WO2016093567A1 - Biomarker for diagnosis of hepatoma and use thereof - Google Patents

Biomarker for diagnosis of hepatoma and use thereof Download PDF

Info

Publication number
WO2016093567A1
WO2016093567A1 PCT/KR2015/013296 KR2015013296W WO2016093567A1 WO 2016093567 A1 WO2016093567 A1 WO 2016093567A1 KR 2015013296 W KR2015013296 W KR 2015013296W WO 2016093567 A1 WO2016093567 A1 WO 2016093567A1
Authority
WO
WIPO (PCT)
Prior art keywords
liver cancer
protein
nucleic acid
marker
biomarker
Prior art date
Application number
PCT/KR2015/013296
Other languages
French (fr)
Korean (ko)
Inventor
김영수
윤정환
김현수
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150172020A external-priority patent/KR101788414B1/en
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to CN201580067274.5A priority Critical patent/CN107110867B/en
Priority to EP15868405.0A priority patent/EP3232198A4/en
Publication of WO2016093567A1 publication Critical patent/WO2016093567A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a biomarker for diagnosing liver cancer and its use.
  • Liver cancer or hepatocellular carcinoma is the most common type of adult liver cancer, accounting for the third leading cause of death from cancer (Stefaniuk P, et al., 2010, World J Gastroenterol 16: 418-424).
  • Liver cancer is a disease that appears only when the symptoms are quite advanced, which often leads to a missed time for proper treatment, and the prognosis is extremely poor when treated.
  • surgical resection is a serious disease that dies within a year. Considering this clinical reality, early diagnosis and prognosis of cancer are the most realistic alternatives to cancer treatment and guidelines for next-generation liver cancer care. .
  • hepatocellular carcinoma is known to occur in patients with risk factors such as hepatitis virus, alcohol, and cirrhosis of the liver, and it is clear to be subjected to selective surveillance of high risk groups using early diagnosis markers. Indeed, early diagnosis at six-month intervals has been shown to increase survival (reduced by 37%) in patients with liver cancer.
  • Biomarker tests have not been developed to detect liver cancer early and correctly in normal people. Serum alpha-fetoprotein testing is used to diagnose non-invasive early liver cancer in high-risk patients.
  • AFP suggested a baseline of 20 ng / mL to achieve both good sensitivity and specificity, but in this case the sensitivity is only 60% and is currently 200 ng / mL according to the International Society's Guidelines for Diagnosing Liver Cancer. Based on the diagnosis of liver cancer, the specificity increases, but the sensitivity is only 22%. Previous studies have shown that AFP has an overall sensitivity of about 66% and a specificity of 82%, limiting the diagnosis of all liver cancer patients.
  • Serum markers for diagnosis of liver cancer include Descarboxyprothrombin (DCP), Prothrombin Induced by Vitamin K Absence II (PIVKA-II), glycosylated AFP to total AFP (L3 fraction) distribution, alpha fucosidase, glypican 3 and HSP-70.
  • DCP Descarboxyprothrombin
  • PIVKA-II Prothrombin Induced by Vitamin K Absence II
  • glycosylated AFP to total AFP (L3 fraction) distribution glycosylated AFP to total AFP (L3 fraction) distribution
  • alpha fucosidase glypican 3 and HSP-70.
  • US Patent Publication No. 2010/0304372 relates to a method and composition for diagnosing liver cancer, which discloses a method for diagnosing liver cancer by detecting CpG islands in the BASF1, SPINT2, APC, CCND2, CFTR, RASSF1 and SRD5A2 genes.
  • Korean Patent No. 1141789 relates to a novel biomarker for liver cancer and its use, and discloses a marker for diagnosing or prognostic liver cancer through the detection of NK4 protein and the like.
  • the present invention is to provide a biomarker for diagnosing liver cancer.
  • the present application is directed to ALS (Insulin-like growth factor-binding protein complex acid labile subunit); AMBP (Alpha-1-microglobulin / bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); Hepatocyte growth factor activator (HGFA); Insulin-like growth factor-binding protein 3 (IBP3); Insulin-like growth factor II (IGF2); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); Phosphatidylcholine-sterol acyltransferase (LCAT)
  • the present disclosure provides a method for the diagnosis or prognosis of liver cancer, or to provide information required therein, for example, to include an insulin-like growth factor-binding protein complex acid labile subunit (ALS); AMBP (Alpha-1-microglobulin / bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); Hepatocyte growth factor activator (HGFA); Insulin-like growth factor-binding protein 3 (IBP3); Insulin-like growth factor II (IGF2); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein);
  • the marker according to the present invention can be detected using a blood sample, and is differentially expressed in liver cancer patients compared to samples derived from patients who have been cured after being treated with normal people, hepatitis, cirrhosis or liver cancer. It can be useful for early diagnosis of liver cancer and for measuring progress after treatment.
  • Biomarkers according to the present application can diagnose liver cancer with high specificity and sensitivity.
  • liver cancer patients, as well as liver cirrhosis and liver cancer patients can be distinguished, patients can be diagnosed in advance from liver cirrhosis patients to liver cancer patients in advance, and liver cancer is cured, liver cirrhosis patients with liver cancer removed can be distinguished, liver cancer It can be used to predict treatment prognosis.
  • the marker according to the present application is very useful for early detection in homes and general clinics to enable non-invasive diagnosis using blood, and liver cancer can be detected through simple blood tests during health check-ups. It can bring savings.
  • the biomarker according to the present invention can be developed in the form of a diagnostic kit using an antibody, protein or peptide thereof, for example, ELISA, dipstick in dipstick form, MRM kit based on peptide.
  • a diagnostic kit using an antibody, protein or peptide thereof, for example, ELISA, dipstick in dipstick form, MRM kit based on peptide.
  • it can be industrialized by screening peptides by MRM instead of immunoassay methods in the existing clinical field of clinical practice.
  • weighted analysis with AFP known as liver cancer marker, improves and surpasses existing liver cancer diagnosis method. It can be used as.
  • FIG 1 schematically shows the MRM analysis process used for biomarker discovery and analysis.
  • Figure 2 shows the coelution (coelution) of the endogenous peptide and the synthetic peptide in the blood.
  • Figure 3 shows the Q3 intensity pattern of endogenous peptides and synthetic peptides in the blood.
  • Figure 4 shows a method for determining the endogenous peptide level of blood.
  • Figure 5 shows the results of the measurement of the endogenous peptide concentration of blood in the dynamic range (dynamic range) distribution.
  • Figure 7 shows a schematic diagram of the SIS peptide injection concentration determination method.
  • FIG. 10 shows Western blotting results of 10 target proteins with matching expression trends in order to verify early diagnosis markers.
  • FIG. 10A shows protein-01, A2AP (alpha-2 -antiplasmin), and
  • FIG. 10B shows a protein.
  • FIG. 10C is Protein-03, AFP (alpha-fetoprotein),
  • FIG. 10D is Protein-04, CATB (cathepsin B),
  • FIG. 10 shows Western blotting results of 10 target proteins with matching expression trends in order to verify early diagnosis markers.
  • FIG. 10A shows protein-01, A2AP (alpha-2 -antiplasmin), and FIG. 10B shows a protein.
  • FIG. 10C is Protein-03, AFP (alpha-fetoprotein)
  • FIG. 10D is Protein-04, CATB (cathepsin B),
  • FIG. 10A shows protein-01, A2AP (alpha-2 -antiplasmin)
  • FIG. 10B shows a protein.
  • 10E is Protein-05, FETUA (alpha-2- HS-glycoprotein), Figure 10f shows protein-06, FINC (fibronectin), Figure 10g shows protein-07, ITIH1 (Inter-alpha-trypsin inhibitor heavy chain H1), Figure 10h shows protein-08, ITIH3 (Inter-alpha-trypsin inhibitor heavy chain H3 10I shows protein-09, PLGA (Plasminogen-related protein A), and FIG. 10J shows protein-10.
  • THRB Prothrombin
  • the present invention sequentially screens and verifies differentially expressed protein / peptide expression levels in liver cirrhosis, pre- and post-treatment samples using MRM technology, and shows significant differences between groups, which is useful as a biomarker for diagnosing liver cancer. Based on protein / peptide discovery.
  • the present disclosure provides IGFALS (Insulin-like growth factor-binding protein complex acid labile subunit); AMBP (Alpha-1-microglobulin / bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); Hepatocyte growth factor activator (HGFA); Insulin-like growth factor-binding protein 3 (IBP3); Insulin-like growth factor II (IGF2); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); Phosphatidylcholine-sterol acyltransferase (
  • Liver cancer or hepatocellular carcinoma herein refers to primary malignant tumors that occur in the liver tissue itself that occurs in patients with risk factors such as alcohol abuse, viral hepatitis and metabolic liver disease.
  • Hepatic cancer has no fibrous stromal bleeding and cell necrosis, vascular infiltration into the portal system, and in severe cases can lead to hepatic rupture and intraperitoneal blood effusion.
  • These liver cancers are chronic inflammations that occur in the liver, and are distinguished from cirrhosis or cirrhosis, which leads to regenerative nodule and fibrosis, resulting in hepatocellular damage, scars, decreased liver function, ascites, febrile disease, hepatic coma.
  • Patients with liver cancer usually have both inflammation and fibrosis. Hepatitis is eliminated in most liver cancer patients by drugs.However, 90% of liver cirrhosis patients are diagnosed as liver cancer. It is important to do.
  • diagnosis refers to determining the susceptibility to a subject's disease for a particular disease or condition, determining whether or not a person currently has a particular disease or condition, or transition of a subject having a particular disease or condition. Identifying a sex cancer state, determining the stage or progress of the cancer or determining the cancer's responsiveness to treatment or monitoring the state of the subject to provide information about the therapeutic efficacy (e.g., therapeutic efficacy) ).
  • therapeutic efficacy e.g., therapeutic efficacy
  • Prognostic measurement herein includes treating and recovering after diagnosis of liver cancer.
  • diagnostic biomarker or diagnostic marker is a substance that can be diagnosed by distinguishing patients with liver cancer from patients with liver cirrhosis, normal cells or appropriate liver cancer treatment, derived from patients with liver cancer compared to control samples A sample of the protein, particularly a protein exhibiting a change in concentration in the blood, a polypeptide derived from the protein, a gene encoding the protein or a fragment thereof.
  • the biomarker according to the present invention has an increased amount in the blood of liver cancer patients compared to the sample of the control group, the sequence of which can be searched in UniProt DB (www.uniprot.org) for example with the ID described in Table 1.
  • the markers according to the invention can be used in one or two or more combinations, for example two, three, four, five combinations, existing markers such as AFP, and / or diagnostic methods such as liver ultrasound And the like can be used.
  • existing markers such as AFP
  • diagnostic methods such as liver ultrasound And the like
  • Those skilled in the art will be able to select combinations of markers that meet the desired sensitivity and specificity through methods such as assays and / or logistic regression assays using biological samples from subjects, including normal subjects and patients, such as those described herein. will be.
  • one or more markers of ALS, CBPB2, CLUS, CNDP1, CPN2, FA11, FINC, or HGFA are used, the markers being in both primary and secondary sample groups as described in the Examples herein.
  • High AUC values showed differential expression in control and liver cancer patients.
  • FINC markers alone, or THRB and FINC; Or ALS, ITIH1, THRB and FINC combinations.
  • the biomarker for determining recovery after liver cancer is selected from the group consisting of THRB, FINC, ITIH1, IBP3, PLMN, CBPB2 and PLGA, wherein the marker or combination of markers is particularly high AUC value , But does not exclude the combination of other markers.
  • one or more markers according to the present disclosure can be used in combination with an AFP marker.
  • the markers according to the invention can be detected at the level of the detection of the presence of nucleic acids, in particular of proteins and / or mRNA, and / or the amount of expression thereof, changes in the amount of expression, difference in the amount of expression through quantitative or qualitative analysis.
  • Detection herein includes quantitative and / or qualitative analysis, including the detection of presence, absence, and expression level detection. Such methods are well known in the art and those skilled in the art will select appropriate methods for carrying out the present application. Can be.
  • Detection of such markers according to the present application may be based on functional and / or antigenic characteristics of the marker.
  • the marker according to the present application can be detected using the detection of the activity or function of the marker, or using a nucleic acid encoding a protein, in particular an agent that specifically interacts at the mRNA level and / or protein level.
  • the detection of a marker according to the present application may be carried out through the detection of the corresponding peptide from the marker protein, for example the corresponding peptide for each marker described in Tables 1-1 and 2.
  • One or more peptides may be used for one protein.
  • the detection reagent included in the composition according to the present invention is a reagent capable of detecting the marker according to the present invention through quantitative or qualitative analysis in various ways at the protein or nucleic acid level.
  • Qualitative or quantitative detection methods at the protein level include, for example, Western blot, ELISA, radioimmunoassay, immunodiffusion, immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, antibody labeled in solution / suspension
  • the method may be used by binding with, a mass spectrometer or a protein array using an antibody, or the like.
  • a method using a nucleic acid transcription and amplification method, an eTag system, a system based on labeled beads, an array system such as a nucleic acid array, and the like can be used.
  • the marker can be detected using mass spectrometry, which can be analyzed for example in the manner described in the Examples herein after separating the protein or peptide from the sample. See, eg, Kim, et al. 2010 J Proteome Res. 9: 689-99; Anderson, L et al. 2006. Mol Cell Proteomics 5: 573-88.
  • mass spectrometry can be analyzed for example in the manner described in the Examples herein after separating the protein or peptide from the sample. See, eg, Kim, et al. 2010 J Proteome Res. 9: 689-99; Anderson, L et al. 2006. Mol Cell Proteomics 5: 573-88.
  • MRM multiple reaction monitoring
  • MRM is a method that can quantitatively and multi-quantitatively measure multiple substances such as traces of biomarkers present in a biological sample, using a first mass filter (Q1). Optionally pass to the crash tube.
  • Proton ions that arrive at the impingement tube then collide with the internal impingement gas, split and form product ions or daughter ions to be sent to the second mass filter Q2, where only the characteristic ions are transferred to the detector.
  • it is a high selectivity and sensitivity analysis method that can detect only the information of the desired component. See, for example, those described in Gillette et al., 2013, Nature Methods 10: 28-34.
  • a binding agent or array comprising binding agents that specifically binds to each protein or mRNA from a gene encoding the protein is used.
  • a sandwich-type immunoassay such as Enzyme Linked Immuno Sorbent Assay (ELISA) or Radio Immuno Assay (RIA) may be used.
  • ELISA Enzyme Linked Immuno Sorbent Assay
  • RIA Radio Immuno Assay
  • This method involves a biological sample on a first antibody bound to a solid substrate such as beads, membranes, slides or microtiterplates made of glass, plastic (eg polystyrene), polysaccharides, nylon or nitrocellulose.
  • a label capable of direct or indirect detection may be labeled with a radioactive substance such as 3 H or 125 I, a fluorescent substance, a chemiluminescent substance, hapten, biotin, digoxygenin, or the like, or the action of a substrate.
  • Proteins can be detected qualitatively or quantitatively through binding of conjugated antibodies with enzymes such as horseradish peroxidase, alkaline phosphatase, and malate dehydrogenase, which are capable of
  • immunoelectrophoresis such as Ouchterlony plates, Western blots, Crossed IE, Rocket IE, Fused Rocket IE, Affinity IE, which can simply detect markers through antigen antibody binding
  • the immunoassay or method of immunostaining is described in Enzyme Immunoassay, E. T. Maggio, ed., CRC Press, Boca Raton, Florida, 1980; Gaastra, W., Enzyme-linked immunosorbent assay (ELISA), in Methods in Molecular Biology, Vol. 1, Walker, J.M. ed., Humana Press, NJ, 1984 and the like.
  • Reagents or materials used in such methods include, for example, antibodies, substrates, nucleic acids or peptide aptamers that specifically bind to the marker, or receptors or ligands or cofactors that specifically interact with the marker. And the like can be used. Reagents or materials that specifically interact with or bind to the markers of the present disclosure may be used with chip or nanoparticles.
  • Markers herein can also be detected quantitatively and / or qualitatively using a variety of methods known at the nucleic acid level, particularly at the mRNA level.
  • RT-PCR reverse transcriptase polymerase chain reaction
  • polymerase chain reaction competitive RT-PCR
  • NPA Nuclease Protection Assays
  • RNase RNase, S1 nuclease assays, in situ hybridization, DNA microarrays or chips or Northern blots
  • RNase S1 nuclease assays
  • in situ hybridization DNA microarrays or chips
  • Northern blots can be used, such assays are known and also known. It may be carried out using commercially available kits and one skilled in the art will be able to select the appropriate one for the practice herein.
  • Northern blots can be used to determine the size of transcripts present in a cell, have the advantage of using a variety of probes, NPAs are useful for multiple marker analysis, and in situ hybridization can be used for cells of transcripts such as mRNA. Or, it is easy to locate in the tissue, and reverse transcription polymerase chain reaction is useful for detecting a small amount of sample.
  • an array including a binding agent or a binding agent that specifically binds to a nucleic acid such as mRNA or cRNA from a gene encoding a biomarker protein according to the present application can be used.
  • Reagents or substances used in the method for detecting the biomarker at the nucleic acid level are known, for example, as a detection reagent in a method for measuring the presence and amount of mRNA by RT-PCR, for example, a polymerase.
  • Primary or “probe” refers to a nucleic acid sequence having a free 3 'hydroxyl group capable of complementarily binding to a template and allowing reverse transcriptase or DNA polymerase to initiate replication of the template. do.
  • the detection reagent may be labeled with a colorant, luminescent or fluorescent substance as described above for signal detection.
  • Northern blot or reverse transcription PCR polymerase chain reaction
  • RNA of a sample is specifically isolated from mRNA, and then cDNA is synthesized therefrom, and then a specific gene or a combination of primers and probes is used to detect a specific gene in the sample.
  • a method which can determine the expression amount is described, for example, in Han, H. et al, 2002. Cancer Res. 62: 2890-6.
  • the detection reagent included in the composition according to the present application may be labeled directly or indirectly in a sandwich form for detection depending on the specific method used for detection.
  • serum samples used for arrays and the like are labeled with fluorescent labels such as Cy3 and Cy5.
  • fluorescent labels such as Cy3 and Cy5.
  • an unlabeled serum sample is first detected by reacting with an array to which a detection reagent is attached, followed by binding to a target protein with a labeled detection antibody.
  • the sensitivity and specificity can be increased, and thus the detection can be performed up to pg / mL level.
  • radioactive materials, coloring materials, magnetic particles and high-density electron particles may be used as the labeling material. Fluorescence luminosity can be used with scanning confocal microscopy, for example Affymetrix, Inc. Or Agilent Technologies, Inc.
  • compositions herein may further comprise one or more additional ingredients required for binding assays and may further include, for example, binding buffers, reagents for sample preparation, blood sampling syringes or negative and / or positive controls. .
  • composition of the present invention comprising various detection reagents as described above is for ELISA analysis, dip stick rapid kit analysis, MRM analysis kit, microarray, gene amplification, or immunity depending on the assay. It may be provided for analysis and the like, and an appropriate detection reagent may be selected according to the analysis mode.
  • an ELISA or dipstick rapid kit wherein an antibody that recognizes one or more markers according to the present application is attached to a substrate, such as the surface of a well or glass slide of a multiwell plate or nitrocellulose.
  • a substrate such as the surface of a well or glass slide of a multiwell plate or nitrocellulose.
  • POCT point of care test
  • one or more antibodies recognizing a biomarker according to the present invention are bound to a substrate such as nitrocellulose, and contacted with a sample such as serum.
  • the marker is detected in such a manner that the sample moves through the substrate by capillary action and develops color upon binding to the antibody in the substrate.
  • an MRM kit based on a peptide is provided, and the MRM scheme is as described above.
  • the MRM method uses a peptide that selectively recognizes a specific protein, and can more stably detect a marker in a biological sample as compared with a conventional method using an antibody sensitive to the environment such as temperature and humidity.
  • the peptides described in Tables 1-1 and 1-2 herein may be used, and one or more peptides may be used in one marker.
  • peptides corresponding to proteins include Prothrombin (THRB) -HQDFNSAVQLVENFCR, SGIECQLWR; Fibronectin (FINC) -WCGTTQNYDADQK, GEWTCIAYSQLR, HTSVQTTSSGSGPFTDVR; ITIH1-EVAFDLEIPK, LDAQASFLPK; IBP3-ALAQCAPPPAVCAELVR; PLMN-LSSPAVITDK, EAQLPVIENK; CBPB2-DTGTYGFLLPER, YPLYVLK; Same as PLGA-DVVLFEK.
  • Detection reagents may be attached to the surface of a substrate such as glass or nitrocellulose, and array fabrication techniques are described, for example, in Schena et al., 1996, Proc Natl Acad Sci USA. 93 (20): 10614-9; Schena et al., 1995, Science 270 (5235): 467-70; And U.S. Pat. Nos. 5,599,695, 5,556,752 or 5,631,734. Detection reagents that can be attached to an array include, for example, antibodies, antibody fragments, aptamers, aviders, or peptidomimetics capable of specific binding to a protein.
  • the invention in another aspect relates to a kit or system for diagnosing or prognosticing liver cancer comprising a reagent for detecting a biomarker. Detection reagents and methods in which such reagents are used are described above. Reagents capable of detecting such markers of the present application may be separately dispensed in a compartment in which the compartment is divided, and in this sense, the present application also relates to an apparatus / apparatus comprising compartmentally containing the marker detection reagent of the present application.
  • the kit may also include additional instructions for use.
  • the present invention provides a method for the diagnosis or prognosis of liver cancer, comprising: Insulin-like growth factor-binding protein complex acid labile subunit (ALS) from a biological sample from a subject; AMBP (Alpha-1-microglobulin / bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); Hepatocyte growth factor activator (HGFA); Insulin-like growth factor-binding protein 3 (IBP3); Insulin-like growth factor II (IGF2); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein);
  • Such methods further comprise comparing the detection results for the level or presence of the nucleic acid or protein with the corresponding results of the corresponding markers in the control sample; And comparing the control sample with a change in nucleic acid or protein concentration of the subject sample, or when there is a change in the presence or absence of the nucleic acid or protein, and determining it as liver cancer.
  • Samples that can be used as a control for the diagnosis of liver cancer patients in the method according to the present application may be a sample from a normal person, hepatitis, liver cirrhosis or patients who have been cured after treatment (liver cirrhosis). Compared with this control patient, the expression level of the marker according to the present application is increased in liver cancer patients.
  • the biological sample used in the method according to the present invention may be whole blood, serum or plasma.
  • the marker according to the present application increases the expression level in liver cancer patients as well as samples from normal people, as well as liver cirrhosis patients.
  • the liver cancer diagnosis in the method according to the present application can distinguish between liver cirrhosis and liver cancer patients, it is possible to diagnose patients from liver cirrhosis to liver cancer is particularly advantageous for early diagnosis.
  • a sample derived from a liver cirrhosis patient may be included as a control, and the sample derived from a liver cirrhosis patient includes a liver cancer cure patient who maintains cirrhosis. It is also advantageous for the identification of patients recovered after liver cancer treatment. In this case, liver cancer samples from the same patient can be used as a control.
  • biological samples refer to substances or mixtures of substances that include one or more components capable of detecting a biomarker and include, but are not limited to, organisms, particularly body fluids, in particular whole blood, plasma, serum or urine.
  • one or more markers of ALS, CBPB2, CLUS, CNDP1, CPN2, FA11, FINC, or HGFA are used, the markers being in both primary and secondary sample groups as described in the Examples herein.
  • High AUC values showed differential expression in control and liver cancer patients.
  • the biomarker for determining whether to recover after treatment may be selected from the group consisting of THRB, FINC, ITIH1, IBP3, PLMN, CBPB2 and PLGA.
  • FINC markers alone, or THRB and FINC; Or ALS, ITIH1, THRB and FINC combinations.
  • one or more markers according to the present disclosure can be used in combination with an AFP marker.
  • control or reference group used in the present method the biomarker detection method, and the reagents and the data analysis method for the determination may be referred to the above and the following.
  • the method according to the invention can be carried out using the above-mentioned method or a method using a detection reagent, and in particular can be carried out by protein or nucleic acid microarray analysis, nucleic acid amplification, antigen-antibody reaction, or mass spectrometry. .
  • the methods herein include mammals, in particular humans.
  • Human subjects include those suspected of developing HCC, patients with hepatitis, cirrhosis of the liver, or persons who are not suspected of having HCC diagnosed.
  • the method is directed to determining whether a subject has HCC symptoms, such as abdominal pain, hypertrophy, ascites, jaundice, muscle weakness, hepatitis (eg, HCV infection), or esophageal varices. It may be performed on a subject with other symptoms. In another embodiment, the subject is apparently normal in the absence of HCC symptoms.
  • the subject is a person who may have low or normal plasma AFP concentrations and may not be diagnosed with HCC based on AFP.
  • the serum concentration of AFP is about 0 ⁇ g / l (non-detected) to 20 ⁇ g / l, eg, 0 ⁇ g / l (non-detected) to 5 ⁇ g / l, 5 ⁇ g / l to 10 ⁇ g / l, 10 ⁇ g / l to 15 ⁇ g / l Or 15 ⁇ g / l to 20 ⁇ g / l.
  • a dataset may be generated that includes a profile, ie, quantitative information related to marker protein expression in a sample.
  • a comparison of the result with a reference group or a control group determines whether a sample of the subject has hepatocellular carcinoma.
  • a control or reference group a negative control group, or a sample from a patient treated after hepatocellular carcinoma, a positive control group, a sample from a patient determined as hepatocellular carcinoma by a method other than the marker according to the present application, a sample from a cirrhosis patient , A sample of a patient derived from hepatitis.
  • a sample derived from a normal person a sample derived from a patient treated after being determined as a hepatocellular carcinoma, is used as a control or a reference group, and used for comparison of the obtained profile.
  • Profiles obtained through marker detection according to the present application can be processed using known data analysis methods. Examples include nearest neighbor classifiers, partial-least squares, SVM, AdaBoost, and clustering-based classification methods, for example Ben-Dor et al (2007, J. Comput. Biol. 7: 559-83), Nguyen et al (2002, Bioinformatics 18: 39-50), Wang et al (2003, BMC Bioinformatics 4:60), Liu et al (2001, Genome Inform. Ser. Workshop Genome Inform. 12: 14-23), Yeang et al (2001, Bioinformatics 17 Suppl 1: S316-22) and Xiong (2000, Biotechniques 29 (6): 1264-8, 1270) and the like.
  • nearest neighbor classifiers 2007, J. Comput. Biol. 7: 559-83
  • Nguyen et al 2002, Bioinformatics 18: 39-50
  • Wang et al 2003, BMC Bioinformatic
  • various statistical processing methods may be used to determine that the results detected through the markers of the present application are significant for hepatocellular carcinoma discrimination.
  • a logic regression method is used in one embodiment, and may be referred to Ruczinski, 2003, Journal of Computational and Graphical Statistics 12: 475-512.
  • the method is similar to the CART method in which a classifier is presented as a binary tree, but each node uses a more general Boolean operator associated with the property compared to the “and” operator generated by CART.
  • Examples of other analysis methods include nearest shrunken centroids (Tibshirani. 2002 PNAS. 99: 6567-72), random forests (Breiman. 2001. Machine Learning 45: 5-32, and MART (Hastie. 2001. The Elements of Statistical Learning, Springer). ).
  • statistical processing can determine the level of confidence in the significant difference between the test substance and the control to diagnose HCC.
  • the raw data used for statistical processing are the values analyzed in duplicate, triple or multiple for each marker.
  • This statistical analysis method is very useful for making clinically meaningful judgments through statistical processing of biomarkers as well as clinical and genetic data.
  • the method according to the invention can be used to determine the degree of severity of the HCC. For example, it can be assessed as mild HCC, moderate HCC or severe HCC compared to the profiles of the positive and negative controls. Furthermore, marker profile analysis for a certain HCC population may be performed and classified according to a certain criterion based on the profile result. In this way, early detection may prevent expensive tests such as magnetic resonance imaging (MRI).
  • MRI magnetic resonance imaging
  • the method may be performed several times over a period of time, for example over a year, and may be used to monitor trends in expression patterns.
  • an increase or decrease in expression may be associated with the state of the HCC. It can be used to determine HCC incidence, progression, exacerbation, etc., in comparison with previous test values or the value of the control group for the same subject.
  • preventive measures can be taken to prevent progression to hepatocellular carcinoma or severe hepatocellular carcinoma.
  • biomarkers can be used as an aid, and other diagnostic methods such as AFP tests, ultrasound, computerized axial tomography (CT scan) or magnetic resonance imaging (MRI) Can be used with inspection.
  • the initial study was conducted with the sample of 18).
  • the primary sample group was 30 patients with cirrhosis, 30 patients before liver cancer, 30 patients cured after liver cancer
  • the second sample group was 50 patients with liver cirrhosis and 50 patients with liver cirrhosis. Samples were used for 50 patients cured after liver cancer treatment.
  • liver cancer Before and after liver cancer treatment, the samples were taken from the same patient, and serum samples were taken before treating liver cancer, and liver cancer did not recur or metastasize based on follow-up data for more than 6 months after treatment for liver cancer. Only samples of healthy liver cancer patients who were completely cured were included in the analysis.
  • the candidate group of the target was selected as follows.
  • the Liver Atlas database the most comprehensive resource currently associated with liver disease, was used to identify candidate liver cancer early protein markers.
  • a total of 50,265 proteins are known to be related to liver disease in the Liver Atlas database, and only those proteins that can be secreted or secreted into the blood (Uniprot database) are selected to select only proteins that can be detected in the blood.
  • a total of 1,683 proteins were selected.
  • peptide MS / MS using four different peptide MS / MS library sources (NIST Ion-Trap, NIST Q-TOF, ISB human plasma, Home made library) to select only proteins that can be detected by mass spectrometry. As a result, only 960 proteins were selected.
  • detection target group selection was performed as follows. In fact, in order to select only targets that can be detected by mass spectrometry equipment, only peptides with proper signal detection through MRM analysis were selected from 60 normal groups and 60 HCC groups. , 1316 peptides were selected.
  • PMSF Phenylmethyl sulfonyl fluoride
  • 100 ⁇ L was aliquoted into 1.5 mL Eppendorf tubes, placed on ice immediately after dispensing, and labeled on the tubes (code label corresponding to sample group when labeling (eg NC-01, MC-01, PD-01, etc.). It was then immediately stored at ⁇ 80 ° C. The procedure was carried out on ice and was all finished within 1 hour after blood collection.
  • code label corresponding to sample group when labeling (eg NC-01, MC-01, PD-01, etc.). It was then immediately stored at ⁇ 80 ° C. The procedure was carried out on ice and was all finished within 1 hour after blood collection.
  • the depletion process was performed to remove six proteins (albumin, IgG, IgA, haptoglobin, transferrin, alpha-1-antitrypsin) present in the blood at high-abundant levels. .
  • six proteins albumin, IgG, IgA, haptoglobin, transferrin, alpha-1-antitrypsin
  • MARS Multiple affinity removal system
  • Serum samples obtained after the depletion process were concentrated (w / 3K filter), and protein concentration was quantified by BCA (Bicinchoninic acid) analysis.
  • 100 ⁇ g serum samples were taken and then treated with a final concentration of 6M urea / 20mM DTT (Tris pH 8.0), followed by incubation at 37 ° C. for 60 minutes.
  • the final concentration of 50mM IAA (Iodoacetamide) was treated, and then incubated at room temperature for 30 minutes.
  • 100 mM Tris pH 8.0 was treated so that the concentration of urea was 0.6 M or less. Trypsin treatment was performed so that the ratio of trypsin and serum was 1:50, and then incubated at 37 ° C. for 16 hours.
  • the formic acid solution was treated to a final concentration of 5% and then subjected to the following desalting process.
  • Activation was performed by pouring 1 mL of 60% ACN / 0.1% formic acid three times on an OASIS column (Waters, USA). Equilibration was performed by pouring 1 mL of 0.1% formic acid five times into an OASIS column. Peptide samples were added and washed 5 times with 1 mL of 0.1% formic acid. Peptides were eluted with 1 mL of 40% ACN / 0.1% formic acid and 1 mL of 60% ACN / 0.1% formic acid. It was frozen at ⁇ 70 ° C. for at least 1 hour and then dried by Speed-vac. The dried peptide sample was dissolved in 50 ⁇ l of Sol A buffer (3% ACN / 0.1% formic acid), centrifuged at 15,000 rpm for 60 min, and only 40 ⁇ l was transferred to the vial for analysis.
  • MRM analysis was performed using Skyline (http://proteome.gs.washington.edu/software/skyline) for each target protein to select peptide and fragment ions for MRM analysis.
  • Skyline is open source software for developing and analyzing MRM methods (Stergachis AB, et al., 2011, Nat Methods 8: 1041-1043).
  • peptide maximum length was 30, minimum length was 6 amino acids and did not include repeated arginine (Arg, R) or lysine (Lys, K). If methionine (Met, M) was also included in the peptide, it was removed due to the possibility of modification. It was also not used when proline came after arginine or lysine, but when histidine (His, H) was included, the charge was changed but used.
  • Quadruple 1 served as a filter that can pass only certain Q1 m / z.
  • Precursor ions that passed through the Q1 filter were fragmented by electrical energy in Quadruple 2 (collision cells), which were broken down into product ions.
  • This product ion can pass only certain product ions through Quadruple 3 (Q3), which acts as a filter as in Quadruple 1 (Q1).
  • the ions that passed through Quadruple 3 (Q3) were converted into digital signals at the detector and shown as peak chromatograms. The area of these peaks was analyzed for relative and absolute quantitative analysis.
  • all peptides are known to have a concentration that is normalized to the peak area of the peptide when the MRM is analyzed.
  • This peptide is called an internal standard peptide, which is a stable isotope. It is a peptide having an amino acid containing.
  • LNVENPK a heavy-labeled peptide from beta-galactosidase (lacZ) derived from E. coli, which does not exist in the human proteome.
  • lacZ beta-galactosidase
  • candidate protein marker groups were further selected that exhibited a pattern of increase or decrease of fold-change levels of 1.5-fold or more between the normal and HCC groups.
  • 195 proteins and 443 peptides with a p-value of 0.05 or less were identified between the normal group and the HCC group, and 191 proteins and 389 peptides with 1.5 fold-change or more were identified.
  • 492 peptides were selected as target candidates.
  • the unique peptides were checked using NCBI's BlastP search program. Through this, 15 proteins corresponding to 37 non-unique peptides were excluded, and 216 proteins and 460 peptides were finally selected as a target candidate group, which was a unique peptide, showing a significant difference between the final normal group and the HCC group.
  • Example 3 Whether the proteins and peptides selected in Example 3 were present in actual blood was confirmed as follows.
  • the sample was pooled together with 60 normal groups and 60 HCC groups using a stable-isotope labeled standard (SIS) peptide corresponding to 216 proteins. Reconfirmed whether or not the peptide was correct.
  • the SIS peptide is a peptide in which 12 C and 14 N of amino acids lysine (Lys, K) or arginine (Arg, R) at the peptide C-terminus are substituted with 13 C and 15 N. It differs from the endogenous peptides present in the blood, but because they have the same sequence, they have the same peptide hydrophobicity, so they elute at the same time (RT) as the peptides in the blood on the chromatogram. (See FIG. 2).
  • the Q3 intensity pattern of the SIS peptide and the blood endogenous peptide was analyzed to determine whether the complex blood sample exhibited signal interference by a peptide other than the target peptide. It confirmed (FIG. 3).
  • the concentrations present in the blood were determined for quantifiable blood endogenous targets (123 proteins and 231 peptides).
  • MRM analysis was performed on a sample in which 231 SIS peptide mixtures were sequentially diluted to 3-point (20 nM, 200 nM, 2000 nM) in 10 ⁇ g of a sample containing 60 normal groups and 60 HCC groups. Signals for endogenous peptides and complementary synthetic (SIS) peptides were identified.
  • the blood levels of the 231 peptides revealed that the lowest concentration of protein in the serum was ISLR (Immunoglobulin superfamily containing leucine-rich repeat protein), with a concentration of 0.15-fmol / ⁇ g and the highest concentration.
  • the identified protein is A2MG (Alpha 2 macroglobulin), the concentration was found to be 5.57-pmol / ⁇ g (Dynamic range: 3.7 ⁇ 10 ⁇ 4 order) (Fig. 5).
  • the low-abundance targets with blood concentrations of 20-fmol / ⁇ g or less were found to be 34 proteins and 36 peptides, and 20-fmol / ⁇ g and 2000-fmol Middle-abundance targets measured between / ⁇ g were 93 proteins and 174 peptides, and high-abundance targets measured above 2000-fmol / ⁇ g were 11 proteins and 22 peptides. It was confirmed to be (FIG. 6).
  • liver cirrhosis patients can be classified as a high risk group for liver cancer. there is a problem. Therefore, if the amount of protein showing the difference between liver cirrhosis patients and liver cancer patients can be confirmed in advance by MRM technique, early diagnosis can be made in advance of patients progressing from liver cirrhosis patients to liver cancer patients.
  • Validated endogenous peptides in blood were determined for SIS peptide injection concentrations complementary thereto.
  • targets level in blood ⁇ 20-fmol / ⁇ g
  • all were injected with 20-fmol SIS-peptides in batch
  • middle-abundance targets (20-fmol / ⁇ g ⁇
  • the amount of SIS peptide was injected equal to the amount of peptide in the blood
  • high-abundance targets blood level> 2000-fmol / ⁇ g
  • liver cancer As a primary sample, 30 patients with cirrhosis, 30 patients with hepatocarcinoma, and 30 patients with hepatocarcinoma after the onset of liver cancer were used as targets for early diagnosis of target candidate groups (123 proteins and 231 peptides).
  • target candidate groups 123 proteins and 231 peptides.
  • the markers for diagnosing liver cancer with the difference in the three groups were derived by using samples of 30 patients with liver cirrhosis, 30 patients with liver cancer, and 30 patients with complete cure.
  • the MRM analysis sequence was randomly analyzed so that the experimenter could not identify the patient group, and the analysis was repeated three times per sample.
  • the peak area values of the target peptides thus obtained are normalized to the peak area values of the SIS peptides complementary to each other, and then IBM SPSS statistics (version 21.0) and GraphPad (version 6.00) are obtained. I went through the analysis.
  • AFP alpha-fetoprotein
  • Tables 1-1 and 1-2 show target proteins and peptides with an AUC value of 0.700 or higher after training set / test set sample analysis.
  • red indicates a case where the expression level is increased in the comparison between groups, and blue indicates a case where the expression level is decreased.
  • the two panels of peptides identified had an AUC value of 0.957 (FIG. 9), representing 53 out of 60 liver cancer patients (Accuracy 88.3%) and 60 in total. After liver cancer treatment, 52 patients (Accuracy 86.7%) could be diagnosed as liver cancer patients, and the accuracy of diagnosis using the two peptide marker panels was 87.5%.
  • the remaining 21-protein (49-peptide) is added to the corresponding 2-protein (2-peptide), it was confirmed that it is possible to make a myriad of protein combinations of AUC 0.950 or more.
  • Markers according to the present application can be detected at the protein level
  • the detection method at the protein level may include the analysis using the MRM analysis and the antibody used in the present embodiment, only one, that is, the MRM analysis alone provides the desired result according to the present application. You can either get it or use both methods for reconfirmation.
  • the antibody selection criteria allowed the peptide portion analyzed by MRM to be included (or as close as possible) in the antibody immunogen portion and for plasma / serum.
  • Those with Western blotting results and the presence of monoclonal antigen were selected first, followed by alpha-2-antiplasmin (A2AP) (Mouse monoclonal), AMBP (Rabbit monoclonal), AFP (alpha-fetoprotein) (Mouse monoclonal) , FETUA (Rabbit monoclonal), FINC (fibronectin) (Rabbit monoclonal), ITIH1 (Inter-alpha-trypsin inhibitor heavy chain (Mouse polyclonal), ITIH3 (Inter-alpha-trypsin inhibitor heavy chain H3) (Goat polyclonal), PLGA (PLGA) Plasminogen-related protein A) (Rabbit polyclonal) Western blots were performed using the antibodies shown in parentheses
  • HCC / recovery group samples were selected from Stage I (early liver cancer) samples, and normalized to O.D (absorbance) measured in a control (loading control) and subjected to SDS-PAGE gel deviation correction.
  • O.D absorbance
  • control loading control
  • SDS-PAGE gel deviation correction As a control, mouse monoclonal antibodies against betaactin and transferrin were used.
  • an ELISA assay Protein Level, Native form
  • a target protein FAC
  • Twenty samples per 3-group LC, HCC, and Recovery were selected to perform ELISA analysis, using independent sample groups not used for primary and secondary MRM analysis.
  • the expression pattern between sample groups was consistent with the results of MRM and Western blotting analysis.
  • the AUC value was 0.832 when comparing the group with the liver cancer group, and the AUC value was 0.658 when comparing the liver cancer group with the liver cancer recovery group (Table 2).

