WO2016068188A1 - Communication system - Google Patents

Communication system Download PDF

Info

Publication number
WO2016068188A1
WO2016068188A1 PCT/JP2015/080381 JP2015080381W WO2016068188A1 WO 2016068188 A1 WO2016068188 A1 WO 2016068188A1 JP 2015080381 W JP2015080381 W JP 2015080381W WO 2016068188 A1 WO2016068188 A1 WO 2016068188A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
communication signal
communication
battery
line
Prior art date
Application number
PCT/JP2015/080381
Other languages
French (fr)
Japanese (ja)
Inventor
金澤 昭義
淳 ▲高▼橋
一男 杉村
崇明 伊澤
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015209898A external-priority patent/JP6248083B2/en
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to DE112015004909.6T priority Critical patent/DE112015004909T5/en
Publication of WO2016068188A1 publication Critical patent/WO2016068188A1/en
Priority to US15/468,738 priority patent/US9929773B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines

Definitions

  • the present invention relates to a communication system, and more particularly to a communication system that performs communication using a PLC (Power Line Communication) system.
  • PLC Power Line Communication
  • a PLC type communication system in which communication is performed via a power line is known.
  • this PLC communication system is mounted on a vehicle, for example, the one shown in FIG. 11 is known.
  • a conventional communication system 100 includes a CPU 102 that transmits a communication signal according to an operation of the operation unit 101, a PLC modulation unit 103 that superimposes a communication signal from the CPU 102 on a power line L, and a power line.
  • a PLC demodulator 104 that demodulates the communication signal superimposed on L, and a CPU 106 that controls the load 105 in accordance with the communication signal demodulated by the PLC demodulator 104 are provided.
  • the PLC modulation unit 103 and the PLC demodulation unit 104 are connected in parallel to each other. For this reason, the PLC modulation unit 103 superimposes a communication signal on the power line L on the battery 107 side indicated by a bold line in the figure, so that not only the power line L between the PLC modulation unit 103 and the PLC demodulation unit 104 but also other loads A communication signal is also superimposed on the power supply line L connected to 108. Since the power supply line L is provided with an extremely low impedance, if the other load 108 connected to the power supply line L is a capacitive load, the communication signal may be attenuated.
  • an object of the present invention is to provide a communication system that suppresses attenuation of a communication signal superimposed on a power supply line.
  • a first aspect made to solve the above-described problem includes a transmission unit, a reception unit that receives a communication signal from the transmission unit, a power supply line connected between one electrode of the battery and the load.
  • a modulation unit that superimposes the communication signal from the transmission unit on the power supply line; and a demodulation unit that demodulates the communication signal superimposed on the power supply line and supplies the demodulated signal to the reception unit.
  • the demodulating means is provided on the load side on the power supply line on the battery side on the power supply line, and the modulation means superimposes the communication signal on the load side with respect to the modulation means on the power supply line. It is the communication system characterized by this.
  • a second mode is the communication system according to the first mode, wherein the modulation unit is configured by a semiconductor transistor in which a communication signal from the transmission unit is input to a control terminal.
  • the third aspect is further provided with a switching semiconductor transistor that is provided between the battery and another battery and turns on and off the connection between the battery and the other battery, and as a semiconductor transistor constituting the modulation unit,
  • a switching semiconductor transistor that is provided between the battery and another battery and turns on and off the connection between the battery and the other battery, and as a semiconductor transistor constituting the modulation unit,
  • a fourth aspect is the communication system according to the second or third aspect, wherein a pulsed communication signal that gradually rises and gradually falls is input to the control terminal of the semiconductor transistor. is there.
  • the demodulating means compares the differentiated voltage and a reference voltage with a high-pass filter that differentiates the power supply on the power supply line on which the communication signal is superimposed, and demodulates the comparison result.
  • the communication system according to any one of the first to fourth aspects, further comprising comparison means for outputting the communication signal.
  • the sixth aspect further includes a communication line for transmitting a communication signal from the transmission means to the reception means, the reception means including the communication signal from the communication line and the power source demodulated by the demodulation means.
  • the communication system according to any one of the first to fifth aspects is provided so that both of the communication signals from the line can be received.
  • the communication signal is superimposed on the load side with respect to the modulation means of the power supply line, it is possible to separate another capacitive load from the power supply line on which the communication signal is superimposed. And attenuation of the communication signal superimposed on the power supply line can be suppressed.
  • the modulation means can be provided with a simple configuration.
  • the switching semiconductor transistor for turning on and off the connection between the two batteries as the semiconductor transistor of the modulation means, it is not necessary to provide these transistors separately, and the cost can be reduced.
  • the pulsed communication signal that gradually rises and gradually falls is input to the control terminal of the semiconductor transistor, conduction noise can be reduced.
  • the differentiated voltage and the reference voltage are compared, it is possible to accurately demodulate the communication signal without being affected by the power supply voltage and noise.
  • a backup can be provided without increasing the number of parts by using the power supply line as a backup of the communication line.
  • a communication system 1 shown in the figure is mounted on a vehicle. As shown in the figure, the communication system 1 receives a master control device 2 as a master control means and a transmission means, and a communication signal from the master control device 2, and loads 31 and 32 according to the received communication signal.
  • Slave control means for controlling, slave control device 4 as receiving means, power supply lines L1 to L3 connected between the positive electrode side of battery B and loads 31, 32, and drive devices 51, 52 for driving loads 31, 32
  • a modulation unit 6 that superimposes the communication signal from the master control device 2 on the power supply lines L2 and L3, and a demodulation unit 7 that demodulates the communication signal superimposed on the power supply line L2 and supplies it to the slave control device 4. I have.
  • the master control device 2 and the slave control device 4 are constituted by a microcomputer composed of a well-known CPU, ROM, and RAM.
  • the power supply line L ⁇ b> 1 is a line connecting the positive electrode side of the battery B and the modulation unit 6.
  • the power supply line L ⁇ b> 2 is a line that connects between the modulation unit 6 and the demodulation unit 7.
  • the power supply line L ⁇ b> 3 is a line that has one end connected to the demodulator 7 and the other end branched into a plurality of branches and connected to a plurality of driving devices 51 and 52.
  • the drive devices 51 and 52 are controlled by the slave control device 4, convert the power supply voltage supplied from the power supply line L 3 into a drive voltage, and supply the drive voltages to the loads 31 and 32.
  • the modulation unit 6 is provided on the battery B side on the power supply lines L1 to L3, and the demodulation unit 7 is provided on the load 31 and 32 side on the power supply lines L1 to L3, and they are connected in series.
  • the modulation unit 6 is composed of an n-channel FET Q1 (semiconductor transistor).
  • the source of the FET Q1 is connected to the power supply line L1, and the drain is connected to the power supply line L2. That is, it is provided so that the forward direction of the parasitic diode D1 of the FET Q1 faces the loads 31 and 32.
  • a pulsed communication signal of about 10 kHz, for example, from the master control device 2 is inputted to the gate (control terminal) of the FET Q1.
  • the FET Q1 when the communication signal is at the H level, the FET Q1 is turned on, so that the power supply voltage Vb which is the potential on the positive side of the battery B is output to the power supply line L2.
  • the FET Q1 when the communication signal is at the L level, the FET Q1 is turned off, so that a voltage that is lowered from the power supply voltage Vb by the voltage drop Vf due to the parasitic diode D1 of the FET Q1 is output to the power supply line L2.
  • the modulation unit 6 superimposes the communication signal on the power supply voltage Vb supplied by the power lines L2 and L3 on the loads 31 and 32 side. No communication signal is superimposed on the power line L1 on the battery B side.
  • the demodulator 7 includes a low-pass filter F1, voltage dividing resistors R11 and R12, and a comparator CP1.
  • the low-pass filter F1 includes a resistor R13 and a capacitor C1, and removes a communication signal having a frequency higher than the cutoff frequency from the voltage supplied from the power supply line L2, and outputs only the power supply voltage Vb.
  • the voltage dividing resistors R11 and R12 divide the power supply voltage Vb output from the low-pass filter F1 and input it to the comparator CP1 as a reference voltage.
  • the voltage dividing resistors R11 and R12 are set so that the reference voltage supplied to the comparator CP1 is lower than the power supply voltage Vb and higher than the voltage obtained by subtracting the voltage drop Vf from the power supply voltage Vb.
  • the comparator CP1 further receives the power supply voltage Vb on which the communication signal supplied from the power supply line L2 is superimposed.
  • the comparator CP1 compares the power supply voltage Vb with the reference voltage, and outputs a comparison result as a communication signal. Supply.
  • the modulation unit 6 when the master control device 2 transmits a communication signal, the modulation unit 6 superimposes the communication signal on the power lines L2 and L3 on the loads 31 and 32 side.
  • the demodulator 7 demodulates the communication signal superimposed on the power supply lines L 2 and L 3 and outputs the demodulated signal to the slave control device 4.
  • the slave control device 4 drives the loads 31 and 32 by driving the drive devices 51 and 52 in accordance with the communication signal demodulated by the demodulator 7.
  • the modulation unit 6 is provided on the battery B side on the power supply lines L1 to L3, and the demodulation unit 7 is provided on the loads 31 and 32 side on the power supply lines L1 to L3.
  • the lines L1 to L3 communication signals are superimposed on the power supply lines L2 and L3 closer to the loads 31 and 32 than the modulation unit 6. Therefore, the communication signal is not superimposed on the power line L1 on the battery B side as in the prior art, and the power lines L2, L3 on which the communication signal is superimposed with the other capacitive load 10 connected to the power line L1. And the attenuation of communication signals superimposed on the power supply lines L2 and L3 can be suppressed.
  • the modulation unit 6 is provided on the power supply lines L1 to L3, and is configured by the FET Q1 in which the communication signal from the master control device 2 is input to the gate.
  • alteration part 6 can be provided with a simple structure.
  • the FET Q1 is used as the semiconductor transistor, but the present invention is not limited to this.
  • a bipolar transistor may be used instead of the FET Q1. Since the bipolar transistor does not have a parasitic diode D1, if a diode is connected between the emitter and the collector, it functions in the same way as the FET Q1.
  • the demodulator 7 includes a high-pass filter F2, a low-pass filter F1, voltage dividing resistors R14 and R15, and a comparator CP2 as a comparison unit.
  • the high-pass filter F2 includes a primary filter F21 and a secondary filter F22 that differentiate a voltage on the power supply line L2 on which a communication signal is superimposed, an amplifier circuit 71 provided between the primary filter F21 and the secondary filter F22, It is composed of
  • the primary filter F21 includes a resistor R16 and a capacitor C2, and removes a lower frequency component than the cutoff frequency (for example, 5 kHz) from the voltage on the power supply line L2.
  • the amplifier circuit 71 has an OP amplifier OP1, amplifies the output from the primary filter F21, and inputs the amplified output to the secondary filter F22.
  • the secondary filter F22 includes a resistor R17 and a capacitor C3, removes a lower frequency component than the cutoff frequency (for example, 10 kHz) from the output of the amplifier circuit 71, and supplies it to the comparator CP2.
  • a power supply voltage on which the communication signal is superimposed that is, an edge detection signal obtained by differentiating the modulated communication signal is output and input to the comparator CP2.
  • the edge detection signal outputs a triangular wave in the negative direction when the modulated communication signal falls from the power supply voltage Vb by the voltage drop Vf, and in the positive direction when it rises to the power supply voltage Vb from the state dropped by the voltage drop Vf. A triangular wave is output.
  • the voltage dividing resistors R14 and R15 divide the power supply voltage Vb output from the low-pass filter F1 and input it to the comparator CP2 as a reference voltage.
  • the voltage dividing resistors R14 and R15 are set such that the reference voltage supplied to the comparator CP2 is lower than the maximum value of the edge detection signal as shown in FIG.
  • the comparator CP2 compares the edge detection signal with the reference voltage, outputs the comparison result as a demodulated communication signal, and supplies it to the slave control device 4.
  • the demodulated communication signal has a waveform in which one pulse is output every time the communication signal before modulation rises, and nothing is output at the fall.
  • the modulated communication signal itself is compared with the reference voltage. It is predicted that the power supply voltage of the actual vehicle will not be stable due to influences such as fluctuations in the voltage level during load driving and noise superposition on the power supply line L2. Therefore, in the method of the first embodiment, it is difficult to demodulate the communication signal.
  • the modulated communication signal is differentiated and an edge detection signal is output, and the edge detection signal is compared with the reference voltage.
  • the communication signal superimposed on the power supply line L2 can be demodulated.
  • an OP amplifier OP1 is used for the high-pass filter F2. Since the OP amplifier OP1 cannot pass through a wide area, a low-pass filter is naturally formed. For this reason, as shown in FIG. 5, not only the low frequency noise by the primary filter F21 and the secondary filter F22 but also the high frequency noise can be cut. Thereby, the communication signal superimposed on the power supply line L2 can be demodulated more accurately. In addition, just by adding the high-pass filter F2, it is possible to obtain the same effect as adding the low-pass filter.
  • the number of OP amplifiers used is increased from one to two compared to the first embodiment, but the upper limit of the cost is minimized by using a device such as two OP amplifiers. Can be suppressed.
  • the communication system of the present invention in the third embodiment will be described below with reference to FIG.
  • the demodulator 7, the slave control device 4, and the drive devices 51 and 52 are omitted.
  • the communication system of the third embodiment is premised on being provided in a vehicle on which two batteries B1 and B2 are mounted.
  • the batteries B1 and B2 are batteries having different rated voltages.
  • the battery B1 is composed of, for example, a lead battery for starting the engine.
  • the battery B2 as another battery is composed of lithium ions for voltage stabilization and is connected in parallel to the battery B1.
  • a starter motor M, an alternator ALT, general loads 33 and 34, and a traveling system load 35 are connected in parallel to the batteries B1 and B2.
  • a switching unit 11 for turning on / off the connection between the batteries B1 and B2 is generally provided.
  • the switching unit 11 includes two n-channel FETs Q11 and Q12 provided between the batteries B1 and B2, gate drivers 11a and 11b for driving the FETs Q11 and Q12, and a switching control circuit 11c for controlling the gate drivers 11a and 11b. And.
  • FETQ11 and Q12 are connected in series between batteries B1 and B2.
  • the FETs Q11 and Q12 are connected in series so that the parasitic diodes D11 and D12 are opposite to each other.
  • the parasitic diode D11 is turned off when the two FETs Q11 and Q12 are turned off. And the battery B1 and B2 can be completely disconnected without any current flowing through D12.
  • the starter motor M, the alternator ALT, and the general load 33 are connected to the battery B1 side of the FETs Q11 and Q12. Therefore, when the FETs Q11 and Q12 are turned off, the connection with the battery B2 is cut off.
  • the general load 34 is connected between the FETs Q11 and Q12, when the FETs Q11 and Q12 are turned off, the connection between the batteries B1 and B2 is cut off.
  • the traveling system load 35 is connected to the battery B2 side with respect to the FETs Q11 and Q12, when the FETs Q11 and Q12 are turned off, the connection with the battery B1 is cut off.
  • the switching control circuit 11c is composed of a CPU, for example, and controls the connection between the batteries B1 and B2 by controlling on / off of the FETs Q11 and Q12 according to a command from the host unit.
  • the switching unit 11 is used as a modulation unit, and the FET Q12 is used as an FET constituting the modulation unit. That is, the switching control circuit 11c is connected to the master control device 2 described in the first embodiment, and receives a communication signal from the master control device 2. The switching control circuit 11c always turns on the FET Q11 when performing PLC communication, and turns on / off the FET Q12 according to the received communication signal.
  • the switching unit 11 superimposes a communication signal on the power supply voltage Vb supplied by the power supply line L2 on the traveling system load 35 side as indicated by a dotted line. No communication signal is superimposed on the power supply line L1 on the battery B1 side.
  • the switching FET Q12 that turns on and off the connection between the two batteries B1 and B2 is used as the FET of the modulation unit.
  • the switching unit 11 adds a communication function to increase added value.
  • FETQ11 and Q12 were connected in series so that the parasitic diodes D11 and D12 might become the mutually reverse direction, it is not restricted to this.
  • two FETs Q11 and Q12 are connected in series so that the parasitic diodes D11 and D12 are in the same direction.
  • the two FETs Q11 and Q12 are provided to switch between the batteries B1 and B2 that supply power to the general loads 33 and 34 and the traveling system load 35.
  • both FETs Q11 and Q12 can be used as FETs constituting the modulation unit.
  • the switching control circuit 11c is connected to the master control device 2 described in the first embodiment, and receives a communication signal from the master control device 2.
  • the switching control circuit 11c always turns on the FET Q11 and turns the FET Q12 on and off according to the received communication signal. Since this is the same as that described with reference to FIG. 6, a detailed description thereof will be omitted.
  • the switching control circuit 11c can always turn on the FET Q12 and turn the FET Q11 on and off according to the received communication signal.
  • the power supply line L2 between the FET Q11 and the general load 34 and the power supply line L2 between the FET Q12 and the traveling system load 35 are supplied with the power supply voltage Vb that is the potential on the positive side of the battery B1. Is output.
  • the FET Q11 is OFF, the power supply line L2 between the FET Q11 and the general load 34 and the power supply line L2 between the FET Q12 and the traveling system load 35 are supplied with a voltage drop Vf due to the parasitic diode D11 of the FET Q11. A voltage that has been reduced by a certain amount is output. That is, the switching unit 11 can superimpose a communication signal on the power supply voltage Vb supplied to both the general load 34 and the traveling system load 35, as indicated by a dashed line.
  • the communication system 1 in the first embodiment described above superimposes communication signals by changing the level of the power supply voltage Vb. For this reason, generation
  • the main cause of conduction noise is a steep voltage change when FETQ1 is switched on and off.
  • a pulsed communication signal that gradually rises and gradually falls is input to the gate of the FET Q1.
  • the modulated communication signal the fluctuation from the power supply voltage Vb to (power supply voltage Vb ⁇ voltage drop Vf), (power supply voltage Vb ⁇ voltage drop Vf)
  • the power supply voltage Vb is also gradually changed, and the conduction noise can be reduced.
  • the communication system 1 detects the state of the battery B and receives a detection signal (communication signal) from the battery sensor 9 as a transmission unit that outputs the detection signal.
  • Smart power supply boxes 10a to 10d as receiving means for controlling the loads 36a to 36d according to the received detection signals, power supply lines L1 to L3 connected between the positive side of the battery B and the loads 36a to 36d, and battery sensors 9, a modulation unit 6 that superimposes the detection signal from the power supply lines L2 and L3, a demodulation unit 7a to 7d that demodulates the detection signal superimposed on the power supply line L2 and supplies the detection signal to the smart power supplies BOX 10a to 10d, and a battery sensor 9 And a communication line Lc for transmitting the detection signals from the smart power supplies BOX 10a to 10d.
  • the battery sensor 9 detects the remaining capacity of the battery B and the voltage at both ends, and transmits the detection signal to the smart power supply boxes 10a to 10d via the communication line Lc and the power supply line L2.
  • a communication method via the communication line Lc is performed by a well-known LIN or CAN. Communication via the power line L2 is performed in the same manner as in the first embodiment.
  • the smart power supplies BOX 10a to 10d are constituted by a microcomputer composed of a well-known CPU, ROM, and RAM.
  • the smart power supplies BOX 10a to 10d are provided so as to receive both the detection signal via the communication line Lc and the detection signal via the power line L2.
  • the power supply line L1 is a line that connects the positive electrode side of the battery B and the modulation unit 6 as in the first embodiment.
  • the power supply line L2 is a line that connects between the modulation unit 6 and the demodulation units 7a to 7d.
  • the power supply line L3 is a line that connects between the demodulation units 7a to 7d and the loads 36a to 36d.
  • Each of the smart power supplies BOX 10a to 10d autonomously controls each of the loads 36a to 36d in accordance with a detection signal from the battery sensor 9 (for example, when the remaining capacity of the battery B is small, the audio system is a part not related to running). Shut off the power supply to the load).
  • the detection signal is transmitted from the battery sensor 9 to the smart power supply boxes 10a to 10d through the communication line Lc and the power supply line L2.
  • the smart power supplies BOX 10a to 10d normally receive a detection signal via the communication line Lc.
  • Smart power supplies BOX 10a to 10d determine that communication is interrupted when the detection signals cannot be received from communication line Lc, and receive detection signals via power supply line L2 demodulated by demodulation sections 7a to 7d.
  • a backup can be provided without increasing the number of components, and the detection signal from the battery sensor 9 can be reliably transmitted to the smart power supply box 10a ⁇ 10d can receive.
  • Lithium requires a higher level of battery management than lead.
  • the smart power supplies BOX 10a to 10d autonomously control the loads 36a to 36d.
  • higher functionality can be achieved compared to a case where a control unit such as one ECU controls the plurality of loads 36a to 36d collectively.
  • the communication system is separately provided in the PLC performed in the power supply lines L1 to L3 separately from the LIN and CAN performed in the communication line Lc, and there is an advantage that the worry of simultaneous multiple failures can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

