WO2016068016A1 - Touch panel evaluation data acquisition device - Google Patents

Touch panel evaluation data acquisition device Download PDF

Info

Publication number
WO2016068016A1
WO2016068016A1 PCT/JP2015/079842 JP2015079842W WO2016068016A1 WO 2016068016 A1 WO2016068016 A1 WO 2016068016A1 JP 2015079842 W JP2015079842 W JP 2015079842W WO 2016068016 A1 WO2016068016 A1 WO 2016068016A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
touch
state
evaluation data
signal value
Prior art date
Application number
PCT/JP2015/079842
Other languages
French (fr)
Japanese (ja)
Inventor
収 西田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016068016A1 publication Critical patent/WO2016068016A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present invention relates to a technique for evaluating the performance of a touch panel.
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-84166 discloses a technique for suppressing variations in parasitic capacitance for each detection wiring in a touch panel including a plurality of detection wirings.
  • the touch screen of the touch panel of Patent Document 1 includes a plurality of detection column wirings and a plurality of detection row wirings that intersect the detection column wirings.
  • dummy column wirings having the same configuration as that of the detection column wiring are arranged on the outer side of the outermost wiring among the plurality of detection column wirings.
  • dummy row wirings having the same configuration as the detection row wirings are arranged on the outer side of the outermost wiring among the plurality of detection row wirings.
  • the outermost detection column wiring and the other detection column wiring are placed in the same environment, and the parasitic capacitance of the detection column wiring is made uniform. Is done. Further, in the touch screen of the touch panel of Patent Document 1, the outermost detection row wiring and the other detection row wiring are placed in an equivalent environment, and the parasitic capacitance of the detection row wiring is made uniform.
  • the technique of Patent Document 1 is a technique that is applied to a touch panel having a normal pattern, and is difficult to apply to a touch panel having a special pattern and large variations in capacitance on the touch panel surface. That is, the technique of Patent Document 1 is a touch panel having two or more layers on which electrodes are formed, and can be applied to a touch panel with relatively small variations in capacitance on the touch panel surface. For example, it is difficult to apply the technique of Patent Document 1 to a touch panel having a large variation in capacitance on a touch panel surface such as a touch panel having a structure in which one electrode is formed.
  • an object of the present invention is to realize a touch panel evaluation data acquisition device that can appropriately acquire in-plane variation data in a one-layer touch panel without requiring a complicated operation. .
  • the first configuration transmits a drive signal for driving the drive electrode of the touch panel and the touch electrode including the drive electrode and the sense electrode, and responds to a change in capacitance from the sense electrode.
  • Touch panel drive device that receives a sense signal and a touch object having a predetermined capacitance, and touch the touch object to N (N: natural number) dot points provided on the touch panel surface of the touch panel.
  • the touch panel evaluation data acquisition device is used together with the hit point processing device to acquire the distribution data of the capacitance within the touch panel surface of the touch panel.
  • the touch panel evaluation data acquisition device includes an overall control unit and an analysis unit.
  • the overall control unit controls the dot processing device and the touch panel drive device.
  • the analysis unit acquires a plurality of capacity data that is data based on the sense signal received by the touch panel drive device, acquires the maximum value of the acquired plurality of capacity data as a maximum signal value in the capacity map, and the touch object is While the k-th (k: natural number, k ⁇ N) tapping point is being touched, a plurality of acquired maximum signal values in the capacity map are acquired, and an average value of the acquired maximum signal values in the plurality of capacity maps is obtained.
  • touch panel evaluation data which is electrostatic capacity distribution data in the touch panel surface of the touch panel, is acquired.
  • FIG. 1 is a schematic configuration diagram of a touch panel evaluation data acquisition system 1000.
  • FIG. 1 is a schematic configuration diagram of a touch panel evaluation data acquisition system 1000.
  • FIG. The enlarged view of area
  • FIG. The schematic block diagram which looked at the dot processing apparatus 2 and the touch panel TP from the side.
  • the figure (upper figure) showing the relationship between the position of the touch object 21 of the hit point processing device 2 (height in the vertical direction of the touch object 21 (the normal direction of the touch panel TP touch panel surface)) and time, and the hit point H
  • the flowchart of the process which acquires the average signal value Sig (m, n) of the hit point H (m, n) in the touch panel evaluation data acquisition system of the 2nd modification of 1st Embodiment The figure (upper figure) showing the relationship between the position of the touch object 21 of the hit point processing device 2 (height in the vertical direction of the touch object 21 (the normal direction of the touch panel TP touch panel surface)) and time, and the hit point H The figure which shows the relationship between the maximum signal value in a capacity
  • the figure (upper figure) showing the relationship between the position of the touch object 21 of the hit point processing device 2 (height in the vertical direction of the touch object 21 (the normal direction of the touch panel TP touch panel surface)) and time, and the hit point H
  • the figure which shows the relationship between the maximum signal value in a capacity
  • FIG. 1 is a schematic configuration diagram of a touch panel evaluation data acquisition system 1000.
  • a total of 100 dot points of 10 ⁇ 10 are indicated by white circles on the touch panel surface of the touch panel TP.
  • FIG. 2 is a schematic configuration diagram of the touch panel evaluation data acquisition system 1000.
  • a total of 400 nodes of 20 ⁇ 20 points between drive electrodes and sense electrodes (proximity points, for example) located in close proximity) are indicated by black circles. Yes.
  • FIG. 3 is an enlarged view of the area AR1 shown in FIGS.
  • FIG. 3 four drive lines G1 connected to the drive electrodes Tx11 to Tx14, four drive lines G2 connected to the drive electrodes Tx21 to Tx24, and drive electrodes Tx31 to Tx34, respectively.
  • Four drive lines G3 connected to each other and four drive lines G4 connected to each of the drive electrodes Tx41 to Tx44 are shown.
  • FIG. 3 four sense lines S1 connected to the sense electrodes Rx11 to Rx14, four sense lines S2 connected to the sense electrodes Rx21 to Rx24, and the sense electrodes Rx31 to Rx34, respectively.
  • Four sense lines S3 connected to each of the four sense lines and four sense lines S4 connected to each of the sense electrodes Rx41 to Rx44 are shown.
  • the dot points H (1,1), H (1,2), H (2,1), and H (2,2) are indicated by white circles as in FIG.
  • nodes (for example, intermediate points between the drive electrode and the sense electrode) P11 to P14, P21 to P24, P31 to P34, and P41 to P44 are indicated by black circles as in FIG.
  • FIG. 4 is a schematic configuration diagram of the dot processing device 2 and the touch panel TP as viewed from the side.
  • the touch panel evaluation data acquisition system 1000 is a system for acquiring touch panel evaluation data of the touch panel TP.
  • the touch panel evaluation data acquisition system 1000 includes a touch panel evaluation data acquisition device 1, a dot processing device 2, and a touch panel drive device 3.
  • the touch panel evaluation data acquisition device 1 includes an overall control unit 11 and an analysis unit 12.
  • the overall control unit 11 has a touch pen (stylus) or an object having a capacitance equivalent to that of a finger (touch object) at a predetermined position on the touch panel surface of the touch panel TP with respect to the dot processing device 2 at a predetermined timing. 21) is controlled to be touched.
  • the overall control unit 11 controls the touch panel drive device 3 to drive the touch panel TP.
  • the overall control unit 11 controls the analysis unit 12 to acquire touch panel evaluation data.
  • the analysis unit 12 inputs a signal (data) from the touch panel driving device 3.
  • the analysis unit 12 acquires touch panel evaluation data Dout for the touch panel TP from a signal (data) from the touch panel drive device 3 based on a command from the overall control unit 11.
  • the hit point processing device 2 has a touch pen (stylus) or an object having a capacitance equivalent to that of a finger (for example, an object with a sharp tip) (touch object 21).
  • the hit point processing device 2 causes the touch object 21 to touch a predetermined position on the touch panel TP at a predetermined timing based on a command from the touch panel evaluation data acquisition device 1.
  • the hit point processing device 2 causes the touch object 21 to touch a hit point point on the touch panel TP (for example, a position indicated by a white circle in FIGS. 1 and 3) at a predetermined timing.
  • the hit point processing device 2 lowers the touch object 21 from the position PosH in the vertical direction (the normal direction of the touch panel surface of the touch panel TP) to the position PosL, so that a predetermined position on the touch panel TP is obtained. Then, the touch object 21 is touched.
  • the touch panel drive device 3 transmits a drive drive signal for generating a predetermined electric field to the drive electrode of the touch panel TP to the touch panel TP.
  • the touch panel driving device 3 receives a sense signal (a sense signal indicating a change in capacitance (electric field change)) from a sense electrode of the touch panel TP. Then, the touch panel drive device outputs the received sense signal or data generated based on the sense signal to the analysis unit 12 of the touch panel evaluation data acquisition device 1.
  • the touch panel TP is a one-layer touch panel, and is formed by mixing electrodes and wiring in one layer.
  • the touch panel TP has a total of 400 nodes of 20 ⁇ 20 (points between drive electrodes and sense electrodes arranged in proximity (for example, intermediate points)).
  • the drive electrode Txmn and the sense electrode Rxmn are arranged to face each other in the area AR1.
  • Each drive electrode is connected to a drive line, and each sense electrode is connected to a sense line.
  • Each drive electrode is connected to a drive drive unit of the touch panel drive device 3 via a drive line.
  • Each sense electrode is connected to a receiving unit (sense signal receiving unit) of the touch panel drive device 3 via a sense line.
  • an intermediate point between the drive electrode Txmn and the sense electrode Rxmn is defined as a point Pmn (node Pmn).
  • the arrangement (pattern) of drive electrodes, sense electrodes, drive lines, and sense lines shown in FIG. 3 is an example, and is not limited to the arrangement (pattern) shown in FIG.
  • the dot processing device 2 sequentially touches the center points of white circles shown in FIG. 1 (total of 10 ⁇ 10 points), and the touch panel evaluation data acquisition device 1 detects the touch panel evaluation data.
  • the case of acquiring the will be described.
  • points that are sequentially touched by the dot processing device 2 are referred to as “dot points”, and the dot points in the nth row and mth column in FIG. 1 are referred to as “dot points H (n, m)”.
  • FIG. 5 is a diagram (upper diagram) showing the relationship between the position of the touch object 21 (the height in the vertical direction of the touch object 21 (the normal direction of the touch panel TP touch panel surface)) and time of the hit point processing apparatus 2.
  • FIG. 5 is a diagram showing the relationship between the maximum signal value in the capacity map and time when the hit point processing device 2 touches the hit point H (1,1) and H (1,2) with the touch point processing device 2 (lower figure). ).
  • the hit point processing device 2 performs control so that the position of the touch object 21 (the position of the tip of the touch object 21) approaches the hit point H (1, 1) of the touch panel TP in accordance with a command from the overall control unit 11.
  • the default position of the position of the touch object 21 is a position where the distance from the touch panel surface of the touch panel TP is Dh, as shown in FIG. PosH.
  • the hit point processing device 2 brings the touch object 21 closer to the hit point H (1, 1) at a constant descent speed during a period from time t0 to t11 (for example, 1.5 seconds).
  • the hit point processing device 2 performs the touch operation for a period of time t11 to t12 (eg, 3 seconds).
  • the position of the touch object 21 is controlled so that the state in which the tip of the object 21 is touched by the hit point H (1, 1) is maintained.
  • the hitting point processing device 2 moves the touch object 21 at a constant speed while the tip position of the touch object 21 is in plan view at time t20.
  • the touch object 21 is also moved in the horizontal direction so as to coincide with the position of the next hit point H (1,2).
  • the period from time t0 to t11, time t12 to t20, time t20 to t21, time t22 to t30 is 1.5 seconds
  • the period from time t11 to t12, time t21 to t22 is The following description will be made assuming that the time is 3 seconds.
  • the touch panel drive device 3 outputs the signal values of the sense signals for 400 nodes, which are all nodes on the touch panel TP, to the analysis unit 12 of the touch panel evaluation data acquisition device 1 in 0.1 seconds.
  • the analysis unit 12 acquires a signal value (signal value based on the sense signal) for each of the 400 nodes.
  • the signal value for each node acquired by the analysis unit 12 is such that the signal value at the time of touch is larger than the signal value at the time of non-touch.
  • the analysis unit 12 holds signal values (400 signal values) for all nodes (400 nodes) on the touch panel TP as data associated with the coordinates of the nodes (positions on the touch panel surface), respectively. To do. Such data is hereinafter referred to as “capacity map”.
  • the analysis unit 12 detects the node having the maximum signal value in one capacity map, and acquires the signal value of the detected node as “the maximum signal value in the capacity map”.
  • the lower diagram of FIG. 5 is a plot of the maximum signal value in the capacity map.
  • the analysis unit 12 acquires 15 capacity maps. Then, the analysis unit 12 acquires the maximum signal value in the capacity map in each capacity map. That is, the analysis unit 12 acquires the 15 maximum signal values in the capacity map in the period from time t0 to t11. Then, the curves at the times t0 to t11 in the lower diagram of FIG. 5 are plotted and connected by curves in accordance with the times when the maximum signal values in the 15 capacity maps are acquired.
  • the analysis unit 12 acquires 30 capacity maps. Then, the analysis unit 12 acquires the maximum signal value in the capacity map in each capacity map. That is, the analysis unit 12 acquires 30 maximum signal values in the capacity map in the period from time t11 to t12. Then, the curves at the times t11 to t12 in the lower diagram of FIG. 5 are plotted and connected by curves according to the time when the maximum signal values in the 30 capacity maps are acquired.
  • the maximum signal value in the capacity map is a small value.
  • the maximum signal value in the capacity map is a large value.
  • the hit point (1, 1) is in a state where the touch object 21 is touching, Rx11, Rx12, There is a high possibility that the signal value of the sense signal received from one of the sense electrodes Rx21 and Rx22 will be the maximum value.
  • the analysis unit 12 determines whether or not the touch state is set based on a predetermined threshold Th. Specifically, when the maximum signal value in the capacity map is larger than a predetermined threshold Th, the analysis unit 12 determines that the touch state is set. In the case of FIG. 5, since the maximum signal value in the capacity map is larger than the threshold value Th from time t11 to t12, the analysis unit 12 determines that the touch state is in the period from time t11 to t12. In other words, the analysis unit 12 determines that the touching point 21 is touching the hit point H (1, 1) during the period of time t11 to t12.
  • the analysis unit 12 calculates the average value of the maximum signal values in the capacity map of 30 (for 3 seconds) acquired during the period from time t11 to t12, and the calculated average value is used as the hit point H (1 , 1) is obtained as the average signal value Sig (1, 1).
  • the overall control unit 11 of the touch panel evaluation data acquisition device 1 causes the hit point processing device 2 to start an operation of touching the touch object 21 at the hit point H (1, 2). Send a command.
  • the hit point processing device 2 controls the position of the touch object 21 (the position of the tip of the touch object 21) to approach the hit point H (1, 2) of the touch panel TP in accordance with a command from the overall control unit 11.
  • the hit point processing device 2 brings the touch object 21 closer to the hit point H (1, 2) at a constant descent speed during a period from time t20 to t21 (a period of 1.5 seconds).
  • the hit point processing device 2 performs the touch operation for a period of time t21 to t22 (a period of 3 seconds).
  • the position of the touch object 21 is controlled so that the state where the tip of the object 21 is touched by the hit point H (1,2) is maintained.
  • the striking point processing device 2 raises the touch object 21 at a constant speed, while the tip position of the touch object 21 is in plan view at time t30.
  • the touch object 21 is also moved in the horizontal direction so as to coincide with the position of the next hit point H (1,3).
  • the touch panel drive device 3 outputs signal values of sense signals for 400 nodes, which are all nodes on the touch panel TP, to the analysis unit 12 of the touch panel evaluation data acquisition device 1 in 0.1 seconds. And the analysis part 12 acquires the signal value (signal value based on a sense signal) about each node of 400 nodes based on the signal value of the sense signal input from the touch panel drive device 3.
  • the analysis unit 12 holds signal values (400 signal values) for all nodes (400 nodes) on the touch panel TP as data associated with the coordinates of the nodes (positions on the touch panel surface), respectively. To do. That is, the analysis unit 12 acquires a capacity map.
  • the analysis unit 12 detects the node having the maximum signal value in one capacity map, and acquires the detected signal value of the node as the maximum signal value in the capacity map.
  • the maximum signal value in the capacity map is a small value.
  • the maximum signal value in the capacity map is a large value.
  • the hit point (1,2) is in a state where the touch object 21 is touching, so that Rx31, Rx32, There is a high possibility that the signal value of the sense signal received from one of the sense electrodes Rx41 and Rx42 will be the maximum value.
  • the analysis unit 12 determines whether or not the touch state is set based on a predetermined threshold Th. Specifically, when the maximum signal value in the capacity map is larger than a predetermined threshold Th, the analysis unit 12 determines that the touch state is set. In the case of FIG. 5, since the maximum signal value in the capacity map is larger than the threshold value Th from time t21 to t22, the analysis unit 12 determines that the touch state is in the period from time t21 to t22. That is, the analysis unit 12 determines that the touching point 21 is touching the hit point H (1,2) during the period from time t21 to t22.
  • the analysis unit 12 calculates the average value of the maximum signal values in the capacity map of 30 (for 3 seconds) acquired during the period from time t21 to t22, and calculates the calculated average value as the hit point H (1 , 2) is obtained as the average signal value Sig (1, 2).
  • the touch panel evaluation data acquisition device 1 acquires the average signal value Sig (m, n) of the hit point H (m, n). That is, by the above process, the touch panel evaluation data acquisition apparatus 1 acquires the average signal value Sig (m, n) of each of the 100 hit points.
  • the touch panel evaluation data acquisition device 1 associates the average signal value Sig (m, n) of the 100 hit points acquired in this way with the coordinates (positions on the touch panel surface) of the hit points. Output as touch panel evaluation data Dout.
  • FIG. 6 shows an example of the touch panel evaluation data Dout.
  • the average signal value of the dot points included in the area AR2 indicates a large value
  • the average signal value of the dot points included in the area AR3 indicates a small value
  • the others The average signal value of the dot points in this area is almost constant.
  • the touch panel evaluation data acquisition apparatus 1 does not require complicated work on the touch panel evaluation data that is in-plane variation data (capacitance data distribution on the touch panel surface). Can be acquired appropriately.
  • the touch panel evaluation data acquisition system of the first modification has the same configuration as the touch panel evaluation data acquisition system 1000.
  • FIG. 7 is a flowchart of processing for acquiring the average signal value Sig (m, n) of the hit point H (m, n) in the touch panel evaluation data acquisition system of the present modification.
  • step S3 when the analysis unit 12 can read the data of one capacity map, the process proceeds to step S4. On the other hand, if the analysis unit 12 cannot read the data of one capacity map, the analysis unit 12 ends the process.
  • Step S4 the analysis unit 12 acquires the maximum signal value Sig_max in the capacity map from the read capacity map.
  • step S5 when the analysis unit 12 determines that the acquired maximum signal value Sig_max in the capacity map is equal to or greater than the threshold Th, the internal state is set to the “non-touch state” (step S6). On the other hand, if the analysis unit 12 determines that the acquired maximum signal value Sig_max in the capacity map is not equal to or greater than the threshold value Th, the process proceeds to step S7.
  • Step S7 to S8 In step S ⁇ b> 7, the analysis unit 12 determines whether or not the internal state is the “non-touch state”. When the internal state is “non-touch state”, the analysis unit 12 sets the internal state to “pre-touch state”. On the other hand, when the internal state is not the “non-touch state”, the analysis unit 12 advances the process to step S9.
  • Step S9 to S12 In step S ⁇ b> 9, the analysis unit 12 determines whether or not the internal state is the “pre-touch state”. If the internal state is the “pre-touch state”, the analysis unit 12 advances the process to step S10. If the internal state is not the “pre-touch state”, the analysis unit 12 advances the process to step S12.
  • step S10 the analysis unit 12 determines whether or not the count value N1 of the number of detection times of the pre-touch state is larger than the threshold value N1_th.
  • the analysis unit 12 advances the process to step S11.
  • the analysis unit 12 sets the internal state to “touch state”.
  • step S11 the analysis unit 12 performs a process of incrementing the count value N1 by +1, and returns the process to step S2.
  • Step S13 In step S13, the analysis unit 12 determines whether or not the internal state is “touch state”. When the internal state is “touch state”, the process proceeds to step S14, and the internal state is “touch state”. If not, the process returns to step S2.
  • Step S ⁇ b> 14 the analysis unit 12 compares the count value N ⁇ b> 2 of the number of touch state detections with the threshold value N ⁇ b> 2 ⁇ / b> _th for N ⁇ b> 2. When the count value N2 of the touch state detection count is equal to or greater than N2_th, the analysis unit 12 advances the process to step S15. When the count value N2 of the touch state detection count is not equal to or greater than N2_th, the analysis unit 12 Advances to step S16.
  • step S17 The analysis part 12 advances a process to step S17.
  • Step S17 In step S17, the analysis unit 12 sets the internal state to “post-touch state” and returns the process to step S2.
  • the processing is executed by the touch panel evaluation data acquisition system of this modification, so that erroneous data acquisition is appropriately prevented. That is, in the touch panel evaluation data acquisition system of this modification, instead of suddenly changing from the “non-touch state” to the “touch state”, when the “pre-touch state” continues for a certain period of time, the transition to the “touch state” It is possible to appropriately prevent erroneous data from being erroneously recognized as being “touched” due to noise or the like.
  • the touch panel evaluation data acquisition system of the second modification has the same configuration as the touch panel evaluation data acquisition system 1000.
  • FIG. 8 is a flowchart of processing for acquiring the average signal value Sig (m, n) of the hit point H (m, n) in the touch panel evaluation data acquisition system of the present modification.
  • step S ⁇ b> 101 is added between step S ⁇ b> 1 and step S ⁇ b> 2 is executed in the processing flow of the touch panel evaluation data acquisition system of the first modification. Is done. Except for this point, the process of the touch panel evaluation data acquisition system of the present modification is the same as the touch panel evaluation data acquisition system of the first modification.
  • step S101 the analysis unit 12 sets the maximum value among the maximum signal values in the capacity map of the first K capacity maps to the threshold Th. This process will be described with reference to FIG.
  • FIG. 9 is a diagram clearly showing the point of taking the maximum value among the maximum signal values in the capacity map of the first K capacity maps in FIG.
  • the analysis unit 12 performs processing of the hit point H (1, 1).
  • the value Th11 of the point Po1 is set to the threshold value Th.
  • the analysis unit 12 performs the process of the hit point H (1, 2).
  • the value Th12 of the point Po2 is set to the threshold value Th.
  • the analysis unit 12 can set a good threshold Th by the above processing.
  • the maximum value among the maximum signal values in the capacity map corresponding to the time until the touch object 21 contacts the touch panel TP is set as the threshold value. Since it is set to Th, it is possible to save the trouble of setting the threshold Th.
  • the touch panel evaluation data acquisition system of the third modification has the same configuration as the touch panel evaluation data acquisition system 1000.
  • the analysis unit 12 uses a threshold value for determining whether or not the touched state has been shifted, and a threshold value for determining whether or not the touched state has transitioned to the non-touched state. And are automatically set. This will be described with reference to FIG.
  • FIG. 10 is a diagram similar to FIG. 5, and shows the position of the touch object 21 (the height in the vertical direction of the touch object 21 (the normal direction of the touch panel TP touch panel surface)) and time of the hit point processing apparatus 2.
  • a diagram showing the relationship (upper diagram) and the hit point H (1,1), H (1,2) are the maximum signal value in the capacity map when the touch object 21 is touched by the hit point processing device 2. It is a figure (lower figure) which shows the relationship with time.
  • the average level of the maximum signal value varies greatly.
  • the average level of the maximum signal value in the capacity map differs greatly.
  • the analysis unit 12 has a threshold value for determining whether or not the touch state has been changed, and a threshold value for determining whether or not the touch state has been changed to the non-touch state. , Is set automatically.
  • the analysis unit 12 is in the non-touch state at time t13. It is determined that it has moved to.
  • the analysis unit 12 shifts to the touch state at time t21. Is determined.
  • the touch state and the non-touch state are determined based on the average signal value Sig (m, n).
  • Thresholds TH_d and Th_u are set. Therefore, for example, as shown in FIG. 10, even when the signal level in the touch state of the maximum signal value in the capacity map or the signal level in the non-touch state of the maximum signal value in the capacity map varies greatly, In addition, a touch state and a non-touch state can be determined. That is, in the touch panel evaluation data acquisition system of the present modification, the touch panel evaluation data is acquired in a state where the touch state and the non-touch state are properly grasped, so that touch panel evaluation data with higher accuracy can be acquired.
  • the arrangement and number of hit points are not limited to the above embodiment (including modifications). Further, the number of drive electrodes, the number of sense electrodes, the shape, the arrangement, and the like of the touch panel TP are not limited to the above-described embodiment (including modifications).
  • part or all of the touch panel evaluation data acquisition system and part or all of the touch panel evaluation data acquisition apparatus 1 of the above embodiment may be realized as an integrated circuit (for example, LSI, system LSI, etc.). Good.
  • Part or all of the processing of each functional block in the above embodiment may be realized by a program. And a part or all of the processing of each functional block of the above embodiment may be executed by a central processing unit (CPU) in the computer.
  • a program for performing each processing is stored in a storage device such as a hard disk or ROM, and a central processing unit (CPU) reads the program from the ROM or RAM and executes it. Also good.
  • each process of the above embodiment may be realized by hardware, or may be realized by software (including a case where it is realized together with an OS (operating system), middleware, or a predetermined library). Further, it may be realized by mixed processing of software and hardware. Further, it may be realized by mixed processing of software and hardware.
  • execution order of the processing methods in the above embodiment is not necessarily limited to the description of the above embodiment, and the execution order can be changed without departing from the gist of the invention.
  • a computer program that causes a computer to execute the above-described method and a computer-readable recording medium that records the program are included in the scope of the present invention.
  • the computer-readable recording medium include a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a large-capacity DVD, a next-generation DVD, and a semiconductor memory.
  • the computer program is not limited to the one recorded on the recording medium, but may be transmitted via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, or the like.
  • the dimension of each member has a part which does not represent an actual dimension, a dimension ratio, etc. faithfully.
  • the first invention is a touch panel drive including a drive electrode and a sense electrode, and a touch panel drive that transmits a drive signal for driving the drive electrode of the touch panel and receives a sense signal corresponding to a change in capacitance from the sense electrode.
  • a touch panel drive Used together with an apparatus and a dot processing apparatus that has a touch object having a predetermined capacitance and touches the touch object on N (N: natural number) dot points provided on the touch panel surface of the touch panel.
  • N natural number
  • the touch panel evaluation data acquisition device includes an overall control unit and an analysis unit.
  • the overall control unit controls the dot processing device and the touch panel drive device.
  • the analysis unit acquires a plurality of capacity data that is data based on the sense signal received by the touch panel drive device, acquires the maximum value of the acquired plurality of capacity data as a maximum signal value in the capacity map, and the touch object is While the k-th (k: natural number, k ⁇ N) tapping point is being touched, a plurality of acquired maximum signal values in the capacity map are acquired, and an average value of the acquired maximum signal values in the plurality of capacity maps is obtained.
  • touch panel evaluation data which is electrostatic capacity distribution data in the touch panel surface of the touch panel, is acquired.
  • the analysis unit can acquire the average signal value corresponding to the kth dot point by executing the above process.
  • touch panel evaluation data which is variation data within the touch panel surface of the touch panel (capacitance data distribution on the touch panel surface) is appropriately acquired without requiring complicated work. Can do.
  • a pattern design of a single-layer touch panel (may be a multi-layer touch panel) can be efficiently performed.
  • 2nd invention is 1st invention, Comprising: When the maximum signal value in a capacity
  • capacitance map is larger than a predetermined threshold value, an analysis part is the kth object (k: natural number, k ⁇ N). It is determined that the hit point is touched, and the average value of the plurality of maximum signal values in the capacity map acquired when the maximum signal value in the capacity map is larger than the predetermined threshold corresponds to the kth hit point.
  • the touch panel evaluation data is acquired by acquiring the average signal value.
  • 3rd invention is 1st or 2nd invention, Comprising:
  • An analysis part has four states, a non-touch state, a pre-touch state, a touch state, and a post-touch state, as an internal state, and a capacity
  • the analysis unit sets the internal state to the touch state when the internal state is the pre-touch state and the maximum signal value in the capacity map is greater than a predetermined threshold value a predetermined number of times or more. After obtaining the average signal value at the hit point, the internal state is set to the post-touch panel state, and if the maximum signal value in the capacity map is smaller than a predetermined threshold, the internal state is set to the non-touch state.
  • This touch panel evaluation data acquisition apparatus has four internal states: a non-touch state, a pre-touch state, a touch state, and a post-touch state.
  • a non-touch state a pre-touch state
  • a touch state a touch state
  • a post-touch state a state that changes to the “touch state”, so that it is appropriately prevented from being erroneously recognized as being in the “touch state” and acquiring wrong data due to noise or the like. be able to.
  • a fourth invention is any one of the first to third inventions, wherein the analysis unit is configured to: (1) the touch object is a touch panel surface based on the average signal value corresponding to the k-th hit point. The state where the touch panel is touched is changed to the state where the touch panel surface is not touched, or (2) the touch object is not touching the touch panel surface and the touch panel surface is touched. A threshold value for determining the transition is determined.
  • a threshold for determining a touch state and a non-touch state is set for each hit point based on the average signal value. Therefore, in this touch panel evaluation data acquisition device, even if the signal level in the touch state of the maximum signal value in the capacitance map or the signal level in the non-touch state of the maximum signal value in the capacitance map varies greatly, The touch state and the non-touch state can be determined. That is, in this touch panel evaluation data acquisition device, the touch panel evaluation data is acquired in a state where the touch state and the non-touch state are properly grasped, so that touch panel evaluation data with higher accuracy can be acquired.
  • the coordinates on the display screen of the display device can be appropriately specified based on the position of the user's hand in the three-dimensional space even from a remote position without the need for a touch panel. Since the coordinate acquisition device and the display device can be realized, it is useful in the display device related industrial field and can be implemented in this field.

