WO2016098841A1 - Optical communication system and optical communication device - Google Patents

Optical communication system and optical communication device Download PDF

Info

Publication number
WO2016098841A1
WO2016098841A1 PCT/JP2015/085290 JP2015085290W WO2016098841A1 WO 2016098841 A1 WO2016098841 A1 WO 2016098841A1 JP 2015085290 W JP2015085290 W JP 2015085290W WO 2016098841 A1 WO2016098841 A1 WO 2016098841A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
communication device
unit
inversion
encoding
Prior art date
Application number
PCT/JP2015/085290
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 竹本
小西 良明
和夫 久保
響子 細井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016564899A priority Critical patent/JP6180665B2/en
Publication of WO2016098841A1 publication Critical patent/WO2016098841A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/14Conversion to or from non-weighted codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/21Non-linear codes, e.g. m-bit data word to n-bit code word [mBnB] conversion with error detection or error correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems

Definitions

  • the present invention relates to an optical communication system that performs communication by encoding a data signal and an optical communication apparatus used in the optical communication system.
  • phase shift keying In communication using Ethernet (registered trademark), USB 3.0, or the like, in order to embed a clock component in serial data, encoding that adjusts a DC balance such as an 8B10B code is widely used.
  • SNR signal-to-noise ratio
  • BPSK binary phase-shift keying
  • BPSK binary phase-shift keying
  • QPSK Quaternary Phase-Shift Keying
  • the present invention has been made to solve the above-described problem, and an optical communication system and an optical communication for determining inversion of data in communication between communication apparatuses without performing differential encoding or insertion of a reference signal
  • the object is to obtain a device.
  • An optical communication system is an optical communication system including a second communication device connected to a first communication device through an optical communication path, and the first communication device is inverted by being encoded.
  • a data generation unit that generates first data including a bit string indicating the same code and generates second data including a bit string indicating a different code when the first data is encoded and inverted when encoded, and a data generation unit
  • An encoder that encodes the data generated by the transmitter, and a transmitter that continuously transmits the first data and the second data encoded by the encoder to the second communication device
  • the second communication device includes a receiver that receives data from the first communication device, a decoding unit that decodes the data received by the receiver, and a second in which the decoded data follows the first data. Contains data If it has, and a reversal determination unit determines that the received signal is inverted through an optical communication path.
  • the optical communication system also includes a first communication device, a second communication device connected to the first communication device via an optical communication path, and data transmitted from the first communication device to the second communication.
  • An optical communication system comprising a third communication device for receiving via the device, wherein the first communication device receives first data comprising a bit string indicating the same code even if it is inverted by being encoded.
  • a data generation unit that generates second data including bit strings indicating different codes when generated and encoded, and an encoding unit that encodes the data generated by the data generation unit; And a transmitter for continuously transmitting the first data and the second data encoded by the encoding unit to the second communication device, wherein the second communication device receives the data from the first communication device.
  • An inversion determination unit that determines that the signal received by the second communication device via the communication path is inverted.
  • the optical communication device is an optical communication device connected to the opposite communication device by an optical communication path, and is transmitted from the opposite communication device, and the same code is obtained even if it is inverted by encoding.
  • a receiver that continuously receives first data consisting of a bit string and a second data consisting of a bit string that indicates a different code when inverted by encoding, and decoding that decodes the data received by the receiver
  • an inversion determination unit that determines that the signal received via the optical communication path is inverted when the decoded data does not include the second data following the first data.
  • the present invention it is possible to determine inversion of data in communication between communication devices without performing differential encoding or insertion of a reference signal between communication devices connected by an optical communication path.
  • FIG. 1 is a block diagram showing the configuration of the optical communication system according to the present embodiment.
  • the optical communication system includes a communication device 1 and a communication device 2, which are connected by an optical communication path 4.
  • the communication device 1 is a communication device on the transmission side that is the first communication device
  • the communication device 2 is the communication device on the reception side that is the second communication device
  • a data signal is transmitted from the communication device 1 to the communication device 2. This will be described as an example.
  • a signal encoded using an 8B10B code is transmitted / received with respect to a data signal to be transmitted.
  • 8B10B encoding is an encoding method used for high-speed serial transmission, and in data transmission to which 8B10B encoding is applied, 8-bit data is converted into 10-bit data and data transfer is performed.
  • a data signal is converted into a symbol by a predetermined conversion table.
  • FIG. 2 shows a part of the conversion table of the 8B10B code.
  • the upper 3 bits are divided into the lower 5 bits
  • 3B4B conversion is performed to convert 3 bits into 4 bits for the upper 3 bits
  • 5 bits are converted to 6 bits for the lower 5 bits. 5B6B conversion is performed.
  • A value obtained by subtracting the number of 0s from the number of 1s in the bit string is referred to as disparity.
  • the cumulative total disparity in the data stream is called RD (Running Disparity).
  • RD Reading Disparity
  • CRD Current Running Disparity
  • Current Running Disparity
  • the symbol to be sent next is changed depending on whether the CRD is positive or negative so that one of “0” and “1” does not continue for 6 bits or more, and “1” and “1”
  • the balance of the number “0” is made uniform to solve the problem depending on the DC balance.
  • phase shift keying such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying) is used as a modulation method for converting an encoded data signal into an optical signal.
  • the modulation system is not limited and can be easily extended to DP-BPSK signals, DP-16QAM signals, and other signals.
  • phase shift keying phase slips caused by noise or waveform distortion in the optical communication path occur, and data 1 and 0 are inverted and recognized by the reference phase on the receiving side, and large-scale continuous errors occur. It can happen.
  • the communication device 1 includes a data generation unit 11, an 8B10B encoding unit 12, and an optical transceiver 13.
  • the data generation unit 11 is a data generation unit that generates data (communication data) to be transmitted to the communication device 2 based on information input from an external device omitted in FIG. Further, the data generation unit 11 generates a synchronization signal for synchronizing the communication device 1 and the communication device 2.
  • the code “K28.5” is used as the synchronization signal.
  • “K28.5” is encoded by the 8B10B encoding unit 11 so that the bit strings of CRD + and CRD ⁇ become “110000 0101” and “001111 1010”, respectively, and CRD + and CRD ⁇ Inverted relationship between all bits. That is, it is a bit string indicating the same code even if it is inverted by being encoded (first data).
  • the data generation unit 11 generates a data signal of “D3.1” after the synchronization signal “K28.5” described above.
  • “D3.1” is encoded by the 8B10B encoding unit 12 so that the bit strings of CRD + and CRD ⁇ are both “110001 1001”, and the same between CRD + and CRD ⁇ . It becomes the relationship. Further, when the CRD + and CRD ⁇ are inverted, the code becomes “001110 0110” and becomes a code indicating “D28.6”. That is, a bit string indicating a different code ("D28.6”) when inverted by encoding (second data).
  • the 8B10B encoding unit 12 is an encoding unit that performs 8B10B encoding on the first data, the second data, and the communication data generated by the data generation unit 11.
  • the first data becomes a bit string indicating the same code even when inverted by performing 8B10B encoding.
  • the second data becomes a bit string indicating a different code when inverted by performing 8B10B encoding.
  • the optical transceiver 13 performs phase shift keying on the data encoded in the 8B10B encoding unit 12 to convert it into an optical signal, and outputs the optical signal to the optical communication path 4.
  • it is a transmitter that continuously transmits the first data and the second data encoded by the 8B10B encoder 12 to the second communication device.
  • the communication device 2 includes an optical transmitter / receiver 21, an inversion unit 22, an 8B10B decoding unit 23, and an inversion determination unit 24.
  • the optical transceiver 21 is a receiver that receives an optical signal transmitted from the communication device 1 and demodulates it into a data signal (electric signal).
  • the inversion determination unit 24 determines that the data signal received by the optical transmitter / receiver 21 is “inverted”, the inversion unit 22 inverts the subsequent data signal and sends it to the 8B10B decoding unit 23. Output. Any method for inverting the signal may be used. Here, a multiplexer or an EXOR circuit is used.
  • the data signal sent from the optical transceiver 21 is branched and inverted by inserting a NOT circuit on one side. In the multiplexer, one of the branched signals is selected and output. If it is determined to be “inverted”, the data signal inverted by the NOT circuit is output from the branched signals.
  • the EXOR circuit the data signal sent from the optical transceiver 21 is used as one input of the EXOR circuit, and when the other input is determined to be “inverted”, “1”, “ If it is not determined as “inverted”, “0” is input.
  • it inverts in the stage of an electric signal was shown, it may carry out in the stage of an optical signal, and it may be made to invert by shifting the phase of local light or received light in an optical transceiver. .
  • the 8B10B decoding unit 23 is a decoding unit that performs 8B10B decoding on the data signal received by the optical transceiver 21.
  • the inversion determination unit 22 determines “inversion” and the inversion unit 24 performs an inversion operation
  • the 8B10B decoding unit 23 performs 8B10B decoding on the inverted data signal.
  • the inversion determination unit 24 determines whether or not the data signal decoded by the 8B10B decoding unit 23 has been demodulated as an inverted bit string due to a phase slip of the signal transmitted from the communication device 1 in an optical communication path or the like. judge.
  • the inversion determination unit 24 determines that the signal received via the optical communication path is inverted when there is a code other than the second code after the first code.
  • the optical communication path 4 is an optical transmission path such as an optical fiber, and connects the communication device 1 and the communication device 2.
  • the case of communication using laser light such as communication between artificial satellites, the case of transmitting a hollow is also included.
  • FIG. 3 is a flowchart showing transmission and reception operations.
  • the data generation unit 11 creates a data signal for inversion determination (step S10) and outputs the data signal to the 8B10B encoding unit 12.
  • step S10 the operation on the transmission side
  • “K28.5” and “K28.5” are distinguished from normal synchronization signals.
  • 10-bit data “110000 0101”, “001111 1010”, and “110001 1001” for inversion determination are added to the data string generated by the data generation unit 11 and output from the 8B10B encoding unit 12.
  • “K28.5” and “D3.1” do not necessarily need to be transmitted continuously. If the communication device 2 on the reception side and the communication device 1 on the transmission side are determined in advance, “K28.5” and “D3.1” Another data signal may be inserted between “D3.1”. Further, if the bit string indicating the same data even if it is inverted and the bit string indicating different data if it is inverted, the inversion determination is possible even if it is other than “K28.5” and “K3.1”.
  • the number of bit strings indicating the same data is not necessarily two. If the communication device 1 on the transmission side and the communication device 2 on the reception side decide in advance, the inversion determination is performed with one or more bit sequences. Is possible. Similarly, it is not always necessary to have one bit string indicating different data when inverted, and if the transmission side communication device 1 and the reception side communication device 2 decide in advance, it is possible to perform the inversion determination with one or more bit strings. .
  • the data generation unit 11 creates a data signal for communication based on information input from an external device not shown in FIG. 1 and outputs it to the 8B10B encoding unit 12.
  • the communication data signal is provided with “K28.5” for synchronization at the head, and subsequently generates communication data.
  • the generated communication data signal is output to the 8B10B encoding unit 12.
  • the data signal generated in the data generation unit 11 is 8B10B encoded in the 8B10B encoding unit 12 (step S11).
  • the encoded data signal is converted into an optical signal by the optical transmitter / receiver 13 and transmitted to the communication device 2 via the optical communication path 4 (step S12).
  • FIG. 4 is a diagram illustrating the order of data signals to be transmitted. Depending on the sign of CRD, “K28.5 CRD +”, “K28.5 CRD-”, and “D3.1 CRD +” are transmitted, and then “K28.5 CRD-” and communication data are transmitted for communication.
  • the optical signal transmitted from the communication device 1 is received by the optical transceiver 21 of the communication device 2 and demodulated into a data signal (step S13).
  • the demodulated data signal is output to the 8B10B decoding unit 23 via the inverting unit 22, and is decoded by the 8B10B decoding unit 23 (step S14).
  • the inversion unit 22 transfers the received data signal as it is to the 8B10B decoding unit 23.
  • the determination process is performed on the data signal for inversion determination among the decoded data signals (step S 15).
  • the inversion unit 22 is notified, and the inversion unit 22 performs inversion processing on the data signal for communication (step S16).
  • the inversion unit 22 is not notified, and the inversion unit 22 outputs the data signal input from the optical transceiver 21 to the 8B10B decoding unit 23 as it is, and the data Communication is started (step S17).
  • FIG. 5 is a flowchart illustrating a determination procedure in the inversion determination unit 24.
  • FIG. 6 is a diagram showing a received signal.
  • the inversion determination unit 24 detects whether or not the signal output from the 8B10B decoding unit 23 includes a synchronization signal (“K28.5”) (step S20). When “K28.5” is detected and “K28.5” is detected again (step S20: Yes), it is determined as a data signal for inversion determination (step S21).
  • K28.5 can be decoded even if it is inverted, and in any case, it becomes an 8-bit value “0xBC” indicating “K28.5”.
  • step S22 Since the data signal for inversion determination transmitted from the communication device 1 is “K28.5”, “K28.5”, and “D3.1”, when the next received data is the 8-bit value “0x23” Then, it is determined that normal reception is not reversed (step S22). On the other hand, “D3.1” becomes different data even when inverted, but can be decoded and becomes “D28.6”. Next, when the received data is an 8-bit value “0xDC”, it is determined that the data is “inverted” and notified to the inversion unit 22 (step S23).
  • the optical communication system has the above-described configuration, and is encoded with the first data composed of bit strings indicating the same code even if inverted by encoding.