In the present invention, a slave control device (4) receives a communication signal from a master control device (2), and controls loads (31, 32) in accordance with the received communication signal. A modulation unit (6) superimposes a communication signal from the master control device (2) onto power source lines (L2, L3), and a demodulation unit (7) demodulates and supplies to the slave control device (4) the communication signal superimposed on the power source lines (L2, L3). The modulation unit (6) is disposed on the battery (B) side above the power source lines (L1-L3), and the demodulation unit (7) is disposed on the load (31, 32) side above the power source lines (L1-L3). The modulation unit (6) superimposes a communication signal on the power source lines (L2, L3) closer to the load (31, 32) side than the modulation unit for the power source lines (L1-L3).

Description

通信システムCommunications system
 本発明は、通信システムに係り、特に、PLC(Power line Communication)方式を用いて通信を行う通信システムに関するものである。 The present invention relates to a communication system, and more particularly to a communication system that performs communication using a PLC (Power Line Communication) system.
 従来より、電源ラインを介して通信が行われるPLC方式の通信システムが知られている。このPLC方式の通信システムを車載用にした例として、例えば、図11に示されたものが知られている。同図に示すように、従来の通信システム100は、操作部101の操作に応じた通信信号を送信するCPU102と、CPU102からの通信信号を電源ラインLに重畳するPLC変調部103と、電源ラインLに重畳された通信信号を復調するPLC復調部104と、PLC復調部104が復調した通信信号に応じて負荷105を制御するCPU106と、を備えている。 Conventionally, a PLC type communication system in which communication is performed via a power line is known. As an example in which this PLC communication system is mounted on a vehicle, for example, the one shown in FIG. 11 is known. As shown in the figure, a conventional communication system 100 includes a CPU 102 that transmits a communication signal according to an operation of the operation unit 101, a PLC modulation unit 103 that superimposes a communication signal from the CPU 102 on a power line L, and a power line. A PLC demodulator 104 that demodulates the communication signal superimposed on L, and a CPU 106 that controls the load 105 in accordance with the communication signal demodulated by the PLC demodulator 104 are provided.
 従来の通信システム100において、PLC変調部103及びPLC復調部104は、互いに並列接続される。このため、PLC変調部103は、図中太線で示すバッテリ107側の電源ラインLに通信信号を重畳するため、PLC変調部103及びPLC復調部104間の電源ラインLだけでなく、他の負荷108に接続される電源ラインLにも通信信号が重畳される。電源ラインLは極めて低インピーダンスで設けられているため、電源ラインLに接続された他の負荷108が容量性負荷であった場合、通信信号が減衰してしまう恐れがある。 In the conventional communication system 100, the PLC modulation unit 103 and the PLC demodulation unit 104 are connected in parallel to each other. For this reason, the PLC modulation unit 103 superimposes a communication signal on the power line L on the battery 107 side indicated by a bold line in the figure, so that not only the power line L between the PLC modulation unit 103 and the PLC demodulation unit 104 but also other loads A communication signal is also superimposed on the power supply line L connected to 108. Since the power supply line L is provided with an extremely low impedance, if the other load 108 connected to the power supply line L is a capacitive load, the communication signal may be attenuated.
 そこで、PLC通信を行うときは、他の負荷108を電源ラインLから切り離すことが考えられるが、通信を行うタイミングに制限が生じるなど問題がある。 Therefore, when performing PLC communication, it can be considered that the other load 108 is disconnected from the power supply line L, but there is a problem that the timing of communication is limited.
 そこで、本発明は、電源ラインに重畳される通信信号の減衰を抑えた通信システムを提供することを課題とする。 Therefore, an object of the present invention is to provide a communication system that suppresses attenuation of a communication signal superimposed on a power supply line.
 上述した課題を解決するためになされた第1の態様は、送信手段と、前記送信手段からの通信信号を受信する受信手段と、バッテリの一方の電極及び前記負荷間に接続された電源ラインと、前記送信手段からの通信信号を前記電源ラインに重畳する変調手段と、前記電源ラインに重畳された通信信号を復調して、前記受信手段に供給する復調手段と、を備え、前記変調手段が前記電源ライン上の前記バッテリ側に、前記復調手段が前記電源ライン上の負荷側に設けられ、前記変調手段が、前記電源ラインの当該変調手段よりも前記負荷側に前記通信信号を重畳することを特徴とする通信システムである。 A first aspect made to solve the above-described problem includes a transmission unit, a reception unit that receives a communication signal from the transmission unit, a power supply line connected between one electrode of the battery and the load. A modulation unit that superimposes the communication signal from the transmission unit on the power supply line; and a demodulation unit that demodulates the communication signal superimposed on the power supply line and supplies the demodulated signal to the reception unit. The demodulating means is provided on the load side on the power supply line on the battery side on the power supply line, and the modulation means superimposes the communication signal on the load side with respect to the modulation means on the power supply line. It is the communication system characterized by this.
 第2の態様は、前記変調手段が、制御端子に前記送信手段からの通信信号が入力される半導体トランジスタで構成されていることを特徴とする第1の態様に記載の通信システムである。 A second mode is the communication system according to the first mode, wherein the modulation unit is configured by a semiconductor transistor in which a communication signal from the transmission unit is input to a control terminal.
 第3の態様は、前記バッテリと他のバッテリとの間に設けられ、前記バッテリ及び前記他のバッテリとの接続をオンオフする切替用半導体トランジスタをさらに備え、前記変調手段を構成する半導体トランジスタとして、前記切替用半導体トランジスタを用いることを特徴とする第2の態様に記載の通信システムである。 The third aspect is further provided with a switching semiconductor transistor that is provided between the battery and another battery and turns on and off the connection between the battery and the other battery, and as a semiconductor transistor constituting the modulation unit, The communication system according to the second aspect, wherein the switching semiconductor transistor is used.
 第4の態様は、前記半導体トランジスタの制御端子に、徐々に立ち上がり、かつ、徐々に立ち下がるパルス状の通信信号を入力することを特徴とする第2又は第3の態様に記載の通信システムである。 A fourth aspect is the communication system according to the second or third aspect, wherein a pulsed communication signal that gradually rises and gradually falls is input to the control terminal of the semiconductor transistor. is there.
 第5の態様は、前記復調手段が、前記通信信号が重畳された前記電源ライン上の電源を微分するハイパスフィルタと、前記微分した電圧と基準電圧とを比較して、その比較結果を復調した前記通信信号として出力する比較手段と、を備えたことを特徴とする第1~第4何れか1の態様に記載の通信システムである。 In a fifth aspect, the demodulating means compares the differentiated voltage and a reference voltage with a high-pass filter that differentiates the power supply on the power supply line on which the communication signal is superimposed, and demodulates the comparison result. The communication system according to any one of the first to fourth aspects, further comprising comparison means for outputting the communication signal.
 第6の態様は、前記送信手段からの通信信号を前記受信手段に伝送するための通信ラインをさらに備え、前記受信手段は、前記通信ラインからの通信信号と、前記復調手段が復調した前記電源ラインからの通信信号と、の双方が受信できるように設けられていることを特徴とする第1~第5何れか1の態様に記載の通信システムに存する。 The sixth aspect further includes a communication line for transmitting a communication signal from the transmission means to the reception means, the reception means including the communication signal from the communication line and the power source demodulated by the demodulation means. The communication system according to any one of the first to fifth aspects is provided so that both of the communication signals from the line can be received.
 以上説明したように第1の態様によれば、通信信号が電源ラインの変調手段よりも負荷側に重畳されるため、他の容量性負荷と通信信号が重畳される電源ラインとを切り離すことができ、電源ラインに重畳される通信信号の減衰を抑えることができる。 As described above, according to the first aspect, since the communication signal is superimposed on the load side with respect to the modulation means of the power supply line, it is possible to separate another capacitive load from the power supply line on which the communication signal is superimposed. And attenuation of the communication signal superimposed on the power supply line can be suppressed.
 第2の態様によれば、簡単な構成で変調手段を設けることができる。 According to the second aspect, the modulation means can be provided with a simple configuration.
 第3の態様によれば、2つのバッテリ間の接続をオンオフする切替用半導体トランジスタを変調手段の半導体トランジスタとして用いることにより、これらトランジスタを別々に設ける必要がなく、コストダウンを図ることができる。 According to the third aspect, by using the switching semiconductor transistor for turning on and off the connection between the two batteries as the semiconductor transistor of the modulation means, it is not necessary to provide these transistors separately, and the cost can be reduced.
 第4の態様によれば、半導体トランジスタの制御端子に徐々に立ち上がり、かつ、徐々に立ち下がるパルス状の通信信号を入力するので、伝導ノイズの低減を図ることができる。 According to the fourth aspect, since the pulsed communication signal that gradually rises and gradually falls is input to the control terminal of the semiconductor transistor, conduction noise can be reduced.
 第5の態様によれば、微分した電圧と基準電圧とを比較するので、電源電圧やノイズなどの影響を受けにくく正確に通信信号を復調することができる。 According to the fifth aspect, since the differentiated voltage and the reference voltage are compared, it is possible to accurately demodulate the communication signal without being affected by the power supply voltage and noise.
 第6の態様によれば、通信ラインのバックアップとして、電源ラインを用いることにより、部品点数を増やすことなくバクアップを設けることができる。 According to the sixth aspect, a backup can be provided without increasing the number of parts by using the power supply line as a backup of the communication line.