Abstract

The purpose of the present invention is to implement a touch panel evaluation data acquisition device which is capable of appropriately acquiring data of variation within a screen of a touch panel without a complex operation being required. Provided is a touch panel evaluation data acquisition device (1), comprising an overall control unit (11) and an analysis unit (12). The analysis unit (12) acquires a plurality of instances of capacitance data which is data based on a sense signal which a touch panel drive device (3) has received, acquires the maximum of the acquired plurality of instances of capacitance data as an in-capacitance map maximum signal value, acquires a plurality of the acquired in-capacitance map maximum signal values while a touch object is touching a kth contact point (where k is a natural number less than or equal to N), and acquires an average of the acquired plurality of in-capacitance map maximum signal values as an average signal value corresponding to the kth contact point, thereby acquiring touch panel evaluation data which is data of the distribution of capacitance within the touch panel screen of the touch panel.

Description

タッチパネル評価データ取得装置Touch panel evaluation data acquisition device
 本発明は、タッチパネルの性能を評価するための技術に関する。 The present invention relates to a technique for evaluating the performance of a touch panel.
 例えば、特許文献1(特開2013-84166号公報)には、複数の検出用配線を備えるタッチパネルにおいて、検出用配線ごとの寄生容量のばらつきを抑えるための技術の開示がある。特許文献1のタッチパネルのタッチスクリーンは、複数の検出用列配線と、検出用列配線に交差する複数の検出用行配線とを備える。そして、特許文献1のタッチパネルのタッチスクリーンでは、複数の検出用列配線のうち最も外側の配線のさらに外側には、検出用列配線と同様の構成のダミー列配線が配設されている。また、特許文献1のタッチパネルのタッチスクリーンでは、複数の検出用行配線のうち最も外側の配線のさらに外側には、検出用行配線と同様の構成のダミー行配線が配設されている。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 2013-84166) discloses a technique for suppressing variations in parasitic capacitance for each detection wiring in a touch panel including a plurality of detection wirings. The touch screen of the touch panel of Patent Document 1 includes a plurality of detection column wirings and a plurality of detection row wirings that intersect the detection column wirings. In the touch screen of the touch panel of Patent Document 1, dummy column wirings having the same configuration as that of the detection column wiring are arranged on the outer side of the outermost wiring among the plurality of detection column wirings. Further, in the touch screen of the touch panel of Patent Document 1, dummy row wirings having the same configuration as the detection row wirings are arranged on the outer side of the outermost wiring among the plurality of detection row wirings.
 これにより、特許文献1のタッチパネルのタッチスクリーンでは、最も外側の検出用列配線とそれ以外の検出用列配線とが同等の環境に置かれることになり、検出用列配線の寄生容量が均一化される。また、特許文献1のタッチパネルのタッチスクリーンでは、最も外側の検出用行配線とそれ以外の検出用行配線とが同等の環境に置かれることになり、検出用行配線の寄生容量が均一化される。 Thereby, in the touch screen of the touch panel of Patent Document 1, the outermost detection column wiring and the other detection column wiring are placed in the same environment, and the parasitic capacitance of the detection column wiring is made uniform. Is done. Further, in the touch screen of the touch panel of Patent Document 1, the outermost detection row wiring and the other detection row wiring are placed in an equivalent environment, and the parasitic capacitance of the detection row wiring is made uniform. The
 このようにして、特許文献1のタッチパネルのタッチスクリーンでは、検出用配線ごとの寄生容量のばらつきを抑制することができる。 Thus, in the touch screen of the touch panel of Patent Document 1, it is possible to suppress variations in parasitic capacitance for each detection wiring.
 しかしながら、特許文献1の技術は、通常のパターンを有するタッチパネルに適用される技術であり、特殊なパターンを有し、タッチパネル面の静電容量のばらつきが大きいタッチパネルに適用することは困難である。つまり、特許文献1の技術は、電極が形成されている層を2層以上有する構成のタッチパネルであって、タッチパネル面の静電容量のばらつきが比較的小さいタッチパネルに適用することは可能であるが、特許文献1の技術を、例えば、電極が形成される層が1層である構成のタッチパネル等のタッチパネル面の静電容量のばらつきが大きいタッチパネルに適用することは困難である。 However, the technique of Patent Document 1 is a technique that is applied to a touch panel having a normal pattern, and is difficult to apply to a touch panel having a special pattern and large variations in capacitance on the touch panel surface. That is, the technique of Patent Document 1 is a touch panel having two or more layers on which electrodes are formed, and can be applied to a touch panel with relatively small variations in capacitance on the touch panel surface. For example, it is difficult to apply the technique of Patent Document 1 to a touch panel having a large variation in capacitance on a touch panel surface such as a touch panel having a structure in which one electrode is formed.
 近年、低コストで投影型相互容量方式の静電容量タッチパネルを実現するため、電極が形成されている層が1層である1レイヤーのタッチパネルが開発されている。 Recently, in order to realize a projected mutual capacitance type capacitive touch panel at a low cost, a one-layer touch panel in which one electrode layer is formed has been developed.
 このような1レイヤーのタッチパネルでは、1つの層に、電極と配線とが混在して形成されるため、タッチパネル面内の場所によって静電容量が異なることが多い。つまり、このような1レイヤーのタッチパネルでは、静電容量の面内ばらつきが発生することが多い。静電容量の面内ばらつきがあると、タッチパネルの性能が劣化するため、1レイヤーのタッチパネルにおいて、静電容量の面内ばらつきを抑制することが重要である。 In such a one-layer touch panel, electrodes and wirings are mixedly formed in one layer, so that the capacitance often varies depending on the location on the touch panel surface. That is, in such a one-layer touch panel, in-plane variation in capacitance often occurs. If there is in-plane variation in capacitance, the performance of the touch panel deteriorates. Therefore, it is important to suppress in-plane variation in capacitance in a one-layer touch panel.
 1レイヤーのタッチパネルにおいて、静電容量の面内ばらつきが少ないパターン(電極と配線のパターン)を設計するためには、1レイヤーのタッチパネルの各点を、実際にタッチし、タッチしたときの静電容量のデータを取得することで、面内ばらつきのデータ(タッチパネル面における静電容量データの分布)を取得し、分析する必要がある。つまり、このような煩雑な作業を繰り返し実行し、静電容量の面内ばらつきが、タッチパネルの性能を確保できる程度に小さくなるまで、試行錯誤し、タッチパネルのパターン設計を行う必要がある。 In order to design a pattern (electrode and wiring pattern) with less in-plane variation in capacitance in a single-layer touch panel, each point of the single-layer touch panel is actually touched, and the electrostatic It is necessary to acquire and analyze in-plane variation data (capacitance data distribution on the touch panel surface) by acquiring capacitance data. That is, it is necessary to repeatedly perform such a complicated operation and to design the touch panel pattern by trial and error until the in-plane variation of the capacitance becomes small enough to ensure the performance of the touch panel.
 そこで、1レイヤーのタッチパネルのパターン設計を効率良く行うために、1レイヤーのタッチパネルの静電容量の面内ばらつきを適切に取得することができる技術が求められている。 Therefore, in order to efficiently design the pattern of the one-layer touch panel, there is a demand for a technique that can appropriately acquire the in-plane variation of the capacitance of the one-layer touch panel.
 本発明は、上記課題に鑑み、1レイヤーのタッチパネルにおいて、面内ばらつきのデータを、煩雑な作業を必要とせず、適切に取得することができるタッチパネル評価データ取得装置を実現することを目的とする。 In view of the above problems, an object of the present invention is to realize a touch panel evaluation data acquisition device that can appropriately acquire in-plane variation data in a one-layer touch panel without requiring a complicated operation. .
 上記課題を解決するために、第1の構成は、ドライブ電極とセンス電極とを備えるタッチパネルと、タッチパネルのドライブ電極を駆動するための駆動信号を送信し、センス電極から静電容量の変化に応じたセンス信号を受信するタッチパネル駆動装置と、所定の静電容量を有するタッチ用物体を有し、当該タッチ用物体をタッチパネルのタッチパネル面上にN個(N:自然数)設けられた打点ポイントにタッチさせる打点処理装置と、ともに用いられ、タッチパネルのタッチパネル面内の静電容量の分布データを取得するためのタッチパネル評価データ取得装置である。 In order to solve the above-mentioned problem, the first configuration transmits a drive signal for driving the drive electrode of the touch panel and the touch electrode including the drive electrode and the sense electrode, and responds to a change in capacitance from the sense electrode. Touch panel drive device that receives a sense signal and a touch object having a predetermined capacitance, and touch the touch object to N (N: natural number) dot points provided on the touch panel surface of the touch panel. The touch panel evaluation data acquisition device is used together with the hit point processing device to acquire the distribution data of the capacitance within the touch panel surface of the touch panel.
 タッチパネル評価データ取得装置は、全体制御部と、解析部と、を備える。 The touch panel evaluation data acquisition device includes an overall control unit and an analysis unit.
 全体制御部は、打点処理装置と、タッチパネル駆動装置とを制御する。 The overall control unit controls the dot processing device and the touch panel drive device.
 解析部は、タッチパネル駆動装置が受信したセンス信号に基づくデータである容量データを複数取得し、取得した複数の容量データの最大値を容量マップ内最大信号値として取得し、タッチ用物体が、第k番目(k:自然数、k≦N)の打点ポイントをタッチしている間において、取得された容量マップ内最大信号値を複数取得し、取得した複数の容量マップ内最大信号値の平均値を、第k番目の打点ポイントに対応する平均信号値として取得することで、タッチパネルのタッチパネル面内の静電容量の分布データであるタッチパネル評価データを取得する。 The analysis unit acquires a plurality of capacity data that is data based on the sense signal received by the touch panel drive device, acquires the maximum value of the acquired plurality of capacity data as a maximum signal value in the capacity map, and the touch object is While the k-th (k: natural number, k ≦ N) tapping point is being touched, a plurality of acquired maximum signal values in the capacity map are acquired, and an average value of the acquired maximum signal values in the plurality of capacity maps is obtained. By acquiring the average signal value corresponding to the k-th dot point, touch panel evaluation data, which is electrostatic capacity distribution data in the touch panel surface of the touch panel, is acquired.
 本発明によれば、1レイヤーのタッチパネルにおいて、面内ばらつきのデータを、煩雑な作業を必要とせず、適切に取得することができるタッチパネル評価データ取得装置を実現することができる。 According to the present invention, it is possible to realize a touch panel evaluation data acquisition device that can appropriately acquire in-plane variation data in a one-layer touch panel without requiring complicated work.
タッチパネル評価データ取得システム1000の概略構成図。1 is a schematic configuration diagram of a touch panel evaluation data acquisition system 1000. FIG. タッチパネル評価データ取得システム1000の概略構成図。1 is a schematic configuration diagram of a touch panel evaluation data acquisition system 1000. FIG. 図1、図2の領域AR1の拡大図。The enlarged view of area | region AR1 of FIG. 1, FIG. 打点処理装置2と、タッチパネルTPとを側方から見た概略構成図。The schematic block diagram which looked at the dot processing apparatus 2 and the touch panel TP from the side. 打点処理装置2のタッチ用物体21の位置(タッチ用物体21の垂直方向(タッチパネルTPタッチパネル面の法線方向)の高さ)と時間との関係を示す図(上図)と、打点ポイントH(1,1)、H(1,2)を、打点処理装置2により、タッチ用物体21をタッチさせたときの容量マップ内最大信号値と時間との関係を示す図(下図)。The figure (upper figure) showing the relationship between the position of the touch object 21 of the hit point processing device 2 (height in the vertical direction of the touch object 21 (the normal direction of the touch panel TP touch panel surface)) and time, and the hit point H The figure which shows the relationship between the maximum signal value in a capacity | capacitance map when time (1, 1) and H (1,2) are made to touch the object 21 for a touch by the hit point processing apparatus 2, and time (lower figure). に、タッチパネル評価データDoutの一例を示す。Shows an example of the touch panel evaluation data Dout. 第1実施形態の第1変形例のタッチパネル評価データ取得システムにおいて、打点ポイントH(m,n)の平均信号値Sig(m,n)を取得する処理のフローチャート。The flowchart of the process which acquires the average signal value Sig (m, n) of the hit point H (m, n) in the touch panel evaluation data acquisition system of the 1st modification of 1st Embodiment. 第1実施形態の第2変形例のタッチパネル評価データ取得システムにおいて、打点ポイントH(m,n)の平均信号値Sig(m,n)を取得する処理のフローチャート。The flowchart of the process which acquires the average signal value Sig (m, n) of the hit point H (m, n) in the touch panel evaluation data acquisition system of the 2nd modification of 1st Embodiment. 打点処理装置2のタッチ用物体21の位置(タッチ用物体21の垂直方向(タッチパネルTPタッチパネル面の法線方向)の高さ)と時間との関係を示す図(上図)と、打点ポイントH(1,1)、H(1,2)を、打点処理装置2により、タッチ用物体21をタッチさせたときの容量マップ内最大信号値と時間との関係を示す図(下図)。The figure (upper figure) showing the relationship between the position of the touch object 21 of the hit point processing device 2 (height in the vertical direction of the touch object 21 (the normal direction of the touch panel TP touch panel surface)) and time, and the hit point H The figure which shows the relationship between the maximum signal value in a capacity | capacitance map when time (1, 1) and H (1,2) are made to touch the object 21 for a touch by the hit point processing apparatus 2, and time (lower figure). 打点処理装置2のタッチ用物体21の位置(タッチ用物体21の垂直方向(タッチパネルTPタッチパネル面の法線方向)の高さ)と時間との関係を示す図(上図)と、打点ポイントH(1,1)、H(1,2)を、打点処理装置2により、タッチ用物体21をタッチさせたときの容量マップ内最大信号値と時間との関係を示す図(下図)。The figure (upper figure) showing the relationship between the position of the touch object 21 of the hit point processing device 2 (height in the vertical direction of the touch object 21 (the normal direction of the touch panel TP touch panel surface)) and time, and the hit point H The figure which shows the relationship between the maximum signal value in a capacity | capacitance map when time (1, 1) and H (1,2) are made to touch the object 21 for a touch by the hit point processing apparatus 2, and time (lower figure).
 [第1実施形態]
 第1実施形態について、図面を参照しながら、以下、説明する。
[First Embodiment]
The first embodiment will be described below with reference to the drawings.
 <1.1:タッチパネル評価データ取得システムの構成>
 図1は、タッチパネル評価データ取得システム1000の概略構成図である。図1では、タッチパネルTPのタッチパネル面において、10×10の合計100個の打点ポイントを白丸で示している。
<1.1: Configuration of touch panel evaluation data acquisition system>
FIG. 1 is a schematic configuration diagram of a touch panel evaluation data acquisition system 1000. In FIG. 1, a total of 100 dot points of 10 × 10 are indicated by white circles on the touch panel surface of the touch panel TP.
 図2は、タッチパネル評価データ取得システム1000の概略構成図である。図2では、タッチパネルTPのタッチパネル面において、20×20の合計400個のノード(近接して配置されているドライブ電極とセンス電極との間の点(例えば、中間点))を黒丸で示している。 FIG. 2 is a schematic configuration diagram of the touch panel evaluation data acquisition system 1000. In FIG. 2, on the touch panel surface of the touch panel TP, a total of 400 nodes of 20 × 20 (points between drive electrodes and sense electrodes (proximity points, for example) located in close proximity) are indicated by black circles. Yes.
 図3は、図1、図2の領域AR1の拡大図である。 FIG. 3 is an enlarged view of the area AR1 shown in FIGS.
 図3では、(1)ドライブ電極Tx11~Tx14、Tx21~Tx24、Tx31~Tx34、および、Tx41~Tx44と、(2)センス電極Rx11~Rx14、Rx21~Rx24、Rx31~Rx34、および、Rx41~Rx44と、を示している。 3, (1) drive electrodes Tx11 to Tx14, Tx21 to Tx24, Tx31 to Tx34, and Tx41 to Tx44, and (2) sense electrodes Rx11 to Rx14, Rx21 to Rx24, Rx31 to Rx34, and Rx41 to Rx44. And.
 また、図3では、ドライブ電極Tx11~Tx14のそれぞれに接続されている4つのドライブ線G1と、ドライブ電極Tx21~Tx24のそれぞれに接続されている4つのドライブ線G2と、ドライブ電極Tx31~Tx34のそれぞれに接続されている4つのドライブ線G3と、ドライブ電極Tx41~Tx44のそれぞれに接続されている4つのドライブ線G4と、を示している。 In FIG. 3, four drive lines G1 connected to the drive electrodes Tx11 to Tx14, four drive lines G2 connected to the drive electrodes Tx21 to Tx24, and drive electrodes Tx31 to Tx34, respectively. Four drive lines G3 connected to each other and four drive lines G4 connected to each of the drive electrodes Tx41 to Tx44 are shown.