  • the present invention is not limited to this, and is sent a plurality of times (for example, 10 times). Then, a configuration may be adopted in which it is determined that the received data signal is inverted when it is determined to be “inverted” by a predetermined ratio (for example, 8 times) or more. Thereby, it is possible to suppress the inversion process from being erroneously performed when a phase slip occurs temporarily.
  • FIG. 7 is a block diagram showing the configuration of the optical communication system according to the second embodiment.
  • the optical communication system according to Embodiment 2 includes communication devices 1a and 2a.
  • the communication device 1a is obtained by adding an inverting unit 14 to the communication device 1 of the first embodiment and replacing the optical transceiver 13 with an optical transceiver 13a.
  • the communication device 2a is obtained by deleting the inverting unit 22 from the communication device 2 of the first embodiment and replacing the optical transceiver 21 with the optical transceiver 21a.
  • the optical transceiver 21 a outputs a data signal (electric signal) to the 8B10B decoding 23.
  • the components denoted by the same reference numerals as those in FIG. 1 indicate the same or equivalent components as those described in the first embodiment.
  • the description of the components having the same reference numerals as those in FIG. 1 is omitted.
  • the optical communication system according to the second embodiment is configured such that the transmission side communication device 1a includes the inverting unit included in the reception side communication device 2 in the first embodiment.
  • the reversing unit 14 provided in the communication device 1a has the same configuration as the reversing unit 22 provided in the communication device 2 according to Embodiment 1, and has the same function.
  • the inverting unit 14 When receiving the notification that the data signal received from the communication device 2 on the receiving side is “inverted”, the inverting unit 14 performs the inverting operation of the data signal output from the 8B10B encoding unit 12. Further, the transmission side optical transceiver 13a performs the same processing as the processing performed by the optical transceiver 13 of the first embodiment, and further, the above-mentioned received data signal from the communication device 2a is "inverted". When the notification that it is present is received, this notification is transferred to the inverting unit 14. In addition, the optical transceiver 21a on the receiving side performs the same processing as that performed by the optical transceiver 21 of the first embodiment, and the data signal received by the inversion determination unit 24 is “inverted”. If it is determined, notification to that effect is sent to the communication device 1a. That is, the optical transceiver 21a performs an operation as a determination notification unit.
  • steps S10 to S14 are the same as in the case of the first embodiment, and a description thereof will be omitted.
  • the data signal that has been 8B10B encoded by the 8B10B encoder 12 is input to the inversion unit 14. 14, the data signal is transferred as it is, and the same optical signal as that of the communication device 1 on the transmission side in the first embodiment is output.
  • step S15 If it is determined in step S15 that the data signal received by the inversion determination unit 24 of the communication device 2a is inverted, the inversion determination unit 24 creates a notification describing that fact and the optical transceiver 21a. Send to.
  • the optical transceiver 21 a converts the notification received from the inversion determination unit 24 into an optical signal and sends it to the communication device 1 a via the optical communication path 4. Note that it is not always necessary to use the optical communication path 4 for this notification, and it goes without saying that the present invention can also be realized by using a separately provided wireless system or the like.
  • the optical transceiver 13a that has received the notification from the communication device 2a notifies the inverting unit 14 to that effect.
  • the inversion unit 14 that has received the notification performs inversion processing on the data signal output from the 8B10B encoding unit 12 thereafter (step S16).
  • the inversion process the process described in Embodiment 1 is performed, and a multiplexer or an EXOR circuit is used.
  • the data signal subjected to the inversion process is converted into an optical signal by the optical transceiver 13a and transmitted to the communication device 2a via the optical communication path 4.
  • a phase slip occurs in the optical communication path 4, since the optical signal is transmitted for the data signal subjected to the inversion process, the communication apparatus 2a can receive the signal in a normal state.
  • the optical communication system according to the second embodiment has the above-described configuration, and the same effects as those of the first embodiment can be obtained.
  • Noise and waveforms in the optical communication path can be obtained without performing differential encoding or the like. It is possible to determine whether or not the bit string is inverted due to phase slip caused by distortion or the like.
  • Embodiment 3 FIG.
  • the optical communication system has been described in which the inversion determination is performed by the communication device 2 on the reception side and the inversion processing of the bit string is performed by the communication device 2 on the reception side when “inversion” is detected.
  • the inversion determination is performed by the receiving side communication device 2a and “inversion” is detected, the transmission side communication device 1a is notified to that effect, and the communication device 1a performs the bit string inversion processing.
  • the communication system has been described.
  • the communication device 2 or 2a on the optical signal reception side performs the inversion determination and detects “inversion”, the communication device 2 on the optical signal reception side or the optical signal
  • the transmission-side communication device 1a inverts the bit string.
  • the communication device on the optical signal receiving side transmits the electric signal to another communication device without performing the inversion determination, and the other communication that has received the electric signal.
  • the apparatus executes inversion determination and bit string inversion processing.
  • FIG. 8 shows a configuration example of the optical communication system according to the third embodiment.
  • the communication device 1 including the communication device 1, the communication device 2 b, and the communication device 3 and the communication device 2 b are connected by the optical communication path 4.
  • the communication device 2b and the communication device 3 are connected by a communication path 5.
  • the optical communication path 4 is the same as the optical communication path 4 of the first and second embodiments.
  • the communication path 5 is a wired or wireless communication path for transmitting and receiving electrical signals.
  • the communication device 1 transmits a data signal to the first communication device (transmission-side communication device), and the communication device 2b transmits the data signal received from the communication device 1 to the communication device 3 (second communication device ( The transmission / reception side communication device) and the communication device 3 will be described as a third communication device (reception side communication device) that receives the data signal transmitted from the communication device 1 via the communication device 2b.
  • the communication device 1 is the same as the communication device 1 of the first embodiment.
  • the communication device 2b deletes the inversion unit 22 and the inversion determination unit 24 from the communication device 2 of the first embodiment, adds a transceiver 25, and transfers data received from the communication device 1 to the communication device 3. It is a thing.
  • the communication device 3 includes a transceiver 31, an inversion determination unit 32, and a code conversion unit 33.
  • the transceiver 25 of the communication device 2 b transmits the data signal decoded by the 8B10B decoding unit 23 to the communication device 3 via the communication path 5.
  • the transmitter / receiver 25 appropriately performs encoding processing, modulation processing, and the like when transmitting a data signal to the communication device 3.
  • the transceiver 31 of the communication device 3 receives the data signal from the communication device 2 b and outputs it to the inversion determination unit 32.
  • the transmitter / receiver 31 When receiving the signal from the communication device 2b, the transmitter / receiver 31 appropriately performs demodulation processing, decoding processing, and the like, and restores the data signal transmitted by the communication device 2b.
  • the transceiver 31 outputs the restored data signal to the inversion determination unit 32 and the code conversion unit 33.
  • the inversion determination unit 32 has the same configuration as that of the inversion determination unit 24 provided in the communication device 2 according to the first embodiment, has the same function, and uses the same method as the inversion determination unit 24 to perform a data signal. It is determined whether or not is inverted. The inversion determination unit 32 notifies the code conversion unit 33 of the determination result as to whether or not the data signal is inverted.
  • the code conversion unit 33 When receiving a notification from the inversion determination unit 32 that the data signal is “inverted”, the code conversion unit 33 performs a code conversion process on the data signal received from the transceiver 31. Details of the code conversion process will be described later.
  • FIG. 9 is a flowchart showing an operation example of the communication devices 2b and 3 of the optical communication system according to the third embodiment, and shows an operation when a data signal transmitted from the communication device 1 is received.
  • Steps S30 and S31 in FIG. 9 are processes executed by the communication apparatus 2b
  • steps S32, S33, and S34 are processes executed by the communication apparatus 3.
  • the communication device 2b that receives the data signal transmitted from the communication device 1 via the optical communication path 4 confirms whether or not the synchronization signal (“K28.5”) is included in the received signal (step S30). When the signal is not included (step S30: No), the process of step S30 is repeated.
  • the optical transceiver 21 executes the process of step S30.
  • the communication device 2b executes the 8B10B decoding process (step S31).
  • the 8B10B decoding unit 23 executes the process of step S31.
  • the communication device 2b transmits the decoded data signal obtained by executing the 8B10B decoding process to the communication device 3, and the communication device 3 receives the data signal.
  • the transmitter / receiver 25 transmits a data signal
  • the transmitter / receiver 31 receives the data signal.
  • the communication device 3 that has received the data signal from the communication device 2b determines whether or not the received data signal is inverted, that is, whether or not all the bits of the data signal are inverted (step S32). If the data signal is inverted (step S32: Yes), the communication device 3 starts code conversion processing on the data signal received from the communication device 2b, and returns each bit to the correct state (step S33). Details of the code conversion process will be described later.
  • the inversion determination unit 32 executes the process of step S32, and the code conversion unit 33 executes the process of step S33.
  • the inversion determination unit 32 determines whether the data signal is inverted by the same method as the inversion determination unit 24 of the first and second embodiments.
  • the inversion determination unit 32 determines that the data signal is inverted, the inversion determination unit 32 notifies the code conversion unit 33 to that effect, and the code conversion unit 33 that has received this notification encodes the data signal input from the transceiver 31. Start the conversion process. When the code conversion process is performed and the data signal is converted into valid data, the communication device 3 starts receiving the converted data (step S34).
  • FIG. 10 is a code conversion table used by the code conversion unit 33 in the code conversion process.
  • FIG. 11 is a diagram illustrating an example of the code conversion operation of the code conversion unit 33.
  • the data signal (transmission data) transmitted from the communication device 1 is shown in the first stage, and the communication device 3 is connected via the communication device 2b.
  • the received data signal in an inverted state (when inverted) is shown in the second stage, and the received data signal (after code conversion) after the code conversion unit 33 performs the code conversion process is shown in the third stage. ing.
  • the data signal (code) of “D3.1” is converted to the data signal (code) of “D28.6”
  • the data signal “D0.1” is received as the data signal “D0.6”.
  • the data signals “K28.5” and “D0.0” are received in the original state.
  • the code conversion unit 33 uses the code conversion table shown in FIG. The code after) is converted into a correct data signal (code before inversion). Specifically, when the data signal “D28.6” is input, the code conversion unit 33 converts the data signal to “D3.1” and outputs the data signal, and the data signal “D0.6” is input. Then, it is converted into a data signal of “D0.1” and output. The code conversion unit 33 outputs the data signals “D0.0” and “K28.5” as they are when they are input.
  • step S34 the communication device 3 receives the data as valid data without executing the code conversion process.
  • the code conversion unit 33 outputs the data signal input from the transceiver 31 as it is.
  • the optical communication system according to Embodiment 3 has the above-described configuration, and the same effects as those of Embodiments 1 and 2 can be obtained.
  • Noise in the optical communication path can be obtained without performing differential encoding or the like.
  • the communication device 3 connected to the communication device 2b that terminates the optical signal determines whether or not inversion occurs and performs code conversion when the inversion occurs, the load on the communication device 2b is reduced. There is a merit that it can be reduced. This is advantageous in that the processing performed on the satellite side can be reduced when the communication device 2b is mounted on a satellite and the communication device 3 is a ground station.
  • the communication device 3 includes the inversion determination unit 32 and the code conversion unit 33.
  • the processing of the inversion determination unit 32 that is, the determination of whether or not the data signal is inverted
  • the communication device 2b may perform the same as in the first and second embodiments. In this case, when the communication device 2b determines that the data signal is inverted, the communication device 2b notifies the communication device 3 accordingly.
  • the data generation unit 11, 8B10B encoding unit 12, inversion units 14 and 22, 8B10B decoding unit 23, inversion determination units 24 and 32, and code conversion unit 33 described in the first to third embodiments are shown in FIG. This can be realized by the processing circuit 100.
  • the processing circuit 100 includes a processor 101, a memory 102, an input circuit 103, and an output circuit 104.
  • the processor 101 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP), system LSI (Large Scale Integration), or the like.
  • the memory 102 is a nonvolatile or volatile semiconductor such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), etc. Memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc.
  • the data generation unit 11, 8B10B encoding unit 12, inversion units 14 and 22, 8B10B decoding unit 23, inversion determination units 24 and 32, and code conversion unit 33 read the corresponding programs from the memory 102, and the processor 101 It can be realized by executing.
  • the input circuit 103 is used when receiving information processed by the processor 101 and information stored in the memory 102 from the outside, and the output circuit 104 externally transmits information generated by the processor 101 and information stored in the memory 102. Used when outputting to.
  • a part or all of the data generation unit 11, 8B10B encoding unit 12, inversion units 14, 22, 8B10B decoding unit 23, inversion determination units 24, 32, and code conversion unit 33 may be realized by dedicated hardware.
  • each of the above units is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these. Realized with a circuit.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Dc Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