本発明の通信システムの一例を示す回路図である。It is a circuit diagram which shows an example of the communication system of this invention. 第1実施形態における図1に示す通信システムを構成する変調部及び復調部の詳細を示す回路図である。It is a circuit diagram which shows the detail of the modulation | alteration part and demodulation part which comprise the communication system shown in FIG. 1 in 1st Embodiment. 第2実施形態における図1を示す通信システムを構成する変調部及び復調部の詳細を示す回路図である。It is a circuit diagram which shows the detail of the modulation | alteration part and demodulation part which comprise the communication system which shows FIG. 1 in 2nd Embodiment. 図3に示すFETのソース出力、微分回路の出力及びコンパレータの出力のタイムチャートである。It is a time chart of the source output of FET shown in FIG. 3, the output of a differentiation circuit, and the output of a comparator. 図4に示す復調部の周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the demodulation part shown in FIG. 第3実施形態における通信システムの一例を示す回路図である。It is a circuit diagram which shows an example of the communication system in 3rd Embodiment. 第3実施形態の変形例における通信システムの一例を示す回路図である。It is a circuit diagram which shows an example of the communication system in the modification of 3rd Embodiment. 第4実施形態におけるFETのゲート入力及びソース出力のタイムチャートである。It is a time chart of the gate input and source output of FET in 4th Embodiment. tr=tf=32μsの通信信号をFETのゲートに入力したときの伝導ノイズの周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the conduction noise when the communication signal of tr = tf = 32 microseconds is input into the gate of FET. 第5実施形態における通信システムの一例を示す回路図である。It is a circuit diagram which shows an example of the communication system in 5th Embodiment. 従来の通信システムの一例を示す回路図である。It is a circuit diagram which shows an example of the conventional communication system.
(第1実施形態)
 以下、第1実施形態における本発明の通信システムについて図1及び図2を参照して説明する。同図に示す通信システム1は、車両に搭載されている。同図に示すように、通信システム1は、マスタ制御手段、送信手段としてのマスタ制御装置2と、マスタ制御装置2からの通信信号を受信し、受信した通信信号に応じて負荷31、32を制御するスレーブ制御手段、受信手段としてのスレーブ制御装置4と、バッテリBの正極側及び負荷31、32間に接続された電源ラインL1~L3と、負荷31、32を駆動する駆動装置51、52と、マスタ制御装置2からの通信信号を電源ラインL2及びL3に重畳する変調部6と、電源ラインL2に重畳された通信信号を復調してスレーブ制御装置4に供給する復調部7と、を備えている。
(First embodiment)
The communication system of the present invention in the first embodiment will be described below with reference to FIGS. A communication system 1 shown in the figure is mounted on a vehicle. As shown in the figure, the communication system 1 receives a master control device 2 as a master control means and a transmission means, and a communication signal from the master control device 2, and loads 31 and 32 according to the received communication signal. Slave control means for controlling, slave control device 4 as receiving means, power supply lines L1 to L3 connected between the positive electrode side of battery B and loads 31, 32, and drive devices 51, 52 for driving loads 31, 32 A modulation unit 6 that superimposes the communication signal from the master control device 2 on the power supply lines L2 and L3, and a demodulation unit 7 that demodulates the communication signal superimposed on the power supply line L2 and supplies it to the slave control device 4. I have.
 マスタ制御装置2及びスレーブ制御装置4は、周知のCPU、ROM、RAMから成るマイコンから構成されている。電源ラインL1は、バッテリBの正極側及び変調部6間を接続するラインである。電源ラインL2は、変調部6及び復調部7間を接続するラインである。電源ラインL3は、一端が復調部7に接続され、他端が複数分岐され、複数の駆動装置51、52に接続されるラインである。駆動装置51、52は、スレーブ制御装置4により制御され、電源ラインL3から供給される電源電圧を駆動電圧に変換して負荷31、32に供給する。 The master control device 2 and the slave control device 4 are constituted by a microcomputer composed of a well-known CPU, ROM, and RAM. The power supply line L <b> 1 is a line connecting the positive electrode side of the battery B and the modulation unit 6. The power supply line L <b> 2 is a line that connects between the modulation unit 6 and the demodulation unit 7. The power supply line L <b> 3 is a line that has one end connected to the demodulator 7 and the other end branched into a plurality of branches and connected to a plurality of driving devices 51 and 52. The drive devices 51 and 52 are controlled by the slave control device 4, convert the power supply voltage supplied from the power supply line L 3 into a drive voltage, and supply the drive voltages to the loads 31 and 32.
 変調部6は電源ラインL1~L3上のバッテリB側に、復調部7は電源ラインL1~L3上の負荷31、32側に設けられ、互いに直列接続されている。 The modulation unit 6 is provided on the battery B side on the power supply lines L1 to L3, and the demodulation unit 7 is provided on the load 31 and 32 side on the power supply lines L1 to L3, and they are connected in series.
 変調部6は、図2に示すように、nチャンネルのFETQ1(半導体トランジスタ)から構成されている。このFETQ1のソースは電源ラインL1に接続され、ドレインは電源ラインL2に接続されている。即ち、FETQ1の寄生ダイオードD1の順方向が負荷31、32側に向くように設けられている。また、FETQ1のゲート(制御端子)には、マスタ制御装置2からの例えば10kHz程度のパルス状の通信信号が入力されている。 As shown in FIG. 2, the modulation unit 6 is composed of an n-channel FET Q1 (semiconductor transistor). The source of the FET Q1 is connected to the power supply line L1, and the drain is connected to the power supply line L2. That is, it is provided so that the forward direction of the parasitic diode D1 of the FET Q1 faces the loads 31 and 32. Further, a pulsed communication signal of about 10 kHz, for example, from the master control device 2 is inputted to the gate (control terminal) of the FET Q1.
 以上の構成によれば、通信信号がHレベルのときは、FETQ1がオンするため、電源ラインL2にはバッテリBの正極側の電位である電源電圧Vbが出力される。一方、通信信号がLレベルのときは、FETQ1がオフするため、電源ラインL2には電源電圧VbからFETQ1の寄生ダイオードD1による電圧降下Vf分だけ下がった電圧が出力される。これにより、変調部6は、負荷31、32側の電源ラインL2及びL3によって供給される電源電圧Vbに通信信号を重畳する。バッテリB側の電源ラインL1には通信信号は重畳していない。 According to the above configuration, when the communication signal is at the H level, the FET Q1 is turned on, so that the power supply voltage Vb which is the potential on the positive side of the battery B is output to the power supply line L2. On the other hand, when the communication signal is at the L level, the FET Q1 is turned off, so that a voltage that is lowered from the power supply voltage Vb by the voltage drop Vf due to the parasitic diode D1 of the FET Q1 is output to the power supply line L2. Thereby, the modulation unit 6 superimposes the communication signal on the power supply voltage Vb supplied by the power lines L2 and L3 on the loads 31 and 32 side. No communication signal is superimposed on the power line L1 on the battery B side.
 復調部7は、図2に示すように、ローパスフィルタF1と、分圧抵抗R11及びR12と、コンパレータCP1と、から構成されている。ローパスフィルタF1は、抵抗R13及びコンデンサC1から構成され、電源ラインL2から供給された電圧から遮断周波数よりも高周波の通信信号を除去して、電源電圧Vbのみを出力する。分圧抵抗R11及びR12は、ローパスフィルタF1から出力された電源電圧Vbを分圧して基準電圧としてコンパレータCP1に入力する。 As shown in FIG. 2, the demodulator 7 includes a low-pass filter F1, voltage dividing resistors R11 and R12, and a comparator CP1. The low-pass filter F1 includes a resistor R13 and a capacitor C1, and removes a communication signal having a frequency higher than the cutoff frequency from the voltage supplied from the power supply line L2, and outputs only the power supply voltage Vb. The voltage dividing resistors R11 and R12 divide the power supply voltage Vb output from the low-pass filter F1 and input it to the comparator CP1 as a reference voltage.
 分圧抵抗R11及びR12は、コンパレータCP1に供給される基準電圧が、電源電圧Vbよりも低く、かつ、電源電圧Vbから電圧降下Vfを差し引いた電圧よりも高くなるようにそれぞれ設定されている。コンパレータCP1には、電源ラインL2から供給される通信信号が重畳された電源電圧Vbがさらに入力され、これと上記基準電圧を比較して、比較結果を通信信号として出力し、スレーブ制御装置4に供給する。 The voltage dividing resistors R11 and R12 are set so that the reference voltage supplied to the comparator CP1 is lower than the power supply voltage Vb and higher than the voltage obtained by subtracting the voltage drop Vf from the power supply voltage Vb. The comparator CP1 further receives the power supply voltage Vb on which the communication signal supplied from the power supply line L2 is superimposed. The comparator CP1 compares the power supply voltage Vb with the reference voltage, and outputs a comparison result as a communication signal. Supply.
 以上の構成の通信システム1によれば、マスタ制御装置2が通信信号を送信すると、変調部6がこの通信信号を負荷31、32側の電源ラインL2、L3に重畳する。復調部7が電源ラインL2、L3に重畳した通信信号を復調して、スレーブ制御装置4に出力する。スレーブ制御装置4は、復調部7により復調された通信信号に応じて駆動装置51、52を駆動して、負荷31、32を駆動する。 According to the communication system 1 having the above configuration, when the master control device 2 transmits a communication signal, the modulation unit 6 superimposes the communication signal on the power lines L2 and L3 on the loads 31 and 32 side. The demodulator 7 demodulates the communication signal superimposed on the power supply lines L 2 and L 3 and outputs the demodulated signal to the slave control device 4. The slave control device 4 drives the loads 31 and 32 by driving the drive devices 51 and 52 in accordance with the communication signal demodulated by the demodulator 7.
