WO2016060297A1 - Dual-target antibody having binding ability to vegfr-2 and c-met - Google Patents

Dual-target antibody having binding ability to vegfr-2 and c-met Download PDF

Info

Publication number
WO2016060297A1
WO2016060297A1 PCT/KR2014/009697 KR2014009697W WO2016060297A1 WO 2016060297 A1 WO2016060297 A1 WO 2016060297A1 KR 2014009697 W KR2014009697 W KR 2014009697W WO 2016060297 A1 WO2016060297 A1 WO 2016060297A1
Authority
WO
WIPO (PCT)
Prior art keywords
met
cancer
vegfr
antibody
target antibody
Prior art date
Application number
PCT/KR2014/009697
Other languages
French (fr)
Korean (ko)
Inventor
유진상
유진산
김성우
김연주
전미애
변상순
이영애
박미주
이혁준
김도윤
최진희
이원섭
심상렬
Original Assignee
주식회사 파멥신
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파멥신 filed Critical 주식회사 파멥신
Priority to PCT/KR2014/009697 priority Critical patent/WO2016060297A1/en
Publication of WO2016060297A1 publication Critical patent/WO2016060297A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins

Definitions

  • the present invention relates to a double target antibody having binding to VEGFR-2 and c-Met, and more particularly to a light chain variable region having an amino acid sequence represented by SEQ ID NO: 1 and a heavy chain variable region represented by SEQ ID NO: 2 Branched c-Met (Mesenchymal Epithelial Transition factor) neutralizing peptide represented by SEQ ID NO: 3 or SEQ ID NO: 4 at the end of the light chain variable region or the heavy chain variable region of the VEGFR-2 (Vasicular Endothelial Growth Factor Receptoer-2) neutralizing antibody
  • the present invention relates to a dual target antibody having binding to VEGFR-2 and c-Met bound thereto, a method for preparing the dual target antibody, and a pharmaceutical composition comprising the dual target antibody.
  • Angiogenesis-inhibiting antibodies targeting the VEGF receptor, VEGFR-2 are identified and developed from Dyax's native phage display library, Imclone's IMC-1121B (EP1916001A2) and UCB's CDP-791. (PCT / GB02 / 04619), and Tanibirumab (TTAC-0001, Tanibirumab, Korean Patent No. 883,430 and WO 2008/153237) developed by the researchers.
  • IMC-1121B is a monoclonal antibody selected from a complete human Fab library, and currently undergoes phase 3 clinical trials for metastatic breast and gastric cancer and combined with paclitaxel in patients with gastric cancer, resulting in overall survival and tumor progression survival. progression-free survival).
  • UCB's CDP-791 is a humanized antibody that is a first-line treatment for the treatment of non-small cell lung cancer in the form of PEGylated Di-Fab. It showed improvement in. Because the antibody does not have an Fc, antibody-dependent cell-mediated cytotoxicity or complement-dependent cytotoxicity cannot be expected.
  • Tanivirumab developed by the present inventors and currently studied in the first stage of clinical trials without toxicity problems, is a monoclonal antibody selected from the complete human ScFv phage library of Paxinsin, which targets VEGFR-2 and simultaneously mouse or rat. It is the only antibody that is responsive to the derived flk-1 (VEGFR-2 homologue), which is one of the important characteristics that distinguishes it from IMC-1121B from Imclones (WO 2008/153237). In particular, the cross-species cross reactivity shown by the Tanibirumap has allowed the study of animal disease models.
  • HGF / c-Met signaling mechanism is well known to contribute greatly to the growth and metastasis of tumor cells by overexpression in various cancer tissues and tumor cells.
  • C-Met Mesenchymal-epithelial transition factor
  • beta subunits consisting of subunits and extracellular, cell membrane permeation, tyrosine kinase domains and phosphorylation related tyrosine motifs
  • HGF / scatter factor HGF / scatter factor
  • C-Met responds to HGF and stimulates various signaling pathways through phosphorylation of c-Met to enhance mitogenesis and cell motility of cancer cells and vascular cells, inhibit cell death, It promotes the formation and transformation of cancer by inducing invasion and metastasis into the extracellular matrix (ECM) (Jeffers et al., J. Mol. Med., 74: 505, 1996; Amicone et al, EMBO J. , 16:.... 495, 1997; Matsumoto and Nakamura, Biochem Biophys Res Comm, 239: 639, 1997; Corps et al, Int.J. Cancer, 73:.. 151 , 1997).
  • ECM extracellular matrix
  • glioma gliomas, Koochekpour et al., Cancer Res ., 57: 5391, 1997)
  • breast cancer Nagy et al., Surg. Oncol ., 5: 15,1996; Tuck et al., Am. J. Pathol. , 148: 225, 1996)
  • pancreatic cancer Esbert et al., Cancer Res., 54: 5775, 1994
  • pleural mesotheliomas Tolpay et al., J. Cancer Res. Clin.Oncol., 124 : 291, 1998
  • c-Met and HGF are reported to be overexpressed in various cancer tissues and cells at the same time, but the development of cancer is also progressed through the overexpression of c-Met regardless of HGF.
  • liver cancer hepatocellular carcinoma, Suzuki et al., Hepatology , 20 (5): 1231, 1996)
  • gastric cancer Teaniguchi et al., Cancer , 82: 2112-2122 (1998), lung cancer) et al., J. Pathol., 180: 389, 1996)
  • kidney cancer Naatali et al., Intl. J. Cancer , 69: 212, 1996)
  • ovarian cancer Nagy et al., J.
  • a second method of neutralizing HGF / c-Met signaling mechanism is a method of inhibiting the binding of c-Met and its ligand, HGF.
  • Such methods include missing HGF fragments (Matsumoto & Nakamura, Cancer Sci., 94 (4): 321,2003) or antibodies that neutralize HGF (Cao et al., PNAS., 98 (13): 7443, 2001; Kim et al., Clin.
  • Selected peptides are also applied to molecular imaging to search for tissues or organs in vivo that c-Met is overexpressed (Cao et al., Clin. Cancer Res ., 13 (20); 6049, 2007). They have the limitation of inhibiting only HGF-dependent c-Met activation, but since they show real anticancer effects in vitro or in vivo, they can be combined with existing chemotherapy. It is considered to be useful.
  • gefitinib and erlotinib (EGFR) kinase inhibitors, gefitinib and erlotinib are often used as effective cancer drugs, but drug resistance is often caused by intensive amplification of c-Met receptors. (Engelman et al., Science , 316 (5827): 1039, 2007), therefore, anti-cancer effects are expected to be amplified by incorporating c-Met inhibitors.
  • Antibodies currently targeting HGF include AMG-102 (Rilotumumab, Burgess et al., Mol. Cancer Ther ., 9: 400, 2010), which binds to the SPH domain of Amgen, AV-299 from AVEO Pharmaceuticals (Ficlatuzumab). ) Is currently under clinical development, and only one arm of c-Met antibody, which was originally bivalent in order to suppress the activation mode of the antibody itself, is used as an antibody targeting c-Met.
  • MetMab (Onartuzumab, PRO143966) developed as a monovalent (3) breast cancer that lacks both the estrogen receptor (ER), the progesterone receptor (PR) and Her2 / neu (EGFR-2 receptor) (Triple negative breast cancer) and NSCLC (non-small cell lung cancer) are undergoing phase 2 clinical trials, and Lilly LA-480 (LY2875358) is undergoing phase 1 clinical trials.
  • ER estrogen receptor
  • PR progesterone receptor
  • EGFR-2 receptor Her2 / neu
  • NSCLC non-small cell lung cancer
  • C-Met interacts with other signaling systems such as EGFR, semaphorin 4D receptor, transforming growth factor- ⁇ (TGF ⁇ ), WNT, tetraspanins kangai 1 (KAI1 or CD82), and CD151 to help cells grow, differentiate, regenerate, and cancer. Influence (Gherardi, Nat. Rev. Cancer, 12:89, 2012).
  • TGF ⁇ transforming growth factor- ⁇
  • WNT tetraspanins kangai 1
  • CD151 tetraspanins kangai 1
  • HGF the only ligand of C-Met, consists of N-terminal domain, four Kringle (K1 ⁇ K4) domains, and C-terminal serine proteinase homology (similar domain of serine protease), NK1 (Chirgadze et al., Nature Struct. Biol. , 6:72, 1999; Ultsch et al., Structur e 6: 1383, 1998), NK2 (Tolbert et al., Proc. Natl Acad. Sci. USA, 107 : 13264, 2010), in the form of a complex of the SPH fragment and the SPH domain (Kirchhofer et al., J. Biol. Chem.
  • HGF is a complex, unstable form of protein that consists of several domains and has a structural and functional relationship with plasma protein, a plasma cleavage precursor, plasminogen. Structural rearrangements occur, and HGF-Met signaling must be made before activated HGF is produced (Gherardi et al. Proc. Natl. Acad. Sci. USA , 103: 4046, 2006).
  • NK1 a splicing variant of HGF, activates c-Met very weakly compared to HGF, but is enhanced by heparan-sulfate proteoglycan (HSPG) (Schwall et al., J. Cell. Biol., 133: 709 , 1996).
  • HGFA HGF activator
  • matriptase ST14
  • hepsin hepsin
  • Matriptase (ST14) and hepsin express c-Met.
  • HGFA is a water-soluble factor, cleaved by thrombin, and serves to connect HGF / c-Met signals involved in blood coagulation and tissue regeneration (Shimomura et al., J. Biol. Chem). 268: 22927, 1993).
  • HGF activation is regulated by at least HAI1 (HGF activator inhibitor 1; SPINT1), HAI2 (HGF activator inhibitor 2; SPINT2), two inhibitors (inhibitors), such as increased matriptase or hepsin expression, or HAI1
  • HAI1 HGF activator inhibitor 1
  • SPINT2 HGF activator inhibitor 2
  • two inhibitors inhibitors
  • CBL a ubiquitin E3 ligase as another c-Met inhibitor
  • c-Met degradation is induced, which causes Tyr1003 motifs to be removed or mutations that cause c-Met to be recycled without degradation (Peschard et al., Mol. Cell, 8). : 995, 2001).
  • HGF HGF-like protein
  • NK2 activates c-Met by opening the "closed" monomer conformation of the N-terminal domain and the second Kringle domain (K2).
  • K2 K2
  • NK4 is well known as an antagonist of HGF, but its expression and production are not available (Nakamura et al., Anticancer Agents Med. Chem. , 10:36, 2010).
  • Efforts have been made to inhibit c-Met activation using HGF variants such as NK1, NK2, and NK4, but these variants have shown poor results in terms of protein expression and stability.
  • NK1 is the smallest form of functional HGF, which is unstable, with difficulty in protein expression (Tolbert et al., Proc. Natl. Acad. Sci. USA , 104: 14592, 2007; Lokker et al., EMBO J., 11: 2503, 1992).
  • a group at Stanford University has directed NK1 through direct error (error prone polymerase chain reaction) to increase the expression rate of NK1 by 40 times and increase the melting temperature (Tm, melting temperature).
  • Tm melting temperature
  • c-Met targeting may be a good treatment for resistance to antiangiogenic therapy (Comoglio et al., Nat. Rev. Drug. Discov ., 7: 504, 2008). Inhibition of c-Met activity In the case of restoring the activity of VEGFR-2 antagonist (You et al., Cancer Res. 71: 4758, 2011), the treatment that simultaneously inhibits the activity of VEGFR-2 and c-Met is an anti-neovascular inhibitor. It is thought that the therapeutic efficiency of tumors can be improved.
