WO2016067594A1 - Work capability control system - Google Patents

Work capability control system Download PDF

Info

Publication number
WO2016067594A1
WO2016067594A1 PCT/JP2015/005390 JP2015005390W WO2016067594A1 WO 2016067594 A1 WO2016067594 A1 WO 2016067594A1 JP 2015005390 W JP2015005390 W JP 2015005390W WO 2016067594 A1 WO2016067594 A1 WO 2016067594A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
unit
index
vehicle
worker
Prior art date
Application number
PCT/JP2015/005390
Other languages
French (fr)
Japanese (ja)
Inventor
雅志 渡邉
浩司 太田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015142168A external-priority patent/JP2016088497A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016067594A1 publication Critical patent/WO2016067594A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/037Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for occupant comfort, e.g. for automatic adjustment of appliances according to personal settings, e.g. seats, mirrors, steering wheel
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • This disclosure relates to a work capability control system that performs control for optimizing a worker's capability.
  • the present disclosure has been made in view of the above points, and provides a work capability control system that performs control for optimizing a worker's ability in consideration of the ability used by the worker. For the purpose.
  • a work capability control system includes a content acquisition unit that acquires information about a worker's current work content, an environment acquisition unit that acquires information about a work environment surrounding the worker, and the worker For the worker, a unique indicator part that indexes the ability used by the operator, a general indicator part that indexes the ability necessary for the worker to perform the work contents based on the work environment and work contents, and the worker
  • An output unit that outputs information related to the work content and a control unit that controls the output unit are included.
  • the control unit compares the unique index obtained by the unique indicator unit with the general indicator obtained by the general indicator unit, and if the unique indicator is excessive or insufficient with respect to the general indicator, the excess or deficiency is eliminated. Change the contents of the information output from the output unit.
  • the ability used by the worker is indexed by the specific index section, and the ability necessary for the worker to implement is indexed by the general index section.
  • the unique index and the general index can be compared.
  • the control unit changes the content of the information output from the output unit so as to eliminate the excess or deficiency.
  • the general index is higher than the specific index and the capability required for the work content is insufficient, it is possible to prompt the user to draw out the capability based on information from the output unit.
  • the ability can be urged to be suppressed by the information of the output unit.
  • the worker is urged to exhibit the necessary ability most efficiently according to the work content.
  • FIG. 1 is a simplified block diagram illustrating a work capability control system according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing the capability control process.
  • FIG. 3 is a diagram for explaining the capability control process.
  • FIG. 4 is a block diagram showing the driving support system.
  • FIG. 5 is a flowchart showing processing during automatic operation.
  • FIG. 6 is a flowchart showing processing when switching to manual operation.
  • FIG. 7 is a flowchart showing processing when switching to automatic operation.
  • the work ability control system 10 is a system that performs control for optimizing the ability of the subject in consideration of the ability used by the worker (also referred to as the subject).
  • the target person refers to all persons who perform work, such as a driver and a factory worker.
  • the work capability control system 10 is applied to an environment in which a target person must perform work while the environment changes from moment to moment. For example, driving a car and a predetermined work in a factory correspond to work performed in a changing environment.
  • the work capability control system 10 indexes the ability of a person who is difficult to control by himself / herself, determines whether the necessary ability is used under the current situation, and the necessary ability is excessive or insufficient. In this case, it is a system that controls each unit to compensate for excess or deficiency of capability. As shown in FIG. 1, the work capability control system 10 includes a sensing unit 11, a calculation unit 12, and an actuator unit 13.
  • the sensing unit 11 is a content acquisition unit and an environment acquisition unit for grasping the environmental situation, the attributes and characteristics of the target person, and the current state of the target person.
  • the environment and situation refers to a space that changes over time and is affected by changes in the environment and situation when performing work. For example, for the driver, it refers to the road conditions and the vehicle interior environment, and for the factory worker, it refers to changes in the work content to be performed and the field environment.
  • the sensing unit 11 gives the acquired information to the calculation unit 12.
  • the sensing unit 11 acquires information on the work environment surrounding the target person using an environmental sensing method such as a camera, an infrared camera, and a microphone. In addition, the sensing unit 11 acquires the attributes and characteristics of the target person by personal authentication, for example. Therefore, the sensing unit 11 also functions as a unique acquisition unit that acquires unique information of the target person. In addition, the sensing unit 11 acquires the current state of the subject based on, for example, biological sensing and the operation state of the device. Therefore, the sensing unit 11 also functions as a content acquisition unit that acquires information on the current work content of the target person.
  • the unique information includes personal information stored in the storage unit in advance such as the subject's sex, age, blood type, and history, and biological information acquired by the sensing unit 11.
  • the calculation unit 12 is a control unit that controls the actuator unit 13 based on information from the sensing unit 11.
  • the arithmetic unit 12 is realized by, for example, an electronic control unit (Electronic Control Unit: abbreviated ECU).
  • ECU Electronic Control Unit
  • the computing unit 12 determines the ability required to perform work in a certain environment from the respective states grasped by the sensing unit 11, the ability that can be used to perform the work that the target person originally has, and the current target person Calculate the ability used to accomplish the work.
  • the calculation unit 12 functions as a unique index unit that indexes the ability used by the target person according to the work content.
  • the computing unit 12 also functions as a general index unit that indexes the ability necessary for the target person to perform the work content based on the work environment and the work content.
  • the actuator unit 13 is a unit that performs various stimuli that can change the ability of the subject to perform work. Therefore, the actuator unit 13 has a function as an output unit that outputs information related to the work content to the target person.
  • the actuator unit 13 is realized by a device capable of changing the ability of the subject by a device capable of single or multiple senses. Therefore, the actuator unit 13 can perform not only the output of information depending on the type, but also an auxiliary operation for assisting the work content of the subject.
  • the actuator unit 13 is realized by, for example, a vehicle air conditioner and a navigation device.
  • the driving of the subject can be assisted by changing the in-vehicle environment by the vehicle air conditioner.
  • the subject can also be influenced by information displayed on the navigation device and sound output. Further, the ability to perform the work may be secured by reducing or reducing the output of the device that has already assigned the target person with the ability to perform the work, or by stopping the output.
  • the capability control process illustrated in FIG. 2 is a process that is repeatedly performed in a short time by the calculation unit 12.
  • step S1 various data are acquired from the sensing part 11, and it moves to step S2.
  • step S2 the target value Z is calculated by the sensing unit 11, and the process proceeds to step S2.
  • the target value Z is a necessary ability value necessary for the target person to perform work in a certain environment.
  • step S3 the target correction value ⁇ is calculated, and the process proceeds to step S4.
  • the correction value ⁇ is an ability value that can be used to perform the work that the subject originally has. Therefore, the correction value ⁇ differs depending on personal information, and is determined by, for example, blood type, exercise experience, age and sex.
  • step S4 the current value X is calculated, and the process proceeds to step S5.
  • the current value X is an ability value that the target person is currently using to perform work.
  • the current value X is calculated from the subject's biological information, for example.
  • step S5 the current value X is compared with the value obtained by multiplying the correction value ⁇ by the target value Z in order to determine the operation of the device of the actuator unit 13. As a result of the comparison, if the multiplied value is equal to or greater than the current value X, the process proceeds to step S6, and if it is less than the current value X, this flow ends.
  • step S6 the operation signal of the actuator unit 13 is calculated, and the process proceeds to step S7.
  • the operation signal since the multiplied value is equal to or greater than the current value X, it exceeds the required ability value of the subject, so that the necessary ability value is increased or the amount of work currently being performed is reduced. 13 actuation signals are calculated.
  • step S7 the calculated operation signal is output to the actuator unit 13, and this flow is finished.
  • the target value Z necessary for performing work that changes in accordance with the environment and the situation as described above is compared with the current value X currently used by the subject. If the current value X is lower than the target value Z, feedback is given to increase the ability value currently used by the subject, and it is urged to achieve the ability value necessary for performing the work. .
  • the calculation unit 12 compares the current value X, which is the unique index obtained by the unique index unit, with the corrected target value Z, which is the general index obtained by the general index unit.
  • the calculation unit 12 changes the content of the information output from the actuator unit 13 so as to eliminate the excess or deficiency.
  • the necessary ability value is a value obtained by indexing necessary ability for the target person to implement based on the work environment, the work content, and the specific information. For example, a case will be described in which the target person is a driver who drives a vehicle, the work content is driving the vehicle, and the work environment is environment information inside the vehicle, weather information outside the vehicle, and information on road conditions.
  • the items of ability necessary for the work performed by the target person are linked to the environment and situation, and are stored in advance in ROM (Read-Only Memory: abbreviated ROM). Yes.
  • the biological data biological information obtained when the target person is actually performing work can be used and digitized by, for example, machine learning.
  • biometric data related to the currently used capacity value include sleepiness, concentration and stress.
  • the correction values are ⁇ 1, ⁇ 2, ⁇ 1, ⁇ 2, ⁇ 1, ⁇ 1, and ⁇ 2 as reference values A, B, and C depending on the travel location with respect to the reference values. It is corrected using. The correction is performed by adding a correction coefficient at a travel location that requires a stricter determination than the reference value at the reference travel location, and subtracting the correction coefficient at a travel location that does not require a strict determination.
  • correction coefficients are ⁇ 3, ⁇ 4, ⁇ 3, ⁇ 4, ⁇ 3, and ⁇ 4 depending on the driving environment with respect to the reference values. It is corrected using. The correction is performed by adding a correction coefficient in a driving environment that requires a stricter determination than the reference value in the reference driving environment, and subtracting the correction coefficient in a driving environment that does not require a strict determination.
  • the correction values ⁇ 5, ⁇ 6, ⁇ 5, ⁇ 6, ⁇ 5, and ⁇ 6 are used as the reference values G, H, and I for the reference values depending on the weather. Have been corrected.
  • the correction is performed by adding a correction coefficient in the weather that requires a stricter determination than the reference value in the standard weather, and subtracting the correction coefficient in a weather that does not require a strict determination.
  • Tables 1 to 3 are acquired, and drowsiness, concentration and stress are quantified by the following equations (1) to (3).
  • a1, a2, and a3 are coefficients to be corrected at the travel location.
  • b1, b2, and b3 are coefficients to be corrected in the traveling environment.
  • c1, c2, and c3 are coefficients corrected in the weather.
  • d1 to d3 are coefficients for correcting the whole.
  • the coefficient to be corrected is a parameter that determines a capability value necessary for performing the work of the subject, for example, and takes into account the attributes and characteristics of the subject. Attributes and characteristics refer to, for example, proficiency level for work, physical ability, and health status.
  • the use ability value is a value obtained by indexing the ability used by the subject according to the work content based on the work content and the biological information.
  • the relationship between the biological data to be digitized and the ability value is the same as the calculation of the necessary ability value described above.
  • the concentration can be grasped using, for example, the content rate of the electroencephalogram ⁇ wave and the state of cerebral blood flow in the frontal lobe. Drowsiness can be grasped using, for example, the content rate of the electroencephalogram ⁇ wave, the eye movement, and the degree of relaxation of the facial expression muscle.
  • the stress can be grasped using, for example, the temperature distribution on the face surface and the degree of sweating due to tension.
  • the relationship between the biometric data and the ability value is an example, and is not limited to the above-described relationship between the biometric data and the ability.
  • the digitization of concentration, etc. is not limited to the above-described biometric data, and the concentration, etc. may be grasped and digitized using a plurality of other biometric data including the biometric data.
  • FIG. 3 as an example, (a) a skilled person is traveling at high speed, (b) a beginner is traveling at high speed, (c) a skilled person is traveling at high speed in rainy weather, (d) This shows a case where a beginner is traveling at high speed in rainy weather.
  • the necessary capacity values Z1, Z2, and Z3 are lower than the usable capacity value X1, so the current state is maintained.
  • the required ability value Z4 exceeds the use ability value X1. Therefore, the air-conditioning is controlled so as to reduce the speed from the high-speed traveling, output music for the driver to relax, or improve the vehicle interior environment. As a result, the required capacity value can be lowered or the usable capacity value can be increased.
  • the calculation unit 12 of the present embodiment digitizes the ability used by the subject, and the ability required for the subject to perform. This makes it possible to compare the required capacity value with the use capacity value. Then, as a result of the comparison, when the use capacity value is excessive or insufficient with respect to the required capacity value, the calculation section 12 changes the content of the information output from the actuator section 13 so that the excess or deficiency is eliminated. Thus, for example, when the required capability value is higher than the use capability value and the capability required for the work content is insufficient, it is possible to prompt the direction to draw out the capability by the information from the actuator unit 13.
  • the required capability value is lower than the use capability value and the capability is excessively used for the work content, it is urged to suppress the capability by the information of the actuator unit 13. As a result, the target person is encouraged to demonstrate the ability required for the work content.
  • the necessary ability value indexes the ability necessary for the target person to implement based on the work environment, the work content, and the specific information. Accordingly, since the necessary ability value is indexed using the specific information of the target person, the individual ability can be reflected in the necessary ability value. As a result, the calculation accuracy of the required capability value can be improved.
  • the use ability value indexes the ability used by the worker according to the work content based on the work content and the biological information. Therefore, since the use ability value is indexed using the biometric information of the subject, the current biometric information of the subject can be reflected in the use ability value. As a result, the calculation accuracy of the usage ability value can be improved.
  • the capability value necessary for performing the work that changes according to the environment and the situation is determined, and the capability value currently used by the target person is compared and required.
  • the target person can efficiently perform work, and the occurrence of human error can be suppressed.
  • the work capability control system 10 of the first embodiment is applied to a driving support system 20 that supports driving of a vehicle. Therefore, the driving support system 20 sets a worker in the work capability control system 10 as a driver, and performs control for optimizing the driver's capability in consideration of the capability used by the driver.
  • the driving support system 20 shown in FIG. 4 can switch the vehicle between an automatic driving state and a manual driving state.
  • the driving support system 20 is mounted on a vehicle.
  • the driving support system 20 includes a driving support device 21, a surrounding environment recognition device 22, a vehicle behavior related sensor 23, a brake switch 24, an accelerator switch 25, a steering torque sensor 26, a vehicle interior camera 27, a biosensor 28, a vehicle control ECU 29, a vehicle Air conditioner 30, acoustic device 31, odor generator 32, and operation changeover switch 33.
  • a vehicle equipped with the driving support system 20 is referred to as a host vehicle.
  • the surrounding environment recognition device 22 includes a camera such as a camera and a laser radar that captures a predetermined range around the host vehicle, and recognizes the surrounding environment of the host vehicle based on information detected by these sensors.
  • a camera such as a camera and a laser radar that captures a predetermined range around the host vehicle, and recognizes the surrounding environment of the host vehicle based on information detected by these sensors.
  • the surrounding environment to be recognized there are a road shape around the own vehicle, a preceding vehicle, an obstacle around the own vehicle, and the like.
  • the surrounding environment recognition device 22 recognizes a lane by performing a known image recognition process such as edge detection on a captured image of a camera, for example. Then, the surrounding environment recognition device 22 recognizes the road shape around the own vehicle by calculating the recognized lane width, the radius of curvature of the lane, the offset amount of the own vehicle from the lane center, and the like.
  • the surrounding environment recognition device 22 performs well-known image recognition processing such as edge detection and template matching on the captured image of the camera, so that the size of the preceding vehicle of the own vehicle, the obstacle around the own vehicle, Specify the relative position of. And the surrounding environment recognition apparatus 22 specifies the speed and moving direction of an obstacle by the time change of the specified obstacle. In addition, when using a laser radar, a millimeter wave radar, or sonar, the surrounding environment recognition device 22 detects an obstacle based on the received intensity of the reflected wave that is generated when the transmitted exploration wave is reflected on the object. .
  • the vehicle behavior related sensor 23 detects information related to the behavior of the host vehicle.
  • a vehicle speed sensor that detects the speed of the host vehicle
  • an acceleration sensor that detects the acceleration of the host vehicle
  • a gyro sensor that detects the angular velocity of the host vehicle
  • the position of the host vehicle are calculated from the positioning satellite of the positioning satellite system.
  • the brake switch 24 is a switch that is turned on when the brake pedal of the own vehicle is depressed, and turned off when the brake pedal of the own vehicle is not depressed.