Abstract

Disclosed in the present application is a marker or a maker combination enabling diagnosis, prognosis, or treatment monitoring of hepatoma with high accuracy and sensitivity. The marker according to the present application enables simple and effective diagnosis or monitoring of hepatoma by a noninvasive test using blood, thus can be developed into diverse test kits, and can be very usefully utilized in early detection of hepatoma at home or in general practice, for example, through POCT development.

Description

간암 진단용 바이오마커 및 그 용도Biomarker for Diagnosing Liver Cancer and Uses thereof
본 발명은 간암 진단용 바이오마커 및 그 용도와 관련된 것이다.The present invention relates to a biomarker for diagnosing liver cancer and its use.
간암 또는 간세포암 (Hepatocellular carcinoma, HCC)은 성인 간암에서 가장 흔한 유형으로, 암으로 인한 사망원인 중 세 번째를 차지한다 (Stefaniuk P, et al., 2010, World J Gastroenterol 16: 418-424). 간암은 상당히 진행 되서야 증상이 나타나는 질환으로 이로 인해 적절한 치료시기를 놓치는 경우가 빈번하고, 치료를 하는 경우도 예후가 극히 나쁘다. 특히 수술로 절제가 불가능한 경우는 1년 내 사망하는 심각한 질환으로, 이러한 임상적 현실을 고려할 때 암의 조기 진단 및 예후를 예측할 수 있는 기술은 암 치료의 가장 현실적 대안이고 차세대 간암 진료의 가이드라인이다.Liver cancer or hepatocellular carcinoma (HCC) is the most common type of adult liver cancer, accounting for the third leading cause of death from cancer (Stefaniuk P, et al., 2010, World J Gastroenterol 16: 418-424). Liver cancer is a disease that appears only when the symptoms are quite advanced, which often leads to a missed time for proper treatment, and the prognosis is extremely poor when treated. In particular, surgical resection is a serious disease that dies within a year. Considering this clinical reality, early diagnosis and prognosis of cancer are the most realistic alternatives to cancer treatment and guidelines for next-generation liver cancer care. .
특히 간세포암은 간염바이러스나 알코올, 간경화와 같은 위험인자를 가지고 있는 환자에게서 호발하는 것으로 알려져 있고 조기진단 마커를 이용하여 고위험군에 대한 선별적 감시 검사(surveillance)를 시행할 대상이 명확하다. 실제로, 6개월 간격으로 시행하는 조기진단은 간암 환자의 생존율 증대 (사망률 37% 감소)하는 것으로 나타났다. In particular, hepatocellular carcinoma is known to occur in patients with risk factors such as hepatitis virus, alcohol, and cirrhosis of the liver, and it is clear to be subjected to selective surveillance of high risk groups using early diagnosis markers. Indeed, early diagnosis at six-month intervals has been shown to increase survival (reduced by 37%) in patients with liver cancer.
정상인에서 간암을 조기에 정확하게 발견해 낼 수 있는 바이오마커 검사는 아직까지 개발되지 못했으며, 고위험군에서 비침습적인 조기 간암 진단을 위하여 사용하고 있는 검사 방법이 혈청 알파태아단백 검사이다. AFP는 개발 당시 민감도와 특이도를 모두 양호한 수준으로 달성할 수 있는 기준값이 20 ng/mL로 제시되었으나, 이 경우 민감도가 60%에 지나지 않으며 현재 국제 학회의 간암 진단 가이드라인에 따라 200 ng/mL를 기준으로 간암을 진단할 경우 특이도는 상승하지만 민감도가 22%에 불과하다. 기존의 연구 결과, AFP는 전체적으로 약 66%의 민감도와 82%의 특이도를 갖는 것으로 알려져 있어 모든 간암 환자를 진단하는 데에 제한이 있다.Biomarker tests have not been developed to detect liver cancer early and correctly in normal people. Serum alpha-fetoprotein testing is used to diagnose non-invasive early liver cancer in high-risk patients. At the time of development, AFP suggested a baseline of 20 ng / mL to achieve both good sensitivity and specificity, but in this case the sensitivity is only 60% and is currently 200 ng / mL according to the International Society's Guidelines for Diagnosing Liver Cancer. Based on the diagnosis of liver cancer, the specificity increases, but the sensitivity is only 22%. Previous studies have shown that AFP has an overall sensitivity of about 66% and a specificity of 82%, limiting the diagnosis of all liver cancer patients.
그 외 진단 기준으로 확립되어 있지는 않으나 간암 진단에 도움이 되는 혈청 마커로는 Descarboxyprothrombin (DCP), Prothrombin Induced by Vitamin K Absence II (PIVKA-II), 글리코실화 AFP 대 총 AFP (L3 fraction) 분포, alpha fucosidase, glypican 3, HSP-70 등이 있다. 그러나 각각은 예후 인자로서 의미를 가지는 것이 대부분이고, 단독으로 사용하였을 때 정확도가 낮아 아직 선별 검사로 사용되지 못하고 있으며, 단일 혈청학적 마커로 간암을 조기 진단하는 것은 이미 한계에 다다른 것으로 판단된다. 아울러 실제 수술이나 고주파 열치료술과 같은 근치적 치료가 가능한 단계에서 진단되는 환자들은 전체 간암 환자의 30% 정도에 국한된다. Serum markers for diagnosis of liver cancer, although not established by other diagnostic criteria, include Descarboxyprothrombin (DCP), Prothrombin Induced by Vitamin K Absence II (PIVKA-II), glycosylated AFP to total AFP (L3 fraction) distribution, alpha fucosidase, glypican 3 and HSP-70. However, each of them has a meaning as a prognostic factor, and when used alone, its accuracy is low and it is not yet used as a screening test. Early diagnosis of liver cancer with a single serologic marker seems to have reached its limit. In addition, only 30% of patients with liver cancer are diagnosed at the stage of curable treatment such as actual surgery or radiofrequency ablation.
미국 공개특허공보 제2010/0304372호는 간암 진단 방법 및 조성물에 관한 것으로, BASF1, SPINT2, APC, CCND2, CFTR, RASSF1 및 SRD5A2 유전자에 CpG 섬을 검출하여 간암을 진단하는 방법을 개시한다. US Patent Publication No. 2010/0304372 relates to a method and composition for diagnosing liver cancer, which discloses a method for diagnosing liver cancer by detecting CpG islands in the BASF1, SPINT2, APC, CCND2, CFTR, RASSF1 and SRD5A2 genes.
대한민국 특허 제1161789호는 간암에 대한 신규 바이오마커 및 그 용도에 관한 것으로, NK4 단백질 등의 검출을 통한 간암 진단 또는 예후 분석용 마커를 개시한다. Korean Patent No. 1141789 relates to a novel biomarker for liver cancer and its use, and discloses a marker for diagnosing or prognostic liver cancer through the detection of NK4 protein and the like.
따라서, 간암의 근치적 치료가 가능한 단계에서 최대한 조기진단 할 수 있는 특이성과 민감도가 향상된 개별검사의 한계점을 극복할 수 있는 마커의 개발이 시급하다. Therefore, it is urgent to develop markers that can overcome the limitations of individual tests with improved specificity and sensitivity to allow early diagnosis of hepatic cancer.
본원에서는 간암을 진단할 수 있는 바이오마커를 제공하고자 한다.The present invention is to provide a biomarker for diagnosing liver cancer.
일 구현예에서 본원은 ALS (Insulin-like growth factor-binding protein complex acid labile subunit); AMBP (Alpha-1-microglobulin/bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); HGFA (Hepatocyte growth factor activator); IBP3 (Insulin-like growth factor-binding protein 3); IGF2 (Insulin-like growth factor II); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); LCAT (Phosphatidylcholine-sterol acyltransferase); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); 및 VTNC (Vitronectin)로 구성되는 군으로부터 선택되는 하나 이상의 바이오마커의 검출시약을 포함하는, 간암 진단 또는 예후 측정용 조성물을 제공한다. In one embodiment the present application is directed to ALS (Insulin-like growth factor-binding protein complex acid labile subunit); AMBP (Alpha-1-microglobulin / bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); Hepatocyte growth factor activator (HGFA); Insulin-like growth factor-binding protein 3 (IBP3); Insulin-like growth factor II (IGF2); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); Phosphatidylcholine-sterol acyltransferase (LCAT); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); And it provides a composition for diagnosing or measuring liver cancer, comprising a reagent for detecting one or more biomarkers selected from the group consisting of VTNC (Vitronectin).
다른 양태에서 본원은 간암의 진단 또는 예후 측정 또는 이에 필요한 정보를 제공하기 위하여, 대상체 유래의 생물학적 시료로부터 ALS (Insulin-like growth factor-binding protein complex acid labile subunit); AMBP (Alpha-1-microglobulin/bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); HGFA (Hepatocyte growth factor activator); IBP3 (Insulin-like growth factor-binding protein 3); IGF2 (Insulin-like growth factor II); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); LCAT (Phosphatidylcholine-sterol acyltransferase); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); 및 VTNC (Vitronectin)로 구성되는 군으로부터 선택되는 하나 이상 바이오마커의 핵산 및/또는 단백질의 존재 여부 및/또는 농도를 검출하는 단계; 상기 핵산 또는 단백질의 수준 또는 존재에 대한 검출 결과를 대조군 시료의 해당 마커의 상응하는 결과와 비교하는 단계; 및 상기 대조군 시료와 비교하여, 상기 대상체 시료의 핵산 또는 단백질 농도의 변화가 있거나, 또는 상기 핵산 또는 단백질이 존재여부에 변화가 있는 경우, 이를 간암으로 판정하는 단계를 포함하는, 인비트로에서 간암 마커를 검출하는 방법을 제공한다.In another aspect, the present disclosure provides a method for the diagnosis or prognosis of liver cancer, or to provide information required therein, for example, to include an insulin-like growth factor-binding protein complex acid labile subunit (ALS); AMBP (Alpha-1-microglobulin / bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); Hepatocyte growth factor activator (HGFA); Insulin-like growth factor-binding protein 3 (IBP3); Insulin-like growth factor II (IGF2); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); Phosphatidylcholine-sterol acyltransferase (LCAT); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); And detecting the presence and / or concentration of nucleic acids and / or proteins of at least one biomarker selected from the group consisting of VTNC (Vitronectin); Comparing the detection result for the level or presence of the nucleic acid or protein with the corresponding result of the corresponding marker in the control sample; And comparing the control sample with a change in nucleic acid or protein concentration in the subject sample, or when there is a change in the presence or absence of the nucleic acid or protein, and determining it as liver cancer. It provides a method for detecting.
본원에 따른 마커는 혈액시료를 이용하여 검출이 가능하며, 정상인, 간염, 간경화 또는 간암으로 치료 후 완치된 환자 유래의 시료와 비교하여 간암환자에서 차별적으로 발현되어, 간암 환자의 진단, 간경화 환자에서 간암으로 이행되는 조기 진단, 치료 후 경과 측정에 유용하게 사용될 수 있다.The marker according to the present invention can be detected using a blood sample, and is differentially expressed in liver cancer patients compared to samples derived from patients who have been cured after being treated with normal people, hepatitis, cirrhosis or liver cancer. It can be useful for early diagnosis of liver cancer and for measuring progress after treatment.
본원에 따른 바이오마커는 간암을 높은 특이성과 민감도로 진단할 수 있다. 특히 간암 환자는 물론, 간경화와 간암환자를 구분할 수 있어, 간경화 환자에서 간암 환자로 진행되는 환자를 미리 조기진단 할 수 있고, 간암이 완치되어 간암이 제거 된 상태의 간경화 환자를 구분할 수 있어, 간암 치료 예후를 예측하는데 이용할 수 있다.Biomarkers according to the present application can diagnose liver cancer with high specificity and sensitivity. In particular, liver cancer patients, as well as liver cirrhosis and liver cancer patients can be distinguished, patients can be diagnosed in advance from liver cirrhosis patients to liver cancer patients in advance, and liver cancer is cured, liver cirrhosis patients with liver cancer removed can be distinguished, liver cancer It can be used to predict treatment prognosis.
또한, 본원에 따른 마커는 혈액을 이용한 비침습성 진단을 가능하게 가정 및 일반 의원에서의 조기 발견에 매우 유용하며, 건강 검진 시 단순한 혈액 검사를 통해 간암을 검출할 수 있어 국가적인 관점에서 의료 비용의 절감 효과를 가지고 올 수 있다.In addition, the marker according to the present application is very useful for early detection in homes and general clinics to enable non-invasive diagnosis using blood, and liver cancer can be detected through simple blood tests during health check-ups. It can bring savings.
본원에 따른 바이오마커는 이에 대한 항체, 단백질 또는 펩타이드를 이용한 진단키트 예를 들면 ELISA, 딥스틱 형태의 래피드 키트, 펩타이드를 근간으로 하는 MRM 키트 형태로 개발이 가능하다. 특히 기존 병원 임상 영역에서의 면역분석 방법 대신에 펩타이드를 MRM 으로 검사하는 방법으로 산업화할 수 있고, 나아가 간암 마커로 알려진 AFP 와 함께 가중치를 두어 분석을 하면, 기존의 간암 진단법을 개선하고 능가하는 방법으로 활용될 수 있다.The biomarker according to the present invention can be developed in the form of a diagnostic kit using an antibody, protein or peptide thereof, for example, ELISA, dipstick in dipstick form, MRM kit based on peptide. In particular, it can be industrialized by screening peptides by MRM instead of immunoassay methods in the existing clinical field of clinical practice. Furthermore, weighted analysis with AFP, known as liver cancer marker, improves and surpasses existing liver cancer diagnosis method. It can be used as.
도 1은 바이오마커 발굴 및 분석에 사용된 MRM 분석 과정을 도식적으로 나타낸 것이다. Figure 1 schematically shows the MRM analysis process used for biomarker discovery and analysis.
도 2는 혈액의 내인성 펩타이드와 합성 펩타이드의 동시-용출(coelution) 여부를 나타낸 것이다.Figure 2 shows the coelution (coelution) of the endogenous peptide and the synthetic peptide in the blood.
도 3은 혈액의 내인성 펩타이드와 합성 펩타이드의 Q3 강도 패턴을 나타낸다.Figure 3 shows the Q3 intensity pattern of endogenous peptides and synthetic peptides in the blood.
도 4는 혈액의 내인성 펩타이드 수준 확인방법을 나타낸다.Figure 4 shows a method for determining the endogenous peptide level of blood.
도 5는 혈액의 내인성 펩타이드 농도 측정 후 그 결과를 다이내믹 레인지(dynamic range) 분포로 나타낸 것이다.Figure 5 shows the results of the measurement of the endogenous peptide concentration of blood in the dynamic range (dynamic range) distribution.
도 6은 저량 및 고량(low and high abundance) 타겟에 대한 혈액 내 수준을 나타낸 것이다.6 shows the levels in blood for low and high abundance targets.
도 7은 SIS 펩타이드 주입 농도 결정 방식을 모식도로 나타낸 것이다.Figure 7 shows a schematic diagram of the SIS peptide injection concentration determination method.
도 8은 LC 그룹 대 HCC 그룹 사이의 다중단백질 마커 패널 구축 결과를 나타낸 것이다.8 shows the results of constructing a multiprotein marker panel between LC groups versus HCC groups.
도 9는 HCC 그룹 대 회복 그룹 사이의 다중단백질 마커 패널 구축 결과를 나타낸 것이다.9 shows the results of constructing a multiprotein marker panel between the HCC group versus the recovery group.
도 10은 조기진단 마커를 검증하기 위해, 발현 경향성이 일치한 10개의 타겟 단백질에 대한 웨스턴 블랏팅 결과를 나타낸 것으로, 도 10a는 단백질-01, A2AP (alpha-2 -antiplasmin), 도 10b는 단백질-02, AMBP, 도 10c는 단백질-03, AFP(alpha- fetoprotein), 도 10d는 단백질-04, CATB(cathepsin B), 도 10e는 단백질-05, FETUA(alpha-2- HS-glycoprotein), 도 10f는 단백질-06, FINC(fibronectin), 도 10g는 단백질-07, ITIH1(Inter-alpha-trypsin inhibitor heavy chain H1), 도 10h는 단백질-08, ITIH3(Inter-alpha-trypsin inhibitor heavy chain H3), 도 10i는 단백질-09, PLGA(Plasminogen-related protein A), 도 10j는 단백질-10. THRB(Prothrombin)을 나타낸다.FIG. 10 shows Western blotting results of 10 target proteins with matching expression trends in order to verify early diagnosis markers. FIG. 10A shows protein-01, A2AP (alpha-2 -antiplasmin), and FIG. 10B shows a protein. -02, AMBP, FIG. 10C is Protein-03, AFP (alpha-fetoprotein), FIG. 10D is Protein-04, CATB (cathepsin B), FIG. 10E is Protein-05, FETUA (alpha-2- HS-glycoprotein), Figure 10f shows protein-06, FINC (fibronectin), Figure 10g shows protein-07, ITIH1 (Inter-alpha-trypsin inhibitor heavy chain H1), Figure 10h shows protein-08, ITIH3 (Inter-alpha-trypsin inhibitor heavy chain H3 10I shows protein-09, PLGA (Plasminogen-related protein A), and FIG. 10J shows protein-10. THRB (Prothrombin).
본원은 MRM 기술을 이용하여 간경변, 간암 환자 치료 전 및 치료 후의 시료를 대상으로 차별적으로 발현되는 단백질/펩타이드 발현량을 순차적으로 스크리닝하고 검증하여, 그룹 간에 유의적 차이를 나타내어 간암 진단용 바이오마커로 유용한 단백질/펩타이드 발견을 근거로 한 것이다.The present invention sequentially screens and verifies differentially expressed protein / peptide expression levels in liver cirrhosis, pre- and post-treatment samples using MRM technology, and shows significant differences between groups, which is useful as a biomarker for diagnosing liver cancer. Based on protein / peptide discovery.
따라서 한 양태에서 본원은 IGFALS (Insulin-like growth factor-binding protein complex acid labile subunit); AMBP (Alpha-1-microglobulin/bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); HGFA (Hepatocyte growth factor activator); IBP3 (Insulin-like growth factor-binding protein 3); IGF2 (Insulin-like growth factor II); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); LCAT (Phosphatidylcholine-sterol acyltransferase); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); 및 VTNC (Vitronectin)로 구성되는 군으로부터 선택되는 하나 이상의 바이오마커의 검출시약을 포함하는, 간암 진단 또는 예후 측정용 조성물 또는 키트에 관한 것이다. Thus, in one embodiment, the present disclosure provides IGFALS (Insulin-like growth factor-binding protein complex acid labile subunit); AMBP (Alpha-1-microglobulin / bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); Hepatocyte growth factor activator (HGFA); Insulin-like growth factor-binding protein 3 (IBP3); Insulin-like growth factor II (IGF2); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); Phosphatidylcholine-sterol acyltransferase (LCAT); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); And a reagent for detecting one or more biomarkers selected from the group consisting of VTNC (Vitronectin), and a composition or kit for liver cancer diagnosis or prognosis measurement.
본원에서 간암 또는 간세포암 (Hepatocellular carcinoma, HCC)은 알콜 남용, 바이러스성 간염 및 대사성 간질환과 같은 위험인자를 갖는 환자에서 발생하는 간조직 자체에서 발생하는 원발성 악성 종양을 일컫는 것이다. 간암은 섬유성 스트로마가 없어 출혈과 세포괴사가 발생하며, 간문맥 시스템으로의 혈관침윤이 일어나며, 심한 경우 간파열 및 복강내혈액삼출로 이어질 수 있다. 이러한 간암은, 간에서 발생 된 만성 염증으로, 간조직이 재생결절화되고 섬유화되어 결국 간세포 손상, 반흔, 간기능 감소, 복수, 출열성 질환, 간성 혼수 증상을 나타내는 간경변증 또는 간경화증과 구별된다. 간암 환자의 경우 보통 간염(inflammation) 및 간경화(fibrosis)를 모두 가지고 있는데, 간염의 경우 약제에 의해 대부분의 간암 환자에서 없어지지만, 간경화 환자에서 90% 정도가 간암으로 진단되기 때문에 간경화증과 간암을 구별하는 것이 중요하다.Liver cancer or hepatocellular carcinoma (HCC) herein refers to primary malignant tumors that occur in the liver tissue itself that occurs in patients with risk factors such as alcohol abuse, viral hepatitis and metabolic liver disease. Hepatic cancer has no fibrous stromal bleeding and cell necrosis, vascular infiltration into the portal system, and in severe cases can lead to hepatic rupture and intraperitoneal blood effusion. These liver cancers are chronic inflammations that occur in the liver, and are distinguished from cirrhosis or cirrhosis, which leads to regenerative nodule and fibrosis, resulting in hepatocellular damage, scars, decreased liver function, ascites, febrile disease, hepatic coma. Patients with liver cancer usually have both inflammation and fibrosis. Hepatitis is eliminated in most liver cancer patients by drugs.However, 90% of liver cirrhosis patients are diagnosed as liver cancer. It is important to do.
본원에서 용어 진단은 특정 질병 또는 질환에 대하여 검사 대상자의 질환에 대한 감수성(susceptibility)을 판정하는 것, 특정 질병 또는 질환을 현재 가지고 있는 지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 대상자의 트랜지션성 암 상태의 동정, 암의 단계 또는 진행상태 판별 또는 치료에 대한 암의 반응성 결정을판정하는 것 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링 하는 것)을 포함한다.As used herein, the term diagnosis refers to determining the susceptibility to a subject's disease for a particular disease or condition, determining whether or not a person currently has a particular disease or condition, or transition of a subject having a particular disease or condition. Identifying a sex cancer state, determining the stage or progress of the cancer or determining the cancer's responsiveness to treatment or monitoring the state of the subject to provide information about the therapeutic efficacy (e.g., therapeutic efficacy) ).
본원에서 예후 측정은 간암으로 진단 후 치료를 받고 회복 여부를 판별하는 것을 포함하는 것이다.Prognostic measurement herein includes treating and recovering after diagnosis of liver cancer.
본원에서 용어 진단용 바이오마커 또는 진단 마커(diagnosis marker)란 간암이 발생한 환자를, 간경변, 정상 세포 또는 적절한 간암치료를 받은 환자와 구분하여 진단할 수 있는 물질로, 대조군 검체에 비하여 간암이 발생한 환자 유래의 시료 특히 혈액에서의 농도 변화를 나타내는 단백질, 상기 단백질 유래의 폴리펩타이드, 상기 단백질을 코딩하는 유전자 또는 그 단편을 포함한다. As used herein, the term diagnostic biomarker or diagnostic marker (diagnosis marker) is a substance that can be diagnosed by distinguishing patients with liver cancer from patients with liver cirrhosis, normal cells or appropriate liver cancer treatment, derived from patients with liver cancer compared to control samples A sample of the protein, particularly a protein exhibiting a change in concentration in the blood, a polypeptide derived from the protein, a gene encoding the protein or a fragment thereof.