 上述した実施形態によれば、変調部6が電源ラインL1~L3上のバッテリB側に、復調部7が電源ラインL1~L3上の負荷31、32側に設けられ、変調部6が、電源ラインL1~L3において当該変調部6よりも負荷31、32側の電源ラインL2、L3に通信信号を重畳する。このため、従来のようにバッテリB側の電源ラインL1に通信信号が重畳されることがなく、電源ラインL1に接続される他の容量性負荷10と通信信号が重畳される電源ラインL2、L3とを切り離すことができ、電源ラインL2、L3に重畳される通信信号の減衰を抑えることができる。 According to the above-described embodiment, the modulation unit 6 is provided on the battery B side on the power supply lines L1 to L3, and the demodulation unit 7 is provided on the loads 31 and 32 side on the power supply lines L1 to L3. In the lines L1 to L3, communication signals are superimposed on the power supply lines L2 and L3 closer to the loads 31 and 32 than the modulation unit 6. Therefore, the communication signal is not superimposed on the power line L1 on the battery B side as in the prior art, and the power lines L2, L3 on which the communication signal is superimposed with the other capacitive load 10 connected to the power line L1. And the attenuation of communication signals superimposed on the power supply lines L2 and L3 can be suppressed.
 また、上述した実施形態によれば、変調部6が、電源ラインL1~L3上に設けられ、ゲートにマスタ制御装置2からの通信信号が入力されるFETQ1で構成されている。これにより、簡単な構成で変調部6を設けることができる。 Further, according to the above-described embodiment, the modulation unit 6 is provided on the power supply lines L1 to L3, and is configured by the FET Q1 in which the communication signal from the master control device 2 is input to the gate. Thereby, the modulation | alteration part 6 can be provided with a simple structure.
 なお、上述した実施形態によれば、半導体トランジスタとしてFETQ1を用いていたが、これに限ったものではない。例えば、FETQ1の代わりにバイポーラ型のトランジスタを用いてもよい。バイポーラ型のトランジスタは、寄生ダイオードD1がないため、エミッタ-コレクタ間にダイオードを接続すれば、FETQ1と同じように機能する。 Note that, according to the above-described embodiment, the FET Q1 is used as the semiconductor transistor, but the present invention is not limited to this. For example, a bipolar transistor may be used instead of the FET Q1. Since the bipolar transistor does not have a parasitic diode D1, if a diode is connected between the emitter and the collector, it functions in the same way as the FET Q1.
(第2実施形態)
 次に、第2実施形態における本発明の通信システムについて図3~図5を参照して以下説明する。なお、図3において、上述した第1実施形態で既に説明した図2と同等の部分については同一符号を付してその詳細な説明を省略する。第1実施形態と第2実施形態とで異なる点は、復調部7の構成である。復調部7以外は上述した第1実施形態と同等であるため詳細な説明を省略する。
(Second Embodiment)
Next, the communication system of the present invention in the second embodiment will be described below with reference to FIGS. In FIG. 3, parts equivalent to those already described in the first embodiment with reference to FIG. 2 are denoted by the same reference numerals and detailed description thereof is omitted. The difference between the first embodiment and the second embodiment is the configuration of the demodulator 7. Since the parts other than the demodulator 7 are the same as those of the first embodiment described above, a detailed description thereof will be omitted.
 復調部7は、ハイパスフィルタF2と、ローパスフィルタF1と、分圧抵抗R14及びR15と、比較手段としてのコンパレータCP2と、から構成されている。ハイパスフィルタF2は、通信信号が重畳された電源ラインL2上の電圧を微分する1次フィルタF21及び2次フィルタF22と、1次フィルタF21及び2次フィルタF22間に設けられた増幅回路71と、から構成されている。 The demodulator 7 includes a high-pass filter F2, a low-pass filter F1, voltage dividing resistors R14 and R15, and a comparator CP2 as a comparison unit. The high-pass filter F2 includes a primary filter F21 and a secondary filter F22 that differentiate a voltage on the power supply line L2 on which a communication signal is superimposed, an amplifier circuit 71 provided between the primary filter F21 and the secondary filter F22, It is composed of
 1次フィルタF21は、抵抗R16及びコンデンサC2から構成され、電源ラインL2上の電圧から遮断周波数(例えば5kHz)よりも低周波成分を除去する。増幅回路71は、OPアンプOP1を有し、1次フィルタF21からの出力を増幅して、2次フィルタF22に入力する。2次フィルタF22は、抵抗R17及びコンデンサC3から構成され、増幅回路71の出力から遮断周波数(例えば10kHz)よりも低周波成分を除去して、コンパレータCP2に供給する。 The primary filter F21 includes a resistor R16 and a capacitor C2, and removes a lower frequency component than the cutoff frequency (for example, 5 kHz) from the voltage on the power supply line L2. The amplifier circuit 71 has an OP amplifier OP1, amplifies the output from the primary filter F21, and inputs the amplified output to the secondary filter F22. The secondary filter F22 includes a resistor R17 and a capacitor C3, removes a lower frequency component than the cutoff frequency (for example, 10 kHz) from the output of the amplifier circuit 71, and supplies it to the comparator CP2.
 即ち、ハイパスフィルタF2からは、図4に示すように、通信信号が重畳された電源電圧、即ち変調後の通信信号を微分したエッジ検知信号が出力され、コンパレータCP2に入力される。エッジ検知信号は、変調後の通信信号が電源電圧Vbから電圧降下Vf分だけ立ち下がった時に負方向に三角波が出力され、電圧降下Vf分下がった状態から電源電圧Vbに立ち上がった時に正方向に三角波が出力される。 That is, from the high-pass filter F2, as shown in FIG. 4, a power supply voltage on which the communication signal is superimposed, that is, an edge detection signal obtained by differentiating the modulated communication signal is output and input to the comparator CP2. The edge detection signal outputs a triangular wave in the negative direction when the modulated communication signal falls from the power supply voltage Vb by the voltage drop Vf, and in the positive direction when it rises to the power supply voltage Vb from the state dropped by the voltage drop Vf. A triangular wave is output.
 ローパスフィルタF1は、第1実施形態と同様であるため、ここでは詳細な説明を省略する。分圧抵抗R14及びR15は、ローパスフィルタF1から出力された電源電圧Vbを分圧して基準電圧としてコンパレータCP2に入力する。 Since the low-pass filter F1 is the same as that of the first embodiment, detailed description thereof is omitted here. The voltage dividing resistors R14 and R15 divide the power supply voltage Vb output from the low-pass filter F1 and input it to the comparator CP2 as a reference voltage.
 分圧抵抗R14及びR15は、コンパレータCP2に供給される基準電圧が、図4に示すように、エッジ検知信号の最大値よりも低くなるようにそれぞれ設定されている。コンパレータCP2は、上記エッジ検知信号と上記基準電圧とを比較して、比較結果を復調した通信信号として出力し、スレーブ制御装置4に供給する。これにより、復調した通信信号は、変調前の通信信号が立ち上がる毎に、1パルスが出力され、立下りではなにも出力されない波形となる。 The voltage dividing resistors R14 and R15 are set such that the reference voltage supplied to the comparator CP2 is lower than the maximum value of the edge detection signal as shown in FIG. The comparator CP2 compares the edge detection signal with the reference voltage, outputs the comparison result as a demodulated communication signal, and supplies it to the slave control device 4. As a result, the demodulated communication signal has a waveform in which one pulse is output every time the communication signal before modulation rises, and nothing is output at the fall.
 第1実施形態では、変調後の通信信号そのものと基準電圧とを比較していた。実車の電源電圧は、負荷駆動時の電圧レベルの変動や電源ラインL2へのノイズの重畳などの影響により安定しないことが予測される。そのため、第1実施形態の方法では、通信信号の復調が難しくなる。 In the first embodiment, the modulated communication signal itself is compared with the reference voltage. It is predicted that the power supply voltage of the actual vehicle will not be stable due to influences such as fluctuations in the voltage level during load driving and noise superposition on the power supply line L2. Therefore, in the method of the first embodiment, it is difficult to demodulate the communication signal.
 上述した第2実施形態によれば、変調後の通信信号を微分してエッジ検知信号を出力し、エッジ検知信号と基準電圧とを比較するため、電源電圧やノイズなどの影響を受けにくく、正確に電源ラインL2に重畳された通信信号を復調することができる。 According to the second embodiment described above, the modulated communication signal is differentiated and an edge detection signal is output, and the edge detection signal is compared with the reference voltage. The communication signal superimposed on the power supply line L2 can be demodulated.
 しかも、ハイパスフィルタF2にOPアンプOP1を用いている。OPアンプOP1は、広域を通過できないため、自然にローパスフィルタも形成される。このため、図5に示すように、1次フィルタF21及び2次フィルタF22による低周波ノイズのカットだけでなく、高域波ノイズもカットすることができる。これにより、より一層正確に電源ラインL2に重畳された通信信号を復調することができる。しかも、ハイパスフィルタF2を追加しただけで、ローパスフィルタも追加したのと同等の効果を得ることができる。 Moreover, an OP amplifier OP1 is used for the high-pass filter F2. Since the OP amplifier OP1 cannot pass through a wide area, a low-pass filter is naturally formed. For this reason, as shown in FIG. 5, not only the low frequency noise by the primary filter F21 and the secondary filter F22 but also the high frequency noise can be cut. Thereby, the communication signal superimposed on the power supply line L2 can be demodulated more accurately. In addition, just by adding the high-pass filter F2, it is possible to obtain the same effect as adding the low-pass filter.
 なお、第2実施形態では、第1実施形態と比べてOPアンプの使用数が1個から2個に増えるが、2個入りのOPアンプを使用するなどの工夫でコストの上限を最低限に抑えることができる。 In the second embodiment, the number of OP amplifiers used is increased from one to two compared to the first embodiment, but the upper limit of the cost is minimized by using a device such as two OP amplifiers. Can be suppressed.
(第3実施形態)
 次に、第3実施形態における本発明の通信システムについて図6を参照して以下説明する。なお、図6中、復調部7、スレーブ制御装置4、駆動装置51、52は省略している。第3実施形態の通信システムは、図6に示すように、2つのバッテリB1、B2が搭載された車両に設けられていることを前提としている。バッテリB1及びB2は異なる定格電圧を有するバッテリである。
(Third embodiment)
Next, the communication system of the present invention in the third embodiment will be described below with reference to FIG. In FIG. 6, the demodulator 7, the slave control device 4, and the drive devices 51 and 52 are omitted. As shown in FIG. 6, the communication system of the third embodiment is premised on being provided in a vehicle on which two batteries B1 and B2 are mounted. The batteries B1 and B2 are batteries having different rated voltages.
 バッテリB1は、エンジン始動用の例えば鉛バッテリから構成されている。他のバッテリとしてのバッテリB2は、電圧安定化用のリチウムイオンから構成され、バッテリB1に並列接続されている。これらバッテリB1及びB2には、スタータモータMやオルタネータALTや、一般負荷33、34、走行系負荷35が並列接続されている。 The battery B1 is composed of, for example, a lead battery for starting the engine. The battery B2 as another battery is composed of lithium ions for voltage stabilization and is connected in parallel to the battery B1. A starter motor M, an alternator ALT, general loads 33 and 34, and a traveling system load 35 are connected in parallel to the batteries B1 and B2.
