyl ether) terephthalamide (poly (paraphenylene) -copoly (3,4'-diphenyl ether) terephthalamide And the like.
  • meta-aramid include polymetaphenylene isophthalamide and copolymers thereof.
  • Meta-aramids are industrially produced by, for example, conventionally known interfacial polymerization methods, solution polymerization methods and the like and can be obtained as commercial products, but are not limited thereto.
  • meta-aramid is preferably selected. Meta-aramid has features such as being soluble in general-purpose amide solvents, wet-molding using a polymer solution as a starting material, excellent heat-fusibility, good heat resistance and flame retardancy. .
  • poly-metaphenylene isophthalamide is preferably used because it has good molding processability, thermal adhesiveness, flame retardancy, heat resistance, and the like.
  • Aramid floc is a short fiber made of aramid.
  • the (number) average fiber length of the flock is preferably in the range of 1 to 50 mm, more preferably in the range of 2 to 40 mm, and still more preferably in the range of 3 to 30 mm. If the average fiber length is less than 1 mm, the strength of the insulating paper may be reduced. When the average fiber length exceeds 50 mm, “entanglement” and “binding” between flocs are likely to occur in the insulating paper, which is not preferable because it tends to cause defects.
  • the average fiber length can be obtained, for example, by averaging the lengths of a predetermined number (for example, 100) of aramid flocs as a raw material for the insulating paper of the present invention.
  • a predetermined number for example, 100
  • the length of the aramid floc existing in a predetermined area range for example, 55 mm 2
  • the surface of the insulating paper of the present invention may be measured and observed by a stereoscopic microscope or the like.
  • the aramid floc in the insulating paper of the present invention has a (number) average fiber diameter of 10 to 30 ⁇ m.
  • the average fiber diameter of the aramid floc is preferably 12 to 28 ⁇ m, more preferably 14 to 26 ⁇ m, and still more preferably 16 to 24 ⁇ m.
  • the average fiber diameter can be obtained, for example, by averaging the width of a predetermined number (for example, 100) of aramid flocs as a raw material for the insulating paper of the present invention.
  • the width of the aramid floc existing in a predetermined area range (for example, 60,000 ⁇ m 2 ) on the surface of the insulating paper of the present invention may be measured by SEM observation or the like and averaged.
  • the fineness of the aramid floc is preferably from 0.1 to 10 denier, more preferably from 0.5 to 8 denier, and even more preferably from 1 to 6 denier.
  • “denier” is a unit expressed in mass (grams) per 9000 m of fibers.
  • the fineness is less than 0.1 denier, the entanglement in water becomes large, and the performance of the insulating paper may be deteriorated.
  • the fineness exceeds 10 denier, the diameter of the floc becomes too large, which may cause a decrease in aspect ratio, a decrease in mechanical reinforcement effect, and a poor uniformity of insulating paper, which is not preferable.
  • the aramid floc used in the present invention is preferably made of meta-aramid.
  • meta-aramid polymetaphenylene isophthalamide and a copolymer thereof are preferable.
  • it can be produced by co-condensation polymerization of m-phenylenediamine and isophthalic acid chloride.
  • Meta-aramid floc is commercially available, for example, “Conex (registered trademark)” by Teijin Limited can be used, but is not limited thereto.
  • Aramid fibrid is a film-like or fibrous fine particle made of aramid, and is sometimes referred to as aramid pulp (for aramid fibrid, Japanese Patent Publication No. 35-11851, Japanese Patent Publication No. 37-5752). Etc.). Since fibrids have paper-making properties like ordinary wood (cellulose) pulp, they can be formed into a sheet by a paper machine after being dispersed in water.
  • the aramid fibrid used in the present invention is preferably made of meta-aramid.
  • meta-aramid polymetaphenylene isophthalamide and a copolymer thereof are preferable.
  • it can be produced by co-condensation polymerization of m-phenylenediamine and isophthalic acid chloride.
  • Meta-aramid fibrids can be prepared by a wet precipitation method according to the method described in Japanese Patent Publication No. 35-11851, for example, a solution containing meta-aramid.
  • Aramid fibrids can be subjected to a so-called beating process for the purpose of maintaining a quality suitable for papermaking, as with ordinary wood pulp.
  • This beating process can be carried out by a papermaking raw material processing apparatus having a mechanical cutting action such as a disc refiner or a beater.
  • the aramid fibrids in the insulating paper of the present invention have a (number) average width of 5 to 30 ⁇ m.
  • the average width of the aramid fibrid is preferably 7 to 22 ⁇ m, more preferably 9 to 20 ⁇ m, and still more preferably 11 to 18 ⁇ m.
  • the average width can be obtained, for example, by averaging the widths of a predetermined number (for example, 100) of aramid fibrids as a raw material for the insulating paper of the present invention. Or you may measure and average the width
  • the aramid fibrids in the insulating paper of the present invention preferably contain fine aramid fibrids having a width of 15 ⁇ m or less at a ratio of 30 fibers or more.
  • “width” means the maximum width in the width direction (diameter) of the aramid fibrids.
  • the content of fine aramid fibrids having a width of 15 ⁇ m or less is more preferably 40% by number or more, even more preferably 50% by number or more, and even more preferably 60% by number or more.
  • the upper limit of the blending ratio of fine aramid fibrids having a width of 15 ⁇ m or less contained in the aramid fibrids is not particularly limited, but 90 fiber number% or less is preferable, 80 fiber number% or less is preferable, 70 More preferably, the number of fibers is not more than%.
  • the fine aramid fibrid can be produced by subjecting the aramid fibrid to a fine treatment.
  • the type of the refinement process is not particularly limited, and may be a non-mechanical refinement process such as an ultrasonic process, and examples thereof include a homogenizer process and a refiner process.
  • a double disc refiner or conical refiner process is preferred. Therefore, it is particularly preferable that the aramid fibrid has been subjected to a double disc refiner or conical refiner treatment.
  • the insulating paper of the present invention is a porous sheet-like material mainly composed of the aramid floc and the aramid fibrid, has a dielectric strength of 16 kV / mm or more, and a specific tear strength of 30 mN ⁇ m 2 / g or more.
  • the dielectric strength of the insulating paper of the present invention is preferably 20 kV / mm or more, more preferably 24 kV / mm or more, and even more preferably 28 kV / mm or more.
  • the ratio tear strength of the insulating paper of the present invention is preferably at least 32mN ⁇ m 2 / g, more preferably at least 34mN ⁇ m 2 / g, still more preferably more than 36mN ⁇ m 2 / g.
  • Dielectric strength and specific tear strength are usually in a trade-off relationship. Therefore, when the blending ratio of aramid fibrids is increased to increase the dielectric strength, the specific tear strength decreases. On the other hand, when the blending ratio of aramid flocs is increased to increase the specific tear strength, the dielectric strength decreases.
  • aramid fibrids having a width of 15 ⁇ m or less are contained in the aramid fibrids at a ratio of 30 fibers or more and the aramid fibrids are further refined, whereby the aramid fibrids are obtained.
  • the insulating paper of the present invention has both high dielectric strength and high specific tear strength.
  • the thickness of the insulating paper of the present invention is preferably 10 to 1000 ⁇ m, more preferably 20 to 800 ⁇ m, and even more preferably 30 to 500 ⁇ m.
  • the basis weight of the insulating paper of the present invention is preferably 10 ⁇ 1000g / m 2, more preferably 20 ⁇ 500g / m 2, even more preferably 30 ⁇ 300g / m 2.
  • the insulating paper of the present invention preferably contains 20 to 80% by weight, more preferably 30 to 70% by weight, and more preferably 40 to 60% by weight of the aramid floc relative to the total weight (total mass) of the insulating paper. More preferably.
  • the insulating paper of the present invention preferably contains 20 to 80% by weight, more preferably 30 to 70% by weight, and more preferably 40 to 60% by weight of the aramid fibrid based on the total weight of the insulating paper. More preferred.
  • the mixing ratio of the aramid floc and the aramid fibrid in the insulating paper of the present invention can be arbitrary, but the mixing ratio (weight ratio) of the aramid floc / the aramid fibrid is 20:80 to 80:20. 30:70 to 70:30 are more preferable.
  • the insulating paper of the present invention can be manufactured by, for example, a method of forming a sheet after mixing the aramid floc and the aramid fibrid. Specifically, for example, after the aramid floc and the aramid fibrid are dry-mixed, a method of forming a sheet using an air flow, after the aramid floc and the aramid fibrid are dispersed and mixed in a liquid medium, A method of discharging a sheet onto a support such as a permeable net or a belt and drying it by removing the liquid can be used, but the latter is preferable, and among these, water is used as a liquid medium. A wet papermaking method is preferred.
  • a method in which an aqueous slurry containing at least the aramid floc and the aramid fibrid is supplied to a paper machine, dispersed, dewatered, squeezed, and dried to be wound up as a sheet is generally used.
  • a paper machine a long paper machine, a circular paper machine, an inclined paper machine, a combination paper machine combining these, and the like can be used.
  • a composite sheet composed of a plurality of paper layers can be obtained by forming and combining slurry having different blending ratios.
  • Additives such as a dispersibility improver, an antifoaming agent, and a paper strength enhancer are used as necessary during papermaking.
  • the insulating paper obtained as described above can improve density, crystallinity, heat resistance, dimensional stability, mechanical strength, and the like by hot pressing at a high temperature and high pressure between a pair of rolls, for example. .
  • a part of the aramid floc and a part of the aramid fibrid are heat-sealed.
  • the conditions of hot pressure include, for example, when a metal roll is used, a temperature of 100 to 350 ° C. (preferably 200 to 350 ° C.) and a linear pressure of 50 to 400 kg / cm are included. Is not to be done.
  • a plurality of insulating papers can be laminated during hot pressing. The above hot pressing can be performed a plurality of times in an arbitrary order. However, the insulating paper of the present invention preferably maintains its porosity.
  • the insulating paper of the present invention can further contain at least one binder made of a polymer other than aramid, if necessary.
  • the resin used as the binder may be in the form of a water-soluble or dispersible polymer that is added directly to the papermaking dispersion, or it may be bound by heat applied during drying or subsequent further compression and / or heat treatment. It may be in the form of a thermoplastic binder fiber of a resin material mixed with an aramid fiber so as to be activated as.
  • water-soluble or dispersible polymer examples include water-soluble or water-dispersible thermosetting materials such as polyamide resin, epoxy resin, phenol resin, urea resin, urethane resin, melamine formaldehyde resin, thermosetting polyester resin, and alkyd resin. Resins can be mentioned. Particularly useful are water-soluble polyamide resins.
  • An aqueous solution or an aqueous dispersion of a thermoplastic resin such as poly (vinyl alcohol), polypropylene, polyester, poly (vinyl acetate) can be used in the same manner.
  • the insulating paper of the present invention can further contain at least one filler as required.
  • the type of filler is not particularly limited, but inorganic fillers are preferable.
  • clay such as mica, graphite, kaolin, bentonite, carbon nanotube, aluminum nitride, aluminum oxide, boron nitride, magnesium oxide, zinc oxide, etc.
  • the heat conductive filler can be mentioned.
  • the insulating paper of the present invention may include other fibers made of a material other than aramid, if necessary.
  • other fibers include heat-resistant fibers such as aromatic polyester fibers, aromatic polyetherketone fibers, and para-aramid fibers.
  • Para-aramid fiber is obtained by polycondensation of para-oriented aromatic diamine and para-oriented aromatic dicarboxylic acid halide, and the amide bond is in the para position of the aromatic ring or an oriented position equivalent thereto (for example, 4,4′- Consisting essentially of repeating units bonded in opposite directions, such as biphenylene, 1,5-naphthalene, 2,6-naphthalene, etc., oriented in parallel or coaxially, such as poly (paraphenylene terephthalamide) ), Poly (4,4′-benzanilide terephthalamide), poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), etc. Or the aromatic polyamide which has a structure close
  • These aromatic polyamides are produced by polymerizing a para-oriented aromatic diamine and a para-oriented aromatic dicar
  • para-oriented aromatic diamine examples include paraphenylene diamine (hereinafter sometimes referred to as PPD), 4,4′-diaminobiphenyl, 2-methyl-paraphenylene diamine, 2-chloro-paraphenylene diamine, 2,6 -Naphthalenediamine, 1,5-naphthalenediamine, 4,4'-diaminobenzanilide and the like.
  • PPD paraphenylene diamine
  • 4,4′-diaminobiphenyl 2-methyl-paraphenylene diamine
  • 2-chloro-paraphenylene diamine 2,6 -Naphthalenediamine
  • 1,5-naphthalenediamine 1,5-naphthalenediamine
  • 4,4'-diaminobenzanilide examples include paraphenylene diamine (hereinafter sometimes referred to as PPD), 4,4′-diaminobiphenyl, 2-methyl-paraphenylene diamine, 2-chloro-paraphenylene diamine, 2,6 -Naphthalenediamine, 1,5
  • para-oriented aromatic dicarboxylic acid halide examples include terephthaloyl chloride (hereinafter sometimes referred to as TPC), 4,4′-benzoyl chloride, 2-chloroterephthaloyl chloride, and 2,5-dichloroterephthaloyl.
  • TPC terephthaloyl chloride
  • 4,4′-benzoyl chloride examples include chloride, 2-methyl terephthaloyl chloride, 2,6-naphthalenedicarboxylic acid chloride, 1,5-naphthalenedicarboxylic acid chloride, and the like.
  • the insulating paper of the present invention can function as an electrical insulating paper.
  • the insulating paper of the present invention can have an electrical resistance of at least 10 13 ⁇ cm, preferably at least 10 15 ⁇ cm, in accordance with the volume resistivity method of ASTM D-257.
  • the insulating paper of the present invention has excellent properties as an electrical insulating paper, and particularly has improved electrical insulation and strength, so that it is useful as a component of an electrical insulator.
  • the insulating paper of the present invention or a laminate thereof can be used as a component of an electrical insulator that constitutes an electrical device such as a transformer, a generator, or an electric motor.
  • the insulating paper of the present invention or a laminate thereof may be impregnated with a resin such as phenol resin, epoxy, or polyimide, but can exhibit excellent electrical insulation properties even when not impregnated with resin.
  • the present invention is a paper comprising aramid floc having an average fiber diameter of 10 to 30 ⁇ m and aramid fibrid having an average width of 5 to 30 ⁇ m, having a dielectric strength of 16 kV / mm or more, and Electrical insulation method using paper having a specific tear strength of 30 mN ⁇ m 2 / g or more, in particular, an electrical insulation improvement method, or an aramid floc having an average fiber diameter of 10 to 30 ⁇ m, and 5 to 30 ⁇ m
  • the above description applies to the aramid floc and the aramid fibrid.
  • Example 1 (Raw material preparation) Meta-aramid fibrid fiber is disaggregated in water using a standard type disaggregator at an absolutely dry fiber weight concentration of 1.2% for 30 minutes, and the raw slurry after treatment is goosem screen using an 8-cut screen. Processing was performed to remove large undissolved fibers. Next, the raw slurry from which the undisaggregated fibers were removed was subjected to a double treatment at a valve pressure of 10 to 20 MPa using a low-pressure homogenizer while keeping the weight density of the dry fiber at 1.2% to obtain a fibrid fiber slurry for hand-drawing. . Table 1 shows the fiber width test results with SEM.
  • the aramid floc fiber was subjected to a dispersion treatment in water at an absolutely dry fiber weight concentration of 0.3% using a standard type disintegrator for 1 minute to obtain a floc fiber slurry for hand-drawing having an average fiber width of 17 ⁇ m.
  • the obtained hand-made fibrid fiber slurry and hand-made floc fiber slurry were mixed in order so that the weight ratio of the dry fiber after the hand-sheet was 50:50 to obtain a hand-made raw material mixed slurry.
  • Example 2 A test sheet was obtained in the same manner as in Example 1 except that the fiber fiber slurry treated with gozam was subjected to 10 times of treatment with a low-pressure homogenizer to obtain a fiber fiber slurry for hand-drawing.
  • Example 3 (Raw material preparation) Meta-aramid fibrid fiber is disaggregated in water using a standard type disaggregator at an absolutely dry fiber weight concentration of 1.2% for 30 minutes. After treatment, the raw slurry is double disc refiner (manufactured by Aikawa Tekko). The refiner treatment was applied. This process was performed with a beating concentration of 0.9% and 8 passes. Thereby, a fibrid fiber slurry for hand paper was obtained.
  • the aramid floc fiber was subjected to a dispersion treatment in water at an absolutely dry fiber weight concentration of 0.3% using a standard type disintegrator for 1 minute to obtain a floc fiber slurry for hand-drawing having an average fiber width of 17 ⁇ m.
  • the obtained hand-made fibrid fiber slurry and hand-made floc fiber slurry were mixed in order so that the weight ratio of the dry fiber after the hand-sheet was 50:50 to obtain a hand-made raw material mixed slurry.
  • Example 1 A test sheet was obtained in the same manner as in Example 1 except that the gob-sam-treated fibrid fiber slurry was beaten with a Niagara beater for 10 minutes without being subjected to low-pressure homogenizer treatment to obtain a hand-made fibrid fiber slurry.
  • Comparative Example 2 The same as in Comparative Example 1 except that the hand-made fibrid fiber slurry and the hand-crafted floc fiber slurry were mixed in order so that the weight ratio of the absolutely dry fiber after the hand-sheet was 70:30 to obtain a hand-made raw material slurry. A test sheet was obtained.
  • Table 1 shows the average fiber width of the obtained fibrid fiber observed by SEM, the fiber blending ratio of 10 ⁇ m width or less, and the physical property test results of the test sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Paper (AREA)
  • Organic Insulating Materials (AREA)