This optical communication system is provided with a first communication device and a second communication device connected therewith by an optical communication path, wherein the first communication device is provided with a data generation unit which generates first data comprising a bit string that represents the same code even when reversed by being encoded, and generates second data comprising a bit string representing a code that is different when reversed by being encoded, an encoding unit which encodes the data generated by the data generation unit, and a transmitter which transmits the encoded first data and second data, one following the other. The second communication device is provided with a decoding unit which decodes the received data, and with a reversal determination unit which, if the decoded data does not include second data following the first data, determines that the data has been reversed.

Description

光通信システムおよび光通信装置Optical communication system and optical communication apparatus
 本発明は、データ信号を符号化して通信を行う光通信システムおよびこの光通信システムに用いられる光通信装置に関する。 The present invention relates to an optical communication system that performs communication by encoding a data signal and an optical communication apparatus used in the optical communication system.
 イーサネット(登録商標)やUSB3.0等を用いた通信において、シリアルデータに対してクロック成分を埋め込むために、8B10B符号のようなDCバランスを調整する符号化が広く使用されている。また、大容量光伝送を実現するために課題となる信号対雑音電力比(SNR:Signal to Noise Ratio)性能を改善するために、2値位相偏移変調(BPSK:Binary Phase-Shift Keying)や4値位相偏移変調(QPSK:Quaternary Phase-Shift Keying)などの位相偏移変調を用いてデータ伝送を行う場合がある。位相偏移変調を用いた場合、通信路における雑音や波形歪みなどに起因して位相スリップが生じ、受信側の基準位相によって受信されるデータの1と0が反転する場合がある。 In communication using Ethernet (registered trademark), USB 3.0, or the like, in order to embed a clock component in serial data, encoding that adjusts a DC balance such as an 8B10B code is widely used. In addition, in order to improve signal-to-noise ratio (SNR) performance, which is a problem for realizing large-capacity optical transmission, binary phase-shift keying (BPSK) or binary phase-shift keying (BPSK) In some cases, data transmission is performed using phase shift keying such as quaternary phase shift keying (QPSK: Quaternary Phase-Shift Keying). When phase shift keying is used, phase slip may occur due to noise or waveform distortion in the communication path, and data 1 and 0 received by the reference phase on the receiving side may be inverted.
 これらの位相スリップによるデータ反転を回避するため、差動符号化により反転を防ぐ必要があった。また、差動符号化等を行わない場合は位相スリップによる信号反転状態を検出するために参照信号を挿入することが提案されている(たとえば、特許文献1参照)。 In order to avoid data inversion due to these phase slips, it was necessary to prevent inversion by differential encoding. In addition, when differential coding or the like is not performed, it has been proposed to insert a reference signal in order to detect a signal inversion state due to phase slip (see, for example, Patent Document 1).
特開2014-003507号公報JP 2014-003507 A
 しかしながら、上記方法では送信側では8B10Bなどの符号化を行った後に差動符号化や参照信号の挿入を行う必要があり、また、受信側では8B10Bなどの復号化を行う前に差動復号化や参照信号の参照を行う必要があり、機器の構成が制限されるという問題があった。 However, in the above method, it is necessary to perform differential encoding and reference signal insertion after encoding such as 8B10B on the transmission side, and differential decoding before decoding such as 8B10B on the reception side There is a problem that it is necessary to refer to the reference signal and the configuration of the device is limited.
 本発明は、上記の問題を解決するためになされたものであり、差動符号化や参照信号の挿入を行うことなく、通信装置間の通信におけるデータの反転を判定する光通信システムおよび光通信装置を得ることを目的とする。 The present invention has been made to solve the above-described problem, and an optical communication system and an optical communication for determining inversion of data in communication between communication apparatuses without performing differential encoding or insertion of a reference signal The object is to obtain a device.
 この発明に係る光通信システムは、第1の通信装置と光通信路によって接続された第2の通信装置を備える光通信システムであって、第1の通信装置は、符号化されることにより反転しても同じコードを示すビット列からなる第1のデータを生成し、符号化されることにより反転した場合に異なるコードを示すビット列からなる第2のデータを生成するデータ生成部と、データ生成部により生成されたデータを符号化する符号化部と、符号化部により符号化された第1のデータおよび第2のデータを続けて第2の通信装置に送信する送信器と、を備え、第2の通信装置は、第1の通信装置よりデータを受信する受信器と、受信器で受信したデータを復号化する復号化部と、復号化されたデータが第1のデータに続く第2のデータを含んでいない場合に、光通信路を介して受信した信号が反転していると判定する反転判定部と、を備える。 An optical communication system according to the present invention is an optical communication system including a second communication device connected to a first communication device through an optical communication path, and the first communication device is inverted by being encoded. A data generation unit that generates first data including a bit string indicating the same code and generates second data including a bit string indicating a different code when the first data is encoded and inverted when encoded, and a data generation unit An encoder that encodes the data generated by the transmitter, and a transmitter that continuously transmits the first data and the second data encoded by the encoder to the second communication device, The second communication device includes a receiver that receives data from the first communication device, a decoding unit that decodes the data received by the receiver, and a second in which the decoded data follows the first data. Contains data If it has, and a reversal determination unit determines that the received signal is inverted through an optical communication path.
 また、係る光通信システムは、第1の通信装置と、第1の通信装置と光通信路によって接続された第2の通信装置と、第1の通信装置から送信されたデータを第2の通信装置を介して受信する第3の通信装置とを備える光通信システムであって、第1の通信装置は、符号化されることにより反転しても同じコードを示すビット列からなる第1のデータを生成し、符号化されることにより反転した場合に異なるコードを示すビット列からなる第2のデータを生成するデータ生成部と、データ生成部により生成されたデータを符号化する符号化部と、符号化部により符号化された第1のデータおよび第2のデータを続けて第2の通信装置に送信する送信器と、を備え、第2の通信装置は、第1の通信装置よりデータを受信する受信器と、受信器で受信したデータを復号化する復号化部と、を備え、第3の通信装置は、復号化部で復号化されたデータが第1のデータに続く第2のデータを含んでいない場合に、光通信路を介して第2の通信装置が受信した信号が反転していると判定する反転判定部、を備える。 The optical communication system also includes a first communication device, a second communication device connected to the first communication device via an optical communication path, and data transmitted from the first communication device to the second communication. An optical communication system comprising a third communication device for receiving via the device, wherein the first communication device receives first data comprising a bit string indicating the same code even if it is inverted by being encoded. A data generation unit that generates second data including bit strings indicating different codes when generated and encoded, and an encoding unit that encodes the data generated by the data generation unit; And a transmitter for continuously transmitting the first data and the second data encoded by the encoding unit to the second communication device, wherein the second communication device receives the data from the first communication device. Receiver and receiver And a decoding unit that decodes the received data, and the third communication device is configured to receive an optical signal when the data decoded by the decoding unit does not include the second data following the first data. An inversion determination unit that determines that the signal received by the second communication device via the communication path is inverted.
 また、この発明に係る光通信装置は、対向通信装置と光通信路によって接続された光通信装置であって、対向通信装置より送信された、符号化されることにより反転しても同じコードを示すビット列からなる第1のデータおよび符号化されることにより反転した場合に異なるコードを示すビット列からなる第2のデータを続けて受信する受信器と、受信器で受信したデータを復号化する復号化部と、復号化されたデータが第1のデータに続く第2のデータを含んでいない場合に、光通信路を介して受信した信号が反転していると判定する反転判定部と、を備える。 The optical communication device according to the present invention is an optical communication device connected to the opposite communication device by an optical communication path, and is transmitted from the opposite communication device, and the same code is obtained even if it is inverted by encoding. A receiver that continuously receives first data consisting of a bit string and a second data consisting of a bit string that indicates a different code when inverted by encoding, and decoding that decodes the data received by the receiver And an inversion determination unit that determines that the signal received via the optical communication path is inverted when the decoded data does not include the second data following the first data. Prepare.
 本発明によれば、光通信路によって接続された通信装置間において、差動符号化や参照信号の挿入を行うことなく、通信装置間の通信におけるデータの反転を判定することができる。 According to the present invention, it is possible to determine inversion of data in communication between communication devices without performing differential encoding or insertion of a reference signal between communication devices connected by an optical communication path.
この発明の実施の形態1に係る光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光通信システムの8B10B符号化におけるコードの割り当てを示す図である。It is a figure which shows code allocation in 8B10B encoding of the optical communication system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光通信システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the optical communication system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る送信側通信装置より送信されるデータ信号を示す図である。It is a figure which shows the data signal transmitted from the transmission side communication apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る反転判定部における判定の手順を示すフローチャートである。It is a flowchart which shows the procedure of the determination in the inversion determination part which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光通信システムの8B10Bコードの受信信号を示す図である。It is a figure which shows the received signal of the 8B10B code | symbol of the optical communication system which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る通信装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the communication apparatus which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る符号変換処理で使用する符号変換表を示す図である。It is a figure which shows the code conversion table used with the code conversion process which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る符号変換動作を示す図である。It is a figure which shows the code conversion operation | movement which concerns on Embodiment 3 of this invention. この発明の実施の形態1~3に係る通信装置を実現する処理回路を示す図である。It is a figure which shows the processing circuit which implement | achieves the communication apparatus which concerns on Embodiment 1-3 of this invention.
 以下に、本発明の実施の形態にかかる光通信システムおよび光通信装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an optical communication system and an optical communication apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 本発明を適用した光通信システムの実施の形態1について図面を参照して説明する。図1に、本実施の形態に係る光通信システムの構成を表すブロック図を示す。図1において、光通信システムは通信装置1と通信装置2を備えており、光通信路4により接続されている。ここでは、通信装置1を第1の通信装置である送信側の通信装置、通信装置2を第2の通信装置である受信側の通信装置とし、通信装置1から通信装置2にデータ信号を送信する場合を例にとり説明する。
Embodiment 1 FIG.
A first embodiment of an optical communication system to which the present invention is applied will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the optical communication system according to the present embodiment. In FIG. 1, the optical communication system includes a communication device 1 and a communication device 2, which are connected by an optical communication path 4. In this example, the communication device 1 is a communication device on the transmission side that is the first communication device, the communication device 2 is the communication device on the reception side that is the second communication device, and a data signal is transmitted from the communication device 1 to the communication device 2. This will be described as an example.
 2つの通信装置間の通信では、送信するデータ信号に対し、8B10B符号を用いて符号化された信号が送受信される。8B10B符号化は、高速シリアル伝送に用いられる符号化方式であり、8B10B符号化が適用されたデータ伝送では、8ビットのデータを10ビットのデータに変換してデータ転送を行う。また、8B10B符号化が適用されたデータ伝送では、あらかじめ定められた変換テーブルによって、データ信号をシンボルへと変換する。図2に、8B10B符号の変換テーブルの一部を示す。8B10B符号化では、上位3ビットと下位5ビットに分けて、上位3ビットに対しては3ビットを4ビットに変換する3B4B変換を行い、下位5ビットに対しては5ビットを6ビットに変換する5B6B変換を行う。 In communication between two communication devices, a signal encoded using an 8B10B code is transmitted / received with respect to a data signal to be transmitted. 8B10B encoding is an encoding method used for high-speed serial transmission, and in data transmission to which 8B10B encoding is applied, 8-bit data is converted into 10-bit data and data transfer is performed. In data transmission to which 8B10B encoding is applied, a data signal is converted into a symbol by a predetermined conversion table. FIG. 2 shows a part of the conversion table of the 8B10B code. In 8B10B encoding, the upper 3 bits are divided into the lower 5 bits, 3B4B conversion is performed to convert 3 bits into 4 bits for the upper 3 bits, and 5 bits are converted to 6 bits for the lower 5 bits. 5B6B conversion is performed.
 ビット列の中の1の個数から0の個数を引いたものをディスパリティ(Disparity)と呼ぶ。特にデータストリーム中の連続したディスパリティの累計をRD(Running Disparity)と呼ぶ。8B10B符号のシンボルには現在のRD(CRD:Current Running Disparity)が正(+)のときに変換されるものと負(-)のときに変換されるものの2種類が存在する。8B10B符号化方式では、CRDが正か負かによって、次に送付するシンボルを変更することで、「0」および「1」の一方が6ビット以上連続しないようにするとともに、「1」と「0」の数のバランスを均等にしており、DCバランスに依存する問題を解決するようになっている。 · A value obtained by subtracting the number of 0s from the number of 1s in the bit string is referred to as disparity. In particular, the cumulative total disparity in the data stream is called RD (Running Disparity). There are two types of symbols of the 8B10B code: those that are converted when the current RD (CRD: Current Running Disparity) is positive (+) and those that are converted when it is negative (−). In the 8B10B encoding method, the symbol to be sent next is changed depending on whether the CRD is positive or negative so that one of “0” and “1” does not continue for 6 bits or more, and “1” and “1” The balance of the number “0” is made uniform to solve the problem depending on the DC balance.
 また、符号化されたデータ信号を光信号に変換する変調方式として、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)などの位相偏移変調を用いた場合を想定するが、適用する変調方式に制限を加えるものではなく、DP-BPSK信号、DP-16QAM信号、その他の信号に対しても容易に拡張可能である。位相偏移変調を用いた場合は、光通信路の雑音や波形歪みに起因する位相スリップが生じ、受信側の基準位相によってデータの1と0が反転して認識され、大規模な連続誤りが生じる可能性がある。 In addition, it is assumed that a phase shift keying such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying) is used as a modulation method for converting an encoded data signal into an optical signal. The modulation system is not limited and can be easily extended to DP-BPSK signals, DP-16QAM signals, and other signals. When phase shift keying is used, phase slips caused by noise or waveform distortion in the optical communication path occur, and data 1 and 0 are inverted and recognized by the reference phase on the receiving side, and large-scale continuous errors occur. It can happen.