  • the present inventors have made diligent efforts to develop a dual target antibody having a cancer treatment effect by inhibiting angiogenesis.
  • the present inventors prepared an IgG-based dual target antibody capable of simultaneously neutralizing VEGFR-2 and c-Met.
  • the present invention has been completed by confirming that the dual target antibody shows a comparable or better anticancer effect at the cellular level compared to the VEGFR-2 single target antibody or c-Met antagonist domain.
  • Still another object of the present invention is to provide a host cell transformed with a recombinant vector containing the DNA encoding the dual target antibody.
  • Another object of the invention (a) culturing the host cell transformed with the recombinant vector to produce a dual target antibody having binding to VEGFR-2 and c-Met; And (b) obtaining a dual target antibody having binding to the generated VEGFR-2 and c-Met, the method for preparing a dual target antibody having binding to VEGFR-2 and c-Met.
  • Still another object of the present invention is to provide a pharmaceutical composition for inhibiting angiogenesis, including the double target antibody.
  • Another object of the present invention to provide a pharmaceutical composition for treating cancer comprising the double target antibody.
  • the present invention is a VEGFR-2 (Vasicular Endothelial Growth Factor Receptoer-2) neutralizing antibody having a light chain variable region having an amino acid sequence represented by SEQ ID NO: 1 and a heavy chain variable region represented by SEQ ID NO: 2 Has binding to VEGFR-2 and c-Met to which a c-Met (Mesenchymal Epithelial Transition factor) neutralizing peptide represented by SEQ ID NO: 3 or SEQ ID NO: 4 is bound to the end of the light chain variable region or the heavy chain variable region.
  • VEGFR-2 Vasicular Endothelial Growth Factor Receptoer-2
  • SEQ ID NO: 1 has binding to VEGFR-2 and c-Met to which a c-Met (Mesenchymal Epithelial Transition factor) neutralizing peptide represented by SEQ ID NO: 3 or SEQ ID NO: 4 is bound to the end of the light chain variable region or the heavy chain variable region.
  • the present invention also provides a DNA encoding the dual target antibody and a recombinant vector containing the DNA.
  • the present invention also provides a host cell transformed with a recombinant vector containing the DNA encoding the dual target antibody.
  • the present invention comprises the steps of (a) culturing the host cell transformed with the recombinant vector to generate a dual target antibody having binding to VEGFR-2 and c-Met; And (b) obtaining a dual target antibody having binding to the generated VEGFR-2 and c-Met, the method for preparing a dual target antibody having binding to VEGFR-2 and c-Met. to provide.
  • the present invention provides a pharmaceutical composition for inhibiting angiogenesis comprising the double target antibody.
  • the present invention also provides a pharmaceutical composition for treating cancer comprising the double target antibody.
  • Figure 1 shows that the production of the vector pPMC-102 according to the present invention using 293T cells, the expression rate of PMC-102 is very low by Western blot and ELISA (a and b), pPMC-102FC in 293T cells After optional expression and purification, the production and purification of the dual target antibody PMC-102FC was confirmed by SDS-PAGE.
  • Figure 2 shows the nucleotide sequence of the NK1 domain of HGF and its variants that bind to c-Met.
  • FIG. 3 is a schematic diagram of the entire pPMC-102FC including the heavy chain (b) the nucleotide sequence of the light chain portion of the PMC-102FC obtained by performing codon optimization when constructing the vector pPMC-102FC according to the present invention. a) is shown.
  • Figure 4 shows the binding capacity and affinity for VEGFR-2 and human and mouse c-Met of the dual target antibody according to the present invention (a) and co-binding capacity (b) for VEGFR-2 and human and mouse c-Met BiaCore The analysis results are shown.
  • Figure 5 shows the results of proliferation assay in the BxPC3 cell line (a) of the dual target antibody PMC-102 in accordance with the present invention, and in the KP-4 cell lines (b and c) of PMC-102FC.
  • Figure 6 shows the results of the proliferation assay (proliferation assay) for HUVEC of the dual target antibody PMC-102FC according to the present invention.
  • Figure 7 shows the results of Western blot analysis of the phenomenon that the activation of c-Met is inhibited, the activation of Erk is inhibited when the dual target antibody PMC-102FC according to the present invention treated KP-4.
  • Figure 8 shows the results of Western blot analysis of a phenomenon in which the activation of VEGFR-2 is inhibited and the activation of Erk is inhibited when the dual target antibody according to the present invention is treated with HUVEC.
  • the present invention consistently, the light chain variable region of the VEGFR-2 (Vasicular Endothelial Growth Factor Receptoer-2) neutralizing antibody having a light chain variable region having an amino acid sequence represented by SEQ ID NO: 1 and a heavy chain variable region represented by SEQ ID NO: 2 Dual-target antibody having binding to VEGFR-2 and c-Met to which a c-Met (Mesenchymal Epithelial Transition factor) neutralizing peptide represented by SEQ ID NO: 3 or SEQ ID NO: 4 at the end of the region or the heavy chain variable region is bound It is about.
  • VEGFR-2 Vasicular Endothelial Growth Factor Receptoer-2
  • Dual-target antibody having binding to VEGFR-2 and c-Met to which a c-Met (Mesenchymal Epithelial Transition factor) neutralizing peptide represented by SEQ ID NO: 3 or SEQ ID NO: 4 at the end of the region or the heavy chain variable region is bound It is about.
  • VEGF / VEGFR and HGF / c-Met signaling mechanisms were targeted to simultaneously inhibit tumor proliferation and metastasis.
  • Tanibirumab (TTAC-0001, Tanibirumab, Republic of Korea Patent No. 883,430 and WO 2008/153237), which forms the skeleton of the dual target antibody, targets VEGFR-2 and at the same time flk derived from mouse or rat.
  • Reactive to -1 and the second target c-Met targeting domain is also designed to target human and mouse at the same time, enabling the study of animal disease model using cross-reactivity between different species, Induce transitional research and develop anticancer drugs for specific cancers in the future to make related research easier.
  • the VEGFR-2 neutralizing antibody may be characterized in that the scFV (Single Chain Fragment Variable) or IgG, light chain variable region or heavy chain variable region of the c-Met neutralizing peptide and the VEGFR-2 neutralizing antibody May be connected via a linker.
  • scFV Single Chain Fragment Variable
  • IgG single Chain Fragment Variable
  • light chain variable region or heavy chain variable region of the c-Met neutralizing peptide and the VEGFR-2 neutralizing antibody May be connected via a linker.
  • the c-Met neutralizing peptide may be connected to the N-terminus or C-terminus of the light chain variable region or heavy chain variable region of the VEGFR-2 neutralizing antibody.
  • pPMC-102.Lgt is prepared by linking NK1 (amino acids 28 to 210: SEQ ID NO: 3) domains to the amino terminus of the light chain sequence (SEQ ID NO: 1) of Tanivirumab with a linker.
  • NK1 amino acids 28 to 210: SEQ ID NO: 3
  • SEQ ID NO: 1 amino acids 28 to 210: SEQ ID NO: 3
  • a heavy chain sequence vector of Tanivirumab, 293T cells were co-transduced to express a dual target antibody that simultaneously inhibits the activity of VEGFR-2 and C-Met.
  • the change in the proliferative capacity of the cancer cells BxPC3 and KP4 after treatment with the dual target antibody PMC-102FC was analyzed, and as a result, when the PMC-102 is treated with 10 ⁇ g / ml in BxPC3, the proliferation of the cells effectively was inhibited (FIG. 5A).
  • KP4 an autocrine cell line of HGF, was also used to inhibit the proliferation of cells compared to the Tanibirumab, a skeletal antibody, and the inhibitory effect was similar to that of the c-Met inhibitor (SantaCruz, USA) (FIG. 5B). And FIG. 5C).
  • the proliferative capacity of vascular endothelial cells was confirmed, and as a result, the dual target antibody PMC-102FC inhibited the proliferative capacity of HUVEC cells caused by VEGF. It was inhibited similarly to the chain Tanibimap, and also blocked the effects of HGF at the same time, it was confirmed that even when the VEGF and HGF treatment at the same time can more strongly inhibit the proliferative capacity of HUVEC than Tanibimap ( Figure 6a and 6b) ).
  • PMC-102FC can effectively inhibit c-Met phosphorylation in KP4 cells, which are pancreatic cancer cells (Fig. 7), PMC-102FC phosphorylation of VEGFR-2 and c-Met At the same time it was confirmed that can be effectively inhibited (Fig. 8).
  • the present invention relates to a DNA encoding the dual target antibody and a recombinant vector containing the DNA.
  • the DNA encoding the double-target antibody is a DNA encoding the light chain variable region of the VEGFR-2 neutralizing antibody represented by SEQ ID NO: 6 and the fragment to which the c-Met neutralizing peptide is bound, and the VEGFR- represented by SEQ ID NO: 7 It may be characterized by comprising a DNA encoding a heavy chain variable region of the two neutralizing antibodies.
  • vector refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host.
  • Vectors can be plasmids, phage particles or simply potential genomic inserts. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of current vectors, “plasmid” and “vector” are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use plasmid vectors.
  • Typical plasmid vectors that can be used for this purpose include (a) a replication initiation point that allows for efficient replication to include hundreds of plasmid vectors per host cell, and (b) host cells transformed with the plasmid vector. It has a structure comprising an antibiotic resistance gene and (c) a restriction enzyme cleavage site into which foreign DNA fragments can be inserted. Although no appropriate restriction enzyme cleavage site is present, the use of synthetic oligonucleotide adapters or linkers according to conventional methods facilitates ligation of the vector and foreign DNA.
  • the vector After ligation, the vector should be transformed into the appropriate host cell. Transformation is described by Sambrook, et. al., easily achieved using the calcium chloride method described in section 1.82 of supra . Alternatively, electroporation (Neumann, et. Al., EMBO J. , 1: 841, 1982) can also be used for transformation of these cells.
  • Nucleic acids are "operably linked” when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to enable gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s).
  • the DNA for a pre-sequence or secretion leader is operably linked to the DNA for the polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation.
  • "operably linked” means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame.
  • enhancers do not need to touch.
  • Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used.
  • the gene to raise the expression level of a transfected gene in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that function in the selected expression host.
  • the expression control sequence and the corresponding gene will be included in one recombinant vector containing the bacterial selection marker and the replication origin. If the host cell is a eukaryotic cell, the recombinant vector must further comprise an expression marker useful in the eukaryotic expression host.
  • Host cells transformed with the recombinant vectors described above constitute another aspect of the present invention.
  • transformation means introducing DNA into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
  • the present invention relates to a host cell transformed with a recombinant vector containing the DNA encoding the dual target antibody.
  • the present invention is (a) culturing a host cell transformed with the DNA encoding the dual target antibody and the recombinant vector containing the DNA to have a double binding to VEGFR-2 and c-Met Generating a target antibody; And (b) obtaining a dual target antibody having binding to the generated VEGFR-2 and c-Met, the method for producing a dual target antibody having binding to VEGFR-2 and c-Met. It is about.
  • the double-target antibody of the present invention can be used as a pharmaceutical, as a pharmaceutical composition for the purpose of preventing and / or treating diseases and cancers caused by excessive angiogenesis.
  • Antibodies of the invention can be formulated and administered orally or parenterally.
  • the formulation containing the antibody of the present invention can be safely administered to a human or animal as a pharmaceutical composition.
  • the present invention relates to a pharmaceutical composition for inhibiting angiogenesis comprising the double target antibody and a method for inhibiting angiogenesis using the double target antibody.