Abstract

The present invention relates to insulating paper which comprises aramid flocks having an average fiber diameter of 10 to 30 μm and aramid fibrids having an average width of 5 to 30 μm, and has dielectric strength of 16 kV/mm or more and specific tear strength of 30 mN·m2/g or more. According to the present invention, it becomes possible to provide insulating paper having improved properties, particularly insulating paper having improved electric insulation properties and strength.

Description

絶縁紙Insulating paper
本発明は、変圧器、発電機、電動機等の電気デバイスに利用される電気絶縁紙に関する。 The present invention relates to an electrical insulating paper used for electrical devices such as a transformer, a generator, and an electric motor.
電子部品、電気機器の用途拡大に伴い、絶縁紙の利用形態も多様化している。セルロース繊維からなる紙は電気絶縁性に優れることから、安価な電気絶縁材料として多く用いられ、コンデンサ、変圧器、電線被覆材等に使用されている。しかし、セルロース繊維を主成分とした絶縁紙は、絶縁紙中の残留イオンを除去する目的で脱イオン水を用いて抄紙されるため、専用の設備が必要であることに加えて、高湿度環境下ではセルロース繊維が吸湿することから絶縁紙中の平衡水分量が増加し、電気絶縁性が低下するという問題がある。 With the expansion of applications of electronic parts and electrical equipment, the usage forms of insulating paper are diversifying. Paper made of cellulose fibers is excellent in electrical insulation, and is therefore often used as an inexpensive electrical insulation material, and is used in capacitors, transformers, wire coating materials, and the like. However, insulating paper based on cellulose fiber is made with deionized water for the purpose of removing residual ions in the insulating paper. Underneath, there is a problem that the equilibrium moisture content in the insulating paper is increased due to the moisture absorption of the cellulose fibers, and the electrical insulation is lowered.
そこで、芳香族ポリアミドのフロック及びフィブリッドを混抄後、熱圧カレンダー加工してなる芳香族ポリアミド製電気絶縁紙が提案されている(特許文献1参照)。 In view of this, there has been proposed an aromatic polyamide electrical insulating paper obtained by subjecting an aromatic polyamide floc and fibrid to blending and then hot pressing calendering (see Patent Document 1).
特表2014-501859号公報Special table 2014-501859 gazette
 しかし、より優れた特性を有する電気絶縁紙が継続して必要とされている。 However, there is a continuing need for electrical insulating paper with better properties.
 本発明は、改善された特性を有する絶縁紙、特に、改善された電気絶縁性及び強度を有する絶縁紙を提供することを課題とする。 An object of the present invention is to provide an insulating paper having improved characteristics, particularly an insulating paper having improved electrical insulation and strength.
本発明は、10~30μmの平均繊維径を有するアラミドフロック、及び、5~30μmの平均幅を有するアラミドフィブリッドからなり、絶縁耐力が16kV/mm以上であり、且つ、比引裂強度が30mN・m/g以上である絶縁紙に関する。 The present invention comprises an aramid floc having an average fiber diameter of 10 to 30 μm and an aramid fibrid having an average width of 5 to 30 μm, a dielectric strength of 16 kV / mm or more, and a specific tear strength of 30 mN · The present invention relates to insulating paper that is m 2 / g or more.
前記アラミドフィブリッドに15μm以下の幅を有する微細アラミドフィブリッドが30繊維本数%以上の割合で含まれていることが好ましい。 It is preferable that fine aramid fibrids having a width of 15 μm or less are contained in the aramid fibrids in a proportion of 30 fibers or more by number.
前記微細アラミドフィブリッドはホモジナイザー処理又はリファイナー処理を受けたものであることが好ましい。 The fine aramid fibrid is preferably subjected to a homogenizer treatment or a refiner treatment.
 前記アラミドフロックはメタアラミドからなることが好ましい。 The aramid floc is preferably made of meta-aramid.
前記アラミドフィブリッドはメタアラミドからなることが好ましい。 The aramid fibrid is preferably made of meta-aramid.
本発明の絶縁紙は、当該絶縁紙の全重量に対して前記アラミドフロックを20~80重量%含むことが好ましい。 The insulating paper of the present invention preferably contains 20 to 80% by weight of the aramid floc relative to the total weight of the insulating paper.
本発明の絶縁紙は、当該絶縁紙の全重量に対して前記アラミドフィブリッドを20~80重量%含むことが好ましい。 The insulating paper of the present invention preferably contains 20 to 80% by weight of the aramid fibrid based on the total weight of the insulating paper.
前記アラミドフロック対前記アラミドフィブリッドの重量比は20:80~80:20であることが好ましい。 The weight ratio of the aramid floc to the aramid fibrid is preferably 20:80 to 80:20.
 本発明の絶縁紙は、アラミド以外のポリマーからなる少なくとも1種のバインダーを更に含むことができる。 The insulating paper of the present invention can further contain at least one binder made of a polymer other than aramid.
 本発明の絶縁紙は、少なくとも1種のフィラーを更に含むことができる。 The insulating paper of the present invention can further contain at least one filler.
 前記アラミドフロックの一部及び前記アラミドフィブリッドの一部が熱接着していることが好ましい。 It is preferable that a part of the aramid floc and a part of the aramid fibrid are thermally bonded.
本発明の絶縁紙は、20~500g/mの坪量を有することが好ましい。 The insulating paper of the present invention preferably has a basis weight of 20 to 500 g / m 2 .
本発明は、前記絶縁紙を備える電気絶縁体、当該電気絶縁体を備える電気デバイス、例えば、変圧器、発電機又は電動機にも関する。 The present invention also relates to an electrical insulator including the insulating paper and an electrical device including the electrical insulator, such as a transformer, a generator, or an electric motor.
本発明の絶縁紙は電気絶縁紙として優れた特性を有する。特に、本発明の絶縁紙は、改善された電気絶縁性及び強度を有する。 The insulating paper of the present invention has excellent properties as an electrical insulating paper. In particular, the insulating paper of the present invention has improved electrical insulation and strength.
本発明者らは、鋭意検討の結果、10~30μmの平均繊維径を有するアラミドフロック、及び、5~30μmの平均幅を有するアラミドフィブリッドからなる絶縁紙において、絶縁耐力が16kV/mm以上であり、且つ、比引裂強度が30mN・m/g以上である絶縁紙を実現可能であることを見出し、本発明を完成した。 As a result of intensive studies, the present inventors have found that an insulating paper made of an aramid floc having an average fiber diameter of 10 to 30 μm and an aramid fibrid having an average width of 5 to 30 μm has a dielectric strength of 16 kV / mm or more. It was found that an insulating paper having a specific tear strength of 30 mN · m 2 / g or more can be realized, and the present invention was completed.
 特に、本発明者らは、所定の幅以下の比較的細いアラミドフィブリッドがアラミドフィブリッド中に所定の割合で存在すると電気絶縁紙としての特性、特に電気絶縁性及び強度が向上することを見出した。したがって、本発明の絶縁紙は、前記アラミドフィブリッドに15μm以下の幅を有する微細アラミドフィブリッドが30繊維本数%以上の割合で含まれていることが好ましい。 In particular, the present inventors have found that when a relatively thin aramid fibrid having a predetermined width or less is present in the aramid fibrid at a predetermined ratio, characteristics as an electric insulating paper, particularly electric insulating properties and strength are improved. It was. Therefore, in the insulating paper of the present invention, it is preferable that fine aramid fibrids having a width of 15 μm or less are contained in the aramid fibrids in a proportion of 30 fibers or more.
 ここで、「繊維本数%」とは、本発明の絶縁紙表面に存在するアラミドフィブリッドの総本数に占める前記微細アラミドフィブリッドの本数の占める割合を意味しており、特に、本発明の絶縁紙の表面上の所定面積範囲(例えば60,000μm)に存在するアラミドフィブリッドの総本数に占める前記微細アラミドフィブリッドの本数の占める割合を意味している。「繊維本数%」の決定は、例えば、SEM(走査型電子顕微鏡)観察等によって行うことができる。したがって、換言すれば、本発明の絶縁紙に含まれる前記アラミドフィブリッドの数ベースで30%以上が前記微細アラミドフィブリッドである。 Here, the “number of fibers%” means the ratio of the number of fine aramid fibrids to the total number of aramid fibrids present on the surface of the insulating paper of the present invention. It means the ratio of the number of fine aramid fibrids to the total number of aramid fibrids existing in a predetermined area range (for example, 60,000 μm 2 ) on the paper surface. The “number of fibers%” can be determined by, for example, SEM (scanning electron microscope) observation. Therefore, in other words, 30% or more of the aramid fibrids in the insulating paper of the present invention is 30% or more of the fine aramid fibrids.
 本発明の絶縁紙がアラミドフロック及びアラミドフィブリッド「からなる」とは、本発明の絶縁紙が、前記アラミドフロック及び前記アラミドフィブリッドのみからなる場合、並びに、前記アラミドフロック及び前記アラミドフィブリッドからなるもこれらの以外の成分を含む場合の両者を包含する意味である。 The insulating paper of the present invention is composed of an aramid floc and an aramid fibrid. The insulating paper of the present invention is composed of only the aramid floc and the aramid fibrid, and from the aramid floc and the aramid fibrid. It is meant to include both of the cases where components other than these are included.
[アラミド]
本発明において「アラミド」とは芳香族ポリアミドを意味する。本発明において「アラミド」とは、化学構造的には、アミド結合の60モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、更により好ましくは90モル%以上が芳香環に直接結合した線状高分子化合物を意味する。