 図1において、通信装置1はデータ生成部11、8B10B符号化部12、光送受信器13を備えている。データ生成部11は、図1においては省略した外部装置から入力された情報に基づいて、通信装置2に対して送信するデータ(通信データ)を生成するデータ生成部である。また、データ生成部11は、通信装置1および通信装置2間の同期をとるための同期信号を生成する。ここでは、同期信号として「K28.5」のコードを使用するものとする。「K28.5」は、図2に示すように、8B10B符号化部11により符号化されることにより、CRD+およびCRD-のビット列がそれぞれ「110000 0101」と「001111 1010」となり、CRD+とCRD-との間ですべてのビットで反転した関係にある。すなわち、符号化されることにより反転しても同じコードを示すビット列である(第1のデータ)。 1, the communication device 1 includes a data generation unit 11, an 8B10B encoding unit 12, and an optical transceiver 13. The data generation unit 11 is a data generation unit that generates data (communication data) to be transmitted to the communication device 2 based on information input from an external device omitted in FIG. Further, the data generation unit 11 generates a synchronization signal for synchronizing the communication device 1 and the communication device 2. Here, the code “K28.5” is used as the synchronization signal. As shown in FIG. 2, “K28.5” is encoded by the 8B10B encoding unit 11 so that the bit strings of CRD + and CRD− become “110000 0101” and “001111 1010”, respectively, and CRD + and CRD− Inverted relationship between all bits. That is, it is a bit string indicating the same code even if it is inverted by being encoded (first data).
 データ生成部11は、上述した同期信号「K28.5」の後に、「D3.1」のデータ信号を生成する。図2に示すように「D3.1」は、8B10B符号化部12によって符号化されることにより、CRD+およびCRD-のビット列がいずれも「110001 1001」となり、CRD+とCRD-との間では同一の関係となる。また、このCRD+およびCRD-が反転した場合、「001110 0110」となり、「D28.6」を示すコードとなる。すなわち、符号化されることにより反転した場合に異なるコード(「D28.6」)を示すビット列となる(第2のデータ)。 The data generation unit 11 generates a data signal of “D3.1” after the synchronization signal “K28.5” described above. As shown in FIG. 2, “D3.1” is encoded by the 8B10B encoding unit 12 so that the bit strings of CRD + and CRD− are both “110001 1001”, and the same between CRD + and CRD−. It becomes the relationship. Further, when the CRD + and CRD− are inverted, the code becomes “001110 0110” and becomes a code indicating “D28.6”. That is, a bit string indicating a different code ("D28.6") when inverted by encoding (second data).
 8B10B符号化部12は、データ生成部11で生成された第1のデータ、第2のデータおよび通信データについて8B10B符号化を行う符号化部である。上述したように、第1のデータは8B10B符号化を行うことにより、反転した場合においても同じコードを示すビット列となる。また、第2のデータは8B10B符号化を行うことにより、反転した場合に異なるコードを示すビット列となる。 The 8B10B encoding unit 12 is an encoding unit that performs 8B10B encoding on the first data, the second data, and the communication data generated by the data generation unit 11. As described above, the first data becomes a bit string indicating the same code even when inverted by performing 8B10B encoding. Also, the second data becomes a bit string indicating a different code when inverted by performing 8B10B encoding.
 光送受信器13は、8B10B符号化部12において符号化されたデータに位相偏移変調を行って光信号に変換し、光通信路4に出力する。また、8B10B符号化部12により符号化された第1のデータおよび第2のデータを続けて第2の通信装置に送信する送信器である。 The optical transceiver 13 performs phase shift keying on the data encoded in the 8B10B encoding unit 12 to convert it into an optical signal, and outputs the optical signal to the optical communication path 4. In addition, it is a transmitter that continuously transmits the first data and the second data encoded by the 8B10B encoder 12 to the second communication device.
 通信装置2は、光送受信器21、反転部22、8B10B復号化部23、反転判定部24を備えている。光送受信器21は、通信装置1から送信された光信号を受信し、データ信号(電気信号)への復調を行う受信器である。反転部22は、反転判定部24において、光送受信器21により受信したデータ信号が「反転」していると判断された場合に、それ以降のデータ信号を反転させて、8B10B復号化部23に出力する。信号を反転させるための方法はどのようなものを用いてもよいが、ここでは、マルチプレクサまたはEXOR回路を用いるものとする。 The communication device 2 includes an optical transmitter / receiver 21, an inversion unit 22, an 8B10B decoding unit 23, and an inversion determination unit 24. The optical transceiver 21 is a receiver that receives an optical signal transmitted from the communication device 1 and demodulates it into a data signal (electric signal). When the inversion determination unit 24 determines that the data signal received by the optical transmitter / receiver 21 is “inverted”, the inversion unit 22 inverts the subsequent data signal and sends it to the 8B10B decoding unit 23. Output. Any method for inverting the signal may be used. Here, a multiplexer or an EXOR circuit is used.
 マルチプレクサを用いる場合、光送受信器21より送付されたデータ信号を分岐させ、一方にNOT回路を挿入することにより反転させる。マルチプレクサにおいて、分岐させた信号の一方を選択して出力させるが、「反転」と判定された場合には、分岐させた信号のうちNOT回路にて反転させたデータ信号を出力する。また、EXOR回路を用いる場合には、光送受信器21より送付されたデータ信号をEXOR回路の一方の入力とし、もう一方の入力を、「反転」と判定された場合には「1」、「反転」と判定されていない場合には「0」を入力することとなる。なお、電気信号の段階で反転させる場合について示したが、光信号の段階で行ってもよく、光送受信器にてローカル光、または受信光の位相をずらすことにより、反転させるようにしてもよい。 When a multiplexer is used, the data signal sent from the optical transceiver 21 is branched and inverted by inserting a NOT circuit on one side. In the multiplexer, one of the branched signals is selected and output. If it is determined to be “inverted”, the data signal inverted by the NOT circuit is output from the branched signals. When the EXOR circuit is used, the data signal sent from the optical transceiver 21 is used as one input of the EXOR circuit, and when the other input is determined to be “inverted”, “1”, “ If it is not determined as “inverted”, “0” is input. In addition, although the case where it inverts in the stage of an electric signal was shown, it may carry out in the stage of an optical signal, and it may be made to invert by shifting the phase of local light or received light in an optical transceiver. .
 8B10B復号化部23は、光送受信器21で受信されたデータ信号について、8B10B復号化を行う復号化部である。8B10B復号化部23は、反転判定部22において「反転」と判定され、反転部24において反転動作を行う場合には、この反転されたデータ信号に対して8B10B復号化を行う。反転判定部24は、8B10B復号化部23にて復号化されたデータ信号が、通信装置1から送信された信号が光通信路等において位相スリップが生じ、反転したビット列として復調されたか否かを判定する。反転判定部24は、第1のコードの後に第2のコード以外のコードがある場合に、光通信路を介して受信した信号が反転していると判定する。 The 8B10B decoding unit 23 is a decoding unit that performs 8B10B decoding on the data signal received by the optical transceiver 21. When the inversion determination unit 22 determines “inversion” and the inversion unit 24 performs an inversion operation, the 8B10B decoding unit 23 performs 8B10B decoding on the inverted data signal. The inversion determination unit 24 determines whether or not the data signal decoded by the 8B10B decoding unit 23 has been demodulated as an inverted bit string due to a phase slip of the signal transmitted from the communication device 1 in an optical communication path or the like. judge. The inversion determination unit 24 determines that the signal received via the optical communication path is inverted when there is a code other than the second code after the first code.
 光通信路4は、光ファイバなどの光伝送路であり、通信装置1と通信装置2とを接続する。なお、人工衛星間の通信などのレーザ光を用いた通信の場合には、中空を伝送する場合も含む。 The optical communication path 4 is an optical transmission path such as an optical fiber, and connects the communication device 1 and the communication device 2. In the case of communication using laser light such as communication between artificial satellites, the case of transmitting a hollow is also included.
 本実施の形態に係る光通信システムの動作について説明する。
 図3は、送信および受信の動作を示すフローチャートである。まず、送信側での動作について説明する。データ生成部11において、反転判定用のデータ信号を作成し(ステップS10)、8B10B符号化部12に出力する。ここで、反転判定用のデータ信号として、「K28.5」「K28.5」「D3.1」を用いることを、予め通信装置1と通信装置2との間で取り決めておく。「K28.5」「K28.5」と通常の同期信号と区別している。したがって、データ生成部11で生成したデータ列に反転判定用の10ビットのデータ「110000 0101」「001111 1010」「110001 1001」を付加して8B10B符号化部12から出力する。「K28.5」と「D3.1」は必ずしも連続して送信する必要はなく、受信側の通信装置2と送信側の通信装置1とを予め取り決めておけば、「K28.5」と「D3.1」との間に別のデータ信号が挿入されていてもよい。また、反転しても同じデータを示すビット列と、反転すると異なるデータを示すビット列との組み合わせであれば、「K28.5」および「K3.1」以外であっても反転判定が可能である。また、反転しても同じデータを示すビット列は必ずしも2つである必要はなく、送信側の通信装置1と受信側の通信装置2が予め取り決めておけば、1個以上のビット列で反転判定が可能である。同様に、反転すると異なるデータを示すビット列も必ずしも1つである必要はなく、送信側通信装置1と受信側通信装置2が予め取り決めておけば、1個以上のビット列で反転判定が可能である。
An operation of the optical communication system according to the present embodiment will be described.
FIG. 3 is a flowchart showing transmission and reception operations. First, the operation on the transmission side will be described. The data generation unit 11 creates a data signal for inversion determination (step S10) and outputs the data signal to the 8B10B encoding unit 12. Here, it is determined in advance between the communication device 1 and the communication device 2 that “K28.5”, “K28.5”, and “D3.1” are used as data signals for inversion determination. “K28.5” and “K28.5” are distinguished from normal synchronization signals. Therefore, 10-bit data “110000 0101”, “001111 1010”, and “110001 1001” for inversion determination are added to the data string generated by the data generation unit 11 and output from the 8B10B encoding unit 12. “K28.5” and “D3.1” do not necessarily need to be transmitted continuously. If the communication device 2 on the reception side and the communication device 1 on the transmission side are determined in advance, “K28.5” and “D3.1” Another data signal may be inserted between “D3.1”. Further, if the bit string indicating the same data even if it is inverted and the bit string indicating different data if it is inverted, the inversion determination is possible even if it is other than “K28.5” and “K3.1”. Even if it is inverted, the number of bit strings indicating the same data is not necessarily two. If the communication device 1 on the transmission side and the communication device 2 on the reception side decide in advance, the inversion determination is performed with one or more bit sequences. Is possible. Similarly, it is not always necessary to have one bit string indicating different data when inverted, and if the transmission side communication device 1 and the reception side communication device 2 decide in advance, it is possible to perform the inversion determination with one or more bit strings. .
 また、データ生成部11では、図1では記載しない外部装置より入力された情報に基づいて通信用のデータ信号を作成し、8B10B符号化部12に出力する。通信用のデータ信号は、先頭に同期用の「K28.5」を設け、それに続いて通信データを生成する。生成した通信用のデータ信号は、8B10B符号化部12に出力される。 Also, the data generation unit 11 creates a data signal for communication based on information input from an external device not shown in FIG. 1 and outputs it to the 8B10B encoding unit 12. The communication data signal is provided with “K28.5” for synchronization at the head, and subsequently generates communication data. The generated communication data signal is output to the 8B10B encoding unit 12.
 データ生成部11において生成されたデータ信号は、8B10B符号化部12において8B10B符号化される(ステップS11)。符号化されたデータ信号は、光送受信器13において光信号に変換され、光通信路4を介して通信装置2に送信される(ステップS12)。図4は、送信されるデータ信号の順番を示す図である。CRDの正負に応じて、「K28.5 CRD+」「K28.5 CRD-」「D3.1 CRD+」が送信されたのち、通信用として「K28.5 CRD-」および通信データが送信される。 The data signal generated in the data generation unit 11 is 8B10B encoded in the 8B10B encoding unit 12 (step S11). The encoded data signal is converted into an optical signal by the optical transmitter / receiver 13 and transmitted to the communication device 2 via the optical communication path 4 (step S12). FIG. 4 is a diagram illustrating the order of data signals to be transmitted. Depending on the sign of CRD, “K28.5 CRD +”, “K28.5 CRD-”, and “D3.1 CRD +” are transmitted, and then “K28.5 CRD-” and communication data are transmitted for communication.
 次に、受信側での動作について説明する。通信装置1より送信された光信号は、通信装置2の光送受信器21において受信され、データ信号に復調される(ステップS13)。復調されたデータ信号は、反転部22を介して8B10B復号化部23に出力され、8B10B復号化部23において、復号化される(ステップS14)。この段階では、受信したデータ信号が「反転」していると判定されていないため、反転部22では受信したデータ信号をそのまま8B10B復号化部23に転送する。反転判定部24において、復号化されたデータ信号のうち反転判定用のデータ信号について判定処理が実施され(ステップS15)、「反転」と判定された場合には、反転判定部24はその旨を反転部22に通知し、反転部22において通信用のデータ信号に対して反転処理を行う(ステップS16)。一方、反転していないと判定された場合には、反転部22には通知は行わず、反転部22は光送受信器21から入力されたデータ信号をそのまま8B10B復号化部23に出力し、データ通信が開始される(ステップS17)。以上のような動作を行うことにより、反転していると判断して、通信装置2に入力信号を反転することで、通信装置1側で意図した信号を受信することができる。上記シーケンスでは通信開始時に一度行い、その後位相が反転しない事が望ましいが、通信中に位相の反転が危惧される場合においては、通信データ間に上記シーケンスを挿入し、定期的に信号反転を判定・修正することで誤りを低減することができる。 Next, the operation on the receiving side will be described. The optical signal transmitted from the communication device 1 is received by the optical transceiver 21 of the communication device 2 and demodulated into a data signal (step S13). The demodulated data signal is output to the 8B10B decoding unit 23 via the inverting unit 22, and is decoded by the 8B10B decoding unit 23 (step S14). At this stage, since it is not determined that the received data signal is “inverted”, the inversion unit 22 transfers the received data signal as it is to the 8B10B decoding unit 23. In the inversion determination unit 24, the determination process is performed on the data signal for inversion determination among the decoded data signals (step S 15). The inversion unit 22 is notified, and the inversion unit 22 performs inversion processing on the data signal for communication (step S16). On the other hand, when it is determined that it has not been inverted, the inversion unit 22 is not notified, and the inversion unit 22 outputs the data signal input from the optical transceiver 21 to the 8B10B decoding unit 23 as it is, and the data Communication is started (step S17). By performing the operation as described above, it is determined that the signal is inverted, and the signal intended for the communication device 1 can be received by inverting the input signal to the communication device 2. In the above sequence, it is desirable that it is performed once at the start of communication and then the phase does not invert.However, if phase inversion is a concern during communication, the above sequence is inserted between communication data, and signal inversion is determined periodically. Corrections can reduce errors.
 反転判定部24における「反転」しているか否かの判定の手順について説明する。図5は、反転判定部24における判定の手順を示すフローチャートである。また、図6は、受信信号を示す図である。反転判定部24は、8B10B復号化部23より出力された信号に同期信号(「K28.5」)が含まれるか否かを検出する(ステップS20)。「K28.5」を検出し、再度「K28.5」を検出した場合(ステップS20:Yes)、反転判定用のデータ信号と判断する(ステップS21)。ここで、「K28.5」は反転した場合でもあっても復号化可能であり、いずれの場合であっても「K28.5」を示す8bit値「0xBC」となる。通信装置1より送信された反転判定用のデータ信号は「K28.5」「K28.5」「D3.1」であるため、次に受信したデータが、8bit値「0x23」である場合には、反転していない通常の受信と判定する(ステップS22)。一方で、「D3.1」は反転した場合でも異なるデータとなるが復号は可能であり、「D28.6」となる。次に受信したデータが、8bit値「0xDC」である場合には、「反転」していると判断し、反転部22に通知する(ステップS23)。 A procedure for determining whether or not the inversion determination unit 24 is “inverted” will be described. FIG. 5 is a flowchart illustrating a determination procedure in the inversion determination unit 24. FIG. 6 is a diagram showing a received signal. The inversion determination unit 24 detects whether or not the signal output from the 8B10B decoding unit 23 includes a synchronization signal (“K28.5”) (step S20). When “K28.5” is detected and “K28.5” is detected again (step S20: Yes), it is determined as a data signal for inversion determination (step S21). Here, “K28.5” can be decoded even if it is inverted, and in any case, it becomes an 8-bit value “0xBC” indicating “K28.5”. Since the data signal for inversion determination transmitted from the communication device 1 is “K28.5”, “K28.5”, and “D3.1”, when the next received data is the 8-bit value “0x23” Then, it is determined that normal reception is not reversed (step S22). On the other hand, “D3.1” becomes different data even when inverted, but can be decoded and becomes “D28.6”. Next, when the received data is an 8-bit value “0xDC”, it is determined that the data is “inverted” and notified to the inversion unit 22 (step S23).