본원에 따른 바이오마커는 대조군의 시료와 비교하여 간암 환자의 혈액에서 그 양이 증가한 것으로, 그 서열은 예를 들면 표 1에 기재된 ID로 UniProt DB (www.uniprot.org)에서 검색가능하다. The biomarker according to the present invention has an increased amount in the blood of liver cancer patients compared to the sample of the control group, the sequence of which can be searched in UniProt DB (www.uniprot.org) for example with the ID described in Table 1.
본원에 따른 마커는 하나 또는 두 개 이상의 조합, 예를 들면 두 개, 세 개, 네 개, 다섯 개의 조합으로 사용될 수 있으며, 기존의 마커 예를 들면 AFP, 및/또는 진단방법 예를 들면 간초음파 등과 함께 사용될 수 있다. 당업자라면 본원 실시예에 기재된 방법과 같은 정상인 및 환자를 포함하는 대상체의 생물학적 시료를 사용한 분석 및/또는 Logistic regression 분석과 같은 방법을 통해 목적하는 민감도 및 특이성을 만족하는 마커의 조합을 선별할 수 있을 것이다.The markers according to the invention can be used in one or two or more combinations, for example two, three, four, five combinations, existing markers such as AFP, and / or diagnostic methods such as liver ultrasound And the like can be used. Those skilled in the art will be able to select combinations of markers that meet the desired sensitivity and specificity through methods such as assays and / or logistic regression assays using biological samples from subjects, including normal subjects and patients, such as those described herein. will be.
본원에 따른 일 구현예에서는 특히 ALS, CBPB2, CLUS, CNDP1, CPN2, FA11, FINC, 또는 HGFA 중 하나 이상의 마커가 사용되며, 상기 마커는 본원에 실시예에 기재된 바와 같은 일차 및 이차 시료군 모두에서 높은 AUC 값으로 대조군과 간암 환자에서 차별적 발현을 나타냈다. In one embodiment according to the invention in particular one or more markers of ALS, CBPB2, CLUS, CNDP1, CPN2, FA11, FINC, or HGFA are used, the markers being in both primary and secondary sample groups as described in the Examples herein. High AUC values showed differential expression in control and liver cancer patients.
본원에 따른 다른 구현예에서는 FINC 마커 단독, 또는 THRB 및 FINC; 또는 ALS, ITIH1, THRB 및 FINC 조합으로 사용된다. In another embodiment according to the invention FINC markers alone, or THRB and FINC; Or ALS, ITIH1, THRB and FINC combinations.
본원에 따른 다른 구현예에서 간암 치료 후 회복여부를 판별하는 바이오마커는 THRB, FINC, ITIH1, IBP3, PLMN, CBPB2 및 PLGA로 구성되는 군으로부터 선택되며, 상기 마커 또는 마커의 조합은 특히 높은 AUC 값을 가지나, 다른 마커의 조합을 배제하는 것은 아니다. In another embodiment according to the present invention the biomarker for determining recovery after liver cancer is selected from the group consisting of THRB, FINC, ITIH1, IBP3, PLMN, CBPB2 and PLGA, wherein the marker or combination of markers is particularly high AUC value , But does not exclude the combination of other markers.
다른 구현예에서 본원에 따른 하나 이상의 마커는 AFP 마커와 조합으로 사용될 수 있다. In other embodiments one or more markers according to the present disclosure can be used in combination with an AFP marker.
본원에 따른 마커는 정량적 또는 정성적 분석을 통해 핵산, 특히 단백질 및/또는 mRNA의 존재 여부의 검출 및/또는 이의 발현량 자체, 발현량의 변화, 발현량 차이의 수준에서 검출될 수 있다. The markers according to the invention can be detected at the level of the detection of the presence of nucleic acids, in particular of proteins and / or mRNA, and / or the amount of expression thereof, changes in the amount of expression, difference in the amount of expression through quantitative or qualitative analysis.
본원에서 검출이란, 정량 및/또는 정성 분석을 포함하는 것으로, 존재, 부존재의 검출 및 발현량 검출을 포함하는 것으로 이러한 방법은 당업계에 공지되어 있으며, 당업자라면 본원의 실시를 위해 적절한 방법을 선택할 수 있을 것이다.Detection herein includes quantitative and / or qualitative analysis, including the detection of presence, absence, and expression level detection. Such methods are well known in the art and those skilled in the art will select appropriate methods for carrying out the present application. Could be.
이러한 본원에 따른 마커의 검출은 마커의 기능적 특징 및/또는 항원적 특징에 기반을 둔 것일 수 있다. Detection of such markers according to the present application may be based on functional and / or antigenic characteristics of the marker.
일 구현예에서 본원에 따른 마커는 마커의 활성 또는 기능의 검출, 또는 단백질을 코딩하는 핵산, 특히 mRNA 수준 및/또는 단백질 수준에서 특이적으로 상호작용하는 물질을 사용하여 검출될 수 있다. In one embodiment the marker according to the present application can be detected using the detection of the activity or function of the marker, or using a nucleic acid encoding a protein, in particular an agent that specifically interacts at the mRNA level and / or protein level.
다른 구현예에서 본원에 따른 마커의 검출은 마커 단백질 유래의 상응하는 펩타이드 예를 들면 표 1-1 및 2에 기재된 각 마커별로 상응하는 펩타이드의 검출을 통해 수행될 수 있다. 하나의 단백질에 대하여 하나 또는 두 개 이상의 펩타이드가 사용될 수 있다.In another embodiment the detection of a marker according to the present application may be carried out through the detection of the corresponding peptide from the marker protein, for example the corresponding peptide for each marker described in Tables 1-1 and 2. One or more peptides may be used for one protein.
이런 측면에서 본원에 따른 조성물에 포함되는 검출시약은 본원에 따른 마커를 단백질 또는 핵산 수준에서 다양한 방식으로 정량적 또는 정성적 분석을 통해 검출할 수 있는 시약이다. In this respect, the detection reagent included in the composition according to the present invention is a reagent capable of detecting the marker according to the present invention through quantitative or qualitative analysis in various ways at the protein or nucleic acid level.
본원에 따른 마커의 정량적 및 정성적 분석에는 공지된 단백질 또는 핵산을 정성 또는 정량적으로 검출하는 다양한 방법이 사용될 수 있다. For quantitative and qualitative analysis of the markers according to the present application, various methods for qualitatively or quantitatively detecting known proteins or nucleic acids can be used.
단백질 수준에서의 정성적 또는 정량적 검출 방법으로는 예를 들면 웨스턴블랏, ELISA, 방사선면역분석, 면역확산법, 면역 전기영동, 조직 면역염색, 면역침전 분석법, 보체 고정 분석법, 용액/현탁액 중에서 표지된 항체와의 결합, 질량분석기 또는 항체를 이용한 단백질 어레이 등을 이용한 방법이 사용될 수 있다. Qualitative or quantitative detection methods at the protein level include, for example, Western blot, ELISA, radioimmunoassay, immunodiffusion, immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, antibody labeled in solution / suspension The method may be used by binding with, a mass spectrometer or a protein array using an antibody, or the like.
또는 핵산 수준에서의 정성적 또는 정량적 검출 방법으로는 핵산 전사 및 증폭 방법, eTag 시스템, 표지된 비드를 기본으로 하는 시스템, 핵산 어레이와 같은 어레이 시스템 등을 이용한 방법이 사용될 수 있다. Alternatively, as a qualitative or quantitative detection method at the nucleic acid level, a method using a nucleic acid transcription and amplification method, an eTag system, a system based on labeled beads, an array system such as a nucleic acid array, and the like can be used.
이러한 방법은 공지된 것으로 예를 들면 chip-based capillary electrophoresis: Colyer et al. 1997. J Chromatogr A. 781(1-2):271-6; mass spectroscopy: Petricoin et al. 2002. Lancet 359: 572-77; eTag systems: Chan-Hui et al. 2004. Clinical Immunology 111:162-174; microparticle-enhanced nephelometric immunoassay: Montagne et al. 1992. Eur J Clin Chem Clin Biochem. 30:217-22 등을 참조할 수 있다. Such methods are known and are described, for example, in chip-based capillary electrophoresis: Colyer et al. 1997. J Chromatogr A. 781 (1-2): 271-6; mass spectroscopy: Petricoin et al. 2002. Lancet 359: 572-77; eTag systems: Chan-Hui et al. 2004. Clinical Immunology 111: 162-174; microparticle-enhanced nephelometric immunoassay: Montagne et al. 1992. Eur J Clin Chem Clin Biochem. 30: 217-22, and the like.
본원에 따른 일 구현예에서는 질량분석법(Mass spectrometry)을 이용하여 마커를 검출할 수 있으며, 이는 검체로부터 단백질 또는 펩타이드를 분리한 후 예를 들면 본원 실시예에 기재된 방식대로 분석될 수 있으며, 또한 예를 들면 (Kim, et al. 2010 J Proteome Res. 9: 689-99; Anderson, L et al. 2006. Mol Cell Proteomics 5: 573-88.)를 참조할 수 있다. 한 구현예에서는 예를 들면 Triple Quadrupole LC-MS/MS, QTRAP 등을 이용한 다중반응모니터링(Multiple reaction monitoring, MRM) 기술이 사용된다. MRM은 생체 시료 중에 존재하는 미량의 바이오마커와 같은 물질을 정량적으로 정확하게 다중 측정할 수 있는 방법으로 제1 질량필터(Q1)를 이용하여 이온화원에서 생성된 이온 단편들 중 전구이온 또는 모이온을 선택적으로 충돌관으로 전달한다. 이어 충돌관에 도달한 전구이온은 내부 충돌기체와 충돌하여, 쪼개져 산물이온 또는 딸이온을 생성하여 제2 질량 필터(Q2)로 보내지고, 여기서 특징적인 이온만이 검출부로 전달된다. 이런 방식으로 목적하는 성분의 정보만을 검출할 수 있는 선택성 및 민감도가 높은 분석방법이다. 예를 들면 Gillette et al., 2013, Nature Methods 10:28-34에 기재된 것을 참조할 수 있다.In one embodiment according to the present disclosure, the marker can be detected using mass spectrometry, which can be analyzed for example in the manner described in the Examples herein after separating the protein or peptide from the sample. See, eg, Kim, et al. 2010 J Proteome Res. 9: 689-99; Anderson, L et al. 2006. Mol Cell Proteomics 5: 573-88. In one embodiment, multiple reaction monitoring (MRM) techniques using, for example, Triple Quadrupole LC-MS / MS, QTRAP, and the like are used. MRM is a method that can quantitatively and multi-quantitatively measure multiple substances such as traces of biomarkers present in a biological sample, using a first mass filter (Q1). Optionally pass to the crash tube. Proton ions that arrive at the impingement tube then collide with the internal impingement gas, split and form product ions or daughter ions to be sent to the second mass filter Q2, where only the characteristic ions are transferred to the detector. In this way, it is a high selectivity and sensitivity analysis method that can detect only the information of the desired component. See, for example, those described in Gillette et al., 2013, Nature Methods 10: 28-34.
다른 구현예에서는 각 단백질 또는 상기 단백질을 코딩하는 유전자 유래의 mRNA와 특이적으로 결합하는 결합제제 또는 결합제제를 포함하는 어레이가 사용된다. In another embodiment, a binding agent or array comprising binding agents that specifically binds to each protein or mRNA from a gene encoding the protein is used.
또 다른 구현예에서는 ELISA(Enzyme Linked Immuno Sorbent Assay), RIA(Radio Immuno Assay) 등과 같은 샌드위치 방식의 면역분석법이 사용될 수 있다. 이러한 방법은 고상의 기질 예를 들면 글라스, 플라스틱(예를 들면 폴리스티렌), 폴리사카라이드, 나일론 또는 나이트로셀룰로스로 제작된 비드, 막, 슬라이드 또는 마이크로타이터플레이트에 결합된 제1 항체에 생물학적 시료를 추가한 후, 직접 또는 간접 검출이 가능한 표지물질 예를 들면 3H 또는 125I와 같은 방사선 물질, 형광물질, 화학발광물질, 햅텐, 바이오틴, 디그옥시제닌 등으로 표지되거나 또는 기질과의 작용을 통해 발색 또는 발광이 가능한 호스래디쉬 퍼옥시다제, 알칼라인 포스파타제, 말레이트 데하이드로게나아제와 같은 효소와 컨쥬게이션된 항체와의 결합을 통해 단백질은 정성 또는 정량적으로 검출할 수 있다.In another embodiment, a sandwich-type immunoassay such as Enzyme Linked Immuno Sorbent Assay (ELISA) or Radio Immuno Assay (RIA) may be used. This method involves a biological sample on a first antibody bound to a solid substrate such as beads, membranes, slides or microtiterplates made of glass, plastic (eg polystyrene), polysaccharides, nylon or nitrocellulose. After the addition of a label, a label capable of direct or indirect detection may be labeled with a radioactive substance such as 3 H or 125 I, a fluorescent substance, a chemiluminescent substance, hapten, biotin, digoxygenin, or the like, or the action of a substrate. Proteins can be detected qualitatively or quantitatively through binding of conjugated antibodies with enzymes such as horseradish peroxidase, alkaline phosphatase, and malate dehydrogenase, which are capable of developing or emitting light.
다른 구현예에서는 항원 항체 결합을 통해 마커를 간단하게 검출할 수 있는 Ouchterlony 플레이트, 웨스턴블랏, Crossed IE, Rocket IE, Fused Rocket IE, Affinity IE와 같은 면역 전기영동(Immuno Electrophoresis)이 사용될 수 있다. 상기 면역분석 또는 면역염색의 방법은 Enzyme Immunoassay, E. T. Maggio, ed., CRC Press, Boca Raton, Florida, 1980; Gaastra, W., Enzyme-linked immunosorbent assay(ELISA), in Methods in Molecular Biology, Vol. 1, Walker, J.M. ed., Humana Press, NJ, 1984 등에 기재되어 있다. 상술한 면역분석 과정에 의한 최종적인 시그널의 세기를 분석하여 즉, 정상 시료와의 시그널 대조를 수행함으로써, 질환 발생 여부를 진단할 수 있다.In other embodiments, immunoelectrophoresis such as Ouchterlony plates, Western blots, Crossed IE, Rocket IE, Fused Rocket IE, Affinity IE, which can simply detect markers through antigen antibody binding, can be used. The immunoassay or method of immunostaining is described in Enzyme Immunoassay, E. T. Maggio, ed., CRC Press, Boca Raton, Florida, 1980; Gaastra, W., Enzyme-linked immunosorbent assay (ELISA), in Methods in Molecular Biology, Vol. 1, Walker, J.M. ed., Humana Press, NJ, 1984 and the like. By analyzing the final signal intensity by the above-described immunoassay process, that is, by performing a signal contrast with a normal sample, it is possible to diagnose whether the disease occurs.
이러한 방법에 사용되는 시약 또는 물질은 공지된 것으로서, 예를 들면 상기 마커에 특이적으로 결합하는 항체, 기질, 핵산 또는 펩타이드 앱타머, 또는 상기 마커와 특이적으로 상호작용하는 수용체 또는 리간드 또는 보조인자 등이 사용될 수 있다. 상기 본원의 마커와 특이적으로 상호작용 또는 결합하는 시약 또는 물질은 칩 방식 또는 나노입자(nanoparticle)와 함께 사용될 수 있다. Reagents or materials used in such methods are known and include, for example, antibodies, substrates, nucleic acids or peptide aptamers that specifically bind to the marker, or receptors or ligands or cofactors that specifically interact with the marker. And the like can be used. Reagents or materials that specifically interact with or bind to the markers of the present disclosure may be used with chip or nanoparticles.
본원의 마커는 또한 핵산 수준 특히 mRNA 수준에서의 공지된 다양한 방법을 사용하여 정량적 및/또는 정성적으로 검출될 수 있다.Markers herein can also be detected quantitatively and / or qualitatively using a variety of methods known at the nucleic acid level, particularly at the mRNA level.
핵산 수준에서의 정성적 또는 정량적 검출 방법으로는 예를 들면 mRNA 수준에서의 검출, 발현량 또는 패턴의 검출을 위해 역전사 중합효소연쇄반응(RT-PCR)/중합효소연쇄반응, 경쟁적 RT-PCR, 실시간 RT-PCR, Nuclease 보호 분석(NPA) 예를 들면 RNase, S1 nuclease 분석, in situ 교잡법, DNA 마이크로어레이 또는 칩 또는 노던블랏 등을 이용한 방식이 사용될 수 있으며, 이러한 분석법은 공지된 것이며, 또한 시중의 키트를 사용하여 수행될 수 있으며, 당업자라면 본원의 실시를 위해 적절한 것을 선택할 수 있을 것이다. 예를 들면 노던블랏은 세포에 존재하는 전사체의 크기를 알 수 있으며, 다양한 프로브를 사용할 수 있는 장점이 있으며, NPA는 다중 마커 분석에 유용하며, in situ 교잡법은 mRNA와 같은 전사체의 세포 또는 조직내 위치 파악에 용이하며, 역전사 중합효소연쇄반응은 적은 량의 시료 검출에 유용하다. 또한 본원에 따른 바이오마커 단백질을 코딩하는 유전자 유래의 mRNA 또는 cRNA와 같은 핵산과 특이적으로 결합하는 결합제제 또는 결합제제를 포함하는 어레이가 사용될 수 있다. Qualitative or quantitative detection methods at the nucleic acid level include, for example, reverse transcriptase polymerase chain reaction (RT-PCR) / polymerase chain reaction, competitive RT-PCR, for detection of mRNA levels, expression levels or patterns. Real-Time RT-PCR, Nuclease Protection Assays (NPA) For example, RNase, S1 nuclease assays, in situ hybridization, DNA microarrays or chips or Northern blots can be used, such assays are known and also known. It may be carried out using commercially available kits and one skilled in the art will be able to select the appropriate one for the practice herein. For example, Northern blots can be used to determine the size of transcripts present in a cell, have the advantage of using a variety of probes, NPAs are useful for multiple marker analysis, and in situ hybridization can be used for cells of transcripts such as mRNA. Or, it is easy to locate in the tissue, and reverse transcription polymerase chain reaction is useful for detecting a small amount of sample. In addition, an array including a binding agent or a binding agent that specifically binds to a nucleic acid such as mRNA or cRNA from a gene encoding a biomarker protein according to the present application can be used.
상기 핵산 수준에서의 바이오마커의 검출 방법에 사용되는 시약 또는 물질은 공지된 것으로서, 예를 들면 mRNA의 존재 여부와 그 양을 RT-PCR로 측정하기 위한 방법에서 검출시약으로는 예를 들면 중합효소, 본원 마커의 mRNA에 특이적인 프로브 및/또는 프라이머쌍을 포함한다. “프라이머” 또는 “프로브”는 주형과 상보적으로 결합할 수 있고 역전사효소 또는 DNA 중합효소가 주형의 복제를 개시할 수 있도록 하는 자유 3말단 수산화기(free 3' hydroxyl group)를 가지는 핵산 서열을 의미한다. 본원에 사용되는 상기 검출 시약은 신호검출을 위해 상술한 바와 같은 발색, 발광 또는 형광물질과 같은 것으로 표지될 수 있다. 일구현예에서는 mRNA 검출을 위해 노던블랏 또는 역전사 PCR(중합효소연쇄반응)이 사용된다. 후자의 경우 검체의 RNA를 특히 mRNA를 분리한 후, 이로부터 cDNA를 합성한 후, 특정 프라이머, 또는 프라이머 및 프로브의 조합을 사용하여, 검체 중의 특정 유전자를 검출하는 것으로, 특정 유전자의 존재/부존재 또는 발현량을 결정할 수 있는 방법이다. 이러한 방법은 예를 들면 (Han, H. et al, 2002. Cancer Res. 62: 2890-6)에 기재되어 있다. Reagents or substances used in the method for detecting the biomarker at the nucleic acid level are known, for example, as a detection reagent in a method for measuring the presence and amount of mRNA by RT-PCR, for example, a polymerase. , Probes and / or primer pairs specific for the mRNA of the marker herein. "Primer" or "probe" refers to a nucleic acid sequence having a free 3 'hydroxyl group capable of complementarily binding to a template and allowing reverse transcriptase or DNA polymerase to initiate replication of the template. do. As used herein, the detection reagent may be labeled with a colorant, luminescent or fluorescent substance as described above for signal detection. In one embodiment, Northern blot or reverse transcription PCR (polymerase chain reaction) is used for mRNA detection. In the latter case, the RNA of a sample is specifically isolated from mRNA, and then cDNA is synthesized therefrom, and then a specific gene or a combination of primers and probes is used to detect a specific gene in the sample. Or it is a method which can determine the expression amount. Such methods are described, for example, in Han, H. et al, 2002. Cancer Res. 62: 2890-6.
본원에 따른 조성물에 포함되는 검출시약은 검출에 사용되는 구체적 방법에 따라 검출을 위해 직접적 또는 샌드위치 형태로 간접적으로 표지될 수 있다. 직접적 표지방법의 경우, 어레이 등에 사용되는 혈청 시료는 Cy3, Cy5와 같은 형광 표지로 표지된다. 샌드위치의 경우, 표지되지 않은 혈청 시료를 먼저 검출시약이 부착된 어레이와 반응시켜 결합시킨 후, 표적 단백질을 표지된 검출 항체와 결합시켜 검출한다. 샌드위치 방식의 경우, 민감도와 특이성을 높일 수 있어, pg/mL 수준까지 검출이 가능하다. 그 외 방사능 물질, 발색물질, 자기성입자 및 고밀도전자입자 등이 표지물질로 사용될 수 있다. 형광 광도는 스캐닝 콘포칼 현미경이 사용될 수 있으며, 예를 들면 Affymetrix, Inc. 또는 Agilent Technologies, Inc 등에서 입수할 수 있다. The detection reagent included in the composition according to the present application may be labeled directly or indirectly in a sandwich form for detection depending on the specific method used for detection. In the case of the direct labeling method, serum samples used for arrays and the like are labeled with fluorescent labels such as Cy3 and Cy5. In the case of a sandwich, an unlabeled serum sample is first detected by reacting with an array to which a detection reagent is attached, followed by binding to a target protein with a labeled detection antibody. In the case of the sandwich method, the sensitivity and specificity can be increased, and thus the detection can be performed up to pg / mL level. In addition, radioactive materials, coloring materials, magnetic particles and high-density electron particles may be used as the labeling material. Fluorescence luminosity can be used with scanning confocal microscopy, for example Affymetrix, Inc. Or Agilent Technologies, Inc.
본원의 조성물은 추가로 결합분석에 필요한 하나 이상의 부가 성분을 포함할 수 있으며, 예를 들면 결합 버퍼, 시료 준비에 필요한 시약, 혈액채취용 주사기 또는 음성 및/또는 양성대조군을 추가로 포함할 수 있다. The compositions herein may further comprise one or more additional ingredients required for binding assays and may further include, for example, binding buffers, reagents for sample preparation, blood sampling syringes or negative and / or positive controls. .
상술한 바와 같은 다양한 검출시약을 포함하는 본원의 조성물은 분석양태에 따라 ELISA 분석용, 딥스틱 래피드 키트(dip stick rapid kit) 분석용, MRM 분석용 키트, 마이크로어레이용, 유전자증폭용, 또는 면역분석용 등으로 제공될 수 있으며, 분석 양태에 맞추어 적절한 검출시약을 선별할 수 있을 것이다. The composition of the present invention comprising various detection reagents as described above is for ELISA analysis, dip stick rapid kit analysis, MRM analysis kit, microarray, gene amplification, or immunity depending on the assay. It may be provided for analysis and the like, and an appropriate detection reagent may be selected according to the analysis mode.