[Aramid]
In the present invention, “aramid” means an aromatic polyamide. In the present invention, the term “aramid” means, in terms of chemical structure, 60 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more of the amide bond in the aromatic ring. It means a linear polymer compound bonded directly.
アラミドはベンゼン環へのアミド基の置換位置によって、パラアラミド、メタアラミド及びこれらの共重合体に分類される。パラアラミドとしては、ポリパラフェニレンテレフタルアミド及びその共重合体、ポリ(パラフェニレン)-コポリ(3,4’-ジフェニルエーテル)テレフタルアミド(ポリ(パラフェニレン)-コポリ(3,4’-ジフェニルエーテル)テレフタルアミド)等が例示される。メタアラミドとしては、ポリメタフェニレンイソフタルアミド及びその共重合体等が例示される。これらのアラミドは、例えば従来既知の界面重合法、溶液重合法等により工業的に製造されており、市販品として入手することが可能であるが、これに限定されるものではない。本発明では、メタアラミドが好ましく選択される。メタアラミドは汎用アミド溶剤に可溶であること、ポリマー溶液を出発原料として湿式成形が可能であること、熱融着性に優れること、耐熱性や難燃性が良好であること等の特長がある。メタアラミドの中でも、ポリメタフェニレンイソフタルアミドが、良好な成型加工性、熱接着性、難燃性、耐熱性等の特性を備えている点で好ましく用いられる。 Aramids are classified into para-aramid, meta-aramid and copolymers thereof depending on the substitution position of the amide group on the benzene ring. Para-aramid includes polyparaphenylene terephthalamide and its copolymer, poly (paraphenylene) -copoly (3,4'-diphenyl ether) terephthalamide (poly (paraphenylene) -copoly (3,4'-diphenyl ether) terephthalamide And the like. Examples of meta-aramid include polymetaphenylene isophthalamide and copolymers thereof. These aramids are industrially produced by, for example, conventionally known interfacial polymerization methods, solution polymerization methods and the like and can be obtained as commercial products, but are not limited thereto. In the present invention, meta-aramid is preferably selected. Meta-aramid has features such as being soluble in general-purpose amide solvents, wet-molding using a polymer solution as a starting material, excellent heat-fusibility, good heat resistance and flame retardancy. . Among meta-aramids, poly-metaphenylene isophthalamide is preferably used because it has good molding processability, thermal adhesiveness, flame retardancy, heat resistance, and the like.
[アラミドフロック]
「アラミドフロック」とは、アラミドからなる短繊維である。フロックの(数)平均繊維長は、1~50mmの範囲が好ましく、2~40mmの範囲がより好ましく、3~30mmの範囲が更により好ましい。平均繊維長が1mmよりも小さいと絶縁紙の強度が低減するおそれがある。平均繊維長が50mmを超えると絶縁紙においてフロック同士の「絡み」、「結束」が発生しやすくなり、欠陥の原因となりやすいため、好ましくない。
[Aramid Flock]
“Aramid floc” is a short fiber made of aramid. The (number) average fiber length of the flock is preferably in the range of 1 to 50 mm, more preferably in the range of 2 to 40 mm, and still more preferably in the range of 3 to 30 mm. If the average fiber length is less than 1 mm, the strength of the insulating paper may be reduced. When the average fiber length exceeds 50 mm, “entanglement” and “binding” between flocs are likely to occur in the insulating paper, which is not preferable because it tends to cause defects.
 平均繊維長は、例えば、本発明の絶縁紙の原料としてのアラミドフロックの所定本数(例えば100本)の長さを平均して得ることができる。或いは、本発明の絶縁紙の表面上の所定面積範囲(例えば55mm)に存在するアラミドフロックの長さを、実体顕微鏡観察等により測定し、平均してもよい。 The average fiber length can be obtained, for example, by averaging the lengths of a predetermined number (for example, 100) of aramid flocs as a raw material for the insulating paper of the present invention. Alternatively, the length of the aramid floc existing in a predetermined area range (for example, 55 mm 2 ) on the surface of the insulating paper of the present invention may be measured and observed by a stereoscopic microscope or the like.
本発明の絶縁紙におけるアラミドフロックは10~30μmの(数)平均繊維径を有する。前記アラミドフロックの平均繊維径は、12~28μmが好ましく、14~26μmがより好ましく、16~24μmが更により好ましい。平均繊維径は、例えば、本発明の絶縁紙の原料としてのアラミドフロックの所定本数(例えば100本)の幅を平均して得ることができる。或いは、本発明の絶縁紙の表面上の所定面積範囲(例えば60,000μm)に存在するアラミドフロックの幅を、SEM観察等により測定し、平均してもよい。 The aramid floc in the insulating paper of the present invention has a (number) average fiber diameter of 10 to 30 μm. The average fiber diameter of the aramid floc is preferably 12 to 28 μm, more preferably 14 to 26 μm, and still more preferably 16 to 24 μm. The average fiber diameter can be obtained, for example, by averaging the width of a predetermined number (for example, 100) of aramid flocs as a raw material for the insulating paper of the present invention. Alternatively, the width of the aramid floc existing in a predetermined area range (for example, 60,000 μm 2 ) on the surface of the insulating paper of the present invention may be measured by SEM observation or the like and averaged.
アラミドフロックの繊度は0.1~10デニールが好ましく、0.5~8デニールがより好ましく、1~6デニールが更により好ましい。ここで、「デニール」とは、繊維9000m当たりの質量(グラム)で表記した単位である。繊度が0.1デニールよりも小さいと水中での絡み合いが大きくなり絶縁紙の性能の低下を招くおそれがある。一方、繊度が10デニールを上回ると、フロックの径が大きくなりすぎるため、アスペクト比の低下、力学的補強効果の低下、及び、絶縁紙の均一性不良を招くおそれがあるため好ましくない。 The fineness of the aramid floc is preferably from 0.1 to 10 denier, more preferably from 0.5 to 8 denier, and even more preferably from 1 to 6 denier. Here, “denier” is a unit expressed in mass (grams) per 9000 m of fibers. When the fineness is less than 0.1 denier, the entanglement in water becomes large, and the performance of the insulating paper may be deteriorated. On the other hand, if the fineness exceeds 10 denier, the diameter of the floc becomes too large, which may cause a decrease in aspect ratio, a decrease in mechanical reinforcement effect, and a poor uniformity of insulating paper, which is not preferable.
 本発明で使用されるアラミドフロックはメタアラミドからなることが好ましい。メタアラミドとしては、ポリメタフェニレンイソフタルアミド及びその共重合体が好ましく、例えば、m-フェニレンジアミンとイソフタル酸クロライドを共縮重合することによって製造可能である。メタアラミドフロックは市販されており、例えば、帝人(株)の「コーネックス(登録商標)」等を使用することができるが、これらに限定されない。 The aramid floc used in the present invention is preferably made of meta-aramid. As the meta-aramid, polymetaphenylene isophthalamide and a copolymer thereof are preferable. For example, it can be produced by co-condensation polymerization of m-phenylenediamine and isophthalic acid chloride. Meta-aramid floc is commercially available, for example, “Conex (registered trademark)” by Teijin Limited can be used, but is not limited thereto.
[アラミドフィブリッド]
「アラミドフィブリッド」とは、アラミドからなるフィルム状又は繊維状の微小粒子であり、アラミドパルプと称されることもある(アラミドフィブリッドについては特公昭35-11851号、特公昭37-5752号等を参照)。フィブリッドは、通常の木材(セルロース)パルプと同じように抄紙性を有するため、水中分散後、抄紙機にてシート状に成形することができる。
[Aramid fibrid]
“Aramid fibrid” is a film-like or fibrous fine particle made of aramid, and is sometimes referred to as aramid pulp (for aramid fibrid, Japanese Patent Publication No. 35-11851, Japanese Patent Publication No. 37-5752). Etc.). Since fibrids have paper-making properties like ordinary wood (cellulose) pulp, they can be formed into a sheet by a paper machine after being dispersed in water.
 本発明で使用されるアラミドフィブリッドはメタアラミドからなることが好ましい。メタアラミドとしては、ポリメタフェニレンイソフタルアミド及びその共重合体が好ましく、例えば、m-フェニレンジアミンとイソフタル酸クロライドを共縮重合することによって製造可能である。メタアラミドフィブリッドは、メタアラミドを含有する溶液を、例えば、特公昭35―11851号に記載の方法にしたがって湿式沈殿法によって製造することができる。 The aramid fibrid used in the present invention is preferably made of meta-aramid. As the meta-aramid, polymetaphenylene isophthalamide and a copolymer thereof are preferable. For example, it can be produced by co-condensation polymerization of m-phenylenediamine and isophthalic acid chloride. Meta-aramid fibrids can be prepared by a wet precipitation method according to the method described in Japanese Patent Publication No. 35-11851, for example, a solution containing meta-aramid.
アラミドフィブリッドには、通常の木材パルプと同様に、抄紙に適した品質を保つ目的でいわゆる叩解処理を施すことができる。この叩解処理は、ディスクリファイナー、ビーター等の機械的切断作用を及ぼす抄紙原料処理機器によって実施することができる。 Aramid fibrids can be subjected to a so-called beating process for the purpose of maintaining a quality suitable for papermaking, as with ordinary wood pulp. This beating process can be carried out by a papermaking raw material processing apparatus having a mechanical cutting action such as a disc refiner or a beater.