 また、図3では、センス電極Rx11~Rx14のそれぞれに接続されている4つのセンス線S1と、センス電極Rx21~Rx24のそれぞれに接続されている4つのセンス線S2と、センス電極Rx31~Rx34のそれぞれに接続されている4つのセンス線S3と、センス電極Rx41~Rx44のそれぞれに接続されている4つのセンス線S4と、を示している。 In FIG. 3, four sense lines S1 connected to the sense electrodes Rx11 to Rx14, four sense lines S2 connected to the sense electrodes Rx21 to Rx24, and the sense electrodes Rx31 to Rx34, respectively. Four sense lines S3 connected to each of the four sense lines and four sense lines S4 connected to each of the sense electrodes Rx41 to Rx44 are shown.
 また、図3では、打点ポイントH(1,1)、H(1,2)、H(2,1)、H(2,2)を、図1と同様に、白丸で示している。また、図3では、ノード(例えば、ドライブ電極とセンス電極との中間点)P11~P14、P21~P24、P31~P34、P41~P44を、図2と同様に、黒丸で示している。 In FIG. 3, the dot points H (1,1), H (1,2), H (2,1), and H (2,2) are indicated by white circles as in FIG. In FIG. 3, nodes (for example, intermediate points between the drive electrode and the sense electrode) P11 to P14, P21 to P24, P31 to P34, and P41 to P44 are indicated by black circles as in FIG.
 図4は、打点処理装置2と、タッチパネルTPとを側方から見た概略構成図である。 FIG. 4 is a schematic configuration diagram of the dot processing device 2 and the touch panel TP as viewed from the side.
 タッチパネル評価データ取得システム1000は、タッチパネルTPのタッチパネル評価データを取得するためのシステムである。 The touch panel evaluation data acquisition system 1000 is a system for acquiring touch panel evaluation data of the touch panel TP.
 タッチパネル評価データ取得システム1000は、図1に示すように、タッチパネル評価データ取得装置1と、打点処理装置2と、タッチパネル駆動装置3と、を備える。 As shown in FIG. 1, the touch panel evaluation data acquisition system 1000 includes a touch panel evaluation data acquisition device 1, a dot processing device 2, and a touch panel drive device 3.
 タッチパネル評価データ取得装置1は、全体制御部11と、解析部12と、を備える。 The touch panel evaluation data acquisition device 1 includes an overall control unit 11 and an analysis unit 12.
 全体制御部11は、打点処理装置2に対して、所定のタイミングで、タッチパネルTPのタッチパネル面の所定の位置に、タッチペン(スタイラス)や、指と同等の静電容量を有する物体(タッチ用物体21)がタッチされるように制御する。 The overall control unit 11 has a touch pen (stylus) or an object having a capacitance equivalent to that of a finger (touch object) at a predetermined position on the touch panel surface of the touch panel TP with respect to the dot processing device 2 at a predetermined timing. 21) is controlled to be touched.
 また、全体制御部11は、タッチパネル駆動装置3に対して、タッチパネルTPを駆動するように制御する。 The overall control unit 11 controls the touch panel drive device 3 to drive the touch panel TP.
 また、全体制御部11は、解析部12に対して、タッチパネル評価データを取得するように制御する。 Also, the overall control unit 11 controls the analysis unit 12 to acquire touch panel evaluation data.
 解析部12は、タッチパネル駆動装置3からの信号(データ)を入力する。解析部12は、全体制御部11からの指令に基づいて、タッチパネル駆動装置3からの信号(データ)から、タッチパネルTPについてのタッチパネル評価データDoutを取得する。 The analysis unit 12 inputs a signal (data) from the touch panel driving device 3. The analysis unit 12 acquires touch panel evaluation data Dout for the touch panel TP from a signal (data) from the touch panel drive device 3 based on a command from the overall control unit 11.
 打点処理装置2は、タッチペン(スタイラス)や、指と同等の静電容量を有する物体(例えば、先端がとがった物体)(タッチ用物体21)を有している。打点処理装置2は、タッチパネル評価データ取得装置1からの指令に基づいて、タッチ用物体21を、タッチパネルTP上の所定の位置に所定のタイミングでタッチさせる。打点処理装置2は、タッチ用物体21を、タッチパネルTP上の打点ポイント(例えば、図1、図3に白丸で示した位置)を所定のタイミングで、タッチさせる。 The hit point processing device 2 has a touch pen (stylus) or an object having a capacitance equivalent to that of a finger (for example, an object with a sharp tip) (touch object 21). The hit point processing device 2 causes the touch object 21 to touch a predetermined position on the touch panel TP at a predetermined timing based on a command from the touch panel evaluation data acquisition device 1. The hit point processing device 2 causes the touch object 21 to touch a hit point point on the touch panel TP (for example, a position indicated by a white circle in FIGS. 1 and 3) at a predetermined timing.
 打点処理装置2は、図4に示すように、タッチ用物体21を、垂直方向(タッチパネルTPのタッチパネル面の法線方向)の位置PosHから位置PosLに降下させることで、タッチパネルTPの所定の位置に、タッチ用物体21をタッチさせる。 As shown in FIG. 4, the hit point processing device 2 lowers the touch object 21 from the position PosH in the vertical direction (the normal direction of the touch panel surface of the touch panel TP) to the position PosL, so that a predetermined position on the touch panel TP is obtained. Then, the touch object 21 is touched.
 タッチパネル駆動装置3は、タッチパネルTPのドライブ電極に所定の電界を発生させるためのドライブ駆動信号をタッチパネルTPに送信する。また、タッチパネル駆動装置3は、タッチパネルTPのセンス電極からのセンス信号(静電容量の変化(電界変化)を示すセンス信号)を受信する。そして、タッチパネル駆動装置は、受信したセンス信号、あるいは、センス信号に基づいて生成されたデータを、タッチパネル評価データ取得装置1の解析部12に出力する。 The touch panel drive device 3 transmits a drive drive signal for generating a predetermined electric field to the drive electrode of the touch panel TP to the touch panel TP. In addition, the touch panel driving device 3 receives a sense signal (a sense signal indicating a change in capacitance (electric field change)) from a sense electrode of the touch panel TP. Then, the touch panel drive device outputs the received sense signal or data generated based on the sense signal to the analysis unit 12 of the touch panel evaluation data acquisition device 1.
 タッチパネルTPは、1レイヤーのタッチパネルであり、1つの層に、電極と配線とが混在して形成されている。タッチパネルTPは、例えば、図2に黒丸で示すように、20×20の合計400個のノード(近接して配置されているドライブ電極とセンス電極との間の点(例えば、中間点))を有している。タッチパネルTPでは、例えば、図3に示すように、領域AR1において、ドライブ電極Txmnとセンス電極Rxmn(m、n:自然数)とが向かい合うように配置されている。各ドライブ電極は、ドライブ線に接続されており、各センス電極は、センス線に接続されている。各ドライブ電極は、ドライブ線を介して、タッチパネル駆動装置3のドライブ駆動部に接続されている。各センス電極は、センス線を介して、タッチパネル駆動装置3の受信部(センス信号受信部)に接続されている。 The touch panel TP is a one-layer touch panel, and is formed by mixing electrodes and wiring in one layer. For example, as shown by a black circle in FIG. 2, the touch panel TP has a total of 400 nodes of 20 × 20 (points between drive electrodes and sense electrodes arranged in proximity (for example, intermediate points)). Have. In the touch panel TP, for example, as illustrated in FIG. 3, the drive electrode Txmn and the sense electrode Rxmn (m, n: natural numbers) are arranged to face each other in the area AR1. Each drive electrode is connected to a drive line, and each sense electrode is connected to a sense line. Each drive electrode is connected to a drive drive unit of the touch panel drive device 3 via a drive line. Each sense electrode is connected to a receiving unit (sense signal receiving unit) of the touch panel drive device 3 via a sense line.
 なお、図3に示すように、ドライブ電極Txmnとセンス電極Rxmn(m、n:自然数)との中間点を点Pmn(ノードPmn)とする。図3に示すドライブ電極、センス電極、ドライブ線、センス線の配置(パターン)は、一例であり、図3に示した配置(パターン)に限定されることはない。 As shown in FIG. 3, an intermediate point between the drive electrode Txmn and the sense electrode Rxmn (m, n: natural number) is defined as a point Pmn (node Pmn). The arrangement (pattern) of drive electrodes, sense electrodes, drive lines, and sense lines shown in FIG. 3 is an example, and is not limited to the arrangement (pattern) shown in FIG.
 <1.2:タッチパネル評価データ取得システムの動作>
 以上のように構成されたタッチパネル評価データ取得システム1000の動作について、以下、説明する。
<1.2: Operation of touch panel evaluation data acquisition system>
The operation of the touch panel evaluation data acquisition system 1000 configured as described above will be described below.
 以下では、タッチパネル評価データ取得システム1000において、打点処理装置2が、図1に示す白丸の中心点(10×10の合計100点)を順次タッチし、タッチパネル評価データ取得装置1が、タッチパネル評価データを取得する場合について、説明する。なお、以下では、打点処理装置2が順次タッチする点を「打点ポイント」といい、図1のn行m列の打点ポイントを、「打点ポイントH(n,m)」と表記する。 Hereinafter, in the touch panel evaluation data acquisition system 1000, the dot processing device 2 sequentially touches the center points of white circles shown in FIG. 1 (total of 10 × 10 points), and the touch panel evaluation data acquisition device 1 detects the touch panel evaluation data. The case of acquiring the will be described. In the following, points that are sequentially touched by the dot processing device 2 are referred to as “dot points”, and the dot points in the nth row and mth column in FIG. 1 are referred to as “dot points H (n, m)”.
 図5は、打点処理装置2のタッチ用物体21の位置(タッチ用物体21の垂直方向(タッチパネルTPタッチパネル面の法線方向)の高さ)と時間との関係を示す図(上図)と、打点ポイントH(1,1)、H(1,2)を、打点処理装置2により、タッチ用物体21をタッチさせたときの容量マップ内最大信号値と時間との関係を示す図(下図)である。 FIG. 5 is a diagram (upper diagram) showing the relationship between the position of the touch object 21 (the height in the vertical direction of the touch object 21 (the normal direction of the touch panel TP touch panel surface)) and time of the hit point processing apparatus 2. FIG. 5 is a diagram showing the relationship between the maximum signal value in the capacity map and time when the hit point processing device 2 touches the hit point H (1,1) and H (1,2) with the touch point processing device 2 (lower figure). ).
 以下、図1~図5を用いて、タッチパネル評価データ取得装置1が、タッチパネル評価データを取得する処理について、説明する。 Hereinafter, a process in which the touch panel evaluation data acquisition device 1 acquires touch panel evaluation data will be described with reference to FIGS.
 (時刻t0~時刻t20):
 時刻t0において、タッチパネル評価データ取得装置1の全体制御部11は、打点処理装置2に対して、打点ポイントH(1,1)に、タッチ用物体21をタッチさせる動作を開始させるように指令を送信する。
(Time t0 to Time t20):
At time t0, the overall control unit 11 of the touch panel evaluation data acquisition device 1 instructs the hit point processing device 2 to start an operation of touching the touch object 21 at the hit point H (1, 1). Send.
 打点処理装置2は、全体制御部11からの指令に従い、タッチ用物体21の位置(タッチ用物体21の先端の位置)がタッチパネルTPの打点ポイントH(1,1)に近づくように制御する。なお、タッチ用物体21の位置のデフォルト位置(タッチ用物体21をタッチパネルTPに近づける制御を行う前の位置)は、図4に示すように、タッチパネルTPのタッチパネル面からの距離がDhである位置PosHである。 The hit point processing device 2 performs control so that the position of the touch object 21 (the position of the tip of the touch object 21) approaches the hit point H (1, 1) of the touch panel TP in accordance with a command from the overall control unit 11. Note that the default position of the position of the touch object 21 (the position before the control to bring the touch object 21 close to the touch panel TP) is a position where the distance from the touch panel surface of the touch panel TP is Dh, as shown in FIG. PosH.
 打点処理装置2は、図5に示すように、時刻t0~t11の期間(例えば、1.5秒)、一定の降下速度により、タッチ用物体21を打点ポイントH(1,1)に近づける。そして、時刻t11において、タッチ用物体21の先端が打点ポイントH(1,1)にタッチされた状態となると、打点処理装置2は、時刻t11~t12の期間(例えば、3秒)、タッチ用物体21の先端が打点ポイントH(1,1)にタッチされている状態が維持されるように、タッチ用物体21の位置制御を行う。 As shown in FIG. 5, the hit point processing device 2 brings the touch object 21 closer to the hit point H (1, 1) at a constant descent speed during a period from time t0 to t11 (for example, 1.5 seconds). At time t11, when the tip of the touch object 21 is touched by the hit point H (1, 1), the hit point processing device 2 performs the touch operation for a period of time t11 to t12 (eg, 3 seconds). The position of the touch object 21 is controlled so that the state in which the tip of the object 21 is touched by the hit point H (1, 1) is maintained.
 時刻t12~t20(例えば、1.5秒)において、打点処理装置2は、タッチ用物体21が一定の速度で上昇させながら、タッチ用物体21の先端位置が、平面視において、時刻t20において、次の打点ポイントH(1,2)の位置に一致するように、タッチ用物体21を水平方向にも移動させる。 From time t12 to t20 (for example, 1.5 seconds), the hitting point processing device 2 moves the touch object 21 at a constant speed while the tip position of the touch object 21 is in plan view at time t20. The touch object 21 is also moved in the horizontal direction so as to coincide with the position of the next hit point H (1,2).
 なお、説明便宜のため、時刻t0~t11、時刻t12~t20、時刻t20~t21、時刻t22~t30の期間は、1.5秒であり、時刻t11~t12、時刻t21~t22の期間は、3秒であるものとして、以下説明する。 For convenience of explanation, the period from time t0 to t11, time t12 to t20, time t20 to t21, time t22 to t30 is 1.5 seconds, and the period from time t11 to t12, time t21 to t22 is The following description will be made assuming that the time is 3 seconds.
 そして、タッチパネル駆動装置3は、0.1秒で、タッチパネルTP上の全てのノードである400ノード分のセンス信号の信号値をタッチパネル評価データ取得装置1の解析部12に出力する。解析部12は、タッチパネル駆動装置3から入力されたセンス信号の信号値に基づいて、400ノードの各ノードについての信号値(センス信号に基づく信号値)を取得するものとする。 Then, the touch panel drive device 3 outputs the signal values of the sense signals for 400 nodes, which are all nodes on the touch panel TP, to the analysis unit 12 of the touch panel evaluation data acquisition device 1 in 0.1 seconds. Based on the signal value of the sense signal input from the touch panel drive device 3, the analysis unit 12 acquires a signal value (signal value based on the sense signal) for each of the 400 nodes.
 なお、解析部12が取得する各ノードについての信号値は、タッチ時の信号値が、非タッチ時の信号値よりも大きな値をとるものとする。 Note that the signal value for each node acquired by the analysis unit 12 is such that the signal value at the time of touch is larger than the signal value at the time of non-touch.
 解析部12は、タッチパネルTP上の全てのノード(400個のノード)についての信号値(400個の信号値)を、それぞれ、ノードの座標(タッチパネル面上の位置)に対応づけたデータとして保持する。このようなデータを、以下、「容量マップ」という。 The analysis unit 12 holds signal values (400 signal values) for all nodes (400 nodes) on the touch panel TP as data associated with the coordinates of the nodes (positions on the touch panel surface), respectively. To do. Such data is hereinafter referred to as “capacity map”.
 解析部12は、1枚の容量マップにおいて、信号値が最大値となるノードを検出し、検出したノードの信号値を「容量マップ内最大信号値」として取得する。図5の下図は、この容量マップ内最大信号値をプロットしたものである。 The analysis unit 12 detects the node having the maximum signal value in one capacity map, and acquires the signal value of the detected node as “the maximum signal value in the capacity map”. The lower diagram of FIG. 5 is a plot of the maximum signal value in the capacity map.
 例えば、時刻t0~t11の期間は、1.5秒であるので、解析部12は、15枚の容量マップを取得する。そして、解析部12は、各容量マップにおいて、容量マップ内最大信号値を取得する。つまり、解析部12は、時刻t0~t11の期間において、15個の容量マップ内最大信号値を取得する。そして、この15個の容量マップ内最大信号値を取得した時刻に合わせてプロットし曲線で結んだものが図5の下図の時刻t0~t11の曲線である。 For example, since the period from time t0 to t11 is 1.5 seconds, the analysis unit 12 acquires 15 capacity maps. Then, the analysis unit 12 acquires the maximum signal value in the capacity map in each capacity map. That is, the analysis unit 12 acquires the 15 maximum signal values in the capacity map in the period from time t0 to t11. Then, the curves at the times t0 to t11 in the lower diagram of FIG. 5 are plotted and connected by curves in accordance with the times when the maximum signal values in the 15 capacity maps are acquired.
 時刻t11~t12の期間は、3秒であるので、解析部12は、30枚の容量マップを取得する。そして、解析部12は、各容量マップにおいて、容量マップ内最大信号値を取得する。つまり、解析部12は、時刻t11~t12の期間において、30個の容量マップ内最大信号値を取得する。そして、この30個の容量マップ内最大信号値を取得した時刻に合わせてプロットし曲線で結んだものが図5の下図の時刻t11~t12の曲線である。 Since the period from time t11 to t12 is 3 seconds, the analysis unit 12 acquires 30 capacity maps. Then, the analysis unit 12 acquires the maximum signal value in the capacity map in each capacity map. That is, the analysis unit 12 acquires 30 maximum signal values in the capacity map in the period from time t11 to t12. Then, the curves at the times t11 to t12 in the lower diagram of FIG. 5 are plotted and connected by curves according to the time when the maximum signal values in the 30 capacity maps are acquired.
 図5に示すように、時刻t0~t11の期間は、非タッチ状態であるので、容量マップ内最大信号値は、小さい値となっている。 As shown in FIG. 5, since the period from time t0 to t11 is in the non-touch state, the maximum signal value in the capacity map is a small value.