일 구현예에서는 ELISA 또는 딥스틱 래피드 키트가 사용되며, 이 경우 본원에 따른 하나 이상의 마커를 인식하는 항체가 기질, 예를 들면 다중웰 플레이트의 웰 또는 유리 슬라이드의 표면 또는 나이트로셀룰로스에 부착되어 제공될 수 있다. 딥스틱의 경우, POCT(Point of Care Test) 분야에서 널리 이용되는 기술로, 본원에 따른 바이오마커를 인식하는 하나 이상의 항체가 나이트로셀룰로스와 같은 기질에 결합되어 있고, 이를 혈청과 같은 시료와 접촉시 예를 들면 딥스틱의 일 말단을 혈청시료에 답그면, 시료가 모세관 현상에 의해 기질을 이동하여, 기질 중의 항체와 결합시 발색하는 방식으로, 마커를 검출하는 것이다. In one embodiment an ELISA or dipstick rapid kit is used, wherein an antibody that recognizes one or more markers according to the present application is attached to a substrate, such as the surface of a well or glass slide of a multiwell plate or nitrocellulose. Can be. In the case of dipsticks, a technique widely used in the field of point of care test (POCT), in which one or more antibodies recognizing a biomarker according to the present invention are bound to a substrate such as nitrocellulose, and contacted with a sample such as serum. For example, when one end of a dipstick is attached to a serum sample, the marker is detected in such a manner that the sample moves through the substrate by capillary action and develops color upon binding to the antibody in the substrate.
다른 구현예에서는 펩타이드를 근간으로 하는 MRM 키트가 제공되며, MRM 방식에 대하여는 앞서 설명한 바와 같다. MRM 방법은 특정 단백질을 선택적으로 인식하는 펩타이드를 이용하는 것으로, 온도, 습도 등 환경에 민감한 항체를 이용하는 기존의 방법과 비교하여, 보다 안정적으로 생체시료에서 마커를 검출할 수 있다. 예를 들면 펩타이드는 본원 표 1-1 및 1-2에 기재된 것이 사용될 수 있으며, 하나의 마커에 하나 또는 두 개 이상의 펩타이드가 사용될 수 있다. 예를 들면 단백질에 해당하는 펩타이드(단문자 아미노산으로 표시)는 Prothrombin (THRB) - HQDFNSAVQLVENFCR, SGIECQLWR; Fibronectin (FINC)-WCGTTQNYDADQK, GEWTCIAYSQLR, HTSVQTTSSGSGPFTDVR; ITIH1-EVAFDLEIPK, LDAQASFLPK; IBP3-ALAQCAPPPAVCAELVR; PLMN-LSSPAVITDK, EAQLPVIENK; CBPB2-DTGTYGFLLPER, YPLYVLK; PLGA-DVVLFEK와 같다. In another embodiment, an MRM kit based on a peptide is provided, and the MRM scheme is as described above. The MRM method uses a peptide that selectively recognizes a specific protein, and can more stably detect a marker in a biological sample as compared with a conventional method using an antibody sensitive to the environment such as temperature and humidity. For example, the peptides described in Tables 1-1 and 1-2 herein may be used, and one or more peptides may be used in one marker. For example, peptides corresponding to proteins (expressed as short amino acids) include Prothrombin (THRB) -HQDFNSAVQLVENFCR, SGIECQLWR; Fibronectin (FINC) -WCGTTQNYDADQK, GEWTCIAYSQLR, HTSVQTTSSGSGPFTDVR; ITIH1-EVAFDLEIPK, LDAQASFLPK; IBP3-ALAQCAPPPAVCAELVR; PLMN-LSSPAVITDK, EAQLPVIENK; CBPB2-DTGTYGFLLPER, YPLYVLK; Same as PLGA-DVVLFEK.
다른 구현예에서, 마이크로어레이를 포함하는 어레이 또는 칩의 형태로 제공될 수 있다. 유리 또는 나이트로셀룰로스와 같은 기질의 표면에 검출시약이 부착될 수 있으며, 어레이 제조 기술은 예를 들면 Schena et al., 1996, Proc Natl Acad Sci USA. 93(20):10614-9; Schena et al., 1995, Science 270(5235):467-70; 및 U.S. Pat. Nos. 5,599,695, 5,556,752 또는 5,631,734를 참조할 수 있다. 어레이에 부착될 수 있는 검출시약은 예를 들면 한 단백질에 특이적 결합이 가능한 항체, 항체단편, 앱타머(aptamer), 아비머(avidity multimer) 또는 펩티도모방체(peptidomimetics)를 포함한다. In other embodiments, it may be provided in the form of an array or chip comprising a microarray. Detection reagents may be attached to the surface of a substrate such as glass or nitrocellulose, and array fabrication techniques are described, for example, in Schena et al., 1996, Proc Natl Acad Sci USA. 93 (20): 10614-9; Schena et al., 1995, Science 270 (5235): 467-70; And U.S. Pat. Nos. 5,599,695, 5,556,752 or 5,631,734. Detection reagents that can be attached to an array include, for example, antibodies, antibody fragments, aptamers, aviders, or peptidomimetics capable of specific binding to a protein.
다른 양태에서 본원은 바이오마커의 검출시약을 포함하는 간암 진단 또는 예후 분석용 키트 또는 시스템에 관한 것이다. 검출 시약 및 이러한 시약이 사용되는 방법은 상술한 바와 같다. 이러한 본원의 마커를 검출할 수 있는 시약은 구획이 되어 있는 용기에 개별적으로 분주되어 존재할 수 있으며, 이러한 의미에서 본원은 또한 본원의 마커 검출시약을 구획되어 포함하는 장치/기구에 관한 것이다. 또한 키트는 사용안내서를 추가로 포함할 수 있다.In another aspect the invention relates to a kit or system for diagnosing or prognosticing liver cancer comprising a reagent for detecting a biomarker. Detection reagents and methods in which such reagents are used are described above. Reagents capable of detecting such markers of the present application may be separately dispensed in a compartment in which the compartment is divided, and in this sense, the present application also relates to an apparatus / apparatus comprising compartmentally containing the marker detection reagent of the present application. The kit may also include additional instructions for use.
또다른 양태에서 본원은 간암의 진단 또는 예후에 필요한 정보를 제공하기 위하여, 대상체 유래의 생물학적 시료로부터 ALS (Insulin-like growth factor-binding protein complex acid labile subunit); AMBP (Alpha-1-microglobulin/bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); HGFA (Hepatocyte growth factor activator); IBP3 (Insulin-like growth factor-binding protein 3); IGF2 (Insulin-like growth factor II); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); LCAT (Phosphatidylcholine-sterol acyltransferase); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); 및 VTNC (Vitronectin)로 구성되는 군으로부터 선택되는 하나 이상 바이오마커의 핵산 및/또는 단백질의 존재 여부 및/또는 농도를 검출하는 단계를 포함하는 간암 마커를 검출하는 방법에 관한 것이다. In another aspect, the present invention provides a method for the diagnosis or prognosis of liver cancer, comprising: Insulin-like growth factor-binding protein complex acid labile subunit (ALS) from a biological sample from a subject; AMBP (Alpha-1-microglobulin / bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); Hepatocyte growth factor activator (HGFA); Insulin-like growth factor-binding protein 3 (IBP3); Insulin-like growth factor II (IGF2); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); Phosphatidylcholine-sterol acyltransferase (LCAT); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); And detecting the presence and / or concentration of nucleic acids and / or proteins of at least one biomarker selected from the group consisting of VTNC (Vitronectin).
이러한 본원은 방법은 추가로 상기 핵산 또는 단백질의 수준 또는 존재에 대한 검출 결과를 대조군 시료의 해당 마커의 상응하는 결과와 비교하는 단계; 및 상기 대조군 시료와 비교하여, 상기 대상체 시료의 핵산 또는 단백질 농도의 변화가 있거나, 또는 상기 핵산 또는 단백질이 존재 여부에 변화가 있는 경우, 이를 간암으로 판정하는 단계를 포함한다.Such methods further comprise comparing the detection results for the level or presence of the nucleic acid or protein with the corresponding results of the corresponding markers in the control sample; And comparing the control sample with a change in nucleic acid or protein concentration of the subject sample, or when there is a change in the presence or absence of the nucleic acid or protein, and determining it as liver cancer.
본원에 따른 방법에서 간암 환자의 진단을 위해 대조군으로 사용될 수 있는 시료는 정상인, 간염, 간경화 또는 간암으로 치료 후 완치된 환자 (간경화 유지) 유래의 시료가 사용될 수 있다. 이러한 대조군 환자와 비교하여, 간암 환자에서 본원에 따른 마커의 발현량이 증가된다.Samples that can be used as a control for the diagnosis of liver cancer patients in the method according to the present application may be a sample from a normal person, hepatitis, liver cirrhosis or patients who have been cured after treatment (liver cirrhosis). Compared with this control patient, the expression level of the marker according to the present application is increased in liver cancer patients.
본원에 따른 방법에 사용되는 생물학적 시료는 전혈, 혈청 또는 혈장이 사용된다. The biological sample used in the method according to the present invention may be whole blood, serum or plasma.
본원에 따른 마커는 정상인 유래의 시료는 물론, 간경화 환자와 비교하여 간암환자에서 그 발현량이 증가한다. The marker according to the present application increases the expression level in liver cancer patients as well as samples from normal people, as well as liver cirrhosis patients.
따라서 본원에 따른 방법에서 간암 진단은 간경화와 간암 환자를 구분할 수 있기 때문에 간경화에서 간암으로 진행되는 환자를 진단할 수 있어 특히 조기 진단에 유리하다. 이 경우, 대조군으로서 간경화 환자 유래의 시료를 포함할 수 있으며, 간경화 환자 유래의 시료는 간경화를 유지하는 간암 완치 환자를 포함하는 것이다. 또한 간암 치료 후 회복된 환자의 판별에도 유리하다. 이 경우, 동일 환자의 유래의 간암 시료가 대조군으로 사용될 수 있다.Therefore, the liver cancer diagnosis in the method according to the present application can distinguish between liver cirrhosis and liver cancer patients, it is possible to diagnose patients from liver cirrhosis to liver cancer is particularly advantageous for early diagnosis. In this case, a sample derived from a liver cirrhosis patient may be included as a control, and the sample derived from a liver cirrhosis patient includes a liver cancer cure patient who maintains cirrhosis. It is also advantageous for the identification of patients recovered after liver cancer treatment. In this case, liver cancer samples from the same patient can be used as a control.
본원에서 생물학적 시료란 바이오마커 검출이 가능한 하나 이상의 성분을 포함하는 물질 또는 물질의 혼합물을 일컫는 것으로 생물체, 특히 체액, 특히 전혈, 혈장, 혈청 또는 뇨를 포함하나 이로 제한하는 것은 아니다. As used herein, biological samples refer to substances or mixtures of substances that include one or more components capable of detecting a biomarker and include, but are not limited to, organisms, particularly body fluids, in particular whole blood, plasma, serum or urine.
본원에 따른 일 구현예에서는 특히 ALS, CBPB2, CLUS, CNDP1, CPN2, FA11, FINC, 또는 HGFA 중 하나 이상의 마커가 사용되며, 상기 마커는 본원에 실시예에 기재된 바와 같은 일차 및 이차 시료군 모두에서 높은 AUC 값으로 대조군과 간암 환자에서 차별적 발현을 나타냈다. In one embodiment according to the invention in particular one or more markers of ALS, CBPB2, CLUS, CNDP1, CPN2, FA11, FINC, or HGFA are used, the markers being in both primary and secondary sample groups as described in the Examples herein. High AUC values showed differential expression in control and liver cancer patients.
본원에 따른 다른 구현예에서는 치료 후 회복여부를 판별하는 바이오마커는 THRB, FINC, ITIH1, IBP3, PLMN, CBPB2 및 PLGA로 구성되는 군으로부터 선택될 수 있다. In another embodiment according to the present invention the biomarker for determining whether to recover after treatment may be selected from the group consisting of THRB, FINC, ITIH1, IBP3, PLMN, CBPB2 and PLGA.
본원에 따른 다른 구현예에서는 FINC 마커 단독, 또는 THRB 및 FINC; 또는 ALS, ITIH1, THRB 및 FINC 조합으로 사용된다. In another embodiment according to the invention FINC markers alone, or THRB and FINC; Or ALS, ITIH1, THRB and FINC combinations.
다른 구현예에서 본원에 따른 하나 이상의 마커는 AFP 마커와 조합으로 사용될 수 있다. In other embodiments one or more markers according to the present disclosure can be used in combination with an AFP marker.
본 방법에 사용되는 대조군 또는 참조군, 바이오마커 검출 방법 및 이에 사용되는 시약 및 판정을 위한 데이터 분석 방법은 앞서 설명한 것 및 후술하는 것을 참고할 수 있다. The control or reference group used in the present method, the biomarker detection method, and the reagents and the data analysis method for the determination may be referred to the above and the following.
본원에 따른 방법은 앞서 언급한 방법, 또는 검출 시약을 사용하는 방법을 이용하여 수행될 수 있으며, 특히 단백질 또는 핵산 마이크로어레이 분석법, 핵산증폭, 항원-항체 반응, 또는 질량분석 방식으로 실시될 수 있다. The method according to the invention can be carried out using the above-mentioned method or a method using a detection reagent, and in particular can be carried out by protein or nucleic acid microarray analysis, nucleic acid amplification, antigen-antibody reaction, or mass spectrometry. .
본원의 방법은 포유류 특히 인간을 대상으로 포함한다. 인간 대상체는 HCC가 발병했을 것으로 의심되는 사람, 간염, 간경화 환자, 또는 의심되지 않는 사람으로 HCC 진단여부가 필요한 사람을 포함한다. 일 구현예에서, 본 방법은 간질환 관련 증상 예를 들면 복부통증, 비대간, 복수, 황달, 근육쇠약, 간염 (예를 들면 HCV 감염), 또는 식도 정맥류 등과 같은 대상체가 HCC 여부를 결정하기 위한 다른 증상을 가진 대상체에게 수행될 수 있다. 다른 구현예에서는 외관상으로는 정상으로 HCC 증상을 나타내지 않는 대상체이다. The methods herein include mammals, in particular humans. Human subjects include those suspected of developing HCC, patients with hepatitis, cirrhosis of the liver, or persons who are not suspected of having HCC diagnosed. In one embodiment, the method is directed to determining whether a subject has HCC symptoms, such as abdominal pain, hypertrophy, ascites, jaundice, muscle weakness, hepatitis (eg, HCV infection), or esophageal varices. It may be performed on a subject with other symptoms. In another embodiment, the subject is apparently normal in the absence of HCC symptoms.
다른 구현예에서, 대상체는 혈장 AFP 농도가 낮거나 또는 정상일 수 있어, AFP를 기준으로는 HCC로 진단되지 않을 수도 있는 사람이다. 이러한 경우, AFP의 혈청 농도는 약 0μg/l (비검출) 내지 20μg/l, e.g., 0μg/l (비검출) 내지 5μg/l, 5μg/l 내지 10μg/l, 10μg/l 내지 15μg/l, 또는 15μg/l 내지 20μg/l 일 수 있다. In other embodiments, the subject is a person who may have low or normal plasma AFP concentrations and may not be diagnosed with HCC based on AFP. In this case, the serum concentration of AFP is about 0 μg / l (non-detected) to 20 μg / l, eg, 0 μg / l (non-detected) to 5 μg / l, 5 μg / l to 10 μg / l, 10 μg / l to 15 μg / l Or 15 μg / l to 20 μg / l.
상술한 방법을 사용하여 두 개 이상을 포함하는 마커의 조합을 사용하는 경우 프로파일, 즉 시료 중 마커 단백질 발현과 관련된 정량적 정보를 포함하는 데이터세트가 생성될 수 있다. When using a combination of two or more markers using the methods described above, a dataset may be generated that includes a profile, ie, quantitative information related to marker protein expression in a sample.
마커를 이용하여 프로파일을 수득한 후에, 참조군 또는 대조군과의 결과 비교를 통해 대상체의 시료의 간세포암 여부를 판별한다. 대조군 또는 참조군으로는 음성 대조군으로 정상 시료, 또는 간세포암에 걸린 후 치료된 환자 유래의 시료, 양성대조군으로 본원에 따른 마커 이외에 방법으로 간세포암으로 판정된 환자 유래의 시료, 간경화 환자 유래의 시료, 간염 유래 환자의 시료일 수 있다. After obtaining a profile using a marker, a comparison of the result with a reference group or a control group determines whether a sample of the subject has hepatocellular carcinoma. As a control or reference group, a negative control group, or a sample from a patient treated after hepatocellular carcinoma, a positive control group, a sample from a patient determined as hepatocellular carcinoma by a method other than the marker according to the present application, a sample from a cirrhosis patient , A sample of a patient derived from hepatitis.
본원에 따른 일 구현예에서는 정상인 유래의 시료, 간세포암으로 판정후 치료를 받은 환자 유래의 시료가 대조군 또는 참조군으로 사용되어, 수득된 프로파일의 비교에 사용된다. In one embodiment according to the present application, a sample derived from a normal person, a sample derived from a patient treated after being determined as a hepatocellular carcinoma, is used as a control or a reference group, and used for comparison of the obtained profile.
대조군과 시료를 이용한 시험군 사이의 마커 프로파일의 비교에는 공지된 방법이 사용될 수 있다. 예를 들면 발현 프로파일의 디지털 영상 비교, 발현 데이터에 대한 DB를 이용한 비교, 또는 U.S. 특허 6,308,170 및 6,228,575에 기재된 것을 참조할 수 있다.Known methods can be used to compare marker profiles between control groups and test groups using samples. For example, digital image comparison of expression profiles, comparisons using DB for expression data, or U.S. See patents 6,308,170 and 6,228,575.
본원에 따른 마커 검출을 통하여 수득된 프로파일은 공지의 데이터 분석방법을 이용하여 처리될 수 있다. 예로는 nearest neighbor classifier, partial-least squares, SVM, AdaBoost 및 clustering-based classification 방법이 사용될 수 있으며, 예를 들면 Ben-Dor et al (2007, J. Comput. Biol. 7: 559-83), Nguyen et al (2002, Bioinformatics 18:39-50), Wang et al (2003, BMC Bioinformatics 4:60), Liu et al (2001, Genome Inform. Ser. Workshop Genome Inform.12:14-23), Yeang et al (2001, Bioinformatics 17 Suppl 1:S316-22) 및 Xiong (2000, Biotechniques 29(6):1264-8, 1270) 등을 포함하는 문헌을 참조할 수 있다. Profiles obtained through marker detection according to the present application can be processed using known data analysis methods. Examples include nearest neighbor classifiers, partial-least squares, SVM, AdaBoost, and clustering-based classification methods, for example Ben-Dor et al (2007, J. Comput. Biol. 7: 559-83), Nguyen et al (2002, Bioinformatics 18: 39-50), Wang et al (2003, BMC Bioinformatics 4:60), Liu et al (2001, Genome Inform. Ser. Workshop Genome Inform. 12: 14-23), Yeang et al (2001, Bioinformatics 17 Suppl 1: S316-22) and Xiong (2000, Biotechniques 29 (6): 1264-8, 1270) and the like.
또한 본원의 마커를 통하여 검출된 결과가 간세포암 판별에 유의한 것으로 판정하기 위해 다양한 통계처리 방법이 사용될 수 있다. 통계적 처리 방법으로 일 구현예에서는 logic regression 방법이 사용되며, Ruczinski, 2003, Journal of Computational and Graphical Statistics 12:475-512를 참조할 수 있다. 상기 방법은 클래시파이어가 바이너리 트리로 제시되는 CART 방법과 유사하나, 각 노드는 CART에 의해 생성되는 “and” 연산자와 비교하여 보다 일반적인, 특성과 관련된 불린(Boolean) 연산자가 사용된다. 다른 분석 방법의 예로는 nearest shrunken centroids (Tibshirani. 2002 PNAS. 99:6567-72), random forests (Breiman. 2001. Machine Learning 45:5-32 및 MART (Hastie. 2001. The Elements of Statistical Learning, Springer)을 들 수 있다. In addition, various statistical processing methods may be used to determine that the results detected through the markers of the present application are significant for hepatocellular carcinoma discrimination. As a statistical processing method, a logic regression method is used in one embodiment, and may be referred to Ruczinski, 2003, Journal of Computational and Graphical Statistics 12: 475-512. The method is similar to the CART method in which a classifier is presented as a binary tree, but each node uses a more general Boolean operator associated with the property compared to the “and” operator generated by CART. Examples of other analysis methods include nearest shrunken centroids (Tibshirani. 2002 PNAS. 99: 6567-72), random forests (Breiman. 2001. Machine Learning 45: 5-32, and MART (Hastie. 2001. The Elements of Statistical Learning, Springer). ).
일 구현예에서, 통계처리를 통해 HCC로 진단하기 위해 시험물질과 대조군간의 유의한 차이에 관한 신뢰수준을 결정할 수 있다. 통계 처리에 사용되는 원 데이터는 각 마커에 대하여 이중, 삼중 또는 다중으로 분석된 값이다. In one embodiment, statistical processing can determine the level of confidence in the significant difference between the test substance and the control to diagnose HCC. The raw data used for statistical processing are the values analyzed in duplicate, triple or multiple for each marker.
이러한 통계적 분석 방법은 바이오마커는 물론, 임상 및 유전적 데이터의 통계적 처리를 통하여 임상적으로 유의한 판단을 하는데 매우 유용하다. This statistical analysis method is very useful for making clinically meaningful judgments through statistical processing of biomarkers as well as clinical and genetic data.
본원에 따른 방법은 HCC가 심각성 정도를 판단하는데 사용될 수 있다. 예를 들면 양성대조군 및 음성대조군의 프로파일과 비교하여, 경증 HCC, 중간정도 HCC 또는 중증 HCC로 평가될 수 있다. 나아가 일정 HCC 집단에 대한 마커 프로파일 분석을 수행하여, 프로파일 결과를 근거로 일정 기준에 따라 분류할 수 있다. 이런 방식으로 조기발견을 통해 자기공명영상(MRI)와 같은 고가의 검사를 하지 않을 수도 있다. The method according to the invention can be used to determine the degree of severity of the HCC. For example, it can be assessed as mild HCC, moderate HCC or severe HCC compared to the profiles of the positive and negative controls. Furthermore, marker profile analysis for a certain HCC population may be performed and classified according to a certain criterion based on the profile result. In this way, early detection may prevent expensive tests such as magnetic resonance imaging (MRI).
다른 구현예에서, 본 방법은 특정 기간 동안 예를 들어 1년에 걸쳐 수차례 수행될 수 있으며, 발현 패턴의 변화 추이 모니터링에 사용될 수 있다. 마커의 종류에 따라 발현의 증가 또는 감소를 HCC의 상태와 연관지을 수 있다. 동일 대상체에 대한 종전의 검사수치 또는 대조군의 수치와 비교하여, HCC 발병, 진행, 악화 등의 판단에 사용될 수 있다. 시간의 경과에 따른 HCC 마커의 변화를 근거로 간세포암 또는 중증 간세포암으로의 진행을 막기 위한 예방적 조치를 취할 수 있다. HCC의 확진을 위해, 바이오마커는 보조 수단으로 사용될 수 있으며, 다른 진단 방법 예를 들면 AFP 테스트, 초음파, 컴퓨터단층촬영(computerized axial tomography (CT scan)) 또는 자기공명영상(magnetic resonance imaging (MRI)) 검사와 함께 사용될 수 있다. In other embodiments, the method may be performed several times over a period of time, for example over a year, and may be used to monitor trends in expression patterns. Depending on the type of marker, an increase or decrease in expression may be associated with the state of the HCC. It can be used to determine HCC incidence, progression, exacerbation, etc., in comparison with previous test values or the value of the control group for the same subject. Based on the change in HCC markers over time, preventive measures can be taken to prevent progression to hepatocellular carcinoma or severe hepatocellular carcinoma. For the confirmation of HCC, biomarkers can be used as an aid, and other diagnostic methods such as AFP tests, ultrasound, computerized axial tomography (CT scan) or magnetic resonance imaging (MRI) Can be used with inspection.
