WO2016101651A1 - 一种将卫星信号分为八频点进行处理的方法 - Google Patents

一种将卫星信号分为八频点进行处理的方法 Download PDF

Info

Publication number
WO2016101651A1
WO2016101651A1 PCT/CN2015/088918 CN2015088918W WO2016101651A1 WO 2016101651 A1 WO2016101651 A1 WO 2016101651A1 CN 2015088918 W CN2015088918 W CN 2015088918W WO 2016101651 A1 WO2016101651 A1 WO 2016101651A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
gps
frequency
satellite
frequency points
Prior art date
Application number
PCT/CN2015/088918
Other languages
English (en)
French (fr)
Inventor
侯勇涛
张晓飞
车相慧
Original Assignee
上海华测导航技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华测导航技术股份有限公司 filed Critical 上海华测导航技术股份有限公司
Priority to KR1020167031450A priority Critical patent/KR101947885B1/ko
Priority to US15/305,352 priority patent/US9739889B2/en
Priority to EP15871725.6A priority patent/EP3239739B1/en
Publication of WO2016101651A1 publication Critical patent/WO2016101651A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/32Multimode operation in a single same satellite system, e.g. GPS L1/L2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/33Multimode operation in different systems which transmit time stamped messages, e.g. GPS/GLONASS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/09Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing processing capability normally carried out by the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption

Definitions

  • the present invention relates to the field of satellite navigation technology, and in particular, to processing a satellite signal into eight frequency points for processing.
  • the Beidou navigation satellite system is compatible with other GPS navigation systems such as the US GPS (global position system), the Russian G ONASS (Global Navigation Satellite System) and the European Union Galileo system. It can be used around the world, all day, all day. Users provide high-precision, highly reliable positioning, navigation, and timing services.
  • the existing eight-frequency satellite signal processing method has a complicated structure, and uses a large number of input interfaces, amplifiers,
  • the local oscillator circuit and the mixing circuit use a large number of circuits to greatly increase the PCB size, which is not conducive to miniaturization of the satellite positioning receiver, and increases the power consumption of the satellite receiver, and also increases the hardware cost, thereby achieving reception.
  • Eight-frequency satellite signals have increased the difficulty.
  • the present invention provides a method for dividing satellite signals into
  • the method of processing includes the following steps:
  • the amplified satellite signal is divided into GPS 1, GPS 2, GPS 5, BDB1, BDB by a power dividing circuit.
  • BDB3, G N 1 and G N 2 have a total of eight frequency RF signals
  • GPS 1, BDB1, BDB3, and GN 2 signals Mixing GPS 5, GPS 5, BDB2, BDB3, and GN 2 signals, and mixing the GPS 2, GPS 5, BDB2, BDB3, and GN 2 signals with unmixed
  • the GPS 1, BDB1 and GN 1 three-way signals have a total of 8 frequency RF signals for filtering;
  • the filtered 8 frequency RF signals are downconverted and A ⁇ D converted and output to the baseband portion for baseband
  • the baseband signal processing comprises: capturing after reading a correlation value from a baseband
  • the capturing may specifically be: adopting a method based on matched filtering and FFT
  • the traction may be specifically: if the capture is confirmed to be successful, the code ring is used.
  • the frequency-locked loop performs dynamic range traction on the code phase and carrier frequency.
  • the tracking may be specifically: after the traction is successful and the phase locking is successful
  • the code phase and the carrier frequency are tracked by using a code loop of a suitable bandwidth and a phase locked loop.
  • the synchronizing and demodulating may specifically be: performing bit synchronization, demodulating and discharging
  • the observation measurement extraction may be specifically: after synchronization and demodulation are successful
  • the avionics decoding obtaining the ephemeris and almanac information, obtaining the satellite position, satellite speed information and parameters used for the navigation and positioning solution from the ephemeris.
  • the amplified satellite signal is divided into GPS by a power dividing circuit
  • the volume is as follows: The amplified satellite signal is divided into GPS signals of GPS 1, GPS 2, GPS 5, BDB1, BDB2, BDB3, GN 1 and GN 2 through a first-order power split and a second-level power split.
  • the specific implementation manner of mixing the GPS 2, GPS 5, BDB2, BDB3, and GN 2 five-way signals may be: outputting two carrier signals through the local oscillator circuit, The two local oscillator signals are divided into five channels and mixed with the GPS 2, GPS 5, BDB2, BDB3 and GN 2 signals.
  • the filtered 8 frequency RF signals are downconverted and A ⁇ D converted.
  • the specific change may be: down-converting the filtered RF frequency point signal to a frequency signal suitable for baseband processing, then performing A/D conversion, and quantizing the down-converted analog satellite signal into a digital signal.
  • the power dividing circuit divides the amplified satellite signal into GPS signals of GPS 1, GPS 2, GPS 5, BDB1, BDB2, BD B3, GN 1 and GN 2 with a total of eight frequency points, and will be GPS 2, GPS 5, BDB2 , BDB3 and GN 2 five-way signal for mixing processing, and mixed GPS 2, GPS 5, BDB2, BDB3 and GN 2 signals and unmixed GPS 1, BDB1 and GN 1 three signals A total of 8 frequency RF signals are filtered; finally, the filtered 8 frequency RF signals are downconverted and A ⁇ D converted and output to the baseband part for baseband signal processing, the GPS 2, GPS 5, BDB2 BDB3 and GN 2 are low-frequency signals, and are mixed with a low local oscillator circuit to obtain a signal of 1550MHz-1611MHz, which is balanced with the three signals of GPS 1, BDB1 and GN 1 to save multiple mixing circuits and multiple local oscillators.
  • the circuit and a plurality of input amplifying circuits greatly reduce the difficulty, save power consumption,
  • FIG. 1 is a schematic diagram of a method for processing a satellite signal into eight frequency points according to the present invention
  • FIG. 2 is a circuit diagram showing a method for processing a satellite signal into eight frequency points for processing according to the present invention.
  • the method of dividing the number into eight frequency points includes the following steps:
  • Step S1 amplifying the satellite signal received by the antenna
  • step S1 for amplifying the satellite signal received by the antenna may be:
  • the star navigation signal enters the receiver via the antenna, and then the analog satellite navigation signal enters the low noise amplifier, which amplifies the received signal.
  • the antenna can receive a three-system satellite navigation signal.