 一方、時刻t11~t12の期間は、タッチ状態であるので、容量マップ内最大信号値は、大きな値となっている。時刻t11~t12の期間では、打点ポイント(1,1)を、タッチ用物体21がタッチしている状態であるので、打点ポイント(1,1)の近傍に配置されている、Rx11、Rx12、Rx21、Rx22のいずれかのセンス電極から受信されるセンス信号の信号値が最大値となる可能性が高い。 On the other hand, since the period from time t11 to t12 is a touch state, the maximum signal value in the capacity map is a large value. In the period from time t11 to t12, since the hit point (1, 1) is in a state where the touch object 21 is touching, Rx11, Rx12, There is a high possibility that the signal value of the sense signal received from one of the sense electrodes Rx21 and Rx22 will be the maximum value.
 解析部12は、所定の閾値Thにより、タッチ状態であるか否かを判定する。具体的には、解析部12は、容量マップ内最大信号値が所定の閾値Thよりも大きい場合、タッチ状態であると判定する。図5の場合、時刻t11~t12において、容量マップ内最大信号値は、閾値Thよりも大きな値であるので、解析部12は、時刻t11~t12の期間は、タッチ状態であると判定する。つまり、解析部12は、時刻t11~t12の期間は、打点ポイントH(1,1)を、タッチ用物体21がタッチしている状態を維持していると判断する。 The analysis unit 12 determines whether or not the touch state is set based on a predetermined threshold Th. Specifically, when the maximum signal value in the capacity map is larger than a predetermined threshold Th, the analysis unit 12 determines that the touch state is set. In the case of FIG. 5, since the maximum signal value in the capacity map is larger than the threshold value Th from time t11 to t12, the analysis unit 12 determines that the touch state is in the period from time t11 to t12. In other words, the analysis unit 12 determines that the touching point 21 is touching the hit point H (1, 1) during the period of time t11 to t12.
 そして、解析部12は、時刻t11~t12の期間に取得される、30個(3秒分)の容量マップ内最大信号値の平均値を算出し、算出した平均値を、打点ポイントH(1,1)の平均信号値Sig(1,1)として取得する。 Then, the analysis unit 12 calculates the average value of the maximum signal values in the capacity map of 30 (for 3 seconds) acquired during the period from time t11 to t12, and the calculated average value is used as the hit point H (1 , 1) is obtained as the average signal value Sig (1, 1).
 (時刻t20~時刻t30):
 時刻t20~t30においても、時刻t0~t20の処理と同様の処理が実行される。
(Time t20 to time t30):
From time t20 to t30, processing similar to that from time t0 to t20 is executed.
 つまり、時刻t20において、タッチパネル評価データ取得装置1の全体制御部11は、打点処理装置2に対して、打点ポイントH(1,2)に、タッチ用物体21をタッチさせる動作を開始させるように指令を送信する。 That is, at time t20, the overall control unit 11 of the touch panel evaluation data acquisition device 1 causes the hit point processing device 2 to start an operation of touching the touch object 21 at the hit point H (1, 2). Send a command.
 打点処理装置2は、全体制御部11からの指令に従い、タッチ用物体21の位置(タッチ用物体21の先端の位置)がタッチパネルTPの打点ポイントH(1,2)に近づくように制御する。 The hit point processing device 2 controls the position of the touch object 21 (the position of the tip of the touch object 21) to approach the hit point H (1, 2) of the touch panel TP in accordance with a command from the overall control unit 11.
 打点処理装置2は、図5に示すように、時刻t20~t21の期間(1.5秒の期間)、一定の降下速度により、タッチ用物体21を打点ポイントH(1,2)に近づける。そして、時刻t21において、タッチ用物体21の先端が打点ポイントH(1,2)にタッチされた状態となると、打点処理装置2は、時刻t21~t22の期間(3秒の期間)、タッチ用物体21の先端が打点ポイントH(1,2)にタッチされている状態が維持されるように、タッチ用物体21の位置制御を行う。 As shown in FIG. 5, the hit point processing device 2 brings the touch object 21 closer to the hit point H (1, 2) at a constant descent speed during a period from time t20 to t21 (a period of 1.5 seconds). At time t21, when the tip of the touch object 21 is touched by the hit point H (1, 2), the hit point processing device 2 performs the touch operation for a period of time t21 to t22 (a period of 3 seconds). The position of the touch object 21 is controlled so that the state where the tip of the object 21 is touched by the hit point H (1,2) is maintained.
 時刻t22~t30(1.5秒の期間)において、打点処理装置2は、タッチ用物体21が一定の速度で上昇させながら、タッチ用物体21の先端位置が、平面視において、時刻t30において、次の打点ポイントH(1,3)の位置に一致するように、タッチ用物体21を水平方向にも移動させる。 During the time t22 to t30 (a period of 1.5 seconds), the striking point processing device 2 raises the touch object 21 at a constant speed, while the tip position of the touch object 21 is in plan view at time t30. The touch object 21 is also moved in the horizontal direction so as to coincide with the position of the next hit point H (1,3).
 タッチパネル駆動装置3は、0.1秒で、タッチパネルTP上の全てのノードである400ノード分のセンス信号の信号値をタッチパネル評価データ取得装置1の解析部12に出力する。そして、解析部12は、タッチパネル駆動装置3から入力されたセンス信号の信号値に基づいて、400ノードの各ノードについての信号値(センス信号に基づく信号値)を取得する。 The touch panel drive device 3 outputs signal values of sense signals for 400 nodes, which are all nodes on the touch panel TP, to the analysis unit 12 of the touch panel evaluation data acquisition device 1 in 0.1 seconds. And the analysis part 12 acquires the signal value (signal value based on a sense signal) about each node of 400 nodes based on the signal value of the sense signal input from the touch panel drive device 3.
 解析部12は、タッチパネルTP上の全てのノード(400個のノード)についての信号値(400個の信号値)を、それぞれ、ノードの座標(タッチパネル面上の位置)に対応づけたデータとして保持する。つまり、解析部12は、容量マップを取得する。 The analysis unit 12 holds signal values (400 signal values) for all nodes (400 nodes) on the touch panel TP as data associated with the coordinates of the nodes (positions on the touch panel surface), respectively. To do. That is, the analysis unit 12 acquires a capacity map.
 解析部12は、1枚の容量マップにおいて、信号値が最大値となるノードを検出し、検出したノードの信号値を容量マップ内最大信号値として取得する。 The analysis unit 12 detects the node having the maximum signal value in one capacity map, and acquires the detected signal value of the node as the maximum signal value in the capacity map.
 図5に示すように、時刻t20~t21の期間は、非タッチ状態であるので、容量マップ内最大信号値は、小さい値となっている。 As shown in FIG. 5, since the period from time t20 to t21 is a non-touch state, the maximum signal value in the capacity map is a small value.
 一方、時刻t21~t22の期間は、タッチ状態であるので、容量マップ内最大信号値は、大きな値となっている。時刻t21~t22の期間では、打点ポイント(1,2)を、タッチ用物体21がタッチしている状態であるので、打点ポイント(1,2)の近傍に配置されている、Rx31、Rx32、Rx41、Rx42のいずれかのセンス電極から受信されるセンス信号の信号値が最大値となる可能性が高い。 On the other hand, since the period from time t21 to t22 is a touch state, the maximum signal value in the capacity map is a large value. In the period from time t21 to t22, the hit point (1,2) is in a state where the touch object 21 is touching, so that Rx31, Rx32, There is a high possibility that the signal value of the sense signal received from one of the sense electrodes Rx41 and Rx42 will be the maximum value.
 解析部12は、所定の閾値Thにより、タッチ状態であるか否かを判定する。具体的には、解析部12は、容量マップ内最大信号値が所定の閾値Thよりも大きい場合、タッチ状態であると判定する。図5の場合、時刻t21~t22において、容量マップ内最大信号値は、閾値Thよりも大きな値であるので、解析部12は、時刻t21~t22の期間は、タッチ状態であると判定する。つまり、解析部12は、時刻t21~t22の期間は、打点ポイントH(1,2)を、タッチ用物体21がタッチしている状態を維持していると判断する。 The analysis unit 12 determines whether or not the touch state is set based on a predetermined threshold Th. Specifically, when the maximum signal value in the capacity map is larger than a predetermined threshold Th, the analysis unit 12 determines that the touch state is set. In the case of FIG. 5, since the maximum signal value in the capacity map is larger than the threshold value Th from time t21 to t22, the analysis unit 12 determines that the touch state is in the period from time t21 to t22. That is, the analysis unit 12 determines that the touching point 21 is touching the hit point H (1,2) during the period from time t21 to t22.
 そして、解析部12は、時刻t21~t22の期間に取得される、30個(3秒分)の容量マップ内最大信号値の平均値を算出し、算出した平均値を、打点ポイントH(1,2)の平均信号値Sig(1,2)として取得する。 Then, the analysis unit 12 calculates the average value of the maximum signal values in the capacity map of 30 (for 3 seconds) acquired during the period from time t21 to t22, and calculates the calculated average value as the hit point H (1 , 2) is obtained as the average signal value Sig (1, 2).
 (時刻t30以降):
 時刻t30以降についても、タッチパネル評価データ取得装置1では、上記と同様の処理が実行される。
(After time t30):
Also after time t30, the touch panel evaluation data acquisition apparatus 1 performs the same processing as described above.
 上記処理が実行されることにより、タッチパネル評価データ取得装置1では、打点ポイントH(m,n)の平均信号値Sig(m,n)が取得される。つまり、上記処理により、タッチパネル評価データ取得装置1では、100個の打点ポイントのそれぞれの平均信号値Sig(m,n)が取得される。 By executing the above processing, the touch panel evaluation data acquisition device 1 acquires the average signal value Sig (m, n) of the hit point H (m, n). That is, by the above process, the touch panel evaluation data acquisition apparatus 1 acquires the average signal value Sig (m, n) of each of the 100 hit points.
 タッチパネル評価データ取得装置1は、このようにして取得された100個の打点ポイントの平均信号値Sig(m,n)を、打点ポイントの座標(タッチパネル面上の位置)に対応づけたデータを、タッチパネル評価データDoutとして、出力する。 The touch panel evaluation data acquisition device 1 associates the average signal value Sig (m, n) of the 100 hit points acquired in this way with the coordinates (positions on the touch panel surface) of the hit points. Output as touch panel evaluation data Dout.
 図6に、タッチパネル評価データDoutの一例を示す。 FIG. 6 shows an example of the touch panel evaluation data Dout.
 具体的には、図6のタッチパネル評価データDoutでは、領域AR2に含まれる打点ポイントの平均信号値が大きな値を示し、領域AR3に含まれる打点ポイントの平均信号値が小さな値を示し、それ以外の領域の打点ポイントの平均信号値がほぼ一定の値となっている。 Specifically, in the touch panel evaluation data Dout in FIG. 6, the average signal value of the dot points included in the area AR2 indicates a large value, the average signal value of the dot points included in the area AR3 indicates a small value, and the others The average signal value of the dot points in this area is almost constant.
 このようなタッチパネル評価データDoutが取得された場合、領域AR2と領域AR3に含まれる打点ポイントの平均信号値が、他の領域の平均信号値に近づくように、パターンを変更すれば、タッチパネルTPの容量ばらつきを抑制することができることが分かる。 When such touch panel evaluation data Dout is acquired, if the pattern is changed so that the average signal value of the hit points included in the area AR2 and the area AR3 approaches the average signal value of other areas, the touch panel TP It can be seen that variation in capacitance can be suppressed.
 このように、タッチパネル評価データ取得システム1000では、タッチパネル評価データ取得装置1により、面内ばらつきのデータ(タッチパネル面における静電容量データの分布)であるタッチパネル評価データを煩雑な作業を必要とせず、適切に取得することができる。 As described above, in the touch panel evaluation data acquisition system 1000, the touch panel evaluation data acquisition apparatus 1 does not require complicated work on the touch panel evaluation data that is in-plane variation data (capacitance data distribution on the touch panel surface). Can be acquired appropriately.
 そして、タッチパネル評価データ取得システムにより取得されるタッチパネル評価データに基づいて、1レイヤーのタッチパネルのパターン設計を効率良く行うことができる。 And, based on the touch panel evaluation data acquired by the touch panel evaluation data acquisition system, it is possible to efficiently design a one-layer touch panel pattern.
 ≪第1変形例≫
 次に、第1変形例について説明する。
≪First modification≫
Next, a first modification will be described.
 なお、上記実施形態と同様の部分については、詳細な説明を省略する。 Note that detailed description of the same parts as those in the above embodiment is omitted.
 第1変形例のタッチパネル評価データ取得システムは、タッチパネル評価データ取得システム1000と同様の構成を有している。 The touch panel evaluation data acquisition system of the first modification has the same configuration as the touch panel evaluation data acquisition system 1000.
 第1変形例のタッチパネル評価データ取得システムでは、解析部12の処理において、内部状態として、「非タッチ状態」、「プレタッチ状態」、「タッチ状態」、「ポストタッチ状態」の4つの状態を規定し、誤ったデータが取得されるのを適切に防止する。 In the touch panel evaluation data acquisition system of the first modified example, in the processing of the analysis unit 12, four states of “non-touch state”, “pre-touch state”, “touch state”, and “post-touch state” are defined as internal states. And appropriately preventing erroneous data from being acquired.
 本変形例のタッチパネル評価データ取得システムの動作について、以下、説明する。 The operation of the touch panel evaluation data acquisition system of this modification will be described below.
 図7は、本変形例のタッチパネル評価データ取得システムにおいて、打点ポイントH(m,n)の平均信号値Sig(m,n)を取得する処理のフローチャートである。 FIG. 7 is a flowchart of processing for acquiring the average signal value Sig (m, n) of the hit point H (m, n) in the touch panel evaluation data acquisition system of the present modification.
 以下、図7を用いて、本変形例のタッチパネル評価データ取得システムの動作について、説明する。 Hereinafter, the operation of the touch panel evaluation data acquisition system of the present modification will be described with reference to FIG.
 (ステップS1):
 ステップS1において、解析部12は、初期設定を行う。具体的には、ステップS1において、解析部12は、以下の(1)~(6)の処理を行う。
(1)閾値Thの設定
(2)プレタッチ状態の検出回数のカウント値N1の初期化(N1=0とする処理)
(3)タッチ状態の検出回数のカウント値N2の初期化(N2=0とする処理)
(4)積算処理において積算値を代入する値Sumの初期化(Sum=0とする処理)
(5)プレタッチ状態に遷移させるためのプレタッチ状態遷移判定用の閾値N1_thの設定
(6)打点ポイントH(m,n)の平均信号値Sig(m,n)を出力させるためのタッチ状態の検出回数のカウント値N2と比較するための閾値N2_thの設定
 (ステップS2~S3):
 ステップS2において、解析部12は、1枚の容量マップのデータを読み込む。なお、解析部12は、1枚の容量マップのデータを記憶保持することができるものとする。
(Step S1):
In step S1, the analysis unit 12 performs initial setting. Specifically, in step S1, the analysis unit 12 performs the following processes (1) to (6).
(1) Setting of threshold value Th (2) Initialization of count value N1 of the number of times of detection of the pre-touch state (processing for setting N1 = 0)
(3) Initialization of the count value N2 of the number of detections of the touch state (processing for setting N2 = 0)
(4) Initialization of a value Sum for substituting the integration value in the integration process (processing for setting Sum = 0)
(5) Setting of threshold value N1_th for determination of pre-touch state transition for transition to the pre-touch state (6) Detection of touch state for outputting average signal value Sig (m, n) of dot point H (m, n) Setting of the threshold value N2_th for comparison with the count value N2 of the number of times (steps S2 to S3):
In step S2, the analysis unit 12 reads data of one capacity map. Assume that the analysis unit 12 can store and hold data of one capacity map.
 ステップS3において、解析部12は、1枚の容量マップのデータを読み込むことができたときは、処理をステップS4に進める。一方、解析部12は、1枚の容量マップのデータを読み込むことができなかったときは、処理を終了させる。 In step S3, when the analysis unit 12 can read the data of one capacity map, the process proceeds to step S4. On the other hand, if the analysis unit 12 cannot read the data of one capacity map, the analysis unit 12 ends the process.
 (ステップS4~S6):
 ステップS4において、解析部12は、読み込んだ1枚の容量マップから、容量マップ内最大信号値Sig_maxを取得する。
(Steps S4 to S6):
In step S4, the analysis unit 12 acquires the maximum signal value Sig_max in the capacity map from the read capacity map.
 ステップS5において、解析部12は、取得した容量マップ内最大信号値Sig_maxが閾値Th以上であると判定した場合、内部状態を「非タッチ状態」に設定する(ステップS6)。一方、解析部12は、取得した容量マップ内最大信号値Sig_maxが閾値Th以上ではないと判定した場合、処理をステップS7に進める。 In step S5, when the analysis unit 12 determines that the acquired maximum signal value Sig_max in the capacity map is equal to or greater than the threshold Th, the internal state is set to the “non-touch state” (step S6). On the other hand, if the analysis unit 12 determines that the acquired maximum signal value Sig_max in the capacity map is not equal to or greater than the threshold value Th, the process proceeds to step S7.
 (ステップS7~S8):
 ステップS7において、解析部12は、内部状態が「非タッチ状態」であるか否かを判定する。内部状態が「非タッチ状態」である場合、解析部12は、内部状態を「プレタッチ状態」に設定する。一方、内部状態が「非タッチ状態」ではない場合、解析部12は、処理をステップS9に進める。
(Steps S7 to S8):