이하, 본 발명의 이해를 돕기 위해서 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.Hereinafter, examples are provided to help understand the present invention. However, the following examples are provided only to more easily understand the present invention, and the present invention is not limited to the following examples.
실 시 예 Example
실시예 1. 본원에 사용된 임상 시료 정보Example 1. Clinical Sample Information Used herein
본 실험은 서울대학교의 의학연구윤리심의위원회의 허가된 프로토콜에 따라 수행되었으며, 각 환자로부터 충분한 설명에 근거한 서면동의를 수득하였으며, 임상정보는 다음과 같다. The experiment was conducted in accordance with the protocol approved by the Medical Research Ethics Review Board of Seoul National University.
마커 후보군 선정을 위해 정상인과 간암 환자의 통합(pooling) 시료에서 발현차이를 보이는 단백질 후보군 선정을 위해, 정상인 60명(남/여=41/19)과 간암 환자 60명(남/여=42/18)의 시료를 가지고 초기 연구를 진행했다. 실제로 개별 시료에 적용 및 분석하기 위해서 1차 시료군은 간경화 환자 30명, 간암 치료전 환자 30명, 간암 치료 후 완치 환자 30명 시료와 2차 시료군은 간경화 환자 50명, 간암 치료전 환자 50명, 간암 치료 후 완치 환자 50명 시료를 사용했다. 간암 치료 전과 치료 후 시료는, 동일한 환자에서 추출한 것이고, 간암을 치료하기 전에 혈청 시료를 취한 다음, 간암 치료를 하고 나서 6개월 이상 추적자료(follow-up data)를 근거로 간암이 재발하거나 전이되지 않고, 완전히 완치가 된 건강한 간암 환자의 시료만을 분석에 포함시켰다. To select marker candidate groups, 60 normal subjects (male / female = 41/19) and 60 liver cancer patients (male / female = 42 /) were selected for the selection of protein candidates with expression differences in pooled samples of normal and liver cancer patients. The initial study was conducted with the sample of 18). In practice, the primary sample group was 30 patients with cirrhosis, 30 patients before liver cancer, 30 patients cured after liver cancer, and the second sample group was 50 patients with liver cirrhosis and 50 patients with liver cirrhosis. Samples were used for 50 patients cured after liver cancer treatment. Before and after liver cancer treatment, the samples were taken from the same patient, and serum samples were taken before treating liver cancer, and liver cancer did not recur or metastasize based on follow-up data for more than 6 months after treatment for liver cancer. Only samples of healthy liver cancer patients who were completely cured were included in the analysis.
실시예 2. 표적 후보군 선정을 위한 데이터 마이닝Example 2 Data Mining for Target Candidate Selection
타겟의 후보군은 다음과 같이 선정하였다. 현재 간 질환과 관련된, 가장 포괄적 자원(comprehensive resource)인 Liver Atlas 데이타베이스를 이용해서 간암 조기진단 단백질 마커 후보군을 확보했다. Liver Atlas 데이타베이스 상에서 간질환과 관련 있다고 알려진 단백질은 총 50,265개인데, 이 중에서 혈액 내에서 검출 가능한 단백질만을 선정하기 위해, 혈액 내로 분비되거나 분비될 가능성이 있는 단백질(Uniprot database 기준)만을 선별한 결과, 총 1,683개 단백질이 선정 되었다. 최종, 질량 분석 장비로 검출이 가능한 단백질만을 선정하기 위해서 4개의 서로 다른 펩타이드 MS/MS 라이브러리 소스(NIST Ion-Trap, NIST Q-TOF, ISB human plasma, Home made library)를 이용해서 펩타이드 MS/MS 데이타가 존재하는 단백질만을 선정한 결과, 총 960개 단백질이 최종 선정되었다. 이어 검출 가능한 타겟 후보군 선정은 다음과 같이 수행하였다. 실제, 질량분석 장비로 검출이 가능한 타겟만을 선정하기 위해서, 정상 그룹 60명, HCC 그룹 60명을 통합한 시료를 대상으로, MRM 분석을 통해 시그널이 제대로 검출되는 펩타이드 만을 선정한 결과, 최종 537개 단백질, 1316개 펩타이드가 선정되었다. The candidate group of the target was selected as follows. The Liver Atlas database, the most comprehensive resource currently associated with liver disease, was used to identify candidate liver cancer early protein markers. A total of 50,265 proteins are known to be related to liver disease in the Liver Atlas database, and only those proteins that can be secreted or secreted into the blood (Uniprot database) are selected to select only proteins that can be detected in the blood. A total of 1,683 proteins were selected. Finally, peptide MS / MS using four different peptide MS / MS library sources (NIST Ion-Trap, NIST Q-TOF, ISB human plasma, Home made library) to select only proteins that can be detected by mass spectrometry. As a result, only 960 proteins were selected. Subsequently, detection target group selection was performed as follows. In fact, in order to select only targets that can be detected by mass spectrometry equipment, only peptides with proper signal detection through MRM analysis were selected from 60 normal groups and 60 HCC groups. , 1316 peptides were selected.
실시예 3. MRM 분석을 통한 타켓 마커 후보군 도출Example 3. Derivation of target marker candidate group through MRM analysis
실시예 3-1. 혈청 시료 준비Example 3-1. Serum Sample Preparation
실험에 사용한 혈청 시료는 다음과 같이 준비하였다. BD Vacutainer 혈청 분리관(serum separation tube)(BD, USA)을 이용하여 채혈하였다(Silica clot activator, 10mL, 16 X 100mm ; Product number = #367820). 채혈된 혈액에 페닐메틸 설포닐 플루오라이드(PMSF)를 최종 1.0mM 되도록 첨가하였다. 10번 정도 인버팅 믹싱(inverting mix)을 한 후, 3000rpm 에서 10분간 원심분리(4℃ 유지)하여 상층액을 수집하였다(색깔 관찰 후, 용혈된 붉은색 샘플은 사용하지 않았다).Serum samples used in the experiment were prepared as follows. Blood was collected using a BD Vacutainer serum separation tube (BD, USA) (Silica clot activator, 10 mL, 16 × 100 mm; Product number = # 367820). Phenylmethyl sulfonyl fluoride (PMSF) was added to the collected blood to a final 1.0 mM. After 10 times of inverting mix, the supernatant was collected by centrifugation (maintaining 4 ° C.) at 3000 rpm for 10 minutes (after color observation, hemolyzed red sample was not used).
1.5mL 에펜도르프 튜브에 100μL 씩 분주하였고, 분주 즉시 얼음에 두었고, 튜브에 라벨링하였다(라벨링할 때 시료군에 해당하는 코드 기입하였다(예: NC-01, MC-01, PD-01등). 그 후 -80℃에 즉시 보관하였다. 상기 절차는 얼음에서 실시하며 채혈 후 1시간 이내에 모두 종료하였다.100 μL was aliquoted into 1.5 mL Eppendorf tubes, placed on ice immediately after dispensing, and labeled on the tubes (code label corresponding to sample group when labeling (eg NC-01, MC-01, PD-01, etc.). It was then immediately stored at −80 ° C. The procedure was carried out on ice and was all finished within 1 hour after blood collection.
실시예 3-2. 혈청 단백질 감손(depletion) 처리Example 3-2. Serum Protein Depletion Treatment
혈액 내에 저농도로 존재하는 마커 발굴을 위해 우선 혈액 내에 고량(high-abundant)으로 존재하는 단백질 6종(albumin, IgG, IgA, haptoglobin, transferrin, alpha-1-antitrypsin)을 제거하는 감손 과정을 실시하였다. 6개의 다량 단백질 제거를 통해서, 혈액 내에는 총 단백질 매스(mass)의 85% 정도가 제거 되고, 나머지 15% 단백질 매스에 해당되는 단백질만 남게 되어 이를 분석에 사용하였다. 감손은 MARS(Multiple affinity removal system)(Agilent, USA) 을 제조사의 방법대로 이용하여 혈액에서 양이 가장 많은 6개의 단백질은 컬럼에 결합시켜 제거하고, 결합하지 않은, 소량으로 존재하는 단백질은 용출시켜 분석에 사용하였다.In order to identify the markers present in the blood at low concentrations, the depletion process was performed to remove six proteins (albumin, IgG, IgA, haptoglobin, transferrin, alpha-1-antitrypsin) present in the blood at high-abundant levels. . By removing six large proteins, about 85% of the total protein mass was removed from the blood, and only the proteins corresponding to the remaining 15% protein mass were used for analysis. Depletion uses MARS (Multiple affinity removal system) (Agilent, USA) according to the manufacturer's method to remove the six most abundant proteins from the blood by binding them to the column and eluting small amounts of unbound proteins. Used for analysis.
실시예 3-3. 혈청 단백질의 펩타이드화 Example 3-3. Peptides of Serum Proteins
상기 감손 과정 후 얻어진 혈청 시료는 농축 (w/ 3K filter)한 다음, BCA(Bicinchoninic acid) 분석 방식으로 단백질 농도를 정량하였다. 100㎍ 혈청 시료를 취한 다음, 최종 농도 6M 유레아/20mM DTT로 처리 (Tris pH 8.0)한 다음, 37℃에서 60분 동안 인큐베이션을 진행하였다. 최종 농도 50mM IAA(Iodoacetamide) 처리 한 다음, 상온에서 30분 동안 인큐베이션을 진행하였다. 유레아의 농도가 0.6M 이하가 되도록 100mM Tris pH 8.0 처리하였다. 트립신과 혈청 농도 비율이 1:50 이 되도록 트립신 처리 후, 37℃에서 16시간 동안 인큐베이션을 진행하였다. 포름산 용액을 최종농도 5% 가 되도록 처리한 다음, 하기 탈염 과정을 시행하였다.Serum samples obtained after the depletion process were concentrated (w / 3K filter), and protein concentration was quantified by BCA (Bicinchoninic acid) analysis. 100 μg serum samples were taken and then treated with a final concentration of 6M urea / 20mM DTT (Tris pH 8.0), followed by incubation at 37 ° C. for 60 minutes. The final concentration of 50mM IAA (Iodoacetamide) was treated, and then incubated at room temperature for 30 minutes. 100 mM Tris pH 8.0 was treated so that the concentration of urea was 0.6 M or less. Trypsin treatment was performed so that the ratio of trypsin and serum was 1:50, and then incubated at 37 ° C. for 16 hours. The formic acid solution was treated to a final concentration of 5% and then subjected to the following desalting process.
실시예 3-4. 혈청 단백질의 탈염Example 3-4. Desalination of serum proteins
OASIS 컬럼(Waters, USA)에 60% ACN/0.1% 포름산 1mL를 3번 흘려줘서 활성화를 시행하였다. OASIS 컬럼에 0.1% 포름산 1mL를 5번 흘려줘서 평형화(equilibration)를 시행하였다. 펩타이드 시료를 넣어주고, 0.1% 포름산 1mL로 5번 흘려줘서 세척하였다. 40% ACN/0.1% 포름산 1mL와 60% ACN/0.1% 포름산 1mL 처리해서 펩타이드를 용출(elution)시켰다. 1시간 이상 -70℃에서 얼린 다음, Speed-vac으로 건조시켰다. 건조된 펩타이드 시료는 Sol A 버퍼(3% ACN / 0.1% formic acid) 50㎕에 녹인 다음, 15,000rpm 에서 60min 동안 원심분리 하고, 이 중에서 40㎕ 만 바이알에 옮겨서 분석을 시행하였다.Activation was performed by pouring 1 mL of 60% ACN / 0.1% formic acid three times on an OASIS column (Waters, USA). Equilibration was performed by pouring 1 mL of 0.1% formic acid five times into an OASIS column. Peptide samples were added and washed 5 times with 1 mL of 0.1% formic acid. Peptides were eluted with 1 mL of 40% ACN / 0.1% formic acid and 1 mL of 60% ACN / 0.1% formic acid. It was frozen at −70 ° C. for at least 1 hour and then dried by Speed-vac. The dried peptide sample was dissolved in 50 µl of Sol A buffer (3% ACN / 0.1% formic acid), centrifuged at 15,000 rpm for 60 min, and only 40 µl was transferred to the vial for analysis.
실시예 3-5. MRM 분석Example 3-5. MRM Analysis
MRM 분석을 위해 실시예 2에서와 같이 선정된 537개 단백질, 1316개 펩타이드를 대상으로 재현성 있는 검출(Technical reproducibility)이 가능하고, 정상 그룹과 HCC 그룹 간 발현 차이를 보이는 타겟을 선정하기 위해서, 정상 그룹 60명을 20명씩 3세트로 통합(pooling)한 시료, HCC 그룹 60명을 20명씩 3 세트로 통합한 시료를 각각 만들어서 세트 당 3번씩 상기와 같이 MRM 으로 반복 분석을 진행했다.For reproducible detection of 537 proteins and 1316 peptides selected as in Example 2 for MRM analysis, and in order to select targets showing differences in expression between the normal group and the HCC group, Samples in which 60 groups were pooled into 3 sets of 20 people and 60 samples in HCC group were combined into 3 sets of 20 people were each made, and repeated analysis was performed by MRM three times per set as described above.
MRM 분석은 각 표적 단백질에 대하여, Skyline (http://proteome.gs.washington.edu/software/skyline)을 사용하여 MRM 분석용 펩타이드 및 단편 이온을 선별하였다. Skyline은 MRM 방법 개발 및 분석용의 오픈 소스 소프트웨어이다(Stergachis AB, et al., 2011, Nat Methods 8: 1041-1043).MRM analysis was performed using Skyline (http://proteome.gs.washington.edu/software/skyline) for each target protein to select peptide and fragment ions for MRM analysis. Skyline is open source software for developing and analyzing MRM methods (Stergachis AB, et al., 2011, Nat Methods 8: 1041-1043).
요약하면, 전장의 단백질 서열을 FASTA 포맷으로 Skyline에 입력한 후, 이를 펩타이드로 디자인하여 산물 이온 리스트를 생성하였고, 이를 MRM으로 모니터링하였다. 트랜지션 선택에 사용된 펩타이드 필터 조건은 다음과 같다: 펩타이드 최대 길이는 30, 최소 길이는 6개 아미노산으로, 반복되는 알지닌(Arg, R) 또는 라이신(Lys, K)은 포함시키지 않았다. 메티오닌(Met, M)도 펩타이드에 포함되면, 변형가능성으로 인해 제거하였다. 프롤린이 알지닌 또는 라이신 다음에 오는 경우도 사용하지 않았으며, 히스티딘(His, H)이 포함되는 경우에는 전하가 변경되지만 사용되었다.In summary, full-length protein sequences were entered into Skyline in FASTA format and then designed as peptides to generate a product ion list, which was monitored by MRM. Peptide filter conditions used for transition selection were as follows: peptide maximum length was 30, minimum length was 6 amino acids and did not include repeated arginine (Arg, R) or lysine (Lys, K). If methionine (Met, M) was also included in the peptide, it was removed due to the possibility of modification. It was also not used when proline came after arginine or lysine, but when histidine (His, H) was included, the charge was changed but used.
이러한 조건을 만족하는 펩타이드를 Q1 트랜지션으로 사용하였다. 쿼드러플(Quadruple) 1 (Q1) 은 특정 Q1 m/z 만을 통과시킬 수 있는 필터 역할을 수행하였다. Q1 필터를 통과한 전구 이온(precursor ion)은 쿼드러플(Quadruple) 2 (collision cell)에서 전기적인 에너지에 의해 단편화(fragmentation)가 일어나 생성 이온(product ion)으로 분해되었다. 이 생성 이온은 쿼드러플 1 (Q1)에서처럼 필터 역할을 수행하는 쿼드러플 3 (Q3)을 통해 특정 생성 이온만이 통과될 수 있다. 쿼드러플 3 (Q3)을 통과한 이온은 검출기(detector)에서 디지털 시그널로 전환되어 피크 크로마토그램으로 보여지게 되며, 이 피크의 면적을 분석하여 상대 및 절대 정량 분석을 수행하였다. 이러한 정보를 포함하는 파일을 MRM 분석을 위해 Analyst (AB SCIEX, USA)에 입력한 후 nonscheduled MRM 방법으로 분석하였다. MRM 결과는 wiff 및 wiff.scan 파일로 생성되었으며, 이를 mzWiff를 사용하여 mzXML 포맷으로 변환하여 MRM 데이터 처리를 위해 Skyline에 입력하여, MRM 트랜지션의 피크 강도를 구하였다. 도 1은 그 과정을 도식적으로 나타낸 것이다. Peptides satisfying these conditions were used as the Q1 transition. Quadruple 1 (Q1) served as a filter that can pass only certain Q1 m / z. Precursor ions that passed through the Q1 filter were fragmented by electrical energy in Quadruple 2 (collision cells), which were broken down into product ions. This product ion can pass only certain product ions through Quadruple 3 (Q3), which acts as a filter as in Quadruple 1 (Q1). The ions that passed through Quadruple 3 (Q3) were converted into digital signals at the detector and shown as peak chromatograms. The area of these peaks was analyzed for relative and absolute quantitative analysis. A file containing this information was entered into Analyst (AB SCIEX, USA) for MRM analysis and analyzed using nonscheduled MRM method. The MRM results were generated as wiff and wiff.scan files, which were converted into mzXML format using mzWiff and inputted into Skyline for MRM data processing to obtain peak intensities of MRM transitions. Figure 1 shows the process diagrammatically.
정량성 확보를 목적으로 농도를 이미 알고 있는 특정 펩타이드를 사용해서 모든 MRM 분석 시, 해당 펩타이드의 피크 면적 값으로 표준화하는 작업을 거치게 되는데, 여기에 해당되는 펩타이드를 내부 표준 펩타이드라 하는데 이는 안정한 동위원소가 포함된 아미노산을 갖고 있는 펩타이드이다. 본 연구에서는 인간 프로테옴에서는 존재하지 않는 E.coli 유래인 beta-갈락토시다아제(lacZ)의 heavy-labeled 펩타이드인 LNVENPK를 이용해서 모든 시료 분석 시, 5-fmol의 동일한 내부 표준 펩타이드를 주입해서, MRM 분석으로부터 나온 모든 타겟 펩타이드의 피크 면적 값을 해당 내부 표준 펩타이드의 피크 면적 값으로 표준화하는 작업을 거쳤다.For the purpose of ensuring quantitation, all peptides are known to have a concentration that is normalized to the peak area of the peptide when the MRM is analyzed. This peptide is called an internal standard peptide, which is a stable isotope. It is a peptide having an amino acid containing. In this study, all samples were injected with LNVENPK, a heavy-labeled peptide from beta-galactosidase (lacZ) derived from E. coli, which does not exist in the human proteome. The peak area values of all target peptides from the MRM analysis were normalized to the peak area values of the corresponding internal standard peptides.
상기와 같이 반정량(Semi-quantitative) MRM 분석을 통해서, 질량 분석 장비(MRM-technique)로 재현성 있게 검출이 가능한 단백질/펩타이드 만을 선정하기 위해 세트 당 3번 반복 분석을 한 후, 두 그룹(정상 그룹 혹은 HCC 그룹) 중에서 적어도 한쪽 그룹에서 % CV 값이 20 이내인 타겟 만을 선정한 결과, 재현성 있는 타겟으로 347개 단백질, 754개 펩타이드를 선정하였다. Through semi-quantitative MRM analysis as described above, two groups (normal) after repeated analysis three times per set to select only proteins / peptides reproducibly detectable by mass spectrometry (MRM-technique) As a result, only 347 proteins and 754 peptides were selected as reproducible targets.
이어 재현성 있게 검출되는 타겟 대상으로 정상 그룹과 HCC 그룹 간 발현 차이를 보이는 타겟을 선정하기 위해서 그룹 간 p-value 및 배수 변화 수준(fold-change level)을 확인했다. 재현성있는(Reproducible) 타겟(347-단백질, 754-peptides)을 대상으로 정규성 검정(Normality test, Shaipro-Wilk)을 통해서 정규분포를 따르는 경우(p-value > 0.05)는 모수 방법인 독립적 T-test 로, 정규분포를 따르지 않는 경우(p-value ≤ 0.05) 는 비모수 방법인 Mann-Whitney test 로 분석을 진행했다. 독립적 T-test의 경우, 등분산성 검정(Levene's test)을 통해 등분산성을 따르는 경우(p-value > 0.05)와 따르지 않는 경우(p-value ≤ 0.05)로 나눠서 p-value 값을 확인했고, 이를 통해서 독립적 T-test와 Mann-Whitney test로 정상 그룹과 HCC 그룹 간에 유의적인 차이(p-value ≤ 0.05)를 보이는 타겟 단백질/펩타이드임을 확인했다.Then, the p-value and fold-change level between the groups were checked in order to select a target with a difference in expression between the normal group and the HCC group as a reproducible target. In the case of normal distribution (p-value> 0.05) for reproducible targets (347-protein, 754-peptides) through normality test (Shaipro-Wilk), independent T-test In case of not following the normal distribution (p-value ≤ 0.05), the analysis was performed by the nonparametric Mann-Whitney test. In the case of the independent T-test, the value of p-value was identified by dividing it through the equal variance (p-value> 0.05) and the non-uniformity (p-value ≤ 0.05) through the Leevene's test Independent T-test and Mann-Whitney test confirmed that the target protein / peptide showed a significant difference (p-value ≤ 0.05) between the normal group and the HCC group.
여기에 더하여, 정상 그룹과 HCC 그룹 간 fold-change 수준이 1.5-배이상으로 증가 또는 감소의 패턴을 보이는 단백질 마커 후보군을 추가로 선정하였다. 이를 통해서, 정상 그룹과 HCC 그룹 간 p-value 0.05 이하인 단백질은 195개, 펩타이드는 443개로 확인되었고, 1.5 fold-change 이상인 단백질은 191개, 펩타이드는 389개로 확인되었으며, 이를 통해서 최종 227개 단백질과 492개 펩타이드를 타겟 후보군으로 선정하였다. In addition, candidate protein marker groups were further selected that exhibited a pattern of increase or decrease of fold-change levels of 1.5-fold or more between the normal and HCC groups. As a result, 195 proteins and 443 peptides with a p-value of 0.05 or less were identified between the normal group and the HCC group, and 191 proteins and 389 peptides with 1.5 fold-change or more were identified. 492 peptides were selected as target candidates.
이어 선정된 227개 단백질, 492개 펩타이드가 전체 인간 프로테옴 상에서 유일한(unique) 펩타이드인지 여부를 확인하기 위해 NCBI의 BlastP search program 을 이용해서 unique 펩타이드 여부를 확인했다. 이를 통해서, unique 하지 않은 37개 펩타이드에 해당되는 15개 단백질을 제외하였으며, 최종 정상 그룹과 HCC 그룹 간에 유의적인 차이를 보이면서 유니크한 펩타이드인 타겟 후보군으로 216개 단백질, 460개 펩타이드를 최종 선정하였다. Then, to confirm whether the selected 227 proteins and 492 peptides were unique peptides on the entire human proteome, the unique peptides were checked using NCBI's BlastP search program. Through this, 15 proteins corresponding to 37 non-unique peptides were excluded, and 216 proteins and 460 peptides were finally selected as a target candidate group, which was a unique peptide, showing a significant difference between the final normal group and the HCC group.
실시예 4. 타겟 후보군 마커의 혈액 내인성 펩타이드 여부 확인Example 4. Confirmation of Blood Endogenous Peptides of Target Candidate Markers
실시예 3에서 선정된 단백질 및 펩타이드가 실세 혈액 내에 존재하는지 여부를 다음과 같이 확인하였다. Whether the proteins and peptides selected in Example 3 were present in actual blood was confirmed as follows.
이를 위해 216개 단백질에 해당되는 SIS(stable-isotope labeled standard) 펩타이드를 이용하여 정상 그룹 60명, HCC 그룹 60명을 함께 통합(pooling)한 시료를 이용해서, 선정된 펩타이드가 실제 혈액 내에 존재하는 펩타이드가 맞는지 여부를 재확인했다. SIS 펩타이드는 펩타이드 C-말단의 라이신(Lys, K)이나 아르기닌(Arg, R) 아미노산에 있는 12C 와 14N를 13C 와 15N로 치환한 펩타이드이다. 이는 혈액 내에 존재하는 내인성 펩타이드(endogenous peptide)와는 질량 값이 차이가 나지만, 동일한 서열을 갖기 때문에, 펩타이드 소수성(hydrophobicity)이 동일하므로, 크로마토그램 상에서 혈액 내 펩타이드와 동일한 시간(RT)에 용출(elution)된다 (도 2 참조).To do this, the sample was pooled together with 60 normal groups and 60 HCC groups using a stable-isotope labeled standard (SIS) peptide corresponding to 216 proteins. Reconfirmed whether or not the peptide was correct. The SIS peptide is a peptide in which 12 C and 14 N of amino acids lysine (Lys, K) or arginine (Arg, R) at the peptide C-terminus are substituted with 13 C and 15 N. It differs from the endogenous peptides present in the blood, but because they have the same sequence, they have the same peptide hydrophobicity, so they elute at the same time (RT) as the peptides in the blood on the chromatogram. (See FIG. 2).