  • Step S2 dividing the amplified satellite signal into a radio frequency signal of eight frequency points of GPS 1, GPS 2, GPS 5, B DB1, BDB2, BDB3, G N 1 and G N 2 through the power dividing circuit;
  • the step S2 divides the amplified satellite signal into a specific frequency of eight frequency points of GPS 1, GPS 2, GPS 5, BDB1, BDB2, BDB3, GN 1 and GN 2 through the power dividing circuit.
  • the embodiment may be: the analog satellite navigation signal is amplified by step S1, and then divided into GPS 1, GPS 2, GPS 5, BDB1, BDB2, BDB3, GN 1 and after the first-level power division and the second-level power division.
  • GN 2 has a total of eight frequency RF signals.
  • Step S3 Mixing the five signals of GPS 2, GPS 5, BDB2, BDB3, and GN 2, and mixing the GPS 2, GPS 5, BDB2, BDB3, and GN 2 signals with the mixed processing
  • the unmixed GPS 1, B DB1 and GN 1 three-way signals have a total of 8 frequency RF signals for filtering;
  • the step S3 performs mixing processing on the five signals of GPS 2, GPS 5, BDB2, BDB3 and GN 2, and the five signals of GPS 2, GPS 5, BDB2, BDB3 and GN 2 after mixing processing
  • the specific implementation manner of filtering the signal with 8 frequency points of the GPS signals of the unmixed GPS 1 , BDB1 and GN 1 signals may be :
  • the GPS 2, GPS 5, BDB2, BDB3, and GN 2 signals obtained after the processing in step S2 are mixed by the mixing circuit, specifically, the two carrier signals are respectively output through the local oscillator circuit, and the two paths are respectively
  • the vibration signal is divided into 5 channels and mixed with the GPS 2, GPS 5, BDB2, BDB3 and GN 2 signals by the mixer, and then the GPS 2, GPS 5, BDB2, BDB3 and GN 2 are mixed.
  • the five-way signal and the unmixed GPS 1, BDB1 and GN 1 three-way signals have a total of eight frequency RF signals for filtering.
  • the mixing circuit includes two parts, a local oscillator circuit and a mixer.
  • the local oscillator circuit outputs two carrier signals of 330M and 390M respectively.
  • the two local oscillator signals are divided into five channels, and the five satellite signals of GPS 2, GPS 5, BDB2, BDB3 and G N 2 are mixed by a mixer.
  • the carrier signal frequencies before and after mixing are as follows.
  • the filter In practical applications, in order for the baseband signal processing section to use a narrow correlation to improve the pseudorange measurement accuracy, the filter here uses a wider bandwidth.
  • Step S4 performing down-conversion and A/D conversion on the filtered 8 frequency-frequency RF signals, and outputting to the baseband portion for baseband signal processing;
  • the step S4 performs the down conversion and the A/D conversion of the filtered 8 frequency RF signals, and outputs the signals to the baseband portion for baseband signal processing.
  • the specific implementation manner of the method is as follows: The point signal is down-converted to a frequency signal suitable for baseband processing, and then subjected to A/D conversion, and the down-converted analog satellite signal is quantized into a digital signal, and then subjected to baseband signal processing by a baseband signal processing circuit.
  • the baseband signal processing includes: capturing, pulling, tracking, synchronizing, demodulating, and observing extraction after reading the correlation value from the baseband.
  • the capturing may specifically be: performing fast acquisition of the satellite signal by using matched filtering and FFT to obtain code phase and Doppler information under a wide range of uncertainty.
  • the specific traction may be: if the capture is confirmed to be successful, the code ring and the frequency-locked loop are used to perform dynamic range traction on the code phase and the carrier frequency.
  • the tracking may be specifically: after the traction is successful and the phase locking is successful and the frequency is locked, the appropriate one is adopted.
  • the code ring of the bandwidth and the phase locked loop track the code phase and the carrier frequency.
  • the synchronization and demodulation may specifically be: performing bit synchronization, demodulating a teletext data bit stream, and
  • the star and the Beidou II GEO satellite are synchronized by histogram.
  • Beidou II ME0/IGS0 there is an NH code, which is synchronized by the matched filtering method, and then converted to frame synchronization.
  • the observation measurement extraction may be specifically: after the synchronization and demodulation succeeds, the navigation message is decoded, and the ephemeris is obtained.
  • the almanac information from the ephemeris calendar, obtains the satellite position, satellite speed information and parameters used for navigation and positioning calculations.
  • the power dividing circuit divides the amplified satellite signal into GPS signals of GPS 1, GPS 2, GPS 5, BDB1, BDB2, BD B3, GN 1 and GN 2 with a total of eight frequency points, and will be GPS 2, GPS 5, BDB2 , BDB3 and GN 2 five-way signal for mixing processing, and mixed GPS 2, GPS 5, BDB2, BDB3 and GN 2 signals and unmixed GPS 1, BDB1 and GN 1 three signals A total of 8 frequency RF signals are filtered; finally, the filtered 8 frequency RF signals are downconverted and A ⁇ D converted and output to the baseband part for baseband signal processing, the GPS 2, GPS 5, BDB2 BDB3 and GN 2 are low-frequency signals, and are mixed with a low local oscillator circuit to obtain a signal of 1550MHz-1611MHz, which is balanced with the three signals of GPS 1, BDB1 and GN 1 to save multiple mixing circuits and multiple local oscillators.
  • the circuit and a plurality of input amplifying circuits greatly reduce the difficulty, save power consumption,