In step S <b> 7, the analysis unit 12 determines whether or not the internal state is the “non-touch state”. When the internal state is “non-touch state”, the analysis unit 12 sets the internal state to “pre-touch state”. On the other hand, when the internal state is not the “non-touch state”, the analysis unit 12 advances the process to step S9.
 (ステップS9~S12):
 ステップS9において、解析部12は、内部状態が「プレタッチ状態」であるか否かを判定する。内部状態が「プレタッチ状態」である場合、解析部12は、処理をステップS10に進め、内部状態が「プレタッチ状態」ではない場合、解析部12は、処理をステップS12に進める。
(Steps S9 to S12):
In step S <b> 9, the analysis unit 12 determines whether or not the internal state is the “pre-touch state”. If the internal state is the “pre-touch state”, the analysis unit 12 advances the process to step S10. If the internal state is not the “pre-touch state”, the analysis unit 12 advances the process to step S12.
 ステップS10において、解析部12は、プレタッチ状態の検出回数のカウント値N1が閾値N1_thよりも大きいか否かを判定する。プレタッチ状態の検出回数のカウント値N1が閾値N1_thよりも大きくない場合、解析部12は、処理をステップS11に進める。一方、プレタッチ状態の検出回数のカウント値N1が閾値N1_thよりも大きい場合、解析部12は、内部状態を「タッチ状態」に設定する。 In step S10, the analysis unit 12 determines whether or not the count value N1 of the number of detection times of the pre-touch state is larger than the threshold value N1_th. When the count value N1 of the number of detections of the pre-touch state is not larger than the threshold value N1_th, the analysis unit 12 advances the process to step S11. On the other hand, when the count value N1 of the number of times of detection of the pre-touch state is larger than the threshold value N1_th, the analysis unit 12 sets the internal state to “touch state”.
 ステップS11において、解析部12は、カウント値N1を+1だけインクリメントする処理を行い、処理をステップS2に戻す。 In step S11, the analysis unit 12 performs a process of incrementing the count value N1 by +1, and returns the process to step S2.
 (ステップS13):
 ステップS13において、解析部12は、内部状態が「タッチ状態」であるか否かを判定し、内部状態が「タッチ状態」である場合、処理をステップS14に進め、内部状態が「タッチ状態」ではない場合、処理をステップS2に戻す。
(Step S13):
In step S13, the analysis unit 12 determines whether or not the internal state is “touch state”. When the internal state is “touch state”, the process proceeds to step S14, and the internal state is “touch state”. If not, the process returns to step S2.
 (ステップS14~S16):
 ステップS14において、解析部12は、タッチ状態の検出回数のカウント値N2とN2用の閾値N2_thとを比較する。タッチ状態の検出回数のカウント値N2がN2_th以上である場合、解析部12は、処理をステップS15に進め、タッチ状態の検出回数のカウント値N2がN2_th以上ではない場合、解析部12は、処理をステップS16に進める。
(Steps S14 to S16):
In step S <b> 14, the analysis unit 12 compares the count value N <b> 2 of the number of touch state detections with the threshold value N <b> 2 </ b> _th for N <b> 2. When the count value N2 of the touch state detection count is equal to or greater than N2_th, the analysis unit 12 advances the process to step S15. When the count value N2 of the touch state detection count is not equal to or greater than N2_th, the analysis unit 12 Advances to step S16.
 ステップS15において、解析部12は、積算処理を実行する。具体的には、解析部12は、
  Sum=Sum+Sig_max
に相当する処理を実行し、容量マップ内最大信号値Sig_maxを積算した値Sumを取得する。そして、解析部12は、タッチ状態の検出回数のカウント値N2を+1インクリメントし、処理をステップS2に戻す。
In step S15, the analysis unit 12 performs an integration process. Specifically, the analysis unit 12
Sum = Sum + Sig_max
A value Sum obtained by integrating the maximum signal value Sig_max in the capacity map is acquired. Then, the analysis unit 12 increments the count value N2 of the number of detections of the touch state by +1, and returns the process to step S2.
 ステップS16において、解析部12は、平均値出力処理を実行する。具体的には、解析部12は、
  Sum=Sum+Sig_max
に相当する処理を実行し、さらに、
  Sig(m,n)=Sum/N2_th
に相当する処理(積算値Sumを積算したデータ数で除算する処理)を実行することで、打点ポイントH(m,n)の平均信号値Sig(m,n)を取得する。
In step S16, the analysis unit 12 executes an average value output process. Specifically, the analysis unit 12
Sum = Sum + Sig_max
Is executed, and
Sig (m, n) = Sum / N2_th
The average signal value Sig (m, n) of the hit point H (m, n) is acquired by executing the process corresponding to (the process of dividing the integrated value Sum by the number of data integrated).
 そして、解析部12は、処理をステップS17に進める。 And the analysis part 12 advances a process to step S17.
 (ステップS17):
 ステップS17において、解析部12は、内部状態を「ポストタッチ状態」に設定し、処理をステップS2に戻す。
(Step S17):
In step S17, the analysis unit 12 sets the internal state to “post-touch state” and returns the process to step S2.
 以上のように、本変形例のタッチパネル評価データ取得システムで処理が実行されることで、誤ったデータが取得されるのを適切に防止する。つまり、本変形例のタッチパネル評価データ取得システムでは、「非タッチ状態」からいきなり「タッチ状態」になるのではなく、「プレタッチ状態」が一定期間継続した場合に「タッチ状態」に遷移するため、ノイズ等により、「タッチ状態」であると誤認識され、誤ったデータが取得されることを適切に防止することができる。 As described above, the processing is executed by the touch panel evaluation data acquisition system of this modification, so that erroneous data acquisition is appropriately prevented. That is, in the touch panel evaluation data acquisition system of this modification, instead of suddenly changing from the “non-touch state” to the “touch state”, when the “pre-touch state” continues for a certain period of time, the transition to the “touch state” It is possible to appropriately prevent erroneous data from being erroneously recognized as being “touched” due to noise or the like.
 ≪第2変形例≫
 次に、第2変形例について説明する。
≪Second modification≫
Next, a second modification will be described.
 なお、上記実施形態、第1変形例と同様の部分については、詳細な説明を省略する。 It should be noted that detailed description of the same parts as those in the above embodiment and the first modification is omitted.
 第2変形例のタッチパネル評価データ取得システムは、タッチパネル評価データ取得システム1000と同様の構成を有している。 The touch panel evaluation data acquisition system of the second modification has the same configuration as the touch panel evaluation data acquisition system 1000.
 図8は、本変形例のタッチパネル評価データ取得システムにおいて、打点ポイントH(m,n)の平均信号値Sig(m,n)を取得する処理のフローチャートである。 FIG. 8 is a flowchart of processing for acquiring the average signal value Sig (m, n) of the hit point H (m, n) in the touch panel evaluation data acquisition system of the present modification.
 図8に示すように、本変形例のタッチパネル評価データ取得システムでは、第1変形例のタッチパネル評価データ取得システムの処理フローにおいて、ステップS1とステップS2の間に、ステップS101を追加した処理が実行される。この点以外について、本変形例のタッチパネル評価データ取得システムの処理は、第1変形例のタッチパネル評価データ取得システムと同様である。 As shown in FIG. 8, in the touch panel evaluation data acquisition system of the present modification, a process in which step S <b> 101 is added between step S <b> 1 and step S <b> 2 is executed in the processing flow of the touch panel evaluation data acquisition system of the first modification. Is done. Except for this point, the process of the touch panel evaluation data acquisition system of the present modification is the same as the touch panel evaluation data acquisition system of the first modification.
 ステップS101において、解析部12は、先頭のK枚の容量マップの容量マップ内最大信号値の中の最大値を、閾値Thに設定する。この処理について、図9を用いて説明する。 In step S101, the analysis unit 12 sets the maximum value among the maximum signal values in the capacity map of the first K capacity maps to the threshold Th. This process will be described with reference to FIG.
 図9は、図5に、先頭のK枚の容量マップの容量マップ内最大信号値の中の最大値をとる点を明示した図である。 FIG. 9 is a diagram clearly showing the point of taking the maximum value among the maximum signal values in the capacity map of the first K capacity maps in FIG.
 図9に示すように、時刻t0~t11の期間は、1.5秒であるので、時刻t0~t11の期間において、15枚の容量マップが取得される。解析部12は、K=15に設定し、先頭の15枚の容量マップの容量マップ内最大信号値の中の最大値を取得する。図9の場合、先頭の15枚の容量マップの容量マップ内最大信号値の中の最大値は、点Po1の値であるので、解析部12は、打点ポイントH(1,1)の処理について、点Po1の値Th11を、閾値Thに設定する。 As shown in FIG. 9, since the period from time t0 to t11 is 1.5 seconds, 15 capacity maps are acquired during the period from time t0 to t11. The analysis unit 12 sets K = 15, and acquires the maximum value among the maximum signal values in the capacity map of the first 15 capacity maps. In the case of FIG. 9, since the maximum value among the maximum signal values in the capacity map of the first 15 capacity maps is the value of the point Po1, the analysis unit 12 performs processing of the hit point H (1, 1). The value Th11 of the point Po1 is set to the threshold value Th.
 また、図9に示すように、時刻t20~t21の期間は、1.5秒であるので、時刻t20~t21の期間において、15枚の容量マップが取得される。解析部12は、K=15に設定し、先頭の15枚の容量マップの容量マップ内最大信号値の中の最大値を取得する。図9の場合、先頭の15枚の容量マップの容量マップ内最大信号値の中の最大値は、点Po2の値であるので、解析部12は、打点ポイントH(1,2)の処理について、点Po2の値Th12を、閾値Thに設定する。 Further, as shown in FIG. 9, since the period from time t20 to t21 is 1.5 seconds, 15 capacity maps are acquired in the period from time t20 to t21. The analysis unit 12 sets K = 15, and acquires the maximum value among the maximum signal values in the capacity map of the first 15 capacity maps. In the case of FIG. 9, since the maximum value among the maximum signal values in the capacity map of the first 15 capacity maps is the value of the point Po2, the analysis unit 12 performs the process of the hit point H (1, 2). The value Th12 of the point Po2 is set to the threshold value Th.
 図9から分かるように、上記処理により、解析部12は、良好な閾値Thを設定することができる。 As can be seen from FIG. 9, the analysis unit 12 can set a good threshold Th by the above processing.
 以上のように、本変形例のタッチパネル評価データ取得システムでは、タッチ用物体21がタッチパネルTPに接触するまでの時間に相当する分の容量マップの容量マップ内最大信号値の中の最大値を閾値Thに設定するので、閾値Thを設定する手間が省ける。 As described above, in the touch panel evaluation data acquisition system of this modification, the maximum value among the maximum signal values in the capacity map corresponding to the time until the touch object 21 contacts the touch panel TP is set as the threshold value. Since it is set to Th, it is possible to save the trouble of setting the threshold Th.
 ≪第3変形例≫
 次に、第3変形例について説明する。
<< Third Modification >>
Next, a third modification will be described.
 なお、上記実施形態、上記変形例と同様の部分については、詳細な説明を省略する。 It should be noted that detailed description of the same parts as those of the above-described embodiment and the above-described modified examples is omitted.
 第3変形例のタッチパネル評価データ取得システムは、タッチパネル評価データ取得システム1000と同様の構成を有している。 The touch panel evaluation data acquisition system of the third modification has the same configuration as the touch panel evaluation data acquisition system 1000.
 第3変形例のタッチパネル評価データ取得システムでは、解析部12が、タッチ状態に移行したか否かの判定を行うための閾値と、非タッチ状態に移行したか否かの判定を行うための閾値と、を自動設定する。これについて、図10を用いて説明する。 In the touch panel evaluation data acquisition system of the third modified example, the analysis unit 12 uses a threshold value for determining whether or not the touched state has been shifted, and a threshold value for determining whether or not the touched state has transitioned to the non-touched state. And are automatically set. This will be described with reference to FIG.
 図10は、図5と同様の図であり、打点処理装置2のタッチ用物体21の位置(タッチ用物体21の垂直方向(タッチパネルTPタッチパネル面の法線方向)の高さ)と時間との関係を示す図(上図)と、打点ポイントH(1,1)、H(1,2)を、打点処理装置2により、タッチ用物体21をタッチさせたときの容量マップ内最大信号値と時間との関係を示す図(下図)である。 FIG. 10 is a diagram similar to FIG. 5, and shows the position of the touch object 21 (the height in the vertical direction of the touch object 21 (the normal direction of the touch panel TP touch panel surface)) and time of the hit point processing apparatus 2. A diagram showing the relationship (upper diagram) and the hit point H (1,1), H (1,2) are the maximum signal value in the capacity map when the touch object 21 is touched by the hit point processing device 2. It is a figure (lower figure) which shows the relationship with time.
 図10の場合、図5の場合と異なり、打点ポイントH(1,1)のタッチ状態の容量マップ内最大信号値の平均レベルと、打点ポイントH(1,2)のタッチ状態の容量マップ内最大信号値の平均レベルが大きく異なる。また、図10の場合、図5の場合と異なり、打点ポイントH(1,1)の非タッチ状態の容量マップ内最大信号値の平均レベルと、打点ポイントH(1,2)の非タッチ状態の容量マップ内最大信号値の平均レベルが大きく異なる。 In the case of FIG. 10, unlike the case of FIG. 5, the average level of the maximum signal value in the touch state capacity map of the hit point H (1, 1) and the touch state capacity map of the touch point point H (1, 2). The average level of the maximum signal value varies greatly. In the case of FIG. 10, unlike the case of FIG. 5, the average level of the maximum signal value in the capacity map in the non-touch state of the hit point H (1,1) and the non-touch state of the hit point H (1,2). The average level of the maximum signal value in the capacity map differs greatly.
 このような場合、一定の閾値により、タッチ状態、非タッチ状態を判定すると、誤判定されることがある。 In such a case, when a touch state or a non-touch state is determined based on a certain threshold, an erroneous determination may be made.
 本変形例のタッチパネル評価データ取得システムでは、解析部12が、タッチ状態に移行したか否かの判定を行うための閾値と、非タッチ状態に移行したか否かの判定を行うための閾値と、を自動設定する。 In the touch panel evaluation data acquisition system of this modification, the analysis unit 12 has a threshold value for determining whether or not the touch state has been changed, and a threshold value for determining whether or not the touch state has been changed to the non-touch state. , Is set automatically.
 解析部12は、上記実施形態、あるいは、上記変形例と同様に、期間t11~t12において、打点ポイントH(1,1)の平均信号値Sig(1,1)を取得する。そして、解析部12は、取得した平均信号値Sig(1,1)の1/3の値を、非タッチ状態への移行を判定するための閾値Th_dとする。つまり、解析部12は、
  TH_d=Sig(1,1)/3
として、非タッチ状態への移行を判定するための閾値Th_dを設定する。
The analysis unit 12 acquires the average signal value Sig (1, 1) of the hit point H (1, 1) in the period t11 to t12, as in the above embodiment or the modification. Then, the analysis unit 12 sets a value 1/3 of the acquired average signal value Sig (1,1) as a threshold Th_d for determining the transition to the non-touch state. That is, the analysis unit 12
TH_d = Sig (1,1) / 3
As a threshold value Th_d for determining the transition to the non-touch state is set.
 図10に示すように、時刻t13において、容量マップ内最大信号値が、閾値Th_d(=Sig(1,1)/3)よりも小さくなるので、解析部12は、時刻t13において、非タッチ状態に移行したと判定する。 As shown in FIG. 10, since the maximum signal value in the capacity map becomes smaller than the threshold Th_d (= Sig (1,1) / 3) at time t13, the analysis unit 12 is in the non-touch state at time t13. It is determined that it has moved to.
 また、解析部12は、閾値Th_dを、次に、非タッチ状態からタッチ状態に移行したことを判定するための閾値Th_u(=Sig(1,1)/3)にも設定する。 Further, the analysis unit 12 also sets the threshold value Th_d as a threshold value Th_u (= Sig (1, 1) / 3) for determining that the non-touch state has shifted to the touch state.
 図10に示すように、時刻t21において、容量マップ内最大信号値が、閾値Th_u(=Sig(1,1)/3)を超えるので、解析部12は、時刻t21において、タッチ状態に移行したと判定する。 As shown in FIG. 10, since the maximum signal value in the capacity map exceeds the threshold value Th_u (= Sig (1,1) / 3) at time t21, the analysis unit 12 shifts to the touch state at time t21. Is determined.
 解析部12は、時刻t21~時刻22の期間において、上記実施形態(変形例を含む。)と同様にして、打点ポイントH(1,2)の平均信号値Sig(1,2)を取得する。そして、解析部12は、取得した平均信号値Sig(1,2)の1/3の値を、非タッチ状態への移行を判定するための閾値Th_dとする。つまり、解析部12は、
  TH_d=Sig(1,2)/3
として、非タッチ状態への移行を判定するための閾値Th_dを設定する。
The analysis unit 12 acquires the average signal value Sig (1,2) of the hit point H (1,2) in the period from time t21 to time 22 in the same manner as in the above embodiment (including the modification). . Then, the analysis unit 12 sets a value of 1/3 of the acquired average signal value Sig (1,2) as a threshold Th_d for determining the transition to the non-touch state. That is, the analysis unit 12
TH_d = Sig (1,2) / 3
As a threshold value Th_d for determining the transition to the non-touch state is set.