 実施の形態1に係る光通信システムでは、以上のような構成をしており、符号化されることにより反転しても同じコードを示すビット列からなる第1のデータ、および、符号化されることにより反転した場合に異なるコードを示すビット列からなる第2のデータを続けて送付することにより、受信側の通信装置において容易に信号が反転して受信しているかどうかを判定することができる。したがって、差動符号化等を行うことなく、光通信路の雑音や波形歪みなどに起因する位相スリップによって生じるビット列の反転の有無を判定することができる。 The optical communication system according to the first embodiment has the above-described configuration, and is encoded with the first data composed of bit strings indicating the same code even if inverted by encoding. By continuously sending the second data consisting of a bit string indicating a different code when the signal is inverted, it is possible to easily determine whether or not the signal is inverted and received in the communication device on the receiving side. Therefore, it is possible to determine the presence or absence of bit string inversion caused by phase slip caused by noise or waveform distortion in the optical communication path without performing differential encoding or the like.
 ここでは、上述の第1のデータおよび第2のデータを1度送付して、反転判定部において判定する場合については示したが、これに限ったものではなく、複数回(例えば10回)送付して、あらかじめ定められた一定の割合(例えば8回)以上「反転」と判定された場合に、受信したデータ信号が反転していると判定するような構成としてもよい。これにより、一時的に位相スリップが生じた場合などに、誤って反転処理を行うことを抑制することができる。 Here, the case where the first data and the second data described above are sent once and determined by the inversion determination unit is shown, but the present invention is not limited to this, and is sent a plurality of times (for example, 10 times). Then, a configuration may be adopted in which it is determined that the received data signal is inverted when it is determined to be “inverted” by a predetermined ratio (for example, 8 times) or more. Thereby, it is possible to suppress the inversion process from being erroneously performed when a phase slip occurs temporarily.
実施の形態2.
 実施の形態1では、受信側の通信装置においてデータ信号の反転動作を行う場合について示したが、実施の形態2では、受信側の通信装置において「反転」と判定した場合に、その旨を送信側の通信装置に通知し、送信側の通信装置において反転動作を行う場合について示す。図7に、実施の形態2に係る光通信システムの構成を表すブロック図を示す。   
Embodiment 2. FIG.
In the first embodiment, the case where the data signal inversion operation is performed in the communication device on the reception side is shown. However, in the second embodiment, when it is determined as “inversion” in the communication device on the reception side, the fact is transmitted. A case will be described in which the communication device on the transmission side is notified and the inversion operation is performed in the communication device on the transmission side. FIG. 7 is a block diagram showing the configuration of the optical communication system according to the second embodiment.
 実施の形態2に係る光通信システムは、通信装置1aおよび2aにより構成されている。通信装置1aを第1の通信装置である送信側の通信装置、通信装置2aを第2の通信装置である受信側の通信装置とし、通信装置1aから通信装置2aにデータ信号を送信する場合を例にとり説明する。通信装置1aは、実施の形態1の通信装置1に対して反転部14を追加し、光送受信器13を光送受信器13aに置き換えたものである。通信装置2aは、実施の形態1の通信装置2から反転部22を削除し、光送受信器21を光送受信器21aに置き換えたものである。なお、光送受信器21aはデータ信号(電気信号)を8B10B復号化23へ出力する。 The optical communication system according to Embodiment 2 includes communication devices 1a and 2a. A case where the communication device 1a is a communication device on the transmission side which is the first communication device, the communication device 2a is a communication device on the reception side which is the second communication device, and a data signal is transmitted from the communication device 1a to the communication device 2a. An example will be described. The communication device 1a is obtained by adding an inverting unit 14 to the communication device 1 of the first embodiment and replacing the optical transceiver 13 with an optical transceiver 13a. The communication device 2a is obtained by deleting the inverting unit 22 from the communication device 2 of the first embodiment and replacing the optical transceiver 21 with the optical transceiver 21a. The optical transceiver 21 a outputs a data signal (electric signal) to the 8B10B decoding 23.
 図7において、図1と同じ符号が付されている構成要素は、実施の形態1で説明した構成要素と同一または相当の構成要素を示している。図1と同じ符号が付されている構成要素については説明を省略する。実施の形態2に係る光通信システムは、実施の形態1では受信側の通信装置2が備えていた反転部を送信側の通信装置1aが備えるようにしたものである。通信装置1aに備えられた反転部14は、実施の形態1に係る通信装置2に備えられていた反転部22と同様の構成であり、かつ同様の機能を有している。反転部14は、受信側の通信装置2より受信したデータ信号が「反転」している旨の通知を受けた場合には、8B10B符号化部12より出力されたデータ信号の反転動作を行う。また、送信側の光送受信器13aは、実施の形態1の光送受信器13が実行する処理と同様の処理を実行し、さらに、通信装置2aより上述の受信したデータ信号が「反転」している旨の通知を受けた場合には、この通知を反転部14に転送する。また、受信側の光送受信器21aは、実施の形態1の光送受信器21が実行する処理と同様の処理を実行し、さらに、反転判定部24により受信したデータ信号が「反転」していると判断された場合に、その旨の通知を通信装置1aに対して行う。すなわち、光送受信器21aは判定通知手段としての動作を実施する。 In FIG. 7, the components denoted by the same reference numerals as those in FIG. 1 indicate the same or equivalent components as those described in the first embodiment. The description of the components having the same reference numerals as those in FIG. 1 is omitted. The optical communication system according to the second embodiment is configured such that the transmission side communication device 1a includes the inverting unit included in the reception side communication device 2 in the first embodiment. The reversing unit 14 provided in the communication device 1a has the same configuration as the reversing unit 22 provided in the communication device 2 according to Embodiment 1, and has the same function. When receiving the notification that the data signal received from the communication device 2 on the receiving side is “inverted”, the inverting unit 14 performs the inverting operation of the data signal output from the 8B10B encoding unit 12. Further, the transmission side optical transceiver 13a performs the same processing as the processing performed by the optical transceiver 13 of the first embodiment, and further, the above-mentioned received data signal from the communication device 2a is "inverted". When the notification that it is present is received, this notification is transferred to the inverting unit 14. In addition, the optical transceiver 21a on the receiving side performs the same processing as that performed by the optical transceiver 21 of the first embodiment, and the data signal received by the inversion determination unit 24 is “inverted”. If it is determined, notification to that effect is sent to the communication device 1a. That is, the optical transceiver 21a performs an operation as a determination notification unit.
 次に、動作について説明する。
 動作を示すフローチャートは、図3に示す場合とほぼ同様である。また、ステップS10~ステップS14に示す動作については実施の形態1に示す場合と同様であり、説明を省略する。なお、8B10B符号化部12で8B10B符号化されたデータ信号は反転部14に入力されるが、通信装置2aより通知を「反転」と判定された旨の通知を受けていない状態では、反転部14では、そのままデータ信号を転送することとなり、実施の形態1における送信側の通信装置1と同様の光信号を出力することとなる。
Next, the operation will be described.
The flowchart showing the operation is almost the same as that shown in FIG. The operations shown in steps S10 to S14 are the same as in the case of the first embodiment, and a description thereof will be omitted. Note that the data signal that has been 8B10B encoded by the 8B10B encoder 12 is input to the inversion unit 14. 14, the data signal is transferred as it is, and the same optical signal as that of the communication device 1 on the transmission side in the first embodiment is output.
 ステップS15において、通信装置2aの反転判定部24によって受信したデータ信号が反転していると判定された場合には、反転判定部24は、その旨を記述した通知を作成し、光送受信器21aに送付する。光送受信器21aは、反転判定部24より受領した通知を光信号に変換し、光通信路4を介して通信装置1aに送付する。なお、この通知は必ずしも光通信路4を用いる必要はなく、別途設けられた無線システムなどを用いても本発明が成り立つことは言うまでもない。 If it is determined in step S15 that the data signal received by the inversion determination unit 24 of the communication device 2a is inverted, the inversion determination unit 24 creates a notification describing that fact and the optical transceiver 21a. Send to. The optical transceiver 21 a converts the notification received from the inversion determination unit 24 into an optical signal and sends it to the communication device 1 a via the optical communication path 4. Note that it is not always necessary to use the optical communication path 4 for this notification, and it goes without saying that the present invention can also be realized by using a separately provided wireless system or the like.
 通信装置2aより、通知を受領した光送受信器13aは、その旨を反転部14に通知する。通知を受けた反転部14では、それ以降に8B10B符号化部12より出力されたデータ信号に対して反転処理を行う(ステップS16)。反転処理については、実施の形態1で示した処理を行うものとし、マルチプレクサまたはEXOR回路を用いるものとする。 The optical transceiver 13a that has received the notification from the communication device 2a notifies the inverting unit 14 to that effect. The inversion unit 14 that has received the notification performs inversion processing on the data signal output from the 8B10B encoding unit 12 thereafter (step S16). As for the inversion process, the process described in Embodiment 1 is performed, and a multiplexer or an EXOR circuit is used.
 反転処理が行われたデータ信号は、光送受信器13aにおいて光信号に変換され、光通信路4を介して通信装置2aへ送信される。光通信路4において位相スリップが生じることとなるが、反転処理が行われたデータ信号について光信号を送信しているため通信装置2aでは、正常な状態で信号を受信することができる。 The data signal subjected to the inversion process is converted into an optical signal by the optical transceiver 13a and transmitted to the communication device 2a via the optical communication path 4. Although a phase slip occurs in the optical communication path 4, since the optical signal is transmitted for the data signal subjected to the inversion process, the communication apparatus 2a can receive the signal in a normal state.
 実施の形態2に係る光通信システムでは、以上のような構成をしており、実施の形態1と同様の効果が得られ、差動符号化等を行うことなく、光通信路の雑音や波形歪みなどに起因する位相スリップによって生じるビット列の反転の有無を判定することができる。 The optical communication system according to the second embodiment has the above-described configuration, and the same effects as those of the first embodiment can be obtained. Noise and waveforms in the optical communication path can be obtained without performing differential encoding or the like. It is possible to determine whether or not the bit string is inverted due to phase slip caused by distortion or the like.
実施の形態3.
 実施の形態1では、受信側の通信装置2で反転判定を行い「反転」を検出すると受信側の通信装置2がビット列の反転処理を行う光通信システムについて説明を行った。また、実施の形態2では、受信側の通信装置2aで反転判定を行い「反転」を検出すると、その旨を送信側の通信装置1aに通知し、通信装置1aがビット列の反転処理を行う光通信システムについて説明を行った。すなわち、実施の形態1,2の光通信システムでは、光信号の受信側の通信装置2,2aが反転判定を行い、「反転」を検出すると、光信号の受信側の通信装置2または光信号の送信側の通信装置1aがビット列を反転させることとした。これに対して、実施の形態3の光通信システムにおいては、光信号の受信側の通信装置では反転判定を行わずに電気信号を他の通信装置へ送信し、電気信号を受信した他の通信装置が反転判定およびビット列の反転処理を実行する。
Embodiment 3 FIG.
In the first embodiment, the optical communication system has been described in which the inversion determination is performed by the communication device 2 on the reception side and the inversion processing of the bit string is performed by the communication device 2 on the reception side when “inversion” is detected. Further, in the second embodiment, when the inversion determination is performed by the receiving side communication device 2a and “inversion” is detected, the transmission side communication device 1a is notified to that effect, and the communication device 1a performs the bit string inversion processing. The communication system has been described. That is, in the optical communication systems according to the first and second embodiments, when the communication device 2 or 2a on the optical signal reception side performs the inversion determination and detects “inversion”, the communication device 2 on the optical signal reception side or the optical signal The transmission-side communication device 1a inverts the bit string. On the other hand, in the optical communication system according to the third embodiment, the communication device on the optical signal receiving side transmits the electric signal to another communication device without performing the inversion determination, and the other communication that has received the electric signal. The apparatus executes inversion determination and bit string inversion processing.
 実施の形態3の光通信システムの構成例を図8に示す。図8に示したように、実施の形態3に係る光通信システムは、通信装置1、通信装置2bおよび通信装置3を備えている通信装置1と通信装置2bとが光通信路4により接続され、通信装置2bと通信装置3が通信路5で接続されている。光通信路4は、実施の形態1,2の光通信路4と同じものである。通信路5は、電気信号を送受信するための有線または無線の通信路である。ここでは、通信装置1がデータ信号を送信する第1の通信装置(送信側の通信装置)、通信装置2bが通信装置1から受信したデータ信号を通信装置3へ送信する第2の通信装置(送受信側の通信装置)、通信装置3が通信装置1から送信されたデータ信号を通信装置2bを介して受信する第3の通信装置(受信側の通信装置)として説明を行う。 FIG. 8 shows a configuration example of the optical communication system according to the third embodiment. As shown in FIG. 8, in the optical communication system according to the third embodiment, the communication device 1 including the communication device 1, the communication device 2 b, and the communication device 3 and the communication device 2 b are connected by the optical communication path 4. The communication device 2b and the communication device 3 are connected by a communication path 5. The optical communication path 4 is the same as the optical communication path 4 of the first and second embodiments. The communication path 5 is a wired or wireless communication path for transmitting and receiving electrical signals. Here, the communication device 1 transmits a data signal to the first communication device (transmission-side communication device), and the communication device 2b transmits the data signal received from the communication device 1 to the communication device 3 (second communication device ( The transmission / reception side communication device) and the communication device 3 will be described as a third communication device (reception side communication device) that receives the data signal transmitted from the communication device 1 via the communication device 2b.
 通信装置1は、実施の形態1の通信装置1と同じものである。通信装置2bは、実施の形態1の通信装置2から反転部22および反転判定部24を削除し、送受信器25を追加して、通信装置1から受信したデータを通信装置3へ転送するようにしたものである。通信装置3は、送受信器31、反転判定部32および符号変換部33を備える。 The communication device 1 is the same as the communication device 1 of the first embodiment. The communication device 2b deletes the inversion unit 22 and the inversion determination unit 24 from the communication device 2 of the first embodiment, adds a transceiver 25, and transfers data received from the communication device 1 to the communication device 3. It is a thing. The communication device 3 includes a transceiver 31, an inversion determination unit 32, and a code conversion unit 33.