 このように2つのバッテリB1及びB2を搭載している車両においては、バッテリB1及びB2間の接続をオンオフするための切替部11が一般的に設けられている。切替部11は、バッテリB1及びB2間に設けられた2つのnチャンネルのFETQ11及びQ12と、これらFETQ11及びQ12を駆動するゲートドライバ11a及び11bと、ゲートドライバ11a及び11bを制御する切替制御回路11cとを備えている。 In such a vehicle equipped with two batteries B1 and B2, a switching unit 11 for turning on / off the connection between the batteries B1 and B2 is generally provided. The switching unit 11 includes two n-channel FETs Q11 and Q12 provided between the batteries B1 and B2, gate drivers 11a and 11b for driving the FETs Q11 and Q12, and a switching control circuit 11c for controlling the gate drivers 11a and 11b. And.
 FETQ11及びQ12は、バッテリB1及びB2間に直列に接続されている。FETQ11及びQ12は、寄生ダイオードD11及びD12が互いに逆向きになるように直列接続されている。これにより、バッテリB1の方がバッテリB2よりも電源電圧が高い場合、バッテリB2の方がバッテリB1よりも電源電圧が高い場合、何れの場合も2つのFETQ11及びQ12をオフさせると、寄生ダイオードD11及びD12を通じて電流が流れることなく、完全にバッテリB1及びB2間を遮断することができる。 FETQ11 and Q12 are connected in series between batteries B1 and B2. The FETs Q11 and Q12 are connected in series so that the parasitic diodes D11 and D12 are opposite to each other. As a result, when the power supply voltage of the battery B1 is higher than that of the battery B2, or when the power supply voltage of the battery B2 is higher than that of the battery B1, the parasitic diode D11 is turned off when the two FETs Q11 and Q12 are turned off. And the battery B1 and B2 can be completely disconnected without any current flowing through D12.
 なお、上記スタータモータM、オルタネータALT及び一般負荷33は、FETQ11及びQ12よりもバッテリB1側に接続されているため、FETQ11及びQ12がオフされると、バッテリB2との接続が遮断される。一方、一般負荷34は、FETQ11及びQ12の間に接続されているため、FETQ11及びQ12がオフすると、双方のバッテリB1及びB2との接続が遮断される。また、走行系負荷35は、FETQ11及びQ12よりもバッテリB2側に接続されているため、FETQ11及びQ12がオフすると、バッテリB1との接続が遮断される。 The starter motor M, the alternator ALT, and the general load 33 are connected to the battery B1 side of the FETs Q11 and Q12. Therefore, when the FETs Q11 and Q12 are turned off, the connection with the battery B2 is cut off. On the other hand, since the general load 34 is connected between the FETs Q11 and Q12, when the FETs Q11 and Q12 are turned off, the connection between the batteries B1 and B2 is cut off. Further, since the traveling system load 35 is connected to the battery B2 side with respect to the FETs Q11 and Q12, when the FETs Q11 and Q12 are turned off, the connection with the battery B1 is cut off.
 切替制御回路11cは、例えばCPUなどから構成され、上位ユニットからの命令により、FETQ11及びQ12のオンオフを制御して、バッテリB1及びB2間の接続を制御する。 The switching control circuit 11c is composed of a CPU, for example, and controls the connection between the batteries B1 and B2 by controlling on / off of the FETs Q11 and Q12 according to a command from the host unit.
 第3実施形態では、この切替部11を変調部として用い、FETQ12を変調部を構成するFETとして用いている。即ち、切替制御回路11cが、第1実施形態で説明したマスタ制御装置2に接続され、マスタ制御装置2からの通信信号を受信する。切替制御回路11cは、PLC通信を行うときはFETQ11を常時オンにして、受信した通信信号に応じてFETQ12のオンオフを行う。 In the third embodiment, the switching unit 11 is used as a modulation unit, and the FET Q12 is used as an FET constituting the modulation unit. That is, the switching control circuit 11c is connected to the master control device 2 described in the first embodiment, and receives a communication signal from the master control device 2. The switching control circuit 11c always turns on the FET Q11 when performing PLC communication, and turns on / off the FET Q12 according to the received communication signal.
 これにより、第1実施形態と同様に、FETQ12がオンのときは電源ラインL2にはバッテリB1の正極側の電位である電源電圧Vbが出力される。一方、FETQ12がオフのときは、電源ラインL2には電源電圧VbからFETQ12の寄生ダイオードD12による電圧降下Vf分だけ下がった電圧が出力される。即ち、切替部11は、点線で示すように走行系負荷35側の電源ラインL2によって供給される電源電圧Vbに通信信号を重畳する。バッテリB1側の電源ラインL1には通信信号は重畳していない。 Thus, as in the first embodiment, when the FET Q12 is on, the power supply voltage Vb that is the potential on the positive side of the battery B1 is output to the power supply line L2. On the other hand, when the FET Q12 is OFF, a voltage that is lowered from the power supply voltage Vb by the voltage drop Vf due to the parasitic diode D12 of the FET Q12 is output to the power supply line L2. That is, the switching unit 11 superimposes a communication signal on the power supply voltage Vb supplied by the power supply line L2 on the traveling system load 35 side as indicated by a dotted line. No communication signal is superimposed on the power supply line L1 on the battery B1 side.
 上述した第3実施形態によれば、2つのバッテリB1及びB2間の接続をオンオフする切替用のFETQ12を変調部のFETとして用いている。これにより、これらFETを別々に設ける必要がなく、追加部品を最小限に抑えて変調部を設けることができるため、コストダウンを図ることができる。また、切替部11としては、切替機能に加えて、通信機能が付加されることで、付加価値が上がる。 According to the third embodiment described above, the switching FET Q12 that turns on and off the connection between the two batteries B1 and B2 is used as the FET of the modulation unit. Thereby, it is not necessary to provide these FETs separately, and the modulation part can be provided while minimizing additional parts, so that the cost can be reduced. In addition to the switching function, the switching unit 11 adds a communication function to increase added value.
 なお、上述した第3実施形態によれば、FETQ11及びQ12は、寄生ダイオードD11及びD12が互いに逆向きになるように直列接続されていたが、これに限ったものではない。例えば、図7に示すように、寄生ダイオードD11及びD12が互いに同じ方向になるように2つのFETQ11及びQ12を直列接続するものもある。この2つのFETQ11及びQ12は、一般負荷33、34、走行系負荷35に電源を供給するバッテリB1、B2を切り替えるために設けられている。 In addition, according to 3rd Embodiment mentioned above, although FETQ11 and Q12 were connected in series so that the parasitic diodes D11 and D12 might become the mutually reverse direction, it is not restricted to this. For example, as shown in FIG. 7, two FETs Q11 and Q12 are connected in series so that the parasitic diodes D11 and D12 are in the same direction. The two FETs Q11 and Q12 are provided to switch between the batteries B1 and B2 that supply power to the general loads 33 and 34 and the traveling system load 35.
 図7に示す場合は、FETQ11及びQ12の両者を変調部を構成するFETとして用いることができる。詳しく説明すると、切替制御回路11cが、第1実施形態で説明したマスタ制御装置2に接続され、マスタ制御装置2からの通信信号を受信する。切替制御回路11cは、PLC通信を行うときは、FETQ11を常時オンにして、受信した通信信号に応じてFETQ12のオンオフを行う。これは図6で説明した場合と同様であるため、詳細な説明は省略する。 In the case shown in FIG. 7, both FETs Q11 and Q12 can be used as FETs constituting the modulation unit. More specifically, the switching control circuit 11c is connected to the master control device 2 described in the first embodiment, and receives a communication signal from the master control device 2. When performing PLC communication, the switching control circuit 11c always turns on the FET Q11 and turns the FET Q12 on and off according to the received communication signal. Since this is the same as that described with reference to FIG. 6, a detailed description thereof will be omitted.
 また、切替制御回路11cは、FETQ12を常時オンにして、受信した通信信号に応じてFETQ11のオンオフを行うこともできる。これにより、FETQ11がオンのときはFETQ11と一般負荷34との間の電源ラインL2、FETQ12と走行系負荷35との間の電源ラインL2には、バッテリB1の正極側の電位である電源電圧Vbが出力される。一方、FETQ11がオフの時には、FETQ11と一般負荷34との間の電源ラインL2、FETQ12と走行系負荷35との間の電源ラインL2には、電源電圧VbからFETQ11の寄生ダイオードD11による電圧降下Vfだけ下がった電圧が出力される。即ち、切替部11は、一点鎖線で示すように、一般負荷34及び走行系負荷35の双方に供給される電源電圧Vbに通信信号を重畳できる。 Also, the switching control circuit 11c can always turn on the FET Q12 and turn the FET Q11 on and off according to the received communication signal. Thus, when the FET Q11 is on, the power supply line L2 between the FET Q11 and the general load 34 and the power supply line L2 between the FET Q12 and the traveling system load 35 are supplied with the power supply voltage Vb that is the potential on the positive side of the battery B1. Is output. On the other hand, when the FET Q11 is OFF, the power supply line L2 between the FET Q11 and the general load 34 and the power supply line L2 between the FET Q12 and the traveling system load 35 are supplied with a voltage drop Vf due to the parasitic diode D11 of the FET Q11. A voltage that has been reduced by a certain amount is output. That is, the switching unit 11 can superimpose a communication signal on the power supply voltage Vb supplied to both the general load 34 and the traveling system load 35, as indicated by a dashed line.
(第4実施形態)
 次に、第4実施形態における本発明の通信システムについて図8及び図9を参照して以下説明する。第4実施形態の通信システムの構成は、図1に示す第1実施形態の通信システムと同等であるため、ここでは詳細な説明を省略する。第4実施形態と第1実施形態とで大きく異なる点は、FETQ1のゲートに供給する通信信号の波形である。
(Fourth embodiment)
Next, the communication system of the present invention in the fourth embodiment will be described below with reference to FIGS. Since the configuration of the communication system of the fourth embodiment is the same as that of the communication system of the first embodiment shown in FIG. 1, detailed description thereof is omitted here. A significant difference between the fourth embodiment and the first embodiment is the waveform of the communication signal supplied to the gate of the FET Q1.
 上述した第1実施形態における通信システム1は、電源電圧Vbのレベルを変化させることにより通信信号を重畳している。このため、伝導ノイズの発生が確認された。 The communication system 1 in the first embodiment described above superimposes communication signals by changing the level of the power supply voltage Vb. For this reason, generation | occurrence | production of the conduction noise was confirmed.