  • the brake switch 24 outputs a signal corresponding to on / off.
  • the accelerator switch 25 is a switch that is turned on when the accelerator pedal of the host vehicle is depressed, and turned off when the accelerator pedal of the host vehicle is not depressed.
  • the accelerator switch 25 outputs a signal corresponding to on / off.
  • the steering torque sensor 26 detects the steering torque applied to the steering wheel of the vehicle by the driver.
  • the vehicle interior camera 27 is a unique information acquisition unit, and is a biological information sensor that senses the driver to determine whether the driver of the vehicle is in a state of lack of concentration.
  • a range including a person's face is imaged sequentially, for example, every 100 msec.
  • the vehicle interior camera 27 may be installed at a position where the range including the driver's face can be imaged, such as the upper surface of the steering column cover.
  • the vehicle interior camera 27 may be an optical camera or an infrared camera that can capture images even in an environment with little visible light.
  • the biosensor 28 is a unique information acquisition unit that detects a driver's biometric information.
  • the biological sensor 28 is realized by, for example, a heart rate sensor, a respiration sensor, an electroencephalogram sensor, a body temperature sensor, and a blood pressure sensor.
  • the heart rate sensor measures the heart rate of the driver of the own vehicle.
  • the respiration sensor measures the respiration rate of the driver.
  • the electroencephalogram sensor measures the amplitude and frequency of the driver's electroencephalogram.
  • the body temperature sensor measures the driver's body temperature.
  • the blood pressure sensor measures the blood pressure of the driver.
  • the vehicle control ECU 29 is an electronic control device that performs acceleration / deceleration control and steering control of the host vehicle.
  • the vehicle control ECU 29 includes a steering ECU that performs steering control, an engine ECU that performs acceleration / deceleration control, a brake ECU, and the like.
  • the vehicle control ECU 29 is a control unit, and also controls the vehicle air conditioner 30, the acoustic device 31, and the odor generating device 32.
  • the vehicle air conditioner 30 is an output unit and is an air conditioner that air-conditions the vehicle interior.
  • the vehicle air conditioner 30 controls the temperature of the conditioned air blown into the vehicle interior so as to be the set temperature set by the driver.
  • the vehicle air conditioner 30 is also controlled by the vehicle control ECU 29.
  • the acoustic device 31 is an output unit, which is also called a car audio, and outputs sound into the passenger compartment.
  • the acoustic device 31 reproduces music stored in advance in the storage unit or music stored in the storage medium.
  • the music stored in the storage unit includes a sound effective for relaxing the driver and a warning sound for awakening.
  • the driver can determine the selection of music, the volume, the reproduction order, and the like by operating the operation unit of the audio device 31.
  • the acoustic device 31 is also controlled by the vehicle control ECU 29.
  • the odor generating device 32 is an output unit, and outputs the odor to the passenger compartment.
  • the odor generating device 32 outputs a plurality of fragrances stored in advance.
  • the odor from the fragrance includes not only a relaxing odor but also a stimulating odor that promotes arousal.
  • the driver can determine the type and release amount of the fragrance by operating the operation unit of the odor generating device 32.
  • the odor generating device 32 is also controlled by the vehicle control ECU 29.
  • the operation switch 33 is connected to the driving support device 21.
  • the operation changeover switch 33 is operated by the driver. When operated, the operation changeover switch 33 switches between automatic operation and manual operation.
  • the operation switch 33 is provided, for example, in the steering of the own vehicle. For example, when an operation input indicating that automatic driving is to be performed is received, the driving switch 33 transmits a signal for switching from manual driving to automatic driving to the driving support device 21. Similarly, the operation changeover switch 33 transmits a signal for switching from automatic operation to manual operation to the driving support device 21 when an operation input for performing manual operation is received, for example.
  • the driving support device 21 includes a CPU, a memory such as a ROM and a RAM, an I / O, and a bus for connecting them, and executes various processes by executing a control program stored in the ROM.
  • the driving support device 21 can switch between automatic driving and manual driving, and when switching to automatic driving, instructs the vehicle control ECU 29 to perform automatic driving.
  • the driving support device 21 switches from the automatic driving to the manual driving based on the detection of the driving operation of the driver of the own vehicle during the automatic driving, that is, the override. Note that some or all of the functions executed by the driving support device 21 may be configured by hardware using one or a plurality of ICs.
  • the driving support device 21 includes an automatic driving control unit 41, an override detection unit 42, a driver indexing unit 43, and a driving switching unit 44 as shown in FIG.
  • the automatic driving control unit 41 is a control unit, and based on the surrounding environment of the own vehicle recognized by the surrounding environment recognition device 22 and information related to the behavior of the own vehicle detected by the vehicle behavior related sensor 23, Determine the course and speed. Then, the automatic operation control unit 41 transmits the determined information to the vehicle control ECU 29 as an instruction signal. Then, the vehicle control ECU 29 changes the steering angle, the brake pressure, the intake air amount, the gear ratio, etc. based on the instruction signal transmitted from the automatic operation control unit 41 so that the host vehicle travels at the target course and speed.
  • Automatic operation Examples of automatic driving include automatic driving that maintains the driving lane of the vehicle on an expressway, automatic driving that retreats to the shoulder when the vehicle is abnormal, and automatic driving that follows the preceding vehicle. There is.
  • the override detection unit 42 detects an override during automatic operation by the automatic operation control unit 41.
  • a brake operation by the driver is detected
  • the accelerator switch 25 is on
  • the accelerator operation by the driver is detected, and driving is performed from the steering torque detected by the steering torque sensor 26.
  • the steering operation by the person is detected.
  • the brake operation by the driver may be detected based on a signal from a brake stroke sensor that detects the depression amount of the brake pedal.
  • the accelerator operation by the driver may be detected based on an accelerator stroke sensor signal that detects the amount of depression of the accelerator pedal.
  • the driver indexing unit 43 is a unique indexing unit, and indexes the state of the driver of the own vehicle based on the image taken by the vehicle interior camera 27 and the biological information measured by the biological sensor 28.
  • the driver indexing unit 43 is based on the image including the face of the driver of the own vehicle captured by the in-vehicle camera 27 and the biological information measured by the biometric sensor 28, and the driver's drowsiness and concentration power. , Index stress sequentially.
  • drowsiness is indexed and used as the arousal level, for example, the content of the electroencephalogram ⁇ wave measured by the biosensor 28 using the degree of eye opening of the driver and the degree of eye movement and relaxation of facial expression muscles from the captured image. Is used.
  • the concentration is indexed to obtain the concentration level
  • the content rate of the electroencephalogram ⁇ wave measured by the biological sensor 28 and the state of cerebral blood flow in the frontal lobe are used.
  • the stress is indexed to be the comfort level, for example, the temperature distribution of the face surface measured by the biosensor 28 and the degree of sweating due to tension are used.
  • the operation switching unit 44 switches between automatic operation and manual operation.
  • the operation switching unit 44 switches from manual operation to automatic operation when a signal requesting execution of automatic operation is received from the operation switch 33, for example. Similarly, when a signal requesting execution of manual operation is received, the automatic operation is switched to the manual operation. Further, the operation switching unit 44 switches from manual operation to automatic operation when an area in which automatic operation can be performed is reached.
  • the operation switching unit 44 determines that the override is invalid. This is because the operation performed in a non-wake state by the driver is relatively likely to be incorrect.
  • the override detection unit 42 detects an override and the driver indexing unit 43 determines that the state is awake, the override is determined to be valid.
  • the operation switching unit 44 switches from automatic operation to manual operation when it is determined that the override is valid.
  • FIGS. 5 to 7 The processing shown in FIGS. 5 to 7 is repeatedly performed in a short time by the automatic driving control unit 41 when the driving support device 21 is in a power-on state, that is, when the ignition of the vehicle is on.
  • step S51 it is determined whether or not automatic operation is in progress. If automatic operation is in progress, the process proceeds to step S52. If automatic operation is not in progress, this flow ends. In step S52, since automatic driving is in progress, the driver's arousal level is acquired, and the process proceeds to step S53. The awakening level is acquired from the driver indexing unit 43 as described above.
  • step S53 the acquired arousal level is compared with a predetermined reference value to determine whether monitoring work is possible.
  • the reference value is a general index, and is a numerical value of the ability required to monitor automatic driving. As a result, when the monitoring work is possible, this flow is ended, and when the monitoring work is not possible, the process proceeds to step S54. Since the driver needs to monitor the automatic driving even during the automatic driving, when the arousal level is low, it is necessary to improve the arousal level.
  • step S54 each part is controlled so that the arousal level is improved, and this flow is finished.
  • control for improving the arousal level for example, control is performed so that cold air is blown out from the vehicle air conditioner 30 toward the face. Moreover, it controls so that a pungent odor is output from the odor generating device 32. Also, the sound device 31 is controlled to output a warning sound, uptempo music, or the like. The improvement of arousal level can be promoted by some, a combination, or all of these.
  • the driver does not have to perform the driving operation during the automatic driving, but has the sovereignty and needs to perform monitoring work.
  • the driver's arousal level is acquired based on the electroencephalogram and facial expression, and it is determined whether the driver's arousal level is necessary for the monitoring work.
  • the level of the awakening level is controlled by a warning sound, cold wind, stimulating odor, or the like.
  • the use ability value of the driver can be brought close to the necessary ability value necessary for monitoring the automatic driving. Therefore, it is possible to support the driving of the driver during the automatic driving of the driver sovereignty.
  • step S61 the operation switching unit 44 determines whether or not the automatic operation is switched to the manual operation. If the operation is switched to the manual operation, the process proceeds to step S62. finish.
  • step S62 since manual operation has been switched, the awakening level and the concentration level are acquired, and the process proceeds to step S63.
  • the awakening level and the concentration level are acquired from the driver indexing unit 43 as described above.
  • step S63 since automatic driving is changed to manual driving, each part is controlled so that the driver's arousal level and concentration level are appropriate for manual driving, and this flow is finished.
  • the appropriate value is a general index, which is a numerical value of the ability required to carry out manual operation.
  • the manual driving aptitude control performed in step S63 for example, when the arousal level is low, the above-described arousal level improvement control of FIG. 5 is performed so that the arousal level is improved.
  • control is performed so that music that enhances concentration is output from the audio device 31 so that the user can concentrate on manual operation.
  • the awakening level serving as a reference at this time is set to a higher value than the monitoring operation for automatic driving. This is because manual operation requires a higher capacity than monitoring work.
  • each unit is controlled so that the driver is in a state suitable for the manual operation.
  • the use ability value of the driver can be brought close to the necessary ability value necessary for manual driving.
  • the required capacity value is compared with the use capacity value as in FIG. 3 of the first embodiment described above, and the vehicle air conditioner 30, the acoustic device 31, the odor generating device 32, and the like are controlled. .
  • the comfort level is low due to a traffic jam or the like, a music with a gentle scent or rhythm is output and the comfort level is improved.
  • control is performed so that the wakefulness level becomes an appropriate value for manual driving.
  • step S71 it is determined whether or not the operation switching unit 44 has switched from manual operation to automatic operation. If the operation has been switched to automatic operation, the process proceeds to step S72. finish.
  • step S72 since it was switched to automatic driving, the arousal level and the comfort level are acquired, and the process proceeds to step S73.
  • the arousal level and the comfort level are acquired from the driver indexing unit 43 as described above.
  • step S73 since manual driving is changed to automatic driving, each part is controlled so that the driver's arousal level and comfort level are appropriate for automatic driving, and this flow is ended.
  • the appropriate value is a general index, which is a numerical value of the capability required when automatic driving is performed.
  • the automatic driving aptitude control executed in step S73 for example, if the comfort level is low and the arousal level is high, a music and a scent with a slow rhythm are output so that the comfort level is suitable for automatic driving.
  • the sound device 31 and the odor generating device 32 are controlled.
  • each unit when switching from manual operation to automatic operation, each unit is controlled so that the driver is in a state suitable for automatic operation. As a result, the use ability value of the driver can be brought close to the necessary ability value necessary for automatic driving.
  • the automatic operation control unit 41 compares the specific index with the general index when the automatic switching and the manual operation are switched by the operation switching unit 44, and the specific index is excessive or insufficient with respect to the general index.
  • the devices 30, 31, and 32 are controlled so that there is no excess or deficiency.
  • the vehicle air conditioner 30, the acoustic device 31, and the odor generating device 32 are output units, and perform an auxiliary operation that assists the driver in driving the vehicle.
  • the vehicle air conditioner 30 assists driving by making the vehicle interior comfortable by air-conditioning the vehicle interior.
  • the acoustic device 31 assists driving by relaxing the driver by outputting music in the passenger compartment.
  • the odor generating device 32 assists driving by awakening the driver by generating a stimulating odor. Therefore, even if the general index obtained by switching between automatic driving and manual driving changes, the inherent index can be made close to the general index so that the inherent index is not excessive or insufficient.
  • the automatic operation control unit 41 compares the specific index and the general index during the automatic operation, and if the specific index is excessive or insufficient with respect to the general index, the excessive or insufficient is eliminated.
  • the vehicle air conditioner 30, the acoustic device 31, and the odor generating device 32 are controlled. Therefore, when the driver monitors the automatic driving during the automatic driving, the unique index can be controlled so as not to be excessive or deficient with respect to the general index corresponding to the monitoring. Therefore, it is possible to assist the driver's monitoring and to suppress the monitoring failure.
  • the present invention is not limited to automatic driving in which the driver has sovereignty.
  • the vehicle may have sovereignty and may be fully automatic driving that does not accept driver's operation for automatic driving.
  • the driver does not need to monitor, so if you want to take a nap, for example, if you want to take a nap, a song with a slightly lower heart rate than the heart rate and a scent suitable for a nap Is controlled so that the sound device 31 and the odor generating device 32 are output.
  • the lighting or the like may be controlled so that the indoor environment is suitable for nap.
  • the operation switching unit 44 may switch from manual operation to automatic operation even when the driver is in poor physical condition.
  • the driving switching unit 44 shifts to automatic driving when the driver's arousal level is low due to illness or the like and the low state is not improved by the devices 30, 31, and 32 due to the situation of the biosensor 28 and the vehicle interior camera 27. And you may stop at a safe place. If the biosensor 28 detects that the driver is in a drunk state, the vehicle is prohibited if the vehicle is stopped, and if the vehicle is traveling, the vehicle is shifted to automatic driving, and in a safe place. It may be stopped.
  • each part is expressed as, for example, S1. Furthermore, each part can be divided into a plurality of sub-parts, while the plurality of parts can be combined into one part. Furthermore, each part configured in this manner can be referred to as a circuit, a device, a module, and a means.
  • each of the above-mentioned plurality of parts or a combination thereof includes (i) not only a software part combined with a hardware unit (for example, a computer) but also (ii) hardware (for example, an integrated circuit, wiring) As a part of the logic circuit), it can be realized with or without including the functions of related devices.
  • the hardware unit can be configured inside the microcomputer.
  • the sensing unit 11 directly detects various types of information, but is not limited to such a configuration.
  • the sensing unit 11 may acquire information from a server or the like.
  • the required ability value and the general ability value are digitized and compared, but are not limited to the digitized control.
  • the comparison may be made not by quantification but by dividing the level according to a predetermined stage and comparing the levels. Therefore, it is not limited to a numerical value as long as it is not a numerical value but an index with superiority or inferiority in advance.
  • the unique information acquisition unit is realized by the vehicle interior camera 27 and the biological sensor 28 mounted on the vehicle, but it is not necessary to be mounted on the vehicle.
  • various information of the driver may be acquired by communicating with a wearable terminal worn by the driver and a sensor attached to the driver.
  • one of the work contents of the driver is the monitoring of the automatic driving, but is not limited to the monitoring of the automatic driving of the vehicle.
  • the present system may be applied to a supervisor who monitors moving means such as airplanes, spacecrafts, artificial satellites, trains, buses, and transportation means. Further, the present system may be applied to a monitor stationed in a monitoring room that monitors facilities and buildings.
  • the present invention is not limited to such a case.
  • it may be used when switching between work and break in the office, and may be used when, for example, an airplane pilot switches between automatic driving and manual driving.
  • it may be applied when a long-distance bus driver and a taxi driver are switched between a case where the passenger is on board and a case where the passenger is not on the passenger.
  • the present system may be mounted on a study desk and used in a scene where studying or switching between work and rest is performed.
  • it may be used in a space used by switching between task and rest, such as a rear seat of a vehicle or a business class seat of an airplane.
  • the factory line may be used on the factory line. Use in an environment where it is difficult for people to maintain the awakening level, such as line work that repeats simple work at a fixed position or night shift work, to maintain the arousal level and concentration required for the work content in an appropriate state Is possible. Further, by outputting the worker's state as information to the manager, it is possible to detect a worker with poor physical condition, consider safety, and prompt the worker to rest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