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种将卫星信号分为八频点进行处理的方法,包括以下步骤:将天线接收的卫星信号进行放大处理(S1);通过功分电路将放大处理后的卫星信号分为GPSL1、GPSL2、GPSL5、BDB1、BDB2、BDB3、GLN L1和GLNL2共八个频点的射频信号(S2);将GPSL2、GPSL5、BDB2、BDB3和GLNL2五路信号进行混频处理,并将混频处理后的五路信号与未混频的三路信号共8个频点射频信号进行滤波处理(S3);将滤波后的8个频点射频信号进行下变频及A\D转换后输出给基带部分进行基带信号处理(S4)。该方法能同时接收处理G PS、GLONASS和BD的共八个频点的卫星信号,节省了功耗,缩减了硬件尺寸和成本。

Description

说明书 发明名称: 一种将卫星信号分为八频点进行处理的方法
技术领域
[0001] 本发明涉及卫星导航技术领域, 尤其涉及一种将卫星信号分为八频点进行处理
的方法。
背景技术
[0002] 随着我国的北斗卫星导航系统组网建设, 北斗导航卫星系统在 2012年正式提供
区域服务。 北斗导航卫星系统可与美国 GPS ( global position system) 、 俄罗 斯 G ONASS (Global Navigation Satellite System ) 和欧盟伽利略系统等世 界其他卫星导航系统兼容共用, 可在全球范围内全天候、 全天时, 为各类用户 提供高精度、 高可靠的定位、 导航、 授时服务。
[0003] 但是目前大多数具有卫星导航接收机基带部分只能接收处理 BD2的 Bl、 GPS的 1 与 G 0NASS的 1中一个或者几个频点信号的组合, 很少能同时接收处理 GPS
1/ 2/ 5、 G 0NASS 1/ 2和 BD B1C/B2C/B3C八个频点的卫星信号, 导致可用频 点个数较少, 对于差分定位等需要较多频点的原始观测量类型的场合, 差分解 算至少需要一个系统的两个或者两个以上频点类型信号的原始观测量, 这种情 况显然已经不能适用于现在的发展。
[0004] 现有的八频点卫星信号处理方法结构复杂, 使用了大量的输入接口、 放大器、
本振电路和混频电路, 使用大量的电路大大的增加了 PCB尺寸, 不利于卫星定位 接收机小型化, 而且增加了卫星接收机的功耗, 同时还增加了硬件成本, 为此 导致实现接收八频点卫星信号增加了难度。
发明概述
问题的解决方案
技术解决方案
[0005] 鉴于目前卫星导航技术领域存在的上述不足, 本发明提供一种将卫星信号分为
八频点进行处理的方法, 能同时接收处理 GPS 1/ 2/ 5、 G 0NASS 1/ 2和 BD B1C/B2C/B3C八个频点的卫星信号, 节省了功耗, 缩减了硬件尺寸和成本。 [0006] 为达到上述目的, 本发明的实施例采用如下技术方案:
[0007] 一种将卫星信号分为八频点进行处理的方法, 所述将卫星信号分为八频点进行
处理的方法包括以下步骤:
[0008] 将天线接收的卫星信号进行放大处理;
[0009] 通过功分电路将放大处理后的卫星信号分为 GPS 1、 GPS 2、 GPS 5、 BDB1、 BDB
2、 BDB3、 G N 1和 G N 2共八个频点的射频信号;
[0010] 将 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号进行混频处理, 并将混频处理 后的 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号与未混频的 GPS 1、 BDB1和 G N 1三路信号共 8个频点射频信号进行滤波处理;
[0011] 将滤波后的 8个频点射频信号进行下变频及 A\D转换后输出给基带部分进行基带
信号处理。
[0012] 依照本发明的一个方面, 所述基带信号处理包括: 从基带读取相关值后的捕获
、 牵引、 跟踪、 同步及解调和观测量提取。
[0013] 依照本发明的一个方面, 所述捕获具体可为: 采用基于匹配滤波与 FFT的方式
对卫星信号进行快速的捕获, 以获得大范围不确定度下的码相位与多普勒信息
[0014] 依照本发明的一个方面, 所述牵引具体可为: 若确认捕获成功, 则采用码环与
锁频环对码相位和载波频率进行动态范围牵引。
[0015] 依照本发明的一个方面, 所述跟踪具体可为: 牵引成功后并成功进行相位锁定
且频率锁定, 则采用合适带宽的码环与锁相环进行码相位和载波频率的跟踪。
[0016] 依照本发明的一个方面, 所述同步及解调具体可为: 进行比特同步, 解调出电
文数据比特流, 对 GPS卫星与北斗二 GEO卫星采用直方图同步, 对北斗二 ME0/IGS
0因有 NH码, 采用匹配滤波方法同步, 从而转为帧同步。
[0017] 依照本发明的一个方面, 所述观测量提取具体可为: 同步及解调成功后进行导
航电文译码, 获取星历、 历书信息, 从星历历书获得导航定位解算所用的卫星 位置、 卫星速度信息及参数。
[0018] 依照本发明的一个方面, 所述通过功分电路将放大处理后的卫星信号分为 GPS
1、 GPS 2、 GPS 5、 BDB1、 BDB2、 BDB3、 G N 1和 G N 2共八个频点的射频信号具 体为: 放大后的卫星信号经过一级功分与二级功分分为 GPS 1、 GPS 2、 GPS 5、 BDB1、 BDB2、 BDB3、 G N 1和 G N 2共八个频点的射频信号。
[0019] 依照本发明的一个方面, 所述将 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号 进行混频处理的具体实施方式可为: 通过本振电路分别输出两路载波信号, 将 两路本振信号功分为 5路通过混频器分别与 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2 五路信号进行混频。
[0020] 依照本发明的一个方面, 所述将滤波后的 8个频点射频信号进行下变频及 A\D转
换具体可为: 将滤波处理后的射频频点信号下变频到适合于基带处理的频率信 号, 之后进行 A\D转换, 把下变频后的模拟卫星信号量化为数字信号。
发明的有益效果
有益效果
[0021] 本发明实施的优点: 本发明所述的将卫星信号分为八频点进行处理的方法通过
功分电路将放大处理后的卫星信号分为 GPS 1、 GPS 2、 GPS 5、 BDB1、 BDB2、 BD B3、 G N 1和 G N 2共八个频点的射频信号, 将 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号进行混频处理, 并将混频处理后的 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号与未混频的 GPS 1、 BDB1和 G N 1三路信号共 8个频点射频信号进行滤 波处理; 最后将滤波后的 8个频点射频信号进行下变频及 A\D转换后输出给基带 部分进行基带信号处理, 所述 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2为低频信号, 用低本振电路与其混频得到 1550MHz-1611MHz信号, 与所述 GPS 1、 BDB1和 G N 1 三路信号频率平衡, 节省了多个混频电路、 多个本振电路以及多个输入放大电 路, 为实现北斗 +GPS+G 0NASS三系统八频点卫星定位接收机大大的降低了难度 、 节省了功耗、 缩减硬件尺寸和成本。
对附图的简要说明
附图说明
[0022] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例中所需要使用