 図10に示すように、時刻t23において、容量マップ内最大信号値が、閾値Th_d(=Sig(1,2)/3)よりも小さくなるので、解析部12は、時刻t23において、非タッチ状態に移行したと判定する。 As shown in FIG. 10, since the maximum signal value in the capacity map becomes smaller than the threshold Th_d (= Sig (1,2) / 3) at time t23, the analysis unit 12 does not touch at time t23. It is determined that it has moved to.
 以上のように、本変形例のタッチパネル評価データ取得システムでは、打点ポイントH(m,n)ごとに、平均信号値Sig(m,n)に基づいて、タッチ状態、非タッチ状態を判定するための閾値TH_d、Th_uを設定する。したがって、例えば、図10に示すように、容量マップ内最大信号値のタッチ状態の信号レベル、あるいは、容量マップ内最大信号値の非タッチ状態の信号レベルが大きく変動する場合であっても、適切に、タッチ状態、非タッチ状態を判定することができる。つまり、本変形例のタッチパネル評価データ取得システムでは、タッチ状態、非タッチ状態を適切に把握した状態で、タッチパネル評価データを取得するので、より高精度なタッチパネル評価データを取得することができる。 As described above, in the touch panel evaluation data acquisition system of this modification, for each hit point H (m, n), the touch state and the non-touch state are determined based on the average signal value Sig (m, n). Thresholds TH_d and Th_u are set. Therefore, for example, as shown in FIG. 10, even when the signal level in the touch state of the maximum signal value in the capacity map or the signal level in the non-touch state of the maximum signal value in the capacity map varies greatly, In addition, a touch state and a non-touch state can be determined. That is, in the touch panel evaluation data acquisition system of the present modification, the touch panel evaluation data is acquired in a state where the touch state and the non-touch state are properly grasped, so that touch panel evaluation data with higher accuracy can be acquired.
 [他の実施形態]
 上記実施形態(変形例を含む。)において、ドライブ電極、センス電極、ドライブ線、センス線の配置、パターン(例えば、図3に示したパターン)の一例を示したが、これに限定されることはなく、ドライブ電極、センス電極、ドライブ線、センス線の配置、パターンは、他の配置、パターンであってもよい。
[Other Embodiments]
In the above-described embodiment (including modifications), an example of the drive electrode, the sense electrode, the drive line, the arrangement of the sense line, and the pattern (for example, the pattern shown in FIG. 3) is shown, but the present invention is limited to this. The arrangement and pattern of the drive electrode, the sense electrode, the drive line, and the sense line may be other arrangements and patterns.
 また、打点ポイントの配置、数等は、上記実施形態(変形例を含む。)に限定されない。また、タッチパネルTPのドライブ電極数、センス電極数、形状、配置等も、上記実施形態(変形例を含む。)に限定されない。 Also, the arrangement and number of hit points are not limited to the above embodiment (including modifications). Further, the number of drive electrodes, the number of sense electrodes, the shape, the arrangement, and the like of the touch panel TP are not limited to the above-described embodiment (including modifications).
 また、上記実施形態のタッチパネル評価データ取得システムの一部または全部、タッチパネル評価データ取得装置1の一部または全部は、集積回路(例えば、LSI、システムLSI等)として実現されるものであってもよい。 Further, part or all of the touch panel evaluation data acquisition system and part or all of the touch panel evaluation data acquisition apparatus 1 of the above embodiment may be realized as an integrated circuit (for example, LSI, system LSI, etc.). Good.
 上記実施形態の各機能ブロックの処理の一部または全部は、プログラムにより実現されるものであってもよい。そして、上記実施形態の各機能ブロックの処理の一部または全部は、コンピュータにおいて、中央演算装置(CPU)により実行されるものであってもよい。また、それぞれの処理を行うためのプログラムは、ハードディスク、ROMなどの記憶装置に格納されており、中央演算装置(CPU)が、ROM、あるいはRAMから当該プログラムを読み出し、実行されるものであってもよい。 Part or all of the processing of each functional block in the above embodiment may be realized by a program. And a part or all of the processing of each functional block of the above embodiment may be executed by a central processing unit (CPU) in the computer. A program for performing each processing is stored in a storage device such as a hard disk or ROM, and a central processing unit (CPU) reads the program from the ROM or RAM and executes it. Also good.
 また、上記実施形態の各処理をハードウェアにより実現してもよいし、ソフトウェア(OS(オペレーティングシステム)、ミドルウェア、あるいは、所定のライブラリとともに実現される場合を含む。)により実現してもよい。さらに、ソフトウェアおよびハードウェアの混在処理により実現しても良い。さらに、ソフトウェアおよびハードウェアの混在処理により実現しても良い。 Further, each process of the above embodiment may be realized by hardware, or may be realized by software (including a case where it is realized together with an OS (operating system), middleware, or a predetermined library). Further, it may be realized by mixed processing of software and hardware. Further, it may be realized by mixed processing of software and hardware.
 また、上記実施形態における処理方法の実行順序は、必ずしも、上記実施形態の記載に制限されるものではなく、発明の要旨を逸脱しない範囲で、実行順序を入れ替えることができるものである。 Further, the execution order of the processing methods in the above embodiment is not necessarily limited to the description of the above embodiment, and the execution order can be changed without departing from the gist of the invention.
 前述した方法をコンピュータに実行させるコンピュータプログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体は、本発明の範囲に含まれる。ここで、コンピュータ読み取り可能な記録媒体としては、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、大容量DVD、次世代DVD、半導体メモリを挙げることができる。 A computer program that causes a computer to execute the above-described method and a computer-readable recording medium that records the program are included in the scope of the present invention. Here, examples of the computer-readable recording medium include a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a large-capacity DVD, a next-generation DVD, and a semiconductor memory.
 上記コンピュータプログラムは、上記記録媒体に記録されたものに限られず、電気通信回線、無線又は有線通信回線、インターネットを代表とするネットワーク等を経由して伝送されるものであってもよい。 The computer program is not limited to the one recorded on the recording medium, but may be transmitted via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, or the like.
 また、上記実施形態において、構成部材のうち、上記実施形態に必要な主要部材のみを簡略化して示している部分がある。したがって、上記実施形態において明示されなかった任意の構成部材を備えうる。また、上記実施形態および図面において、各部材の寸法は、実際の寸法および寸法比率等を忠実に表したものではない部分がある。 Further, in the above embodiment, there is a part in which only the main members necessary for the above embodiment are simplified among the constituent members. Therefore, it is possible to provide any constituent member that is not explicitly described in the above embodiment. Moreover, in the said embodiment and drawing, the dimension of each member has a part which does not represent an actual dimension, a dimension ratio, etc. faithfully.
 なお、本発明の具体的な構成は、前述の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更および修正が可能である。 The specific configuration of the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the invention.
 [付記]
 なお、本発明は、以下のようにも表現することができる。
[Appendix]
The present invention can also be expressed as follows.
 第1の発明は、ドライブ電極とセンス電極とを備えるタッチパネルと、タッチパネルのドライブ電極を駆動するための駆動信号を送信し、センス電極から静電容量の変化に応じたセンス信号を受信するタッチパネル駆動装置と、所定の静電容量を有するタッチ用物体を有し、当該タッチ用物体をタッチパネルのタッチパネル面上にN個(N:自然数)設けられた打点ポイントにタッチさせる打点処理装置と、ともに用いられ、タッチパネルのタッチパネル面内の静電容量の分布データを取得するためのタッチパネル評価データ取得装置である。 The first invention is a touch panel drive including a drive electrode and a sense electrode, and a touch panel drive that transmits a drive signal for driving the drive electrode of the touch panel and receives a sense signal corresponding to a change in capacitance from the sense electrode. Used together with an apparatus and a dot processing apparatus that has a touch object having a predetermined capacitance and touches the touch object on N (N: natural number) dot points provided on the touch panel surface of the touch panel. And a touch panel evaluation data acquisition device for acquiring capacitance distribution data in the touch panel surface of the touch panel.
 タッチパネル評価データ取得装置は、全体制御部と、解析部と、を備える。 The touch panel evaluation data acquisition device includes an overall control unit and an analysis unit.
 全体制御部は、打点処理装置と、タッチパネル駆動装置とを制御する。 The overall control unit controls the dot processing device and the touch panel drive device.
 解析部は、タッチパネル駆動装置が受信したセンス信号に基づくデータである容量データを複数取得し、取得した複数の容量データの最大値を容量マップ内最大信号値として取得し、タッチ用物体が、第k番目(k:自然数、k≦N)の打点ポイントをタッチしている間において、取得された容量マップ内最大信号値を複数取得し、取得した複数の容量マップ内最大信号値の平均値を、第k番目の打点ポイントに対応する平均信号値として取得することで、タッチパネルのタッチパネル面内の静電容量の分布データであるタッチパネル評価データを取得する。 The analysis unit acquires a plurality of capacity data that is data based on the sense signal received by the touch panel drive device, acquires the maximum value of the acquired plurality of capacity data as a maximum signal value in the capacity map, and the touch object is While the k-th (k: natural number, k ≦ N) tapping point is being touched, a plurality of acquired maximum signal values in the capacity map are acquired, and an average value of the acquired maximum signal values in the plurality of capacity maps is obtained. By acquiring the average signal value corresponding to the k-th dot point, touch panel evaluation data, which is electrostatic capacity distribution data in the touch panel surface of the touch panel, is acquired.
 このタッチパネル評価データ取得装置では、解析部により、上記処理が実行されることで、第k番目の打点ポイントに対応する平均信号値を取得することができる。これにより、このタッチパネル評価データ取得装置では、タッチパネルのタッチパネル面内のばらつきのデータ(タッチパネル面における静電容量データの分布)であるタッチパネル評価データを煩雑な作業を必要とせず、適切に取得することができる。 In this touch panel evaluation data acquisition device, the analysis unit can acquire the average signal value corresponding to the kth dot point by executing the above process. Thereby, in this touch panel evaluation data acquisition device, touch panel evaluation data which is variation data within the touch panel surface of the touch panel (capacitance data distribution on the touch panel surface) is appropriately acquired without requiring complicated work. Can do.
 そして、このタッチパネル評価データ取得装置により取得されるタッチパネル評価データに基づいて、例えば、1レイヤーのタッチパネル(多レイヤーのタッチパネルであってもよい。)のパターン設計を効率良く行うことができる。 Then, based on the touch panel evaluation data acquired by the touch panel evaluation data acquisition device, for example, a pattern design of a single-layer touch panel (may be a multi-layer touch panel) can be efficiently performed.
 第2の発明は、第1の発明であって、解析部は、容量マップ内最大信号値が所定の閾値よりも大きい場合、タッチ用物体が、第k番目(k:自然数、k≦N)の打点ポイントをタッチしていると判定し、容量マップ内最大信号値が所定の閾値よりも大きい場合に取得した複数の容量マップ内最大信号値の平均値を、第k番目の打点ポイントに対応する平均信号値として取得することで、タッチパネル評価データを取得する。 2nd invention is 1st invention, Comprising: When the maximum signal value in a capacity | capacitance map is larger than a predetermined threshold value, an analysis part is the kth object (k: natural number, k <= N). It is determined that the hit point is touched, and the average value of the plurality of maximum signal values in the capacity map acquired when the maximum signal value in the capacity map is larger than the predetermined threshold corresponds to the kth hit point. The touch panel evaluation data is acquired by acquiring the average signal value.
 第3の発明は、第1または第2の発明であって、解析部は、内部状態として、非タッチ状態、プレタッチ状態、タッチ状態、ポストタッチ状態の4つの状態を有しており、容量マップ内最大信号値が所定の閾値以上である大きい場合、内部状態をプレタッチ状態に設定する。また、解析部は、内部状態がプレタッチ状態であり、かつ、容量マップ内最大信号値が所定の閾値よりも大きい場合が所定回数以上発生した場合に、内部状態をタッチ状態に設定し、1つの打点ポイントにおいて、平均信号値を取得した後、内部状態をポストタッチパネル状態に設定し、容量マップ内最大信号値が所定の閾値よりも小さい場合、内部状態を非タッチ状態に設定する。 3rd invention is 1st or 2nd invention, Comprising: An analysis part has four states, a non-touch state, a pre-touch state, a touch state, and a post-touch state, as an internal state, and a capacity | capacitance map If the inner maximum signal value is greater than a predetermined threshold, the internal state is set to the pre-touch state. The analysis unit sets the internal state to the touch state when the internal state is the pre-touch state and the maximum signal value in the capacity map is greater than a predetermined threshold value a predetermined number of times or more. After obtaining the average signal value at the hit point, the internal state is set to the post-touch panel state, and if the maximum signal value in the capacity map is smaller than a predetermined threshold, the internal state is set to the non-touch state.
 このタッチパネル評価データ取得装置では、内部状態として、非タッチ状態、プレタッチ状態、タッチ状態、ポストタッチ状態の4つの状態を有しており、「非タッチ状態」からいきなり「タッチ状態」になるのではなく、「プレタッチ状態」が一定期間継続した場合に「タッチ状態」に遷移するため、ノイズ等により、「タッチ状態」であると誤認識され、誤ったデータが取得されることを適切に防止することができる。 This touch panel evaluation data acquisition apparatus has four internal states: a non-touch state, a pre-touch state, a touch state, and a post-touch state. In addition, when the “pre-touch state” continues for a certain period, the state changes to the “touch state”, so that it is appropriately prevented from being erroneously recognized as being in the “touch state” and acquiring wrong data due to noise or the like. be able to.
 第4の発明は、第1から第3のいずれかの発明であって、解析部は、第k番目の打点ポイントに対応する平均信号値に基づいて、(1)タッチ用物体が、タッチパネル面をタッチしている状態から、タッチパネル面をタッチしていない状態に遷移したこと、または、(2)タッチ用物体が、タッチパネル面をタッチしていない状態から、タッチパネル面をタッチしている状態に遷移したことを判定するための閾値を決定する。 A fourth invention is any one of the first to third inventions, wherein the analysis unit is configured to: (1) the touch object is a touch panel surface based on the average signal value corresponding to the k-th hit point. The state where the touch panel is touched is changed to the state where the touch panel surface is not touched, or (2) the touch object is not touching the touch panel surface and the touch panel surface is touched. A threshold value for determining the transition is determined.
 このタッチパネル評価データ取得装置では、打点ポイントごとに、平均信号値に基づいて、タッチ状態、非タッチ状態を判定するための閾値を設定する。したがって、このタッチパネル評価データ取得装置では、容量マップ内最大信号値のタッチ状態の信号レベル、あるいは、容量マップ内最大信号値の非タッチ状態の信号レベルが大きく変動する場合であっても、適切に、タッチ状態、非タッチ状態を判定することができる。つまり、このタッチパネル評価データ取得装置では、タッチ状態、非タッチ状態を適切に把握した状態で、タッチパネル評価データを取得するので、より高精度なタッチパネル評価データを取得することができる。 In this touch panel evaluation data acquisition device, a threshold for determining a touch state and a non-touch state is set for each hit point based on the average signal value. Therefore, in this touch panel evaluation data acquisition device, even if the signal level in the touch state of the maximum signal value in the capacitance map or the signal level in the non-touch state of the maximum signal value in the capacitance map varies greatly, The touch state and the non-touch state can be determined. That is, in this touch panel evaluation data acquisition device, the touch panel evaluation data is acquired in a state where the touch state and the non-touch state are properly grasped, so that touch panel evaluation data with higher accuracy can be acquired.
 本発明によれば、タッチパネルを必要とせず、離れた位置からでも、3次元空間内のユーザーの手の位置等に基づいて、表示装置の表示画面上の座標等を適切に特定することができる座標取得装置および表示装置を実現することができるので、表示装置関連産業分野において、有用であり、当該分野において実施することができる。 According to the present invention, the coordinates on the display screen of the display device can be appropriately specified based on the position of the user's hand in the three-dimensional space even from a remote position without the need for a touch panel. Since the coordinate acquisition device and the display device can be realized, it is useful in the display device related industrial field and can be implemented in this field.
1000 タッチパネル評価データ取得システム
1 タッチパネル評価データ取得装置
11 全体制御部
12 解析部
2 打点処理装置
3 タッチパネル駆動装置
TP タッチパネル
1000 Touch Panel Evaluation Data Acquisition System 1 Touch Panel Evaluation Data Acquisition Device 11 Overall Control Unit 12 Analysis Unit 2 Dot Processing Device 3 Touch Panel Drive Device TP Touch Panel