  • the antihypertensive composition of the present invention is a tumor growth and metastasis caused by excessive angiogenesis (metastasis), age-related macular degeneration (ARMD), diabetic retinopathy, psoriasis It can be used for the treatment of diseases such as psoriasis, rheumatoid arthritis, chronic inflammation.
  • the present invention relates to a pharmaceutical composition for treating cancer comprising the double target antibody and a method for treating cancer using the double target antibody.
  • the cancer is composed of stomach cancer, liver cancer, lung cancer, thyroid cancer, breast cancer, cervical cancer, colon cancer, pancreatic cancer, rectal cancer, colorectal cancer, prostate cancer, kidney cancer, melanoma, prostate cancer bone metastasis cancer, ovarian cancer It may be characterized in that it is selected from the group.
  • Carriers used in the pharmaceutical compositions of the present invention include pharmaceutically acceptable carriers, adjuvants and vehicles and are collectively referred to as pharmaceutically acceptable carriers.
  • Pharmaceutically acceptable carriers that can be used in the pharmaceutical compositions of the invention include, but are not limited to, ion exchange, alumina, aluminum stearate, lecithin, serum proteins (eg, human serum albumin), buffer materials (eg, Various phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids), water, salts or electrolytes (e.g.
  • protamine sulfate disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride and zinc salts
  • colloidal Silica magnesium trisilicate
  • polyvinyl pyrrolidone polyvinyl pyrrolidone
  • cellulose-based substrates polyethylene glycols, sodium carboxymethylcellulose, polyarylates, waxes, polyethylene-polyoxypropylene-blocking polymers, polyethylene glycols and wool, and the like.
  • the route of administration of the pharmaceutical composition according to the present invention is not limited thereto, but is oral, intravenous, intramuscular, intraarterial, intramedullary, intradural, intracardiac, transdermal, subcutaneous, intraperitoneal, intranasal, intestinal, topical, Sublingual or rectal.
  • parenteral includes subcutaneous, intradermal, intravenous, intramuscular, intraarticular, intramuscular, intrasternal, intradural, intralesional and intracranial injection or infusion techniques.
  • compositions may be in the form of sterile injectable preparations as sterile injectable aqueous or oily suspensions.
  • This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (eg, Tween 80) and suspending agents.
  • Sterile injectable preparations may also be sterile injectable solutions or suspensions (eg, solutions in 1,3-butanediol) in nontoxic parenterally acceptable diluents or solvents.
  • Vehicles and solvents that may be used that are acceptable include mannitol, water, ring gel solution, and isotonic sodium chloride solution.
  • sterile nonvolatile oils are conventionally employed as a solvent or suspending medium.
  • any non-irritating oil may be used including synthetic mono or diglycerides.
  • Fatty acids such as oleic acid and its glyceride derivatives, are useful in injection formulations as well as pharmaceutically acceptable natural oils (eg olive oil or castor oil), especially their polyoxyethylated ones.
  • compositions of the present invention may be administered orally in any orally acceptable dosage form, including but not limited to capsules, tablets, and aqueous suspensions and solutions.
  • commonly used carriers include lactose and corn starch.
  • Lubricants such as magnesium stearate are also typically added.
  • Useful diluents for oral administration in a capsule form include lactose and dried corn starch.
  • the active ingredient is combined with emulsifiers and suspending agents when the aqueous suspension is administered orally. If desired, sweetening and / or flavoring and / or coloring agents may be added.
  • the compounds of the present invention can be used in combination with conventional anti-inflammatory agents or in combination with matrix metalloprotease inhibitors, lipoxygenase inhibitors and inhibitors of cytokines other than IL-1.
  • the compounds of the present invention also provide immunomodulators (eg, bropyrimin, anti-human alpha interferon antibodies, IL-2, GM-CSF, methionine enkephalins, interferons to prevent or combat IL-1 mediated disease symptoms such as inflammation).
  • immunomodulators eg, bropyrimin, anti-human alpha interferon antibodies, IL-2, GM-CSF, methionine enkephalins, interferons to prevent or combat IL-1 mediated disease symptoms such as inflammation.
  • Alpha diethyldithiocarbamate, tumor necrosis factor, naltrexone and rEPO
  • prostaglandin e.g, bropyrimin, anti-human alpha interferon antibodies, IL-2, GM-CSF
  • An effective amount for a pharmaceutical composition of the present invention may be determined by various methods including the activity, age, weight, general health, sex, diet, time of administration, route of administration, rate of release, drug combination and severity of the particular disease to be prevented or treated. It will be appreciated that the factors may vary.
  • the pharmaceutical composition according to the present invention may be formulated as pills, dragees, capsules, solutions, gels, syrups, slurries, suspensions.
  • the pharmaceutical composition of the present invention can be prepared in an aqueous solution.
  • a physically suitable buffer such as Hanks' solution, Ringer's solution, or physically buffered saline may be used.
  • Aqueous injection suspensions may add a substrate that can increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol or dextran.
  • suspensions of the active ingredient may be prepared as suitable oily injection suspensions.
  • Suitable lipophilic solvents or carriers include fatty acids such as sesame oil or synthetic fatty acid esters such as ethyl oleate, triglycerides or liposomes. Polycationic amino polymers can also be used as carriers.
  • the suspension may use a suitable stabilizer or agent to increase the solubility of the compound and to prepare a high concentration of solution.
  • Antibodies in pharmaceutical compositions adsorb and are unstable in glass containers such as vials, syringes, and the like, and are easily deactivated by various physicochemical factors such as heat, pH, and humidity.
  • stabilizers, pH adjusters, buffers, solubilizers, surfactants and the like are added to formulate into stable forms.
  • the stabilizer include amino acids such as glycine and alanine, sugars such as dextran 40 and mannose, sugar alcohols such as sorbitol, mannitol, and xyltol, and two or more kinds thereof may be used in combination.
  • the amount of these stabilizers added is preferably 0.01 to 100 times, in particular 0.1 to 10 times the weight of the antibody.
  • the storage stability of the liquid preparation or the lyophilized preparation can be improved.
  • the buffer include phosphate buffers and citric acid buffers.
  • the buffer adjusts the pH of the aqueous solution after redissolution of the liquid or lyophilized formulation and contributes to the stability and solubility of the antibody.
  • the addition amount of the buffer for example, the amount of the liquid preparation or the freeze-dried preparation is preferably 1 to 10 mM with respect to the amount after re-dissolution.
  • Polysorbate 20, pulluronic F-68, polyethyleneglycol, etc. can be used as surfactant, Especially preferably, polysorbate 80 is mentioned, You may use together 2 or more types.
  • polymer proteins such as antibodies are easily adsorbed to glass, resin, and the like, which are the materials of the container. Therefore, by adding a surfactant, adsorption of the antibody into the container after re-dissolution of the liquid or lyophilized agent can be prevented. have.
  • the addition amount of the surfactant it is preferable to add 0.001 to 1.0% to the weight of water after re-dissolution of the liquid formulation or the lyophilized formulation.
  • the osmotic pressure ratio that can be used as the osmotic pressure ratio is preferably 1 to 2, especially when used as a medical or animal medicine injection.
  • Osmotic pressure ratio can be prepared by increasing or decreasing sodium chloride at the time of chemical
  • the antibody content in the preparation can be appropriately adjusted according to the applied disease application route, and the dose of the humanized antibody to human is determined by the affinity of the antibody for human protein NSP, that is, the dissociation constant for human protein NSP (Kd value).
  • Kd value the dissociation constant for human protein NSP
  • the drug can be expressed even if the dose to the human being is reduced by the high affinity (low Kd value).
  • Human HGF domain-associated DNA that binds to C-Met and inhibits its activity was extracted and used through conventional molecular and biological methods using RT-PCR.
  • PCR was performed under the following conditions to amplify only the NK1 domain using the extracted DNA: 94 ° C. 4 min, (94 ° C., 45 sec / 50 ° C., 45 sec / 72 ° C., 1 min) 25 times, 72 ° C 7 minutes, 4 ° C.
  • the reactant composition used was as follows: primers SP-SBs with BstXI restriction enzyme recognition site and reverse primer NK1HisSal-As with SalI site and 6XHis sequence, respectively 2 ⁇ l (10 pmole / ⁇ l), human HGF cDNA as template DNA.
  • the product obtained by PCR was confirmed by electrophoresis through a 1% agarose gel, cleaved with BstXI and SalI, and then a faint band of less than 600 bp was detected by HiYieldTM Gel / PCR DNA Extraction Kit (RBC Bioscience # YDF300, Taiwan), and cloned the cloned expression vector of pcDNA3 (invitrogen) to the fragment cut with Bst XI and Xho I and cloned the NK1 expression vector pSP.NK1.His that was correctly cloned through sequencing. Obtained.
  • SP-SBs Primer NNN CCA GCG GTG TGG GCC ACC ATG GGC TGG TCC TAC ATC (SEQ ID NO: 8)
  • NK1HisSal-As Primer NNN GTC GAG CTA GTG ATG GTG ATG GTG ATG TTC AAC TTC TGA ACA CT (SEQ ID NO: 9)
  • the present inventors have applied for and registered pIgGLD-6A6Lgt described in Tanivirumab (TTAC-0001, Korean Patent No. 10-0883430 and International Application No. PCT / KR07 / 003077) as backbone vectors, and the other of pIgGLD-6A6Lgt NK1 (amino acids 28-210 of hHGF: SEQ ID NO: 3) domains at the amino terminus of the nibirumap light chain sequence (SEQ ID NO: 1) with the [G4S] X2 linker (amino acid sequence; sggggsggggsgs), using PCR, pPMC- 102. Lgt was produced.
  • transduction was performed using lipofectamine TM 2000 (Invitrogen # 11668-019, USA), and inoculated with 2 ⁇ 10 6 293T cells per well in a 6-well plate containing DMEM medium (Welgene, South Korea).
  • a humidified CO 2 (5%) incubator was used to stand at 37 ° C for 24 hours, and the cells were densely cultured to have a cell density of 90% or more.
  • 3 ⁇ g of the recombinant vectors (2 ⁇ g each of pPMC-102.Lgt and pIgGLD-6A6Hvy) and 6 ⁇ l of lipofectamin TM 2000 were diluted in 250 ⁇ l of serum-free OptiMEM medium and allowed to stand at room temperature for 5 minutes.
  • the DNA and lipofectamin TM 2000 dilutions were mixed and allowed to react at room temperature for 20 minutes to form the DNA-lipofectamin TM 2000 complex.
  • SDS-PAGE and Western blotting were applied in a manner generally used in the art, and the samples used were as follows: 10% SDS-polyacrylamide Gel, PVDF membrane (Millipore® IPVH00010, USA), HRP-conjugated goat anti -human IgG (kappa) antibodies, and HRP-conjugated goat anti-human IgG (Fc) antibodies (Pierce, USA).
  • IgG expression concentration in the medium obtained by the arbitrary expression was confirmed using ELISA.
  • 100 ⁇ l of 2 ⁇ g / ml goat anti-human IgG (Fc) (Pierce, USA) was added to the 96-well plate as a primary antibody, and the coating was completed by standing at 4 ° C. for 12 hours.
  • 100 ⁇ l of the cell culture solution obtained through 293T transduction was added thereto and reacted at room temperature for 1 hour.
  • NK1 itself is known as an unstable protein, and since its expression is poor, it was judged that its expression rate is low even when it is connected to the amino terminal of the light chain. Accordingly, NK1 variants (M15) were prepared (Douglas et al., Proc. Natl. Acad. Sci. USA, 108: 13035, 2011), which improved the expression rate and stability (FIG. 2).