 伝導ノイズの主要因はFETQ1のオンオフ切替時の急峻な電圧変化である。このため、本実施形態においては、図8に示すように、FETQ1のゲートに、徐々に立ち上がり、かつ、徐々に立ち下がるパルス状の通信信号を入力するようにした。このような通信信号を入力すると、同図に示すように、変調後の通信信号も、電源電圧Vbから(電源電圧Vb-電圧降下Vf)への変動も、(電源電圧Vb-電圧降下Vf)から電源電圧Vbへの変動も緩やかに行われることとなり、伝導ノイズの低減を図ることができる。 The main cause of conduction noise is a steep voltage change when FETQ1 is switched on and off. For this reason, in this embodiment, as shown in FIG. 8, a pulsed communication signal that gradually rises and gradually falls is input to the gate of the FET Q1. When such a communication signal is input, as shown in the figure, the modulated communication signal, the fluctuation from the power supply voltage Vb to (power supply voltage Vb−voltage drop Vf), (power supply voltage Vb−voltage drop Vf) The power supply voltage Vb is also gradually changed, and the conduction noise can be reduced.
 次に、本発明者らは、FETQ1のゲートに入力する通信信号の立ち上がり時間tr、立下り時間tfを徐々に長くしながらノイズレベルを測定した。結果、図9に示すように、tr=tf=32μs以上になると電源線伝導エミッション規格(CISPR25  Class5)を満たすことが分かった。図9は、通信信号をtr=tf=32μsとしたときのノイズレベルピーク値の周波数特性を点線で示し、アベレージ値を実線で示す。同図からもtr=tf=32μsとするとピーク値、アベレージ値共に規格を満足することが分かった。 Next, the inventors measured the noise level while gradually increasing the rise time tr and the fall time tf of the communication signal input to the gate of the FET Q1. As a result, as shown in FIG. 9, it was found that when tr = tf = 32 μs or more, the power line conduction emission standard (CISPR25 Class5) was satisfied. In FIG. 9, the frequency characteristic of the noise level peak value when the communication signal is tr = tf = 32 μs is indicated by a dotted line, and the average value is indicated by a solid line. From this figure, it was found that when tr = tf = 32 μs, both the peak value and the average value satisfy the standard.
(第5実施形態)
 次に、第5実施形態における本発明の通信システムについて図10を参照して以下説明する。なお、図10において、上述した第1実施形態で既に説明した図1と同等の部分は同一符号を付してその詳細な説明を省略する。
(Fifth embodiment)
Next, the communication system of the present invention in the fifth embodiment will be described below with reference to FIG. In FIG. 10, parts equivalent to those already described in the first embodiment with reference to FIG. 1 are given the same reference numerals, and detailed descriptions thereof are omitted.
 同図に示すように、通信システム1は、バッテリBの状態を検出して、その検出信号を出力する送信手段としてのバッテリセンサ9と、バッテリセンサ9からの検出信号(通信信号)を受信し、受信した検出信号に応じて負荷36a~36dを制御する受信手段としてのスマート電源BOX10a~10dと、バッテリBの正極側及び負荷36a~36d間に接続された電源ラインL1~L3と、バッテリセンサ9からの検出信号を電源ラインL2及びL3に重畳する変調部6と、電源ラインL2に重畳された検出信号を復調してスマート電源BOX10a~10dに供給する復調部7a~7dと、バッテリセンサ9からの検出信号をスマート電源BOX10a~10dに伝送するための通信ラインLcと、を備えている。 As shown in the figure, the communication system 1 detects the state of the battery B and receives a detection signal (communication signal) from the battery sensor 9 as a transmission unit that outputs the detection signal. Smart power supply boxes 10a to 10d as receiving means for controlling the loads 36a to 36d according to the received detection signals, power supply lines L1 to L3 connected between the positive side of the battery B and the loads 36a to 36d, and battery sensors 9, a modulation unit 6 that superimposes the detection signal from the power supply lines L2 and L3, a demodulation unit 7a to 7d that demodulates the detection signal superimposed on the power supply line L2 and supplies the detection signal to the smart power supplies BOX 10a to 10d, and a battery sensor 9 And a communication line Lc for transmitting the detection signals from the smart power supplies BOX 10a to 10d.
 バッテリセンサ9は、バッテリBの残容量や両端電圧などの状態を検出して、その検出信号を通信ラインLc及び電源ラインL2を介してスマート電源BOX10a~10dに送信する。通信ラインLcを介しての通信方式は周知のLINやCANなどで行う。電源ラインL2を介しての通信は、第1実施形態と同様に行う。 The battery sensor 9 detects the remaining capacity of the battery B and the voltage at both ends, and transmits the detection signal to the smart power supply boxes 10a to 10d via the communication line Lc and the power supply line L2. A communication method via the communication line Lc is performed by a well-known LIN or CAN. Communication via the power line L2 is performed in the same manner as in the first embodiment.
 スマート電源BOX10a~10dは、周知のCPU、ROM、RAMから成るマイコンから構成されている。スマート電源BOX10a~10dは、上述した通信ラインLc経由の検出信号、電源ラインL2経由の検出信号の双方を受信できるように設けられている。 The smart power supplies BOX 10a to 10d are constituted by a microcomputer composed of a well-known CPU, ROM, and RAM. The smart power supplies BOX 10a to 10d are provided so as to receive both the detection signal via the communication line Lc and the detection signal via the power line L2.
 電源ラインL1は、第1実施形態と同様に、バッテリBの正極側及び変調部6間を接続するラインである。電源ラインL2は、変調部6及び復調部7a~7d間を接続するラインである。電源ラインL3は、復調部7a~7dと負荷36a~36dとの間をそれぞれ接続するラインである。 The power supply line L1 is a line that connects the positive electrode side of the battery B and the modulation unit 6 as in the first embodiment. The power supply line L2 is a line that connects between the modulation unit 6 and the demodulation units 7a to 7d. The power supply line L3 is a line that connects between the demodulation units 7a to 7d and the loads 36a to 36d.
 変調部6及び復調部7a~7dは、第1実施形態の変調部6及び復調部7と同等であるため、詳細な説明は省略する。スマート電源BOX10a~10dは、各部が自律してバッテリセンサ9からの検出信号に応じて負荷36a~36dの制御を行う(例えばバッテリBの残容量が小さい場合には走行に関係しない部分でオーディオ系負荷への電源供給を遮断する)。 Since the modulation unit 6 and the demodulation units 7a to 7d are the same as the modulation unit 6 and the demodulation unit 7 of the first embodiment, detailed description thereof is omitted. Each of the smart power supplies BOX 10a to 10d autonomously controls each of the loads 36a to 36d in accordance with a detection signal from the battery sensor 9 (for example, when the remaining capacity of the battery B is small, the audio system is a part not related to running). Shut off the power supply to the load).
 上述したように第5実施形態においては、バッテリセンサ9からスマート電源BOX10a~10dへの検出信号の伝送は、通信ラインLc経由と電源ラインL2経由の2通りある。スマート電源BOX10a~10dは、通常は通信ラインLc経由の検出信号を受信する。スマート電源BOX10a~10dは、通信ラインLcから検出信号が受信できなくなると通信途絶状態と判断して、復調部7a~7dで復調された電源ラインL2経由の検出信号を受信する。 As described above, in the fifth embodiment, the detection signal is transmitted from the battery sensor 9 to the smart power supply boxes 10a to 10d through the communication line Lc and the power supply line L2. The smart power supplies BOX 10a to 10d normally receive a detection signal via the communication line Lc. Smart power supplies BOX 10a to 10d determine that communication is interrupted when the detection signals cannot be received from communication line Lc, and receive detection signals via power supply line L2 demodulated by demodulation sections 7a to 7d.
 上述した実施形態によれば、通信ラインLcのバックアップとして、電源ラインL2を用いることにより、部品点数を増やすことなくバックアップを設けることができ、確実にバッテリセンサ9からの検出信号をスマート電源BOX10a~10dが受信することができる。 According to the embodiment described above, by using the power supply line L2 as a backup of the communication line Lc, a backup can be provided without increasing the number of components, and the detection signal from the battery sensor 9 can be reliably transmitted to the smart power supply box 10a˜ 10d can receive.
 将来的に、車載バッテリの主流は、鉛からリチウムに変更する可能性が高い。リチウムは、鉛よりもバッテリ管理の要求レベルが高い。また、自動運転化も進んできて通信の信頼性を確保することが必要だか、上述した実施形態のものを用いれば信頼性を確保できる。 In the future, the mainstream of on-board batteries is likely to change from lead to lithium. Lithium requires a higher level of battery management than lead. In addition, it is necessary to ensure the reliability of communication by proceeding with automatic operation, or reliability can be ensured by using the above-described embodiment.
 また、上述した実施形態によれば、スマート電源BOX10a~10dが自律して各負荷36a~36dの制御を行っている。これにより、1つのECUなどの制御部が、複数の負荷36a~36dをまとめて制御する場合に比べて、高機能化を図ることができる。 In addition, according to the above-described embodiment, the smart power supplies BOX 10a to 10d autonomously control the loads 36a to 36d. As a result, higher functionality can be achieved compared to a case where a control unit such as one ECU controls the plurality of loads 36a to 36d collectively.
 しかも、通信方式も通信ラインLcで行われるLINやCANと別に電源ラインL1~L3で行われるPLCで別々に持つことになり、同時多重故障の心配を減らすことができる利点もある。 In addition, the communication system is separately provided in the PLC performed in the power supply lines L1 to L3 separately from the LIN and CAN performed in the communication line Lc, and there is an advantage that the worry of simultaneous multiple failures can be reduced.
 また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。 Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.
 1 通信システム
 2 マスタ制御装置(送信手段)
 4 スレーブ制御装置(受信手段)
 6 変調部(変調手段)
 7 復調部(復調手段)
 9 バッテリセンサ(送信手段)
 10a~10d スマート電源BOX(受信手段)
 11 切替部(変調部)
 31 負荷
 32 負荷
 35 走行系負荷(負荷)
 36a~36d 負荷
 B バッテリ
 B1 バッテリ
 B2 バッテリ(他のバッテリ)
 CP2 コンパレータ(比較手段)
 F2 ハイパスフィルタ
 L1~L3 電源ライン
 Lc 通信ライン
 Q1 FET(半導体トランジスタ)
 Q12 FET(半導体トランジスタ、切替用半導体トランジスタ)
DESCRIPTION OF SYMBOLS 1 Communication system 2 Master control apparatus (transmission means)
4 Slave controller (reception means)
6 Modulator (Modulation means)
7 Demodulator (demodulator)
9 Battery sensor (transmission means)
10a to 10d Smart power supply BOX (reception means)
11 Switching unit (modulation unit)
31 Load 32 Load 35 Traveling system load (load)
36a to 36d Load B Battery B1 Battery B2 Battery (Other battery)
CP2 comparator (comparison means)
F2 High-pass filter L1 to L3 Power line Lc Communication line Q1 FET (semiconductor transistor)
Q12 FET (semiconductor transistor, switching semiconductor transistor)