 通信装置2bの送受信器25は、8B10B復号化部23にて復号化されたデータ信号を、通信路5を介して通信装置3へ送信する。送受信器25は、データ信号を通信装置3へ送信する際、符号化処理、変調処理などを適宜実施する。 The transceiver 25 of the communication device 2 b transmits the data signal decoded by the 8B10B decoding unit 23 to the communication device 3 via the communication path 5. The transmitter / receiver 25 appropriately performs encoding processing, modulation processing, and the like when transmitting a data signal to the communication device 3.
 通信装置3の送受信器31は、通信装置2bからデータ信号を受信し、反転判定部32へ出力する。送受信器31は、通信装置2bから信号を受信すると、復調処理、復号処理などを適宜実施し、通信装置2bが送信したデータ信号を復元する。送受信器31は、復元したデータ信号を反転判定部32および符号変換部33へ出力する。 The transceiver 31 of the communication device 3 receives the data signal from the communication device 2 b and outputs it to the inversion determination unit 32. When receiving the signal from the communication device 2b, the transmitter / receiver 31 appropriately performs demodulation processing, decoding processing, and the like, and restores the data signal transmitted by the communication device 2b. The transceiver 31 outputs the restored data signal to the inversion determination unit 32 and the code conversion unit 33.
 反転判定部32は、実施の形態1に係る通信装置2に備えられていた反転判定部24と同様の構成であり、かつ同様の機能を有し、反転判定部24と同様の方法によりデータ信号が反転しているか否かを判定する。反転判定部32は、データ信号が反転しているか否かの判定結果を符号変換部33へ通知する。 The inversion determination unit 32 has the same configuration as that of the inversion determination unit 24 provided in the communication device 2 according to the first embodiment, has the same function, and uses the same method as the inversion determination unit 24 to perform a data signal. It is determined whether or not is inverted. The inversion determination unit 32 notifies the code conversion unit 33 of the determination result as to whether or not the data signal is inverted.
 符号変換部33は、反転判定部32よりデータ信号が「反転」している旨の通知を受けた場合、送受信器31から受け取ったデータ信号に対して符号変換処理を実行する。符号変換処理の詳細については後述する。 When receiving a notification from the inversion determination unit 32 that the data signal is “inverted”, the code conversion unit 33 performs a code conversion process on the data signal received from the transceiver 31. Details of the code conversion process will be described later.
 本実施の形態に係る光通信システムの動作について説明する。なお、通信装置1の動作は実施の形態1と同様であるため、説明を省略する。 The operation of the optical communication system according to this embodiment will be described. Note that the operation of the communication device 1 is the same as that of the first embodiment, and thus the description thereof is omitted.
 図9は、実施の形態3に係る光通信システムの通信装置2bおよび3の動作例を示すフローチャートであり、通信装置1から送信されたデータ信号を受信する場合の動作を示している。図9のステップS30およびS31は通信装置2bで実行される処理、ステップS32、S33およびS34は通信装置3で実行される処理である。 FIG. 9 is a flowchart showing an operation example of the communication devices 2b and 3 of the optical communication system according to the third embodiment, and shows an operation when a data signal transmitted from the communication device 1 is received. Steps S30 and S31 in FIG. 9 are processes executed by the communication apparatus 2b, and steps S32, S33, and S34 are processes executed by the communication apparatus 3.
 通信装置1から送信されたデータ信号を光通信路4経由で受信する通信装置2bは、受信信号に同期信号(「K28.5」)が含まれるか否かを確認し(ステップS30)、同期信号が含まれない場合(ステップS30:No)、ステップS30の処理を繰り返す。通信装置2bにおいては、光送受信器21がこのステップS30の処理を実行する。通信装置2bは、受信信号に同期信号が含まれている場合(ステップS30:Yes)、8B10B復号化処理を実行する(ステップS31)。通信装置2bにおいては、8B10B復号化部23がステップS31の処理を実行する。通信装置2bは、8B10B復号化処理を実行して得られた復号後のデータ信号を通信装置3へ送信し、これを通信装置3が受信する。通信装置2bにおいては送受信器25がデータ信号を送信し、通信装置3においては送受信器31がデータ信号を受信する。 The communication device 2b that receives the data signal transmitted from the communication device 1 via the optical communication path 4 confirms whether or not the synchronization signal (“K28.5”) is included in the received signal (step S30). When the signal is not included (step S30: No), the process of step S30 is repeated. In the communication device 2b, the optical transceiver 21 executes the process of step S30. When the synchronization signal is included in the received signal (step S30: Yes), the communication device 2b executes the 8B10B decoding process (step S31). In the communication device 2b, the 8B10B decoding unit 23 executes the process of step S31. The communication device 2b transmits the decoded data signal obtained by executing the 8B10B decoding process to the communication device 3, and the communication device 3 receives the data signal. In the communication device 2b, the transmitter / receiver 25 transmits a data signal, and in the communication device 3, the transmitter / receiver 31 receives the data signal.
 通信装置2bからデータ信号を受信した通信装置3は、受信したデータ信号が反転しているか否か、すなわちデータ信号の全ビットが反転した状態か否かを判定する(ステップS32)。データ信号が反転している場合(ステップS32:Yes)、通信装置3は、通信装置2bから受信したデータ信号に対して符号変換処理を開始し、各ビットを正しい状態に戻す(ステップS33)。符号変換処理の詳細については後述する。通信装置3においては、反転判定部32がステップS32の処理を実行し、符号変換部33がステップS33の処理を実行する。反転判定部32は、実施の形態1,2の反転判定部24と同様の方法でデータ信号が反転しているか否かを判定する。反転判定部32は、データ信号が反転していると判定すると、その旨を符号変換部33に通知し、この通知を受けた符号変換部33は、送受信器31から入力されたデータ信号に対する符号変換処理を開始する。通信装置3は、符号変換処理が実施され、データ信号が有効なデータに変換されると変換後のデータの受信を開始する(ステップS34)。 The communication device 3 that has received the data signal from the communication device 2b determines whether or not the received data signal is inverted, that is, whether or not all the bits of the data signal are inverted (step S32). If the data signal is inverted (step S32: Yes), the communication device 3 starts code conversion processing on the data signal received from the communication device 2b, and returns each bit to the correct state (step S33). Details of the code conversion process will be described later. In the communication device 3, the inversion determination unit 32 executes the process of step S32, and the code conversion unit 33 executes the process of step S33. The inversion determination unit 32 determines whether the data signal is inverted by the same method as the inversion determination unit 24 of the first and second embodiments. When the inversion determination unit 32 determines that the data signal is inverted, the inversion determination unit 32 notifies the code conversion unit 33 to that effect, and the code conversion unit 33 that has received this notification encodes the data signal input from the transceiver 31. Start the conversion process. When the code conversion process is performed and the data signal is converted into valid data, the communication device 3 starts receiving the converted data (step S34).
 符号変換部33が実行する符号変換処理について、図10および図11を参照しながら説明する。図10は、符号変換部33が符号変換処理で使用する符号変換表である。図11は、符号変換部33の符号変換動作の一例を示す図であり、通信装置1から送信されたデータ信号(送信データ)を1段目に示し、通信装置2bを介して通信装置3が受信した、反転した状態の受信データ信号(反転受信時)を2段目に示し、符号変換部33が符号変換処理を実施した後の受信データ信号(符号変換実施後)を3段目に示している。 The code conversion process executed by the code conversion unit 33 will be described with reference to FIGS. 10 and 11. FIG. 10 is a code conversion table used by the code conversion unit 33 in the code conversion process. FIG. 11 is a diagram illustrating an example of the code conversion operation of the code conversion unit 33. The data signal (transmission data) transmitted from the communication device 1 is shown in the first stage, and the communication device 3 is connected via the communication device 2b. The received data signal in an inverted state (when inverted) is shown in the second stage, and the received data signal (after code conversion) after the code conversion unit 33 performs the code conversion process is shown in the third stage. ing.
 図11の1段目および2段目に示したように、データ反転が発生すると、「D3.1」のデータ信号(コード)は「D28.6」のデータ信号(コード)に変換された状態で受信され、「D0.1」のデータ信号は「D0.6」のデータ信号として受信される。「K28.5」および「D0.0」の各データ信号は元の状態のまま受信される。 As shown in the first and second stages of FIG. 11, when data inversion occurs, the data signal (code) of “D3.1” is converted to the data signal (code) of “D28.6” The data signal “D0.1” is received as the data signal “D0.6”. The data signals “K28.5” and “D0.0” are received in the original state.
 そのため、符号変換部33は、データ反転が発生した旨の通知を反転判定部32から受けた場合、図10に示した符号変換表を使用して、送受信器31から入力されたデータ信号(反転後のコード)を正しいデータ信号(反転前のコード)に変換する。具体的には、符号変換部33は、「D28.6」のデータ信号が入力されると「D3.1」のデータ信号に変換して出力し、「D0.6」のデータ信号が入力されると「D0.1」のデータ信号に変換して出力する。また、符号変換部33は、「D0.0」および「K28.5」のデータ信号が入力された場合はそのまま出力する。 Therefore, when the code conversion unit 33 receives a notification that data inversion has occurred from the inversion determination unit 32, the code conversion unit 33 uses the code conversion table shown in FIG. The code after) is converted into a correct data signal (code before inversion). Specifically, when the data signal “D28.6” is input, the code conversion unit 33 converts the data signal to “D3.1” and outputs the data signal, and the data signal “D0.6” is input. Then, it is converted into a data signal of “D0.1” and output. The code conversion unit 33 outputs the data signals “D0.0” and “K28.5” as they are when they are input.
 図9に示した動作の説明に戻り、データ信号が反転していない場合(ステップS32:No)、通信装置3は、符号変換処理は実行せずに、有効なデータとして受信する(ステップS34)。この場合、符号変換部33は、送受信器31から入力されたデータ信号をそのまま出力する。 Returning to the explanation of the operation shown in FIG. 9, when the data signal is not inverted (step S32: No), the communication device 3 receives the data as valid data without executing the code conversion process (step S34). . In this case, the code conversion unit 33 outputs the data signal input from the transceiver 31 as it is.
 実施の形態3に係る光通信システムでは、以上のような構成をしており、実施の形態1,2と同様の効果が得られ、差動符号化等を行うことなく、光通信路の雑音および波形歪みなどに起因する位相スリップによって生じるビット列の反転の有無を判定することができる。また、光信号を終端する通信装置2bに接続された通信装置3において反転が発生しているか否かの判定および反転が発生した場合の符号変換を実行するようにしたため、通信装置2bの負荷を軽減できるというメリットがある。これは通信装置2bが衛星に搭載され、通信装置3が地上局である場合に、衛星側で行う処理を軽減できるというメリットがある。 The optical communication system according to Embodiment 3 has the above-described configuration, and the same effects as those of Embodiments 1 and 2 can be obtained. Noise in the optical communication path can be obtained without performing differential encoding or the like. In addition, it is possible to determine the presence or absence of bit string inversion caused by phase slip caused by waveform distortion or the like. Further, since the communication device 3 connected to the communication device 2b that terminates the optical signal determines whether or not inversion occurs and performs code conversion when the inversion occurs, the load on the communication device 2b is reduced. There is a merit that it can be reduced. This is advantageous in that the processing performed on the satellite side can be reduced when the communication device 2b is mounted on a satellite and the communication device 3 is a ground station.
 なお、本実施の形態では、反転判定部32および符号変換部33を通信装置3が備えることとしたが、反転判定部32の処理、すなわち、データ信号が反転しているか否かの判定を、実施の形態1,2と同様に通信装置2bで行うようにしてもよい。この場合、通信装置2bは、データ信号が反転していると判定すると、その旨を通信装置3に通知する。 In the present embodiment, the communication device 3 includes the inversion determination unit 32 and the code conversion unit 33. However, the processing of the inversion determination unit 32, that is, the determination of whether or not the data signal is inverted, The communication device 2b may perform the same as in the first and second embodiments. In this case, when the communication device 2b determines that the data signal is inverted, the communication device 2b notifies the communication device 3 accordingly.
 各実施の形態で説明した通信装置を実現するハードウェアについて説明する。実施の形態1~3で説明したデータ生成部11、8B10B符号化部12、反転部14,22、8B10B復号化部23、反転判定部24,32および符号変換部33は、図12に示した処理回路100で実現可能である。 Hardware that implements the communication device described in each embodiment will be described. The data generation unit 11, 8B10B encoding unit 12, inversion units 14 and 22, 8B10B decoding unit 23, inversion determination units 24 and 32, and code conversion unit 33 described in the first to third embodiments are shown in FIG. This can be realized by the processing circuit 100.
 処理回路100は、プロセッサ101、メモリ102、入力回路103および出力回路104を含んで構成されている。プロセッサ101は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)、システムLSI(Large Scale Integration)などである。メモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVD(Digital Versatile Disc)等である。 The processing circuit 100 includes a processor 101, a memory 102, an input circuit 103, and an output circuit 104. The processor 101 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP), system LSI (Large Scale Integration), or the like. The memory 102 is a nonvolatile or volatile semiconductor such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), etc. Memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc.
 データ生成部11、8B10B符号化部12、反転部14,22、8B10B復号化部23、反転判定部24,32および符号変換部33は、それぞれに対応するプログラムをメモリ102から読み出してプロセッサ101が実行することにより実現できる。入力回路103は、プロセッサ101が処理する情報、メモリ102が記憶する情報などを外部から受け取る際に使用し、出力回路104は、プロセッサ101が生成した情報、メモリ102が記憶している情報を外部へ出力する際に使用する。 The data generation unit 11, 8B10B encoding unit 12, inversion units 14 and 22, 8B10B decoding unit 23, inversion determination units 24 and 32, and code conversion unit 33 read the corresponding programs from the memory 102, and the processor 101 It can be realized by executing. The input circuit 103 is used when receiving information processed by the processor 101 and information stored in the memory 102 from the outside, and the output circuit 104 externally transmits information generated by the processor 101 and information stored in the memory 102. Used when outputting to.
 データ生成部11、8B10B符号化部12、反転部14,22、8B10B復号化部23、反転判定部24,32および符号変換部33の一部または全てを専用のハードウェアにより実現してもよい。この場合、上記の各部は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた処理回路で実現する。 A part or all of the data generation unit 11, 8B10B encoding unit 12, inversion units 14, 22, 8B10B decoding unit 23, inversion determination units 24, 32, and code conversion unit 33 may be realized by dedicated hardware. . In this case, each of the above units is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these. Realized with a circuit.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,1a 通信装置(送信側)、2,2a,3 通信装置(受信側)、2b 通信装置(送受信側)、4 光通信路、11 データ生成部、12 8B10B符号化部、13 光送受信器(送信側)、14 反転部、21 光送受信器(受信側)、22 反転部、23 8B10B復号化部、24,32 反転判定部、31送受信器、33 符号変換部。 1, 1a communication device (transmission side), 2, 2a, 3 communication device (reception side), 2b communication device (transmission / reception side), 4 optical communication path, 11 data generation unit, 12 8B10B encoding unit, 13 optical transceiver (Transmission side), 14 inversion unit, 21 optical transceiver (reception side), 22 inversion unit, 23 8B10B decoding unit, 24, 32 inversion determination unit, 31 transceiver, 33 code conversion unit.