MRM 분석 시, 복합(Complex) 혈액 시료에서 타겟 펩타이드 이외의 다른 펩타이드에 의해서 시그널 간섭(interference) 현상을 보이는지 확인하기 위해서, SIS 펩타이드와 혈액 내인성 펩타이드의 생성 이온(Q3) 강도 패턴(intensity pattern)을 확인했다(도 3). In the MRM analysis, the Q3 intensity pattern of the SIS peptide and the blood endogenous peptide was analyzed to determine whether the complex blood sample exhibited signal interference by a peptide other than the target peptide. It confirmed (FIG. 3).
시그널 간섭현상 여부를 판단하기 위해서, AuDIT(Automated detection of inaccurate and imprecise transitions) 프로그램을 이용해서, 혈액 내 펩타이드 와 SIS 펩타이드의 상대적인 생성이온 강도를 비교하고(P-value threshold : 0.05), 혈액 내 펩타이드와 SIS 펩타이드의 피크 면적 값이 반복 측정 시 일정하게 검출되는지 여부(CV threshold : 0.2)를 확인했다. 이를 통해서, 시그널 간섭현상이 없이 정량 가능한 혈액의 내인성 타겟 단백질/펩타이드로 최종적으로 123개 단백질, 231개 펩타이드가 선정되었다.To determine whether a signal interference occurs, the automated detection of inaccurate and imprecise transitions (AuDIT) programs are used to compare the relative generated ion intensities of the peptides in the blood and the SIS peptide (P-value threshold: 0.05). And whether the peak area value of the SIS peptide is constantly detected during repeated measurements (CV threshold: 0.2) was confirmed. Through this, 123 proteins and 231 peptides were finally selected as endogenous target proteins / peptides of quantifiable blood without signal interference.
실시예 5. 혈액 내인성 펩타이드의 수준 확인Example 5. Identification of Levels of Blood Endogenous Peptides
실시예 4에서와 같이 정량 가능한 혈액 내인성 타겟(123개 단백질, 231개 펩타이드)을 대상으로 혈액 내에 존재하는 농도를 확인했다. 정상 그룹 60명, HCC 그룹 60명을 모두 통합한 시료 10 μg 에 231개 SIS 펩타이드 혼합물을 3-포인트(20nM, 200nM, 2000nM)로 순차적으로 희석한 것을 서로 섞은 시료를, MRM 분석을 수행하여 혈액 내인성 펩타이드에 대한 시그널과 이에 상보적인 합성(SIS) 펩타이드의 시그널을 함께 확인했다.As in Example 4, the concentrations present in the blood were determined for quantifiable blood endogenous targets (123 proteins and 231 peptides). MRM analysis was performed on a sample in which 231 SIS peptide mixtures were sequentially diluted to 3-point (20 nM, 200 nM, 2000 nM) in 10 μg of a sample containing 60 normal groups and 60 HCC groups. Signals for endogenous peptides and complementary synthetic (SIS) peptides were identified.
간섭현상(Interference)이 존재하지 않는 생성 이온(Q3) 만을 대상으로 혈액 내 펩타이드의 피크 면적 값과 이와 상보적인 SIS 펩타이드(3-points)에 대한 피크 면적 값을 각각 구해서 상대적인 비율(ratio)을 계산하고, 여기에, 주입한 SIS-펩타이드 양을 곱해서 타겟 펩타이드에 대한 혈액 내 수준을 최종 확인했다 (도 4 참조).Calculate the relative ratios of the peak area values of peptides in the blood and the peak area values of complementary SIS peptides (3-points) for only the generated ions (Q3) without interference. And, the amount of SIS-peptide injected was multiplied to finally confirm the level in blood for the target peptide (see FIG. 4).
231개 펩타이드에 대해 혈액 내 수준을 확인한 결과, 혈청에서 가장 낮은 농도로 확인된 단백질은 ISLR(Immunoglobulin superfamily containing leucine-rich repeat protein)이고, 농도는 0.15-fmol/μg인 것으로 확인되었으며, 가장 높은 농도로 확인된 단백질은 A2MG(Alpha 2 macroglobulin)이며, 농도는 5.57-pmol/μg인 것으로 확인되었다(Dynamic range : 3.7×10^4 order)(도 5). The blood levels of the 231 peptides revealed that the lowest concentration of protein in the serum was ISLR (Immunoglobulin superfamily containing leucine-rich repeat protein), with a concentration of 0.15-fmol / μg and the highest concentration. The identified protein is A2MG (Alpha 2 macroglobulin), the concentration was found to be 5.57-pmol / μg (Dynamic range: 3.7 × 10 ^ 4 order) (Fig. 5).
혈액의 내인성 펩타이드의 농도 측정 결과, 혈액 농도가 20-fmol/㎍이하인 것으로 측정된 소량(Low-abundance) 타겟은 34개 단백질, 36개 펩타이드인 것으로 확인되었고, 20-fmol/㎍과 2000-fmol/㎍ 사이로 측정된 중간량(Middle-abundance) 타겟은 93개 단백질, 174개 펩타이드인 것으로 측정되었으며, 2000-fmol/㎍ 이상으로 측정된 고량(High-abundance) 타겟은 11개 단백질, 22개 펩타이드인 것으로 확인되었다(도 6).As a result of measuring the concentration of endogenous peptides in the blood, the low-abundance targets with blood concentrations of 20-fmol / μg or less were found to be 34 proteins and 36 peptides, and 20-fmol / μg and 2000-fmol Middle-abundance targets measured between / μg were 93 proteins and 174 peptides, and high-abundance targets measured above 2000-fmol / μg were 11 proteins and 22 peptides. It was confirmed to be (FIG. 6).
실시예 6. 실제 개별 시료 적용을 통한 간암 조기진단 마커 후보군 도출Example 6 Derivation of Liver Cancer Early Diagnosis Marker Candidates through Actual Individual Sample Application
간경화 환자에서 90% 정도가 간암으로 진단되므로 간경화 환자는 간암 고위험군으로 분류할 수 있지만, 간암 진단에 이용되는 기존 혈청학적 검사(AFP, PIVKAⅡ) 의 경우 진단력(민감도 : 30-40%) 이 낮은 문제가 있다. 따라서 간경화 환자와 간암 환자 간 차이를 보이는 단백질 양을 MRM 기법으로 미리 확인할 수 있다면, 간경화 환자에서 간암 환자로 진행되는 환자를 미리 조기진단 할 수 있다.Since about 90% of liver cirrhosis patients are diagnosed with liver cancer, liver cirrhosis patients can be classified as a high risk group for liver cancer. there is a problem. Therefore, if the amount of protein showing the difference between liver cirrhosis patients and liver cancer patients can be confirmed in advance by MRM technique, early diagnosis can be made in advance of patients progressing from liver cirrhosis patients to liver cancer patients.
혈액에서 검증된 내인성 펩타이드를 대상으로 이에 상보적인 SIS 펩타이드 주입 농도를 결정했다. 소량(low abundance) 타겟(혈액 내 수준 < 20-fmol/㎍)의 경우, 모두 일괄적으로 20-fmol의 SIS-펩타이드를 주입했고, 중간량(Middle-abundance) 타겟 (20-fmol/μg < 혈액 내 수준 < 2000-fmol/μg)의 경우, 혈액 내 펩타이드 양과 동일하게 SIS 펩타이드 양을 주입했으며, 다량(High-abundance) 타겟(혈액 내 수준 > 2000-fmol/μg)의 경우, 모두 일괄적으로 2000-fmol 양의 SIS-펩타이드를 주입했다. Validated endogenous peptides in blood were determined for SIS peptide injection concentrations complementary thereto. For low abundance targets (level in blood <20-fmol / μg), all were injected with 20-fmol SIS-peptides in batch, and middle-abundance targets (20-fmol / μg < For blood level <2000-fmol / μg), the amount of SIS peptide was injected equal to the amount of peptide in the blood, and for high-abundance targets (blood level> 2000-fmol / μg) all 2000-fmol amount of SIS-peptide was injected.
혈액 내 수준이 가장 낮게 측정된 ISLR 단백질의 경우, 20-fmol의 SIS-펩타이드를 주입할 경우, 혈액 내 수준에 비해 최대 13배 만큼 높은 양으로 주입했고, 혈액 내 수준이 가장 높게 측정된 A2MG 단백질의 경우, 2000-fmol의 SIS-펩타이드를 주입할 경우, 혈액 내 수준에 비해 최대 1/28 배 만큼 희석된 낮은 양으로 주입했다(도 7).For the ISLR protein with the lowest level in blood, 20-fmol of SIS-peptide was injected up to 13 times higher than the level in the blood, with the highest level of A2MG protein. In the case of injecting 2000-fmol of SIS-peptide, a low amount diluted up to 1/28 times compared to the level in blood was injected (FIG. 7).
위와 같이 최종 검증된 타겟 후보군(123개 protein, 231개 peptide)를 대상으로 조기진단 목적으로 1차 시료로 간경변 환자 30명, 간암환자 30명, 간암 발병 후 완치환자 30명의 시료를 사용하였으며, 2차 시료로 1차 시료군과 독립적인 간경변 환자 30명, 간암환자 30명, 완치환자 30명의 시료를 이용해서 3 그룹에서 차이를 보이는 간암 진단용 마커를 도출하였다. As a primary sample, 30 patients with cirrhosis, 30 patients with hepatocarcinoma, and 30 patients with hepatocarcinoma after the onset of liver cancer were used as targets for early diagnosis of target candidate groups (123 proteins and 231 peptides). As the primary sample, the markers for diagnosing liver cancer with the difference in the three groups were derived by using samples of 30 patients with liver cirrhosis, 30 patients with liver cancer, and 30 patients with complete cure.
실험자가 환자 군을 확인할 수 없도록 블라인딩 후 MRM 분석 순서는 무작위로 하여 분석하였으며, 분석은 시료 당 3번씩 반복 분석했다. 이를 통해서 얻어진 타겟 펩타이드에 대한 피크 면적 값을 혈액 내 펩타이드의 피크 면적 값을 이와 상보적인 SIS 펩타이드의 피크 면적 값으로 표준화(normalization) 한 다음, IBM SPSS statistics (version 21.0) 및 GraphPad (version 6.00)을 통해서 분석을 진행했다.After blinding, the MRM analysis sequence was randomly analyzed so that the experimenter could not identify the patient group, and the analysis was repeated three times per sample. The peak area values of the target peptides thus obtained are normalized to the peak area values of the SIS peptides complementary to each other, and then IBM SPSS statistics (version 21.0) and GraphPad (version 6.00) are obtained. I went through the analysis.
실시예 7. 간암 조기진단 단일 마커 군 도출Example 7 Liver Cancer Early Diagnosis Single Marker Group Derivation
기존 알파-태아단백(AFP)에 의한 조기진단 검사는 만성 간질환(만성간염 및 간경변)과 간암과의 구별이 어려워서, 간암 조기진단에 사용할 수 없기 때문에, 이를 대체할 새로운 조기진단 마커를 제시하기 위해, LC(간경변) 그룹과 HCC 그룹 간 비교와 HCC 그룹과 회복(Recovery) 그룹(간암이 완치 된 LC group 상태) 간 발현차이를 보이는 타겟에 대하여 분석을 진행하였다. 결과는 하기 표 1에 기재되어 있다.The early diagnosis by conventional alpha-fetoprotein (AFP) is difficult to distinguish between chronic liver disease (chronic hepatitis and cirrhosis) and liver cancer, and thus cannot be used for early diagnosis of liver cancer, suggesting a new early diagnosis marker to replace it. For this purpose, we analyzed targets showing differences in expression between the LC (cirrhosis) group and the HCC group and between the HCC group and the Recovery group (the LC group with liver cancer). The results are shown in Table 1 below.
간암 조기진단 목적으로 실제 임상영역(병원) 에서 적용될 수 있는 진단력이 검증(독립 시료군에서 동일한 발현 경향성 여부 확인)된 단일 마커 후보군을 확인하기 위해, 1차 시료(Training set)로 분석한 결과와 2차 시료(Test set) 로 분석한 결과에서 공통적으로 AUC 값이 높은 마커를 확인하였다. 그 결과 1차 시료(Training set) 로 분석한 결과와 2차 시료(Test set)로 분석한 결과에서 공통적으로, LC 그룹과 HCC 그룹, HCC 그룹과 회복 그룹 간 유의적인 차이(P-value ≤ 0.05)를 보이고, 진단력이 높은(AUC-value ≥ 0.700) 타겟을 23개 단백질 및 상기 단백질 유래의 51개 펩타이드인 것으로 최종 확인하였다(표 1-1 및 1-2). 표 1-1 및 1-2는 트레이닝 세트/테스트 세트 개별시료 분석 후 AUC 값 0.700 이상 타겟 단백질 및 펩타이드를 나타낸다. 하기 표에서 적색은 그룹간 비교에서 발현량이 증가된 경우를 표시한 것이며, 파란색은 발현량이 감소되는 경우를 나타낸다. As a result of analysis with a training set to identify a single marker candidate group for which the diagnostic ability can be applied in the actual clinical area (hospital) for the purpose of early diagnosis of liver cancer (check whether the same expression tendency is found in the independent sample group). In the analysis of the test sample and the secondary sample (Test set), a marker with a high AUC value was identified in common. As a result, there was a significant difference between the LC group, the HCC group, the HCC group and the recovery group (P-value ≤ 0.05). ) And a high diagnostic (AUC-value> 0.700) target was finally identified as 23 proteins and 51 peptides derived from the protein (Tables 1-1 and 1-2). Tables 1-1 and 1-2 show target proteins and peptides with an AUC value of 0.700 or higher after training set / test set sample analysis. In the following table, red indicates a case where the expression level is increased in the comparison between groups, and blue indicates a case where the expression level is decreased.
[표 1-1]Table 1-1
Figure PCTKR2015013296-appb-I000001
Figure PCTKR2015013296-appb-I000001
[표 1-2]TABLE 1-2
Figure PCTKR2015013296-appb-I000002
Figure PCTKR2015013296-appb-I000002
실시예 8. 간암 다중 마커 도출Example 8. Liver Cancer Multiple Marker Derivation
실시예 7에서와 같이 1차 분석(Training set) 결과와 2차 분석(Test set) 결과에서 LC 그룹과 HCC 그룹, HCC 그룹과 회복 그룹에서 공통적으로 높은 진단력을 보인 23-단백질, 51-펩타이드를 대상으로 다변량 분석(Multi-variate Analysis, MA)을 통해 다중 단백질 마커 패널 구축 및 비교를 진행했다. 23-protein, 51-peptide showed high diagnostic ability in the LC group, the HCC group, the HCC group, and the recovery group in the primary and secondary test sets as in Example 7. Multi-variate Analysis (MA) was used to build and compare multiple protein marker panels.
통계 분석법 중 하나인 로지스틱 회귀법을 이용하여 하나의 패널로 결합하는 분석을 수행한 결과, LC 그룹과 HCC 그룹 간 비교 시에는 4개의 펩타이드 패널(ALS + ITIH1 + THRB + FINC)이 가장 높은 진단력을 보이는 조합인 것으로 확인되었고, HCC 그룹과 회복 그룹 간에는 2개의 펩타이드 패널(THRB, FINC)이 가장 높은 진단력을 보이는 조합인 것으로 확인되었다. 구체적으로 LC 그룹과 HCC 그룹 간 비교 시, 확인된 4개의 펩타이드 패널은 AUC 값이 0.994로 확인되었고, 이는 전체 60명 간경변 환자 중에서 57명을 간경변 환자(Accuracy 95.0%) 로, 전체 60명 간암 환자 중에서 58명(Accuracy 96.7%) 을 간암 환자로 진단할 수 있으므로 4개의 펩타이드(4-단백질) 마커 패널을 이용한 진단 정확도는 95.8% 로 확인 되었다(도 8). 또한, 해당 4-단백질(4-펩타이드)에 나머지 19-단백질(47-펩타이드)을 추가할 경우, AUC 0.990 이상 되는 단백질 조합을 무수히 만드는 것이 가능함을 확인했다. One panel analysis using logistic regression, one of the statistical methods, showed that four panels of peptides (ALS + ITIH1 + THRB + FINC) had the highest diagnostic power when comparing LC and HCC groups. It was confirmed that the combination was visible, and two panels of peptides (THRB, FINC) were found to be the most diagnostic combinations between the HCC group and the recovery group. Specifically, when comparing between the LC group and the HCC group, the four peptide panels identified had an AUC value of 0.994, which means 57 out of 60 liver cirrhosis patients (95.0% of cirrhosis patients) and 60 liver cancer patients. Among 58 patients (Accuracy 96.7%) can be diagnosed as liver cancer patients, the diagnostic accuracy using the panel of four peptide (4-protein) markers was confirmed as 95.8% (FIG. 8). In addition, when the remaining 19-protein (47-peptide) is added to the 4-protein (4-peptide), it was confirmed that it is possible to make a myriad of protein combinations of AUC 0.990 or more.
HCC 그룹과 회복 그룹 간 비교 시, 확인된 2개의 펩타이드 패널은 AUC 값이 0.957로 확인되었고(도 9), 이는 전체 60명 간암 환자 중에서 53명을 간암 환자(Accuracy 88.3%)로, 전체 60명 간암 치료 후 환자(간경변 환자) 중에서 52명(Accuracy 86.7%)을 간암 환자로 진단할 수 있으므로 2개의 펩타이드 마커 패널을 이용한 진단 정확도는 87.5%로 확인 되었다. 또한, 해당 2-단백질(2-펩타이드)에 나머지 21개-단백질(49-펩타이드)을 추가할 경우, AUC 0.950 이상 되는 단백질 조합을 무수히 만드는 것이 가능함을 확인했다.In comparison between the HCC group and the recovery group, the two panels of peptides identified had an AUC value of 0.957 (FIG. 9), representing 53 out of 60 liver cancer patients (Accuracy 88.3%) and 60 in total. After liver cancer treatment, 52 patients (Accuracy 86.7%) could be diagnosed as liver cancer patients, and the accuracy of diagnosis using the two peptide marker panels was 87.5%. In addition, when the remaining 21-protein (49-peptide) is added to the corresponding 2-protein (2-peptide), it was confirmed that it is possible to make a myriad of protein combinations of AUC 0.950 or more.
실시예 9. 간암 마커에 대한 항체를 이용한 추가 검증Example 9 Further Validation with Antibodies to Liver Cancer Markers
본원에 따른 마커는 단백질 수준에서 검출될 수 있으며, 단백질 수준에서의 검출방법은 본 실시예에서 사용한 MRM 분석 및 항체를 사용한 분석을 들 수 있으며, 한 가지 즉 MRM 분석만으로도 본원에 따른 목적하는 결과를 얻을 수 있거나, 또는 재확인을 위해 두 가지 방법을 모두 사용할 수도 있다. Markers according to the present application can be detected at the protein level, the detection method at the protein level may include the analysis using the MRM analysis and the antibody used in the present embodiment, only one, that is, the MRM analysis alone provides the desired result according to the present application. You can either get it or use both methods for reconfirmation.
항체 분석을 통한 재확인을 위해, 간암진단 마커로서 MRM 분석(Peptide Level)으로 검증된 23개 단백질 중에서 상위 AUC 값을 갖는 7개 단백질을 선별하여 항체를 이용한 분석을 추가로 수행하였다 (표 2). In order to reconfirm through antibody analysis, 7 proteins having a higher AUC value were selected from 23 proteins verified by MRM analysis (Peptide Level) as a liver cancer diagnosis marker, and an analysis using an antibody was further performed (Table 2).
항체는 전체 단백질(whole protein) 중 일부 잔기로 구성되는 항원을 인식하기 때문에, 항체 선정 기준은 MRM으로 분석한 펩타이드 부분이 항체 면역원 부분에 포함(또는 가능하면 근접)되도록 하였고, 혈장/혈청에 대한 웨스턴 블랏팅 결과가 있는 것, 그리고 단일클론 항원이 존재하는 것을 우선으로 선정했으며, A2AP(alpha-2-antiplasmin)(Mouse monoclonal), AMBP(Rabbit monoclonal), AFP(alpha- fetoprotein)(Mouse monoclonal), FETUA(Rabbit monoclonal), FINC(fibronectin)(Rabbit monoclonal), ITIH1(Inter-alpha-trypsin inhibitor heavy chain (Mouse polyclonal), ITIH3(Inter-alpha-trypsin inhibitor heavy chain H3)(Goat polyclonal), PLGA(Plasminogen-related protein A)(Rabbit polyclonal). THRB(Prothrombin)(Rabbit monoclonal)에 대하여 괄호에 기재된 항체를 이용하여 웨스턴 블랏을 수행하였다(Santa Cruz Biotechnology, USA). Since antibodies recognize antigens consisting of some residues in the whole protein, the antibody selection criteria allowed the peptide portion analyzed by MRM to be included (or as close as possible) in the antibody immunogen portion and for plasma / serum. Those with Western blotting results and the presence of monoclonal antigen were selected first, followed by alpha-2-antiplasmin (A2AP) (Mouse monoclonal), AMBP (Rabbit monoclonal), AFP (alpha-fetoprotein) (Mouse monoclonal) , FETUA (Rabbit monoclonal), FINC (fibronectin) (Rabbit monoclonal), ITIH1 (Inter-alpha-trypsin inhibitor heavy chain (Mouse polyclonal), ITIH3 (Inter-alpha-trypsin inhibitor heavy chain H3) (Goat polyclonal), PLGA (PLGA) Plasminogen-related protein A) (Rabbit polyclonal) Western blots were performed using the antibodies shown in parentheses against THRB (Prothrombin) (Rabbit monoclonal) (Santa Cruz Biotechnology, USA).
이를 위해 3개 그룹(LC, HCC, 및 회복) 당 12명의 시료를 선별했으며, 이는 1차와 2차 MRM 분석에 사용하지 않은 독립적인 시료군을 사용하였다. 선별한 HCC/회복 그룹 시료는 StageⅠ(간암 초기) 시료를 선별하였고, 대조군(loading control)에서 측정된 O.D(흡광도)로 노말라이즈하여서 SDS-PAGE 겔 간 편차(Variation) 보정을 진행했다. 대조군으로는 베타엑틴과 트렌스페린에 대한 mouse monoclonal 항체를 사용하였다. For this purpose, 12 samples per 3 groups (LC, HCC, and recovery) were selected, using an independent sample group that was not used for primary and secondary MRM analysis. The selected HCC / recovery group samples were selected from Stage I (early liver cancer) samples, and normalized to O.D (absorbance) measured in a control (loading control) and subjected to SDS-PAGE gel deviation correction. As a control, mouse monoclonal antibodies against betaactin and transferrin were used.
결과는 도 10에 기재되어 있다. 이러한 결과는 본원에 따른 마커는 다양한 단백질 분석 방법을 통해 분석이 가능함을 나타낸다. The results are described in FIG. These results indicate that the marker according to the present application can be analyzed through various protein analysis methods.
이어 상기 항체를 이용한 웨스턴 블랏에서 그룹 간 구분력이 가장 높은 타겟 단백질 1종(FINC)에 대해 실제 임상에 적용/이용하기 위한 목적으로 ELISA 분석(Protein Level, Native form)을 추가 진행했다. ELISA 분석을 수행하기 위하여 3-그룹(LC, HCC, and Recovery) 당 20명의 시료를 선별했으며, 이는 1차와 2차 MRM 분석에 사용하지 않은 독립적인 시료군을 사용하였다. Subsequently, an ELISA assay (Protein Level, Native form) was further performed for the purpose of applying / utilizing a target protein (FINC) having the highest distinction between groups in Western blot using the antibody in actual clinical practice. Twenty samples per 3-group (LC, HCC, and Recovery) were selected to perform ELISA analysis, using independent sample groups not used for primary and secondary MRM analysis.
해당 타겟 단백질 1종(FINC)에 대한 ELISA(Uscn Life Science Inc.Korea) 키트를 제조사의 방법대로 사용하여 분석한 결과, 시료군간 발현 양상이 MRM 분석 및 웨스턴 블랏팅 분석 결과와 모두 일치하였고, 간경변군과 간암군 비교 시, AUC 값은 0.832, 간암군과 간암 회복군 비교 시, AUC 값은 0.658 로 최종 확인되었다(표 2). 이러한 결과는 본원에 따른 마커는 MRM, 웨스턴 블랏, ELISA와 같은 다양한 단백질 분석 키트로 개발되어 사용될 수 있음을 나타낸다.As a result of using the ELISA (Uscn Life Science Inc.Korea) kit for the target protein (FINC) according to the manufacturer's method, the expression pattern between sample groups was consistent with the results of MRM and Western blotting analysis. The AUC value was 0.832 when comparing the group with the liver cancer group, and the AUC value was 0.658 when comparing the liver cancer group with the liver cancer recovery group (Table 2). These results indicate that the markers according to the present application can be developed and used with various protein assay kits such as MRM, Western blot, ELISA.
[표 2] ELISA 분석 정보[Table 2] ELISA Analysis Information
Figure PCTKR2015013296-appb-I000003
Figure PCTKR2015013296-appb-I000003