的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实 施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。 [0023] 图 1为本发明所述的 -种将卫星信号分为八频点进行处理的方法示意图;
[0024] 图 2为本发明所述的 -种将卫星信号分为八频点进行处理的方法的电路结构示
意图。
[0025] 本发明实施方式
[0026] 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、
完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部 的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
[0027] 如图 1和图 2所示, 一种将卫星信号分为八频点进行处理的方法, 所述将卫星信
号分为八频点进行处理的方法包括以下步骤:
[0028] 步骤 S 1 : 将天线接收的卫星信号进行放大处理;
[0029] 所述步骤 S 1将天线接收的卫星信号进行放大处理的具体实施方式可为: 模拟卫
星导航信号经由天线进入接收机中, 然后所述模拟卫星导航信号进入低噪声放 大器, 放大器对接收到的信号进行放大处理。
[0030] 在实际应用中, 所述天线能接收三系统卫星导航信号。
[0031] 步骤 S2 : 通过功分电路将放大处理后的卫星信号分为 GPS 1、 GPS 2、 GPS 5、 B DB1、 BDB2、 BDB3、 G N 1和 G N 2共八个频点的射频信号;
[0032] 所述步骤 S2通过功分电路将放大处理后的卫星信号分为 GPS 1、 GPS 2、 GPS 5 、 BDB1、 BDB2、 BDB3、 G N 1和 G N 2共八个频点的射频信号的具体实施方式可 为: 所述模拟卫星导航信号经步骤 S 1进行放大后, 再经过一级功分与二级功分 分为 GPS 1、 GPS 2、 GPS 5、 BDB1、 BDB2、 BDB3、 G N 1和 G N 2共八个频点的射 频信号。
[0033] 步骤 S3 : 将 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号进行混频处理, 并将 混频处理后的 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号与未混频的 GPS 1、 B DB1和 G N 1三路信号共 8个频点射频信号进行滤波处理;
[0034] 所述步骤 S3将 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号进行混频处理, 并 将混频处理后的 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号与未混频的 GPS 1 、 BDB1和 G N 1三路信号共 8个频点射频信号进行滤波处理的具体实施方式可为 : 将经过步骤 S2处理后获得的 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号通过 混频电路进行混频处理, 具体是通过本振电路分别输出两路载波信号, 将两路 本振信号功分为 5路通过混频器分别与 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路 信号进行混频, 然后将混频后的 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号与 未混频的 GPS 1、 BDB1和 G N 1三路信号共 8个频点射频信号进行滤波处理。
[0035] 所述混频电路包括两部分, 本振电路和混频器。 本振电路输出两路载波信号分 别为 330M和 390M; 把两路本振信号功分为 5路, 与 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路卫星信号经混频器混频。 混频前后载波信号频率如下表。
[] [表 1]
Figure imgf000006_0001
[0036] 在实际应用中, 为了使基带信号处理部分使用窄相关提高伪距测量值精 度, 此处滤波器使用较宽的带宽。
[0037] 步骤 S4: 将滤波后的 8个频点射频信号进行下变频及 A\D转换后输出给基带部分 进行基带信号处理;
[0038] 所述步骤 S4将滤波后的 8个频点射频信号进行下变频及 A\D转换后输出给基带部 分进行基带信号处理的具体实施方式可为: 将滤波处理后的 8路射频频点信号下 变频到适合于基带处理的频率信号, 之后进行 A\D转换, 把下变频后的模拟卫星 信号量化为数字信号, 然后通过基带信号处理电路进行基带信号处理。
[0039] 在实际应用中, 所述基带信号处理包括: 从基带读取相关值后的捕获、 牵引、 跟踪、 同步及解调和观测量提取。
[0040] 所述捕获具体可为: 采用基于匹配滤波与 FFT的方式对卫星信号进行快速的捕 获, 以获得大范围不确定度下的码相位与多普勒信息。 [0041] 所述牵引具体可为: 若确认捕获成功, 则采用码环与锁频环对码相位和载波频 率进行动态范围牵引。
[0042] 所述跟踪具体可为: 牵引成功后并成功进行相位锁定且频率锁定, 则采用合适
带宽的码环与锁相环进行码相位和载波频率的跟踪。
[0043] 所述同步及解调具体可为: 进行比特同步, 解调出电文数据比特流, 对 GPS卫
星与北斗二 GEO卫星采用直方图同步, 对北斗二 ME0/IGS0因有 NH码, 采用匹配滤 波方法同步, 从而转为帧同步。
[0044] 所述观测量提取具体可为: 同步及解调成功后进行导航电文译码, 获取星历、
历书信息, 从星历历书获得导航定位解算所用的卫星位置、 卫星速度信息及参 数。
[0045] 本发明实施的优点: 本发明所述的将卫星信号分为八频点进行处理的方法通过
功分电路将放大处理后的卫星信号分为 GPS 1、 GPS 2、 GPS 5、 BDB1、 BDB2、 BD B3、 G N 1和 G N 2共八个频点的射频信号, 将 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号进行混频处理, 并将混频处理后的 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号与未混频的 GPS 1、 BDB1和 G N 1三路信号共 8个频点射频信号进行滤 波处理; 最后将滤波后的 8个频点射频信号进行下变频及 A\D转换后输出给基带 部分进行基带信号处理, 所述 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2为低频信号, 用低本振电路与其混频得到 1550MHz-1611MHz信号, 与所述 GPS 1、 BDB1和 G N 1 三路信号频率平衡, 节省了多个混频电路、 多个本振电路以及多个输入放大电 路, 为实现北斗 +GPS+G 0NASS三系统八频点卫星定位接收机大大的降低了难度 、 节省了功耗、 缩减硬件尺寸和成本。
[0046] 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此,
任何熟悉本领域技术的技术人员在本发明公开的技术范围内, 可轻易想到的变 化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应以 所述权利要求的保护范围为准.