本発明の絶縁紙におけるアラミドフィブリッドは5~30μmの(数)平均幅を有する。前記アラミドフィブリッドの平均幅は、7~22μmが好ましく、9~20μmがより好ましく、11~18μmが更により好ましい。平均幅は、例えば、本発明の絶縁紙の原料としてのアラミドフィブリッドの所定本数(例えば100本)の幅を平均して得ることができる。或いは、本発明の絶縁紙の表面上の所定面積範囲(例えば60,000μm)に存在するアラミドフィブリッドの幅を、SEM観察等により測定し、平均してもよい。 The aramid fibrids in the insulating paper of the present invention have a (number) average width of 5 to 30 μm. The average width of the aramid fibrid is preferably 7 to 22 μm, more preferably 9 to 20 μm, and still more preferably 11 to 18 μm. The average width can be obtained, for example, by averaging the widths of a predetermined number (for example, 100) of aramid fibrids as a raw material for the insulating paper of the present invention. Or you may measure and average the width | variety of the aramid fibrid which exists in the predetermined area range (for example, 60,000 micrometer < 2 >) on the surface of the insulating paper of this invention by SEM observation.
本発明の絶縁紙におけるアラミドフィブリッドは、15μm以下の幅を有する微細アラミドフィブリッドを30繊維本数%以上の割合で含むことが好ましい。ここでの「幅」とはアラミドフィブリッドの幅方向(直径)における最大幅を意味する。15μm以下の幅を有する微細アラミドフィブリッドの含有率は40繊維本数%以上がより好ましく、50繊維本数%以上が更により好ましく、60繊維本数%以上が更により好ましい。 The aramid fibrids in the insulating paper of the present invention preferably contain fine aramid fibrids having a width of 15 μm or less at a ratio of 30 fibers or more. Here, “width” means the maximum width in the width direction (diameter) of the aramid fibrids. The content of fine aramid fibrids having a width of 15 μm or less is more preferably 40% by number or more, even more preferably 50% by number or more, and even more preferably 60% by number or more.
前記アラミドフィブリッドに含まれる、15μm以下の幅を有する微細アラミドフィブリッドの配合割合の上限は特に限定されるものではないが、90繊維本数%以下が好ましく、80繊維本数%以下が好ましく、70繊維本数%以下が更に好ましい。 The upper limit of the blending ratio of fine aramid fibrids having a width of 15 μm or less contained in the aramid fibrids is not particularly limited, but 90 fiber number% or less is preferable, 80 fiber number% or less is preferable, 70 More preferably, the number of fibers is not more than%.
前記微細アラミドフィブリッドは前記アラミドフィブリッドを微細化処理することによって製造することができる。前記微細化処理の種類は特に限定されるものではなく、例えば、超音波処理等の非機械的微細化処理であってもよいが、ホモジナイザー処理またはリファイナー処理を挙げることができる。特に、ダブルディスクリファイナーまたはコニカルリファイナー処理が好ましい。したがって、前記アラミドフィブリッドはダブルディスクリファイナーまたはコニカルリファイナー処理を受けたものであることが特に好ましい。 The fine aramid fibrid can be produced by subjecting the aramid fibrid to a fine treatment. The type of the refinement process is not particularly limited, and may be a non-mechanical refinement process such as an ultrasonic process, and examples thereof include a homogenizer process and a refiner process. In particular, a double disc refiner or conical refiner process is preferred. Therefore, it is particularly preferable that the aramid fibrid has been subjected to a double disc refiner or conical refiner treatment.
[絶縁紙]
 本発明の絶縁紙は前記アラミドフロック及び前記アラミドフィブリッドから主に構成される多孔性のシート状物であり、絶縁耐力が16kV/mm以上であり、且つ、比引裂強度が30mN・m/g以上である。本発明の絶縁紙の絶縁耐力は20kV/mm以上が好ましく、24kV/mm以上がより好ましく、28kV/mm以上が更により好ましい。本発明の絶縁紙の比引裂強度は32mN・m/g以上が好ましく、34mN・m/g以上がより好ましく、36mN・m/g以上が更により好ましい。
[Insulating paper]
The insulating paper of the present invention is a porous sheet-like material mainly composed of the aramid floc and the aramid fibrid, has a dielectric strength of 16 kV / mm or more, and a specific tear strength of 30 mN · m 2 / g or more. The dielectric strength of the insulating paper of the present invention is preferably 20 kV / mm or more, more preferably 24 kV / mm or more, and even more preferably 28 kV / mm or more. The ratio tear strength of the insulating paper of the present invention is preferably at least 32mN · m 2 / g, more preferably at least 34mN · m 2 / g, still more preferably more than 36mN · m 2 / g.
 絶縁耐力と比引裂強度は、通常、トレードオフの関係にある。したがって、アラミドフィブリッドの配合割合を高めて絶縁耐力を高めると、比引裂強度が低下する一方、アラミドフロックの配合割合を高めて比引裂強度を高めると、絶縁耐力が低下する。しかし、本発明では、例えば、アラミドフィブリッドに15μm以下の幅を有する微細アラミドフィブリッドが30繊維本数%以上の割合で含ませて、アラミドフィブリッドの微細化を進めることによって、アラミドフィブリッドが絶縁紙の表面を被覆しやすくなり、比較的少量のアラミドフィブリッドによって絶縁耐力を高めることが可能となり、その一方で、比較的多量のアラミドフロックが使用可能となり、比引裂強度を高めることができる。したがって、本発明の絶縁紙は、高い絶縁耐力と高い比引裂強度を両立している。 絶 縁 Dielectric strength and specific tear strength are usually in a trade-off relationship. Therefore, when the blending ratio of aramid fibrids is increased to increase the dielectric strength, the specific tear strength decreases. On the other hand, when the blending ratio of aramid flocs is increased to increase the specific tear strength, the dielectric strength decreases. However, in the present invention, for example, aramid fibrids having a width of 15 μm or less are contained in the aramid fibrids at a ratio of 30 fibers or more and the aramid fibrids are further refined, whereby the aramid fibrids are obtained. It becomes easy to cover the surface of insulating paper, and it becomes possible to increase the dielectric strength with a relatively small amount of aramid fibrids, while a relatively large amount of aramid floc can be used and the specific tear strength can be increased. . Therefore, the insulating paper of the present invention has both high dielectric strength and high specific tear strength.
本発明の絶縁紙の厚みは、10~1000μmが好ましく、20~800μmがより好ましく、30~500μmが更により好ましい。また、本発明の絶縁紙の坪量は、10~1000g/mが好ましく、20~500g/mがより好ましく、30~300g/mが更により好ましい。 The thickness of the insulating paper of the present invention is preferably 10 to 1000 μm, more preferably 20 to 800 μm, and even more preferably 30 to 500 μm. The basis weight of the insulating paper of the present invention is preferably 10 ~ 1000g / m 2, more preferably 20 ~ 500g / m 2, even more preferably 30 ~ 300g / m 2.
 本発明の絶縁紙は、絶縁紙の全重量(全質量)に対して前記アラミドフロックを、20~80重量%含むことが好ましく、30~70重量%含むことがより好ましく、40~60重量%含むことがより好ましい。 The insulating paper of the present invention preferably contains 20 to 80% by weight, more preferably 30 to 70% by weight, and more preferably 40 to 60% by weight of the aramid floc relative to the total weight (total mass) of the insulating paper. More preferably.
 本発明の絶縁紙は、絶縁紙の全重量に対して前記アラミドフィブリッドを、20~80重量%含むことが好ましく、30~70重量%含むことがより好ましく、40~60重量%含むことがより好ましい。 The insulating paper of the present invention preferably contains 20 to 80% by weight, more preferably 30 to 70% by weight, and more preferably 40 to 60% by weight of the aramid fibrid based on the total weight of the insulating paper. More preferred.
本発明の絶縁紙における前記アラミドフロック及び前記アラミドフィブリッドの混合割合は任意とすることができるが、前記アラミドフロック/前記アラミドフィブリッドの混合比(重量比)は20:80~80:20が好ましく、30:70~70:30がより好ましい。 The mixing ratio of the aramid floc and the aramid fibrid in the insulating paper of the present invention can be arbitrary, but the mixing ratio (weight ratio) of the aramid floc / the aramid fibrid is 20:80 to 80:20. 30:70 to 70:30 are more preferable.
 本発明の絶縁紙は、例えば、前記アラミドフロック及び前記アラミドフィブリッドを混合後にシート化する方法により製造可能である。具体的には、例えば、前記アラミドフロック及び前記アラミドフィブリッドを乾式混合後に、気流を利用してシートを形成する方法、前記アラミドフロック及び前記アラミドフィブリッドを液体媒体中で分散混合した後、液体透過性の網、ベルト等の支持体上に吐出してシート化し、液体を除いて乾燥する方法等を使用することができるが、後者が好ましく、その中でも、水を液体媒体として使用する、いわゆる湿式抄造法が好ましい。 The insulating paper of the present invention can be manufactured by, for example, a method of forming a sheet after mixing the aramid floc and the aramid fibrid. Specifically, for example, after the aramid floc and the aramid fibrid are dry-mixed, a method of forming a sheet using an air flow, after the aramid floc and the aramid fibrid are dispersed and mixed in a liquid medium, A method of discharging a sheet onto a support such as a permeable net or a belt and drying it by removing the liquid can be used, but the latter is preferable, and among these, water is used as a liquid medium. A wet papermaking method is preferred.
 湿式抄造法では、前記アラミドフロック及び前記アラミドフィブリッドを少なくとも含有する水性スラリーを抄紙機に供給し分散後、脱水、搾水及び乾燥することによって、シートとして巻き取る方法が一般的である。抄紙機としては長網抄紙機、円網抄紙機、傾斜型抄紙機及びこれらを組み合わせたコンビネーション抄紙機等が利用可能である。コンビネーション抄紙機での製造の場合、配合比率の異なるスラリーをシート成形し合一することで複数の紙層からなる複合体シートを得ることができる。抄造の際に必要に応じて分散性向上剤、消泡剤、紙力増強剤などの添加剤が使用される。 In the wet papermaking method, a method in which an aqueous slurry containing at least the aramid floc and the aramid fibrid is supplied to a paper machine, dispersed, dewatered, squeezed, and dried to be wound up as a sheet is generally used. As the paper machine, a long paper machine, a circular paper machine, an inclined paper machine, a combination paper machine combining these, and the like can be used. In the case of production with a combination paper machine, a composite sheet composed of a plurality of paper layers can be obtained by forming and combining slurry having different blending ratios. Additives such as a dispersibility improver, an antifoaming agent, and a paper strength enhancer are used as necessary during papermaking.