Claims (17)

  1. ALS (Insulin-like growth factor-binding protein complex acid labile subunit); AMBP (Alpha-1-microglobulin/bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); HGFA (Hepatocyte growth factor activator); IBP3 (Insulin-like growth factor-binding protein 3); IGF2 (Insulin-like growth factor II); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); LCAT (Phosphatidylcholine-sterol acyltransferase); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); 및 VTNC (Vitronectin)로 구성되는 군으로부터 선택되는 하나 이상의 바이오 마커의 검출시약을 포함하는, 간암 진단 또는 예후 측정용 조성물. Insulin-like growth factor-binding protein complex acid labile subunit (ALS); AMBP (Alpha-1-microglobulin / bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); Hepatocyte growth factor activator (HGFA); Insulin-like growth factor-binding protein 3 (IBP3); Insulin-like growth factor II (IGF2); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); Phosphatidylcholine-sterol acyltransferase (LCAT); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); And detection reagents for detecting one or more biomarkers selected from the group consisting of VTNC (Vitronectin).
  2. 제 1 항에 있어서, The method of claim 1,
    상기 바이오마커는 ALS, CBPB2, CLUS, CNDP1, CPN2, FA11, FINC, 및 HGFA 으로 구성되는 군으로부터 선택되는 것인, 간암 진단 또는 예후 측정용 조성물. The biomarker is selected from the group consisting of ALS, CBPB2, CLUS, CNDP1, CPN2, FA11, FINC, and HGFA, liver cancer diagnosis or prognostic composition.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 바이오마커는 FINC; THRB 및 FINC의 조합; 또는 ALS, ITIH1, THRB 및 FINC의 조합인, 간암 진단 또는 예후 측정용 조성물.The biomarker is FINC; Combination of THRB and FINC; Or ALS, ITIH1, THRB and FINC, a composition for diagnosing or diagnosing liver cancer.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 간암 예후 측정은 간암 치료 후 회복여부를 판별하는 것인, 간암 진단 또는 예후 측정용 조성물. The liver cancer prognosis is to determine whether to recover after liver cancer treatment, liver cancer diagnosis or prognostic composition for measuring.
  5. 제 4 항에 있어서, 상기 치료 후 회복여부를 판별하는 바이오마커는 THRB, FINC, ITIH1, IBP3, PLMN, CBPB2 및 PLGA로 구성되는 군으로부터 선택되는 것인, 간암 진단 또는 예후 측정용 조성물. The method of claim 4, wherein the biomarker for determining recovery after treatment is selected from the group consisting of THRB, FINC, ITIH1, IBP3, PLMN, CBPB2 and PLGA, liver cancer diagnosis or prognostic composition.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 검출 시약은 상기 마커를 단백질 또는 핵산 수준에서 검출할 수 있는 시약인, 간암 진단 또는 예후 측정용 조성물. The detection reagent is a reagent that can detect the marker at the protein or nucleic acid level, liver cancer diagnostic or prognostic composition.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 단백질 수준의 검출 시약은 웨스턴블랏, ELISA, 방사선면역분석, 면역확산법, 면역 전기영동, 조직 면역염색, 면역침전 분석법, 보체 고정 분석법, FACS, 질량분석, 또는 단백질 마이크로어레이용 시약이고, The reagent for detecting the protein level is Western blot, ELISA, radioimmunoassay, immunodiffusion, immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, FACS, mass spectrometry, or a reagent for protein microarray,
    상기 핵산 수준의 검출 시약은 핵산증폭반응, 중합효소연쇄반응, 역전사 중합효소연쇄반응, 경쟁적 중합효소연쇄반응, Nuclease 보호 분석(RNase, S1 nuclease assay), in situ 교잡법, 핵산 마이크로어레이 또는 노던블랏용 시약인, 간암 진단 또는 예후 측정용 조성물. The detection reagent of the nucleic acid level is nucleic acid amplification reaction, polymerase chain reaction, reverse transcription polymerase chain reaction, competitive polymerase chain reaction, Nuclease protection assay (RNase, S1 nuclease assay), in situ hybridization, nucleic acid microarray or northern Liver cancer diagnosis or prognostic composition, which is a reagent for lot.
  8. 제 7 항에 있어서, The method of claim 7, wherein
    상기 단백질 수준의 검출 시약은 상기 마커의 단백질 전장 또는 그 단편을 특이적으로 인식하는 항체, 항체단편, 앱타머(aptamer), 아비머(avidity multimer) 또는 펩티도모방체(peptidomimetics), 수용체, 리간드 또는 보조인자를 포함하고,The protein level detection reagent is an antibody, antibody fragment, aptamer, avider or peptidomimetics, receptor, ligand that specifically recognizes the full length or fragment thereof of the marker. Or includes a cofactor,
    상기 핵산 수준 검출 시약은 상기 마커의 핵산서열, 상기 핵산서열에 상보적인 핵산서열, 상기 핵산서열 및 상기 상보적인 서열의 단편을 특이적으로 인식하는 프라미어, 또는 프로브, 또는 프라이머 및 프로브를 포함하는, 간암 진단 또는 예후 측정용 조성물. The nucleic acid level detecting reagent includes a nucleic acid sequence of the marker, a nucleic acid sequence complementary to the nucleic acid sequence, a primer or a probe or a primer and a probe specifically recognizing the nucleic acid sequence and fragments of the complementary sequence. , Liver cancer diagnosis or prognostic composition.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 조성물은 ELISA 분석용, 딥스틱 래피드 키트(dip stick rapid kit) 분석용, MRM 분석용, 마이크로어레이용, 핵산증폭용, 또는 면역분석용인, 간암 진단 또는 예후 측정용 조성물. Said composition is for ELISA analysis, dip stick rapid kit analysis, MRM analysis, microarray, nucleic acid amplification, or immunoassay, liver cancer diagnosis or prognostic composition.
  10. 제 9 항에 있어서, The method of claim 9,
    상기 조성물은 MRM 분석용이며, 상기 MRM 분석에 사용되는 각 마커의 펩타이드는 표 1-1 및 1-2에 기재된 것인, 간암 진단 또는 예후 측정용 조성물.The composition is for MRM analysis, the peptide of each marker used in the MRM analysis is that described in Tables 1-1 and 1-2, liver cancer diagnosis or prognostic composition.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 10,
    상기 조성물은 상기 바이오마커에 추가하여 AFP 바이오마커를 추가로 포함하는 것인, 간암 진단 또는 예후 측정용 조성물.Wherein the composition is in addition to the biomarker further comprises an AFP biomarker, liver cancer diagnostic or prognostic composition.
  12. 간암의 진단 또는 예후에 필요한 정보를 제공하기 위하여, To provide information necessary for the diagnosis or prognosis of liver cancer,
    대상체 유래의 생물학적 시료로부터 ALS (Insulin-like growth factor-binding protein complex acid labile subunit); AMBP (Alpha-1-microglobulin/bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); HGFA (Hepatocyte growth factor activator); IBP3 (Insulin-like growth factor-binding protein 3); IGF2 (Insulin-like growth factor II); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); LCAT (Phosphatidylcholine-sterol acyltransferase); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); 및 VTNC (Vitronectin)로 구성되는 군으로부터 선택되는 하나 이상 바이오마커의 핵산 및/또는 단백질의 존재 여부 및/또는 농도를 검출하는 단계; Insulin-like growth factor-binding protein complex acid labile subunit (ALS) from biological samples from the subject; AMBP (Alpha-1-microglobulin / bikunin precursor); CPB2 (Carboxypeptidase B2); CHLE (Cholinesterase); CLUS (Clusterin); CNDP1 (Beta-Ala-His dipeptidase); CO6 (Complement component C6); CPN2 (Carboxypeptidase N subunit 2); FA11 (Coagulation factor XI); FINC (Fibronectin); Hepatocyte growth factor activator (HGFA); Insulin-like growth factor-binding protein 3 (IBP3); Insulin-like growth factor II (IGF2); ITIH1 (inter-alpha-trypsin inhibitor heavy chain H1); KAIN (Kallistatin); KLKB1 (Plasma kallikrein); Phosphatidylcholine-sterol acyltransferase (LCAT); PLGA (Plasminogen-related protein A); PLMN (Plasminogen); THRB (Prothrombin); VTDB (Vitamin D binding protein); And detecting the presence and / or concentration of nucleic acids and / or proteins of at least one biomarker selected from the group consisting of VTNC (Vitronectin);
    상기 핵산 또는 단백질의 수준 또는 존재에 대한 검출 결과를 대조군 시료의 해당 마커의 상응하는 결과와 비교하는 단계; 및Comparing the detection result for the level or presence of the nucleic acid or protein with the corresponding result of the corresponding marker in the control sample; And
    상기 대조군 시료와 비교하여, 상기 대상체 시료의 핵산 또는 단백질 농도의 변화가 있거나, 또는 상기 핵산 또는 단백질이 존재여부에 변화가 있는 경우, 이를 간암으로 판정하는 단계를 포함하는, 인비트로에서 간암 마커를 검출하는 방법. Compared to the control sample, if there is a change in the nucleic acid or protein concentration of the subject sample, or if there is a change in the presence or absence of the nucleic acid or protein, determining the liver cancer marker in vitro, comprising determining the liver cancer How to detect.
  13. 제 12 항에 있어서, The method of claim 12,
    상기 생물학적 시료는 전혈, 혈청 또는 혈장이고, The biological sample is whole blood, serum or plasma,
    상기 대조군 시료는 정상인, 간염, 간경화 또는 간암으로 치료 후 완치된 환자 유래의 시료인, 방법. Wherein said control sample is a sample from a patient who has been cured after treatment with normal, hepatitis, cirrhosis or liver cancer.
  14. 제 12 항에 있어서, The method of claim 12,
    상기 바이오마커는 ALS, CBPB2, CLUS, CNDP1, CPN2, FA11, FINC, 및 HGFA 으로 구성되는 군으로부터 선택되는 것인, 방법. Wherein said biomarker is selected from the group consisting of ALS, CBPB2, CLUS, CNDP1, CPN2, FA11, FINC, and HGFA.
  15. 제 12 항에 있어서, The method of claim 12,
    상기 방법은 상기 하나 이상의 마커에 추가하여 AFP 바이오마커를 더 포함하는 것인, 방법. Wherein the method further comprises an AFP biomarker in addition to the one or more markers.
  16. 제 12 항에 있어서, The method of claim 12,
    상기 방법은 단백질 또는 핵산 마이크로어레이 분석법, 핵산증폭, 항원-항체 반응, 또는 질량분석 방식으로 실시되는, 방법. The method is carried out by protein or nucleic acid microarray analysis, nucleic acid amplification, antigen-antibody reaction, or mass spectrometry.
  17. 제 12 항에 있어서, The method of claim 12,
    상기 간암 진단은 간경화에서 간암으로 진행되는 환자의 진단을 포함하고, The liver cancer diagnosis includes the diagnosis of a patient progressing from cirrhosis to liver cancer,
    상기 간암 예후 측정은 간암 치료 후 회복 여부를 판단하는 것을 포함하는 것인 방법.The liver cancer prognosis method comprises determining whether to recover after liver cancer treatment.
PCT/KR2015/013296 2014-12-12 2015-12-07 Biomarker for diagnosis of hepatoma and use thereof WO2016093567A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580067274.5A CN107110867B (en) 2014-12-12 2015-12-07 Biomarker for liver cancer diagnosis and application thereof
EP15868405.0A EP3232198A4 (en) 2014-12-12 2015-12-07 Biomarker for diagnosis of hepatoma and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0179004 2014-12-12
KR20140179004 2014-12-12
KR1020150172020A KR101788414B1 (en) 2014-12-12 2015-12-04 Biomarker for diagnosis of liver cancer and use thereof
KR10-2015-0172020 2015-12-04