Claims

权利要求书
根据权利要求 1所述的将卫星信号分为八频点进行处理的方法, 其特 征在于, 所述基带信号处理包括: 从基带读取相关值后的捕获、 牵引 、 跟踪、 同步及解调和观测量提取。
根据权利要求 1所述的将卫星信号分为八频点进行处理的方法, 其特 征在于, 所述基带信号处理包括: 从基带读取相关值后的捕获、 牵引 、 跟踪、 同步及解调和观测量提取。
根据权利要求 2所述的将卫星信号分为八频点进行处理的方法, 其特 征在于, 所述捕获具体可为: 采用基于匹配滤波与 FFT的方式对卫星 信号进行快速的捕获, 以获得大范围不确定度下的码相位与多普勒信 息。
根据权利要求 3所述的将卫星信号分为八频点进行处理的方法, 其特 征在于, 所述牵引具体可为: 若确认捕获成功, 则采用码环与锁频环 对码相位和载波频率进行动态范围牵引。
根据权利要求 4所述的将卫星信号分为八频点进行处理的方法, 其特 征在于, 所述跟踪具体可为: 牵引成功后并成功进行相位锁定且频率 锁定, 则采用合适带宽的码环与锁相环进行码相位和载波频率的跟踪 根据权利要求 5所述的将卫星信号分为八频点进行处理的方法, 其特 征在于, 所述同步及解调具体可为: 进行比特同步, 解调出电文数据 比特流, 对 GPS卫星与北斗二 GEO卫星采用直方图同步, 对北斗二 ME0/ IGS0因有 NH码, 采用匹配滤波方法同步, 从而转为帧同步。
根据权利要求 6所述的将卫星信号分为八频点进行处理的方法, 其特 征在于, 所述观测量提取具体可为: 同步及解调成功后进行导航电文 译码, 获取星历、 历书信息, 从星历历书获得导航定位解算所用的卫 星位置、 卫星速度信息及参数。
根据权利要求 1所述的将卫星信号分为八频点进行处理的方法, 其特 征在于, 所述通过功分电路将放大处理后的卫星信号分为 GPS 1、 GPS 2、 GPS 5、 BDB1、 BDB2、 BDB3、 G N 1和 G N 2共八个频点的射频信 号具体为: 放大后的卫星信号经过一级功分与二级功分分为 GPS 1、 G PS 2、 GPS 5、 BDB1、 BDB2、 BDB3、 G N 1和 G N 2共八个频点的射频 信号。
[权利要求 9] 根据权利要求 1至 8之一所述的将卫星信号分为八频点进行处理的方法
, 其特征在于, 所述将 GPS 2、 GPS 5、 BDB2、 BDB3和 G N 2五路信号 进行混频处理的具体实施方式可为: 通过本振电路分别输出两路载波 信号, 将两路本振信号功分为 5路通过混频器分别与 GPS 2、 GPS 5、 B DB2、 BDB3和 G N 2五路信号进行混频。
[权利要求 10] 根据权利要求 9所述的将卫星信号分为八频点进行处理的方法, 其特
征在于, 所述将滤波后的 8个频点射频信号进行下变频及 A\D转换具体 可为: 将滤波处理后的射频频点信号下变频到适合于基带处理的频率 信号, 之后进行 A\D转换, 把下变频后的模拟卫星信号量化为数字信 号。
PCT/CN2015/088918 2014-12-26 2015-09-02 一种将卫星信号分为八频点进行处理的方法 WO2016101651A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167031450A KR101947885B1 (ko) 2014-12-26 2015-09-02 위성 신호의 처리를 위하여 8개의 주파수 채널로 분할하는 방법
US15/305,352 US9739889B2 (en) 2014-12-26 2015-09-02 Method of dividing satellite signal into eight frequency points for processing
EP15871725.6A EP3239739B1 (en) 2014-12-26 2015-09-02 Method dividing satellite signals into eight frequency points for processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410855750.7A CN105319564A (zh) 2014-12-26 2014-12-26 一种将卫星信号分为八频点进行处理的方法
CN201410855750.7 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016101651A1 true WO2016101651A1 (zh) 2016-06-30