 上記のようにして得られた絶縁紙は、例えば、一対のロール間にて高温高圧で熱圧することにより、密度、結晶化度、耐熱性、寸法安定性、機械強度等を向上することができる。これにより、前記アラミドフロックの一部及び前記アラミドフィブリッドの一部が熱融着することが好ましい。熱圧の条件は、たとえば金属製ロールを使用する場合、温度100~350℃(好ましくは200~350℃)、線圧50~400kg/cmの範囲内を例示することができるが、これらに限定されるものではない。熱圧の際に複数の絶縁紙を積層することもできる。上記の熱圧加工を任意の順に複数回行うこともできる。但し、本発明の絶縁紙はその多孔性を維持することが好ましい。 The insulating paper obtained as described above can improve density, crystallinity, heat resistance, dimensional stability, mechanical strength, and the like by hot pressing at a high temperature and high pressure between a pair of rolls, for example. . Thereby, it is preferable that a part of the aramid floc and a part of the aramid fibrid are heat-sealed. Examples of the conditions of hot pressure include, for example, when a metal roll is used, a temperature of 100 to 350 ° C. (preferably 200 to 350 ° C.) and a linear pressure of 50 to 400 kg / cm are included. Is not to be done. A plurality of insulating papers can be laminated during hot pressing. The above hot pressing can be performed a plurality of times in an arbitrary order. However, the insulating paper of the present invention preferably maintains its porosity.
[バインダー]
 本発明の絶縁紙は、必要に応じて、アラミド以外のポリマーからなる少なくとも1種のバインダーを更に含むことができる。バインダーとして使用される樹脂は、製紙用分散体に直接添加される水溶性又は分散性ポリマーの形態でもよいし、あるいは乾燥又は次の更なる圧縮及び/又は加熱処理の間に加えられる熱によりバインダーとして活性化されるようにアラミド繊維と混ぜられた樹脂材料の熱可塑性バインダー繊維の形態でもよい。水溶性又は分散性ポリマーとしては、例えば、ポリアミド樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、ウレタン樹脂、メラミンホルムアルデヒド樹脂、熱硬化性ポリエステル樹脂、アルキド樹脂等の水溶性又は水分散性の熱硬化性樹脂を挙げることができる。特に有用なのは水溶性ポリアミド樹脂である。ポリ(ビニルアルコール)、ポリプロピレン、ポリエステル、ポリ(酢酸ビニル)等の熱可塑性樹脂の水溶液又は水分散体も同様に使用することができる。
[binder]
The insulating paper of the present invention can further contain at least one binder made of a polymer other than aramid, if necessary. The resin used as the binder may be in the form of a water-soluble or dispersible polymer that is added directly to the papermaking dispersion, or it may be bound by heat applied during drying or subsequent further compression and / or heat treatment. It may be in the form of a thermoplastic binder fiber of a resin material mixed with an aramid fiber so as to be activated as. Examples of the water-soluble or dispersible polymer include water-soluble or water-dispersible thermosetting materials such as polyamide resin, epoxy resin, phenol resin, urea resin, urethane resin, melamine formaldehyde resin, thermosetting polyester resin, and alkyd resin. Resins can be mentioned. Particularly useful are water-soluble polyamide resins. An aqueous solution or an aqueous dispersion of a thermoplastic resin such as poly (vinyl alcohol), polypropylene, polyester, poly (vinyl acetate) can be used in the same manner.
[フィラー]
本発明の絶縁紙は、必要に応じて、少なくとも1種のフィラーを更に含むことができる。フィラーの種類は特に限定されるものではないが、無機系フィラーが好ましく、例えば、雲母、グラファイト、カオリン、ベントナイト等の粘土、カーボンナノチューブ、窒化アルミニウム、酸化アルミニウム、窒化ホウ素、酸化マグネシウム、酸化亜鉛等の熱伝導性フィラーを挙げることができる。
[Filler]
The insulating paper of the present invention can further contain at least one filler as required. The type of filler is not particularly limited, but inorganic fillers are preferable. For example, clay such as mica, graphite, kaolin, bentonite, carbon nanotube, aluminum nitride, aluminum oxide, boron nitride, magnesium oxide, zinc oxide, etc. The heat conductive filler can be mentioned.
[その他の成分]
 本発明の絶縁紙は、必要に応じて、アラミド以外の材質からなる他の繊維を含んでもよい。他の繊維としては、例えば、芳香族ポリエステル繊維、芳香族ポリエーテルケトン繊維、パラアラミド繊維等の耐熱性繊維を挙げることができる。
[Other ingredients]
The insulating paper of the present invention may include other fibers made of a material other than aramid, if necessary. Examples of other fibers include heat-resistant fibers such as aromatic polyester fibers, aromatic polyetherketone fibers, and para-aramid fibers.
パラアラミド繊維は、パラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドの縮重合により得られるものであり、アミド結合が芳香族環のパラ位またはそれに準じた配向位(例えば、4,4’-ビフェニレン、1,5-ナフタレン、2,6-ナフタレン等のような反対方向に同軸又は平行に延びる配向位)で結合される繰り返し単位から実質的になるもので、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(4,4’-ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン-2,6-ナフタレンジカルボン酸アミド)等のパラ配向型またはパラ配向型に近い構造を有する芳香族ポリアミドを具体的に挙げることができる。これらの芳香族ポリアミドはパラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドを重合させることにより製造される。 Para-aramid fiber is obtained by polycondensation of para-oriented aromatic diamine and para-oriented aromatic dicarboxylic acid halide, and the amide bond is in the para position of the aromatic ring or an oriented position equivalent thereto (for example, 4,4′- Consisting essentially of repeating units bonded in opposite directions, such as biphenylene, 1,5-naphthalene, 2,6-naphthalene, etc., oriented in parallel or coaxially, such as poly (paraphenylene terephthalamide) ), Poly (4,4′-benzanilide terephthalamide), poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), etc. Or the aromatic polyamide which has a structure close | similar to a para orientation type can be mentioned concretely. These aromatic polyamides are produced by polymerizing a para-oriented aromatic diamine and a para-oriented aromatic dicarboxylic acid halide.
前記パラ配向芳香族ジアミンを例示すると、パラフェニレンジアミン(以下、PPDということがある)、4,4’-ジアミノビフェニル、2-メチル-パラフェニレンジアミン、2-クロロ-パラフェニレンジアミン、2,6-ナフタレンジアミン、1,5-ナフタレンジアミンおよび4,4’-ジアミノベンズアニリド等を挙げることができる。 Examples of the para-oriented aromatic diamine include paraphenylene diamine (hereinafter sometimes referred to as PPD), 4,4′-diaminobiphenyl, 2-methyl-paraphenylene diamine, 2-chloro-paraphenylene diamine, 2,6 -Naphthalenediamine, 1,5-naphthalenediamine, 4,4'-diaminobenzanilide and the like.
前記パラ配向芳香族ジカルボン酸ハライドを例示すると、テレフタロイルクロリド(以下、TPCということがある)、4,4’-ベンゾイルクロリド、2-クロロテレフタロイルクロリド、2,5-ジクロロテレフタロイルクロリド、2-メチルテレフタロイルクロリド、2,6-ナフタレンジカルボン酸クロリドおよび1,5-ナフタレンジカルボン酸クロリド等を挙げることができる。 Examples of the para-oriented aromatic dicarboxylic acid halide include terephthaloyl chloride (hereinafter sometimes referred to as TPC), 4,4′-benzoyl chloride, 2-chloroterephthaloyl chloride, and 2,5-dichloroterephthaloyl. Examples include chloride, 2-methyl terephthaloyl chloride, 2,6-naphthalenedicarboxylic acid chloride, 1,5-naphthalenedicarboxylic acid chloride, and the like.
本発明の絶縁紙は、電気絶縁紙として機能することができる。本発明の絶縁紙はASTMD-257の体積抵抗率の方法に準拠して、少なくとも1013Ωcmの電気抵抗、好ましくは、少なくとも1015Ωcmの電気抵抗を有することができる。 The insulating paper of the present invention can function as an electrical insulating paper. The insulating paper of the present invention can have an electrical resistance of at least 10 13 Ωcm, preferably at least 10 15 Ωcm, in accordance with the volume resistivity method of ASTM D-257.
本発明の絶縁紙は電気絶縁紙として優れた特性を有し、特に、改善された電気絶縁性及び強度を有するので、電気絶縁体の構成要素として有用である。例えば、本発明の絶縁紙又はその積層体を、変圧器、発電機、電動機等の電気デバイスを構成する電気絶縁体の構成要素として使用することができる。本発明の絶縁紙又はその積層体は、フェノール樹脂、エポキシ、ポリイミド等の樹脂で含浸されてもよいが、樹脂で含浸されずとも優れた電気絶縁性を発揮することができる。 The insulating paper of the present invention has excellent properties as an electrical insulating paper, and particularly has improved electrical insulation and strength, so that it is useful as a component of an electrical insulator. For example, the insulating paper of the present invention or a laminate thereof can be used as a component of an electrical insulator that constitutes an electrical device such as a transformer, a generator, or an electric motor. The insulating paper of the present invention or a laminate thereof may be impregnated with a resin such as phenol resin, epoxy, or polyimide, but can exhibit excellent electrical insulation properties even when not impregnated with resin.