  • pSP.NK1.His prepared in Example 1 was used as a template, and PCR and cloning were performed using the primers described below until M15 having a mutation in 8 codons as shown in FIG. .
  • pSP.M15.His was prepared.
  • wild-type NK1 gene sequence mutations were carried out through multiple steps of PCR, and six histidines (6X His) were inserted immediately before the stop codon, thereby expressing the expression vector pSP.M15.His. was prepared, and the sequence of the M15 fragment is shown in SEQ ID NO: 4.
  • M1KS TGA AGA TAG AAA CCA AAA AA (SEQ ID NO: 10)
  • M1KAS TTT TTT GGT TTC TAT CTT CA (SEQ ID NO: 11)
  • M2KS CAA GAA AAA GAT GCC TCT G (SEQ ID NO: 12)
  • M2KAS CAG AGG CAT CTT TTT CTT G (SEQ ID NO.:13)
  • M345KS ATT GGT AAT GGA CGC AGC TAC AGG GGA ACA G (SEQ ID NO: 14)
  • M345KAS GCT GCG TCC ATT ACC AAT GAT GCA TTT TCT AAT GT (SEQ ID NO: 15)
  • M67KS ATC GGG GTG AAG ACC TAC GGG AAA ACT (SEQ ID NO: 16)
  • M67KAS AGT TTT CCC GTA GGT CTT CAC CCC GAT (SEQ ID NO: 17)
  • M8KS TCA CAA GCG ATC CAG AGG T (SEQ ID NO.:18)
  • M8KAS ACC TCT GGA TCG CTT GTG A (SEQ ID NO.:19)
  • the mutant M15 of NK1 thus prepared was synthesized through codon adaptation (Invitrogen, USA), and the above-mentioned [G4S] X2 linker was linked to the carboxy terminus of the light chain sequence of Tanivirumab, which was also obtained through codon adaptation.
  • Tanivirumab light chain-M15 was amplified using the PCR method. During PCR amplification, the restriction enzyme Asc I was injected into the N-terminal primer and Hpa I was injected into the C-terminal primer, and then cleaved. The PCR was inserted into the Asc I and Hpa I cleavage sites of the dual expression vector based on pcDNA3.
  • the heavy chain sequence obtained through codon adaptation of Tanibirumab was digested by inserting restriction enzyme Bam HI into the N-terminal primer and Nhe I into the C-terminal primer, and then cutting the Tanibirumab light chain.
  • the pPMC-102FC of FIG. 3 was completed by inserting the BamHI and Nhe I cleavage sites of the dual expression vector already containing the -M15 sequence.
  • the base sequences of the heavy and light chain portions of the completed vector are set forth in SEQ ID NOs: 6 and 7.
  • NK1 targeting c-Met is designed to connect M15, a variant of NK1, to the carboxy terminus of the light chain sequence of Tanivirumab (SEQ ID NO: 1) via a linker, which is also an invitrogen-geneart (Invitrogen). Codon optimization was performed by requesting to -GeneArt).
  • the light chain-M15 hybrid was synthesized to complete the vector pPMC-102FC comprising the light chain-M15 ( Asc I / Hpa I sites) and heavy chain ( Bam HI / Nhe I sites) of pPMC-102FC (FIG. 3).
  • the amino acid sequence of is shown in SEQ ID NO: 5, the nucleotide sequence is shown in SEQ ID NO: 6 and Figure 3b.
  • pPMC-102FC was temporarily expressed in 293T cells by PEI precipitation, yielding about 8 mg / L. Purification of IgG bound to protein A resin yielded 4.4 mg of high purity PMC-102FC. Coomassie blue staining results after reducing and non-reducing SDS-PAGE are shown in FIG. 1C.
  • the dual-target antibody PMC-102FC obtained through random expression culture was packed with MAbSelect Sure (GE health care, Sweden) for further study, and then purified by FPLC (fast protein liquid chromatography) system. Only bays were secured (FIG. 1C).
  • the culture medium was filtered using a 0.45 ⁇ m filter, and the medium passed through ultrafiltration (UF) was added to a protien A column stabilized with 20 mM sodium phosphate (pH 7.0) containing 0.1 M NaCl.
  • the protein was washed out using the same buffer, and once again, the protein bound to protein A resin was non-specifically washed using 20 mM sodium phosphate (pH 7.0) buffer solution containing 0.5 M NaCl.
  • Proteins that specifically bind to Protein-A were eluted using 0.1 M Glycine-Cl (pH 3.5) buffer containing 0.1 M NaCl, and the samples were neutralized to pH 6.0 using 1 M Tris.
  • the dissociation constant is a similar value of the Km value and is used as an indicator of the affinity of the enzyme in the enzyme-substrate complex. The lower the value, the higher the affinity between the enzyme and the substrate.
  • Immobilization of the sample was performed using Amine Coupling Kit (GE Healthcare) 400 mM N-ethyl-N '-(dimethylaminopropyl) Carbodiimide (EDM), 100 mM NHS (N-Hydroxysuccinimide), and 1 M Ethanolamine hydrocholoride (pH 8.5). After dilution with 20 mM sodium hydroxide as the regeneration buffer and 1 ⁇ PBS as the immobilization buffer, the assay sample was diluted to 1/40 in 10 mM acetate (GE Healthcare) at pH 5.0. The immobilization range was immobilized at 4000RU (Response Unit).
  • HBS-EP buffer As the adsorption measurement buffer of the assay sample, HBS-EP buffer (GE Healthcare) was used. As antigen, human c-Met (hHGFR; R & D Systems) was measured at concentrations of 7.8 nM, 15.6 nM, 31.3 nM, 62.5 nM, 125 nM and 250 nM, and mouse c-Met (mHGFR; R & D Systems) was measured at concentrations of 0.78 nM, respectively. Dilutions were stepwise at 1.56 nM, 3.13 nM, 6.25 nM, 12.5 nM and 25 nM with HBS-EP buffer to a final volume of 200 ⁇ l. Five of the six concentrations were selected and fitted.
  • the regeneration buffer was selected after using the sodium hydroxide hydroxide after the binding step and dissociation step of the 7.8 nM sample in advance, before the actual analysis.
  • the assay flow rate was 30 ⁇ l / min, binding time was 60 seconds, dissociation time was 300 seconds, and the affinity of the sample was measured.
  • Tanivirumab and PMC-102FC showed similar binding capacity to VEGFR-2, whereas only PMC-102FC had binding capacity to human and mouse c-Met (FIG. 4A).
  • Tanivirumab a positive control for VEGFR-2, only binds to VEGFR-2, and in the case of Fc-M15, a positive control for c-Met, it binds only to c-Met (FIG. 4B).
  • BxPC3 cells ATCC, USA
  • KP4 cells Riken, Japan
  • BxPC3 and KP4 were cultured using RPMI-1640 medium (Welgene, Korea) added with 10% fetal bovine serum (Gibco, USA), and cell cultures were incubated in a humidified 5% CO 2 mixed air in a 37 ° C incubator. .
  • BxPC3 and KP4 cells were cultured in RPMI-1640 medium supplemented with 1% fetal bovine serum for 10 g / ml PMC-102 (basic), PMC-102FC, human IgG, and Tanibirumab, a negative control. 20 min pretreatment with mixed control Fc-M15 and final 2 ⁇ M c-Met inhibitor (SantaCruz, USA) followed by 30 ng / ml recombinant human HGF (R & D systems, USA).
  • KP4 treated with antibody and growth factor was incubated for 72 hours at a density of 2 ⁇ 10 3 cells / well in a 96-well plate, and then absorbed at 450 nm by treatment with WST-8 (Dojindo, Japan) for 2-4 hours. By doing this, the cell proliferation ability in each condition was compared.
  • vascular endothelial cells LLC (Lonza, Switzerland).
  • HUVEC was cultured using LifeLine medium (Lifefactors (including rhVEGF, rhIGF-1, rh FGF-B, Ascorbic acid, rh EGF, Heparin, FBS, L-Glutamine, Hydrocort) added to Vasculife medium) (LifeLine, USA).
  • LifeLine medium Lifefactors (including rhVEGF, rhIGF-1, rh FGF-B, Ascorbic acid, rh EGF, Heparin, FBS, L-Glutamine, Hydrocort) added to Vasculife medium) (LifeLine, USA).
  • Cell culture was incubated in a 37 °C incubator in humidified 5% CO 2 mixed air conditions.
  • For survival analysis of vascular endothelial cells these cells were incubated for 24 hours at a density of 2 ⁇ 10 4 cells / well in 24-well plates. Then, after washing twice with M199 medium, and cultured for 6 hours at low serum concentration conditions of M199 medium containing 1% fetal bovine
  • Antibodies of various concentrations were pretreated with cells for 30 min, followed by 20 ng / ml VEGF (R & D systems, USA). After 48 hours of incubation, WST-8 (Dojindo, Japan) was treated for 2 hours and the absorbance at 450 nm was measured to compare cell proliferation capacity under each condition.
  • the dual target antibody PMC-102FC inhibited the proliferative capacity of HUVEC cells caused by VEGF similarly to the parental antibody Tanivirumab, and simultaneously blocked the effects of HGF, resulting in VEGF.
  • the proliferative capacity of HUVECs could be more strongly inhibited than that of Tanivirumab (FIGS. 6A and 6B).
  • sample buffer 1% (w / v) SDS, 1 mM Na3VO4, 1X Protease Inhibitor Cocktail
  • ⁇ -mercaptoethanol was added to the quantitative lysate and boiled for 10 minutes.
  • SDS-PAGE and Western blotting were applied according to the methods commonly used in the art, and the samples used were as follows: 4-20% SDS-polyacrylamide Gel (BioRad, USA), PVDF membrane (Millipore® IPVH00010, USA ), anti-c-Met antibody (Santa Cruz, USA), anti-phospho-Erk antibody, anti-phospho-c-Met antibody (Cell Signaling technology, USA) as primary antibody for c-Met phosphorylation inhibitory activity assay ; HRP-conjugated goat anti-mouse IgG antibody (Santa Cruze Biotechnology, USA) and HRP-conjugated goat anti- as secondary antibodies to bind with anti- ⁇ actin antibody (Abfrontier, Korea) and as primary antibody for chemiluminescence rabbit IgG (Santa Cruz Biotechnology, USA).
  • Example 6-1 was applied mutatis mutandis, but c-Met activation for Fc-M15 as a result of Western blotting using an additional anti-VEGFR-2 antibody (Cell Signaling technology, USA) as a primary antibody. By inhibiting only, it appears to partially inhibit Erk, but does not inhibit the phosphorylation of VEGFR-2, while PMC-102FC can be equivalent to, or more effectively, inhibit the phosphorylation of VEGFR-2 and Erk in the case of PMB-102FC. It could be confirmed (Fig. 8).
  • the dual target antibody according to the present invention simultaneously neutralizes two targets involved in angiogenesis and cancer cell proliferation, thereby exhibiting superior neutralizing ability as compared to the conventional single target antibody, and is very effective in treating cancer.