Claims (4)

  1.  ドライブ電極とセンス電極とを備えるタッチパネルと、
     前記タッチパネルの前記ドライブ電極を駆動するための駆動信号を送信し、前記センス電極から静電容量の変化に応じたセンス信号を受信するタッチパネル駆動装置と、
     所定の静電容量を有するタッチ用物体を有し、当該タッチ用物体を前記タッチパネルのタッチパネル面上にN個(N:自然数)設けられた打点ポイントにタッチさせる打点処理装置と、
    ともに用いられ、前記タッチパネルのタッチパネル面内の静電容量の分布データを取得するためのタッチパネル評価データ取得装置であって、
     前記打点処理装置と、前記タッチパネル駆動装置とを制御する全体制御部と、
     前記タッチパネル駆動装置が受信した前記センス信号に基づくデータである容量データを複数取得し、取得した複数の前記容量データの最大値を容量マップ内最大信号値として取得し、
     前記タッチ用物体が、第k番目(k:自然数、k≦N)の前記打点ポイントをタッチしている間において、取得された前記容量マップ内最大信号値を複数取得し、取得した複数の前記容量マップ内最大信号値の平均値を、第k番目の前記打点ポイントに対応する平均信号値として取得することで、前記タッチパネルのタッチパネル面内の静電容量の分布データであるタッチパネル評価データを取得する解析部と、
    を備えるタッチパネル評価データ取得装置。
    A touch panel comprising a drive electrode and a sense electrode;
    A touch panel drive device for transmitting a drive signal for driving the drive electrode of the touch panel and receiving a sense signal corresponding to a change in capacitance from the sense electrode;
    A hit point processing apparatus having a touch object having a predetermined capacitance, and touching the touch point with N (N: natural number) hit point points provided on the touch panel surface of the touch panel;
    A touch panel evaluation data acquisition device used together to acquire capacitance distribution data in the touch panel surface of the touch panel,
    An overall control unit for controlling the dot processing device and the touch panel drive device;
    Obtaining a plurality of capacity data that is data based on the sense signal received by the touch panel drive device, obtaining the maximum value of the obtained plurality of capacity data as a maximum signal value in a capacity map,
    While the touch object touches the k-th (k: natural number, k ≦ N) hit point, a plurality of acquired maximum signal values in the capacity map are acquired, and the plurality of acquired By acquiring the average value of the maximum signal values in the capacity map as the average signal value corresponding to the k-th hit point, touch panel evaluation data that is electrostatic capacity distribution data in the touch panel surface of the touch panel is acquired. An analysis unit to
    A touch panel evaluation data acquisition device comprising:
  2.  前記解析部は、
     前記容量マップ内最大信号値が所定の閾値よりも大きい場合、前記タッチ用物体が、第k番目(k:自然数、k≦N)の前記打点ポイントをタッチしていると判定し、
     前記容量マップ内最大信号値が所定の閾値よりも大きい場合に取得した複数の前記容量マップ内最大信号値の平均値を、第k番目の前記打点ポイントに対応する平均信号値として取得することで、前記タッチパネル評価データを取得する、
     請求項1に記載のタッチパネル評価データ取得装置。
    The analysis unit
    When the maximum signal value in the capacity map is greater than a predetermined threshold, it is determined that the touch object touches the k-th hit point (k: natural number, k ≦ N);
    By acquiring an average value of the plurality of maximum signal values in the capacity map acquired when the maximum signal value in the capacity map is larger than a predetermined threshold as an average signal value corresponding to the k-th dot point. , Obtaining the touch panel evaluation data,
    The touch panel evaluation data acquisition apparatus according to claim 1.
  3.  前記解析部は、
     内部状態として、非タッチ状態、プレタッチ状態、タッチ状態、ポストタッチ状態の4つの状態を有しており、
     前記容量マップ内最大信号値が所定の閾値以上である大きい場合、内部状態をプレタッチ状態に設定し、
     内部状態がプレタッチ状態であり、かつ、前記容量マップ内最大信号値が所定の閾値よりも大きい場合が所定回数以上発生した場合に、内部状態をタッチ状態に設定し、
     1つの前記打点ポイントにおいて、前記平均信号値を取得した後、内部状態をポストタッチパネル状態に設定し、
     前記容量マップ内最大信号値が所定の閾値よりも小さい場合、内部状態を非タッチ状態に設定する、
     請求項1又は2に記載のタッチパネル評価データ取得装置。
    The analysis unit
    The internal state has four states: non-touch state, pre-touch state, touch state, and post-touch state.
    When the maximum signal value in the capacity map is larger than a predetermined threshold, the internal state is set to a pre-touch state,
    When the internal state is a pre-touch state and the maximum signal value in the capacity map is greater than a predetermined threshold value occurs more than a predetermined number of times, the internal state is set to the touch state,
    After obtaining the average signal value at one dot point, the internal state is set to the post-touch panel state,
    When the maximum signal value in the capacity map is smaller than a predetermined threshold, the internal state is set to a non-touch state.
    The touch panel evaluation data acquisition device according to claim 1 or 2.
  4.  前記解析部は、
     第k番目の前記打点ポイントに対応する平均信号値に基づいて、(1)前記タッチ用物体が、前記タッチパネル面をタッチしている状態から、前記タッチパネル面をタッチしていない状態に遷移したこと、または、(2)前記タッチ用物体が、前記タッチパネル面をタッチしていない状態から、前記タッチパネル面をタッチしている状態に遷移したことを判定するための閾値を決定する、
     請求項1から3のいずれかに記載のタッチパネル評価データ取得装置。
    The analysis unit
    Based on the average signal value corresponding to the k-th hit point, (1) the touch object has transitioned from touching the touch panel surface to not touching the touch panel surface. Or (2) determining a threshold for determining that the touch object has transitioned from a state in which the touch panel surface is not touched to a state in which the touch panel surface is touched;
    The touch panel evaluation data acquisition apparatus according to claim 1.
PCT/JP2015/079842 2014-10-28 2015-10-22 Touch panel evaluation data acquisition device WO2016068016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-219181 2014-10-28
JP2014219181 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016068016A1 true WO2016068016A1 (en) 2016-05-06

Family

ID=55857355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079842 WO2016068016A1 (en) 2014-10-28 2015-10-22 Touch panel evaluation data acquisition device

Country Status (1)

Country Link
WO (1) WO2016068016A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310093A (en) * 2004-04-23 2005-11-04 Touch Panel Kenkyusho:Kk Evaluation device of resistive film type touch panel
JP2010044730A (en) * 2008-07-17 2010-02-25 Nec Corp Touch panel inspection device and touch panel inspection method
JP2010086026A (en) * 2008-09-29 2010-04-15 Nissha Printing Co Ltd Method and apparatus for inspecting capacitive sensor module
JP2012503774A (en) * 2008-09-24 2012-02-09 スリーエム イノベイティブ プロパティズ カンパニー Circuit and method for measuring mutual capacitance
US20120187956A1 (en) * 2011-01-24 2012-07-26 Microsoft Corporation Touchscreen Testing
JP2013025780A (en) * 2011-07-20 2013-02-04 Touch Panel Kenkyusho:Kk Inspection and evaluation device for capacitance-type touch panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310093A (en) * 2004-04-23 2005-11-04 Touch Panel Kenkyusho:Kk Evaluation device of resistive film type touch panel
JP2010044730A (en) * 2008-07-17 2010-02-25 Nec Corp Touch panel inspection device and touch panel inspection method
JP2012503774A (en) * 2008-09-24 2012-02-09 スリーエム イノベイティブ プロパティズ カンパニー Circuit and method for measuring mutual capacitance
JP2010086026A (en) * 2008-09-29 2010-04-15 Nissha Printing Co Ltd Method and apparatus for inspecting capacitive sensor module
US20120187956A1 (en) * 2011-01-24 2012-07-26 Microsoft Corporation Touchscreen Testing
JP2013025780A (en) * 2011-07-20 2013-02-04 Touch Panel Kenkyusho:Kk Inspection and evaluation device for capacitance-type touch panel

Similar Documents

Publication Publication Date Title
US10656750B2 (en) Touch-sensitive bezel techniques
JP6649947B2 (en) Classifying touch input as unintentional or intentional
CN103440089B (en) The interface method of adjustment and user equipment of a kind of user equipment
US8760435B2 (en) Touch panel
JP6418157B2 (en) Information processing apparatus, information processing method, and computer program
US9785264B2 (en) Touch filtering through virtual areas on a touch screen
CN104965655A (en) Touch screen game control method
US9514299B2 (en) Information processing device, method for controlling information processing device, program, and information storage medium
US20130321322A1 (en) Mobile terminal and method of controlling the same
CN111190509A (en) Touch detection method and device, wireless earphone and storage medium
CN110036362A (en) Touch detecting method and touch detecting apparatus
JP2015230693A (en) Information processing device, input method, computer program, and recording medium
US11353978B2 (en) Method and apparatus for determining a touch point
CN109582171A (en) Use identifying to the new finger for touching posture for capacitor hovering mode
US10564762B2 (en) Electronic apparatus and control method thereof
WO2016068016A1 (en) Touch panel evaluation data acquisition device
CN106126099A (en) Information processing method and electronic equipment
CN109669565B (en) Touch motion tracking and reporting techniques for slow touch movement
US20160026283A1 (en) Capacitive finger navigation device with hybrid mode and operating method thereof
WO2016111668A1 (en) Discrete cursor movement based on touch input region
US20130201159A1 (en) Information processing apparatus, information processing method, and program
US20130127746A1 (en) Method for controlling touch panel
US8860692B2 (en) Touch pad and method for detecting multi-touch using the same
KR101582749B1 (en) Touch screen detection method using fast search algorithm
US11126294B2 (en) Input apparatus that receives, after fixed period, position on screen of display device specified by touch operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15855488

Country of ref document: EP

Kind code of ref document: A1