A work capability control system comprises: a content acquisition unit (11) that acquires information about current work content of a worker; an environment acquisition unit (11) that acquires information about a work environment surrounding the worker; an intrinsic index unit (12, 43) that creates an index of the capability being used by the worker depending on the work content; a general index unit (12, 41) that creates an index of the capability required by the worker to carry out the work content on the basis of the work environment and the work content; an output unit (13, 30, 31, 32) that outputs the information about the work content to the worker; and a control unit (12, 29, 41) that controls the output unit. The control unit compares an intrinsic index obtained by the intrinsic index unit with a general index obtained by the general index unit, and, if the intrinsic index has a lack or excess relative to the general index, modifies the content of the information output from the output unit so as to eliminate the lack or excess.

Description

作業能力制御システムWork capacity control system 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年10月30日に出願された日本特許出願番号2014-221636号と2015年7月16日に出願された日本特許出願番号2015-142168号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2014-221636 filed on October 30, 2014 and Japanese Patent Application No. 2015-142168 filed on July 16, 2015, which is described herein. Incorporate content.
 本開示は、作業者の能力を適正化するための制御を実施する作業能力制御システムに関する。 This disclosure relates to a work capability control system that performs control for optimizing a worker's capability.
 従来技術では、車両に乗車しているユーザの状態を検出し、その検出結果から、ユーザが望む形態となるように車載装置の動作を自律的に制御している。これによって車両に乗車しているユーザの満足度を常に高レベルに維持するようにしている(たとえば特許文献1参照)。 In the prior art, the state of the user who is in the vehicle is detected, and the operation of the in-vehicle device is autonomously controlled so as to be in the form desired by the user from the detection result. As a result, the satisfaction level of the user riding in the vehicle is always maintained at a high level (see, for example, Patent Document 1).
特開2007-145225号公報JP 2007-145225 A
 前述の特許文献1に記載の従来技術では、ユーザの満足度を高くするもてなし制御を実施しているが、ユーザの使用している能力を考慮せずに、もてなし制御を実施している。ユーザの使用している能力を考慮しないと、もてなし制御など自動的に実施される制御がユーザに煩わしく感じる場合がある。 In the prior art described in Patent Document 1 described above, hospitality control is performed to increase user satisfaction, but hospitality control is performed without considering the ability used by the user. If the ability used by the user is not taken into account, the control that is automatically performed such as hospitality control may be bothersome to the user.
 そこで、本開示は上記点を鑑みてなされたものであり、作業者が使用している能力を考慮して、作業者の能力を適正化するための制御を実施する作業能力制御システムを提供することを目的とする。 Therefore, the present disclosure has been made in view of the above points, and provides a work capability control system that performs control for optimizing a worker's ability in consideration of the ability used by the worker. For the purpose.
 本開示の一態様による作業能力制御システムは、作業者の現在の作業内容に関する情報を取得する内容取得部と、作業者を取り巻く作業環境に関する情報を取得する環境取得部と、作業者が作業内容によって使用している能力を指標化する固有指標部と、作業環境および作業内容に基づいて作業者が作業内容を実施するために必要な能力を指標化する一般指標部と、作業者に対して作業内容に関連する情報を出力する出力部と、出力部を制御する制御部と、を含む。制御部は、固有指標部によって得られた固有指標と一般指標部よって得られた一般指標とを比較し、固有指標が一般指標に対して過不足がある場合には、過不足がなくなるように出力部から出力される情報の内容を変更する。 A work capability control system according to an aspect of the present disclosure includes a content acquisition unit that acquires information about a worker's current work content, an environment acquisition unit that acquires information about a work environment surrounding the worker, and the worker For the worker, a unique indicator part that indexes the ability used by the operator, a general indicator part that indexes the ability necessary for the worker to perform the work contents based on the work environment and work contents, and the worker An output unit that outputs information related to the work content and a control unit that controls the output unit are included. The control unit compares the unique index obtained by the unique indicator unit with the general indicator obtained by the general indicator unit, and if the unique indicator is excessive or insufficient with respect to the general indicator, the excess or deficiency is eliminated. Change the contents of the information output from the output unit.
 このような本作業能力制御システムに従えば、固有指標部によって作業者が使用している能力を指標化し、一般指標部によって作業者が実施するために必要な能力を指標化している。これによって固有指標と一般指標とを比較することができる。そして制御部は、比較した結果、固有指標が一般指標に対して過不足がある場合には、過不足がなくなるように出力部から出力される情報の内容を変更する。これによって、たとえば一般指標が固有指標よりも高く、作業内容に必要な能力が不足している場合には、出力部からの情報によって能力を引き出す方向に促すことができる。また、たとえば一般指標が固有指標よりも低く、作業内容に対して過度に能力を使用している場合には、出力部の情報によって能力を抑制する方向に促すことができる。これによって作業者は作業内容に応じて最も効率良く必要な能力が発揮されるように促される。 According to this work capacity control system, the ability used by the worker is indexed by the specific index section, and the ability necessary for the worker to implement is indexed by the general index section. Thus, the unique index and the general index can be compared. Then, as a result of the comparison, if the specific index is excessive or deficient with respect to the general index, the control unit changes the content of the information output from the output unit so as to eliminate the excess or deficiency. Thus, for example, when the general index is higher than the specific index and the capability required for the work content is insufficient, it is possible to prompt the user to draw out the capability based on information from the output unit. Further, for example, when the general index is lower than the specific index and the ability is excessively used for the work content, the ability can be urged to be suppressed by the information of the output unit. As a result, the worker is urged to exhibit the necessary ability most efficiently according to the work content.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の一実施形態による作業能力制御システムを簡略化して示すブロック図であり、 図2は、能力制御処理を示すフローチャートであり、 図3は、能力制御処理を説明するための図であり、 図4は、運転支援システムを示すブロック図であり、 図5は、自動運転中の処理を示すフローチャートであり、 図6は、手動運転に切り替わるときの処理を示すフローチャートであり、 図7は、自動運転に切り替わるときの処理を示すフローチャートである。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a simplified block diagram illustrating a work capability control system according to an embodiment of the present disclosure. FIG. 2 is a flowchart showing the capability control process. FIG. 3 is a diagram for explaining the capability control process. FIG. 4 is a block diagram showing the driving support system. FIG. 5 is a flowchart showing processing during automatic operation. FIG. 6 is a flowchart showing processing when switching to manual operation. FIG. 7 is a flowchart showing processing when switching to automatic operation.
 以下、図面を参照しながら本開示を実施するための形態を、複数の形態について説明する。各実施形態で先行する実施形態で説明している事項に対応している部分には同一の参照符を付すか、または先行の参照符号に一文字追加し、重複する説明を略する場合がある。また各実施形態にて構成の一部を説明している場合、構成の他の部分は、先行して説明している実施形態と同様とする。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。 Hereinafter, a plurality of forms for carrying out the present disclosure will be described with reference to the drawings. In some embodiments, portions corresponding to the matters described in the preceding embodiments may be given the same reference numerals, or one letter may be added to the preceding reference numerals, and overlapping descriptions may be omitted. In addition, when a part of the configuration is described in each embodiment, the other parts of the configuration are the same as those of the embodiment described in advance. In addition to the combination of parts specifically described in each embodiment, the embodiments may be partially combined as long as the combination does not hinder the combination.
 (第1実施形態)
 本開示の第1実施形態に関して、図1~図3を用いて説明する。作業能力制御システム10は、作業者(対象者ともいう)が使用している能力を考慮して、対象者の能力を適正化するための制御を実施するシステムである。対象者とは、仕事を遂行する人全般を指し、たとえば運転者および工場作業者などである。作業能力制御システム10は、時々刻々と環境が変化する中で、対象者が仕事を遂行しなければいけない環境に適用される。たとえば自動車の運転および工場での所定作業が、変化する環境の中で実施する作業にあたる。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. The work ability control system 10 is a system that performs control for optimizing the ability of the subject in consideration of the ability used by the worker (also referred to as the subject). The target person refers to all persons who perform work, such as a driver and a factory worker. The work capability control system 10 is applied to an environment in which a target person must perform work while the environment changes from moment to moment. For example, driving a car and a predetermined work in a factory correspond to work performed in a changing environment.
 作業能力制御システム10は、具体的には自分でコントロールすることが困難である人の能力を指標化し、現在の状況下で必要な能力を使っているか判断し、必要な能力に過不足がある場合に、能力の過不足を補うように各部を制御するシステムである。作業能力制御システム10は、図1に示すように、センシング部11、演算部12およびアクチュエータ部13を含んで構成される。 Specifically, the work capability control system 10 indexes the ability of a person who is difficult to control by himself / herself, determines whether the necessary ability is used under the current situation, and the necessary ability is excessive or insufficient. In this case, it is a system that controls each unit to compensate for excess or deficiency of capability. As shown in FIG. 1, the work capability control system 10 includes a sensing unit 11, a calculation unit 12, and an actuator unit 13.
 センシング部11は、環境状況、対象者の属性および特性、ならびに対象者の現在の状態を把握するための内容取得部および環境取得部である。環境および状況とは、時間的に変化し、仕事を実施する上で環境および状況変化が影響を与える空間を指す。たとえば運転者にとっては、道路状況や車室内環境を指し、工場作業者にとっては、実施する作業内容の変化や現場環境を指す。センシング部11は、取得した情報を演算部12に与える。 The sensing unit 11 is a content acquisition unit and an environment acquisition unit for grasping the environmental situation, the attributes and characteristics of the target person, and the current state of the target person. The environment and situation refers to a space that changes over time and is affected by changes in the environment and situation when performing work. For example, for the driver, it refers to the road conditions and the vehicle interior environment, and for the factory worker, it refers to changes in the work content to be performed and the field environment. The sensing unit 11 gives the acquired information to the calculation unit 12.
 センシング部11は、たとえばカメラ、赤外線カメラおよびマイクなどの環境センシング手法によって、対象者を取り巻く作業環境に関する情報を取得する。またセンシング部11は、たとえば個人認証によって、対象者の属性および特性を取得する。したがってセンシング部11は、対象者の固有情報を取得する固有取得部としても機能する。またセンシング部11は、たとえば生体センシングおよび機器の操作状態によって対象者の現在の状態を取得する。したがってセンシング部11は、対象者の現在の作業内容に関する情報を取得する内容取得部としても機能する。固有情報は、対象者の性別、年齢、血液型および経歴など予め記憶部に記憶されている個人情報と、センシング部11によって取得される生体情報とを含む。 The sensing unit 11 acquires information on the work environment surrounding the target person using an environmental sensing method such as a camera, an infrared camera, and a microphone. In addition, the sensing unit 11 acquires the attributes and characteristics of the target person by personal authentication, for example. Therefore, the sensing unit 11 also functions as a unique acquisition unit that acquires unique information of the target person. In addition, the sensing unit 11 acquires the current state of the subject based on, for example, biological sensing and the operation state of the device. Therefore, the sensing unit 11 also functions as a content acquisition unit that acquires information on the current work content of the target person. The unique information includes personal information stored in the storage unit in advance such as the subject's sex, age, blood type, and history, and biological information acquired by the sensing unit 11.
 演算部12は、センシング部11からの情報に基づいて、アクチュエータ部13を制御する制御部である。演算部12は、たとえば電子制御装置(Electronic Control Unit:略称ECU)によって実現される。演算部12は、センシング部11で把握した各状態から、ある環境下で仕事を遂行するために必要な能力、対象者がそもそも持っている仕事を遂行するために使える能力、現在、対象者が仕事を遂行するために使用している能力を演算する。 The calculation unit 12 is a control unit that controls the actuator unit 13 based on information from the sensing unit 11. The arithmetic unit 12 is realized by, for example, an electronic control unit (Electronic Control Unit: abbreviated ECU). The computing unit 12 determines the ability required to perform work in a certain environment from the respective states grasped by the sensing unit 11, the ability that can be used to perform the work that the target person originally has, and the current target person Calculate the ability used to accomplish the work.
 したがって演算部12は、対象者が作業内容によって使用している能力を指標化する固有指標部として機能する。また演算部12は、作業環境および作業内容に基づいて対象者が作業内容を実施するために必要な能力を指標化する一般指標部としても機能する。 Therefore, the calculation unit 12 functions as a unique index unit that indexes the ability used by the target person according to the work content. The computing unit 12 also functions as a general index unit that indexes the ability necessary for the target person to perform the work content based on the work environment and the work content.
 アクチュエータ部13は、対象者の仕事を遂行する能力を変化させることが可能な各種刺激を行う部である。したがってアクチュエータ部13は、対象者に対して作業内容に関連する情報を出力する出力部としての機能を有する。アクチュエータ部13は、単独もしくは複数の五感刺激が可能な装置によって、対象者の能力を変化可能な装置によって実現される。したがってアクチュエータ部13は、その種類によって情報の出力だけでなく、対象者の作業内容を補助する補助動作を行うこともできる。アクチュエータ部13は、たとえば車両用空調装置およびナビゲーション装置によって実現される。車両用空調装置によって、車内環境を変化させることによって、対象者の運転を補助することができる。またナビゲーション装置にて表示される情報、および出力される音などによっても対象者に影響を与えることができる。またすでに対象者に仕事を遂行する能力を割かせている装置の出力を低下させたり、停止することで、仕事を減らすことで仕事を遂行する能力を確保しても良い。 The actuator unit 13 is a unit that performs various stimuli that can change the ability of the subject to perform work. Therefore, the actuator unit 13 has a function as an output unit that outputs information related to the work content to the target person. The actuator unit 13 is realized by a device capable of changing the ability of the subject by a device capable of single or multiple senses. Therefore, the actuator unit 13 can perform not only the output of information depending on the type, but also an auxiliary operation for assisting the work content of the subject. The actuator unit 13 is realized by, for example, a vehicle air conditioner and a navigation device. The driving of the subject can be assisted by changing the in-vehicle environment by the vehicle air conditioner. The subject can also be influenced by information displayed on the navigation device and sound output. Further, the ability to perform the work may be secured by reducing or reducing the output of the device that has already assigned the target person with the ability to perform the work, or by stopping the output.
 次に、演算部12の能力制御処理に関して図2を用いて説明する。図2に示す能力制御処理は、演算部12によって短時間に繰り返し実施される処理である。ステップS1では、センシング部11から各種のデータを取得し、ステップS2に移る。ステップS2では、センシング部11によって目標値Zを演算し、ステップS2に移る。目標値Zは、ある環境下で対象者が仕事を遂行するために必要な必要能力値である。 Next, the capability control process of the arithmetic unit 12 will be described with reference to FIG. The capability control process illustrated in FIG. 2 is a process that is repeatedly performed in a short time by the calculation unit 12. In step S1, various data are acquired from the sensing part 11, and it moves to step S2. In step S2, the target value Z is calculated by the sensing unit 11, and the process proceeds to step S2. The target value Z is a necessary ability value necessary for the target person to perform work in a certain environment.
 ステップS3では、目標の補正値θを演算し、ステップS4に移る。補正値θは、対象者がそもそも持っている仕事を遂行するために使える能力値である。したがって補正値θは、個人情報によって異なり、たとえば血液型、運動経験、年齢および性別などによって決定される。 In step S3, the target correction value θ is calculated, and the process proceeds to step S4. The correction value θ is an ability value that can be used to perform the work that the subject originally has. Therefore, the correction value θ differs depending on personal information, and is determined by, for example, blood type, exercise experience, age and sex.
 ステップS4では、現在値Xを演算し、ステップS5に移る。現在値Xは、現在、対象者が仕事を遂行するために使用している能力値である。現在値Xは、たとえば対象者の生体情報から演算される。 In step S4, the current value X is calculated, and the process proceeds to step S5. The current value X is an ability value that the target person is currently using to perform work. The current value X is calculated from the subject's biological information, for example.
 ステップS5では、アクチュエータ部13のデバイスの作動判定をするために、補正値θに目標値Zを乗算した値と現在値Xとを比較する。そして比較した結果、乗算した値が現在値X以上の場合には、ステップS6に移り、現在値X未満の場合には、本フローを終了する。 In step S5, the current value X is compared with the value obtained by multiplying the correction value θ by the target value Z in order to determine the operation of the device of the actuator unit 13. As a result of the comparison, if the multiplied value is equal to or greater than the current value X, the process proceeds to step S6, and if it is less than the current value X, this flow ends.
 ステップS6では、アクチュエータ部13の作動信号を演算し、ステップS7に移る。作動信号としては、乗算した値が現在値X以上なので、対象者の必要能力値を上回っているので、必要能力値が高まるように、または現在遂行している仕事量が減るように、アクチュエータ部13の作動信号を演算する。ステップS7では、演算した作動信号をアクチュエータ部13に出力し、本フローを終了する。 In step S6, the operation signal of the actuator unit 13 is calculated, and the process proceeds to step S7. As the operation signal, since the multiplied value is equal to or greater than the current value X, it exceeds the required ability value of the subject, so that the necessary ability value is increased or the amount of work currently being performed is reduced. 13 actuation signals are calculated. In step S7, the calculated operation signal is output to the actuator unit 13, and this flow is finished.