  • the effect of mass production of c-Met neutralizing domain which was not easy to produce in the past, can be expected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention relates to a dual-target antibody having a binding ability to vascular endothelial growth factor receptor-2 (VEGFR-2) and mesenchymal epithelial transition factor (c-Met) and, more specifically, to a dual-target antibody having a binding ability to VEGFR-2 and c-Met, a method for producing the dual-target antibody, and a pharmaceutical composition containing the dual-target antibody, wherein the dual-target antibody comprises a VEGFR-2 neutralizing antibody, which has a light chain variable region with an amino acid sequence represented by SEQ ID NO: 1 and a heavy chain variable region represented by SEQ ID NO: 2, and a C-met neutralizing peptide represented by SEQ ID NO: 3 or 4, which is linked to the terminal of the light chain variable region or the heavy chain variable region of the VEGFR-2 neutralizing antibody. The dual-target antibody according to the present invention simultaneously neutralizes two targets involved in angiogenesis and cancer cell proliferation, and thus exhibits an excellent neutralizing ability compared with existing single target antibodies and is very effective in the treatment of cancer. In addition, it can be expected that c-Met neutralizing active domains, which were not previously easy to produce, can be mass-produced.

Description

VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체Double Target Antibody Binding to VEGFR-2 and c-Met
본 발명은 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체에 관한 것으로, 더욱 자세하게는 서열번호 1로 표시되는 아미노산 서열을 가지는 경쇄가변영역과 서열번호 2로 표시되는 중쇄가변영역을 가지는 VEGFR-2(Vasicular Endothelial Growth Factor Receptoer-2) 중화항체의 상기 경쇄가변영역 또는 상기 중쇄가변영역의 말단에 서열번호 3 또는 서열번호 4로 표시되는 c-Met(Mesenchymal Epithelial Transition factor) 중화 펩타이드가 결합되어 있는 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체, 상기 이중표적 항체의 제조방법 및 상기 이중표적항체를 포함하는 약제학적 조성물에 관한 것이다.The present invention relates to a double target antibody having binding to VEGFR-2 and c-Met, and more particularly to a light chain variable region having an amino acid sequence represented by SEQ ID NO: 1 and a heavy chain variable region represented by SEQ ID NO: 2 Branched c-Met (Mesenchymal Epithelial Transition factor) neutralizing peptide represented by SEQ ID NO: 3 or SEQ ID NO: 4 at the end of the light chain variable region or the heavy chain variable region of the VEGFR-2 (Vasicular Endothelial Growth Factor Receptoer-2) neutralizing antibody The present invention relates to a dual target antibody having binding to VEGFR-2 and c-Met bound thereto, a method for preparing the dual target antibody, and a pharmaceutical composition comprising the dual target antibody.
VEGF 수용체인 VEGFR-2을 표적으로 하는 혈관신생 억제 항체에는 Dyax의 자연 파지디스플레이 라이브러리(native phage display library)에서 발굴하여 개발중인, 임클론(Imclone)사의 IMC-1121B(EP1916001A2)와 UCB사의 CDP-791(PCT/GB02/04619), 그리고 본 연구진이 개발한 타니비루맵(TTAC-0001, Tanibirumab, 대한민국 등록특허 제883,430호 및 WO 2008/153237) 등이 있다. IMC-1121B는 완전 인간 Fab 라이브러리로부터 선별된 단일클론항체로서, 현재 전이성 유방암 및 위암에 대해서 임상 3상을 진행하여 위암환자에서 paclitaxel과 병합투여하여, 전반 생존율(Overall survival)과 종양 비진행 생존율(progression-free survival)을 호전시킨 바 있다. UCB사의 CDP-791은 인간화 항체로서, PEGylated Di-Fab 형태로 비소세포성폐암 치료를 위한 최초치료(first-line treatment)로써 carboplatin 과 paclitaxel의 병용 요법으로 임상 2상을 진행하여 종양반응과 진행율 모두에 있어서 호전반응을 보였다. 이 항체는 Fc를 가지고 있지 않기 때문에 항체의존적세포독성(antibody-dependent cell-mediated cytotoxicity)이나 보체의존적독성(complement-dependent cytotoxicity)을 기대할 수 없다. Angiogenesis-inhibiting antibodies targeting the VEGF receptor, VEGFR-2, are identified and developed from Dyax's native phage display library, Imclone's IMC-1121B (EP1916001A2) and UCB's CDP-791. (PCT / GB02 / 04619), and Tanibirumab (TTAC-0001, Tanibirumab, Korean Patent No. 883,430 and WO 2008/153237) developed by the researchers. IMC-1121B is a monoclonal antibody selected from a complete human Fab library, and currently undergoes phase 3 clinical trials for metastatic breast and gastric cancer and combined with paclitaxel in patients with gastric cancer, resulting in overall survival and tumor progression survival. progression-free survival). UCB's CDP-791 is a humanized antibody that is a first-line treatment for the treatment of non-small cell lung cancer in the form of PEGylated Di-Fab. It showed improvement in. Because the antibody does not have an Fc, antibody-dependent cell-mediated cytotoxicity or complement-dependent cytotoxicity cannot be expected.
본 발명자들이 개발하여, 현재 임상 1 단계에서 독성 문제없이 연구를 마친 타니비루맵은 (주)파멥신의 완전인간 ScFv 파아지 라이브러리로부터 선별된 단일클론항체로서, VEGFR-2을 표적으로 하면서 동시에 마우스나 렛트 유래의 flk-1(VEGFR-2 상동체)에 대해서도 반응성을 가지는 유일한 항체로서, 이것은 임클론사의 IMC-1121B와 구별이 되는 중요한 특징 가운데 하나이다(WO 2008/153237). 특히, 상기 타니비루맵이 보여주는 이종간 교차반응성(cross-species cross reactivity)은 동물질환 모델에 대한 연구를 가능하게 하였다. Tanivirumab, developed by the present inventors and currently studied in the first stage of clinical trials without toxicity problems, is a monoclonal antibody selected from the complete human ScFv phage library of Paxinsin, which targets VEGFR-2 and simultaneously mouse or rat. It is the only antibody that is responsive to the derived flk-1 (VEGFR-2 homologue), which is one of the important characteristics that distinguishes it from IMC-1121B from Imclones (WO 2008/153237). In particular, the cross-species cross reactivity shown by the Tanibirumap has allowed the study of animal disease models.
전임상 동물 실험에서 항 신생혈관형성 치료시 타겟 단백질은 억제되지만, 보상적 경로(compensatory pathway) 즉, 대체 신생혈관 자극 신호들이 활성화되어 종양의 생존과 증식에 기여함을 알 수 있으며, 아바스틴과 같이 VEGF/VEGFR 경로를 차단하는 암 치료용항체의 경우 장기 투여 시, c-Met 을 활성화시켜 약제 내성을 가동시키는 것으로 보고 되어있다(Bergers and Hanahan, Nat. Rev. Cancer,8:592, 2008). 또한, 아바스틴 투여 후 GBM 성장이 진행된 경우, 아바스틴 비 투여군에 비해서 두개골 절개(craniotomy) 수술 후 생존율이 낮았으므로, 아바스틴 처리 시 수술합병증에 대한 별도의 고려가 있어야한다는 보고도 있다. (Clark et al, Neurosurgery, 70:361, 2011).In preclinical animal studies, target proteins are inhibited in the treatment of anti-angiogenesis, but the compensatory pathway, ie, alternative neovascular stimulatory signals, is activated, contributing to tumor survival and proliferation. Cancer therapeutic antibodies that block the / VEGFR pathway have been reported to activate drug resistance by activating c-Met upon prolonged administration (Bergers and Hanahan, Nat. Rev. Cancer, 8: 592, 2008). In addition, when GBM growth progressed after the Avastin administration, the survival rate after craniotomy was lower than that of the Avastin non-administered group, so there is a report that there should be a separate consideration for surgical complications when treating Avastin. (Clark et al, Neurosurgery , 70: 361, 2011).
한편, HGF/c-Met 신호전달 기작은 다양한 암조직과 종양세포에 과발현함으로써, 종양세포의 성장과 전이에 크게 기여하는 것으로 잘 알려져 있다.On the other hand, HGF / c-Met signaling mechanism is well known to contribute greatly to the growth and metastasis of tumor cells by overexpression in various cancer tissues and tumor cells.
C-Met(mesenchymal-epithelial transition factor)은 세포 표면의 수용체이며, 수용체 타이로신(tyrosine) 카이네이즈 패밀리(receptor tyrosine kinase family)의 암 유전자(oncogene)로써, 50 kD의 세포외 도메인만으로 구성된 알파(α) 서브유닛과 세포외, 세포막 투과, 타이로신 카이네이즈 도메인(domain) 그리고 인산화와 관련된 타이로신 모티프(motif)로 구성된 총 145 kD의 베타(β) 서브유닛으로 구성되어 있음이 밝혀졌다(Dean et al., Nature, 4;318(6044):385, 1985; Park et al., PNAS, 84(18):6379, 1987, Maggiora et al., J. Cell Physiol., 173:183, 1997). 부적절한 c-Met이나 HGF의 발현은 여러 타입의 악성 종양과 연관이 되어있으며, 과발현될 경우 그 예후가 좋지 않다고 보고되어있다(www.vai.org/met, Eder et al., Clin. Cancer Res., 15:2207, 2009).Mesenchymal-epithelial transition factor (C-Met) is a cell-surface receptor, an oncogene of the receptor tyrosine kinase family, and consists of only 50 kD extracellular domains. It has been found to consist of a total of 145 kD beta (β) subunits consisting of subunits and extracellular, cell membrane permeation, tyrosine kinase domains and phosphorylation related tyrosine motifs (Dean et al., Nature , 4; 318 (6044): 385, 1985; Park et al., PNAS , 84 (18): 6379, 1987, Maggiora et al., J. Cell Physiol ., 173: 183, 1997). Inappropriate expression of c-Met or HGF is associated with several types of malignant tumors and has been reported to have a poor prognosis when overexpressed (www.vai.org/met, Eder et al., Clin. Cancer Res. , 15: 2207, 2009).
다수의 연구진들은 또한 상기 타이로신 카이네이즈 도메인이 활성화되기 위해서는 두 서브유닛 가운데, 베타 서브유닛에 있는 c-Met 세포외 도메인(extracellular domain)에 HGF/SF(hepatocyte growth factor/scatter factor)가 결합하여야 신호전달 기작에 있어서 매우 중요한 c-Met의 1349번째 및 1356번째 타이로신이 인산화되어 타이로신 카이네이즈 도메인이 활성화될 수 있다고 보고했다(Bottaro et al., Science, 15;251(4995):802, 1991; Cooper, Oncogene, 7(1):3, 1992, Maggiora et al., J. Cell Physiol, 173:183, 1997; Ponzetto et al., Cell, 77(2):261, 1994; Maina et al., Cell, 87:531, 1996).Many researchers also believe that in order for the tyrosine kinase domain to be activated, hepatocyte growth factor / scatter factor (HGF / SF) must bind to the c-Met extracellular domain in the beta subunit of the two subunits. It has been reported that the 1349th and 1356th tyrosine of c-Met, which is very important for the mechanism, can be phosphorylated to activate tyrosine kinase domains (Bottaro et al., Science, 15; 251 (4995): 802, 1991; Cooper, Oncogene , 7 (1): 3, 1992, Maggiora et al., J. Cell Physiol , 173: 183, 1997; Ponzetto et al., Cell , 77 (2): 261, 1994; Maina et al., Cell , 87 : 531, 1996).
C-Met은 HGF에 반응하여, c-Met의 인산화를 통한 다양한 신호전달 경로를 자극하여 암세포 및 혈관세포의 분열(mitogenesis)과 세포의 운동성(motility)을 증진시키고, 세포사멸을 억제하며, 혈관형성과 세포외기질(ECM, extracellular matrix)로 침윤(invasion)과 전이(metastasis)를 유도하는 등 암화과정(transformation)을 촉진시킨다(Jeffers et al., J. Mol. Med., 74:505, 1996; Amicone et al., EMBO J.,16:495, 1997; Matsumoto and Nakamura, Biochem. Biophys. Res. Comm., 239:639, 1997; Corps et al., Int.J. Cancer, 73:151, 1997). 특히, 신경교종(gliomas, Koochekpour et al., Cancer Res., 57:5391, 1997), 유방암(Nagy et al., Surg. Oncol., 5:15,1996; Tuck et al., Am. J. Pathol., 148:225, 1996), 췌장암(Ebert et al., Cancer Res., 54:5775,1994), 흉막 중피종(pleural mesotheliomas, Tolpay et al., J. Cancer Res. Clin. Oncol., 124:291, 1998); Klominek et al. Intl. J. Cancer, 76:240, 1998)등 다양한 암 조직과 세포에서 c-Met과 HGF가 동시에 과발현되는 것으로 보고되고 있지만, HGF와 상관없이 c-Met의 과발현을 통해서도 암으로의 발달이 진행되는 경우가 흔하게 관찰되고 있으며, 간암(hepatocellular carcinoma, Suzuki et al., Hepatology, 20(5):1231, 1996)), 위암(Taniguchi et al., Cancer, 82:2112-2122(1998), 폐암(Harvey et al., J. Pathol., 180:389, 1996), 신장암(Natali et al., Intl. J. Cancer, 69:212, 1996), 난소암(Nagy et al., J. Surg. Oncol., 60:95, 1995), 대장암(Hiscox et al., Cancer Invest., 15:513, 1997) 등이 그 좋은 예이다. 이와 같이 c-Met이 활성화되거나 과발현할 경우 암화 과정이 촉진되므로, c-Met의 활성화를 억제하는 여러 방법들이 유망한 항암 치료 전략으로서 개발되고 있다. 그 일례로써 c-Met에 ATP(adenosine triphosphate)가 결합하는 것을 방해하도록 고안된 저분자 화합물들이 있다. 이들 저분자 화합물들에는 Fermentek biotechnology사의 K252a, 수젠(Sugen)사의 SU11274, 파이저(Pfiza)사의 PHA-665752 등(Morotti et al., Oncogene, 21(32):4885, 2002; Berthou et al., Oncogene, 23(31):5387, 2004; Pfizer, Christensen et al., Cancer Res., 63(21):7345, 2003)이 있으며, 이들은 c-Met의 인산화를 방해하여, 신호 전달의 하류 단백질들이 활성화되지 못하도록 고안되었다. 그러나 이들 저분자 화합물의 단점은 c-Met에 의한 인산화만을 특이적으로 저해할 수 없다는 데 있다.C-Met responds to HGF and stimulates various signaling pathways through phosphorylation of c-Met to enhance mitogenesis and cell motility of cancer cells and vascular cells, inhibit cell death, It promotes the formation and transformation of cancer by inducing invasion and metastasis into the extracellular matrix (ECM) (Jeffers et al., J. Mol. Med., 74: 505, 1996; Amicone et al, EMBO J. , 16:.... 495, 1997; Matsumoto and Nakamura, Biochem Biophys Res Comm, 239: 639, 1997; Corps et al, Int.J. Cancer, 73:.. 151 , 1997). In particular, glioma (gliomas, Koochekpour et al., Cancer Res ., 57: 5391, 1997), breast cancer (Nagy et al., Surg. Oncol ., 5: 15,1996; Tuck et al., Am. J. Pathol. , 148: 225, 1996), pancreatic cancer (Ebert et al., Cancer Res., 54: 5775, 1994), pleural mesotheliomas, Tolpay et al., J. Cancer Res. Clin.Oncol., 124 : 291, 1998); Klominek et al. Intl. J. Cancer , 76: 240, 1998) c-Met and HGF are reported to be overexpressed in various cancer tissues and cells at the same time, but the development of cancer is also progressed through the overexpression of c-Met regardless of HGF. Are commonly observed, liver cancer (hepatocellular carcinoma, Suzuki et al., Hepatology , 20 (5): 1231, 1996), gastric cancer (Taniguchi et al., Cancer , 82: 2112-2122 (1998), lung cancer) et al., J. Pathol., 180: 389, 1996), kidney cancer (Natali et al., Intl. J. Cancer , 69: 212, 1996), ovarian cancer (Nagy et al., J. Surg. Oncol , 60:95, 1995), colorectal cancer (Hiscox et al., Cancer Invest ., 15: 513, 1997), etc. As c-Met is activated or overexpressed, it promotes the cancer process. Several methods of inhibiting the activation of c-Met have been developed as promising anti-cancer treatment strategies, such as small molecule compounds designed to prevent the binding of aTP (adenosine triphosphate) to c-Met. These low molecular weight compounds include K252a from Fermentek biotechnology, SU11274 from Sugen, PHA-665752 from Pfiza (Morotti et al., Oncogene, 21 (32): 4885, 2002; Berthou et al. , Oncogene, 23 (31): 5387, 2004; Pfizer, Christensen et al., Cancer Res., 63 (21): 7345, 2003), which interfere with the phosphorylation of c-Met, downstream of signal transduction However, the disadvantage of these low molecular weight compounds is that they cannot specifically inhibit only phosphorylation by c-Met.
또한, HGF/c-Met 신호전달 기작을 중화하는 두 번째 방법으로서 c-Met과 그것의 리간드인 HGF의 결합을 저해하는 방법이 있다. 이러한 방법에는 손실된 HGF 단편(Matsumoto & Nakamura, Cancer Sci., 94(4):321,2003)이나, HGF를 중화하는 항체(Cao et al., PNAS., 98(13):7443, 2001; Kim et al., Clin. Cancer Res.,12:1292, 2006; Burgess et al., Cancer Res., 66(3):1721, 2006) 또는 원래의 HGF 보다 강한 친화력으로 c-Met에 결합하지만 c-Met을 활성화 시키지는 않는 HGF 전구체(pro-HGF, Mazzone et al., J. Clin. Invest., 114(10):1418, 2004)를 사용하는 방법 등이 있다. 아울러 파아지 디스플레이방법(phage display method) 및 패닝기술(panning technique)을 이용해 c-Met의 활성을 억제할 수 있는 펩타이드(peptide) 서열을 선별함으로써, 해당 펩타이드를 c-Met 활성화 방지에 이용하기도 한다 (Kim et al., Biochem Biophys Res Commun., 354: 115, 2007). 선별된 펩타이드는 c-Met이 과발현된 생체내 조직이나 기관을 탐색하기 위한 분자 영상에 적용되기도 한다(Cao et al., Clin. Cancer Res., 13(20);6049, 2007). 이들은 오로지 HGF 의존적인 c-Met 활성화만 저해한다는 한계를 가지고 있으나, 실험실에서(in vitro) 또는 생체내(in vivo)에서 실제 항암효과를 나타내고 있으므로, 기존의 항암치료와 병합하는 등의 응용을 통하여 유용하게 사용될 수 있을 것으로 사료된다. 또, EGFR(epidermal growth factor receptor) 카이네이즈 억제제인 gefitinib과 erlotinib은 효과적인 암 치료제로 사용되고 있으나, 종종 약제 내성이 생기기도 하는데, 그 원인이 c-Met 수용체의 집중적인 증폭에서 기인하는 것으로 보고된 바 있으며(Engelman et al., Science, 316(5827):1039, 2007), 따라서 c-Met 억제물을 병합처리 한다면 항암 효과가 증폭될 것으로 기대한다.In addition, a second method of neutralizing HGF / c-Met signaling mechanism is a method of inhibiting the binding of c-Met and its ligand, HGF. Such methods include missing HGF fragments (Matsumoto & Nakamura, Cancer Sci., 94 (4): 321,2003) or antibodies that neutralize HGF (Cao et al., PNAS., 98 (13): 7443, 2001; Kim et al., Clin. Cancer Res ., 12: 1292, 2006; Burgess et al., Cancer Res ., 66 (3): 1721, 2006) or bind c-Met with a stronger affinity than the original HGF, but c And HGF precursors that do not activate Met (pro-HGF, Mazzone et al., J. Clin. Invest ., 114 (10): 1418, 2004). In addition, by using a phage display method and a panning technique (peptide) sequence that can inhibit the activity of c-Met (peptide) by selecting the peptide, the peptide is also used to prevent c-Met activation ( Kim et al., Biochem Biophys Res Commun ., 354: 115, 2007). Selected peptides are also applied to molecular imaging to search for tissues or organs in vivo that c-Met is overexpressed (Cao et al., Clin. Cancer Res ., 13 (20); 6049, 2007). They have the limitation of inhibiting only HGF-dependent c-Met activation, but since they show real anticancer effects in vitro or in vivo, they can be combined with existing chemotherapy. It is considered to be useful. In addition, gefitinib and erlotinib (EGFR) kinase inhibitors, gefitinib and erlotinib, are often used as effective cancer drugs, but drug resistance is often caused by intensive amplification of c-Met receptors. (Engelman et al., Science , 316 (5827): 1039, 2007), therefore, anti-cancer effects are expected to be amplified by incorporating c-Met inhibitors.
현재 HGF를 표적으로 하는 항체는 암젠(Amgen)사의 SPH domain 에 결합하는AMG-102(Rilotumumab, Burgess et al., Mol. Cancer Ther., 9:400, 2010), AVEO Pharmaceuticals의 AV-299(Ficlatuzumab)이 임상개발 중이며, 또 c-Met을 표적으로 하는 항체로는 제넨텍(Genentech)사가 항체자체의 활성화 모드를 억제하기 위하여 원래 2가(bivalent)였던, c-Met항체의 One arm만을 채용 1가(monovalent)로 개발한 MetMab(Onartuzumab, PRO143966)이 에스트로겐 수용체(estrogen receptor (ER)), 프로게스테론 수용체(rogesterone receptor (PR)) 그리고, Her2/neu (EGFR-2 수용체)가 모두 결여된 3무 유방암(Triple negative breast cancer)과 NSCLC(non-small cell lung cancer, 비소세포폐암)에서 임상 2상을 진행하고 있으며, Lilly 사의 LA-480(LY2875358)의 경우 임상 1상을 진행하고 있다.Antibodies currently targeting HGF include AMG-102 (Rilotumumab, Burgess et al., Mol. Cancer Ther ., 9: 400, 2010), which binds to the SPH domain of Amgen, AV-299 from AVEO Pharmaceuticals (Ficlatuzumab). ) Is currently under clinical development, and only one arm of c-Met antibody, which was originally bivalent in order to suppress the activation mode of the antibody itself, is used as an antibody targeting c-Met. MetMab (Onartuzumab, PRO143966) developed as a monovalent (3) breast cancer that lacks both the estrogen receptor (ER), the progesterone receptor (PR) and Her2 / neu (EGFR-2 receptor) (Triple negative breast cancer) and NSCLC (non-small cell lung cancer) are undergoing phase 2 clinical trials, and Lilly LA-480 (LY2875358) is undergoing phase 1 clinical trials.
C-Met은 다른 신호전달 체계인 EGFR, semaphorin 4D receptor, transforming growth factor-β (TGFβ), WNT, tetraspanins kangai 1(KAI1 또는 CD82) 및 CD151 등과 상호소통하여 세포의 성장, 분화, 재생 및 암화에 영향을 준다(Gherardi, Nat. Rev. Cancer,12:89, 2012). 또한, c-Met은 HGF에 의해 활성화 되어, 그 자체로써 신생 혈관형성에 기여하는 것으로 잘 알려져 있고, 신생혈관형성의 주요 수용체인 VEGFR-2과 상호작용을 통하여, 신생혈관 형성을 자극하는 것으로 알려져 있다. 이때, c-Met을 VEGFR-2와 동시에 타켓팅하여 저해할 경우, 인간 이종이식모델에서 종양 성장이 상승적으로 저해됨을 관찰할 수 있었다(Zhang et al., IDrugs, 13:112, 2010).C-Met interacts with other signaling systems such as EGFR, semaphorin 4D receptor, transforming growth factor-β (TGFβ), WNT, tetraspanins kangai 1 (KAI1 or CD82), and CD151 to help cells grow, differentiate, regenerate, and cancer. Influence (Gherardi, Nat. Rev. Cancer, 12:89, 2012). In addition, c-Met is well known to be activated by HGF, contributing to angiogenesis by itself, and to stimulate angiogenesis through interaction with VEGFR-2, a major receptor for angiogenesis. have. In this case, when c-Met was simultaneously inhibited by targeting with VEGFR-2, it was observed that tumor growth was synergistically inhibited in human xenograft models (Zhang et al., IDrugs , 13: 112, 2010).
C-Met의 유일한 리간드인 HGF는 N-말단 도메인, 4개의 크링글(kringle, K1~K4) 도메인과 C-말단의 SPH(serine proteinase homology;세린계 단백질 분해효소의 유사 도메인)으로 이루어져 있고, NK1(Chirgadze et al.,Nature Struct. Biol., 6:72, 1999; Ultsch et al., Structure 6:1383, 1998), NK2(Tolbert et al., Proc. Natl Acad. Sci. USA, 107:13264, 2010), SPH 절편과 SPH 도메인(Kirchhofer et al., J. Biol. Chem., 279:39915, 2004)과 Met의 세포외 도메인 중 SEMA 도메인과의 복합체 형태로(Stamos et al., EMBO J., 23:2325, 2004) 결정 구조가 분석되었다. 한편, 간세포나 대식세포에 감염할 때 리스테리아 균(Listeria monocytogenes)의 내재화(internalization)에 중요한 단백질인 InlB (Internalin B) 와 c-Met의 복합체 형체로 된 구조를 분석했을 때, c-Met의 4개의 IgG 유사 도메인(IgG1, IgG2, IgG3, IgG4) 가운데 첫 번 째인 IgG1 도메인에 결합하는 것으로 나타났다(Niemann et al.,Cell 130:235, 2007; Ferraris et al., J. Mol. Biol., 395:522, 2010).HGF, the only ligand of C-Met, consists of N-terminal domain, four Kringle (K1 ~ K4) domains, and C-terminal serine proteinase homology (similar domain of serine protease), NK1 (Chirgadze et al., Nature Struct. Biol. , 6:72, 1999; Ultsch et al., Structur e 6: 1383, 1998), NK2 (Tolbert et al., Proc. Natl Acad. Sci. USA, 107 : 13264, 2010), in the form of a complex of the SPH fragment and the SPH domain (Kirchhofer et al., J. Biol. Chem. , 279: 39915, 2004) and the SEMA domain of Met's extracellular domain (Stamos et al., EMBO J. , 23: 2325, 2004) crystal structure was analyzed. On the other hand, when analyzing the structure of the complex form of InlB (Internalin B) and c-Met, an important protein for internalization of Listeria monocytogenes when infecting hepatocytes or macrophages, 4 of c-Met The first IgG-like domain (IgG1, IgG2, IgG3, IgG4) was shown to bind to the IgG1 domain (Niemann et al., Cell 130: 235, 2007; Ferraris et al., J. Mol. Biol ., 395). : 522, 2010).
HGF은 복잡하고, 불안정한 형태의 단백질로 여러 개의 도메인을 이루고 있으며, 혈청 단백질인 단백질 절단효소 전구체인 플라스미노젠(plasminogen)과 구조적, 기능적 연관성을 가지고 있어서, HGF 전구체로 부터 단백질 절단에 의해, 전체적인 구조 재배열이 일어나서, 활성화된 HGF가 만들어져야 HGF-Met 신호가 전달이 된다(Gherardi et al. Proc. Natl. Acad. Sci. USA, 103:4046, 2006). HGF의 스플라이싱 변이체인 NK1은 HGF에 비해 c-Met을 아주 약하게 활성화하지만, HSPG (heparan-sulfate proteoglycan)에 의해 결합력이 증진된다(Schwall et al., J. Cell. Biol., 133:709, 1996).HGF is a complex, unstable form of protein that consists of several domains and has a structural and functional relationship with plasma protein, a plasma cleavage precursor, plasminogen. Structural rearrangements occur, and HGF-Met signaling must be made before activated HGF is produced (Gherardi et al. Proc. Natl. Acad. Sci. USA , 103: 4046, 2006). NK1, a splicing variant of HGF, activates c-Met very weakly compared to HGF, but is enhanced by heparan-sulfate proteoglycan (HSPG) (Schwall et al., J. Cell. Biol., 133: 709 , 1996).
SAXS (small angle X-ray scattering) 분석과 몇 가지 X-선 결정 분석을 통하여, c-Met 복합체가 신호 전달을 하는 최소한의 구조는 리간드 이량체(dimer)를 중심에 두고, 양쪽 바깥으로 Met 수용체가 배열해 있는 2:2 위상임을 알게 되었다(Gherardi et al. Proc. Natl. Acad. Sci. USA, 103:4046, 2006).Through small angle X-ray scattering (SAXS) analysis and several X-ray crystallographic analyzes, the minimal structure through which c-Met complexes signal is centered on the ligand dimer and outward on both sides of the Met receptor. Was found to be an array of 2: 2 phases (Gherardi et al. Proc. Natl. Acad. Sci. USA , 103: 4046, 2006).
HGFA(HGF activator), matriptase(ST14) 와 hepsin, 이 세 종류의 세린계 단백질 분해효소(Serine proteinases)가 HGF의 절단 및 활성화에 관여하는데, matriptase(ST14) 와 hepsin의 경우는 c-Met을 발현하는 세포에서 발현되고 있으나, HGFA는 수용성 인자로, thrombin에 의해 절단되어, 혈액응고와 조직재생에 관여하는 HGF/c-Met 신호를 연결시키는 역할을 한다(Shimomura et al., J. Biol. Chem. 268:22927, 1993). 또한, HGF의 활성화는 적어도 HAI1(HGF activator inhibitor 1; SPINT1), HAI2(HGF activator inhibitor 2; SPINT2), 이 두 개의 저해인자(inhibitors)에 의해 통제되는데, matriptase 또는 hepsin의 발현량이 증가하거나, HAI1 나 HAI2의 발현량이 감소하게 되면, 암세포의 전이활성이 저하된다는 측면에서 상기한 단백질을 암 치료의 타겟으로 연구하기도 한다(Morris et al., Cancer Res., 65:4598, 2005).Three types of serine proteinases, HGFA (HGF activator), matriptase (ST14) and hepsin, are involved in HGF cleavage and activation. Matriptase (ST14) and hepsin express c-Met. Although expressed in cells, HGFA is a water-soluble factor, cleaved by thrombin, and serves to connect HGF / c-Met signals involved in blood coagulation and tissue regeneration (Shimomura et al., J. Biol. Chem). 268: 22927, 1993). In addition, HGF activation is regulated by at least HAI1 (HGF activator inhibitor 1; SPINT1), HAI2 (HGF activator inhibitor 2; SPINT2), two inhibitors (inhibitors), such as increased matriptase or hepsin expression, or HAI1 The decrease in the expression level of HAI2 has been studied as a target of cancer treatment in terms of lowering metastatic activity of cancer cells (Morris et al., Cancer Res ., 65: 4598, 2005).
또 다른 c-Met저해 단백질로써 유비퀴틴 E3 ligase인 CBL은 세포막 인접부위에 존재하는 c-Met의 모티프(motif)인 Tyr1003를 인지하고, E2 ligase를 결합하는 ring finger 도메인이 가지고 있어, 양자에 결합하여 궁극적으로 c-Met 분해을 유도하는데, 이 같은 이유로 Tyr1003 모티프가 제거되거나, 변이가 생기면 c-Met이 분해되지 않고 재순환 하게 되어, 세포의 암화를 촉진하게 된다(Peschard et al.,Mol. Cell, 8:995, 2001).CBL, a ubiquitin E3 ligase as another c-Met inhibitor, recognizes Tyr1003, a c-Met motif located near the cell membrane, and has a ring finger domain that binds to E2 ligase. Ultimately, c-Met degradation is induced, which causes Tyr1003 motifs to be removed or mutations that cause c-Met to be recycled without degradation (Peschard et al., Mol. Cell, 8). : 995, 2001).
HGF의 여러 변이체들이 c-Met의 길항제 역할을 한 예도 있는데, 변이체 가운데 가장 많이 발현되고 있는 NK2는 부분적으로 c-Met을 활성화 시키기는 하지만, 궁극적으로 는 길항작용을 수행하며(Otsuka et al., Mol. Cell. Biol., 20:2055, 2000), N-말단 도메인과 두번째 크링글도메인(K2)의 닫힌 모노머형태("closed" monomer conformation)를 열어 주면, NK2는 c-Met을 활성화시키는 형태로 전환된다(Tolbert et al., Proc. Natl Acad. Sci. USA, 107:13264, 2010). 또한, NK4는 HGF의 길항제로 잘 알려져 있으나, 발현 및 생산이 여의치 않다(Nakamura et al., Anticancer Agents Med. Chem., 10:36, 2010). NK1과 NK2, NK4와같은 HGF 변이체들을 이용하여 c-Met의 활성화를 저해하기 위한 노력들이 있었으나, 이들 변이체들은 단백질의 발현과 안정성 측면에서 모두 좋지 않은 결과를 보였다. Several variants of HGF acted as antagonists of c-Met. The most commonly expressed variant of NK2 partially activates c-Met but ultimately performs antagonism (Otsuka et al., Mol.Cell. Biol ., 20: 2055, 2000), NK2 activates c-Met by opening the "closed" monomer conformation of the N-terminal domain and the second Kringle domain (K2). (Tolbert et al., Proc. Natl Acad. Sci. USA, 107: 13264, 2010). In addition, NK4 is well known as an antagonist of HGF, but its expression and production are not available (Nakamura et al., Anticancer Agents Med. Chem. , 10:36, 2010). Efforts have been made to inhibit c-Met activation using HGF variants such as NK1, NK2, and NK4, but these variants have shown poor results in terms of protein expression and stability.
특히, NK1은 기능적인 HGF의 가장 작은 형태인데, 불안정하여, 단백질 발현이 어려운 측면이 있다(Tolbert et al., Proc. Natl. Acad. Sci. USA, 104:14592, 2007; Lokker et al., EMBO J., 11:2503,1992). 이러한 이유로 스탠포드 대학의 한 그룹에서는 NK1에 오류 PCR (error prone polymerase chain reaction)을 통하여 직접진화(directed evolution)를 발생시켜, NK1의 발현률을 40배 높여 주었고, 녹는점(Tm, melting temperature)을 15℃이상 증진시켜 단백질 안정성을 높여주어 치료용 단백질로 이용할 수 있도록 개량하는 시도가 있었다(Douglas et al., Proc. Natl. Acad. Sci. USA, 108:13035, 2011).In particular, NK1 is the smallest form of functional HGF, which is unstable, with difficulty in protein expression (Tolbert et al., Proc. Natl. Acad. Sci. USA , 104: 14592, 2007; Lokker et al., EMBO J., 11: 2503, 1992). For this reason, a group at Stanford University has directed NK1 through direct error (error prone polymerase chain reaction) to increase the expression rate of NK1 by 40 times and increase the melting temperature (Tm, melting temperature). Attempts have been made to improve the protein stability by increasing the temperature above ℃ to be used as a therapeutic protein (Douglas et al., Proc. Natl. Acad. Sci. USA, 108: 13035, 2011).