Claims (11)

  1.  第1の通信装置と光通信路によって接続された第2の通信装置を備える光通信システムであって、
     前記第1の通信装置は、
     符号化されることにより反転しても同じコードを示すビット列からなる第1のデータを生成し、符号化されることにより反転した場合に異なるコードを示すビット列からなる第2のデータを生成するデータ生成部と、
     前記データ生成部により生成されたデータを符号化する符号化部と、
     前記符号化部により符号化された前記第1のデータおよび前記第2のデータを続けて前記第2の通信装置に送信する送信器と、
     を備え、
     前記第2の通信装置は、
     前記第1の通信装置よりデータを受信する受信器と、
     前記受信器で受信したデータを復号化する復号化部と、
     前記復号化されたデータが前記第1のデータに続く前記第2のデータを含んでいない場合に、前記光通信路を介して受信した信号が反転していると判定する反転判定部と、
     を備えたことを特徴とする光通信システム。
    An optical communication system comprising a second communication device connected to the first communication device by an optical communication path,
    The first communication device is:
    Data that generates first data consisting of a bit string indicating the same code even if inverted by encoding, and generates second data consisting of a bit string indicating a different code when inverted by encoding A generator,
    An encoding unit for encoding the data generated by the data generation unit;
    A transmitter that continuously transmits the first data and the second data encoded by the encoding unit to the second communication device;
    With
    The second communication device is:
    A receiver for receiving data from the first communication device;
    A decoding unit for decoding data received by the receiver;
    An inversion determination unit that determines that a signal received via the optical communication path is inverted when the decoded data does not include the second data following the first data;
    An optical communication system comprising:
  2.  前記第2の通信装置は、
     前記反転判定部において反転していると判定された場合、前記受信器により受信したデータを反転させ、前記復号化部に出力する反転部、
     を備えることを特徴とする請求項1記載の光通信システム。
    The second communication device is:
    An inversion unit that inverts the data received by the receiver and outputs to the decoding unit when it is determined that the inversion determination unit inverts,
    The optical communication system according to claim 1, further comprising:
  3.  前記第2の通信装置は、
     前記反転判定部において反転していると判定された場合、前記第1の通信装置にその旨を通知する判定通知手段、
     を備え、
     前記第1の通信装置は、
     前記判定通知手段により反転している旨を通知された場合、前記符号化部により符号化されたデータを反転させ、前記送信器に出力する反転部、
     を備えること、
     を特徴とする請求項1記載の光通信システム。
    The second communication device is:
    A determination notifying means for notifying the first communication device to that effect when it is determined by the reversal determination unit
    With
    The first communication device is:
    An inversion unit that inverts the data encoded by the encoding unit and outputs the data to the transmitter when notified by the determination notification means that the inversion is performed;
    Providing
    The optical communication system according to claim 1.
  4.  前記第2の通信装置に接続され、前記復号化部で復号された後のデータを受信する第3の通信装置を備え、
     前記第2の通信装置は、
     前記反転判定部において反転していると判定された場合、前記第3の通信装置にその旨を通知する判定通知手段、
     を備え、
     前記第3の通信装置は、
     前記判定通知手段により反転している旨を通知された場合、前記第2の通信装置から受信したデータを前記反転が発生する前のデータに変換する符号変換部、
     を備えること、
     を特徴とする請求項1記載の光通信システム。
    A third communication device connected to the second communication device and receiving data after being decoded by the decoding unit;
    The second communication device is:
    A determination notifying means for notifying the third communication device to that effect when it is determined by the reversal determination section
    With
    The third communication device is:
    A code conversion unit that converts data received from the second communication device into data before the inversion occurs, when notified by the determination notification means that the inversion has occurred;
    Providing
    The optical communication system according to claim 1.
  5.  第1の通信装置と、前記第1の通信装置と光通信路によって接続された第2の通信装置と、前記第1の通信装置から送信されたデータを前記第2の通信装置を介して受信する第3の通信装置とを備える光通信システムであって、
     前記第1の通信装置は、
     符号化されることにより反転しても同じコードを示すビット列からなる第1のデータを生成し、符号化されることにより反転した場合に異なるコードを示すビット列からなる第2のデータを生成するデータ生成部と、
     前記データ生成部により生成されたデータを符号化する符号化部と、
     前記符号化部により符号化された前記第1のデータおよび前記第2のデータを続けて前記第2の通信装置に送信する送信器と、
     を備え、
     前記第2の通信装置は、
     前記第1の通信装置よりデータを受信する受信器と、
     前記受信器で受信したデータを復号化する復号化部と、
     を備え、
     前記第3の通信装置は、
     前記復号化部で復号化されたデータが前記第1のデータに続く前記第2のデータを含んでいない場合に、前記光通信路を介して前記第2の通信装置が受信した信号が反転していると判定する反転判定部、
     を備えること、
     を特徴とする光通信システム。
    A first communication device, a second communication device connected to the first communication device via an optical communication path, and data transmitted from the first communication device are received via the second communication device. An optical communication system comprising a third communication device,
    The first communication device is:
    Data that generates first data consisting of a bit string indicating the same code even if inverted by encoding, and generates second data consisting of a bit string indicating a different code when inverted by encoding A generator,
    An encoding unit for encoding the data generated by the data generation unit;
    A transmitter that continuously transmits the first data and the second data encoded by the encoding unit to the second communication device;
    With
    The second communication device is:
    A receiver for receiving data from the first communication device;
    A decoding unit for decoding data received by the receiver;
    With
    The third communication device is:
    When the data decoded by the decoding unit does not include the second data following the first data, the signal received by the second communication device via the optical communication path is inverted. Reversal determination unit for determining that
    Providing
    An optical communication system.
  6.  前記第3の通信装置は、
     前記反転判定部において反転していると判定された場合、前記第2の通信装置から受信したデータを前記反転が発生する前のデータに変換する符号変換部、
     を備えること、
     を特徴とする請求項5記載の光通信システム。
    The third communication device is:
    A code conversion unit that converts data received from the second communication device into data before the inversion occurs, when the inversion determination unit determines that the inversion is performed;
    Providing
    The optical communication system according to claim 5.
  7.  前記符号化部で行う符号化は、8B10B符号化であり、
     前記データ生成部は、8B10B符号化において各コードに割り当てられたCRD(Current Running Disparity)プラスおよびCRDマイナスの関係が反転関係にある第1のデータを生成し、CRDプラスおよびCRDマイナスが、反転関係になく、CRDプラスおよびCRDマイナスのいずれもが、反転した場合異なるコードを示すビット列からなるデータを生成し、
     前記復号化部は、8B10B復号化を行うこと、
     を特徴とする請求項1から6のいずれか1項に記載の光通信システム。
    The encoding performed by the encoding unit is 8B10B encoding,
    The data generation unit generates first data in which the relationship between CRD (Current Running Disparity) plus and CRD minus assigned to each code in 8B10B encoding is inverted, and CRD plus and CRD minus are inverted. In addition, both CRD plus and CRD minus generate data consisting of bit strings indicating different codes when inverted.
    The decoding unit performs 8B10B decoding;
    The optical communication system according to any one of claims 1 to 6.
  8.  前記送信器は、複数回にわたって前記第1のデータおよび第2のデータを前記第2の通信装置に送信し、
     前記反転判定部は、前記第1のデータに続くデータが、あらかじめ定められた割合以上の前記第2のデータでない場合に、反転していると判定すること、
     を特徴とする請求項1から7のいずれか1項に記載の光通信システム。
    The transmitter transmits the first data and the second data to the second communication device a plurality of times;
    The inversion determination unit determines that the data following the first data is inverted when the second data is not equal to or greater than a predetermined ratio;
    The optical communication system according to claim 1, wherein:
  9.  対向通信装置と光通信路によって接続された光通信装置であって、
     前記対向通信装置より送信された、符号化されることにより反転しても同じコードを示すビット列からなる第1のデータおよび符号化されることにより反転した場合に異なるコードを示すビット列からなる第2のデータを続けて受信する受信器と、
     前記受信器で受信したデータを復号化する復号化部と、
     前記復号化されたデータが前記第1のデータに続く前記第2のデータを含んでいない場合に、前記光通信路を介して受信した信号が反転していると判定する反転判定部と、
     を備えたことを特徴とする光通信装置。
    An optical communication device connected to the opposite communication device by an optical communication path,
    First data composed of a bit string indicating the same code even if inverted by encoding, and a second string consisting of a bit string indicating a different code when inverted by encoding. A receiver that continuously receives the data of
    A decoding unit for decoding data received by the receiver;
    An inversion determination unit that determines that a signal received via the optical communication path is inverted when the decoded data does not include the second data following the first data;
    An optical communication device comprising:
  10.  前記反転判定部において反転していると判定された場合、前記受信器により受信したデータを反転させ、前記復号化部に出力する反転部、
     を備えることを特徴とする請求項9記載の光通信装置。
    An inversion unit that inverts the data received by the receiver and outputs to the decoding unit when it is determined that the inversion determination unit inverts,
    The optical communication apparatus according to claim 9, further comprising:
  11.  前記反転判定部において反転していると判定された場合、前記対向通信装置にその旨を通知する判定通知手段を備えること、
     を特徴とする請求項9記載の光通信装置。
    A determination notification means for notifying the opposite communication device to that effect when it is determined by the reversal determination unit that reversal;
    The optical communication device according to claim 9.
PCT/JP2015/085290 2014-12-17 2015-12-16 Optical communication system and optical communication device WO2016098841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016564899A JP6180665B2 (en) 2014-12-17 2015-12-16 Optical communication system and optical communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014254839 2014-12-17
JP2014-254839 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016098841A1 true WO2016098841A1 (en) 2016-06-23