 このように環境および状況に応じて変化する仕事を遂行するために必要な目標値Zと、対象者が現在使用している現在値Xを比較している。そして現在値Xが目標値Zよりも低い場合、対象者の現在使用している能力値を上げるためのフィードバックを実施し、仕事を遂行するために必要な能力値を達成するように促している。 The target value Z necessary for performing work that changes in accordance with the environment and the situation as described above is compared with the current value X currently used by the subject. If the current value X is lower than the target value Z, feedback is given to increase the ability value currently used by the subject, and it is urged to achieve the ability value necessary for performing the work. .
 換言すると、演算部12は、固有指標部によって得られた固有指標である現在値Xと一般指標部よって得られた一般指標である補正後の目標値Zとを比較する。そして演算部12は、固有指標が一般指標に対して過不足がある場合には、過不足がなくなるようにアクチュエータ部13から出力される情報の内容を変更する。 In other words, the calculation unit 12 compares the current value X, which is the unique index obtained by the unique index unit, with the corrected target value Z, which is the general index obtained by the general index unit. When the specific index is excessive or insufficient with respect to the general index, the calculation unit 12 changes the content of the information output from the actuator unit 13 so as to eliminate the excess or deficiency.
 次に、演算部12による各値の算出方法の一例について説明する。まず、環境および状況に応じて変化する仕事を遂行するために必要な必要能力値の算出方法に関して説明する。必要能力値は、作業環境、作業内容および固有情報に基づいて対象者が実施するための必要な能力を指標化した値である。たとえば対象者は、車両を運転する運転者であり、作業内容は、車両の運転であり、作業環境は、車内の環境情報、車外の天候情報および道路状況に関する情報である場合について説明する。 Next, an example of how each value is calculated by the calculation unit 12 will be described. First, a description will be given of a method for calculating a necessary ability value necessary for performing work that varies depending on the environment and circumstances. The necessary ability value is a value obtained by indexing necessary ability for the target person to implement based on the work environment, the work content, and the specific information. For example, a case will be described in which the target person is a driver who drives a vehicle, the work content is driving the vehicle, and the work environment is environment information inside the vehicle, weather information outside the vehicle, and information on road conditions.
 対象者が実施する仕事に必要な能力の項目を、表1~表3に示すように、環境および状況に紐付けしており、予めロム(Read-Only Memory:略称ROM)などに記憶されている。これによって対象者が実際に仕事を実施している時の生体データ(生体情報)を使用し、たとえば機械学習によって数値化することができる。現在使用している使用能力値と関連する生体データの一例として、眠気、集中力およびストレスがある。 As shown in Tables 1 to 3, the items of ability necessary for the work performed by the target person are linked to the environment and situation, and are stored in advance in ROM (Read-Only Memory: abbreviated ROM). Yes. As a result, the biological data (biological information) obtained when the target person is actually performing work can be used and digitized by, for example, machine learning. Examples of biometric data related to the currently used capacity value include sleepiness, concentration and stress.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、眠気、集中力、ストレスについて走行場所によって異なるので基準値A、B、Cとして、基準値に対して走行場所によって補正係数をα1、α2、β1、β2、γ1、γ2を用いて補正している。補正は基準の走行場所における基準値よりも厳しい判定が必要な走行場所においては補正係数を加算し、厳しい判定が不必要な走行場所においては補正係数を減算することで実施する。
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, since drowsiness, concentration, and stress vary depending on the travel location, the correction values are α1, α2, β1, β2, β1, γ1, and γ2 as reference values A, B, and C depending on the travel location with respect to the reference values. It is corrected using. The correction is performed by adding a correction coefficient at a travel location that requires a stricter determination than the reference value at the reference travel location, and subtracting the correction coefficient at a travel location that does not require a strict determination.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、眠気、集中力、ストレスについて走行環境によって異なるので基準値D、E、Fとして、基準値に対して走行環境によって補正係数をα3、α4、β3、β4、γ3、γ4を用いて補正している。補正は基準の走行環境における基準値よりも厳しい判定が必要な走行環境においては補正係数を加算し、厳しい判定が不必要な走行環境においては補正係数を減算することで実施する。
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2, drowsiness, concentration, and stress vary depending on the driving environment, and therefore, as reference values D, E, and F, correction coefficients are α3, α4, β3, β4, γ3, and γ4 depending on the driving environment with respect to the reference values. It is corrected using. The correction is performed by adding a correction coefficient in a driving environment that requires a stricter determination than the reference value in the reference driving environment, and subtracting the correction coefficient in a driving environment that does not require a strict determination.
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、眠気、集中力、ストレスについて天候によって異なるので基準値G、H、Iとして、基準値に対して天候によって補正係数をα5、α6、β5、β6、γ5、γ6を用いて補正している。補正は基準の天候における基準値よりも厳しい判定が必要な天候においては補正係数を加算し、厳しい判定が不必要な天候においては補正係数を減算することで実施する。
Figure JPOXMLDOC01-appb-T000003
As shown in Table 3, drowsiness, concentration, and stress vary depending on the weather, so the correction values α5, α6, β5, β6, γ5, and γ6 are used as the reference values G, H, and I for the reference values depending on the weather. Have been corrected. The correction is performed by adding a correction coefficient in the weather that requires a stricter determination than the reference value in the standard weather, and subtracting the correction coefficient in a weather that does not require a strict determination.
 これら表1~表3に示す値を取得し、次式(1)~(3)によって眠気、集中力およびストレスをそれぞれ数値化する。ここでa1、a2、a3は、走行場所において補正する係数である。b1、b2、b3は、走行環境において補正する係数である。c1、c2、c3は、天候において補正する係数である。d1~d3は、全体を補正する係数である。補正する係数は、たとえば対象者の仕事を遂行するために必要な能力値を決めるパラメータであり、対象者の属性および特性を考慮している。属性および特性とは、たとえば仕事に対する熟練度や身体能力や健康状態などを指す。 The values shown in Tables 1 to 3 are acquired, and drowsiness, concentration and stress are quantified by the following equations (1) to (3). Here, a1, a2, and a3 are coefficients to be corrected at the travel location. b1, b2, and b3 are coefficients to be corrected in the traveling environment. c1, c2, and c3 are coefficients corrected in the weather. d1 to d3 are coefficients for correcting the whole. The coefficient to be corrected is a parameter that determines a capability value necessary for performing the work of the subject, for example, and takes into account the attributes and characteristics of the subject. Attributes and characteristics refer to, for example, proficiency level for work, physical ability, and health status.
 眠気=a1×走行場所+b1×走行環境+c1×天候+d1   …(式1)
 集中力=a2×走行場所+b2×走行環境+c2×天候+d2  …(式2)
 ストレス=a3×走行場所+b3×走行環境+c3×天候+d3 …(式3)
 式(1)~(3)に、走行場所が高速道路であり、走行環境が混んでおり、天候が小雨の場合には、次式(4)~(6)のようになる。
Sleepiness = a1 × travel location + b1 × travel environment + c1 × weather + d1 (Formula 1)
Concentration = a2 × travel location + b2 × travel environment + c2 × weather + d2 (Formula 2)
Stress = a3 × travel location + b3 × travel environment + c3 × weather + d3 (Equation 3)
In the equations (1) to (3), when the traveling place is a highway, the traveling environment is crowded, and the weather is light rain, the following equations (4) to (6) are obtained.
 眠気=a1×(A+α2)+b1×(D+α3)+c1×(G+α5)+d1 …(式4)
 集中力=a2×(A+α2)+b2×(D+α3)+c2×(G+α5)+d2…(式5)
 ストレス=a3×(A+α2)+b3×(D+α3)+c3×(G+α5)+d3…(式6)
 次に、対象者が現在使用している使用能力値の算出方法に関して説明する。使用能力値は、作業内容および生体情報に基づいて対象者が作業内容によって使用している能力を指標化した値である。数値化する生体データと能力値の関係は、前述の必要能力値の算出と同じとなる。集中力は、たとえば脳波α波の含有率、および前頭葉の脳血流の状態を用いて把握することができる。眠気は、たとえば脳波θ波の含有率、眼球運動および顔表情筋の弛緩度合いを用いて把握することができる。ストレスは、たとえば顔表面の温度分布および緊張性による発汗度合いを用いて把握することができる。これらを前述の式(1)~(3)にて算出された値と比較できるように数値化する。これらの生体データと能力値の関係は一例であり、前述の生体データと能力の関係に限るものではない。集中力などの数値化について、前述の生体データに限らず、前述の生体データを含む他の複数の生体データを用いて集中力などを把握して数値化してもよい。
Sleepiness = a1 × (A + α2) + b1 × (D + α3) + c1 × (G + α5) + d1 (Formula 4)
Concentration power = a2 × (A + α2) + b2 × (D + α3) + c2 × (G + α5) + d2 (Formula 5)
Stress = a3 × (A + α2) + b3 × (D + α3) + c3 × (G + α5) + d3 (Expression 6)
Next, a method for calculating the use ability value currently used by the subject will be described. The use ability value is a value obtained by indexing the ability used by the subject according to the work content based on the work content and the biological information. The relationship between the biological data to be digitized and the ability value is the same as the calculation of the necessary ability value described above. The concentration can be grasped using, for example, the content rate of the electroencephalogram α wave and the state of cerebral blood flow in the frontal lobe. Drowsiness can be grasped using, for example, the content rate of the electroencephalogram θ wave, the eye movement, and the degree of relaxation of the facial expression muscle. The stress can be grasped using, for example, the temperature distribution on the face surface and the degree of sweating due to tension. These are converted into numerical values so that they can be compared with the values calculated by the above-described equations (1) to (3). The relationship between the biometric data and the ability value is an example, and is not limited to the above-described relationship between the biometric data and the ability. The digitization of concentration, etc. is not limited to the above-described biometric data, and the concentration, etc. may be grasped and digitized using a plurality of other biometric data including the biometric data.
 次に、図3を用いて対象者の必要能力値と使用能力値の比較について説明する。図3では、運転者が運転という作業を実施している場合に、使用能力値の演算をグラフで示している。必要能力値は、前述したように対象者の属性および特性によって変化する。 Next, a comparison between the required ability value and the use ability value of the subject will be described with reference to FIG. In FIG. 3, when the driver is performing the operation of driving, the calculation of the use ability value is shown in a graph. The required ability value varies depending on the attributes and characteristics of the subject as described above.
 図3では、例として、(a)熟練者が高速走行している場合、(b)初心者が高速走行している場合、(c)熟練者が雨天時に高速走行している場合、(d)初心者が雨天時に高速走行している場合を示している。(a)、(b)、(c)の場合は、必要能力値Z1,Z2,Z3が使用能力値X1を下回っているので現状を維持する。しかし(d)の場合は、必要能力値Z4が使用能力値X1を上回っている。したがってアクチュエータ部13に対して、高速走行から速度を低下させたり、運転者がリラックスする音楽を出力したり、車内環境を改善するように空調を制御する。これによって必要能力値が低下するか、使用能力値が上昇させることができる。 In FIG. 3, as an example, (a) a skilled person is traveling at high speed, (b) a beginner is traveling at high speed, (c) a skilled person is traveling at high speed in rainy weather, (d) This shows a case where a beginner is traveling at high speed in rainy weather. In the cases of (a), (b), and (c), the necessary capacity values Z1, Z2, and Z3 are lower than the usable capacity value X1, so the current state is maintained. However, in the case of (d), the required ability value Z4 exceeds the use ability value X1. Therefore, the air-conditioning is controlled so as to reduce the speed from the high-speed traveling, output music for the driver to relax, or improve the vehicle interior environment. As a result, the required capacity value can be lowered or the usable capacity value can be increased.
 以上説明したように本実施形態の演算部12は、対象者が使用している能力を数値化し、対象者が実施するために必要な能力を数値化している。これによって必要能力値と使用能力値とを比較することができる。そして演算部12は、比較した結果、使用能力値が必要能力値に対して過不足がある場合には、過不足がなくなるようにアクチュエータ部13から出力される情報の内容を変更する。これによって、たとえば必要能力値が使用能力値よりも高く、作業内容に必要な能力が不足している場合には、アクチュエータ部13からの情報によって能力を引き出す方向に促すことができる。また、たとえば必要能力値が使用能力値よりも低く、作業内容に対して過度に能力を使用している場合には、アクチュエータ部13の情報によって能力を抑制する方向に促すことができる。これによって対象者は作業内容に必要な能力が発揮されるように促される。 As described above, the calculation unit 12 of the present embodiment digitizes the ability used by the subject, and the ability required for the subject to perform. This makes it possible to compare the required capacity value with the use capacity value. Then, as a result of the comparison, when the use capacity value is excessive or insufficient with respect to the required capacity value, the calculation section 12 changes the content of the information output from the actuator section 13 so that the excess or deficiency is eliminated. Thus, for example, when the required capability value is higher than the use capability value and the capability required for the work content is insufficient, it is possible to prompt the direction to draw out the capability by the information from the actuator unit 13. Further, for example, when the required capability value is lower than the use capability value and the capability is excessively used for the work content, it is urged to suppress the capability by the information of the actuator unit 13. As a result, the target person is encouraged to demonstrate the ability required for the work content.
 また本実施形態では、必要能力値は、作業環境、作業内容および固有情報に基づいて対象者が実施するための必要な能力を指標化している。したがって対象者の固有情報を用いて必要能力値を指標化しているので、個人の能力を必要能力値に反映することができる。これによって必要能力値の演算精度を向上することができる。 Further, in the present embodiment, the necessary ability value indexes the ability necessary for the target person to implement based on the work environment, the work content, and the specific information. Accordingly, since the necessary ability value is indexed using the specific information of the target person, the individual ability can be reflected in the necessary ability value. As a result, the calculation accuracy of the required capability value can be improved.
 さらに本実施形態では、使用能力値は、作業内容および生体情報に基づいて作業者が作業内容によって使用している能力を指標化している。したがって対象者の生体情報を用いて使用能力値を指標化しているので、対象者の現在の生体情報を使用能力値に反映することができる。これによって使用能力値の演算精度を向上することができる。 Furthermore, in the present embodiment, the use ability value indexes the ability used by the worker according to the work content based on the work content and the biological information. Therefore, since the use ability value is indexed using the biometric information of the subject, the current biometric information of the subject can be reflected in the use ability value. As a result, the calculation accuracy of the usage ability value can be improved.
 このように本実施形態の作業能力制御システム10では、環境および状況に応じて変化する仕事を遂行するために必要な能力値を判断し、対象者の現在使っている能力値を比較し、必要なフィードバックを乗員に与えている。これによって対象者は効率良く、仕事を遂行することが可能となり、ヒューマンエラーの発生を抑制することができる。 As described above, in the work capability control system 10 according to the present embodiment, the capability value necessary for performing the work that changes according to the environment and the situation is determined, and the capability value currently used by the target person is compared and required. Give the passengers a lot of feedback. As a result, the target person can efficiently perform work, and the occurrence of human error can be suppressed.
 (第2実施形態)
 次に、本開示の第2実施形態に関して、図4~図7を用いて説明する。本実施形態では、第1実施形態の作業能力制御システム10を、車両の運転を支援する運転支援システム20に適用している。したがって運転支援システム20は、作業能力制御システム10における作業者を運転者に設定し、運転者の使用している能力を考慮して運転者の能力を適正化するための制御を実施する。図4に示す運転支援システム20は、車両を自動運転の状態と手動運転の状態とで切り替えることができる。運転支援システム20は、車両に搭載される。運転支援システム20は、運転支援装置21、周辺環境認識装置22、車両挙動関連センサ23、ブレーキスイッチ24、アクセルスイッチ25、操舵トルクセンサ26、車室内カメラ27、生体センサ28、車両制御ECU29、車両用空調装置30、音響装置31、臭い発生装置32および運転切替スイッチ33を含んで構成される。以降では、運転支援システム20を搭載した車両を自車と呼ぶ。
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described with reference to FIGS. In this embodiment, the work capability control system 10 of the first embodiment is applied to a driving support system 20 that supports driving of a vehicle. Therefore, the driving support system 20 sets a worker in the work capability control system 10 as a driver, and performs control for optimizing the driver's capability in consideration of the capability used by the driver. The driving support system 20 shown in FIG. 4 can switch the vehicle between an automatic driving state and a manual driving state. The driving support system 20 is mounted on a vehicle. The driving support system 20 includes a driving support device 21, a surrounding environment recognition device 22, a vehicle behavior related sensor 23, a brake switch 24, an accelerator switch 25, a steering torque sensor 26, a vehicle interior camera 27, a biosensor 28, a vehicle control ECU 29, a vehicle Air conditioner 30, acoustic device 31, odor generator 32, and operation changeover switch 33. Hereinafter, a vehicle equipped with the driving support system 20 is referred to as a host vehicle.
 周辺環境認識装置22は、自車周辺の所定範囲を撮像するカメラ、レーザレーダ等のセンサを備えており、これらのセンサで検出した情報をもとに、自車の周辺環境を認識する。認識対象となる周辺環境の一例としては、自車周辺の道路形状、先行車や自車周辺の障害物等がある。 The surrounding environment recognition device 22 includes a camera such as a camera and a laser radar that captures a predetermined range around the host vehicle, and recognizes the surrounding environment of the host vehicle based on information detected by these sensors. As an example of the surrounding environment to be recognized, there are a road shape around the own vehicle, a preceding vehicle, an obstacle around the own vehicle, and the like.
 周辺環境認識装置22は、たとえば、カメラの撮像画像に対してエッジ検出等の周知の画像認識処理を行うことで車線を認識する。そして周辺環境認識装置22は、認識した車線の車線幅、車線の曲率半径、車線中心からの自車のオフセット量等を算出することで、自車周辺の道路形状を認識する。 The surrounding environment recognition device 22 recognizes a lane by performing a known image recognition process such as edge detection on a captured image of a camera, for example. Then, the surrounding environment recognition device 22 recognizes the road shape around the own vehicle by calculating the recognized lane width, the radius of curvature of the lane, the offset amount of the own vehicle from the lane center, and the like.