Claims (6)

  1.  送信手段と、前記送信手段からの通信信号を受信する受信手段と、バッテリの一方の電極及び前記負荷間に接続された電源ラインと、前記送信手段からの通信信号を前記電源ラインに重畳する変調手段と、前記電源ラインに重畳された通信信号を復調して、前記受信手段に供給する復調手段と、を備え、
     前記変調手段が前記電源ライン上の前記バッテリ側に、前記復調手段が前記電源ライン上の負荷側に設けられ、前記変調手段が、前記電源ラインの当該変調手段よりも前記負荷側に前記通信信号を重畳する
     ことを特徴とする通信システム。
    A transmission means; a reception means for receiving a communication signal from the transmission means; a power line connected between one electrode of the battery and the load; and a modulation for superimposing the communication signal from the transmission means on the power line. And a demodulating means for demodulating the communication signal superimposed on the power line and supplying the demodulated signal to the receiving means,
    The modulation means is provided on the battery side on the power supply line, the demodulation means is provided on the load side on the power supply line, and the modulation means is provided on the load side of the power supply line rather than the modulation means. A communication system characterized by superimposing.
  2.  前記変調手段が、制御端子に前記送信手段からの通信信号が入力される半導体トランジスタで構成されている
     ことを特徴とする請求項1に記載の通信システム。
    2. The communication system according to claim 1, wherein the modulation unit includes a semiconductor transistor in which a communication signal from the transmission unit is input to a control terminal.
  3.  前記バッテリと他のバッテリとの間に設けられ、前記バッテリ及び前記他のバッテリとの接続をオンオフする切替用半導体トランジスタをさらに備え、
     前記変調手段を構成する半導体トランジスタとして、前記切替用半導体トランジスタを用いる
     ことを特徴とする請求項2に記載の通信システム。
    A switching semiconductor transistor that is provided between the battery and another battery and that turns on and off the connection between the battery and the other battery;
    The communication system according to claim 2, wherein the switching semiconductor transistor is used as a semiconductor transistor constituting the modulation means.
  4.  前記半導体トランジスタの制御端子に、徐々に立ち上がり、かつ、徐々に立ち下がるパルス状の通信信号を入力する
     ことを特徴とする請求項2又は3に記載の通信システム。
    The communication system according to claim 2 or 3, wherein a pulsed communication signal that gradually rises and gradually falls is input to a control terminal of the semiconductor transistor.
  5.  前記復調手段が、前記通信信号が重畳された前記電源ライン上の電源を微分するハイパスフィルタと、前記微分した電圧と基準電圧とを比較して、その比較結果を復調した前記通信信号として出力する比較手段と、を備えた
     ことを特徴とする請求項1~4何れか1項に記載の通信システム。
    The demodulating unit compares the differentiated voltage with a reference voltage with a high-pass filter that differentiates the power supply on the power supply line on which the communication signal is superimposed, and outputs the comparison result as the demodulated communication signal. The communication system according to any one of claims 1 to 4, further comprising a comparison unit.
  6.  前記送信手段からの通信信号を前記受信手段に伝送するための通信ラインをさらに備え、
     前記受信手段は、前記通信ラインからの通信信号と、前記復調手段が復調した前記電源ラインからの通信信号と、の双方が受信できるように設けられている
     ことを特徴とする請求項1~5何れか1項に記載の通信システム。
    A communication line for transmitting a communication signal from the transmitting means to the receiving means;
    The receiving means is provided so as to receive both a communication signal from the communication line and a communication signal from the power line demodulated by the demodulating means. The communication system according to any one of the above.
PCT/JP2015/080381 2014-10-29 2015-10-28 Communication system WO2016068188A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015004909.6T DE112015004909T5 (en) 2014-10-29 2015-10-28 communication system
US15/468,738 US9929773B2 (en) 2014-10-29 2017-03-24 Communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014220078 2014-10-29
JP2014-220078 2014-10-29
JP2015-209898 2015-10-26
JP2015209898A JP6248083B2 (en) 2014-10-29 2015-10-26 Communications system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/468,738 Continuation US9929773B2 (en) 2014-10-29 2017-03-24 Communication system

Publications (1)

Publication Number Publication Date
WO2016068188A1 true WO2016068188A1 (en) 2016-05-06

Family

ID=55857523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080381 WO2016068188A1 (en) 2014-10-29 2015-10-28 Communication system

Country Status (1)

Country Link
WO (1) WO2016068188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020014136A (en) * 2018-07-19 2020-01-23 日立オートモティブシステムズ株式会社 Power line communication apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568854U (en) * 1978-11-02 1980-05-12
JP2003134008A (en) * 2001-08-10 2003-05-09 Aichi Electric Co Ltd Remote monitoring device
JP2005044039A (en) * 2003-07-24 2005-02-17 Toshiba Corp Real-time serial communication device, real-time serial communication method and mechatronics equipment
JP2005223609A (en) * 2004-02-05 2005-08-18 Yazaki Corp Power supply multiplex communication method and system
US20130177087A1 (en) * 2010-08-13 2013-07-11 Aclara Power-Line Systems Inc. Agile switched-load resonating transmitter for passband power line communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568854U (en) * 1978-11-02 1980-05-12
JP2003134008A (en) * 2001-08-10 2003-05-09 Aichi Electric Co Ltd Remote monitoring device
JP2005044039A (en) * 2003-07-24 2005-02-17 Toshiba Corp Real-time serial communication device, real-time serial communication method and mechatronics equipment
JP2005223609A (en) * 2004-02-05 2005-08-18 Yazaki Corp Power supply multiplex communication method and system
US20130177087A1 (en) * 2010-08-13 2013-07-11 Aclara Power-Line Systems Inc. Agile switched-load resonating transmitter for passband power line communication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020014136A (en) * 2018-07-19 2020-01-23 日立オートモティブシステムズ株式会社 Power line communication apparatus
WO2020017130A1 (en) * 2018-07-19 2020-01-23 日立オートモティブシステムズ株式会社 Power line communication device
JP7049952B2 (en) 2018-07-19 2022-04-07 日立Astemo株式会社 Power line communication device

Similar Documents

Publication Publication Date Title
JP6248083B2 (en) Communications system
US9509168B2 (en) Wireless power transmitters with wide input voltage range and methods of their operation
JP6820563B2 (en) vehicle
US10070218B2 (en) Class D amplifier chip with duty ratio limiting functions and the device thereof
CN101614277B (en) Electrical control unit of tractor dynamic power shift gear box
US9669780B2 (en) Electrical system assembly for a motor vehicle
US10250171B2 (en) Electric motor control apparatus and electric motor control method
US8847442B2 (en) Power converting apparatus and power converting system
KR20150137343A (en) Battery charging system using charger and driving control method of the same charger
KR20130099152A (en) Power transmitting device, power receiving device, non-contact power transmission system, and method for controlling transmission power in non-contact power transmission system
WO2013008903A1 (en) Communication system and communication apparatus
WO2013008921A1 (en) Communication system and communication device
RU2660914C1 (en) Wireless power supply system
US20210184557A1 (en) Drive device for switch
WO2016068188A1 (en) Communication system
US8971079B2 (en) Inverter device
KR101519688B1 (en) Galvanic separation between cell charge balance and control of a hybrid drive
US20160221452A1 (en) Control device for a multi-voltage vehicle electrical system
JP2010283737A (en) Power line communication system
JP5440598B2 (en) Power supply apparatus and communication method
JP2013038760A (en) Communication system and communication device
CN106469903A (en) Direct current generator one-way driver
US9590491B2 (en) Resonant current limiting device
JP2010098530A (en) Power source superimposed multiplex communication system
JP2004120740A (en) Power source superimposed multiplex communication device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015004909

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853805

Country of ref document: EP

Kind code of ref document: A1