Family

ID=55247368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088918 WO2016101651A1 (zh) 2014-12-26 2015-09-02 一种将卫星信号分为八频点进行处理的方法

Country Status (5)

Country Link
US (1) US9739889B2 (zh)
EP (1) EP3239739B1 (zh)
KR (1) KR101947885B1 (zh)
CN (1) CN105319564A (zh)
WO (1) WO2016101651A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962732B (zh) * 2019-03-27 2021-07-27 上海精密计量测试研究所 一种高速数传基带测试设备校准装置及方法
CN115856943A (zh) * 2022-12-27 2023-03-28 浙江众星志连科技有限责任公司 一种基于三线天线的星载全视场四模gnss接收系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198160A (zh) * 2007-05-25 2008-06-11 北京大学 采用单通路射频前端实现gnss多模并行接收的方法及装置
CN201707440U (zh) * 2010-07-05 2011-01-12 西安展意信息科技有限公司 高动态gnss多模卫星导航接收机集成模块装置
CN101978285A (zh) * 2008-02-20 2011-02-16 天宝导航有限公司 Gnss接收器中的采样抽取
US20110115672A1 (en) * 2009-11-17 2011-05-19 Samsung Electronics Co., Ltd. Navigation receivers and navigation methods thereof
CN102096079A (zh) * 2009-12-12 2011-06-15 杭州中科微电子有限公司 一种多模式多频段卫星导航接收机射频前端构成方法及其模块
CN103117767A (zh) * 2013-01-15 2013-05-22 武汉大学 一种多模多频全球导航卫星系统接收机射频前端装置
CN103412317A (zh) * 2013-08-15 2013-11-27 上海司南卫星导航技术有限公司 实现gnss卫星信号转换为基带信号功能的射频电路结构
CN203535230U (zh) * 2013-08-15 2014-04-09 上海司南卫星导航技术有限公司 实现gnss卫星信号转换为基带信号的射频电路结构
CN103885072A (zh) * 2014-04-14 2014-06-25 哈尔滨工业大学 单射频前端采集多频点多系统卫星导航信号的方法及实现该方法的装置
CN204405846U (zh) * 2014-12-26 2015-06-17 上海华测导航技术股份有限公司 用于将卫星信号分八频点处理的射频部分结构

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333053B2 (en) * 2004-04-29 2008-02-19 Novariant Inc. Signal path system and method for a ranging signal receiver
US7310064B2 (en) * 2004-04-29 2007-12-18 Novariant Inc. Rebroadcasting method and system for navigation signals
US7720178B2 (en) * 2006-08-11 2010-05-18 Mediatek Inc. Method of direct RF digitization for multiple GNSS system bands and receiver using the same
ITTO20070566A1 (it) * 2007-07-31 2009-02-01 Fondazione Torino Wireless Architettura front-end a radiofrequenze per un ricevitore di posizionamento e metodo per ricevere simultaneamente una prima ed una seconda banda di frequenza di un segnale satellitare
CN101424732B (zh) * 2007-10-31 2011-08-17 中国科学院微电子研究所 全球定位系统中的接收机快速启动和定位的方法
US7982668B2 (en) * 2008-10-07 2011-07-19 Qualcomm Incorporated Method for processing combined navigation signals
JP4650554B2 (ja) * 2008-10-22 2011-03-16 ソニー株式会社 無線受信機
CN101726724B (zh) * 2008-10-29 2012-02-08 中国科学院微电子研究所 一种全球定位系统接收机的快速比特同步方法
CN101441259B (zh) * 2008-12-18 2011-10-26 中国科学院微电子研究所 一种全球定位系统接收机的自辅助跟踪系统及其跟踪方法
CN102109604B (zh) * 2009-12-28 2012-10-31 中国科学院微电子研究所 Gps/galileo导航基带处理芯片及导航接收机
FR2974185B1 (fr) * 2011-04-14 2014-01-17 Thales Sa Recepteur bi-frequences de positionnement par satellites et procede de reception associe
US8582693B2 (en) * 2011-08-04 2013-11-12 Mediatek Singapore Pte. Ltd. Wireless receiver applicable to multiple coexisting positioning systems
CN202583465U (zh) * 2012-03-19 2012-12-05 马文忠 一种单频多系统gnss射频信号接收装置
CN103323863B (zh) * 2012-03-20 2015-07-01 中国科学院微电子研究所 Gnss信号自适应快速牵引方法
KR20140014507A (ko) * 2012-07-24 2014-02-06 (주)아이씨티시스템 조립식 프로파일
US8874063B2 (en) * 2013-03-08 2014-10-28 Qualcomm Incorporated Simultaneous signal receiver with interspersed frequency allocation
US9482760B2 (en) * 2013-06-12 2016-11-01 Samsung Electronics Co., Ltd Receiver for simultaneous reception of signals from multiple GNSS satellite systems
TWI489796B (zh) * 2013-11-14 2015-06-21 Realtek Semiconductor Corp 無線訊號接收裝置與方法
CN203554427U (zh) * 2013-11-21 2014-04-16 武汉大学 一种多频接收机射频前端装置
CN203554424U (zh) * 2013-11-27 2014-04-16 武汉大学 基于八元天线阵列的gnss抗干扰接收机射频前端装置
WO2015125700A1 (ja) * 2014-02-24 2015-08-27 ソニー株式会社 受信装置
US9977132B2 (en) * 2014-07-09 2018-05-22 Samsung Electronics Co., Ltd Architecture for power consumption reduction in GNSS receivers
CN204028365U (zh) * 2014-08-29 2014-12-17 西安展意信息科技有限公司 一种基于北斗高动态三模卫星接收机装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198160A (zh) * 2007-05-25 2008-06-11 北京大学 采用单通路射频前端实现gnss多模并行接收的方法及装置
CN101978285A (zh) * 2008-02-20 2011-02-16 天宝导航有限公司 Gnss接收器中的采样抽取
US20110115672A1 (en) * 2009-11-17 2011-05-19 Samsung Electronics Co., Ltd. Navigation receivers and navigation methods thereof
CN102096079A (zh) * 2009-12-12 2011-06-15 杭州中科微电子有限公司 一种多模式多频段卫星导航接收机射频前端构成方法及其模块
CN201707440U (zh) * 2010-07-05 2011-01-12 西安展意信息科技有限公司 高动态gnss多模卫星导航接收机集成模块装置
CN103117767A (zh) * 2013-01-15 2013-05-22 武汉大学 一种多模多频全球导航卫星系统接收机射频前端装置
CN103412317A (zh) * 2013-08-15 2013-11-27 上海司南卫星导航技术有限公司 实现gnss卫星信号转换为基带信号功能的射频电路结构
CN203535230U (zh) * 2013-08-15 2014-04-09 上海司南卫星导航技术有限公司 实现gnss卫星信号转换为基带信号的射频电路结构
CN103885072A (zh) * 2014-04-14 2014-06-25 哈尔滨工业大学 单射频前端采集多频点多系统卫星导航信号的方法及实现该方法的装置
CN204405846U (zh) * 2014-12-26 2015-06-17 上海华测导航技术股份有限公司 用于将卫星信号分八频点处理的射频部分结构