 また周辺環境認識装置22は、カメラの撮像画像に対してエッジ検出やテンプレートマッチング等の周知の画像認識処理を行うことで自車の先行車や自車周辺の障害物の大きさ、自車との相対位置を特定する。そして周辺環境認識装置22は、特定した障害物の時間変化によって障害物の速度や移動方向を特定する。周辺環境認識装置22は、他にも、レーザレーダやミリ波レーダやソナーを用いる場合には、送信した探査波が物体に反射して生じた反射波の受信強度に基づいて障害物を検出する。 The surrounding environment recognition device 22 performs well-known image recognition processing such as edge detection and template matching on the captured image of the camera, so that the size of the preceding vehicle of the own vehicle, the obstacle around the own vehicle, Specify the relative position of. And the surrounding environment recognition apparatus 22 specifies the speed and moving direction of an obstacle by the time change of the specified obstacle. In addition, when using a laser radar, a millimeter wave radar, or sonar, the surrounding environment recognition device 22 detects an obstacle based on the received intensity of the reflected wave that is generated when the transmitted exploration wave is reflected on the object. .
 車両挙動関連センサ23は、自車の挙動に関連する情報を検出する。車両挙動関連センサ23としては、自車の車速を検出する車速センサ、自車の加速度を検出する加速度センサ、自車の角速度を検出するジャイロセンサ、測位衛星システムの測位衛星から自車位置を演算できる情報を受信する受信機などがある。 The vehicle behavior related sensor 23 detects information related to the behavior of the host vehicle. As the vehicle behavior-related sensor 23, a vehicle speed sensor that detects the speed of the host vehicle, an acceleration sensor that detects the acceleration of the host vehicle, a gyro sensor that detects the angular velocity of the host vehicle, and the position of the host vehicle are calculated from the positioning satellite of the positioning satellite system. There are receivers that can receive information.
 ブレーキスイッチ24は、自車のブレーキペダルの踏み込み操作がなされているときにオンになる一方、自車のブレーキペダルの踏み込み操作がなされていないときにはオフになるスイッチである。ブレーキスイッチ24は、オンオフに応じた信号を出力する。アクセルスイッチ25は、自車のアクセルペダルの踏み込み操作がなされているときにオンになる一方、自車のアクセルペダルの踏み込み操作がなされていないときにはオフになるスイッチである。アクセルスイッチ25は、オンオフに応じた信号を出力する。操舵トルクセンサ26は、運転者によって自車のステアリングホイールに印加された操舵トルクを検出する。 The brake switch 24 is a switch that is turned on when the brake pedal of the own vehicle is depressed, and turned off when the brake pedal of the own vehicle is not depressed. The brake switch 24 outputs a signal corresponding to on / off. The accelerator switch 25 is a switch that is turned on when the accelerator pedal of the host vehicle is depressed, and turned off when the accelerator pedal of the host vehicle is not depressed. The accelerator switch 25 outputs a signal corresponding to on / off. The steering torque sensor 26 detects the steering torque applied to the steering wheel of the vehicle by the driver.
 車室内カメラ27は、固有情報取得部であって、自車の運転者が集中力を欠いた状態であるかを判定するために運転者をセンシングする生体情報センサであって、自車の運転者の顔を含む範囲を逐次、たとえば100msecごと撮像する。車室内カメラ27は、たとえばステアリングコラムカバーの上面部などの、運転者の顔を含む範囲を撮像可能な位置に設置されればよい。車室内カメラ27は、光学式のカメラであってもよいし、可視光の少ない環境下においても撮像可能な赤外線カメラであってもよい。 The vehicle interior camera 27 is a unique information acquisition unit, and is a biological information sensor that senses the driver to determine whether the driver of the vehicle is in a state of lack of concentration. A range including a person's face is imaged sequentially, for example, every 100 msec. The vehicle interior camera 27 may be installed at a position where the range including the driver's face can be imaged, such as the upper surface of the steering column cover. The vehicle interior camera 27 may be an optical camera or an infrared camera that can capture images even in an environment with little visible light.
 生体センサ28は、固有情報取得部であって、運転者の生体情報を検出するセンサである。生体センサ28は、たとえば心拍センサ、呼吸センサ、脳波センサ、体温センサ、および血圧センサによって実現される。心拍センサは、自車の運転者の心拍数を計測する。呼吸センサは、運転者の呼吸数を計測する。脳波センサは、運転者の脳波の振幅および周波数を計測する。体温センサは、運転者の体温を計測する。血圧センサは、運転者の血圧を計測する。 The biosensor 28 is a unique information acquisition unit that detects a driver's biometric information. The biological sensor 28 is realized by, for example, a heart rate sensor, a respiration sensor, an electroencephalogram sensor, a body temperature sensor, and a blood pressure sensor. The heart rate sensor measures the heart rate of the driver of the own vehicle. The respiration sensor measures the respiration rate of the driver. The electroencephalogram sensor measures the amplitude and frequency of the driver's electroencephalogram. The body temperature sensor measures the driver's body temperature. The blood pressure sensor measures the blood pressure of the driver.
 車両制御ECU29は、自車の加減速制御や操舵制御を行う電子制御装置である。車両制御ECU29としては、操舵制御を行う操舵ECUや、加減速制御を行うエンジンECU及びブレーキECUなどがある。また車両制御ECU29は、制御部であって、車両用空調装置30、音響装置31および臭い発生装置32も制御する。 The vehicle control ECU 29 is an electronic control device that performs acceleration / deceleration control and steering control of the host vehicle. The vehicle control ECU 29 includes a steering ECU that performs steering control, an engine ECU that performs acceleration / deceleration control, a brake ECU, and the like. The vehicle control ECU 29 is a control unit, and also controls the vehicle air conditioner 30, the acoustic device 31, and the odor generating device 32.
 車両用空調装置30は、出力部であって、車室内を空調する空調装置である。車両用空調装置30は、運転者が設定した設定温度となるように、車室内に吹き出す空調風の温度を制御する。車両用空調装置30は、車両制御ECU29によっても制御される。 The vehicle air conditioner 30 is an output unit and is an air conditioner that air-conditions the vehicle interior. The vehicle air conditioner 30 controls the temperature of the conditioned air blown into the vehicle interior so as to be the set temperature set by the driver. The vehicle air conditioner 30 is also controlled by the vehicle control ECU 29.
 音響装置31は、出力部であって、カーオディオとも呼ばれ、車室内に音を出力する。音響装置31は、予め記憶部に記憶されている楽曲、または記憶媒体に記憶されている楽曲を再生する。記憶部に記憶されている楽曲には、運転者のリラックスに効果的な音、および覚醒を促す警告音なども含まれる。運転者は、音響装置31の操作部を操作することによって、楽曲の選択、ボリュームおよび再生順序などを決定することができる。音響装置31は、車両制御ECU29によっても制御される。 The acoustic device 31 is an output unit, which is also called a car audio, and outputs sound into the passenger compartment. The acoustic device 31 reproduces music stored in advance in the storage unit or music stored in the storage medium. The music stored in the storage unit includes a sound effective for relaxing the driver and a warning sound for awakening. The driver can determine the selection of music, the volume, the reproduction order, and the like by operating the operation unit of the audio device 31. The acoustic device 31 is also controlled by the vehicle control ECU 29.
 臭い発生装置32は、出力部であって、車室内に臭いを出力する。臭い発生装置32は、予め格納されている複数の芳香剤を出力する。芳香剤からの臭いには、リラックスに効果的な臭いだけでなく、覚醒を促す刺激臭も含まれる。運転者は、臭い発生装置32の操作部を操作することによって、芳香剤の種類、および放出量などを決定することができる。臭い発生装置32は、車両制御ECU29によっても制御される。 The odor generating device 32 is an output unit, and outputs the odor to the passenger compartment. The odor generating device 32 outputs a plurality of fragrances stored in advance. The odor from the fragrance includes not only a relaxing odor but also a stimulating odor that promotes arousal. The driver can determine the type and release amount of the fragrance by operating the operation unit of the odor generating device 32. The odor generating device 32 is also controlled by the vehicle control ECU 29.
 運転切替スイッチ33は、運転支援装置21に接続されている。運転切替スイッチ33は、運転者によって操作される。運転切替スイッチ33は、操作されると自動運転と手動運転とを切り替える。運転切替スイッチ33は、たとえば自車のステアリング等に設けられている。運転切替スイッチ33は、たとえば自動運転を実施する旨の操作入力を受け付けた場合に、手動運転から自動運転に切り替える信号を運転支援装置21に送信する。同様に、運転切替スイッチ33は、たとえば手動運転を実施する旨の操作入力を受け付けた場合に、自動運転から手動運転に切り替える信号を運転支援装置21に送信する。 The operation switch 33 is connected to the driving support device 21. The operation changeover switch 33 is operated by the driver. When operated, the operation changeover switch 33 switches between automatic operation and manual operation. The operation switch 33 is provided, for example, in the steering of the own vehicle. For example, when an operation input indicating that automatic driving is to be performed is received, the driving switch 33 transmits a signal for switching from manual driving to automatic driving to the driving support device 21. Similarly, the operation changeover switch 33 transmits a signal for switching from automatic operation to manual operation to the driving support device 21 when an operation input for performing manual operation is received, for example.
 運転支援装置21は、CPU、ROMやRAM等のメモリ、I/O、及びこれらを接続するバスを備え、ROMに記憶された制御プログラムを実行することで各種の処理を実行する。たとえば、運転支援装置21は、自動運転と手動運転とを切り替えることができ、自動運転に切り替えている場合には、車両制御ECU29に指示を行って自動運転を行う。運転支援装置21は、自動運転中における自車の運転者の運転操作、つまりオーバーライドを検出したことをもとに、自動運転から手動運転への切り替えを行う。なお、運転支援装置21が実行する機能の一部または全部を、一つあるいは複数のIC等によりハードウェア的に構成してもよい。 The driving support device 21 includes a CPU, a memory such as a ROM and a RAM, an I / O, and a bus for connecting them, and executes various processes by executing a control program stored in the ROM. For example, the driving support device 21 can switch between automatic driving and manual driving, and when switching to automatic driving, instructs the vehicle control ECU 29 to perform automatic driving. The driving support device 21 switches from the automatic driving to the manual driving based on the detection of the driving operation of the driver of the own vehicle during the automatic driving, that is, the override. Note that some or all of the functions executed by the driving support device 21 may be configured by hardware using one or a plurality of ICs.
 運転支援装置21は、図4に示すように、自動運転制御部41、オーバーライド検出部42、ドライバ指標化部43、および運転切替部44を備えている。自動運転制御部41は、制御部であって、周辺環境認識装置22で認識した自車の周辺環境と、車両挙動関連センサ23で検出した自車の挙動に関連する情報とに基づいて、目標とする進路や速度を決定する。そして、自動運転制御部41は、決定した情報を指示信号として車両制御ECU29に送信する。すると車両制御ECU29は、自動運転制御部41から送信された指示信号に基づいて、操舵角、ブレーキ圧、吸気量、変速比等を変化させ、目標とする進路や速度で自車が走行するように自動運転を行う。自動運転の一例としては、高速道路等で自車の走行車線を維持して走行する自動運転や、自車の異常時に路肩に退避する自動運転や、先行車に追従して走行する自動運転などがある。 The driving support device 21 includes an automatic driving control unit 41, an override detection unit 42, a driver indexing unit 43, and a driving switching unit 44 as shown in FIG. The automatic driving control unit 41 is a control unit, and based on the surrounding environment of the own vehicle recognized by the surrounding environment recognition device 22 and information related to the behavior of the own vehicle detected by the vehicle behavior related sensor 23, Determine the course and speed. Then, the automatic operation control unit 41 transmits the determined information to the vehicle control ECU 29 as an instruction signal. Then, the vehicle control ECU 29 changes the steering angle, the brake pressure, the intake air amount, the gear ratio, etc. based on the instruction signal transmitted from the automatic operation control unit 41 so that the host vehicle travels at the target course and speed. Automatic operation. Examples of automatic driving include automatic driving that maintains the driving lane of the vehicle on an expressway, automatic driving that retreats to the shoulder when the vehicle is abnormal, and automatic driving that follows the preceding vehicle. There is.
 オーバーライド検出部42は、自動運転制御部41での自動運転中におけるオーバーライドを検出する。一例として、ブレーキスイッチ24がオンの場合には運転者によるブレーキ操作を検出し、アクセルスイッチ25がオンの場合には運転者によるアクセル操作を検出し、操舵トルクセンサ26で検出する操舵トルクから運転者によるステアリング操作を検出する。なお、運転者によるブレーキ操作は、ブレーキペダルの踏み込み量を検出するブレーキストロークセンサの信号をもとに検出してもよい。同様に、運転者によるアクセル操作は、アクセルペダルの踏み込み量を検出するアクセルストロークセンサの信号をもとに検出してもよい。 The override detection unit 42 detects an override during automatic operation by the automatic operation control unit 41. As an example, when the brake switch 24 is on, a brake operation by the driver is detected, and when the accelerator switch 25 is on, the accelerator operation by the driver is detected, and driving is performed from the steering torque detected by the steering torque sensor 26. The steering operation by the person is detected. The brake operation by the driver may be detected based on a signal from a brake stroke sensor that detects the depression amount of the brake pedal. Similarly, the accelerator operation by the driver may be detected based on an accelerator stroke sensor signal that detects the amount of depression of the accelerator pedal.
 ドライバ指標化部43は、固有指標部であって、車室内カメラ27によって撮影された画像、および生体センサ28が計測した生体情報に基づいて、自車の運転者の状態を指標化する。ドライバ指標化部43は、車室内カメラ27で撮像した自車の運転者の顔を含む画像と、生体センサ28が計測した生体情報とをもとに、自車の運転者の眠気、集中力、ストレスを逐次指標化する。眠気を指標化して覚醒度とする場合は、たとえば撮像画像からは運転者の目の開き度合い、および眼球運動および顔表情筋の弛緩度合いを用い、生体センサ28が計測した脳波θ波の含有率を用いる。また集中力を指標化して集中度とする場合は、たとえば生体センサ28が計測した脳波θ波の含有率、および前頭葉の脳血流の状態を用いる。またストレスを指標化して快適度とする場合は、たとえば生体センサ28が計測した顔表面の温度分布および緊張性による発汗度合いを用いる。 The driver indexing unit 43 is a unique indexing unit, and indexes the state of the driver of the own vehicle based on the image taken by the vehicle interior camera 27 and the biological information measured by the biological sensor 28. The driver indexing unit 43 is based on the image including the face of the driver of the own vehicle captured by the in-vehicle camera 27 and the biological information measured by the biometric sensor 28, and the driver's drowsiness and concentration power. , Index stress sequentially. When drowsiness is indexed and used as the arousal level, for example, the content of the electroencephalogram θ wave measured by the biosensor 28 using the degree of eye opening of the driver and the degree of eye movement and relaxation of facial expression muscles from the captured image. Is used. When the concentration is indexed to obtain the concentration level, for example, the content rate of the electroencephalogram θ wave measured by the biological sensor 28 and the state of cerebral blood flow in the frontal lobe are used. Further, when the stress is indexed to be the comfort level, for example, the temperature distribution of the face surface measured by the biosensor 28 and the degree of sweating due to tension are used.
 運転切替部44は、自動運転と手動運転との切り替えを行う。運転切替部44は、たとえば運転切替スイッチ33から自動運転の実施を要求する信号を受信した場合に、手動運転から自動運転に切り替える。同様に、手動運転の実施を要求する信号を受信した場合に、自動運転から手動運転に切り替える。また運転切替部44は、自動運転可能なエリアになると、手動運転から自動運転へ切り替える。 The operation switching unit 44 switches between automatic operation and manual operation. The operation switching unit 44 switches from manual operation to automatic operation when a signal requesting execution of automatic operation is received from the operation switch 33, for example. Similarly, when a signal requesting execution of manual operation is received, the automatic operation is switched to the manual operation. Further, the operation switching unit 44 switches from manual operation to automatic operation when an area in which automatic operation can be performed is reached.
 また運転切替部44は、オーバーライド検出部42でオーバーライドを検出した場合に、ドライバ指標化部43で非覚醒状態と判定していた場合には、オーバーライドを無効と判定する。運転者が非覚醒状態で行った操作なので、正しい操作でない可能性が比較的高いからである。一方、オーバーライド検出部42でオーバーライドを検出した場合に、ドライバ指標化部43で覚醒状態と判定していた場合には、オーバーライドを有効と判定する。運転切替部44は、オーバーライドを有効と判定した場合に、自動運転から手動運転へ切り替える。 Further, when the override detection unit 42 detects an override and the driver indexing unit 43 determines that the driver is not awake, the operation switching unit 44 determines that the override is invalid. This is because the operation performed in a non-wake state by the driver is relatively likely to be incorrect. On the other hand, when the override detection unit 42 detects an override and the driver indexing unit 43 determines that the state is awake, the override is determined to be valid. The operation switching unit 44 switches from automatic operation to manual operation when it is determined that the override is valid.
 次に、自動運転制御部41の具体的な制御について、図5~図7のフローチャートを用いて説明する。図5~図7に示す処理は、運転支援装置21が電源投入状態、つまり車両のイグニッションがオンの場合に、自動運転制御部41によって短時間に繰り返し実施される。 Next, specific control of the automatic operation control unit 41 will be described with reference to the flowcharts of FIGS. The processing shown in FIGS. 5 to 7 is repeatedly performed in a short time by the automatic driving control unit 41 when the driving support device 21 is in a power-on state, that is, when the ignition of the vehicle is on.
 ステップS51では、自動運転中であるか否かを判断し、自動運転中の場合には、ステップS52に移り、自動運転中でない場合には、本フローを終了する。ステップS52では、自動運転中であるので運転者の覚醒度を取得し、ステップS53に移る。覚醒度は、前述のようにドライバ指標化部43から取得する。 In step S51, it is determined whether or not automatic operation is in progress. If automatic operation is in progress, the process proceeds to step S52. If automatic operation is not in progress, this flow ends. In step S52, since automatic driving is in progress, the driver's arousal level is acquired, and the process proceeds to step S53. The awakening level is acquired from the driver indexing unit 43 as described above.
 ステップS53では、取得した覚醒度を予め定める基準値と比較して、監視作業が可能か否かを判断する。基準値は、一般指標であって、自動運転を監視するのに必要な能力を数値化したものである。その結果、監視作業が可能な場合には、本フローを終了し、監視作業が可能でない場合には、ステップS54に移る。自動運転中でも運転者は、自動運転を監視する必要があるので、覚醒度が低い場合には、覚醒度を向上させる必要がある。 In step S53, the acquired arousal level is compared with a predetermined reference value to determine whether monitoring work is possible. The reference value is a general index, and is a numerical value of the ability required to monitor automatic driving. As a result, when the monitoring work is possible, this flow is ended, and when the monitoring work is not possible, the process proceeds to step S54. Since the driver needs to monitor the automatic driving even during the automatic driving, when the arousal level is low, it is necessary to improve the arousal level.
 そこでステップS54では、覚醒度が向上するように、各部を制御し、本フローを終了する。覚醒度が向上する制御として、たとえば車両用空調装置30から冷風を顔に向けて吹き出すように制御する。また臭い発生装置32から、刺激臭が出力されるように制御する。また音響装置31から、警告音やアップテンポの音楽などが出力されるように制御する。これらの一部、組み合わせ、または全部によって覚醒度の向上を促すことができる。 Therefore, in step S54, each part is controlled so that the arousal level is improved, and this flow is finished. As control for improving the arousal level, for example, control is performed so that cold air is blown out from the vehicle air conditioner 30 toward the face. Moreover, it controls so that a pungent odor is output from the odor generating device 32. Also, the sound device 31 is controlled to output a warning sound, uptempo music, or the like. The improvement of arousal level can be promoted by some, a combination, or all of these.
 このように図5に示すフローチャートでは、運転者は自動運転中に運転操作をしなくてよいが、主権を持っているので、監視作業をする必要がある。このとき、脳波および顔面表情に基づいて運転者の覚醒度を取得し、監視作業に必要な覚醒度にあるか判断する。そして必要な覚醒度に不足している場合、警告音、冷風、刺激臭などの部によって、覚醒度を適正な状態となるように制御する。これによって自動運転の監視に必要な必要能力値に、運転者の使用能力値を近づけることができる。したがって運転者主権の自動運転中に、運転者の運転を支援することができる。 As described above, in the flowchart shown in FIG. 5, the driver does not have to perform the driving operation during the automatic driving, but has the sovereignty and needs to perform monitoring work. At this time, the driver's arousal level is acquired based on the electroencephalogram and facial expression, and it is determined whether the driver's arousal level is necessary for the monitoring work. When the required arousal level is insufficient, the level of the awakening level is controlled by a warning sound, cold wind, stimulating odor, or the like. As a result, the use ability value of the driver can be brought close to the necessary ability value necessary for monitoring the automatic driving. Therefore, it is possible to support the driving of the driver during the automatic driving of the driver sovereignty.
 次に、図6を用いて、自動運転から手動運転に切り替えるときの制御に関して説明する。ステップS61では、運転切替部44によって自動運転から手動運転に切替えられたか否かを判断し、手動運転に切替えられた場合には、ステップS62に移り、切替えられていない場合には、本フローを終了する。 Next, control when switching from automatic operation to manual operation will be described with reference to FIG. In step S61, the operation switching unit 44 determines whether or not the automatic operation is switched to the manual operation. If the operation is switched to the manual operation, the process proceeds to step S62. finish.
 ステップS62では、手動運転に切替えられたので、覚醒度および集中度を取得し、ステップS63に移る。覚醒度および集中度は、前述のようにドライバ指標化部43から取得する。 In step S62, since manual operation has been switched, the awakening level and the concentration level are acquired, and the process proceeds to step S63. The awakening level and the concentration level are acquired from the driver indexing unit 43 as described above.
 ステップS63では、自動運転から手動運転となるので、運転者の覚醒度および集中度が手動運転に適正な値になるように、各部を制御し、本フローを終了する。適正な値は、一般指標であって、手動運転を実施するのに必要な能力を数値化したものである。ステップS63で実施される手動運転適性制御は、たとえば覚醒度が低い場合には、覚醒度が向上するように前述の図5の覚醒度向上制御が実施される。たとえば集中度が低い場合には、手動運転に集中できるように、音響装置31から集中を高める音楽を出力するように制御する。このときの基準となる覚醒度は、自動運転の監視作業よりも高い値に設定される。手動運転は、監視作業よりも必要な能力が高いからである。 In step S63, since automatic driving is changed to manual driving, each part is controlled so that the driver's arousal level and concentration level are appropriate for manual driving, and this flow is finished. The appropriate value is a general index, which is a numerical value of the ability required to carry out manual operation. In the manual driving aptitude control performed in step S63, for example, when the arousal level is low, the above-described arousal level improvement control of FIG. 5 is performed so that the arousal level is improved. For example, when the degree of concentration is low, control is performed so that music that enhances concentration is output from the audio device 31 so that the user can concentrate on manual operation. The awakening level serving as a reference at this time is set to a higher value than the monitoring operation for automatic driving. This is because manual operation requires a higher capacity than monitoring work.
 このように図6に示すフローチャートでは、自動運転から手動運転に切り替わるとき、運転者が手動運転に適した状態になるように、各部が制御される。これによって手動運転に必要な必要能力値に、運転者の使用能力値を近づけることができる。 As described above, in the flowchart shown in FIG. 6, when the automatic operation is switched to the manual operation, each unit is controlled so that the driver is in a state suitable for the manual operation. As a result, the use ability value of the driver can be brought close to the necessary ability value necessary for manual driving.
 また手動運転中は、前述の第1実施形態の図3と同様に、必要能力値と使用能力値とを比較して、車両用空調装置30、音響装置31および臭い発生装置32などを制御する。たとえば渋滞などにより、ストレスが高く快適度が低い場合には、鎮静効果のある香りやリズムが緩やかな楽曲を出力し、快適度を向上させる。また手動運転中に、覚醒度が低くなった場合にも、覚醒度が手動運転の適正値となるように、制御される。 Further, during manual operation, the required capacity value is compared with the use capacity value as in FIG. 3 of the first embodiment described above, and the vehicle air conditioner 30, the acoustic device 31, the odor generating device 32, and the like are controlled. . For example, when the stress is high and the comfort level is low due to a traffic jam or the like, a music with a gentle scent or rhythm is output and the comfort level is improved. Further, even when the wakefulness level becomes low during manual driving, control is performed so that the wakefulness level becomes an appropriate value for manual driving.
 次に、図7を用いて、手動運転から自動運転に切り替えるときの制御に関して説明する。ステップS71では、運転切替部44によって手動運転から自動運転に切替えられたか否かを判断し、自動運転に切替えられた場合には、ステップS72に移り、切替えられていない場合には、本フローを終了する。 Next, control when switching from manual operation to automatic operation will be described with reference to FIG. In step S71, it is determined whether or not the operation switching unit 44 has switched from manual operation to automatic operation. If the operation has been switched to automatic operation, the process proceeds to step S72. finish.
 ステップS72では、自動運転に切替えられたので、覚醒度および快適度を取得し、ステップS73に移る。覚醒度および快適度は、前述のようにドライバ指標化部43から取得する。 In step S72, since it was switched to automatic driving, the arousal level and the comfort level are acquired, and the process proceeds to step S73. The arousal level and the comfort level are acquired from the driver indexing unit 43 as described above.
 ステップS73では、手動運転から自動運転となるので、運転者の覚醒度および快適度が自動運転に適正な値になるように、各部を制御し、本フローを終了する。適正な値は、一般指標であって、自動運転が実施されるときに必要な能力を数値化したものである。ステップS73で実施される自動運転適性制御は、たとえば快適度が低く覚醒度が高いようであれば、自動運転に適した快適度となるように、リズムが緩やかな楽曲および香りを出力するように、音響装置31および臭い発生装置32を制御する。 In step S73, since manual driving is changed to automatic driving, each part is controlled so that the driver's arousal level and comfort level are appropriate for automatic driving, and this flow is ended. The appropriate value is a general index, which is a numerical value of the capability required when automatic driving is performed. In the automatic driving aptitude control executed in step S73, for example, if the comfort level is low and the arousal level is high, a music and a scent with a slow rhythm are output so that the comfort level is suitable for automatic driving. The sound device 31 and the odor generating device 32 are controlled.
 このように図7に示すフローチャートでは、手動運転から自動運転に切り替わるとき、運転者が自動運転に適した状態になるように、各部が制御される。これによって自動運転に必要な必要能力値に、運転者の使用能力値を近づけることができる。 Thus, in the flowchart shown in FIG. 7, when switching from manual operation to automatic operation, each unit is controlled so that the driver is in a state suitable for automatic operation. As a result, the use ability value of the driver can be brought close to the necessary ability value necessary for automatic driving.
 本実施形態では、自動運転制御部41は、運転切替部44によって自動運転と手動運転とが切替られるときに、固有指標と一般指標とを比較し、固有指標が一般指標に対して過不足がある場合には、過不足がなくなるように装置30,31,32を制御する。車両用空調装置30、音響装置31および臭い発生装置32は、出力部であって、運転者の車両の運転を補助する補助動作を行う。たとえば車両用空調装置30は、車室内を空調することによって、車室内を快適にして運転を補助する。また音響装置31は、車室内に楽曲を出力することによって、運転者をリラックスさせて運転を補助する。また臭い発生装置32は、刺激臭を発生させることによって、運転者を覚醒させて運転を補助する。したがって自動運転と手動運転とが切り替わって求められる一般指標が変化しても、固有指標を一般指標に対して過不足がなくなるように、すなわち固有指標を一般指標に近づけることができる。 In the present embodiment, the automatic operation control unit 41 compares the specific index with the general index when the automatic switching and the manual operation are switched by the operation switching unit 44, and the specific index is excessive or insufficient with respect to the general index. In some cases, the devices 30, 31, and 32 are controlled so that there is no excess or deficiency. The vehicle air conditioner 30, the acoustic device 31, and the odor generating device 32 are output units, and perform an auxiliary operation that assists the driver in driving the vehicle. For example, the vehicle air conditioner 30 assists driving by making the vehicle interior comfortable by air-conditioning the vehicle interior. The acoustic device 31 assists driving by relaxing the driver by outputting music in the passenger compartment. Further, the odor generating device 32 assists driving by awakening the driver by generating a stimulating odor. Therefore, even if the general index obtained by switching between automatic driving and manual driving changes, the inherent index can be made close to the general index so that the inherent index is not excessive or insufficient.
 また本実施形態では、自動運転制御部41は、自動運転中のときに、固有指標と一般指標とを比較し、固有指標が一般指標に対して過不足がある場合には、過不足がなくなるように、車両用空調装置30、音響装置31および臭い発生装置32を制御する。したがって自動運転中に運転者が自動運転の監視をする場合、固有指標を監視に対応する一般指標に対して過不足がなくなるように制御することができる。したがって運転者の監視を補助し、監視を怠ることを抑制することができる。 In the present embodiment, the automatic operation control unit 41 compares the specific index and the general index during the automatic operation, and if the specific index is excessive or insufficient with respect to the general index, the excessive or insufficient is eliminated. Thus, the vehicle air conditioner 30, the acoustic device 31, and the odor generating device 32 are controlled. Therefore, when the driver monitors the automatic driving during the automatic driving, the unique index can be controlled so as not to be excessive or deficient with respect to the general index corresponding to the monitoring. Therefore, it is possible to assist the driver's monitoring and to suppress the monitoring failure.
 本実施形態では、自動運転中でも運転者の操作を受け付ける自動運転であるが、このような運転者に主権がある自動運転に限るものではない。たとえば車両に主権があり、自動運転に運転者の操作を受け付けない完全自動運転であってもよい。このような場合には、運転者は監視する必要はないので、運転者の要望する環境、たとえば仮眠をとりたい場合には、心拍数よりもやや低い拍数の楽曲をおよび仮眠に適した香りを出力するように、音響装置31および臭い発生装置32を制御する。また、照明も制御できる構成であれば、仮眠に適した室内環境となるように、照明などを制御してもよい。 In the present embodiment, automatic driving that accepts a driver's operation even during automatic driving is performed, but the present invention is not limited to automatic driving in which the driver has sovereignty. For example, the vehicle may have sovereignty and may be fully automatic driving that does not accept driver's operation for automatic driving. In such a case, the driver does not need to monitor, so if you want to take a nap, for example, if you want to take a nap, a song with a slightly lower heart rate than the heart rate and a scent suitable for a nap Is controlled so that the sound device 31 and the odor generating device 32 are output. In addition, as long as the lighting can be controlled, the lighting or the like may be controlled so that the indoor environment is suitable for nap.
 また運転切替部44は、運転者の体調が悪い場合にも、手動運転から自動運転に切り替えてもよい。運転切替部44は、生体センサ28および車室内カメラ27の状況から、病気などで運転者の覚醒度が低く、その低い状態が装置30,31,32によって改善されない場合には、自動運転に移行して、安全な場所で停止させてもよい。また生体センサ28によって運転者が飲酒状態であることを検出した場合には、車両が停止中であるならば走行を禁止し、走行中であるならば自動運転に移行して、安全な場所で停止させてもよい。 Also, the operation switching unit 44 may switch from manual operation to automatic operation even when the driver is in poor physical condition. The driving switching unit 44 shifts to automatic driving when the driver's arousal level is low due to illness or the like and the low state is not improved by the devices 30, 31, and 32 due to the situation of the biosensor 28 and the vehicle interior camera 27. And you may stop at a safe place. If the biosensor 28 detects that the driver is in a drunk state, the vehicle is prohibited if the vehicle is stopped, and if the vehicle is traveling, the vehicle is shifted to automatic driving, and in a safe place. It may be stopped.
 本開示に記載されるフローチャート、あるいは、フローチャートの処理は、複数の部(あるいはステップと言及される)から構成され、各部は、たとえば、S1と表現される。さらに、各部は、複数のサブ部に分割されることができる、一方、複数の部が合わさって一つの部にすることも可能である。さらに、このように構成される各部は、サーキット、デバイス、モジュール、ミーンズとして言及されることができる。 The flowchart described in the present disclosure or the process of the flowchart is configured by a plurality of parts (or referred to as steps), and each part is expressed as, for example, S1. Furthermore, each part can be divided into a plurality of sub-parts, while the plurality of parts can be combined into one part. Furthermore, each part configured in this manner can be referred to as a circuit, a device, a module, and a means.
 また、上記の複数の部の各々あるいは組合わさったものは、(i) ハードウエアユニット(例えば、コンピュータ)と組み合わさったソフトウェアの部のみならず、(ii) ハードウェア(例えば、集積回路、配線論理回路)の部として、関連する装置の機能を含みあるいは含まずに実現できる。さらに、ハードウェアの部は、マイクロコンピュータの内部に構成されることもできる。 In addition, each of the above-mentioned plurality of parts or a combination thereof includes (i) not only a software part combined with a hardware unit (for example, a computer) but also (ii) hardware (for example, an integrated circuit, wiring) As a part of the logic circuit), it can be realized with or without including the functions of related devices. Further, the hardware unit can be configured inside the microcomputer.
 (その他の実施形態)
 以上、本開示の好ましい実施形態について説明したが、本開示は上述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。
(Other embodiments)
The preferred embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present disclosure.
 上記実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。 The structure of the above embodiment is merely an example, and the scope of the present disclosure is not limited to the scope of these descriptions. The scope of the present disclosure is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.
 前述の第1実施形態では、センシング部11は、直接各種の情報を検出しているがこのような構成に限るものではない。たとえばセンシング部11は、サーバなどから情報を取得してもよい。 In the first embodiment described above, the sensing unit 11 directly detects various types of information, but is not limited to such a configuration. For example, the sensing unit 11 may acquire information from a server or the like.
 前述の第1実施形態では、必要能力値および一般能力値は数値化して比較しているが、数値化した制御に限るものではない。数値化ではなく、予め定める段階によってレベル分けし、レベルを比較することによって、比較してもよい。したがって数値化でなく、予め優劣が付けられた指標であれば、数値に限るものではない。 In the above-described first embodiment, the required ability value and the general ability value are digitized and compared, but are not limited to the digitized control. The comparison may be made not by quantification but by dividing the level according to a predetermined stage and comparing the levels. Therefore, it is not limited to a numerical value as long as it is not a numerical value but an index with superiority or inferiority in advance.
 前述の第2実施形態では、固有情報取得部は、車両に搭載されている車室内カメラ27および生体センサ28によって実現されているが、車両に搭載されている必要はない。たとえば運転者が身につけているウェアラブル端末および運転者に取り付けられているセンサと通信して、運転者の各種情報を取得してもよい。 In the second embodiment described above, the unique information acquisition unit is realized by the vehicle interior camera 27 and the biological sensor 28 mounted on the vehicle, but it is not necessary to be mounted on the vehicle. For example, various information of the driver may be acquired by communicating with a wearable terminal worn by the driver and a sensor attached to the driver.
 前述の第2実施形態では、運転者の作業内容の一つは自動運転の監視であるが、車両の自動運転の監視に限るものではない。たとえば飛行機、宇宙船、人工衛星、電車、バスなどの移動手段および交通手段を監視する監視者に対して本システムを適用してもよい。また施設および建物を監視する監視室に駐在している監視者に対して本システムを適用してもよい。 In the above-described second embodiment, one of the work contents of the driver is the monitoring of the automatic driving, but is not limited to the monitoring of the automatic driving of the vehicle. For example, the present system may be applied to a supervisor who monitors moving means such as airplanes, spacecrafts, artificial satellites, trains, buses, and transportation means. Further, the present system may be applied to a monitor stationed in a monitoring room that monitors facilities and buildings.
 前述の第2実施形態では、自動運転と手動運転とが切り替える場面で、作業者の固有指標を用いて、各種アクチュエータを制御しているが、このような場面に限るものではない。たとえばオフィスで仕事と休憩とを切り替える場面で用いてもよく、たとえば飛行機のパイロットが自動運転と手動運転を切り替える場面で用いてもよい。また、たとえば長距離バスの運転手およびタクシードライバーにおいて、お客様の乗車中の場合と乗車していない場合とが切り替わるときに、適用してもよい。また、たとえば本システムを勉強机に搭載し、勉強および仕事と休憩との切り替える場面で用いてもよい。同様に車両の後席、飛行機のビジネスクラスのシートなど、タスクと休息とを切り替えて使われる空間で用いてもよい。 In the second embodiment described above, various actuators are controlled using the operator's unique index when switching between automatic operation and manual operation. However, the present invention is not limited to such a case. For example, it may be used when switching between work and break in the office, and may be used when, for example, an airplane pilot switches between automatic driving and manual driving. Further, for example, it may be applied when a long-distance bus driver and a taxi driver are switched between a case where the passenger is on board and a case where the passenger is not on the passenger. Further, for example, the present system may be mounted on a study desk and used in a scene where studying or switching between work and rest is performed. Similarly, it may be used in a space used by switching between task and rest, such as a rear seat of a vehicle or a business class seat of an airplane.
 さらに工場のラインで使用してもよい。定位置にて単純作業を繰り返すライン作業や夜勤業務など、人が覚醒レベルを維持し続けることが困難な環境で用いることで、作業内容に必要な覚醒度や集中度を適正な状態に保つことが可能となる。また作業者の状態を管理者に情報として出力することで、体調不良の作業者を検知し、安全面に配慮し、作業者に休息を促すことができる。 Furthermore, it may be used on the factory line. Use in an environment where it is difficult for people to maintain the awakening level, such as line work that repeats simple work at a fixed position or night shift work, to maintain the arousal level and concentration required for the work content in an appropriate state Is possible. Further, by outputting the worker's state as information to the manager, it is possible to detect a worker with poor physical condition, consider safety, and prompt the worker to rest.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (6)

  1.  作業者の現在の作業内容に関する情報を取得する内容取得部(11)と、
     前記作業者を取り巻く作業環境に関する情報を取得する環境取得部(11)と、
     前記作業者が前記作業内容によって使用している能力を指標化する固有指標部(12,43)と、
     前記作業環境および前記作業内容に基づいて前記作業者が前記作業内容を実施するために必要な能力を指標化する一般指標部(12,41)と、
     前記作業者に対して前記作業内容に関連する情報を出力する出力部(13,30、31、32)と、
     前記出力部を制御する制御部(12,29,41)と、を含み、
     前記制御部は、前記固有指標部によって得られた固有指標と前記一般指標部よって得られた一般指標とを比較し、前記固有指標が前記一般指標に対して過不足がある場合には、過不足がなくなるように前記出力部から出力される情報の内容を変更する作業能力制御システム。
    A content acquisition unit (11) for acquiring information on the current work content of the worker;
    An environment acquisition unit (11) for acquiring information on a work environment surrounding the worker;
    A unique index section (12, 43) for indexing the ability used by the worker according to the work content;
    A general indicator unit (12, 41) for indexing the ability of the worker to perform the work content based on the work environment and the work content;
    An output unit (13, 30, 31, 32) for outputting information related to the work content to the worker;
    A control unit (12, 29, 41) for controlling the output unit,
    The control unit compares the specific index obtained by the specific index unit with the general index obtained by the general index unit, and if the specific index is excessive or insufficient with respect to the general index, A work capability control system that changes the content of information output from the output unit so that there is no shortage.
  2.  前記作業者の固有情報を取得する固有取得部(11,27,28)を、さらに含み、
     前記一般指標部は、前記作業環境、前記作業内容および前記固有情報に基づいて前記作業者が実施するための必要な能力を指標化する請求項1に記載の作業能力制御システム。
    A unique acquisition unit (11, 27, 28) for acquiring unique information of the worker;
    2. The work capability control system according to claim 1, wherein the general index unit indexes a capability required for the worker to perform based on the work environment, the work content, and the unique information.
  3.  前記固有情報には、前記作業者の生体情報が含まれ、
     前記固有指標部は、前記作業内容および前記生体情報に基づいて前記作業者が前記作業内容によって使用している能力を指標化する請求項2に記載の作業能力制御システム。
    The unique information includes the worker's biological information,
    The work capability control system according to claim 2, wherein the unique index unit indexes the ability used by the worker according to the work content based on the work content and the biological information.
  4.  前記作業者は、車両を運転する運転者であり、
     前記作業内容は、前記車両の運転であり、
     前記作業環境は、車内の環境情報、車外の天候情報および道路状況に関する情報である請求項1~3のいずれか1つに記載の作業能力制御システム。
    The worker is a driver who drives a vehicle,
    The work content is driving the vehicle,
    The work capacity control system according to any one of claims 1 to 3, wherein the work environment is environment information inside the vehicle, weather information outside the vehicle, and information related to road conditions.
  5.  自動運転を行う前記車両に搭載され、
     自動運転と手動運転とを切り替える運転切替部(44)をさらに含み、
     前記出力部は、前記運転者の前記車両の運転を補助する補助動作を行い、
     前記制御部は、前記運転切替部によって自動運転と手動運転とが切替られるときに、前記固有指標と前記一般指標とを比較し、前記固有指標が前記一般指標に対して過不足がある場合には、過不足がなくなるように前記出力部が行う補助動作の内容を変更する請求項4に記載の作業能力制御システム。
    Mounted on the vehicle for automatic driving,
    An operation switching unit (44) for switching between automatic operation and manual operation;
    The output unit performs an auxiliary operation to assist the driver in driving the vehicle,
    The control unit compares the specific index with the general index when automatic operation and manual operation are switched by the operation switching unit, and the specific index is excessive or insufficient with respect to the general index. The work capability control system according to claim 4, wherein the content of the auxiliary operation performed by the output unit is changed so as to eliminate excess and deficiency.
  6.  自動運転を行う前記車両に搭載され、
     自動運転中の前記作業内容は、自動運転の監視であり、
     前記出力部は、前記運転者の自動運転の監視を補助する補助動作を行い、
     前記制御部は、前記車両が自動運転中のときに、前記固有指標と前記一般指標とを比較し、前記固有指標が前記一般指標に対して過不足がある場合には、過不足がなくなるように前記出力部が行う補助動作の内容を変更する請求項4に記載の作業能力制御システム。

     
    Mounted on the vehicle for automatic driving,
    The work content during automatic operation is monitoring of automatic operation,
    The output unit performs an auxiliary operation to assist monitoring of the driver's automatic driving,
    The control unit compares the specific index with the general index when the vehicle is in automatic operation, and if the specific index is excessive or insufficient with respect to the general index, the excess or shortage is eliminated. The work capability control system according to claim 4, wherein the content of the auxiliary operation performed by the output unit is changed.

PCT/JP2015/005390 2014-10-30 2015-10-27 Work capability control system WO2016067594A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-221636 2014-10-30
JP2014221636 2014-10-30
JP2015-142168 2015-07-16
JP2015142168A JP2016088497A (en) 2014-10-30 2015-07-16 Work capability control system

Publications (1)

Publication Number Publication Date
WO2016067594A1 true WO2016067594A1 (en) 2016-05-06

Family

ID=55856960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005390 WO2016067594A1 (en) 2014-10-30 2015-10-27 Work capability control system

Country Status (1)

Country Link
WO (1) WO2016067594A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208002A (en) * 2016-05-20 2017-11-24 トヨタ自動車株式会社 vehicle
WO2018150804A1 (en) * 2017-02-15 2018-08-23 株式会社デンソー Vehicle air conditioning unit
JP2018131195A (en) * 2017-02-15 2018-08-23 株式会社デンソー Vehicular air-conditioning unit
JP2019008427A (en) * 2017-06-21 2019-01-17 株式会社デンソー Wakefulness maintaining device
JP2020045015A (en) * 2018-09-20 2020-03-26 株式会社デンソー Wakefulness maintenance device, wakefulness maintenance method, and control program
JP2021078890A (en) * 2019-11-20 2021-05-27 花王株式会社 Evaluation method of comfort of sensory stimulation to skin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261432A (en) * 2006-03-28 2007-10-11 Toyota Motor Corp Control device for vehicle
WO2008120312A1 (en) * 2007-03-28 2008-10-09 Pioneer Corporation Condition judging device, condition judging method, and condition judging program
JP2010143362A (en) * 2008-12-18 2010-07-01 Konica Minolta Holdings Inc Driver support system
JP2011162132A (en) * 2010-02-12 2011-08-25 Toyota Motor Corp Automatic driving device
JP2012059274A (en) * 2011-10-07 2012-03-22 Toyota Motor Corp Automatic drive vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261432A (en) * 2006-03-28 2007-10-11 Toyota Motor Corp Control device for vehicle
WO2008120312A1 (en) * 2007-03-28 2008-10-09 Pioneer Corporation Condition judging device, condition judging method, and condition judging program
JP2010143362A (en) * 2008-12-18 2010-07-01 Konica Minolta Holdings Inc Driver support system
JP2011162132A (en) * 2010-02-12 2011-08-25 Toyota Motor Corp Automatic driving device
JP2012059274A (en) * 2011-10-07 2012-03-22 Toyota Motor Corp Automatic drive vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208002A (en) * 2016-05-20 2017-11-24 トヨタ自動車株式会社 vehicle
US10259471B2 (en) 2016-05-20 2019-04-16 Toyota Jidosha Kabushiki Kaisha Vehicle
WO2018150804A1 (en) * 2017-02-15 2018-08-23 株式会社デンソー Vehicle air conditioning unit
JP2018131195A (en) * 2017-02-15 2018-08-23 株式会社デンソー Vehicular air-conditioning unit
CN110290956A (en) * 2017-02-15 2019-09-27 株式会社电装 Vehicular air-conditioning unit
US11247531B2 (en) 2017-02-15 2022-02-15 Denso Corporation Vehicle air conditioning unit
JP2019008427A (en) * 2017-06-21 2019-01-17 株式会社デンソー Wakefulness maintaining device
JP7087286B2 (en) 2017-06-21 2022-06-21 株式会社デンソー Awakening maintenance device
JP2020045015A (en) * 2018-09-20 2020-03-26 株式会社デンソー Wakefulness maintenance device, wakefulness maintenance method, and control program
JP2021078890A (en) * 2019-11-20 2021-05-27 花王株式会社 Evaluation method of comfort of sensory stimulation to skin
JP7290553B2 (en) 2019-11-20 2023-06-13 花王株式会社 Evaluating the Comfortability of Sensory Stimulation to the Skin

Similar Documents

Publication Publication Date Title
JP2016088497A (en) Work capability control system
WO2016067594A1 (en) Work capability control system
US11383721B2 (en) System and method for responding to driver state
CN106462027B (en) Method for controlling a vehicle system in a motor vehicle
US11377094B2 (en) System and method for responding to driver behavior
US9956963B2 (en) Apparatus for assessing, predicting, and responding to driver fatigue and drowsiness levels
US9475502B2 (en) Coordinated vehicle response system and method for driver behavior
CN105073474B (en) For the vehicle response system and method for the coordination of driving behavior
WO2016047063A1 (en) Onboard system, vehicle control device, and program product for vehicle control device
WO2013008301A1 (en) Vehicle emergency withdrawal device
CN111068158B (en) Psychological and physical state inducing apparatus, psychological and physical state inducing method, and storage medium storing control program
CN113491519A (en) Digital assistant based on emotion-cognitive load
JP2018008575A (en) Vehicle control device
Fernandes et al. Characteristics and human factors of older drivers: improvement opportunities in automotive interior design
WO2020039994A1 (en) Car sharing system, driving control adjustment device, and vehicle preference matching method
WO2022123998A1 (en) Vehicle assistance device and vehicle assistance method
WO2023204218A1 (en) Cognitive ability estimation apparatus and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853899

Country of ref document: EP

Kind code of ref document: A1