 したがって、本発明は、10~30μmの平均繊維径を有するアラミドフロック、及び、5~30μmの平均幅を有するアラミドフィブリッドからなる紙であって、絶縁耐力が16kV/mm以上であり、且つ、比引裂強度が30mN・m/g以上である紙を使用する電気絶縁方法、特に、電気絶縁性の改善方法、或いは、10~30μmの平均繊維径を有するアラミドフロック、並びに、5~30μmの平均幅を有するアラミドフィブリッドからなる紙であって、絶縁耐力が16kV/mm以上であり、且つ、比引裂強度が30mN・m/g以上である紙の電気絶縁のための使用、特に、電気絶縁性の改善のための使用、の側面を有する。上記アラミドフロック及び上記アラミドフィブリッドについては上記の説明が当てはまる。 Accordingly, the present invention is a paper comprising aramid floc having an average fiber diameter of 10 to 30 μm and aramid fibrid having an average width of 5 to 30 μm, having a dielectric strength of 16 kV / mm or more, and Electrical insulation method using paper having a specific tear strength of 30 mN · m 2 / g or more, in particular, an electrical insulation improvement method, or an aramid floc having an average fiber diameter of 10 to 30 μm, and 5 to 30 μm A paper made of aramid fibrid having an average width, having a dielectric strength of 16 kV / mm or more and a specific tear strength of 30 mN · m 2 / g or more, especially for electrical insulation, Use for improvement of electrical insulation, with aspects. The above description applies to the aramid floc and the aramid fibrid.
 以下、本発明を実施例及び比較例を用いてより具体的に説明するが、本発明の範囲は実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the scope of the present invention is not limited to the examples.
[評価方法]
(平均繊維幅)
下記実施例及び比較例より得られた各手抄用原料スラリーを希釈して、プレパラート上に均一な薄膜となるよう滴下して乾燥させ、走査型電子顕微鏡で100~400倍に拡大してランダムに3視野を観察し、各視野から無作為に30本の繊維径を測定し平均繊維幅(径)を算出した。同時に測定した繊維中における繊維幅が15μm以下の繊維本数の割合を算出した。
[Evaluation methods]
(Average fiber width)
Each raw material slurry obtained from the following examples and comparative examples was diluted, dropped onto a preparation so as to form a uniform thin film, dried, and randomly magnified 100 to 400 times with a scanning electron microscope. 3 fields of view were observed, 30 fiber diameters were randomly measured from each field of view, and the average fiber width (diameter) was calculated. The ratio of the number of fibers having a fiber width of 15 μm or less in the simultaneously measured fibers was calculated.
(絶縁耐力)
ASTM D-149に準拠して測定した。
(Dielectric strength)
Measured according to ASTM D-149.
(比引裂強度)
JIS P8116:2000に準拠して測定した。
(Specific tear strength)
It measured based on JIS P8116: 2000.
[実施例1]
(原料調成)
メタ-アラミドフィブリッド繊維を、水中にて標準型離解機を用いて絶乾繊維重量濃度1.2%にて30分間離解処理を行い、処理後原料スラリーを8カットスクリーンを用いてゴーザムスクリーン処理を行い、大型の未離解状繊維の除去を行った。次いで未離解状繊維を除去した原料スラリーを絶乾繊維重量濃度1.2%のまま低圧ホモジナイザーを用いて、バルブ圧10~20MPaにて2回掛け処理を行い手抄用フィブリッド繊維スラリーを得た。SEMでの繊維幅試験結果を表1に示す。
[Example 1]
(Raw material preparation)
Meta-aramid fibrid fiber is disaggregated in water using a standard type disaggregator at an absolutely dry fiber weight concentration of 1.2% for 30 minutes, and the raw slurry after treatment is goosem screen using an 8-cut screen. Processing was performed to remove large undissolved fibers. Next, the raw slurry from which the undisaggregated fibers were removed was subjected to a double treatment at a valve pressure of 10 to 20 MPa using a low-pressure homogenizer while keeping the weight density of the dry fiber at 1.2% to obtain a fibrid fiber slurry for hand-drawing. . Table 1 shows the fiber width test results with SEM.
次にアラミドフロック繊維を、水中にて標準型離解機を用いて絶乾繊維重量濃度0.3%にて1分間分散処理を行い、平均繊維幅17μmの手抄用フロック繊維スラリーを得た。それぞれ得られた手抄用フィブリッド繊維スラリーと手抄用フロック繊維スラリーを順に手抄シート後の絶乾繊維重量比率が50:50となるよう混合して手抄用原料混合スラリーとした。 Next, the aramid floc fiber was subjected to a dispersion treatment in water at an absolutely dry fiber weight concentration of 0.3% using a standard type disintegrator for 1 minute to obtain a floc fiber slurry for hand-drawing having an average fiber width of 17 μm. The obtained hand-made fibrid fiber slurry and hand-made floc fiber slurry were mixed in order so that the weight ratio of the dry fiber after the hand-sheet was 50:50 to obtain a hand-made raw material mixed slurry.
(シート化)
手抄用原料混合スラリーを絶乾重量にて坪量115g/mとなるよう原料を採取して、角型手抄マシンにて120メッシュワイヤーを用いてウェットシートを作製し、プレス機での脱水、回転式乾燥機(写真ドライヤー)での加熱乾燥を行い、手抄乾燥シートを得た。次いで300℃に加熱した金属ロール間にて手抄乾燥シートの加熱加圧処理を行い、試験用シートを得た。
(Sheet)
The raw material mixture slurry was collected so that the basis weight was 115 g / m 2 at an absolutely dry weight, and a wet sheet was prepared using a 120 mesh wire with a square hand-pulling machine. Dehydration and heat drying with a rotary dryer (photographic dryer) were performed to obtain a hand-dried sheet. Next, the hand-dried sheet was heated and pressurized between metal rolls heated to 300 ° C. to obtain a test sheet.
[実施例2]
ゴーザム処理したフィブリッド繊維スラリーを低圧ホモジナイザーで10回掛け処理を行い手抄用フィブリッド繊維スラリーとした以外は実施例1と同様にして試験用シートを得た。
[Example 2]
A test sheet was obtained in the same manner as in Example 1 except that the fiber fiber slurry treated with gozam was subjected to 10 times of treatment with a low-pressure homogenizer to obtain a fiber fiber slurry for hand-drawing.
[実施例3]
 (原料調成)
メタ-アラミドフィブリッド繊維を、水中にて標準型離解機を用いて絶乾繊維重量濃度1.2%にて30分間離解処理を行い、処理後原料スラリーをダブルディスクリファイナー(相川鉄工社製)にてリファイナー処理を施した。この処理は、叩解濃度0.9%、パス回数は8回で行った。これにより、手抄用フィブリッド繊維スラリーを得た。
[Example 3]
(Raw material preparation)
Meta-aramid fibrid fiber is disaggregated in water using a standard type disaggregator at an absolutely dry fiber weight concentration of 1.2% for 30 minutes. After treatment, the raw slurry is double disc refiner (manufactured by Aikawa Tekko). The refiner treatment was applied. This process was performed with a beating concentration of 0.9% and 8 passes. Thereby, a fibrid fiber slurry for hand paper was obtained.
次にアラミドフロック繊維を、水中にて標準型離解機を用いて絶乾繊維重量濃度0.3%にて1分間分散処理を行い、平均繊維幅17μmの手抄用フロック繊維スラリーを得た。それぞれ得られた手抄用フィブリッド繊維スラリーと手抄用フロック繊維スラリーを順に手抄シート後の絶乾繊維重量比率が50:50となるよう混合して手抄用原料混合スラリーとした。 Next, the aramid floc fiber was subjected to a dispersion treatment in water at an absolutely dry fiber weight concentration of 0.3% using a standard type disintegrator for 1 minute to obtain a floc fiber slurry for hand-drawing having an average fiber width of 17 μm. The obtained hand-made fibrid fiber slurry and hand-made floc fiber slurry were mixed in order so that the weight ratio of the dry fiber after the hand-sheet was 50:50 to obtain a hand-made raw material mixed slurry.
(シート化)
手抄用原料混合スラリーを絶乾重量にて坪量150g/mとなるよう原料を採取して、角型手抄マシンにて120メッシュワイヤーを用いてウェットシートを作製し、プレス機での脱水、回転式乾燥機(写真ドライヤー)での加熱乾燥を行い、手抄乾燥シートを得た。次いで300℃に加熱した金属ロール間にて手抄乾燥シートの加熱加圧処理を行い、試験用シートを得た。
(Sheet)
The raw material mixture slurry was collected so that the basis weight was 150 g / m 2 at an absolutely dry weight, and a wet sheet was produced using a 120 mesh wire with a square hand-pulling machine. Dehydration and heat drying with a rotary dryer (photographic dryer) were performed to obtain a hand-dried sheet. Next, the hand-dried sheet was heated and pressurized between metal rolls heated to 300 ° C. to obtain a test sheet.
[比較例1]
ゴーザム処理したフィブリッド繊維スラリーを低圧ホモジナイザー処理を行わず、ナイアガラビーターにて10分間叩解して手抄用フィブリッド繊維スラリーを得た以外は実施例1と同様にして試験用シートを得た。
[Comparative Example 1]
A test sheet was obtained in the same manner as in Example 1 except that the gob-sam-treated fibrid fiber slurry was beaten with a Niagara beater for 10 minutes without being subjected to low-pressure homogenizer treatment to obtain a hand-made fibrid fiber slurry.
[比較例2]
手抄用フィブリッド繊維スラリーと手抄用フロック繊維スラリーを順に手抄シート後の絶乾繊維重量比率が70:30となるよう混合して手抄用原料スラリーとした以外は比較例1と同様にして試験用シートを得た。
[Comparative Example 2]
The same as in Comparative Example 1 except that the hand-made fibrid fiber slurry and the hand-crafted floc fiber slurry were mixed in order so that the weight ratio of the absolutely dry fiber after the hand-sheet was 70:30 to obtain a hand-made raw material slurry. A test sheet was obtained.
得られたフィブリッド繊維のSEM観察による平均繊維幅、10μm幅以下の繊維配合率、及び、試験用シートの物性試験結果を表1に示す。 Table 1 shows the average fiber width of the obtained fibrid fiber observed by SEM, the fiber blending ratio of 10 μm width or less, and the physical property test results of the test sheet.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1から明らかなように、実施例にて絶縁耐力及び比引裂強度が高い良好なシートを得ることが可能となった。 As apparent from Table 1, it was possible to obtain a good sheet having high dielectric strength and specific tear strength in the examples.