Family

ID=56126725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085290 WO2016098841A1 (en) 2014-12-17 2015-12-16 Optical communication system and optical communication device

Country Status (2)

Country Link
JP (1) JP6180665B2 (en)
WO (1) WO2016098841A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230678A (en) * 2000-02-18 2001-08-24 Nippon Telegr & Teleph Corp <Ntt> Data transmission error monitoring system, data transmitter, data receiver and data transmission error monitoring method
JP2014003507A (en) * 2012-06-20 2014-01-09 Mitsubishi Electric Corp Optical communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230678A (en) * 2000-02-18 2001-08-24 Nippon Telegr & Teleph Corp <Ntt> Data transmission error monitoring system, data transmitter, data receiver and data transmission error monitoring method
JP2014003507A (en) * 2012-06-20 2014-01-09 Mitsubishi Electric Corp Optical communication system

Also Published As

Publication number Publication date
JPWO2016098841A1 (en) 2017-04-27
JP6180665B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
US10997016B2 (en) Method of encoding data
CN107017949B (en) Optical module, method for processing data and transmitting device
EP3046276B1 (en) Two-level coset coding scheme for gigabit Ethernet over plastic optical fibre
US10305681B2 (en) High-security communication system, and transmitter and receiver both used therein
JP2014509796A (en) Method and apparatus for communicating scrambling seed information
JP2008167126A (en) Optical digital transmission system and method
JPWO2008059588A1 (en) Data transmission apparatus and transmission code generation method
WO2013084812A1 (en) Information processing device, information processing method, and program
JP5896841B2 (en) Optical communication system
JP4927617B2 (en) Data transmission apparatus and transmission code generation method
JP2017513307A5 (en)
JP6180665B2 (en) Optical communication system and optical communication apparatus
JP2013239940A (en) Serial communication system, image forming system, and transmitter
EP1320208A2 (en) Serial communications system and method
US8645806B2 (en) Optical receiving apparatus and optical receiving method
JP2007306212A (en) Transmitter, receiver, communication system, and communication method
WO2020131056A1 (en) Apparatus and method for sending side-channel bits on an ethernet cable
KR100574767B1 (en) Data Transmitting Circuit and Method Based on Differential Value Data Encoding
JP5425667B2 (en) Transmitting apparatus, receiving apparatus, and transmission system
JP5116567B2 (en) Optical receiver
JPH0846648A (en) Communication equipment
WO2010082339A1 (en) Optical transfer system, transmitter apparatus and receiver apparatus
WO2018018477A1 (en) Optical transmission method, apparatus and system
US8717205B2 (en) Parallel differential encoding circuits
JP2011155330A (en) Transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564899

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870043

Country of ref document: EP

Kind code of ref document: A1