Also Published As

Publication number Publication date
EP3239739A1 (en) 2017-11-01
CN105319564A (zh) 2016-02-10
EP3239739B1 (en) 2019-06-12
US9739889B2 (en) 2017-08-22
EP3239739A4 (en) 2018-03-21
KR101947885B1 (ko) 2019-02-13
US20170038473A1 (en) 2017-02-09
KR20160147813A (ko) 2016-12-23

Similar Documents

Publication Publication Date Title
JP6377963B2 (ja) 多重gnss衛星システムから信号を同時に受信するための受信機
CN105607077B (zh) 一种星载双模四频gnss导航接收机
CN105607076B (zh) 一种北斗二代b1和b3双频接收机
KR101266333B1 (ko) 네비게이션 수신기
US20160195620A1 (en) Radio frequency circuit structure for implementing function of converting gnss satellite signal into baseband signal
CN102809751A (zh) Caps/北斗双模接收机
US9356719B2 (en) Methods of processing a radio frequency signal, signal processing devices for carrying out the methods, radio frequency front-ends, radio receivers and GNSS receivers
CN104536016A (zh) 一种gnss新体制信号捕获装置及方法
CN102141774A (zh) 一种北斗手表快速授时的装置及方法
CN104734640A (zh) 一种变频电路及接收机板卡
CN106526625A (zh) 一种基于能量的频率鉴别方法和装置
Gao et al. Design and implementation of a real‐time software receiver for BDS‐3 signals
WO2016101651A1 (zh) 一种将卫星信号分为八频点进行处理的方法
CN111812686B (zh) 一种导航信号接收机及其时钟分配方法
CN204694850U (zh) 北斗二号卫星导航系统双通道结构的射频接收机
US9453918B2 (en) Apparatus and method for processing radio navigation signals
CN106291624A (zh) 北斗二号卫星导航系统双通道结构的射频接收机
Arvizu et al. GNSS receiver based on a SDR architecture using FPGA devices
CN204465459U (zh) 一种变频电路及接收机板卡
CN203773056U (zh) Gps导航电文采集装置
US10327216B2 (en) Methods and devices for page synchronization of a communication signal
CN110244327A (zh) 一种卫星定位接收机及其射频前端
CN202916446U (zh) 一种双频gps接收机
CN103792549A (zh) 北斗一号卫星导航系统射频接收机
CN108732592B (zh) 基于GNU Radio的GPS软件接收机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15305352

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015871725

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015871725

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167031450

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE