WO2016080087A1 - Radio communication device and method of determining weighting matrix - Google Patents

Radio communication device and method of determining weighting matrix Download PDF

Info

Publication number
WO2016080087A1
WO2016080087A1 PCT/JP2015/077976 JP2015077976W WO2016080087A1 WO 2016080087 A1 WO2016080087 A1 WO 2016080087A1 JP 2015077976 W JP2015077976 W JP 2015077976W WO 2016080087 A1 WO2016080087 A1 WO 2016080087A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
transmission signals
antenna
matrix
baseband
Prior art date
Application number
PCT/JP2015/077976
Other languages
French (fr)
Japanese (ja)
Inventor
英史 持田
仁士 平田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015093222A external-priority patent/JP6536159B2/en
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US15/525,615 priority Critical patent/US10439688B2/en
Publication of WO2016080087A1 publication Critical patent/WO2016080087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present invention relates to a wireless communication apparatus and a weight matrix determination method.
  • the multi-antenna technique is a technique for improving communication capacity, frequency utilization efficiency, power consumption, and the like by performing transmission / reception using a plurality of antennas in wireless communication. Even if the number of antennas on either the transmission side or the reception side is one, it is possible to improve the communication quality according to the number of antennas on the other side.
  • MIMO Multiple Input Multiple Output
  • MIMO when used as a communication term, often refers to a communication method in which both the transmission side and the reception side use a plurality of antennas, but is sometimes used to refer to general multi-antenna technology (for example, non-patent literature). 1).
  • Multi-antenna signal processing algorithm includes the following four.
  • Spatial Diversity (2) Coherent gain (3) Interference mitigation (4) Spatial Multiplexing
  • the space diversity is to reduce deterioration in communication quality due to the influence of multipath or the like by using spatially separated antennas.
  • the combined gain is obtained by applying a weight (weight) using propagation path information (amplitude and phase change) to the signal of each antenna on the reception side and transmission side, so that the received power and noise from the desired direction can be reduced. To increase the ratio.
  • the spatial multiplexing is a method of establishing a plurality of communication paths simultaneously by applying interference wave cancellation. There are a method in which a single user transmits different signals from a plurality of antennas to increase the communication capacity, and a method in which a plurality of users simultaneously communicate to increase frequency utilization efficiency. The latter method is called SDMA (Space Division Multiple Access).
  • the present invention has been made in view of such circumstances, and an object of the present invention is to enable a plurality of transmission signals for the same region to be transmitted with a smaller number of antennas than the number of transmission signals.
  • a wireless communication device includes a baseband unit that generates a plurality of transmission signals for the same region, an antenna having a plurality of antenna elements, and a plurality of transmission signals generated by the baseband unit.
  • a signal processing unit that distributes each corresponding to each of the plurality of antenna elements, and multiplies each of the plurality of distributed transmission signals by a corresponding component of a weight matrix and then combines the transmission signals corresponding to the antenna elements; , A wireless communication device.
  • a weight matrix determination method is a weight matrix determination method for multiplying a plurality of transmission signals for the same region generated in a baseband unit, and the baseband in the weight matrix As a candidate of weight row vector or weight column vector corresponding to each of a plurality of transmission signals generated by the unit, a larger number of weight candidates than the number of the weight row vector or weight column vector are tilted to the region.
  • a weight matrix comprising: a selection step that selects based on a corner; and a determination step that determines, as the weight row vector or the weight column vector, a weight candidate that satisfies a desired communication quality among the weight candidates selected in the selection step This is the method of determination.
  • a plurality of transmission signals for the same region can be transmitted with a smaller number of antennas than the number of transmission signals.
  • a wireless communication apparatus includes a baseband unit that generates a plurality of transmission signals for the same region, an antenna having a plurality of antenna elements, and a plurality of baseband units generated by the baseband unit.
  • the transmission signals corresponding to each of the plurality of antenna elements are distributed corresponding to each of the plurality of antenna elements, and the transmission signals corresponding to the respective antenna elements are combined after multiplying each of the distributed transmission signals by the corresponding component of the weight matrix.
  • a processing unit is a single cell or a single cell that is not divided into a plurality of sectors, and a mobile terminal that performs radio communication with a radio communication apparatus can move without handover. Means an area.
  • a plurality of transmission signals for the same region generated in the baseband unit are distributed corresponding to a plurality of antenna elements of one antenna, and a plurality of distributed transmissions are performed.
  • Each signal is multiplied by a weight matrix to synthesize transmission signals corresponding to the antenna elements. For this reason, it is possible to transmit a plurality of transmission signals for the same region by sharing one antenna. As a result, a plurality of transmission signals for the same region can be transmitted by a smaller number of antennas than the number of transmission signals.
  • the signal processing unit includes a plurality of digital / analog converters that convert each of the plurality of digital transmission signals generated by the baseband unit into an analog transmission signal, and the converted transmission.
  • a plurality of distributors that distribute each signal corresponding to each of the plurality of antenna elements, a plurality of phase shifters that perform phase adjustment on each of the distributed transmission signals based on components corresponding to the weight matrix, and a phase
  • a plurality of synthesizers that synthesize the transmission signals corresponding to the antenna elements among the adjusted transmission signals, and the antenna amplifies and corresponds to each of the transmission signals synthesized by the synthesizer It is preferable to further include a plurality of amplifiers provided to the antenna element.
  • the plurality of digital / analog converters are provided in front of the plurality of distributors.
  • the digital-to-analog converter may be provided corresponding to each of a plurality of transmission signals for the same region, and the number of digital-to-analog converters may be larger than when a digital-to-analog converter is provided for each of a plurality of antenna elements Can be reduced.
  • the cost can be reduced.
  • the phase shifter since the phase shifter is provided in front of the amplifier, the transmission signal before amplification is given to the phase shifter. Since the transmission signal before amplification has lower power compared to the transmission signal after amplification, it is possible to use a phase shifter having a relatively low value of signal power that can be handled. As a result, it is possible to use a smaller and lower cost phase shifter, and it is possible to reduce the cost and reduce the size.
  • the signal processing unit includes a plurality of digital / analog converters that convert each of the plurality of digital transmission signals generated by the baseband unit into an analog transmission signal, and the converted transmission.
  • a plurality of distributors that distribute each signal corresponding to each of the plurality of antenna elements, a plurality of phase shifters that perform phase adjustment on each of the distributed transmission signals based on components corresponding to the weight matrix, and a phase
  • a plurality of combiners for combining the transmission signals corresponding to the antenna elements among the adjusted transmission signals, and a plurality of combiners that are provided on the front side of the antenna and amplify each of the plurality of transmission signals
  • An amplifier may be further provided.
  • the plurality of digital / analog converters are provided on the upstream side of the plurality of distributors.
  • the digital-to-analog converter may be provided corresponding to each of a plurality of transmission signals for the same region, and the number of digital-to-analog converters may be larger than when a digital-to-analog converter is provided for each of a plurality of antenna elements Can be reduced. As a result, the cost can be reduced.
  • the signal processing unit distributes each of a plurality of digital transmission signals generated by the baseband unit corresponding to each of the plurality of antenna elements, and distributes the plurality of distributed digitals.
  • a digital signal processing unit that synthesizes transmission signals corresponding to each antenna element after multiplying each transmission signal by a corresponding component of the weight matrix
  • the antenna is a transmission signal synthesized by the digital signal processing unit
  • a plurality of amplifiers may be further provided that amplify each and supply the amplified antenna element to the corresponding antenna element.
  • the signal processing unit distributes each of the plurality of digital transmission signals generated by the baseband unit corresponding to each of the plurality of antenna elements, and distributes the plurality of distributed digital signals.
  • a digital signal processing unit that synthesizes the transmission signals corresponding to each antenna element after multiplying each transmission signal by a corresponding component of the weight matrix,
  • a plurality of amplifiers may be further provided that are provided on the front side of the antenna and amplify each of the plurality of transmission signals.
  • weight row vectors or weight column vectors corresponding to a plurality of transmission signals generated in the baseband unit are orthogonal to each other.
  • the weight row vectors or the weight column vectors are “orthogonal” to each other means that the sum of the cross correlations of the two weight row vectors or weight column vectors becomes zero. In this case, the cross-correlation of a plurality of transmission signals for the same region can be reduced.
  • the weight matrix is generated based on a discrete Fourier transform matrix
  • a mobile terminal that receives a plurality of transmission signals transmitted from one antenna strongly receives only a specific transmission signal depending on the reception position.
  • the weight matrix is generated based on a discrete cosine transform matrix.
  • the mobile terminal can receive a plurality of transmission signals transmitted from one antenna with good balance.
  • the power between transmission signals does not vary when the mobile terminal receives a plurality of transmission signals, the effect of MIMO communication is exhibited compared with the case where weight row examples are generated based on the discrete Fourier transform matrix. It becomes easy.
  • the weight row vector or weight column vector As a weight row vector or weight column vector candidate corresponding to each of a plurality of transmission signals generated in the baseband section in the weight matrix, the weight row vector or weight column vector A selection unit that selects a number of weight candidates greater than the number based on a tilt angle of a beam to the region, and a weight candidate that satisfies a desired communication quality among the weight candidates selected by the selection unit. It is preferable to further include a determination unit that determines a row vector or a weight column vector.
  • the selection unit selects a number of weight candidates that are candidates for weight row vectors or weight column vectors corresponding to each of a plurality of transmission signals generated in the baseband unit, based on the tilt angle of the beam to the region. Therefore, these weight candidates can be narrowed down easily and quickly. Moreover, since the determination unit determines a weight candidate satisfying a desired communication quality from among a large number of weight candidates as a weight row vector or a weight column vector, the desired communication quality can be obtained.
  • the weight row vector or weight column vector As a weight row vector or weight column vector candidate corresponding to each of a plurality of transmission signals generated in the baseband unit in the weight matrix, the weight row vector or weight column vector A selection unit that selects a number of weight candidates greater than the number based on a tilt angle of a beam to the region, and a weight candidate that satisfies a desired communication quality among the weight candidates selected by the selection unit. A decision unit that decides as a row vector or a weight column vector, and the row vector or column vector of the discrete cosine transform matrix is preferably the weight candidate selected by the selection unit.
  • the selection unit selects a number of weight candidates that are candidates for weight row vectors or weight column vectors corresponding to each of a plurality of transmission signals generated in the baseband unit, based on the tilt angle of the beam to the region. Therefore, these weight candidates can be narrowed down easily and quickly.
  • the row vector or the column vector of the discrete cosine transform matrix is a weight candidate selected by the selection unit, a weight matrix can be easily generated based on the discrete cosine transform matrix.
  • the determination unit determines a weight candidate satisfying a desired communication quality from among a large number of weight candidates as a weight row vector or a weight column vector, the desired communication quality can be obtained.
  • a method for determining a weight matrix is a method for determining a weight matrix for multiplying a plurality of transmission signals for the same region generated in a baseband unit, in the weight matrix, As a weight row vector or weight column vector candidate corresponding to each of a plurality of transmission signals generated in the baseband unit, a larger number of weight candidates than the number of the weight row vector or weight column vector are assigned to the region.
  • the selection step a number of weight candidates that are candidates for weight row vectors or weight column vectors corresponding to each of a plurality of transmission signals generated in the baseband unit are transmitted to a region. Since the selection is made based on the tilt angle, the weight candidates can be narrowed down easily and quickly. Further, in the determining step, the weight candidate satisfying the desired communication quality among the many weight candidates is determined as the weight row vector or the weight column vector, so that the desired communication quality can be obtained.
  • FIG. 1 is a diagram illustrating a wireless communication apparatus according to the first embodiment of the present invention.
  • a wireless communication device 1 is used as a base station device in a wireless communication system for mobile phones to which LTE (Long Term Evolution) is applied, for example, and is a mobile terminal (not shown) such as a mobile phone. It has a function of performing wireless communication.
  • the wireless communication device 1 includes a baseband unit (BBU) 2 that is a baseband unit, and an antenna system 3.
  • BBU baseband unit
  • the baseband unit 2 is connected to the antenna system 3 by a signal transmission path (optical transmission path or electrical transmission path) 4 extending from the baseband unit 2.
  • the baseband unit 2 has a function of performing digital modulation processing on transmission data given from a higher-level network and generating a plurality of transmission baseband signals for the same cell C (described later) as digital signals.
  • the baseband unit 2 gives a transmission baseband signal (I / Q signal) obtained by modulating transmission data to the antenna system 3 via the signal transmission path 4.
  • the baseband unit 2 acquires a reception baseband signal (I / Q signal) which is a digital signal given from the antenna system 3 via the signal transmission path 4, and performs digital demodulation processing on the reception baseband signal. To generate received data.
  • the baseband unit 2 gives the received data obtained by demodulating the received baseband signal to the upper network.
  • the baseband unit 2 has a function of performing processing such as digital modulation / demodulation processing on data and baseband signals transmitted and received by wireless communication.
  • the antenna system 3 includes a plurality (three in the illustrated example) of antennas 6 that are supported upward by support columns 5. Each antenna 6 is set as a cell C in which one area when the periphery of the wireless communication apparatus 1 is divided into three is an area where communication with a mobile terminal is possible.
  • the antenna system 3 includes the three antennas 6, thereby forming a cell C that can communicate with the mobile terminal around the antenna system 3.
  • each antenna 6 of the present embodiment includes a plurality of antenna elements, and the tilt angle (directivity) of the antenna 6 is adjusted by adjusting the phase and gain of each signal transmitted by each antenna element. Control). Thereby, each antenna 6 can transmit a plurality (two in the illustrated example) of transmission signals along the direction away from the antenna 6 at different tilt angles toward the same region (cell).
  • the “area” in the present embodiment is a single cell C without sector division. However, when the single cell C is divided into a plurality of sectors, the single sector is designated as “area”. It is also good. That is, the “area” may be an area where a mobile terminal that performs radio communication with the radio communication apparatus 1 can move without handover.
  • FIG. 2 is a block diagram showing a configuration on the transmission side of the antenna system 3 according to the first embodiment.
  • the antenna system 3 in the present embodiment includes an active antenna system configured to perform signal processing such as transmission signal distribution, phase adjustment, and synthesis by analog signal processing.
  • the antenna system 3 includes a digital signal processing unit 10, an analog signal processing unit 7, and an antenna 6.
  • the antenna 6 includes a plurality (six in the illustrated example) of antenna elements 9 and a plurality (six in the illustrated example) of power amplifiers 18 corresponding to the respective antenna elements 9.
  • the digital signal processing unit 10 is provided with a plurality (two in the illustrated example) of transmission baseband signals for the same region from the baseband unit 2.
  • one of these two transmission baseband signals is also referred to as a first transmission baseband signal, and the other is also referred to as a second transmission baseband signal.
  • the digital signal processing unit 10 performs digital signal processing on the first transmission baseband signal and the second transmission baseband signal as necessary, and then supplies the transmission baseband signal to the analog signal processing unit 7.
  • the analog signal processing unit 7 distributes each of the plurality of transmission signals given from the digital signal processing unit 10 corresponding to each of the plurality of antenna elements 9, and performs gain adjustment and phase adjustment on each of the plurality of distributed transmission signals. It functions as a signal processing unit that synthesizes transmission signals corresponding to the antenna elements 9 after multiplying corresponding components of a weight matrix (described later).
  • the analog signal processing unit 7 includes a plurality of digital-analog converters 11, a plurality of up-converters 12, a distributor 14, a plurality of variable attenuators 15, a plurality of phase shifters 16, and a plurality of synthesizers 17. It has.
  • a pair of digital-analog converters 11 is provided corresponding to each of the two transmission baseband signals.
  • One digital-to-analog converter 11a is supplied with a first transmission baseband signal from the digital signal processing unit 10, and the other digital-to-analog converter 11b is supplied with a second transmission baseband signal from the digital signal processing unit 10. It is done.
  • the digital-analog converter 11a has a function of converting the first transmission baseband signal, which is a digital signal, into an analog signal.
  • the digital-analog converter 11b has a function of converting the second transmission baseband signal, which is a digital signal, into an analog signal.
  • the digital-analog converter 11 (11a, 11b) supplies the first transmission baseband signal and the second transmission baseband signal converted into analog signals to the up-converter 12.
  • a pair of up-converters 12 are provided corresponding to each of the pair of digital-analog converters 11.
  • One upconverter 12a is supplied with a first transmission baseband signal converted into an analog signal
  • the other upconverter 12b is supplied with a second transmission baseband signal converted into an analog signal.
  • the up-converter 12a multiplies the first transmission baseband signal by the radio frequency local signal generated by the oscillator 13 to convert the first transmission baseband signal into a radio frequency signal (first radio frequency signal) (up-conversion). ) Function.
  • the up-converter 12b multiplies the second transmission baseband signal by the radio frequency local signal generated by the oscillator 13 to convert the second transmission baseband signal into a radio frequency signal (second radio frequency signal) (up-conversion). ) Function.
  • the up-converter 12 (12a, 12b) includes a first radio frequency signal obtained by frequency-converting the first transmission baseband signal and a second radio frequency signal obtained by frequency-converting the second transmission baseband signal. Is applied to the distributor 14.
  • a pair of distributors 14 is provided corresponding to each of the pair of digital-analog converters 11.
  • One distributor 14a is supplied with the first radio frequency signal from the up converter 12a, and the other distributor 14b is supplied with the second radio frequency signal from the up converter 12b.
  • the distributor 14a distributes the first radio frequency signal into a plurality of parts corresponding to the plurality of antenna elements 9 respectively.
  • the distributor 14b distributes the second radio frequency signal to a plurality of antenna elements 9 corresponding to each of the plurality of antenna elements 9.
  • the distributors 14a and 14b distribute the radio frequency signal supplied from the up-converter 12 to six.
  • a plurality of synthesizers 17 are provided in the subsequent stage of both distributors 14a and 14b.
  • a plurality (six) of combiners 17 are provided corresponding to each of the plurality of antenna elements 9.
  • Each combiner 17 is connected to each distributor 14 via a plurality of phase shifters 16 and a plurality of variable attenuators 15.
  • the radio frequency signals distributed by both distributors 14a and 14b are given to the combiner 17 after gain adjustment by the variable attenuator 15 and phase adjustment by the phase shifter 16.
  • each of the combiners 17 is given a radio frequency signal distributed corresponding to the same antenna element.
  • Each combiner 17 is configured to synthesize radio frequency signals distributed corresponding to the same antenna element.
  • the synthesizer 17 located at the uppermost position on the paper surface is provided corresponding to the antenna element 9 positioned at the uppermost position on the paper surface.
  • the synthesizer 17 located on the uppermost side of the paper surface includes a radio frequency signal distributed corresponding to the antenna element 9 located on the uppermost side of the paper surface by the distributor 14a and the uppermost position on the paper surface by the distributor 14b. And a radio frequency signal distributed corresponding to the antenna element 9 to be transmitted.
  • each synthesizer 17 is provided with the radio frequency signal from the distributor 14a and the radio frequency signal from the distributor 14b, which are signals corresponding to the same antenna element 9.
  • Each combiner 17 combines the radio frequency signals corresponding to these same antenna elements 9 and outputs the combined signal.
  • the combined signal output from each combiner 17 is supplied to the power amplifier 18 of the antenna 6, amplified by the power amplifier 18, and then supplied to the antenna element 9.
  • the combined signal given to each antenna element 9 is radiated into the space from each antenna element 9 and transmitted as a radio signal.
  • the plurality of variable attenuators 15 are provided after the distributor 14 and between the distributor 14 and the phase shifter 16.
  • the plurality of variable attenuators 15 are connected between the plurality of first variable attenuators 15 a connected between one distributor 14 a and the phase shifter 16, and between the other distributor 14 b and the phase shifter 16.
  • a plurality of second variable attenuators 15b are provided corresponding to the plurality of antenna elements 9, respectively.
  • the plurality of first variable attenuators 15a is provided with the first radio frequency signal distributed by one distributor 14a.
  • the plurality of first variable attenuators 15a perform gain adjustment for each of the first radio frequency signals distributed by the distributor 14a.
  • the plurality of second variable attenuators 15b are supplied with the second radio frequency signal distributed by the other distributor 14b.
  • the plurality of second variable attenuators 15b perform gain adjustment on each of the second radio frequency signals distributed by the distributor 14b.
  • the variable attenuator 15 performs gain adjustment for each of the plurality of transmission signals (the first radio frequency signal and the second radio frequency signal) in the plurality of antenna elements 9.
  • the plurality of phase shifters 16 are provided after the distributor 14 and between the variable attenuator 15 and the combiner 17.
  • the plurality of phase shifters 16 include a plurality of first phase shifters 16 a connected between the first variable attenuator 15 a and each combiner 17, a second variable attenuator 15 b, and each combiner 17. And a plurality of second phase shifters 16b connected to each other.
  • a plurality (six) of first phase shifters 16a and second phase shifters 16b are provided corresponding to the plurality of antenna elements 9, respectively.
  • the first phase shifter 16a and the second phase shifter 16b are formed of a semiconductor phase shifter configured to switch a line by a semiconductor switch.
  • the plurality of first phase shifters 16a are supplied with the first radio frequency signal whose gain is adjusted by the first variable attenuator 15a.
  • the plurality of first phase shifters 16a perform phase adjustment for each of the first radio frequency signals whose gains are adjusted by the first variable attenuator 15a. Accordingly, the plurality of first phase shifters 16a can control the tilt angle (directivity) of the antenna element 9 when the first radio frequency signal is transmitted from each of the plurality of antenna elements 9.
  • the plurality of second phase shifters 16b are provided with the second radio frequency signal whose gain is adjusted by the second variable attenuator 15b.
  • the plurality of second phase shifters 16b perform phase adjustment on each of the second radio frequency signals whose gains are adjusted by the second variable attenuator 15b.
  • the plurality of second phase shifters 16b can control the tilt angle (directivity) of the antenna element 9 when the second radio frequency signal is transmitted from each of the plurality of antenna elements 9.
  • the plurality of first phase shifters 16 a and the plurality of second phase shifters 16 b include the tilt angle when the first radio frequency signal is transmitted from the plurality of antenna elements 9, and the second radio frequency signal is transmitted to the plurality of antenna elements 9.
  • the phase adjustment is performed so that the tilt angles at the time of transmission are different from each other.
  • the phase shifter 16 has a tilt angle (directivity) for each of the plurality of transmission signals (the first radio frequency signal and the second radio frequency signal) in the plurality of antenna elements 9 corresponding to each of the plurality of transmission signals.
  • the phase adjustment is performed for each of the plurality of transmission signals (the first radio frequency signal and the second radio frequency signal) so as to obtain a tilt angle.
  • the first radio frequency signal distributed by the distributor 14a and the second radio frequency signal distributed by the distributor 14b are respectively adjusted in gain by the variable attenuator 15 and phase adjusted by the phase shifter 16. Is applied to each synthesizer 17.
  • Each combiner 17 combines the first radio frequency signal and the second radio frequency signal corresponding to the same antenna element 9 and outputs a combined signal.
  • each combiner 17 The combined signal output from each combiner 17 is amplified by the power amplifier 18 of the antenna 6 and given to each antenna element 9, and transmitted from each antenna element 9 as a radio signal.
  • Each antenna element 9 can transmit the first radio frequency signal and the second radio frequency signal by transmitting a synthesized signal obtained by synthesizing the first radio frequency signal and the second radio frequency signal.
  • the first radio frequency signal transmitted from each antenna element 9 is transmitted by controlling the tilt angle by the plurality of first phase shifters 16a. Further, the second radio frequency signal transmitted from each antenna element 9 is transmitted by controlling the tilt angle by the plurality of second phase shifters 16b to be different from the tilt angle by the plurality of first phase shifters 16a. Is done. Thereby, the antenna system 3 can transmit a plurality of transmission signals at different tilt angles toward the same region.
  • FIG. 3 is a block diagram illustrating a control configuration of the wireless communication device 1.
  • the wireless communication device 1 includes a control unit 30 that individually controls the plurality of variable attenuators 15 and the plurality of phase shifters 16.
  • the control unit 30 is configured by a computer including a CPU, a storage unit, and the like.
  • the control unit 30 reads out a program stored in the storage unit, realizes each functional unit of the control unit 30 described below, and performs various processes. Has the function to execute.
  • the control unit 30 is connected to the baseband unit 2 and receives control information including a control command for changing the tilt angle of each antenna element 9 and a carrier frequency from the baseband unit 2.
  • the control unit 30 has a function of determining a weight matrix to be multiplied by the plurality of radio frequency signals distributed by the distributor 14 based on the control information received from the baseband unit 2. Then, the control unit 30 multiplies a plurality of radio frequency signals distributed by the distributor 14 by each component of the determined weight matrix, so that the corresponding variable attenuator 15 and phase shifter based on each component 16 is controlled.
  • the weight matrix w of this embodiment is generated based on a Discrete Cosine Transform (DCT) matrix B.
  • This DCT matrix B is represented by a row example of N rows and N columns (N ⁇ N), where N is the number of transmission signals y.
  • a component B mn of m rows and n columns of the DCT matrix B is expressed by the following equations (2) and (3).
  • equation (3) shows a case where n ⁇ 1.
  • the weight matrix w includes M row vectors selected and determined from N row vectors of the DCT matrix B, where M is the number of radio frequency signals x. That is, the weight matrix w is represented by a matrix of M rows and N columns (M ⁇ N).
  • Expression (1) is expressed as a matrix, it is expressed as Expression (4) below.
  • the number (M) of radio frequency signals given from the baseband unit 2 is two, and the number (N) of transmission signals radiated from the antenna element 9 is six.
  • x 1 is the first radio frequency signal
  • x 2 represents the second radio frequency signal.
  • each component of one weight row vector w 1 (w 11 ... W 16 ) is multiplied by each of the six first radio frequency signals distributed by the distributor 14a. That is, the control unit 30 controls the corresponding variable attenuator 15a and phase shifter 16a based on each component of the weight row vector w 1 (w 11 ... W 16 ). For example, the control unit 30 multiplies the first radio frequency signal distributed to the uppermost side in FIG. 3 by one component w 11 of the weight row vector w 1 (w 11 ... W 16 ). in order to control on the basis of the variable attenuator 15a and the phase shifter 16a located most on the upper side in the component w 11.
  • each component of the other weight row vector w 2 (w 21 ... W 26 ) is multiplied by each of the six second radio frequency signals distributed by the distributor 14b.
  • the control unit 30 controls the corresponding variable attenuator 15b and phase shifter 16b based on each component of the weight row vector w 2 (w 21 ... W 26 ).
  • the control unit 30 multiplies the second radio frequency signal distributed to the lowermost side in FIG. 3 by one component w 26 of the weight row vector w 2 (w 21 ... W 26 ). to be controlled based on the variable attenuator 15b and the phase shifter 16b located on paper lowermost in component w 26.
  • the weight row vector w 1 (w 11 ... W 16 ) and the weight row vector w 2 (w 21 ... W 26 ) of the weight matrix w are orthogonal to each other. That is, the control unit 30 controls the plurality of variable attenuators 15 and the plurality of phase shifters 16 so that the two weight row vectors w 1 and w 2 are orthogonal to each other.
  • “perpendicular” means that the sum of the cross-correlation between the two weight row vectors w 1 and w 2 becomes zero.
  • the weight matrix w of the present embodiment is set to multiply the radio frequency signal by the weight row vector, but may be set to multiply the weight column vector.
  • the control unit 30 each weight row vector w 1 of the weight matrix w, w a selection unit 31 for selecting a plurality of weight candidates as second candidate, the weight row vector w 1 from among the selected weights candidates , W 2 .
  • the selection unit 31 has a function of selecting a larger number of weight candidates than the number of weight row vectors of the weight matrix w from among a plurality of weight candidates (here, weight row vectors) stored in advance in the storage unit. is doing. At that time, the selection unit 31 selects weight candidates based on the tilt angle of the beam toward the region (cell C) included in the control information received from the baseband unit 2.
  • N (six) row vectors of the discrete cosine transform matrix B corresponding to an angle range of 180 degrees from the upward direction to the downward direction of the tilt angle of the antenna element 9 are stored as weight candidates.
  • the selection unit 31 selects and selects weight candidates corresponding to an angle range close to the tilt angle of the beam to the region (cell C) from these six weight candidates. At that time, the selection unit 31 selects three or more weight candidates so that the number is larger than the number of weight row vectors (two) in the weight matrix w.
  • the determination unit 32 of the control unit 30 determines weight candidates satisfying a desired communication quality among the plurality of weight candidates selected by the selection unit 31 as the weight row vectors w 1 and w 2 of the weight matrix w. It has a function. Specifically, the determination unit 32 first performs wireless communication using two arbitrary weight candidates as two weight row vectors w 1 and w 2 from among a plurality of selected weight candidates, The communication quality is determined.
  • the determination of the communication quality is repeatedly performed for all combinations that can be combined as a set of two of the selected plurality of weight candidates. Then, the determination unit 32 determines a set that satisfies the most desired communication quality as the weight row vectors w 1 and w 2 .
  • FIG. 4 is a flowchart showing a procedure for determining the weight matrix w executed by the control unit 30.
  • the selection unit 31 of the control unit 30 uses N row vectors of the discrete cosine transform matrix B as candidates for the weight row vectors w 1 and w 2 corresponding to the first radio frequency signal and the second radio frequency signal, respectively.
  • K weight candidates larger than the number of weight row vectors w 1 and w 2 are selected based on the tilt angle of the beam (step S1, selection step).
  • step S9 When the determination result of step S9 is negative, the determination unit 32 returns to step S3.
  • the determination unit 32 Determines a set of weight candidates satisfying the most desired communication quality as weight row vectors w 1 and w 2 of the weight matrix w (step S10, determination step).
  • the weight matrix w of the present embodiment is generated based on a DCT matrix, but may be generated based on a discrete Fourier transform (DFT) matrix.
  • DFT discrete Fourier transform
  • the component B ′ mn of m rows and n columns of the DFT matrix B ′ is expressed as the following equation (7).
  • j is an imaginary unit.
  • the control unit 30 does not need to perform gain adjustment, and thus the variable attenuator 15 (see FIG. 2) is not necessary. For this reason, compared with the case where the weight row example w is generated based on the DCT matrix B, a reduction in power loss can be suppressed.
  • the weight matrix w may be generated based on a Hadamard transformation matrix other than the DCT matrix and the DFT matrix.
  • the Hadamard transform matrix H is an example of N rows and N columns (N ⁇ N), like the DCT matrix B, and is represented by the following equation (8).
  • H 2 is a 2 ⁇ 2 matrix having “1” and “ ⁇ 1” as components, and k is an integer of 2 or more.
  • the weight row example w is generated based on the Hadamard transform matrix H
  • the components of the matrix H are only “1” and “ ⁇ 1”, so that phase adjustment and the like can be easily performed.
  • the weight matrix w may be generated based on a matrix other than the DCT matrix, the DFT matrix, and the Hadamard transform matrix.
  • FIG. 5 is a diagram illustrating the vertical directivity of the antenna when the weight matrix is generated based on the DFT matrix.
  • FIG. 6 is a diagram illustrating the vertical plane directivity of the antenna when the weight matrix is generated based on the DCT matrix. 5 and 6 show the vertical plane directivity when four transmission signals are transmitted, and the vertical plane directivity of each transmission signal indicates the line type as a thick solid line, a dotted line, It is divided into a thin solid line and a broken line.
  • each of the plurality of transmission signals for the same region generated by the baseband unit 2 corresponds to each of the plurality of antenna elements 9 included in one antenna 6.
  • the transmission signals corresponding to the antenna elements 9 are synthesized by dividing each of the distributed transmission signals and multiplying each of the distributed transmission signals by a weight matrix. For this reason, it is possible to transmit a plurality of transmission signals for the same region by sharing one antenna 6. As a result, a plurality of transmission signals for the same region can be transmitted by a smaller number of antennas 6 than the number of transmission signals.
  • the plurality of digital / analog converters 11 are provided in front of the plurality of distributors 14. For this reason, the digital-analog converter 11 may be provided corresponding to each of a plurality of transmission signals for the same region, and the digital-analog conversion is performed as compared with the case where the digital-analog converter 11 is provided for each of the plurality of antenna elements 9.
  • the number of vessels 11 can be reduced. As a result, the cost can be reduced.
  • phase shifter 16 since the phase shifter 16 is provided in a stage prior to the power amplifier 18, the transmission signal before amplification is given to the phase shifter 16. Since the transmission signal before amplification has lower power compared to the transmission signal after amplification, the phase shifter 16 using a semiconductor phase shifter having a relatively low value of signal power that can be handled is configured. be able to. As a result, it is possible to use the phase shifter 16 that is smaller and lower in cost, and can be further reduced in cost and size.
  • the weight row vectors w 1 and w 2 corresponding to the plurality of transmission signals generated by the baseband unit 2 are orthogonal to each other. Cross-correlation can be reduced. Further, since the weight matrix w is generated based on the DCT matrix B, the mobile terminal can receive a plurality of transmission signals transmitted from one antenna 6 with good balance. As a result, since the power between transmission signals does not vary when the mobile terminal receives a plurality of transmission signals, the effect of MIMO communication can be easily achieved compared to the case where the weight row example w is generated based on the DFT matrix. Become.
  • the selection unit 31 of the control unit 30 a large number of weight candidates that are candidates for the weight row vectors w 1 and w 2 corresponding to the plurality of transmission signals generated by the baseband unit 2 are obtained. Since the selection is based on the tilt angle, these weight candidates can be narrowed down easily and quickly. In addition, since the row vector of the discrete cosine transform matrix B is a weight candidate selected by the selection unit 31, the weight matrix w can be easily generated based on the DCT matrix B. Furthermore, since the determination unit 32 of the control unit 30 determines the weight candidates satisfying the desired communication quality from among the many weight candidates as the weight row vectors w 1 and w 2 , the desired communication quality can be obtained.
  • FIG. 7 is a block diagram illustrating a configuration on the transmission side of the antenna system 3 included in the wireless communication device 1 according to the second embodiment of the present invention.
  • the antenna system 3 in the present embodiment includes a passive antenna system configured to perform signal processing such as distribution, phase adjustment, and synthesis of transmission signals by analog signal processing. That is, the antenna system 3 of the present embodiment is different from the antenna system 3 of the first embodiment in that the power amplifier 18 is provided on the upstream side of the antenna 6.
  • the power amplifier 18 of the present embodiment is provided between the up converter 12 (12a, 12b) and the distributor 14 (14a, 14b) of the analog signal processing unit 7.
  • the up-converter 12 (12a, 12b) includes a first radio frequency signal obtained by frequency-converting the first transmission baseband signal and a second radio frequency signal obtained by frequency-converting the second transmission baseband signal. Is supplied to the power amplifier 18.
  • a pair of power amplifiers 18 is provided corresponding to each of the pair of digital-analog converters 11.
  • One power amplifier 18a is supplied with the first radio frequency signal from the up converter 12a
  • the other power amplifier 18b is supplied with the second radio frequency signal from the up converter 12b.
  • the power amplifier 18a amplifies the first radio frequency signal and supplies it to the distributor 14a.
  • the power amplifier 18b amplifies the second radio frequency signal and supplies it to the distributor 14b.
  • the power amplifier 18 is included in the analog signal processing unit 7, but between the analog signal processing unit 7 and the antenna 6, that is, between the plurality of antenna elements 9 corresponding to the plurality of combiners 17. It may be provided.
  • the antenna 6 of the present embodiment is composed of only a plurality of antenna elements 9.
  • Each antenna element 9 is provided with a synthesized signal synthesized by a corresponding synthesizer 17.
  • the combined signal given to each antenna element 9 is radiated into the space from each antenna element 9 and transmitted as a radio signal.
  • the antenna system 3 of the present embodiment is also different from the antenna system 3 of the first embodiment in that the configuration between the distributor 14 and the combiner 17 of the analog signal processing unit 7 is different.
  • the analog signal processing unit 7 of the present embodiment has a Butler matrix circuit 21 for multiplying each of a plurality of radio frequency signals distributed by both distributors 14a and 14b by corresponding components of the weight matrix w. .
  • the weight matrix w is made a DFT matrix.
  • FIG. 8 is a block diagram showing an example of the configuration of the Butler matrix circuit 21.
  • FIG. 8 illustrates a general Butler matrix circuit that performs phase adjustment for four radio frequency signals.
  • the Butler matrix circuit 21 includes four 90 degree hybrids 22 to 25 and two ⁇ 45 degree phase shifters 26 and 27.
  • a pair of input terminals 28A and 28B are connected to the 90-degree hybrid 22, and a pair of input terminals 28C and 28D are connected to the 90-degree hybrid 23.
  • the input terminals 28A to 28D are connected to the corresponding distributor 14 (see FIG. 7).
  • a pair of output terminals 29B and 29B are connected to the 90-degree hybrid 24, and a pair of output terminals 29C and 29D are connected to the 90-degree hybrid 25.
  • the output terminals 29A to 29D are connected to the corresponding combiner 17 (see FIG. 7).
  • One of the outputs of the 90-degree hybrid 22 is connected to the 90-degree hybrid 24 via the ⁇ 45-degree phase shifter 26, and the other output is connected to the 90-degree hybrid 25.
  • One of the outputs of the 90-degree hybrid 23 is connected to the 90-degree hybrid 25 via the ⁇ 45-degree phase shifter 27, and the other output is connected to the 90-degree hybrid 24.
  • the weight matrix w of the present embodiment may be generated based on a DCT matrix, a Hadamard transform matrix, or the like other than the DFT matrix.
  • the analog signal processing unit 7 may use the variable attenuator 15 and the phase shifter 16 as in the first embodiment, instead of the Butler matrix circuit 21.
  • the plurality of digital / analog converters 11 are provided on the upstream side of the plurality of distributors 14.
  • the digital-analog converter 11 may be provided corresponding to each of a plurality of transmission signals for the same region, and the digital-analog conversion is performed as compared with the case where the digital-analog converter 11 is provided for each of the plurality of antenna elements 9.
  • the number of vessels 11 can be reduced. As a result, the cost can be reduced.
  • FIG. 9 is a block diagram illustrating a configuration on the transmission side of the antenna system 3 included in the wireless communication device 1 according to the third embodiment of the present invention.
  • the antenna system 3 in the present embodiment includes an active antenna system configured to perform signal processing such as transmission signal distribution, phase adjustment, and synthesis by digital signal processing.
  • the digital signal processing unit 10 of the present embodiment distributes each of the plurality of transmission signals given from the baseband unit 2 corresponding to each of the plurality of antenna elements 9, and distributes each of the plurality of distributed transmission signals. It functions as a signal processing unit that synthesizes transmission signals corresponding to each antenna element 9 after multiplying corresponding components of the weight matrix.
  • the digital signal processing unit 10 distributes the first transmission baseband signal and the second transmission baseband signal given from the baseband unit 2 to six corresponding to the six antenna elements 9 respectively.
  • the digital signal processing unit 10 performs gain adjustment and phase adjustment for each distributed first transmission baseband signal, and performs gain adjustment and phase adjustment for each distributed second transmission baseband signal.
  • the digital signal processing unit 10 transmits a transmission baseband signal distributed corresponding to the same antenna element 9 among the first transmission baseband signal and the second transmission baseband signal subjected to gain adjustment and phase adjustment. These are synthesized and these synthesized signals are given to the analog signal processing unit 7.
  • the analog signal processing unit 7 of the present embodiment includes a plurality of digital / analog converters 11 and a plurality of up-converters 12.
  • Six digital-analog converters 11 are provided corresponding to the six antenna elements 9 respectively.
  • Each digital-analog converter 11 has a function of converting a synthesized signal of a corresponding digital signal into an analog signal.
  • Each digital-to-analog converter 11 supplies the up-converter 12 with the combined signal converted into an analog signal.
  • Each up-converter 12 has a function of converting (up-converting) a synthesized signal into a radio frequency signal (first radio frequency signal) by multiplying a corresponding synthesized signal by a radio frequency local signal generated by the oscillator 13. is doing.
  • Each up-converter 12 provides a radio frequency signal obtained by frequency-converting the corresponding combined signal to the corresponding power amplifier 18 of the antenna 6.
  • Each power amplifier 18 of the antenna 6 is provided corresponding to each of the six antenna elements 9. Each power amplifier 18 amplifies the radio frequency signal and applies it to the corresponding antenna element 9. The radio frequency signal given to each antenna element 9 is radiated into the space from each antenna element 9 and transmitted as a radio signal.
  • FIG. 10 is a block diagram illustrating a control configuration of the wireless communication apparatus 1 according to the present embodiment.
  • the control unit 30 of the present embodiment has a function of determining a weight matrix for multiplying a plurality of transmission baseband signals distributed in the digital signal processing unit 10 based on the control information received from the baseband unit 2. Yes.
  • the control unit 30 has a function of controlling the digital signal processing unit 10 to perform gain adjustment and phase shift adjustment of the corresponding transmission baseband signal based on each component of the determined weight matrix. .
  • Other points are the same as in the first embodiment.
  • the weight matrix w of the present embodiment may be generated based on a DFT matrix, a Hadamard transform matrix, or the like other than the DCT matrix.
  • the wireless communication device 1 of the present embodiment since signal processing from distribution to synthesis of transmission signals generated by the baseband unit 2 can be performed by digital signal processing, the signal processing is performed by analog signal processing. Compared with the case where it performs by this, advanced communication control can be performed.
  • FIG. 11 is a block diagram showing a configuration on the transmission side of the antenna system 3 included in the wireless communication device 1 according to the fourth embodiment of the present invention.
  • the antenna system 3 in the present embodiment is a modification of the antenna system 3 in the third embodiment, and is a passive antenna system configured to perform signal processing such as distribution, phase adjustment, and synthesis of transmission signals by digital signal processing. Consists of.
  • the antenna system 3 of the present embodiment is different from the antenna system 3 of the third embodiment in that the power amplifier 18 is included in the analog signal processing unit 7 that is on the upstream side of the antenna 6. Therefore, the antenna 6 of the present embodiment is configured by only a plurality of antenna elements 9.
  • the other points are the same as in the third embodiment.
  • the analog signal processing unit 7 according to the present embodiment includes the digital-analog converter 11, the up-converter 12, and the power amplifier 18. However, if the analog-signal processing unit 7 includes at least the digital-analog converter 11 and the up-converter 12. good.
  • the weight matrix w of the present embodiment may be generated based on a DFT matrix, a Hadamard transform matrix, or the like other than the DCT matrix.
  • signal processing from distribution to synthesis of transmission signals generated by the baseband unit 2 can be performed by digital signal processing. Therefore, the signal processing is performed by analog signal processing. Compared with the case where it performs, advanced communication control can be performed.
  • Wireless communication device Baseband unit (baseband part) 3 antenna system 4 signal transmission path 5 support 6 antenna 7 analog signal processing unit 9 antenna element 10 digital signal processing unit 11 digital analog converter 11a digital analog converter 11b digital analog converter 12 up converter 12a up converter 12b up converter 13 oscillator 14 distributor 14 a distributor 14 b distributor 15 variable attenuator 15 a first variable attenuator 15 b second variable attenuator 16 phase shifter 16 a first phase shifter 16 b second phase shifter 17 combiner 18 power amplifier 21 Butler matrix Circuit 22 90 degree hybrid 23 90 degree hybrid 24 90 degree hybrid 25 90 degree hybrid 26 -45 degree phase shifter 27 -45 degree phase shifter 28A Input terminal 28B Input terminal 28C Input terminal 28D Input terminal 29A Output terminal 29B Power terminal 29C output terminal 29D output terminal 30 control unit 31 selecting unit 32 determining section C cell (region)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A radio communication device is provided with: a baseband unit which generates a plurality of transmission signals directed at the same region; an antenna having a plurality of antenna elements; and a signal processing unit with which each of the plurality of transmission signals generated by the baseband unit is associated with and distributed to each of the plurality of antenna elements, and which multiplies each of the plurality of distributed transmission signals by a corresponding component of a weighting matrix, after which said signal processing unit combines together the transmission signals corresponding to each antenna element.

Description

無線通信装置およびウェイト行列の決定方法Wireless communication apparatus and weight matrix determination method
 本発明は、無線通信装置およびウェイト行列の決定方法に関する。 The present invention relates to a wireless communication apparatus and a weight matrix determination method.
 マルチアンテナ技術は、無線通信において、送信・受信を複数のアンテナを用いて行うことにより、通信容量、周波数の利用効率、消費電力等の改善を行う技術である。なお、送信側・受信側いずれかのアンテナ数が1つであっても、他方のアンテナ数に応じて通信品質の改善等を行うことが可能である。
 このようなマルチアンテナ技術に関する用語として、MIMO(Multiple Input Multiple Output)がある。MIMOとは、通信用語として用いられる場合、送信側及び受信側両方が複数のアンテナを用いる通信方式を指すことが多いが、マルチアンテナ技術全般を指して使われることもある(例えば、非特許文献1参照)。
The multi-antenna technique is a technique for improving communication capacity, frequency utilization efficiency, power consumption, and the like by performing transmission / reception using a plurality of antennas in wireless communication. Even if the number of antennas on either the transmission side or the reception side is one, it is possible to improve the communication quality according to the number of antennas on the other side.
There is MIMO (Multiple Input Multiple Output) as a term relating to such multi-antenna technology. MIMO, when used as a communication term, often refers to a communication method in which both the transmission side and the reception side use a plurality of antennas, but is sometimes used to refer to general multi-antenna technology (for example, non-patent literature). 1).
 マルチアンテナ信号の処理アルゴリズムによって得られる利点としては、次の4つが挙げられる。
(1)空間ダイバーシチ(Spatial Diversity)
(2)合成利得(Coherent Gain)
(3)干渉波除去(Interference Mitigation)
(4)空間多重(Spatial Multiplexing)
Advantages obtained by the multi-antenna signal processing algorithm include the following four.
(1) Spatial Diversity
(2) Coherent gain
(3) Interference mitigation
(4) Spatial Multiplexing
 前記空間ダイバーシチは、空間的に離れたアンテナを用いることで、マルチパスなどの影響による通信品質の劣化を小さくすることである。
 前記合成利得は、受信側・送信側の各アンテナの信号に対して伝搬路の情報(振幅、位相の変化)を利用した重み(ウェイト)をかけることで、希望方向からの受信電力と雑音の比を大きくすることである。
The space diversity is to reduce deterioration in communication quality due to the influence of multipath or the like by using spatially separated antennas.
The combined gain is obtained by applying a weight (weight) using propagation path information (amplitude and phase change) to the signal of each antenna on the reception side and transmission side, so that the received power and noise from the desired direction can be reduced. To increase the ratio.
 前記干渉波除去は、各アンテナからの受信信号に対して、所望信号以外の到来信号(干渉信号)を打ち消すように重みをかけて合成する。受信アンテナ数よりも一つ小さい数の干渉信号を除去することができる。到来信号の伝搬係数が未知であるならば、なんらかの学習アルゴリズムを用いる必要がある。
 前記空間多重は、干渉波除去を応用して同時に複数の通信路を確立する方法である。一人のユーザが複数のアンテナから異なる信号を送信して通信容量を増やす方法と、複数のユーザが同時に通信を行って周波数利用効率を高める方法とがある。後者の方法は、SDMA(Space Division Multiple Access)と呼ばれる。
In the interference wave removal, a received signal from each antenna is combined with a weight so as to cancel an incoming signal (interference signal) other than the desired signal. The number of interference signals that is one smaller than the number of receiving antennas can be removed. If the propagation coefficient of the incoming signal is unknown, some learning algorithm must be used.
The spatial multiplexing is a method of establishing a plurality of communication paths simultaneously by applying interference wave cancellation. There are a method in which a single user transmits different signals from a plurality of antennas to increase the communication capacity, and a method in which a plurality of users simultaneously communicate to increase frequency utilization efficiency. The latter method is called SDMA (Space Division Multiple Access).
 MIMO通信において、例えば同一のセクタ向けの複数のベースバンド信号を送信するためには、これら複数のベースバンド信号それぞれに対応した複数のアンテナを設置する必要がある。このため、アンテナサイトに複数のアンテナが設置されることで美観が損なわれるという問題や、複数のアンテナを設置することができるアンテナサイト自体を確保するのが難しくなるという問題がある。 In MIMO communication, in order to transmit a plurality of baseband signals for the same sector, for example, it is necessary to install a plurality of antennas corresponding to each of the plurality of baseband signals. For this reason, there is a problem that aesthetics are impaired by the installation of a plurality of antennas at the antenna site, and a problem that it is difficult to secure an antenna site that can install a plurality of antennas.
 本発明はこのような事情に鑑みてなされたものであり、同一の領域向けの複数の送信信号を、その送信信号の数よりも少ない数のアンテナで送信することができるようにすることを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to enable a plurality of transmission signals for the same region to be transmitted with a smaller number of antennas than the number of transmission signals. And
 本発明の一態様に係る無線通信装置は、同一の領域向けの複数の送信信号を生成するベースバンド部と、複数のアンテナ素子を有するアンテナと、前記ベースバンド部で生成された複数の送信信号それぞれを前記複数のアンテナ素子それぞれに対応して分配し、分配された複数の送信信号それぞれにウェイト行列の対応する成分を乗算した後に各アンテナ素子に対応する送信信号同士を合成する信号処理部と、を備えている無線通信装置である。 A wireless communication device according to one embodiment of the present invention includes a baseband unit that generates a plurality of transmission signals for the same region, an antenna having a plurality of antenna elements, and a plurality of transmission signals generated by the baseband unit. A signal processing unit that distributes each corresponding to each of the plurality of antenna elements, and multiplies each of the plurality of distributed transmission signals by a corresponding component of a weight matrix and then combines the transmission signals corresponding to the antenna elements; , A wireless communication device.
 本発明の一態様に係るウェイト行列の決定方法は、ベースバンド部で生成された同一の領域向けの複数の送信信号に乗算するウェイト行列の決定方法であって、前記ウェイト行列における、前記ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトルまたはウェイト列ベクトルの候補として、当該ウェイト行ベクトルまたはウェイト列ベクトルの数よりも多い数のウェイト候補を、前記領域へのビームのチルト角に基づいて選択する選択ステップと、前記選択ステップで選択されたウェイト候補のうちから所望の通信品質を満たすウェイト候補を前記ウェイト行ベクトルまたはウェイト列ベクトルとして決定する決定ステップと、を含むウェイト行列の決定方法である。 A weight matrix determination method according to an aspect of the present invention is a weight matrix determination method for multiplying a plurality of transmission signals for the same region generated in a baseband unit, and the baseband in the weight matrix As a candidate of weight row vector or weight column vector corresponding to each of a plurality of transmission signals generated by the unit, a larger number of weight candidates than the number of the weight row vector or weight column vector are tilted to the region. A weight matrix comprising: a selection step that selects based on a corner; and a determination step that determines, as the weight row vector or the weight column vector, a weight candidate that satisfies a desired communication quality among the weight candidates selected in the selection step This is the method of determination.
 本発明によれば、同一の領域向けの複数の送信信号を、その送信信号の数よりも少ない数のアンテナで送信することができる。 According to the present invention, a plurality of transmission signals for the same region can be transmitted with a smaller number of antennas than the number of transmission signals.
本発明の第1実施形態に係る無線通信装置を示す図である。It is a figure which shows the radio | wireless communication apparatus which concerns on 1st Embodiment of this invention. アンテナシステムの送信側の構成を示したブロック図である。It is the block diagram which showed the structure by the side of transmission of an antenna system. 無線通信装置の制御構成を示すブロック図である。It is a block diagram which shows the control structure of a radio | wireless communication apparatus. 制御部が実行するウェイト行列の決定手順を示すフローチャートである。It is a flowchart which shows the determination procedure of the weight matrix which a control part performs. ウェイト行列をDFT行列に基づいて生成した場合におけるアンテナの垂直面指向性を示す図である。It is a figure which shows the vertical surface directivity of an antenna at the time of producing | generating a weight matrix based on a DFT matrix. ウェイト行列をDCT行列に基づいて生成した場合におけるアンテナの垂直面指向性を示す図である。It is a figure which shows the vertical surface directivity of an antenna at the time of producing | generating a weight matrix based on a DCT matrix. 本発明の第2実施形態に係る無線通信装置が備えるアンテナシステムの送信側の構成を示すブロック図である。It is a block diagram which shows the structure by the side of the transmission of the antenna system with which the radio | wireless communication apparatus which concerns on 2nd Embodiment of this invention is provided. 図7のアンテナシステムが備えるバトラーマトリックス回路の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the Butler matrix circuit with which the antenna system of FIG. 7 is provided. 本発明の第3実施形態に係る無線通信装置が備えるアンテナシステムの送信側の構成を示すブロック図である。It is a block diagram which shows the structure by the side of the transmission of the antenna system with which the radio | wireless communication apparatus which concerns on 3rd Embodiment of this invention is provided. 図9の無線通信装置の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the radio | wireless communication apparatus of FIG. 本発明の第4実施形態に係る無線通信装置が備えるアンテナシステムの送信側の構成を示すブロック図である。It is a block diagram which shows the structure by the side of the transmission of the antenna system with which the radio | wireless communication apparatus which concerns on 4th Embodiment of this invention is provided.
[本発明の実施形態の説明]
 最初に本発明の実施形態の内容を列記して説明する。
 (1)本発明の実施形態に係る無線通信装置は、同一の領域向けの複数の送信信号を生成するベースバンド部と、複数のアンテナ素子を有するアンテナと、前記ベースバンド部で生成された複数の送信信号それぞれを前記複数のアンテナ素子それぞれに対応して分配し、分配された複数の送信信号それぞれにウェイト行列の対応する成分を乗算した後に各アンテナ素子に対応する送信信号同士を合成する信号処理部と、を備えている。
 ここで、「領域」とは、単一のセクタ、または複数のセクタに分割されていない単一のセルであって、無線通信装置と無線通信を行う移動端末がハンドオーバーせずに移動可能な領域を意味する。
[Description of Embodiment of the Present Invention]
First, the contents of the embodiment of the present invention will be listed and described.
(1) A wireless communication apparatus according to an embodiment of the present invention includes a baseband unit that generates a plurality of transmission signals for the same region, an antenna having a plurality of antenna elements, and a plurality of baseband units generated by the baseband unit. The transmission signals corresponding to each of the plurality of antenna elements are distributed corresponding to each of the plurality of antenna elements, and the transmission signals corresponding to the respective antenna elements are combined after multiplying each of the distributed transmission signals by the corresponding component of the weight matrix. And a processing unit.
Here, the “area” is a single cell or a single cell that is not divided into a plurality of sectors, and a mobile terminal that performs radio communication with a radio communication apparatus can move without handover. Means an area.
 上記無線通信装置によれば、ベースバンド部で生成された同一の領域向けの複数の送信信号それぞれを、一のアンテナが有する複数のアンテナ素子それぞれに対応して分配し、分配された複数の送信信号それぞれにウェイト行列を乗算して各アンテナ素子に対応する送信信号同士を合成することになる。このため、同一の領域向けの複数の送信信号を、一のアンテナを共用して送信することができる。この結果、同一の領域向けの複数の送信信号を、その送信信号の数よりも少ない数のアンテナにより送信することができる。 According to the wireless communication device, a plurality of transmission signals for the same region generated in the baseband unit are distributed corresponding to a plurality of antenna elements of one antenna, and a plurality of distributed transmissions are performed. Each signal is multiplied by a weight matrix to synthesize transmission signals corresponding to the antenna elements. For this reason, it is possible to transmit a plurality of transmission signals for the same region by sharing one antenna. As a result, a plurality of transmission signals for the same region can be transmitted by a smaller number of antennas than the number of transmission signals.
 (2)前記無線通信装置において、前記信号処理部は、前記ベースバンド部で生成された複数のデジタルの送信信号それぞれをアナログの送信信号に変換する複数のデジタルアナログ変換器と、変換された送信信号それぞれを前記複数のアンテナ素子それぞれに対応して分配する複数の分配器と、分配された送信信号それぞれに前記ウェイト行列の対応する成分に基づいて位相調整を行う複数の移相器と、位相調整された送信信号のうち、各アンテナ素子に対応する送信信号同士を合成する複数の合成器と、を有し、前記アンテナは、前記合成器で合成された送信信号それぞれを増幅して対応する前記アンテナ素子に与える複数の増幅器をさらに有するのが好ましい。 (2) In the wireless communication device, the signal processing unit includes a plurality of digital / analog converters that convert each of the plurality of digital transmission signals generated by the baseband unit into an analog transmission signal, and the converted transmission. A plurality of distributors that distribute each signal corresponding to each of the plurality of antenna elements, a plurality of phase shifters that perform phase adjustment on each of the distributed transmission signals based on components corresponding to the weight matrix, and a phase A plurality of synthesizers that synthesize the transmission signals corresponding to the antenna elements among the adjusted transmission signals, and the antenna amplifies and corresponds to each of the transmission signals synthesized by the synthesizer It is preferable to further include a plurality of amplifiers provided to the antenna element.
 この場合、複数のデジタルアナログ変換器は、複数の分配器の前段に設けられることになる。このため、当該デジタルアナログ変換器を、同一の領域向けの複数の送信信号それぞれに対応して設ければよく、複数のアンテナ素子ごとにデジタルアナログ変換器を設ける場合よりもデジタルアナログ変換器の数を減らすことができる。この結果、低コスト化が可能となる。
 また、移相器は増幅器の前段に設けられるため、移相器には増幅前の送信信号が与えられる。増幅前の送信信号は、増幅後の送信信号と比較してより低い電力であるため、取り扱うことが可能な信号電力の値が比較的低い移相器の使用が可能となる。これにより、より小型で低コストな移相器を用いることが可能となり、より低コストとすることができるとともに小型化も可能となる。
In this case, the plurality of digital / analog converters are provided in front of the plurality of distributors. For this reason, the digital-to-analog converter may be provided corresponding to each of a plurality of transmission signals for the same region, and the number of digital-to-analog converters may be larger than when a digital-to-analog converter is provided for each of a plurality of antenna elements Can be reduced. As a result, the cost can be reduced.
In addition, since the phase shifter is provided in front of the amplifier, the transmission signal before amplification is given to the phase shifter. Since the transmission signal before amplification has lower power compared to the transmission signal after amplification, it is possible to use a phase shifter having a relatively low value of signal power that can be handled. As a result, it is possible to use a smaller and lower cost phase shifter, and it is possible to reduce the cost and reduce the size.
 (3)前記無線通信装置において、前記信号処理部は、前記ベースバンド部で生成された複数のデジタルの送信信号それぞれをアナログの送信信号に変換する複数のデジタルアナログ変換器と、変換された送信信号それぞれを前記複数のアンテナ素子それぞれに対応して分配する複数の分配器と、分配された送信信号それぞれに前記ウェイト行列の対応する成分に基づいて位相調整を行う複数の移相器と、位相調整された送信信号のうち、各アンテナ素子に対応する送信信号同士を合成する複数の合成器と、を有し、前記アンテナよりも前段側に設けられ、複数の送信信号それぞれを増幅する複数の増幅器をさらに備えていてもよい。 (3) In the wireless communication device, the signal processing unit includes a plurality of digital / analog converters that convert each of the plurality of digital transmission signals generated by the baseband unit into an analog transmission signal, and the converted transmission. A plurality of distributors that distribute each signal corresponding to each of the plurality of antenna elements, a plurality of phase shifters that perform phase adjustment on each of the distributed transmission signals based on components corresponding to the weight matrix, and a phase A plurality of combiners for combining the transmission signals corresponding to the antenna elements among the adjusted transmission signals, and a plurality of combiners that are provided on the front side of the antenna and amplify each of the plurality of transmission signals An amplifier may be further provided.
 この場合、複数のデジタルアナログ変換器は、複数の分配器よりも前段側に設けられることになる。このため、当該デジタルアナログ変換器を、同一の領域向けの複数の送信信号それぞれに対応して設ければよく、複数のアンテナ素子ごとにデジタルアナログ変換器を設ける場合よりもデジタルアナログ変換器の数を減らすことができる。この結果、低コスト化が可能となる。 In this case, the plurality of digital / analog converters are provided on the upstream side of the plurality of distributors. For this reason, the digital-to-analog converter may be provided corresponding to each of a plurality of transmission signals for the same region, and the number of digital-to-analog converters may be larger than when a digital-to-analog converter is provided for each of a plurality of antenna elements Can be reduced. As a result, the cost can be reduced.
 (4)前記無線通信装置において、前記信号処理部は、前記ベースバンド部で生成された複数のデジタルの送信信号それぞれを前記複数のアンテナ素子それぞれに対応して分配し、分配された複数のデジタルの送信信号それぞれに前記ウェイト行列の対応する成分を乗算した後に各アンテナ素子に対応する送信信号同士を合成するデジタル信号処理部であり、前記アンテナは、前記デジタル信号処理部で合成された送信信号それぞれを増幅して対応する前記アンテナ素子に与える複数の増幅器をさらに有していてもよい。
 この場合、ベースバンド部で生成された送信信号の分配から合成までの信号処理をデジタル信号処理によって行うことができるため、当該信号処理をアナログ信号処理によって行う場合と比較して高度な通信制御を行うことができる。
(4) In the wireless communication device, the signal processing unit distributes each of a plurality of digital transmission signals generated by the baseband unit corresponding to each of the plurality of antenna elements, and distributes the plurality of distributed digitals. Is a digital signal processing unit that synthesizes transmission signals corresponding to each antenna element after multiplying each transmission signal by a corresponding component of the weight matrix, and the antenna is a transmission signal synthesized by the digital signal processing unit A plurality of amplifiers may be further provided that amplify each and supply the amplified antenna element to the corresponding antenna element.
In this case, since signal processing from distribution to synthesis of transmission signals generated in the baseband unit can be performed by digital signal processing, advanced communication control can be performed compared to the case where the signal processing is performed by analog signal processing. It can be carried out.
 (5)前記無線通信装置において、前記信号処理部は、前記ベースバンド部で生成された複数のデジタルの送信信号それぞれを前記複数のアンテナ素子それぞれに対応して分配し、分配された複数のデジタルの送信信号それぞれに前記ウェイト行列の対応する成分を乗算した後に各アンテナ素子に対応する送信信号同士を合成するデジタル信号処理部であり、
 前記アンテナよりも前段側に設けられ、複数の送信信号それぞれを増幅する複数の増幅器をさらに備えていてもよい。
 この場合、ベースバンド部で生成された送信信号の分配から合成までの信号処理をデジタル信号処理によって行うことができるため、当該信号処理をアナログ信号処理によって行う場合と比較して高度な通信制御を行うことができる。
(5) In the wireless communication device, the signal processing unit distributes each of the plurality of digital transmission signals generated by the baseband unit corresponding to each of the plurality of antenna elements, and distributes the plurality of distributed digital signals. A digital signal processing unit that synthesizes the transmission signals corresponding to each antenna element after multiplying each transmission signal by a corresponding component of the weight matrix,
A plurality of amplifiers may be further provided that are provided on the front side of the antenna and amplify each of the plurality of transmission signals.
In this case, since signal processing from distribution to synthesis of transmission signals generated in the baseband unit can be performed by digital signal processing, advanced communication control can be performed compared to the case where the signal processing is performed by analog signal processing. It can be carried out.
 (6)前記無線通信装置において、前記ウェイト行列において、前記ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトル同士またはウェイト列ベクトル同士が互いに直交しているのが好ましい。
 ここで、ウェイト行ベクトル同士またはウェイト列ベクトル同士が互いに「直交している」とは、2つのウェイト行ベクトルまたはウェイト列ベクトルの相互相関の和が0になることを意味する。
 この場合、同一の領域向けの複数の送信信号の相互相関を小さくすることができる。
(6) In the wireless communication device, in the weight matrix, it is preferable that weight row vectors or weight column vectors corresponding to a plurality of transmission signals generated in the baseband unit are orthogonal to each other.
Here, the weight row vectors or the weight column vectors are “orthogonal” to each other means that the sum of the cross correlations of the two weight row vectors or weight column vectors becomes zero.
In this case, the cross-correlation of a plurality of transmission signals for the same region can be reduced.
 (7)上記ウェイト行列を、離散フーリエ変換行列に基づいて生成した場合、一のアンテナから送信された複数の送信信号を受信する移動端末は、その受信位置によって特定の送信信号だけを強く受信する場合がある。この場合には送信信号間の電力にばらつきが生じるため、MIMO通信の効果を十分に発揮することができない。
 このため、前記ウェイト行列は、離散コサイン変換行列に基づいて生成されるものであるのが好ましい。この場合、移動端末は、一のアンテナから送信された複数の送信信号をバランス良く受信することができる。これにより、移動端末が複数の送信信号を受信したときに送信信号間の電力はばらつかないため、離散フーリエ変換行列に基づいてウェイト行例を生成する場合に比べてMIMO通信の効果を発揮しやすくなる。
(7) When the weight matrix is generated based on a discrete Fourier transform matrix, a mobile terminal that receives a plurality of transmission signals transmitted from one antenna strongly receives only a specific transmission signal depending on the reception position. There is a case. In this case, since the power between transmission signals varies, the effect of the MIMO communication cannot be exhibited sufficiently.
For this reason, it is preferable that the weight matrix is generated based on a discrete cosine transform matrix. In this case, the mobile terminal can receive a plurality of transmission signals transmitted from one antenna with good balance. As a result, since the power between transmission signals does not vary when the mobile terminal receives a plurality of transmission signals, the effect of MIMO communication is exhibited compared with the case where weight row examples are generated based on the discrete Fourier transform matrix. It becomes easy.
 (8)前記無線通信装置において、前記ウェイト行列における、前記ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトルまたはウェイト列ベクトルの候補として、当該ウェイト行ベクトルまたはウェイト列ベクトルの数よりも多い数のウェイト候補を、前記領域へのビームのチルト角に基づいて選択する選択部と、前記選択部で選択されたウェイト候補のうちから所望の通信品質を満たすウェイト候補を前記ウェイト行ベクトルまたはウェイト列ベクトルとして決定する決定部と、をさらに備えているのが好ましい。 (8) In the wireless communication apparatus, as a weight row vector or weight column vector candidate corresponding to each of a plurality of transmission signals generated in the baseband section in the weight matrix, the weight row vector or weight column vector A selection unit that selects a number of weight candidates greater than the number based on a tilt angle of a beam to the region, and a weight candidate that satisfies a desired communication quality among the weight candidates selected by the selection unit. It is preferable to further include a determination unit that determines a row vector or a weight column vector.
 この場合、選択部において、ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトルまたはウェイト列ベクトルの候補となる多数のウェイト候補を、領域へのビームのチルト角に基づいて選択するため、これらのウェイト候補を容易かつ迅速に絞り込むことができる。また、決定部において、多数のウェイト候補のうちから所望の通信品質を満たすウェイト候補をウェイト行ベクトルまたはウェイト列ベクトルとして決定するため、所望の通信品質を得ることができる。 In this case, the selection unit selects a number of weight candidates that are candidates for weight row vectors or weight column vectors corresponding to each of a plurality of transmission signals generated in the baseband unit, based on the tilt angle of the beam to the region. Therefore, these weight candidates can be narrowed down easily and quickly. Moreover, since the determination unit determines a weight candidate satisfying a desired communication quality from among a large number of weight candidates as a weight row vector or a weight column vector, the desired communication quality can be obtained.
 (9)前記無線通信装置において、前記ウェイト行列における、前記ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトルまたはウェイト列ベクトルの候補として、当該ウェイト行ベクトルまたはウェイト列ベクトルの数よりも多い数のウェイト候補を、前記領域へのビームのチルト角に基づいて選択する選択部と、前記選択部で選択されたウェイト候補のうちから所望の通信品質を満たすウェイト候補を前記ウェイト行ベクトルまたはウェイト列ベクトルとして決定する決定部と、をさらに備え、前記離散コサイン変換行列の行ベクトルまたは列ベクトルは、前記選択部が選択する前記ウェイト候補とされているのが好ましい。 (9) In the wireless communication apparatus, as a weight row vector or weight column vector candidate corresponding to each of a plurality of transmission signals generated in the baseband unit in the weight matrix, the weight row vector or weight column vector A selection unit that selects a number of weight candidates greater than the number based on a tilt angle of a beam to the region, and a weight candidate that satisfies a desired communication quality among the weight candidates selected by the selection unit. A decision unit that decides as a row vector or a weight column vector, and the row vector or column vector of the discrete cosine transform matrix is preferably the weight candidate selected by the selection unit.
 この場合、選択部において、ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトルまたはウェイト列ベクトルの候補となる多数のウェイト候補を、領域へのビームのチルト角に基づいて選択するため、これらのウェイト候補を容易かつ迅速に絞り込むことができる。また、離散コサイン変換行列の行ベクトルまたは列ベクトルは、前記選択部が選択するウェイト候補とされているので、離散コサイン変換行列に基づいてウェイト行列を容易に生成することができる。さらに、決定部において、多数のウェイト候補のうちから所望の通信品質を満たすウェイト候補をウェイト行ベクトルまたはウェイト列ベクトルとして決定するため、所望の通信品質を得ることができる。 In this case, the selection unit selects a number of weight candidates that are candidates for weight row vectors or weight column vectors corresponding to each of a plurality of transmission signals generated in the baseband unit, based on the tilt angle of the beam to the region. Therefore, these weight candidates can be narrowed down easily and quickly. In addition, since the row vector or the column vector of the discrete cosine transform matrix is a weight candidate selected by the selection unit, a weight matrix can be easily generated based on the discrete cosine transform matrix. Furthermore, since the determination unit determines a weight candidate satisfying a desired communication quality from among a large number of weight candidates as a weight row vector or a weight column vector, the desired communication quality can be obtained.
 (10)本発明の実施形態に係るウェイト行列の決定方法は、ベースバンド部で生成された同一の領域向けの複数の送信信号に乗算するウェイト行列の決定方法であって、前記ウェイト行列における、前記ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトルまたはウェイト列ベクトルの候補として、当該ウェイト行ベクトルまたはウェイト列ベクトルの数よりも多い数のウェイト候補を、前記領域へのビームのチルト角に基づいて選択する選択ステップと、前記選択ステップで選択されたウェイト候補のうちから所望の通信品質を満たすウェイト候補を前記ウェイト行ベクトルまたはウェイト列ベクトルとして決定する決定ステップと、を含む。 (10) A method for determining a weight matrix according to an embodiment of the present invention is a method for determining a weight matrix for multiplying a plurality of transmission signals for the same region generated in a baseband unit, in the weight matrix, As a weight row vector or weight column vector candidate corresponding to each of a plurality of transmission signals generated in the baseband unit, a larger number of weight candidates than the number of the weight row vector or weight column vector are assigned to the region. A selection step for selecting based on the tilt angle of the beam, and a determination step for determining, as the weight row vector or the weight column vector, a weight candidate that satisfies a desired communication quality among the weight candidates selected in the selection step. Including.
 上記ウェイト行列の決定方法によれば、選択ステップにおいて、ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトルまたはウェイト列ベクトルの候補となる多数のウェイト候補を、領域へのビームのチルト角に基づいて選択するため、これらのウェイト候補を容易かつ迅速に絞り込むことができる。また、決定ステップにおいて、多数のウェイト候補のうちから所望の通信品質を満たすウェイト候補をウェイト行ベクトルまたはウェイト列ベクトルとして決定するため、所望の通信品質を得ることができる。 According to the weight matrix determination method, in the selection step, a number of weight candidates that are candidates for weight row vectors or weight column vectors corresponding to each of a plurality of transmission signals generated in the baseband unit are transmitted to a region. Since the selection is made based on the tilt angle, the weight candidates can be narrowed down easily and quickly. Further, in the determining step, the weight candidate satisfying the desired communication quality among the many weight candidates is determined as the weight row vector or the weight column vector, so that the desired communication quality can be obtained.
[本発明の実施形態の詳細]
 以下、本発明の実施形態について添付図面に基づき詳細に説明する。
 <無線通信装置の全体構成について>
 図1は、本発明の第1実施形態に係る無線通信装置を示す図である。図中、無線通信装置1は、例えば、LTE(Long Term Evolution)が適用される携帯電話用の無線通信システムにおいて基地局装置として用いられるものであり、携帯電話といった移動端末(図示せず)と無線通信を行う機能を有している。
 図1に示すように、無線通信装置1は、ベースバンド部であるベースバンドユニット(BBU)2と、アンテナシステム3とを備えている。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<Overall configuration of wireless communication device>
FIG. 1 is a diagram illustrating a wireless communication apparatus according to the first embodiment of the present invention. In the figure, a wireless communication device 1 is used as a base station device in a wireless communication system for mobile phones to which LTE (Long Term Evolution) is applied, for example, and is a mobile terminal (not shown) such as a mobile phone. It has a function of performing wireless communication.
As shown in FIG. 1, the wireless communication device 1 includes a baseband unit (BBU) 2 that is a baseband unit, and an antenna system 3.
 ベースバンドユニット2は、当該ベースバンドユニット2から延びる信号伝送路(光伝送路または電気伝送路)4によってアンテナシステム3に接続されている。
 ベースバンドユニット2は、上位ネットワークから与えられる送信データに対してデジタル変調処理を行い、デジタル信号として、同一のセルC(後述)向けの複数の送信ベースバンド信号を生成する機能を有している。
 ベースバンドユニット2は、送信データを変調して得た送信ベースバンド信号(I/Q信号)を信号伝送路4を介してアンテナシステム3に与える。
The baseband unit 2 is connected to the antenna system 3 by a signal transmission path (optical transmission path or electrical transmission path) 4 extending from the baseband unit 2.
The baseband unit 2 has a function of performing digital modulation processing on transmission data given from a higher-level network and generating a plurality of transmission baseband signals for the same cell C (described later) as digital signals. .
The baseband unit 2 gives a transmission baseband signal (I / Q signal) obtained by modulating transmission data to the antenna system 3 via the signal transmission path 4.
 また、ベースバンドユニット2は、アンテナシステム3から信号伝送路4を介して与えられるデジタル信号である受信ベースバンド信号(I/Q信号)を取得し、この受信ベースバンド信号に対してデジタル復調処理を行い受信データを生成する機能を有している。ベースバンドユニット2は、受信ベースバンド信号を復調して得た受信データを上位ネットワークに与える。
 このように、ベースバンドユニット2は、無線通信によって送受信されるデータ及びベースバンド信号に対してデジタル変復調処理等の処理を行う機能を有している。
Further, the baseband unit 2 acquires a reception baseband signal (I / Q signal) which is a digital signal given from the antenna system 3 via the signal transmission path 4, and performs digital demodulation processing on the reception baseband signal. To generate received data. The baseband unit 2 gives the received data obtained by demodulating the received baseband signal to the upper network.
As described above, the baseband unit 2 has a function of performing processing such as digital modulation / demodulation processing on data and baseband signals transmitted and received by wireless communication.
 アンテナシステム3は、支柱5によって上方に支持されている複数(図例では3つ)のアンテナ6を備えている。
 各アンテナ6は、無線通信装置1の周囲を3つに分割したときの内の1つの領域が移動端末との間で通信可能な領域であるセルCとして設定される。
 アンテナシステム3は、3つのアンテナ6を備えることで、移動端末との間で通信可能なセルCを当該アンテナシステム3の周囲に形成する。
The antenna system 3 includes a plurality (three in the illustrated example) of antennas 6 that are supported upward by support columns 5.
Each antenna 6 is set as a cell C in which one area when the periphery of the wireless communication apparatus 1 is divided into three is an area where communication with a mobile terminal is possible.
The antenna system 3 includes the three antennas 6, thereby forming a cell C that can communicate with the mobile terminal around the antenna system 3.
 本実施形態の各アンテナ6は、後述するように、複数のアンテナ素子を備えており、各アンテナ素子によって送信される信号それぞれの位相や利得を調整することによって、当該アンテナ6のチルト角(指向性)を制御することができる。これにより、各アンテナ6は、同一の領域(セル)に向けて互いに異なるチルト角で、アンテナ6から遠ざかる方向に沿って複数(図例では2つ)の送信信号を送信することができる。
 なお、本実施形態における「領域」はセクタ分割なしの単一のセルCとされているが、単一のセルCを複数のセクタに分割している場合には単一のセクタを「領域」としても良い。すなわち、「領域」は、無線通信装置1と無線通信を行う移動端末がハンドオーバーせずに移動できる領域であれば良い。
As will be described later, each antenna 6 of the present embodiment includes a plurality of antenna elements, and the tilt angle (directivity) of the antenna 6 is adjusted by adjusting the phase and gain of each signal transmitted by each antenna element. Control). Thereby, each antenna 6 can transmit a plurality (two in the illustrated example) of transmission signals along the direction away from the antenna 6 at different tilt angles toward the same region (cell).
The “area” in the present embodiment is a single cell C without sector division. However, when the single cell C is divided into a plurality of sectors, the single sector is designated as “area”. It is also good. That is, the “area” may be an area where a mobile terminal that performs radio communication with the radio communication apparatus 1 can move without handover.
 <アンテナシステムの構成について>
 図2は、第1実施形態に係るアンテナシステム3の送信側の構成を示したブロック図である。本実施形態におけるアンテナシステム3は、送信信号の分配、位相調整および合成等の信号処理をアナログ信号処理によって行うように構成されたアクティブアンテナシステムからなる。
 アンテナシステム3は、デジタル信号処理部10と、アナログ信号処理部7と、アンテナ6とを備えている。アンテナ6は、複数(図例では6つ)のアンテナ素子9と、これらのアンテナ素子9それぞれに対応する複数(図例では6つ)の電力増幅器18とを有している。
<About the antenna system configuration>
FIG. 2 is a block diagram showing a configuration on the transmission side of the antenna system 3 according to the first embodiment. The antenna system 3 in the present embodiment includes an active antenna system configured to perform signal processing such as transmission signal distribution, phase adjustment, and synthesis by analog signal processing.
The antenna system 3 includes a digital signal processing unit 10, an analog signal processing unit 7, and an antenna 6. The antenna 6 includes a plurality (six in the illustrated example) of antenna elements 9 and a plurality (six in the illustrated example) of power amplifiers 18 corresponding to the respective antenna elements 9.
 デジタル信号処理部10は、同一の領域向けの複数(図例では2つ)の送信ベースバンド信号がベースバンドユニット2から与えられる。以下、これら2つの送信ベースバンド信号のうち、一方を第1送信ベースバンド信号、他方を第2送信ベースバンド信号ともいう。
 デジタル信号処理部10は、第1送信ベースバンド信号及び第2送信ベースバンド信号に対し必要に応じてデジタル信号処理を行った後、これら送信ベースバンド信号をアナログ信号処理部7に与える。
The digital signal processing unit 10 is provided with a plurality (two in the illustrated example) of transmission baseband signals for the same region from the baseband unit 2. Hereinafter, one of these two transmission baseband signals is also referred to as a first transmission baseband signal, and the other is also referred to as a second transmission baseband signal.
The digital signal processing unit 10 performs digital signal processing on the first transmission baseband signal and the second transmission baseband signal as necessary, and then supplies the transmission baseband signal to the analog signal processing unit 7.
 アナログ信号処理部7は、デジタル信号処理部10から与えられる複数の送信信号それぞれを複数のアンテナ素子9それぞれに対応して分配し、分配された複数の送信信号それぞれに、利得調整や位相調整を利用してウェイト行列(後述)の対応する成分を乗算した後に各アンテナ素子9に対応する送信信号同士を合成する信号処理部として機能する。
 アナログ信号処理部7は、複数のデジタルアナログ変換器11と、複数のアップコンバータ12と、分配器14と、複数の可変減衰器15と、複数の移相器16と、複数の合成器17とを備えている。
The analog signal processing unit 7 distributes each of the plurality of transmission signals given from the digital signal processing unit 10 corresponding to each of the plurality of antenna elements 9, and performs gain adjustment and phase adjustment on each of the plurality of distributed transmission signals. It functions as a signal processing unit that synthesizes transmission signals corresponding to the antenna elements 9 after multiplying corresponding components of a weight matrix (described later).
The analog signal processing unit 7 includes a plurality of digital-analog converters 11, a plurality of up-converters 12, a distributor 14, a plurality of variable attenuators 15, a plurality of phase shifters 16, and a plurality of synthesizers 17. It has.
 デジタルアナログ変換器11は、2つの送信ベースバンド信号それぞれに対応して一対設けられている。一方のデジタルアナログ変換器11aには、デジタル信号処理部10から第1送信ベースバンド信号が与えられ、他方のデジタルアナログ変換器11bには、デジタル信号処理部10から第2送信ベースバンド信号が与えられる。 A pair of digital-analog converters 11 is provided corresponding to each of the two transmission baseband signals. One digital-to-analog converter 11a is supplied with a first transmission baseband signal from the digital signal processing unit 10, and the other digital-to-analog converter 11b is supplied with a second transmission baseband signal from the digital signal processing unit 10. It is done.
 デジタルアナログ変換器11aは、デジタル信号である第1送信ベースバンド信号をアナログ信号に変換する機能を有している。また、デジタルアナログ変換器11bは、デジタル信号である第2送信ベースバンド信号をアナログ信号に変換する機能を有している。
 デジタルアナログ変換器11(11a、11b)は、アナログ信号に変換した第1送信ベースバンド信号および第2送信ベースバンド信号をアップコンバータ12に与える。
The digital-analog converter 11a has a function of converting the first transmission baseband signal, which is a digital signal, into an analog signal. The digital-analog converter 11b has a function of converting the second transmission baseband signal, which is a digital signal, into an analog signal.
The digital-analog converter 11 (11a, 11b) supplies the first transmission baseband signal and the second transmission baseband signal converted into analog signals to the up-converter 12.
 アップコンバータ12は、一対のデジタルアナログ変換器11それぞれに対応して一対設けられている。一方のアップコンバータ12aには、アナログ信号に変換された第1送信ベースバンド信号が与えられ、他方のアップコンバータ12bには、アナログ信号に変換された第2送信ベースバンド信号が与えられる。 A pair of up-converters 12 are provided corresponding to each of the pair of digital-analog converters 11. One upconverter 12a is supplied with a first transmission baseband signal converted into an analog signal, and the other upconverter 12b is supplied with a second transmission baseband signal converted into an analog signal.
 アップコンバータ12aは、発振器13が生成する無線周波数のローカル信号を第1送信ベースバンド信号に乗算することで第1送信ベースバンド信号を無線周波数の信号(第1無線周波数信号)に変換(アップコンバート)する機能を有している。
 アップコンバータ12bは、発振器13が生成する無線周波数のローカル信号を第2送信ベースバンド信号に乗算することで第2送信ベースバンド信号を無線周波数の信号(第2無線周波数信号)に変換(アップコンバート)する機能を有している。
 アップコンバータ12(12a、12b)は、第1送信ベースバンド信号を周波数変換することにより得た第1無線周波数信号、および第2送信ベースバンド信号を周波数変換することにより得た第2無線周波数信号を分配器14に与える。
The up-converter 12a multiplies the first transmission baseband signal by the radio frequency local signal generated by the oscillator 13 to convert the first transmission baseband signal into a radio frequency signal (first radio frequency signal) (up-conversion). ) Function.
The up-converter 12b multiplies the second transmission baseband signal by the radio frequency local signal generated by the oscillator 13 to convert the second transmission baseband signal into a radio frequency signal (second radio frequency signal) (up-conversion). ) Function.
The up-converter 12 (12a, 12b) includes a first radio frequency signal obtained by frequency-converting the first transmission baseband signal and a second radio frequency signal obtained by frequency-converting the second transmission baseband signal. Is applied to the distributor 14.
 分配器14は、一対のデジタルアナログ変換器11それぞれに対応して一対設けられている。一方の分配器14aには、アップコンバータ12aから第1無線周波数信号が与えられ、他方の分配器14bには、アップコンバータ12bから第2無線周波数信号が与えられる。 A pair of distributors 14 is provided corresponding to each of the pair of digital-analog converters 11. One distributor 14a is supplied with the first radio frequency signal from the up converter 12a, and the other distributor 14b is supplied with the second radio frequency signal from the up converter 12b.
 分配器14aは、第1無線周波数信号を複数のアンテナ素子9それぞれに対応して複数に分配する。
 また、分配器14bは、第2無線周波数信号を複数のアンテナ素子9それぞれに対応して複数に分配する。
 本実施形態において、アンテナ6はアンテナ素子9を6つ備えているので、分配器14a、14bは、アップコンバータ12から与えられる無線周波数信号を6つに分配する。
The distributor 14a distributes the first radio frequency signal into a plurality of parts corresponding to the plurality of antenna elements 9 respectively.
The distributor 14b distributes the second radio frequency signal to a plurality of antenna elements 9 corresponding to each of the plurality of antenna elements 9.
In this embodiment, since the antenna 6 includes six antenna elements 9, the distributors 14a and 14b distribute the radio frequency signal supplied from the up-converter 12 to six.
 複数の合成器17は、両分配器14a、14bの後段に設けられている。合成器17は、複数のアンテナ素子9それぞれに対応して複数(6つ)設けられている。各合成器17は、複数の移相器16および複数の可変減衰器15を介して各分配器14に接続されている。 A plurality of synthesizers 17 are provided in the subsequent stage of both distributors 14a and 14b. A plurality (six) of combiners 17 are provided corresponding to each of the plurality of antenna elements 9. Each combiner 17 is connected to each distributor 14 via a plurality of phase shifters 16 and a plurality of variable attenuators 15.
 両分配器14a、14bによって分配された無線周波数信号は、可変減衰器15による利得調整、および移相器16による位相調整が行われた後、合成器17に与えられる。 The radio frequency signals distributed by both distributors 14a and 14b are given to the combiner 17 after gain adjustment by the variable attenuator 15 and phase adjustment by the phase shifter 16.
 各合成器17には、分配器14a、14bによって分配された無線周波数信号のうち、互いに同一のアンテナ素子に対応して分配された無線周波数信号が与えられる。
 各合成器17は、互いに同一のアンテナ素子に対応して分配された無線周波数信号同士を合成するように構成されている。
Among the radio frequency signals distributed by the distributors 14a and 14b, each of the combiners 17 is given a radio frequency signal distributed corresponding to the same antenna element.
Each combiner 17 is configured to synthesize radio frequency signals distributed corresponding to the same antenna element.
 例えば、図2中、紙面上最も上側に位置する合成器17は、紙面上最も上側に位置するアンテナ素子9に対応して設けられている。この紙面上最も上側に位置する合成器17には、分配器14aにより紙面上最も上側に位置するアンテナ素子9に対応して分配された無線周波数信号と、分配器14bにより紙面上最も上側に位置するアンテナ素子9に対応して分配された無線周波数信号とが与えられる。 For example, in FIG. 2, the synthesizer 17 located at the uppermost position on the paper surface is provided corresponding to the antenna element 9 positioned at the uppermost position on the paper surface. The synthesizer 17 located on the uppermost side of the paper surface includes a radio frequency signal distributed corresponding to the antenna element 9 located on the uppermost side of the paper surface by the distributor 14a and the uppermost position on the paper surface by the distributor 14b. And a radio frequency signal distributed corresponding to the antenna element 9 to be transmitted.
 このように、各合成器17には、同一のアンテナ素子9に対応する信号同士である、分配器14aからの無線周波数信号と、分配器14bからの無線周波数信号とが与えられる。
 各合成器17は、これら同一のアンテナ素子9に対応する無線周波数信号同士を合成し、その合成信号を出力する。
Thus, each synthesizer 17 is provided with the radio frequency signal from the distributor 14a and the radio frequency signal from the distributor 14b, which are signals corresponding to the same antenna element 9.
Each combiner 17 combines the radio frequency signals corresponding to these same antenna elements 9 and outputs the combined signal.
 各合成器17が出力する合成信号は、アンテナ6の電力増幅器18に与えられ、当該電力増幅器18によって増幅された後、アンテナ素子9に与えられる。
 各アンテナ素子9に与えられた合成信号は、各アンテナ素子9から空間に放射され、無線信号として送信される。
The combined signal output from each combiner 17 is supplied to the power amplifier 18 of the antenna 6, amplified by the power amplifier 18, and then supplied to the antenna element 9.
The combined signal given to each antenna element 9 is radiated into the space from each antenna element 9 and transmitted as a radio signal.
 複数の可変減衰器15は、分配器14の後段であって、分配器14と移相器16との間に設けられている。複数の可変減衰器15は、一方の分配器14aと移相器16との間に接続された複数の第1可変減衰器15aと、他方の分配器14bと移相器16との間に接続された複数の第2可変減衰器15bとを含んでいる。
 第1可変減衰器15aおよび第2可変減衰器15bは、いずれも複数のアンテナ素子9それぞれに対応して複数(6つ)設けられている。
The plurality of variable attenuators 15 are provided after the distributor 14 and between the distributor 14 and the phase shifter 16. The plurality of variable attenuators 15 are connected between the plurality of first variable attenuators 15 a connected between one distributor 14 a and the phase shifter 16, and between the other distributor 14 b and the phase shifter 16. A plurality of second variable attenuators 15b.
A plurality (six) of first variable attenuators 15a and second variable attenuators 15b are provided corresponding to the plurality of antenna elements 9, respectively.
 複数の第1可変減衰器15aには、一方の分配器14aによって分配された第1無線周波数信号が与えられる。
 複数の第1可変減衰器15aは、分配器14aによって分配された第1無線周波数信号それぞれに対して利得調整を行う。
The plurality of first variable attenuators 15a is provided with the first radio frequency signal distributed by one distributor 14a.
The plurality of first variable attenuators 15a perform gain adjustment for each of the first radio frequency signals distributed by the distributor 14a.
 複数の第2可変減衰器15bには、他方の分配器14bによって分配された第2無線周波数信号が与えられる。
 複数の第2可変減衰器15bは、分配器14bによって分配された第2無線周波数信号それぞれに対して利得調整を行う。
 このように、可変減衰器15は、複数のアンテナ素子9における複数の送信信号(第1無線周波数信号および第2無線周波数信号)ごとに利得調整を行う。
The plurality of second variable attenuators 15b are supplied with the second radio frequency signal distributed by the other distributor 14b.
The plurality of second variable attenuators 15b perform gain adjustment on each of the second radio frequency signals distributed by the distributor 14b.
Thus, the variable attenuator 15 performs gain adjustment for each of the plurality of transmission signals (the first radio frequency signal and the second radio frequency signal) in the plurality of antenna elements 9.
 複数の移相器16は、分配器14よりも後段であって、可変減衰器15と合成器17との間に設けられている。複数の移相器16は、第1可変減衰器15aと各合成器17との間に接続された複数の第1移相器16aと、第2可変減衰器15bと各合成器17との間に接続された複数の第2移相器16bとを含んでいる。第1移相器16aおよび第2移相器16bは、いずれも複数のアンテナ素子9それぞれに対応して複数(6つ)設けられている。また、第1移相器16aおよび第2移相器16bは、半導体スイッチによって線路を切り替えるように構成された半導体移相器からなる。 The plurality of phase shifters 16 are provided after the distributor 14 and between the variable attenuator 15 and the combiner 17. The plurality of phase shifters 16 include a plurality of first phase shifters 16 a connected between the first variable attenuator 15 a and each combiner 17, a second variable attenuator 15 b, and each combiner 17. And a plurality of second phase shifters 16b connected to each other. A plurality (six) of first phase shifters 16a and second phase shifters 16b are provided corresponding to the plurality of antenna elements 9, respectively. Further, the first phase shifter 16a and the second phase shifter 16b are formed of a semiconductor phase shifter configured to switch a line by a semiconductor switch.
 複数の第1移相器16aには、第1可変減衰器15aによって利得調整された第1無線周波数信号が与えられる。
 複数の第1移相器16aは、第1可変減衰器15aによって利得調整された第1無線周波数信号それぞれに対して位相調整を行う。これによって、複数の第1移相器16aは、第1無線周波数信号が複数のアンテナ素子9のそれぞれから送信されたときの当該アンテナ素子9のチルト角(指向性)を制御することができる。
The plurality of first phase shifters 16a are supplied with the first radio frequency signal whose gain is adjusted by the first variable attenuator 15a.
The plurality of first phase shifters 16a perform phase adjustment for each of the first radio frequency signals whose gains are adjusted by the first variable attenuator 15a. Accordingly, the plurality of first phase shifters 16a can control the tilt angle (directivity) of the antenna element 9 when the first radio frequency signal is transmitted from each of the plurality of antenna elements 9.
 複数の第2移相器16bには、第2可変減衰器15bによって利得調整された第2無線周波数信号が与えられる。
 複数の第2移相器16bは、第2可変減衰器15bによって利得調整された第2無線周波数信号それぞれに対して位相調整を行う。これによって、複数の第2移相器16bは、第2無線周波数信号が複数のアンテナ素子9のそれぞれから送信されたときの当該アンテナ素子9のチルト角(指向性)を制御することができる。
The plurality of second phase shifters 16b are provided with the second radio frequency signal whose gain is adjusted by the second variable attenuator 15b.
The plurality of second phase shifters 16b perform phase adjustment on each of the second radio frequency signals whose gains are adjusted by the second variable attenuator 15b. Thus, the plurality of second phase shifters 16b can control the tilt angle (directivity) of the antenna element 9 when the second radio frequency signal is transmitted from each of the plurality of antenna elements 9.
 複数の第1移相器16aおよび複数の第2移相器16bは、第1無線周波数信号を複数のアンテナ素子9から送信する際のチルト角と、第2無線周波数信号を複数のアンテナ素子9から送信する際のチルト角とが互いに異なるように位相調整を行う。 The plurality of first phase shifters 16 a and the plurality of second phase shifters 16 b include the tilt angle when the first radio frequency signal is transmitted from the plurality of antenna elements 9, and the second radio frequency signal is transmitted to the plurality of antenna elements 9. The phase adjustment is performed so that the tilt angles at the time of transmission are different from each other.
 このように、移相器16は、複数のアンテナ素子9における複数の送信信号(第1無線周波数信号及び第2無線周波数信号)ごとのチルト角(指向性)が当該複数の送信信号それぞれに対応するチルト角となるように、複数の送信信号(第1無線周波数信号及び第2無線周波数信号)ごとに位相調整を行う。 As described above, the phase shifter 16 has a tilt angle (directivity) for each of the plurality of transmission signals (the first radio frequency signal and the second radio frequency signal) in the plurality of antenna elements 9 corresponding to each of the plurality of transmission signals. The phase adjustment is performed for each of the plurality of transmission signals (the first radio frequency signal and the second radio frequency signal) so as to obtain a tilt angle.
 以上のように、分配器14aによって分配された第1無線周波数信号と、分配器14bによって分配された第2無線周波数信号とは、それぞれ可変減衰器15による利得調整および移相器16による位相調整が行われた後、各合成器17に与えられる。
 各合成器17は、これら同一のアンテナ素子9に対応する第1無線周波数信号および第2無線周波数信号を合成し、合成信号を出力する。
As described above, the first radio frequency signal distributed by the distributor 14a and the second radio frequency signal distributed by the distributor 14b are respectively adjusted in gain by the variable attenuator 15 and phase adjusted by the phase shifter 16. Is applied to each synthesizer 17.
Each combiner 17 combines the first radio frequency signal and the second radio frequency signal corresponding to the same antenna element 9 and outputs a combined signal.
 各合成器17が出力する合成信号は、アンテナ6の電力増幅器18により増幅されて各アンテナ素子9に与えられ、各アンテナ素子9から無線信号として送信される。各アンテナ素子9は、第1無線周波数信号と第2無線周波数信号とを合成した合成信号を送信することによって、第1無線周波数信号と第2無線周波数信号とを送信することができる。 The combined signal output from each combiner 17 is amplified by the power amplifier 18 of the antenna 6 and given to each antenna element 9, and transmitted from each antenna element 9 as a radio signal. Each antenna element 9 can transmit the first radio frequency signal and the second radio frequency signal by transmitting a synthesized signal obtained by synthesizing the first radio frequency signal and the second radio frequency signal.
 各アンテナ素子9から送信される第1無線周波数信号は、複数の第1移相器16aによるチルト角の制御によって送信される。
 また、各アンテナ素子9から送信される第2無線周波数信号は、複数の第2移相器16bによるチルト角を、複数の第1移相器16aによるチルト角とは異なるように制御されて送信される。
 これによって、アンテナシステム3は、同一の領域に向けて互いに異なるチルト角で複数の送信信号を送信することができる。
The first radio frequency signal transmitted from each antenna element 9 is transmitted by controlling the tilt angle by the plurality of first phase shifters 16a.
Further, the second radio frequency signal transmitted from each antenna element 9 is transmitted by controlling the tilt angle by the plurality of second phase shifters 16b to be different from the tilt angle by the plurality of first phase shifters 16a. Is done.
Thereby, the antenna system 3 can transmit a plurality of transmission signals at different tilt angles toward the same region.
 <無線通信装置の制御構成について>
 図3は、無線通信装置1の制御構成を示すブロック図である。
 無線通信装置1は、複数の可変減衰器15および複数の移相器16をそれぞれ個別に制御する制御部30を備えている。
 制御部30は、CPUや記憶部等を含むコンピュータによって構成されており、記憶部に記憶されたプログラム等を読み出して以下に説明する当該制御部30が有する各機能部を実現するとともに各種処理を実行する機能を有している。
<Regarding control configuration of wireless communication device>
FIG. 3 is a block diagram illustrating a control configuration of the wireless communication device 1.
The wireless communication device 1 includes a control unit 30 that individually controls the plurality of variable attenuators 15 and the plurality of phase shifters 16.
The control unit 30 is configured by a computer including a CPU, a storage unit, and the like. The control unit 30 reads out a program stored in the storage unit, realizes each functional unit of the control unit 30 described below, and performs various processes. Has the function to execute.
 制御部30は、ベースバンドユニット2に接続されており、ベースバンドユニット2から各アンテナ素子9のチルト角を変更する制御命令や搬送波周波数を含む制御情報を受ける。
 制御部30は、ベースバンドユニット2から受けた制御情報に基づいて、分配器14により分配された複数の無線周波数信号に乗算するウェイト行列を決定する機能を有している。そして、制御部30は、決定されたウェイト行列の各成分を分配器14により分配された複数の無線周波数信号に乗算するために、当該各成分に基づいて対応する可変減衰器15および移相器16を制御する機能を有している。
The control unit 30 is connected to the baseband unit 2 and receives control information including a control command for changing the tilt angle of each antenna element 9 and a carrier frequency from the baseband unit 2.
The control unit 30 has a function of determining a weight matrix to be multiplied by the plurality of radio frequency signals distributed by the distributor 14 based on the control information received from the baseband unit 2. Then, the control unit 30 multiplies a plurality of radio frequency signals distributed by the distributor 14 by each component of the determined weight matrix, so that the corresponding variable attenuator 15 and phase shifter based on each component 16 is controlled.
 ベースバンドユニット2から与えられる無線周波数信号をx、アンテナ素子9から放射される送信信号をyとすると、各信号x,yとウェイト行列wとの関係は、下記式(1)のように表される。
 y=wHx  ・・・(1)
 ここで、上付のHは、複素共役転置を表す。
When the radio frequency signal given from the baseband unit 2 is x and the transmission signal radiated from the antenna element 9 is y, the relationship between each signal x, y and the weight matrix w is expressed by the following equation (1). Is done.
y = w H x (1)
Here, the superscript H represents a complex conjugate transpose.
 本実施形態のウェイト行列wは、離散コサイン変換(Discrete Cosine Transform;DCT)行列Bに基づいて生成される。このDCT行列Bは、送信信号yの数をNとすると、N行N列(N×N)の行例で表される。DCT行列Bのm行n列の成分Bmnは、下記式(2)及び式(3)のように表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、式(2)はn=1の場合、式(3)はn≠1の場合をそれぞれ示す。
The weight matrix w of this embodiment is generated based on a Discrete Cosine Transform (DCT) matrix B. This DCT matrix B is represented by a row example of N rows and N columns (N × N), where N is the number of transmission signals y. A component B mn of m rows and n columns of the DCT matrix B is expressed by the following equations (2) and (3).
Figure JPOXMLDOC01-appb-M000001
Here, equation (2) shows a case where n = 1, and equation (3) shows a case where n ≠ 1.
 ウェイト行列wは、無線周波数信号xの数をMとすると、DCT行列BのN個の行ベクトルのうちから選択して決定されたM個の行ベクトルにより構成されている。すなわち、ウェイト行列wは、M行N列(M×N)の行列で表される。式(1)を行列表現すると、下記式(4)のように表される。
Figure JPOXMLDOC01-appb-M000002
The weight matrix w includes M row vectors selected and determined from N row vectors of the DCT matrix B, where M is the number of radio frequency signals x. That is, the weight matrix w is represented by a matrix of M rows and N columns (M × N). When Expression (1) is expressed as a matrix, it is expressed as Expression (4) below.
Figure JPOXMLDOC01-appb-M000002
 本実施形態では、ベースバンドユニット2から与えられる無線周波数信号の数(M)は2つであり、アンテナ素子9から放射される送信信号の数(N)は6つであるため、式(4)は下記式(5)のように表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、xは第1無線周波数信号、xは第2無線周波数信号を表している。
In the present embodiment, the number (M) of radio frequency signals given from the baseband unit 2 is two, and the number (N) of transmission signals radiated from the antenna element 9 is six. ) Is represented by the following formula (5).
Figure JPOXMLDOC01-appb-M000003
Here, x 1 is the first radio frequency signal, x 2 represents the second radio frequency signal.
 本実施形態のウェイト行列wにおいて、一方のウェイト行ベクトルw1(w11・・・w16)の各成分は、分配器14aにより分配された6つの第1無線周波数信号それぞれに乗算される。すなわち、制御部30は、ウェイト行ベクトルw1(w11・・・w16)の各成分に基づいて、対応する可変減衰器15aおよび移相器16aを制御する。
 例えば、制御部30は、図3中、紙面上最も上側に分配された第1無線周波数信号には、ウェイト行ベクトルw1(w11・・・w16)の一の成分w11を乗算するために、紙面上最も上側に位置する可変減衰器15aおよび移相器16aを成分w11に基づいて制御する。
In the weight matrix w of the present embodiment, each component of one weight row vector w 1 (w 11 ... W 16 ) is multiplied by each of the six first radio frequency signals distributed by the distributor 14a. That is, the control unit 30 controls the corresponding variable attenuator 15a and phase shifter 16a based on each component of the weight row vector w 1 (w 11 ... W 16 ).
For example, the control unit 30 multiplies the first radio frequency signal distributed to the uppermost side in FIG. 3 by one component w 11 of the weight row vector w 1 (w 11 ... W 16 ). in order to control on the basis of the variable attenuator 15a and the phase shifter 16a located most on the upper side in the component w 11.
 また、本実施形態のウェイト行列wにおいて、他方のウェイト行ベクトルw2(w21・・・w26)の各成分は、分配器14bにより分配された6つの第2無線周波数信号それぞれに乗算される。すなわち、制御部30は、ウェイト行ベクトルw2(w21・・・w26)の各成分に基づいて、対応する可変減衰器15bおよび移相器16bを制御する。
 例えば、制御部30は、図3中、紙面上最も下側に分配された第2無線周波数信号には、ウェイト行ベクトルw2(w21・・・w26)の一の成分w26を乗算するために、紙面上最も下側に位置する可変減衰器15bおよび移相器16bを成分w26に基づいて制御する。
In the weight matrix w of the present embodiment, each component of the other weight row vector w 2 (w 21 ... W 26 ) is multiplied by each of the six second radio frequency signals distributed by the distributor 14b. The That is, the control unit 30 controls the corresponding variable attenuator 15b and phase shifter 16b based on each component of the weight row vector w 2 (w 21 ... W 26 ).
For example, the control unit 30 multiplies the second radio frequency signal distributed to the lowermost side in FIG. 3 by one component w 26 of the weight row vector w 2 (w 21 ... W 26 ). to be controlled based on the variable attenuator 15b and the phase shifter 16b located on paper lowermost in component w 26.
 ウェイト行列wのウェイト行ベクトルw1(w11・・・w16)とウェイト行ベクトルw2(w21・・・w26)とは互いに直交している。すなわち、制御部30は、2つのウェイト行ベクトルw1,w2同士が互いに直交するように、複数の可変減衰器15および複数の移相器16を制御している。ここで、「直交している」とは、2つのウェイト行ベクトルw1,w2の相互相関の和が0になることを意味する。
 なお、本実施形態のウェイト行列wは、ウェイト行ベクトルを無線周波数信号に乗算するように設定されているが、ウェイト列ベクトルを乗算するように設定されていても良い。
The weight row vector w 1 (w 11 ... W 16 ) and the weight row vector w 2 (w 21 ... W 26 ) of the weight matrix w are orthogonal to each other. That is, the control unit 30 controls the plurality of variable attenuators 15 and the plurality of phase shifters 16 so that the two weight row vectors w 1 and w 2 are orthogonal to each other. Here, “perpendicular” means that the sum of the cross-correlation between the two weight row vectors w 1 and w 2 becomes zero.
The weight matrix w of the present embodiment is set to multiply the radio frequency signal by the weight row vector, but may be set to multiply the weight column vector.
<ウェイト行列の決定について>
 図3において、制御部30は、ウェイト行列wの各ウェイト行ベクトルw1,w2の候補として複数のウェイト候補を選択する選択部31と、選択されたウェイト候補のうちからウェイト行ベクトルw1,w2を決定する決定部32とを有している。
<Determination of weight matrix>
3, the control unit 30, each weight row vector w 1 of the weight matrix w, w a selection unit 31 for selecting a plurality of weight candidates as second candidate, the weight row vector w 1 from among the selected weights candidates , W 2 .
 選択部31は、記憶部に予め記憶されている複数のウェイト候補(ここではウェイト行ベクトル)のうちから、ウェイト行列wのウェイト行ベクトルの数よりも多い数のウェイト候補を選択する機能を有している。その際、選択部31は、ベースバンドユニット2から受けた制御情報に含まれる領域(セルC)へのビームのチルト角に基づいてウェイト候補を選択する。 The selection unit 31 has a function of selecting a larger number of weight candidates than the number of weight row vectors of the weight matrix w from among a plurality of weight candidates (here, weight row vectors) stored in advance in the storage unit. is doing. At that time, the selection unit 31 selects weight candidates based on the tilt angle of the beam toward the region (cell C) included in the control information received from the baseband unit 2.
 本実施形態では、アンテナ素子9のチルト角が真上方向から真下方向までの180度の角度範囲に対応する、離散コサイン変換行列BのN個(6つ)の行ベクトルが、ウェイト候補として記憶部に予め記憶されている。選択部31は、これら6個のウェイト候補のうちから、領域(セルC)へのビームのチルト角に近い角度範囲に対応するウェイト候補に絞り込んで選択する。その際、選択部31は、ウェイト行列wのウェイト行ベクトルの数(2個)よりも多い数となるように3個以上のウェイト候補を選択する。 In the present embodiment, N (six) row vectors of the discrete cosine transform matrix B corresponding to an angle range of 180 degrees from the upward direction to the downward direction of the tilt angle of the antenna element 9 are stored as weight candidates. Previously stored in the unit. The selection unit 31 selects and selects weight candidates corresponding to an angle range close to the tilt angle of the beam to the region (cell C) from these six weight candidates. At that time, the selection unit 31 selects three or more weight candidates so that the number is larger than the number of weight row vectors (two) in the weight matrix w.
 なお、記憶部に記憶されている全てのウェイト候補は、互いに直交するように下記式(6)の関係を満たしている。
Figure JPOXMLDOC01-appb-M000004
Note that all weight candidates stored in the storage unit satisfy the relationship of the following formula (6) so as to be orthogonal to each other.
Figure JPOXMLDOC01-appb-M000004
 制御部30の決定部32は、選択部31で選択された複数のウェイト候補のうちから、所望の通信品質を満たすウェイト候補を、ウェイト行列wの各ウェイト行ベクトルw1,w2として決定する機能を有している。
 具体的には、決定部32は、まず選択された複数のウェイト候補のうちから、任意の2個のウェイト候補を2つのウェイト行ベクトルw1,w2として実際に無線通信を行うことによって、その通信品質を判定する。
The determination unit 32 of the control unit 30 determines weight candidates satisfying a desired communication quality among the plurality of weight candidates selected by the selection unit 31 as the weight row vectors w 1 and w 2 of the weight matrix w. It has a function.
Specifically, the determination unit 32 first performs wireless communication using two arbitrary weight candidates as two weight row vectors w 1 and w 2 from among a plurality of selected weight candidates, The communication quality is determined.
 通信品質の判定は、選択された複数のウェイト候補のうち2個一組として組み合わせ可能な全ての組について繰り返し行われる。
 そして、決定部32は、最も所望の通信品質を満たす一組をウェイト行ベクトルw1,w2として決定する。
The determination of the communication quality is repeatedly performed for all combinations that can be combined as a set of two of the selected plurality of weight candidates.
Then, the determination unit 32 determines a set that satisfies the most desired communication quality as the weight row vectors w 1 and w 2 .
 図4は、制御部30が実行するウェイト行列wの決定手順を示すフローチャートである。
 まず、制御部30の選択部31は、第1無線周波数信号および第2無線周波数信号それぞれに対応するウェイト行ベクトルw1,w2の候補として、離散コサイン変換行列BのN個の行ベクトルから、ウェイト行ベクトルw1,w2の数よりも多いk個のウェイト候補を、ビームのチルト角に基づいて選択する(ステップS1、選択ステップ)。
FIG. 4 is a flowchart showing a procedure for determining the weight matrix w executed by the control unit 30.
First, the selection unit 31 of the control unit 30 uses N row vectors of the discrete cosine transform matrix B as candidates for the weight row vectors w 1 and w 2 corresponding to the first radio frequency signal and the second radio frequency signal, respectively. , K weight candidates larger than the number of weight row vectors w 1 and w 2 are selected based on the tilt angle of the beam (step S1, selection step).
 次に、制御部30の決定部32は、初期設定として、変数i=1に設定した後(ステップS2)、変数j=i+1に設定する(ステップS3)。そして、決定部32は、選択されたウェイト候補のうちから2個一組のウェイト候補であるウェイト行ベクトルwi,wjを仮のウェイト行ベクトルw1,w2としてセットする(ステップS4)。 Next, the determination unit 32 of the control unit 30 sets the variable i = 1 as an initial setting (step S2) and then sets the variable j = i + 1 (step S3). Then, the determination unit 32 sets weight row vectors w i and w j that are a set of two weight candidates from the selected weight candidates as temporary weight row vectors w 1 and w 2 (step S4). .
 次に、決定部32は、ウェイト行ベクトルwi,wjに基づいて、対応する可変減衰器15および移相器16を制御し、実際に無線通信を行って通信品質を判定する(ステップS5)。その後、決定部32は、変数j=kであるか否かを判定する(ステップS6)。 Next, the determination unit 32 controls the corresponding variable attenuator 15 and phase shifter 16 based on the weight row vectors w i and w j and actually performs wireless communication to determine the communication quality (step S5). ). Thereafter, the determination unit 32 determines whether or not the variable j = k (step S6).
 ステップS6の判定結果が否定的である場合、決定部32は、変数j=j+1に設定した後(ステップS7)、ステップS4に戻る。
 一方、ステップS6の判定結果が肯定的である場合、決定部32は、変数i=i+1に設定した後(ステップS8)、変数i=kであるか否かを判定する(ステップS9)。
When the determination result of step S6 is negative, the determination unit 32 sets the variable j = j + 1 (step S7), and then returns to step S4.
On the other hand, if the determination result of step S6 is affirmative, the determination unit 32 determines whether or not the variable i = k after setting the variable i = i + 1 (step S8) (step S9).
 ステップS9の判定結果が否定的である場合、決定部32はステップS3に戻る。
 一方、ステップS9の判定結果が肯定的である場合、すなわち、選択されたk個のウェイト候補のうち2個一組として組み合わせ可能な全ての組についての通信品質の判定が終了すると、決定部32は、最も所望の通信品質を満たすウェイト候補の組を、ウェイト行列wのウェイト行ベクトルw1,w2として決定する(ステップS10、決定ステップ)。
When the determination result of step S9 is negative, the determination unit 32 returns to step S3.
On the other hand, when the determination result in step S9 is affirmative, that is, when the determination of the communication quality for all the combinations that can be combined as two sets of the selected k weight candidates is completed, the determination unit 32 Determines a set of weight candidates satisfying the most desired communication quality as weight row vectors w 1 and w 2 of the weight matrix w (step S10, determination step).
 <変形例について>
 本実施形態のウェイト行列wは、DCT行列に基づいて生成されているが、離散フーリエ変換(Discrete Fourier Transform;DFT)行列に基づいて生成されていても良い。この場合、DFT行列B’のm行n列の成分B’mnは、下記式(7)のように表される。
Figure JPOXMLDOC01-appb-M000005
 ここで、jは虚数単位である。
<About modification>
The weight matrix w of the present embodiment is generated based on a DCT matrix, but may be generated based on a discrete Fourier transform (DFT) matrix. In this case, the component B ′ mn of m rows and n columns of the DFT matrix B ′ is expressed as the following equation (7).
Figure JPOXMLDOC01-appb-M000005
Here, j is an imaginary unit.
 このように、ウェイト行例wをDFT行列B’に基づいて生成した場合、制御部30は利得調整を行う必要がないので、可変減衰器15(図2参照)が不要になる。このため、DCT行列Bに基づいてウェイト行例wを生成する場合に比べて、電力損失の低下を抑えることができる。 As described above, when the weight example w is generated based on the DFT matrix B ′, the control unit 30 does not need to perform gain adjustment, and thus the variable attenuator 15 (see FIG. 2) is not necessary. For this reason, compared with the case where the weight row example w is generated based on the DCT matrix B, a reduction in power loss can be suppressed.
 また、ウェイト行列wは、DCT行列やDFT行列以外に、アダマール(Hadamard)変換行列に基づいて生成されていても良い。この場合、アダマール変換行列Hは、DCT行列Bと同様に、N行N列(N×N)の行例であり、下記式(8)のように表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、Hは「1」と「-1」を成分とする2行2列の行列であり、kは2以上の整数である。
The weight matrix w may be generated based on a Hadamard transformation matrix other than the DCT matrix and the DFT matrix. In this case, the Hadamard transform matrix H is an example of N rows and N columns (N × N), like the DCT matrix B, and is represented by the following equation (8).
Figure JPOXMLDOC01-appb-M000006
Here, H 2 is a 2 × 2 matrix having “1” and “−1” as components, and k is an integer of 2 or more.
 このように、ウェイト行例wをアダマール変換行列Hに基づいて生成した場合、当該行列Hの成分は「1」と「-1」だけになるので位相調整等を容易に行うことができる。このため、複数の送信信号それぞれにウェイト行列wの対応する成分を乗算する機能の実装が簡単になる。
 なお、ウェイト行列wは、DCT行列、DFT行列及びアダマール変換行列以外の他の行列に基づいて生成されていても良い。
In this way, when the weight row example w is generated based on the Hadamard transform matrix H, the components of the matrix H are only “1” and “−1”, so that phase adjustment and the like can be easily performed. This simplifies the implementation of the function of multiplying each of the plurality of transmission signals by the corresponding component of the weight matrix w.
The weight matrix w may be generated based on a matrix other than the DCT matrix, the DFT matrix, and the Hadamard transform matrix.
 <アンテナ性能について>
 図5は、ウェイト行列をDFT行列に基づいて生成した場合におけるアンテナの垂直面指向性を示す図である。また、図6は、ウェイト行列をDCT行列に基づいて生成した場合におけるアンテナの垂直面指向性を示す図である。
 なお、図5及び図6に示す両アンテナでは、4つの送信信号を送信した場合の垂直面指向性を示しており、各送信信号の垂直面指向性は、線種を、太実線、点線、細実線及び破線に分けて表示している。
<About antenna performance>
FIG. 5 is a diagram illustrating the vertical directivity of the antenna when the weight matrix is generated based on the DFT matrix. FIG. 6 is a diagram illustrating the vertical plane directivity of the antenna when the weight matrix is generated based on the DCT matrix.
5 and 6 show the vertical plane directivity when four transmission signals are transmitted, and the vertical plane directivity of each transmission signal indicates the line type as a thick solid line, a dotted line, It is divided into a thin solid line and a broken line.
 図5に示すように、ウェイト行列をDFT行列に基づいて生成した場合におけるアンテナの垂直面指向性では、4つのメインビームのうち隣り合うビーム同士の図中の左右方向に重なり合う部分が小さい。このため、移動端末は、その受信位置によって特定の送信信号だけを強く受信することが分かる。 As shown in FIG. 5, in the vertical plane directivity of the antenna when the weight matrix is generated based on the DFT matrix, the portion of the four main beams that overlap in the horizontal direction in the drawing between adjacent beams is small. For this reason, it turns out that a mobile terminal receives only a specific transmission signal strongly by the receiving position.
 これに対して、図6に示すように、ウェイト行列をDCT行列に基づいて生成した場合におけるアンテナの垂直面指向性では、図5に示す垂直面指向性に比べて、4つのメインビームのうち隣り合うビーム同士の図中の左右方向に重なり合う部分が大きい。このため、移動端末は、一のアンテナから送信された4つの送信信号をバランス良く受信できるのが分かる。 On the other hand, as shown in FIG. 6, in the antenna vertical plane directivity when the weight matrix is generated based on the DCT matrix, compared to the vertical plane directivity shown in FIG. The portion where the adjacent beams overlap in the horizontal direction in the figure is large. For this reason, it can be seen that the mobile terminal can receive four transmission signals transmitted from one antenna in a balanced manner.
 <効果について>
 以上、本実施形態の無線通信装置1によれば、ベースバンドユニット2で生成された同一の領域向けの複数の送信信号それぞれを、一のアンテナ6が有する複数のアンテナ素子9それぞれに対応して分配し、分配された複数の送信信号それぞれにウェイト行列を乗算して各アンテナ素子9に対応する送信信号同士を合成することになる。このため、同一の領域向けの複数の送信信号を、一のアンテナ6を共用して送信することができる。この結果、同一の領域向けの複数の送信信号を、その送信信号の数よりも少ない数のアンテナ6により送信することができる。
<About effect>
As described above, according to the wireless communication device 1 of the present embodiment, each of the plurality of transmission signals for the same region generated by the baseband unit 2 corresponds to each of the plurality of antenna elements 9 included in one antenna 6. The transmission signals corresponding to the antenna elements 9 are synthesized by dividing each of the distributed transmission signals and multiplying each of the distributed transmission signals by a weight matrix. For this reason, it is possible to transmit a plurality of transmission signals for the same region by sharing one antenna 6. As a result, a plurality of transmission signals for the same region can be transmitted by a smaller number of antennas 6 than the number of transmission signals.
 また、複数のデジタルアナログ変換器11は、複数の分配器14の前段に設けられることになる。このため、当該デジタルアナログ変換器11を、同一の領域向けの複数の送信信号それぞれに対応して設ければよく、複数のアンテナ素子9ごとにデジタルアナログ変換器11を設ける場合よりもデジタルアナログ変換器11の数を減らすことができる。この結果、低コスト化が可能となる。 Further, the plurality of digital / analog converters 11 are provided in front of the plurality of distributors 14. For this reason, the digital-analog converter 11 may be provided corresponding to each of a plurality of transmission signals for the same region, and the digital-analog conversion is performed as compared with the case where the digital-analog converter 11 is provided for each of the plurality of antenna elements 9. The number of vessels 11 can be reduced. As a result, the cost can be reduced.
 また、移相器16は電力増幅器18よりも前段に設けられるため、移相器16には増幅前の送信信号が与えられる。増幅前の送信信号は、増幅後の送信信号と比較してより低い電力であるため、取り扱うことが可能な信号電力の値が比較的低い半導体移相器を用いた移相器16を構成することができる。これにより、より小型で低コストな移相器16を用いることが可能となり、より低コストとすることができるとともに小型化も可能となる。 Further, since the phase shifter 16 is provided in a stage prior to the power amplifier 18, the transmission signal before amplification is given to the phase shifter 16. Since the transmission signal before amplification has lower power compared to the transmission signal after amplification, the phase shifter 16 using a semiconductor phase shifter having a relatively low value of signal power that can be handled is configured. be able to. As a result, it is possible to use the phase shifter 16 that is smaller and lower in cost, and can be further reduced in cost and size.
 また、ウェイト行列wにおいて、ベースバンドユニット2で生成された複数の送信信号それぞれに対応するウェイト行ベクトルw1,w2同士が互いに直交しているため、同一の領域向けの複数の送信信号の相互相関を小さくすることができる。
 また、ウェイト行列wは、DCT行列Bに基づいて生成されるので、移動端末は一のアンテナ6から送信された複数の送信信号をバランス良く受信することができる。これにより、移動端末が複数の送信信号を受信したときに送信信号間の電力はばらつかないため、DFT行列に基づいてウェイト行例wを生成する場合に比べてMIMO通信の効果を発揮しやすくなる。
In the weight matrix w, the weight row vectors w 1 and w 2 corresponding to the plurality of transmission signals generated by the baseband unit 2 are orthogonal to each other. Cross-correlation can be reduced.
Further, since the weight matrix w is generated based on the DCT matrix B, the mobile terminal can receive a plurality of transmission signals transmitted from one antenna 6 with good balance. As a result, since the power between transmission signals does not vary when the mobile terminal receives a plurality of transmission signals, the effect of MIMO communication can be easily achieved compared to the case where the weight row example w is generated based on the DFT matrix. Become.
 また、制御部30の選択部31において、ベースバンドユニット2で生成された複数の送信信号それぞれに対応するウェイト行ベクトルw1,w2の候補となる多数のウェイト候補を、領域へのビームのチルト角に基づいて選択するため、これらのウェイト候補を容易かつ迅速に絞り込むことができる。また、離散コサイン変換行列Bの行ベクトルは、選択部31が選択するウェイト候補とされているので、DCT行列Bに基づいてウェイト行列wを容易に生成することができる。さらに、制御部30の決定部32において、多数のウェイト候補のうちから所望の通信品質を満たすウェイト候補をウェイト行ベクトルw1,w2として決定するため、所望の通信品質を得ることができる。 In addition, in the selection unit 31 of the control unit 30, a large number of weight candidates that are candidates for the weight row vectors w 1 and w 2 corresponding to the plurality of transmission signals generated by the baseband unit 2 are obtained. Since the selection is based on the tilt angle, these weight candidates can be narrowed down easily and quickly. In addition, since the row vector of the discrete cosine transform matrix B is a weight candidate selected by the selection unit 31, the weight matrix w can be easily generated based on the DCT matrix B. Furthermore, since the determination unit 32 of the control unit 30 determines the weight candidates satisfying the desired communication quality from among the many weight candidates as the weight row vectors w 1 and w 2 , the desired communication quality can be obtained.
 <第2実施形態について>
 図7は、本発明の第2実施形態に係る無線通信装置1が備えるアンテナシステム3の送信側の構成を示すブロック図である。
 本実施形態におけるアンテナシステム3は、送信信号の分配、位相調整および合成等の信号処理をアナログ信号処理によって行うように構成されたパッシブアンテナシステムからなる。すなわち、本実施形態のアンテナシステム3は、電力増幅器18がアンテナ6よりも前段側に設けられている点で、第1実施形態のアンテナシステム3と相違している。
<About the second embodiment>
FIG. 7 is a block diagram illustrating a configuration on the transmission side of the antenna system 3 included in the wireless communication device 1 according to the second embodiment of the present invention.
The antenna system 3 in the present embodiment includes a passive antenna system configured to perform signal processing such as distribution, phase adjustment, and synthesis of transmission signals by analog signal processing. That is, the antenna system 3 of the present embodiment is different from the antenna system 3 of the first embodiment in that the power amplifier 18 is provided on the upstream side of the antenna 6.
 図7において、本実施形態の電力増幅器18は、アナログ信号処理部7のアップコンバータ12(12a,12b)と分配器14(14a,14b)との間に設けられている。
 アップコンバータ12(12a、12b)は、第1送信ベースバンド信号を周波数変換することにより得た第1無線周波数信号、および第2送信ベースバンド信号を周波数変換することにより得た第2無線周波数信号を電力増幅器18に与える。
In FIG. 7, the power amplifier 18 of the present embodiment is provided between the up converter 12 (12a, 12b) and the distributor 14 (14a, 14b) of the analog signal processing unit 7.
The up-converter 12 (12a, 12b) includes a first radio frequency signal obtained by frequency-converting the first transmission baseband signal and a second radio frequency signal obtained by frequency-converting the second transmission baseband signal. Is supplied to the power amplifier 18.
 電力増幅器18は、一対のデジタルアナログ変換器11それぞれに対応して一対設けられている。一方の電力増幅器18aには、アップコンバータ12aから第1無線周波数信号が与えられ、他方の電力増幅器18bには、アップコンバータ12bから第2無線周波数信号が与えられる。電力増幅器18aは、第1無線周波数信号を増幅して分配器14aに与える。また、電力増幅器18bは、第2無線周波数信号を増幅して分配器14bに与える。
 なお、電力増幅器18は、アナログ信号処理部7に含まれているが、アナログ信号処理部7とアンテナ6との間、すなわち複数の合成器17それぞれと対応する複数のアンテナ素子9との間に設けられていても良い。
A pair of power amplifiers 18 is provided corresponding to each of the pair of digital-analog converters 11. One power amplifier 18a is supplied with the first radio frequency signal from the up converter 12a, and the other power amplifier 18b is supplied with the second radio frequency signal from the up converter 12b. The power amplifier 18a amplifies the first radio frequency signal and supplies it to the distributor 14a. In addition, the power amplifier 18b amplifies the second radio frequency signal and supplies it to the distributor 14b.
The power amplifier 18 is included in the analog signal processing unit 7, but between the analog signal processing unit 7 and the antenna 6, that is, between the plurality of antenna elements 9 corresponding to the plurality of combiners 17. It may be provided.
 本実施形態のアンテナ6は、複数のアンテナ素子9のみによって構成されている。各アンテナ素子9には、対応する合成器17で合成された合成信号が与えられる。
 各アンテナ素子9に与えられた合成信号は、各アンテナ素子9から空間に放射され、無線信号として送信される。
The antenna 6 of the present embodiment is composed of only a plurality of antenna elements 9. Each antenna element 9 is provided with a synthesized signal synthesized by a corresponding synthesizer 17.
The combined signal given to each antenna element 9 is radiated into the space from each antenna element 9 and transmitted as a radio signal.
 本実施形態のアンテナシステム3は、アナログ信号処理部7の分配器14と合成器17との間の構成が異なる点でも、第1実施形態のアンテナシステム3と相違している。
 本実施形態のアナログ信号処理部7は、両分配器14a、14bによって分配された複数の無線周波数信号それぞれにウェイト行列wの対応する各成分を乗算するためにバトラーマトリックス回路21を有している。このバトラーマトリックス回路21により、ウェイト行列wはDFT行列とされている。
The antenna system 3 of the present embodiment is also different from the antenna system 3 of the first embodiment in that the configuration between the distributor 14 and the combiner 17 of the analog signal processing unit 7 is different.
The analog signal processing unit 7 of the present embodiment has a Butler matrix circuit 21 for multiplying each of a plurality of radio frequency signals distributed by both distributors 14a and 14b by corresponding components of the weight matrix w. . By this Butler matrix circuit 21, the weight matrix w is made a DFT matrix.
 図8は、バトラーマトリックス回路21の構成の一例を示すブロック図である。なお、図8では、4つの無線周波数信号について位相調整を行う一般的なバトラーマトリックス回路を例示している。
 バトラーマトリックス回路21は、4つの90度ハイブリッド22~25と、2つの-45度移相器26,27とを備えている。
FIG. 8 is a block diagram showing an example of the configuration of the Butler matrix circuit 21. FIG. 8 illustrates a general Butler matrix circuit that performs phase adjustment for four radio frequency signals.
The Butler matrix circuit 21 includes four 90 degree hybrids 22 to 25 and two −45 degree phase shifters 26 and 27.
 90度ハイブリッド22には一対の入力端子28A,28Bが接続され、90度ハイブリッド23には一対の入力端子28C,28Dが接続されている。入力端子28A~28Dは、対応する分配器14(図7参照)に接続されている。
 また、90度ハイブリッド24には一対の出力端子29B,29Bが接続され、90度ハイブリッド25には一対の出力端子29C,29Dが接続されている。出力端子29A~29Dは、対応する合成器17(図7参照)に接続されている。
A pair of input terminals 28A and 28B are connected to the 90-degree hybrid 22, and a pair of input terminals 28C and 28D are connected to the 90-degree hybrid 23. The input terminals 28A to 28D are connected to the corresponding distributor 14 (see FIG. 7).
A pair of output terminals 29B and 29B are connected to the 90-degree hybrid 24, and a pair of output terminals 29C and 29D are connected to the 90-degree hybrid 25. The output terminals 29A to 29D are connected to the corresponding combiner 17 (see FIG. 7).
 90度ハイブリッド22の出力の一方は、-45度移相器26を介して90度ハイブリッド24に接続され、出力の他方は90度ハイブリッド25に接続されている。
 90度ハイブリッド23の出力の一方は、-45度移相器27を介して90度ハイブリッド25に接続され、出力の他方は90度ハイブリッド24に接続されている。
 以上の構成により、各入力端子28A~28Dに入力された無線周波数信号は、互いに異なる位相に調整されて出力端子29A~29Dから出力される。
One of the outputs of the 90-degree hybrid 22 is connected to the 90-degree hybrid 24 via the −45-degree phase shifter 26, and the other output is connected to the 90-degree hybrid 25.
One of the outputs of the 90-degree hybrid 23 is connected to the 90-degree hybrid 25 via the −45-degree phase shifter 27, and the other output is connected to the 90-degree hybrid 24.
With the above configuration, the radio frequency signals input to the input terminals 28A to 28D are adjusted to phases different from each other and output from the output terminals 29A to 29D.
 本実施形態のその他の点については、第1実施形態と同様である。
 なお、本実施形態のウェイト行列wは、DFT行列以外に、DCT行列やアダマール変換行列等に基づいて生成されていても良い。この場合、アナログ信号処理部7は、バトラーマトリックス回路21に替えて、第1実施形態と同様に、可変減衰器15および移相器16を用いても良い。
Other points of the present embodiment are the same as those of the first embodiment.
Note that the weight matrix w of the present embodiment may be generated based on a DCT matrix, a Hadamard transform matrix, or the like other than the DFT matrix. In this case, the analog signal processing unit 7 may use the variable attenuator 15 and the phase shifter 16 as in the first embodiment, instead of the Butler matrix circuit 21.
 以上、本実施形態の無線通信装置1によれば、複数のデジタルアナログ変換器11は、複数の分配器14よりも前段側に設けられることになる。このため、当該デジタルアナログ変換器11を、同一の領域向けの複数の送信信号それぞれに対応して設ければよく、複数のアンテナ素子9ごとにデジタルアナログ変換器11を設ける場合よりもデジタルアナログ変換器11の数を減らすことができる。この結果、低コスト化が可能となる。 As described above, according to the wireless communication device 1 of the present embodiment, the plurality of digital / analog converters 11 are provided on the upstream side of the plurality of distributors 14. For this reason, the digital-analog converter 11 may be provided corresponding to each of a plurality of transmission signals for the same region, and the digital-analog conversion is performed as compared with the case where the digital-analog converter 11 is provided for each of the plurality of antenna elements 9. The number of vessels 11 can be reduced. As a result, the cost can be reduced.
 <第3実施形態について>
 図9は、本発明の第3実施形態に係る無線通信装置1が備えるアンテナシステム3の送信側の構成を示すブロック図である。
 本実施形態におけるアンテナシステム3は、送信信号の分配、位相調整および合成等の信号処理をデジタル信号処理によって行うように構成されたアクティブアンテナシステムからなる。
<About the third embodiment>
FIG. 9 is a block diagram illustrating a configuration on the transmission side of the antenna system 3 included in the wireless communication device 1 according to the third embodiment of the present invention.
The antenna system 3 in the present embodiment includes an active antenna system configured to perform signal processing such as transmission signal distribution, phase adjustment, and synthesis by digital signal processing.
 図9において、本実施形態のデジタル信号処理部10は、ベースバンドユニット2から与えられる複数の送信信号それぞれを複数のアンテナ素子9それぞれに対応して分配し、分配された複数の送信信号それぞれにウェイト行列の対応する成分を乗算した後に各アンテナ素子9に対応する送信信号同士を合成する信号処理部として機能する。 In FIG. 9, the digital signal processing unit 10 of the present embodiment distributes each of the plurality of transmission signals given from the baseband unit 2 corresponding to each of the plurality of antenna elements 9, and distributes each of the plurality of distributed transmission signals. It functions as a signal processing unit that synthesizes transmission signals corresponding to each antenna element 9 after multiplying corresponding components of the weight matrix.
 具体的には、デジタル信号処理部10は、ベースバンドユニット2から与えられる第1送信ベースバンド信号および第2送信ベースバンド信号を、それぞれ6つのアンテナ素子9に対応して6つに分配する。
 デジタル信号処理部10は、分配した第1送信ベースバンド信号それぞれに対して利得調整および位相調整を行うとともに、分配した第2送信ベースバンド信号それぞれに対して利得調整および位相調整を行う。
 さらに、デジタル信号処理部10は、利得調整と位相調整を行った第1送信ベースバンド信号および第2送信ベースバンド信号のうち、互いに同一のアンテナ素子9に対応して分配された送信ベースバンド信号同士を合成し、これらの合成信号をアナログ信号処理部7に与える。
Specifically, the digital signal processing unit 10 distributes the first transmission baseband signal and the second transmission baseband signal given from the baseband unit 2 to six corresponding to the six antenna elements 9 respectively.
The digital signal processing unit 10 performs gain adjustment and phase adjustment for each distributed first transmission baseband signal, and performs gain adjustment and phase adjustment for each distributed second transmission baseband signal.
Further, the digital signal processing unit 10 transmits a transmission baseband signal distributed corresponding to the same antenna element 9 among the first transmission baseband signal and the second transmission baseband signal subjected to gain adjustment and phase adjustment. These are synthesized and these synthesized signals are given to the analog signal processing unit 7.
 本実施形態のアナログ信号処理部7は、複数のデジタルアナログ変換器11と、複数のアップコンバータ12とを備えている。
 デジタルアナログ変換器11は、6つのアンテナ素子9それぞれに対応して6つ設けられている。各デジタルアナログ変換器11は、対応するデジタル信号の合成信号をアナログ信号に変換する機能を有している。各デジタルアナログ変換器11は、アナログ信号に変換した合成信号をアップコンバータ12に与える。
The analog signal processing unit 7 of the present embodiment includes a plurality of digital / analog converters 11 and a plurality of up-converters 12.
Six digital-analog converters 11 are provided corresponding to the six antenna elements 9 respectively. Each digital-analog converter 11 has a function of converting a synthesized signal of a corresponding digital signal into an analog signal. Each digital-to-analog converter 11 supplies the up-converter 12 with the combined signal converted into an analog signal.
 アップコンバータ12は、6つのアンテナ素子9それぞれに対応して6つ設けられている。各アップコンバータ12は、発振器13が生成する無線周波数のローカル信号を対応する合成信号に乗算することで合成信号を無線周波数の信号(第1無線周波数信号)に変換(アップコンバート)する機能を有している。
 各アップコンバータ12は、対応する合成信号を周波数変換することにより得た無線周波数信号をアンテナ6の対応する電力増幅器18に与える。
Six up-converters 12 are provided corresponding to the six antenna elements 9 respectively. Each up-converter 12 has a function of converting (up-converting) a synthesized signal into a radio frequency signal (first radio frequency signal) by multiplying a corresponding synthesized signal by a radio frequency local signal generated by the oscillator 13. is doing.
Each up-converter 12 provides a radio frequency signal obtained by frequency-converting the corresponding combined signal to the corresponding power amplifier 18 of the antenna 6.
 アンテナ6の電力増幅器18は、6つのアンテナ素子9それぞれに対応して6つ設けられている。各電力増幅器18は、無線周波数信号を増幅して対応するアンテナ素子9に与える。各アンテナ素子9に与えられた無線周波数信号は、各アンテナ素子9から空間に放射され、無線信号として送信される。 Six power amplifiers 18 of the antenna 6 are provided corresponding to each of the six antenna elements 9. Each power amplifier 18 amplifies the radio frequency signal and applies it to the corresponding antenna element 9. The radio frequency signal given to each antenna element 9 is radiated into the space from each antenna element 9 and transmitted as a radio signal.
 図10は、本実施形態の無線通信装置1の制御構成を示すブロック図である。
 本実施形態の制御部30は、ベースバンドユニット2から受けた制御情報に基づいて、デジタル信号処理部10において分配された複数の送信ベースバンド信号に乗算するウェイト行列を決定する機能を有している。そして、制御部30は、決定されたウェイト行列の各成分に基づいて、対応する送信ベースバンド信号の利得調整および移相調整を行うようにデジタル信号処理部10を制御する機能を有している。その他の点については、第1実施形態と同様である。
 なお、本実施形態のウェイト行列wは、DCT行列以外に、DFT行列やアダマール変換行列等に基づいて生成されていても良い。
FIG. 10 is a block diagram illustrating a control configuration of the wireless communication apparatus 1 according to the present embodiment.
The control unit 30 of the present embodiment has a function of determining a weight matrix for multiplying a plurality of transmission baseband signals distributed in the digital signal processing unit 10 based on the control information received from the baseband unit 2. Yes. The control unit 30 has a function of controlling the digital signal processing unit 10 to perform gain adjustment and phase shift adjustment of the corresponding transmission baseband signal based on each component of the determined weight matrix. . Other points are the same as in the first embodiment.
Note that the weight matrix w of the present embodiment may be generated based on a DFT matrix, a Hadamard transform matrix, or the like other than the DCT matrix.
 以上、本実施形態の無線通信装置1によれば、ベースバンドユニット2で生成された送信信号の分配から合成までの信号処理をデジタル信号処理によって行うことができるため、当該信号処理をアナログ信号処理によって行う場合と比較して高度な通信制御を行うことができる。 As described above, according to the wireless communication device 1 of the present embodiment, since signal processing from distribution to synthesis of transmission signals generated by the baseband unit 2 can be performed by digital signal processing, the signal processing is performed by analog signal processing. Compared with the case where it performs by this, advanced communication control can be performed.
 <第4実施形態について>
 図11は、本発明の第4実施形態に係る無線通信装置1が備えるアンテナシステム3の送信側の構成を示すブロック図である。
 本実施形態におけるアンテナシステム3は、第3実施形態のアンテナシステム3の変形例であり、送信信号の分配、位相調整および合成等の信号処理をデジタル信号処理によって行うように構成されたパッシブアンテナシステムからなる。
<About the fourth embodiment>
FIG. 11 is a block diagram showing a configuration on the transmission side of the antenna system 3 included in the wireless communication device 1 according to the fourth embodiment of the present invention.
The antenna system 3 in the present embodiment is a modification of the antenna system 3 in the third embodiment, and is a passive antenna system configured to perform signal processing such as distribution, phase adjustment, and synthesis of transmission signals by digital signal processing. Consists of.
 すなわち、本実施形態のアンテナシステム3は、電力増幅器18がアンテナ6よりも前段側であるアナログ信号処理部7に含まれている点で、第3実施形態のアンテナシステム3と相違している。したがって、本実施形態のアンテナ6は、複数のアンテナ素子9のみによって構成されている。その他の点については、第3実施形態と同様である。
 なお、本実施形態のアナログ信号処理部7は、デジタルアナログ変換器11とアップコンバータ12と電力増幅器18とにより構成されているが、少なくともデジタルアナログ変換器11とアップコンバータ12とを含んでいれば良い。また、本実施形態のウェイト行列wは、DCT行列以外に、DFT行列やアダマール変換行列等に基づいて生成されていても良い。
That is, the antenna system 3 of the present embodiment is different from the antenna system 3 of the third embodiment in that the power amplifier 18 is included in the analog signal processing unit 7 that is on the upstream side of the antenna 6. Therefore, the antenna 6 of the present embodiment is configured by only a plurality of antenna elements 9. The other points are the same as in the third embodiment.
The analog signal processing unit 7 according to the present embodiment includes the digital-analog converter 11, the up-converter 12, and the power amplifier 18. However, if the analog-signal processing unit 7 includes at least the digital-analog converter 11 and the up-converter 12. good. Further, the weight matrix w of the present embodiment may be generated based on a DFT matrix, a Hadamard transform matrix, or the like other than the DCT matrix.
 以上、本実施形態の無線通信装置1においても、ベースバンドユニット2で生成された送信信号の分配から合成までの信号処理をデジタル信号処理によって行うことができるため、当該信号処理をアナログ信号処理によって行う場合と比較して高度な通信制御を行うことができる。 As described above, also in the wireless communication device 1 according to the present embodiment, signal processing from distribution to synthesis of transmission signals generated by the baseband unit 2 can be performed by digital signal processing. Therefore, the signal processing is performed by analog signal processing. Compared with the case where it performs, advanced communication control can be performed.
 <その他>
 なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
<Others>
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 無線通信装置
2 ベースバンドユニット(ベースバンド部)
3 アンテナシステム
4 信号伝送路
5 支柱
6 アンテナ
7 アナログ信号処理部
9 アンテナ素子
10 デジタル信号処理部
11 デジタルアナログ変換器
11a デジタルアナログ変換器
11b デジタルアナログ変換器
12 アップコンバータ
12a アップコンバータ
12b アップコンバータ
13 発振器
14 分配器
14a 分配器
14b 分配器
15 可変減衰器
15a 第1可変減衰器
15b 第2可変減衰器
16 移相器
16a 第1移相器
16b 第2移相器
17 合成器
18 電力増幅器
21 バトラーマトリックス回路
22 90度ハイブリッド
23 90度ハイブリッド
24 90度ハイブリッド
25 90度ハイブリッド
26 -45度移相器
27 -45度移相器
28A 入力端子
28B 入力端子
28C 入力端子
28D 入力端子
29A 出力端子
29B 出力端子
29C 出力端子
29D 出力端子
30 制御部
31 選択部
32 決定部
C セル(領域)
1 Wireless communication device 2 Baseband unit (baseband part)
3 antenna system 4 signal transmission path 5 support 6 antenna 7 analog signal processing unit 9 antenna element 10 digital signal processing unit 11 digital analog converter 11a digital analog converter 11b digital analog converter 12 up converter 12a up converter 12b up converter 13 oscillator 14 distributor 14 a distributor 14 b distributor 15 variable attenuator 15 a first variable attenuator 15 b second variable attenuator 16 phase shifter 16 a first phase shifter 16 b second phase shifter 17 combiner 18 power amplifier 21 Butler matrix Circuit 22 90 degree hybrid 23 90 degree hybrid 24 90 degree hybrid 25 90 degree hybrid 26 -45 degree phase shifter 27 -45 degree phase shifter 28A Input terminal 28B Input terminal 28C Input terminal 28D Input terminal 29A Output terminal 29B Power terminal 29C output terminal 29D output terminal 30 control unit 31 selecting unit 32 determining section C cell (region)

Claims (10)

  1.  同一の領域向けの複数の送信信号を生成するベースバンド部と、
     複数のアンテナ素子を有するアンテナと、
     前記ベースバンド部で生成された複数の送信信号それぞれを前記複数のアンテナ素子それぞれに対応して分配し、分配された複数の送信信号それぞれにウェイト行列の対応する成分を乗算した後に各アンテナ素子に対応する送信信号同士を合成する信号処理部と、
    を備えている無線通信装置。
    A baseband unit that generates a plurality of transmission signals for the same region;
    An antenna having a plurality of antenna elements;
    Each of the plurality of transmission signals generated in the baseband unit is distributed corresponding to each of the plurality of antenna elements, and each of the plurality of distributed transmission signals is multiplied by a corresponding component of the weight matrix and then transmitted to each antenna element. A signal processing unit for combining corresponding transmission signals;
    A wireless communication device comprising:
  2.  前記信号処理部は、
     前記ベースバンド部で生成された複数のデジタルの送信信号それぞれをアナログの送信信号に変換する複数のデジタルアナログ変換器と、
     変換された送信信号それぞれを前記複数のアンテナ素子それぞれに対応して分配する複数の分配器と、
     分配された送信信号それぞれに前記ウェイト行列の対応する成分に基づいて位相調整を行う複数の移相器と、
     位相調整された送信信号のうち、各アンテナ素子に対応する送信信号同士を合成する複数の合成器と、を有し、
     前記アンテナは、前記合成器で合成された送信信号それぞれを増幅して対応する前記アンテナ素子に与える複数の増幅器をさらに有する請求項1に記載の無線通信装置。
    The signal processing unit
    A plurality of digital-to-analog converters for converting each of a plurality of digital transmission signals generated in the baseband unit into an analog transmission signal;
    A plurality of distributors for distributing each of the converted transmission signals corresponding to each of the plurality of antenna elements;
    A plurality of phase shifters that perform phase adjustment based on corresponding components of the weight matrix for each of the distributed transmission signals;
    A plurality of combiners for combining the transmission signals corresponding to the antenna elements among the phase-adjusted transmission signals;
    The wireless communication apparatus according to claim 1, wherein the antenna further includes a plurality of amplifiers that amplify each of the transmission signals combined by the combiner and apply the amplified signals to the corresponding antenna elements.
  3.  前記信号処理部は、
     前記ベースバンド部で生成された複数のデジタルの送信信号それぞれをアナログの送信信号に変換する複数のデジタルアナログ変換器と、
     変換された送信信号それぞれを前記複数のアンテナ素子それぞれに対応して分配する複数の分配器と、
     分配された送信信号それぞれに前記ウェイト行列の対応する成分に基づいて位相調整を行う複数の移相器と、
     位相調整された送信信号のうち、各アンテナ素子に対応する送信信号同士を合成する複数の合成器と、を有し、
     前記アンテナよりも前段側に設けられ、複数の送信信号それぞれを増幅する複数の増幅器をさらに備えている請求項1に記載の無線通信装置。
    The signal processing unit
    A plurality of digital-to-analog converters for converting each of a plurality of digital transmission signals generated in the baseband unit into an analog transmission signal;
    A plurality of distributors for distributing each of the converted transmission signals corresponding to each of the plurality of antenna elements;
    A plurality of phase shifters that perform phase adjustment based on corresponding components of the weight matrix for each of the distributed transmission signals;
    A plurality of combiners for combining the transmission signals corresponding to the antenna elements among the phase-adjusted transmission signals;
    The wireless communication apparatus according to claim 1, further comprising a plurality of amplifiers provided on a front side of the antenna and amplifying each of the plurality of transmission signals.
  4.  前記信号処理部は、前記ベースバンド部で生成された複数のデジタルの送信信号それぞれを前記複数のアンテナ素子それぞれに対応して分配し、分配された複数のデジタルの送信信号それぞれに前記ウェイト行列の対応する成分を乗算した後に各アンテナ素子に対応する送信信号同士を合成するデジタル信号処理部であり、
     前記アンテナは、前記デジタル信号処理部で合成された送信信号それぞれを増幅して対応する前記アンテナ素子に与える複数の増幅器をさらに有する請求項1に記載の無線通信装置。
    The signal processing unit distributes each of the plurality of digital transmission signals generated by the baseband unit corresponding to each of the plurality of antenna elements, and each of the plurality of digital transmission signals distributed includes the weight matrix. A digital signal processing unit that synthesizes transmission signals corresponding to each antenna element after multiplying corresponding components,
    The radio communication apparatus according to claim 1, wherein the antenna further includes a plurality of amplifiers that amplify each of the transmission signals combined by the digital signal processing unit and apply the amplified signals to the corresponding antenna elements.
  5.  前記信号処理部は、前記ベースバンド部で生成された複数のデジタルの送信信号それぞれを前記複数のアンテナ素子それぞれに対応して分配し、分配された複数のデジタルの送信信号それぞれに前記ウェイト行列の対応する成分を乗算した後に各アンテナ素子に対応する送信信号同士を合成するデジタル信号処理部であり、
     前記アンテナよりも前段側に設けられ、複数の送信信号それぞれを増幅する複数の増幅器をさらに備えている請求項1に記載の無線通信装置。
    The signal processing unit distributes each of the plurality of digital transmission signals generated by the baseband unit corresponding to each of the plurality of antenna elements, and each of the plurality of digital transmission signals distributed includes the weight matrix. A digital signal processing unit that synthesizes transmission signals corresponding to each antenna element after multiplying corresponding components,
    The wireless communication apparatus according to claim 1, further comprising a plurality of amplifiers provided on a front side of the antenna and amplifying each of the plurality of transmission signals.
  6.  前記ウェイト行列において、前記ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトル同士またはウェイト列ベクトル同士が互いに直交している請求項1~請求項5のいずれか1項に記載の無線通信装置。 6. The weight matrix according to claim 1, wherein weight row vectors or weight column vectors corresponding to a plurality of transmission signals generated in the baseband section are orthogonal to each other in the weight matrix. Wireless communication device.
  7.  前記ウェイト行列は、離散コサイン変換行列に基づいて生成されるものである請求項6に記載の無線通信装置。 The wireless communication apparatus according to claim 6, wherein the weight matrix is generated based on a discrete cosine transform matrix.
  8.  前記ウェイト行列における、前記ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトルまたはウェイト列ベクトルの候補として、当該ウェイト行ベクトルまたはウェイト列ベクトルの数よりも多い数のウェイト候補を、前記領域へのビームのチルト角に基づいて選択する選択部と、
     前記選択部で選択されたウェイト候補のうちから所望の通信品質を満たすウェイト候補を前記ウェイト行ベクトルまたはウェイト列ベクトルとして決定する決定部と、をさらに備えている請求項1~請求項7のいずれか1項に記載の無線通信装置。
    As weight row vectors or weight column vector candidates corresponding to each of a plurality of transmission signals generated in the baseband part in the weight matrix, a number of weight candidates larger than the number of weight row vectors or weight column vectors is selected. A selection unit that selects based on the tilt angle of the beam to the region;
    The determination unit according to any one of claims 1 to 7, further comprising: a determination unit that determines, as the weight row vector or the weight column vector, a weight candidate that satisfies a desired communication quality among the weight candidates selected by the selection unit. The wireless communication device according to claim 1.
  9.  前記ウェイト行列における、前記ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトルまたはウェイト列ベクトルの候補として、当該ウェイト行ベクトルまたはウェイト列ベクトルの数よりも多い数のウェイト候補を、前記領域へのビームのチルト角に基づいて選択する選択部と、
     前記選択部で選択されたウェイト候補のうちから所望の通信品質を満たすウェイト候補を前記ウェイト行ベクトルまたはウェイト列ベクトルとして決定する決定部と、をさらに備え、
     前記離散コサイン変換行列の行ベクトルまたは列ベクトルは、前記選択部が選択する前記ウェイト候補とされている請求項7に記載の無線通信装置。
    As weight row vectors or weight column vector candidates corresponding to each of a plurality of transmission signals generated in the baseband part in the weight matrix, a number of weight candidates larger than the number of weight row vectors or weight column vectors is selected. A selection unit that selects based on the tilt angle of the beam to the region;
    A determination unit that determines a weight candidate that satisfies a desired communication quality from among the weight candidates selected by the selection unit as the weight row vector or the weight column vector;
    The radio communication apparatus according to claim 7, wherein a row vector or a column vector of the discrete cosine transform matrix is the weight candidate selected by the selection unit.
  10.  ベースバンド部で生成された同一の領域向けの複数の送信信号に乗算するウェイト行列の決定方法であって、
     前記ウェイト行列における、前記ベースバンド部で生成された複数の送信信号それぞれに対応するウェイト行ベクトルまたはウェイト列ベクトルの候補として、当該ウェイト行ベクトルまたはウェイト列ベクトルの数よりも多い数のウェイト候補を、前記領域へのビームのチルト角に基づいて選択する選択ステップと、
     前記選択ステップで選択されたウェイト候補のうちから所望の通信品質を満たすウェイト候補を前記ウェイト行ベクトルまたはウェイト列ベクトルとして決定する決定ステップと、を含むウェイト行列の決定方法。
    A method for determining a weight matrix for multiplying a plurality of transmission signals for the same region generated in a baseband part,
    As weight row vectors or weight column vector candidates corresponding to each of a plurality of transmission signals generated in the baseband part in the weight matrix, a number of weight candidates larger than the number of weight row vectors or weight column vectors is selected. A selection step of selecting based on the tilt angle of the beam to the region;
    Determining a weight candidate satisfying a desired communication quality among the weight candidates selected in the selection step as the weight row vector or the weight column vector.
PCT/JP2015/077976 2014-11-20 2015-10-01 Radio communication device and method of determining weighting matrix WO2016080087A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/525,615 US10439688B2 (en) 2014-11-20 2015-10-01 Radio communication device and method of determining weighting matrix

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014235904 2014-11-20
JP2014-235904 2014-11-20
JP2015-093222 2015-04-30
JP2015093222A JP6536159B2 (en) 2014-11-20 2015-04-30 Wireless communication apparatus and method of determining weight matrix

Publications (1)

Publication Number Publication Date
WO2016080087A1 true WO2016080087A1 (en) 2016-05-26

Family

ID=56013645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077976 WO2016080087A1 (en) 2014-11-20 2015-10-01 Radio communication device and method of determining weighting matrix

Country Status (1)

Country Link
WO (1) WO2016080087A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065158A1 (en) * 2017-09-28 2019-04-04 株式会社日立国際電気 Beam forming antenna

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180549A (en) * 2002-02-28 2006-07-06 Matsushita Electric Ind Co Ltd Communication apparatus and communication method
JP2009010968A (en) * 2008-08-01 2009-01-15 Mitsubishi Electric Corp Wireless transmission apparatus
JP2009182403A (en) * 2008-01-29 2009-08-13 Panasonic Corp Mimo antenna device and radio communication device including the same
WO2010007717A1 (en) * 2008-07-16 2010-01-21 日本電気株式会社 Control method of wireless communication system, wireless communication system, transmitter, and receiver
WO2010092394A2 (en) * 2009-02-12 2010-08-19 The University Of Bristol Channel estimator
JP2010529799A (en) * 2007-06-11 2010-08-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Analog beam forming method, transmitting station and receiving station
JP2014127876A (en) * 2012-12-26 2014-07-07 Nippon Telegr & Teleph Corp <Ntt> Base station device, radio communication method, and radio communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180549A (en) * 2002-02-28 2006-07-06 Matsushita Electric Ind Co Ltd Communication apparatus and communication method
JP2010529799A (en) * 2007-06-11 2010-08-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Analog beam forming method, transmitting station and receiving station
JP2009182403A (en) * 2008-01-29 2009-08-13 Panasonic Corp Mimo antenna device and radio communication device including the same
WO2010007717A1 (en) * 2008-07-16 2010-01-21 日本電気株式会社 Control method of wireless communication system, wireless communication system, transmitter, and receiver
JP2009010968A (en) * 2008-08-01 2009-01-15 Mitsubishi Electric Corp Wireless transmission apparatus
WO2010092394A2 (en) * 2009-02-12 2010-08-19 The University Of Bristol Channel estimator
JP2014127876A (en) * 2012-12-26 2014-07-07 Nippon Telegr & Teleph Corp <Ntt> Base station device, radio communication method, and radio communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065158A1 (en) * 2017-09-28 2019-04-04 株式会社日立国際電気 Beam forming antenna
US11082102B2 (en) 2017-09-28 2021-08-03 Hitachi Kokusai Electric Inc. Beam forming antenna

Similar Documents

Publication Publication Date Title
US10141993B2 (en) Modular antenna array beam forming
JP5345690B2 (en) Method for multi-antenna signal processing in antenna element arrangement, corresponding transceiver and corresponding antenna element arrangement
US7312750B2 (en) Adaptive beam-forming system using hierarchical weight banks for antenna array in wireless communication system
EP2698870A1 (en) Antenna feed
US20140210666A1 (en) Apparatus, system and method of wireless communication via an antenna array
EP2975688B1 (en) Antenna feed and method of configuring an antenna feed
US11452173B2 (en) Remote radio head, beamforming method and storage medium
JP2006503465A (en) Mobile radio base station
JP4401055B2 (en) Deviation compensation device
JP6536159B2 (en) Wireless communication apparatus and method of determining weight matrix
WO2019188548A1 (en) Wireless communication device and wireless communication method
JP6128083B2 (en) Wireless communication apparatus and calculation method
WO2016080087A1 (en) Radio communication device and method of determining weighting matrix
US10008773B2 (en) Wireless communication apparatus, antenna directionality control method, and power supply circuit
US10763940B2 (en) Digital port expansion for hybrid massive MIMO systems
WO2016181764A1 (en) Wireless communication device and weight matrix determination method
JP6731148B2 (en) Antenna device and antenna system
JP2005252844A (en) Receiving apparatus
US6947718B2 (en) Deviation compensation apparatus
KR101539533B1 (en) Method and apparatus for amplify-and-forward mimo-ofdm relay systems
JPWO2008152800A1 (en) Wireless device and measurement system using the same
WO2016051984A1 (en) Antenna system, control device, communication device, and computer program
CN109417429B (en) Radio base station apparatus and radio communication method
WO2016072175A1 (en) Active antenna system
WO2018003112A1 (en) Wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860882

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15525615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860882

Country of ref document: EP

Kind code of ref document: A1