Publications (1)

Publication Number Publication Date
WO2016093567A1 true WO2016093567A1 (en) 2016-06-16

Family

ID=56107688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013296 WO2016093567A1 (en) 2014-12-12 2015-12-07 Biomarker for diagnosis of hepatoma and use thereof

Country Status (1)

Country Link
WO (1) WO2016093567A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796874B1 (en) 2016-09-09 2017-11-10 서울대학교산학협력단 Method for Detecting or Determining Level of PIVKAII Based on Multiple Reaction Monitoring
CN113862370A (en) * 2021-12-02 2021-12-31 广州滴纳生物科技有限公司 Primer, probe and kit for screening liver cancer and application of kit
WO2023039417A1 (en) * 2021-09-08 2023-03-16 Ymir Genomics, Llc Biomarkers for detection and treatment of cirrhosis and hepatocellular carcinoma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040248142A1 (en) * 2002-09-13 2004-12-09 Otsuka Pharmaceutical Co., Ltd. Method for detecting hepatocellular carcinoma
KR20050076876A (en) * 2004-01-26 2005-07-29 한국생명공학연구원 Detection kit for liver cancer by measuring the expression of hepatic cancer-related genes
WO2007058623A1 (en) * 2005-11-21 2007-05-24 Singapore Health Services Pte Ltd Methods of predicting hepatocellular carcinoma recurrence by the determination of hepatocellular carcinoma recurrence-associated molecular biomarkers
KR20110101119A (en) * 2008-12-10 2011-09-15 한국생명공학연구원 Novel biomarkers indicative of liver cancer and their uses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040248142A1 (en) * 2002-09-13 2004-12-09 Otsuka Pharmaceutical Co., Ltd. Method for detecting hepatocellular carcinoma
KR20050076876A (en) * 2004-01-26 2005-07-29 한국생명공학연구원 Detection kit for liver cancer by measuring the expression of hepatic cancer-related genes
WO2007058623A1 (en) * 2005-11-21 2007-05-24 Singapore Health Services Pte Ltd Methods of predicting hepatocellular carcinoma recurrence by the determination of hepatocellular carcinoma recurrence-associated molecular biomarkers
KR20110101119A (en) * 2008-12-10 2011-09-15 한국생명공학연구원 Novel biomarkers indicative of liver cancer and their uses

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI 7 January 1995 (1995-01-07), "Plasminogen [Homo Sapiens", Database accession no. AAA60113.1 *
See also references of EP3232198A4 *
TORBENSON, M. ET AL.: "Hepatocellular Carcinomas Show Abnormal Expression of Fibronectin Protein", MOD. PATHOL., vol. 15, no. 8, August 2002 (2002-08-01), pages 826 - 830, XP055454516 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796874B1 (en) 2016-09-09 2017-11-10 서울대학교산학협력단 Method for Detecting or Determining Level of PIVKAII Based on Multiple Reaction Monitoring
WO2023039417A1 (en) * 2021-09-08 2023-03-16 Ymir Genomics, Llc Biomarkers for detection and treatment of cirrhosis and hepatocellular carcinoma
CN113862370A (en) * 2021-12-02 2021-12-31 广州滴纳生物科技有限公司 Primer, probe and kit for screening liver cancer and application of kit
CN113862370B (en) * 2021-12-02 2022-03-22 广州滴纳生物科技有限公司 Primer, probe and kit for screening liver cancer and application of kit

Similar Documents

Publication Publication Date Title
KR101788414B1 (en) Biomarker for diagnosis of liver cancer and use thereof
WO2018208091A2 (en) Biomarker for monitoring or diagnosing onset of liver cancer in high-risk group for liver cancer and use thereof
US8945511B2 (en) Sensitive methods for detecting the presence of cancer associated with the over-expression of galectin-3 using biomarkers derived from galectin-3
WO2014148780A1 (en) Biomarker for diagnosing liver cancer
EP2281201A1 (en) Method for biomarker and drug-target discovery for prostate cancer diagnosis and treatment as well as biomarker assays determined therewith
JP7285215B2 (en) Biomarkers for detecting colorectal cancer
WO2015182580A1 (en) Colorectal cancer metastasis detection method
JP2006308533A (en) New hepatoma biomarker and hepatoma detection method using same
Li et al. ITIH4: effective serum marker, early warning and diagnosis, hepatocellular carcinoma
Lukic et al. An integrated approach for comparative proteomic analysis of human bile reveals overexpressed cancer-associated proteins in malignant biliary stenosis
WO2016093567A1 (en) Biomarker for diagnosis of hepatoma and use thereof
US20150338412A1 (en) Composition for diagnosis of lung cancer and diagnosis kit for lung cancer
WO2020256526A1 (en) Urinary exosome biomarker for diagnosing antibody-mediated rejection after kidney transplantation or predicting prognosis of patient after kidney transplantation
KR101995189B1 (en) Biomarker for non-invasive in vitro diagnosis of a Hepatocellular carcinoma and biokit for diagnosis thereof comprising the same
KR100925147B1 (en) Markers for the diagnosis of lung cancer
KR101390543B1 (en) Markers for diagnosing pancreatic cancer and its use
KR102000387B1 (en) Protein biomarkers for distinguishing malignancy of intraductal papillary mucinous neoplasm and their use
KR101832039B1 (en) Biomarker to predict target drug efficacy for hepatocellular carcinoma and its use
WO2016093629A1 (en) Biomarker for predicting hepatoma-targeted drug response, and use thereof
KR101859812B1 (en) Biomarkers to predict TACE treatment efficacy for hepatocellular carcinoma
KR102136643B1 (en) Novel hepatocellular carcinoma diagnostic marker and use thereof
KR102551144B1 (en) Biomarker for diagnosing rheumatoid arthritis and uses thereof
CN114113439A (en) Application of serum LRG1 protein in preparation of intrahepatic bile duct cancer lymph node diagnosis kit
KR20180024107A (en) Biomarker for diagnosis of atopic dermatitis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015868405

Country of ref document: EP