Claims (15)

  1. 10~30μmの平均繊維径を有するアラミドフロック、及び、
    5~30μmの平均幅を有するアラミドフィブリッド
    からなり、
    絶縁耐力が16kV/mm以上であり、且つ、比引裂強度が30mN・m/g以上である絶縁紙。
    An aramid floc having an average fiber diameter of 10-30 μm, and
    Consisting of aramid fibrids with an average width of 5-30 μm,
    An insulating paper having a dielectric strength of 16 kV / mm or more and a specific tear strength of 30 mN · m 2 / g or more.
  2. 前記アラミドフィブリッドに15μm以下の幅を有する微細アラミドフィブリッドが30繊維本数%以上の割合で含まれている、請求項1記載の絶縁紙。 The insulating paper according to claim 1, wherein fine aramid fibrids having a width of 15 µm or less are contained in the aramid fibrids in a proportion of 30 fibers or more.
  3. 前記微細アラミドフィブリッドがホモジナイザー処理又はリファイナー処理を受けたものである、請求項1又は2記載の絶縁紙。 The insulating paper according to claim 1 or 2, wherein the fine aramid fibrid has been subjected to a homogenizer treatment or a refiner treatment.
  4.  前記アラミドフロックがメタアラミドからなる、請求項1~3のいずれかに記載の絶縁紙。 The insulating paper according to any one of claims 1 to 3, wherein the aramid floc comprises meta-aramid.
  5. 前記アラミドフィブリッドがメタアラミドからなる、請求項1~4のいずれかに記載の絶縁紙。 The insulating paper according to any one of claims 1 to 4, wherein the aramid fibrid is made of meta-aramid.
  6. 絶縁紙の全重量に対して前記アラミドフロックを20~80重量%含む、請求項1~5のいずれかに記載の絶縁紙。 The insulating paper according to any one of claims 1 to 5, comprising 20 to 80% by weight of the aramid floc with respect to the total weight of the insulating paper.
  7. 絶縁紙の全重量に対して前記アラミドフィブリッドを20~80重量%含む、請求項1~6のいずれかに記載の絶縁紙。 The insulating paper according to any one of claims 1 to 6, comprising 20 to 80% by weight of the aramid fibrid based on the total weight of the insulating paper.
  8. 前記アラミドフロック対前記アラミドフィブリッドの重量比が20:80~80:20である、請求項1~7のいずれかに記載の絶縁紙。 The insulating paper according to any one of claims 1 to 7, wherein a weight ratio of the aramid floc to the aramid fibrid is 20:80 to 80:20.
  9. アラミド以外のポリマーからなる少なくとも1種のバインダーを更に含む、請求項1~8のいずれかに記載の絶縁紙。 The insulating paper according to any one of claims 1 to 8, further comprising at least one binder made of a polymer other than aramid.
  10.  少なくとも1種のフィラーを更に含む、請求項1~9のいずれかに記載の絶縁紙。 The insulating paper according to any one of claims 1 to 9, further comprising at least one filler.
  11.  前記アラミドフロックの一部及び前記アラミドフィブリッドの一部が熱接着している、請求項1~10のいずれかに記載の絶縁紙。 The insulating paper according to any one of claims 1 to 10, wherein a part of the aramid floc and a part of the aramid fibrid are thermally bonded.
  12. 20~500g/mの坪量を有する、請求項1~11のいずれかに記載の絶縁紙。 The insulating paper according to any one of claims 1 to 11, having a basis weight of 20 to 500 g / m 2 .
  13.  請求項1~12のいずれかに記載の絶縁紙を備える電気絶縁体。 An electrical insulator comprising the insulating paper according to any one of claims 1 to 12.
  14.  請求項13記載の電気絶縁体を備える電気デバイス。 An electric device comprising the electric insulator according to claim 13.
  15.  変圧器、発電機又は電動機である請求項14記載の電気デバイス。 The electrical device according to claim 14, which is a transformer, a generator, or an electric motor.
PCT/JP2015/081978 2014-12-26 2015-11-13 Insulating paper WO2016103966A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177020180A KR20170099968A (en) 2014-12-26 2015-11-13 Insulating paper
JP2016566027A JPWO2016103966A1 (en) 2014-12-26 2015-11-13 Insulating paper

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-265418 2014-12-26
JP2014265418 2014-12-26
JP2015-063002 2015-03-25
JP2015063002 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016103966A1 true WO2016103966A1 (en) 2016-06-30

Family

ID=56150000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081978 WO2016103966A1 (en) 2014-12-26 2015-11-13 Insulating paper

Country Status (4)

Country Link
JP (1) JPWO2016103966A1 (en)
KR (1) KR20170099968A (en)
TW (1) TWI665686B (en)
WO (1) WO2016103966A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150318078A1 (en) * 2012-11-23 2015-11-05 Teijin Aramid B.V. Electrical insulating paper
KR20180059229A (en) * 2016-11-25 2018-06-04 주식회사 휴비스 Aramid Paper Having Excellent Withstand Voltage
WO2019093305A1 (en) * 2017-11-07 2019-05-16 特種東海製紙株式会社 Insulating sheet
US10978970B2 (en) 2017-06-02 2021-04-13 Olympus Corporation Apparatus and control apparatus for the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102613036B1 (en) * 2023-07-20 2023-12-12 (주)연호상사 Battery module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228696A (en) * 1990-06-14 1992-08-18 E I Du Pont De Nemours & Co Aramide paper containing aramide paper pulp
JPH06313290A (en) * 1993-04-26 1994-11-08 Teijin Ltd Production of aramide craped paper
JP2011508106A (en) * 2007-12-21 2011-03-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Paper containing flocs derived from diaminodiphenyl sulfone
WO2013149105A1 (en) * 2012-03-30 2013-10-03 Sabic Innovative Plastics Ip B.V. Electrical insulation paper, methods of manufacture, and articles manufactured therefrom
US20140184371A1 (en) * 2012-12-28 2014-07-03 E I Du Pont De Nemours And Company Insulating material containing poly(phenylene-1,3,4-oxadiazole)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866332B2 (en) * 2007-03-13 2012-02-01 帝人テクノプロダクツ株式会社 Water-swellable fibrillated fiber and sheet-like material using the same
JP2012529155A (en) * 2009-06-04 2012-11-15 ライドール,インコーポレーテッド Electrical insulating materials and their manufacture and use
KR101362518B1 (en) * 2012-01-13 2014-02-14 주식회사 엘지화학 Insulating material for electronic device
WO2013187956A1 (en) * 2012-06-15 2013-12-19 3M Innovative Properties Company Electrical insulation material
JP6217894B2 (en) * 2013-02-08 2017-10-25 デュポン帝人アドバンスドペーパー株式会社 Colored aramid paper and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228696A (en) * 1990-06-14 1992-08-18 E I Du Pont De Nemours & Co Aramide paper containing aramide paper pulp
JPH06313290A (en) * 1993-04-26 1994-11-08 Teijin Ltd Production of aramide craped paper
JP2011508106A (en) * 2007-12-21 2011-03-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Paper containing flocs derived from diaminodiphenyl sulfone
WO2013149105A1 (en) * 2012-03-30 2013-10-03 Sabic Innovative Plastics Ip B.V. Electrical insulation paper, methods of manufacture, and articles manufactured therefrom
US20140184371A1 (en) * 2012-12-28 2014-07-03 E I Du Pont De Nemours And Company Insulating material containing poly(phenylene-1,3,4-oxadiazole)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150318078A1 (en) * 2012-11-23 2015-11-05 Teijin Aramid B.V. Electrical insulating paper
US9922750B2 (en) * 2012-11-23 2018-03-20 Teijin Aramid B.V. Electrical insulating paper
KR20180059229A (en) * 2016-11-25 2018-06-04 주식회사 휴비스 Aramid Paper Having Excellent Withstand Voltage
KR101895551B1 (en) * 2016-11-25 2018-09-06 주식회사 휴비스 Aramid Paper Having Excellent Withstand Voltage
US10978970B2 (en) 2017-06-02 2021-04-13 Olympus Corporation Apparatus and control apparatus for the same
WO2019093305A1 (en) * 2017-11-07 2019-05-16 特種東海製紙株式会社 Insulating sheet
CN111295479A (en) * 2017-11-07 2020-06-16 特种东海制纸株式会社 Insulating sheet
KR20200077530A (en) 2017-11-07 2020-06-30 도쿠슈 도카이 세이시 가부시키가이샤 Insulation sheet
JPWO2019093305A1 (en) * 2017-11-07 2020-12-24 特種東海製紙株式会社 Insulating sheet

Also Published As

Publication number Publication date
KR20170099968A (en) 2017-09-01
TW201624499A (en) 2016-07-01
JPWO2016103966A1 (en) 2017-11-02
TWI665686B (en) 2019-07-11

Similar Documents

Publication Publication Date Title
EP1756360B1 (en) Aramid paper blend
WO2016103966A1 (en) Insulating paper
KR20080024144A (en) Electroconductive aramid paper
RU2656226C2 (en) Electrical insulation paper
TWI601582B (en) Method for producing raw material for papermaking, raw material for papermaking obtained, and heat-resistant electrical insulating sheet using the same
JP5144767B2 (en) Paper containing flocs derived from diaminodiphenyl sulfone
JP2021525318A (en) Aramid-based paper with improved properties
CN107849813B (en) Aramid paper, method of making and use thereof
JPWO2019093305A1 (en) Insulating sheet
JP6649701B2 (en) Aramid paper and method for producing the same
US8168039B2 (en) Electroconductive aramid paper and tape made therefrom
JP6405583B2 (en) Insulating paper
KR20140134874A (en) Electroconductive Aramid Paper Having Excellent Tensile Strength
JP7183073B2 (en) Aramid paper manufacturing method
KR102004582B1 (en) Aramid-polytetrafluoroethylene composite sheet, method for producing same, and high frequency device using same
KR101700827B1 (en) Aromatic polyamide laminated sheet and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177020180

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15872535

Country of ref document: EP

Kind code of ref document: A1