이와 같이, 항 신생혈관형성 치료 시 나타나는 저항성에 c-Met 타겟팅이 좋은 치료법 일 수 있으며(Comoglio et al., Nat. Rev. Drug. Discov., 7:504, 2008) c-Met의 활성을 억제하였을 때, VEGFR-2 길항제의 활성을 복구 시켜준 예에서(You et al., Cancer Res. 71:4758, 2011) VEGFR-2와 c-Met의 활성을 동시에 저해하는 치료법이 항 신생혈관 저해제의 종양의 치료효율을 개선할 수 있다고 사료된다.As such, c-Met targeting may be a good treatment for resistance to antiangiogenic therapy (Comoglio et al., Nat. Rev. Drug. Discov ., 7: 504, 2008). Inhibition of c-Met activity In the case of restoring the activity of VEGFR-2 antagonist (You et al., Cancer Res. 71: 4758, 2011), the treatment that simultaneously inhibits the activity of VEGFR-2 and c-Met is an anti-neovascular inhibitor. It is thought that the therapeutic efficiency of tumors can be improved.
이와 같이 최근의 항체연구는 단일 표적에 대해 기능성을 가지는 항체를 개발하는 것 이외에도, 두 가지 또는 그 이상의 표적을 동시에 취할 수 있는, 이른 바 이중표적항체(bispecific antibody) 또는 다중표적 항체(multi-specific antibody) 관련 연구가 활발히 진행되고 있다(Van Spriel et al., Immunol. Today, 21:391, 2000; Kufer et al., Trend in Biotechnol., 22:238, 2004; Marvin and Zhu, Curr. Opin. Drug Discovery Dev., 9:184, 2006). 아직 이러한 항체들 가운데 FDA 승인을 얻어서 상품화가 이루어진 사례는 없으나, 지속적인 관심과 잠재력을 바탕으로 실험실 및 임상수준에서 꾸준히 연구개발이 이루어지고 있다. 이 부류 에 속하는 항체들은, 크게 1) ScFv 기반 항체, 2) Fab 기반 항체, 3) IgG 기반 항체 등으로 구분할 수 있으며, 상기와 같이 이중표적 또는 다중표적 항체 및 그의 제조방법에 대해 다양한 학술적 보고가 있었으며, 이들 항체들은 사용목적에 따른 형태학적 특징에 따라 저마다 기능상의 장단점을 보이지만, 암을 치료하기 위한 효과적이고 새로운 치료용 이중표적 및 다중표적 항체의 개발은 여전히 필요한 실정이다. 특히, 이중표적 또는 다중표적을 위해 제조된 항체가 제대로 그 기능을 나타내는가가 중요한 문제이며, 이 경우 무엇보다도 동시 표적으로 하는 항원에 대한 선택이 매우 중요한 것으로 이해되고 있다.As such, recent antibody studies, in addition to developing antibodies that are functional against a single target, are known as bispecific or multi-specific antibodies that can simultaneously take two or more targets. antibodies have been actively studied (Van Spriel et al., Immunol. Today , 21: 391, 2000; Kufer et al., Trend in Biotechnol ., 22: 238, 2004; Marvin and Zhu, Curr. Opin. Drug Discovery Dev ., 9: 184, 2006). None of these antibodies has been commercialized with FDA approval yet, but research and development is being conducted at the laboratory and clinical level with continued interest and potential. Antibodies belonging to this class can be broadly classified into 1) ScFv-based antibodies, 2) Fab-based antibodies, 3) IgG-based antibodies, and the like. As described above, various academic reports on double- or multi-target antibodies and preparation methods thereof have been reported. Although these antibodies have functional advantages and disadvantages according to their morphological characteristics according to the purpose of use, there is still a need for the development of effective new therapeutic double- and multi-target antibodies for treating cancer. In particular, it is an important question whether an antibody prepared for a dual target or a multi-target properly exhibits its function. In this case, it is understood that the selection for the co-targeting antigen is very important.
이에, 본 발명자들은 혈관신생을 억제하여 암치료 효과를 가지는 이중표적항체를 개발하기 위하여 예의 노력한 결과, VEGFR-2 및 c-Met을 동시에 중화시킬 수 있는 IgG 기반의 이중표적항체를 제조하고, 상기 이중표적 항체가 VEGFR-2 단일표적 항체 또는 c-Met 길항 도메인에 비해서 세포 수준에서 대등하거나 보다 우수한 항암효과를 나타내는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made diligent efforts to develop a dual target antibody having a cancer treatment effect by inhibiting angiogenesis. Thus, the present inventors prepared an IgG-based dual target antibody capable of simultaneously neutralizing VEGFR-2 and c-Met. The present invention has been completed by confirming that the dual target antibody shows a comparable or better anticancer effect at the cellular level compared to the VEGFR-2 single target antibody or c-Met antagonist domain.
발명의 요약Summary of the Invention
본 발명의 목적은 VEGFR-2 및 c-Met을 동시에 중화시킬 수 있는 IgG 기반의 이중표적항체를 제공하는 데 있다. It is an object of the present invention to provide an IgG-based dual target antibody capable of simultaneously neutralizing VEGFR-2 and c-Met.
본 발명의 다른 목적은 상기 이중표적 항체를 코딩하는 DNA 및 상기 DNA를 함유하는 재조합 벡터를 제공하는 데 있다. It is another object of the present invention to provide a DNA encoding the dual target antibody and a recombinant vector containing the DNA.
본 발명의 또 다른 목적은 상기 이중표적 항체를 코딩하는 DNA를 함유하는 재조합 벡터로 형질전환된 숙주세포를 제공하는 데 있다. Still another object of the present invention is to provide a host cell transformed with a recombinant vector containing the DNA encoding the dual target antibody.
본 발명의 또 다른 목적은 (a) 상기 재조합 벡터로 형질전환된 숙주세포를 배양하여 VEGFR-2 및 c-Met에 대하여 결합성을 갖는이중표적항체를 생성시키는 단계; 및 (b) 상기 생성된 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체를 수득하는 단계를 포함하는 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체의 제조방법을 제공하는 데 있다. Another object of the invention (a) culturing the host cell transformed with the recombinant vector to produce a dual target antibody having binding to VEGFR-2 and c-Met; And (b) obtaining a dual target antibody having binding to the generated VEGFR-2 and c-Met, the method for preparing a dual target antibody having binding to VEGFR-2 and c-Met. To provide.
본 발명의 또 다른 목적은 상기 이중표적항체를 포함하는 혈관신생억제용 약학조성물을 제공하는 데 있다. Still another object of the present invention is to provide a pharmaceutical composition for inhibiting angiogenesis, including the double target antibody.
본 발명의 또 다른 목적은 상기 이중표적항체를 포함하는 암치료용 약학조성물을 제공하는 데 있다. Another object of the present invention to provide a pharmaceutical composition for treating cancer comprising the double target antibody.
상기 목적을 달성하기 위하여, 본 발명은 서열번호 1로 표시되는 아미노산 서열을 가지는 경쇄가변영역과 서열번호 2로 표시되는 중쇄가변영역을 가지는 VEGFR-2(Vasicular Endothelial Growth Factor Receptoer-2) 중화항체의 상기 경쇄가변영역 또는 상기 중쇄가변영역의 말단에 서열번호 3 또는 서열번호 4로 표시되는 c-Met(Mesenchymal Epithelial Transition factor) 중화 펩타이드가 결합되어 있는 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체를 제공한다.In order to achieve the above object, the present invention is a VEGFR-2 (Vasicular Endothelial Growth Factor Receptoer-2) neutralizing antibody having a light chain variable region having an amino acid sequence represented by SEQ ID NO: 1 and a heavy chain variable region represented by SEQ ID NO: 2 Has binding to VEGFR-2 and c-Met to which a c-Met (Mesenchymal Epithelial Transition factor) neutralizing peptide represented by SEQ ID NO: 3 or SEQ ID NO: 4 is bound to the end of the light chain variable region or the heavy chain variable region. Provide dual target antibodies.
또한, 본 발명은 상기 이중표적 항체를 코딩하는 DNA 및 상기 DNA를 함유하는 재조합 벡터를 제공한다. The present invention also provides a DNA encoding the dual target antibody and a recombinant vector containing the DNA.
또한, 본 발명은 상기 이중표적 항체를 코딩하는 DNA를 함유하는 재조합 벡터로 형질전환된 숙주세포를 제공한다.The present invention also provides a host cell transformed with a recombinant vector containing the DNA encoding the dual target antibody.
또한, 본 발명은 (a) 상기 재조합 벡터로 형질전환된 숙주세포를 배양하여 VEGFR-2 및 c-Met에 대하여 결합성을 갖는이중표적항체를 생성시키는 단계; 및 (b) 상기 생성된 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체를 수득하는 단계를 포함하는 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체의 제조방법을 제공한다. In addition, the present invention comprises the steps of (a) culturing the host cell transformed with the recombinant vector to generate a dual target antibody having binding to VEGFR-2 and c-Met; And (b) obtaining a dual target antibody having binding to the generated VEGFR-2 and c-Met, the method for preparing a dual target antibody having binding to VEGFR-2 and c-Met. to provide.
또한, 본 발명은 상기 이중표적항체를 포함하는 혈관신생억제용 약학조성물을 제공한다. In addition, the present invention provides a pharmaceutical composition for inhibiting angiogenesis comprising the double target antibody.
또한, 본 발명은 상기 이중표적항체를 포함하는 암치료용 약학조성물을 제공한다.The present invention also provides a pharmaceutical composition for treating cancer comprising the double target antibody.
도 1은 본 발명에 따른 벡터 pPMC-102를 293T 세포를 이용하여 생산한 후, PMC-102의 발현율이 매우 낮음을 웨스턴블랏과 ELISA로 확인하고(a 및 b), pPMC-102FC를 293T 세포에서 임의 발현시킨 후 정제한 후, 이중표적항체 PMC-102FC의 생산 및 정제도를 SDS-PAGE를 통해서 확인한 결과(c)를 나타낸 것이다.Figure 1 shows that the production of the vector pPMC-102 according to the present invention using 293T cells, the expression rate of PMC-102 is very low by Western blot and ELISA (a and b), pPMC-102FC in 293T cells After optional expression and purification, the production and purification of the dual target antibody PMC-102FC was confirmed by SDS-PAGE.
도 2는 c-Met에 결합하는 HGF의 NK1 도메인과 그 변형체의 염기 서열을 나타낸 것이다.Figure 2 shows the nucleotide sequence of the NK1 domain of HGF and its variants that bind to c-Met.
도 3은 본 발명에 따른 벡터 pPMC-102FC를 제작 시, 코돈최적화(codon optimization)를 수행하여 얻은 PMC-102FC의 경쇄부분의 염기서열(b) 중쇄를 포함한 전체 pPMC-102FC를 클로닝하여 이를 도식화(a)하여 나타낸 것이다.3 is a schematic diagram of the entire pPMC-102FC including the heavy chain (b) the nucleotide sequence of the light chain portion of the PMC-102FC obtained by performing codon optimization when constructing the vector pPMC-102FC according to the present invention. a) is shown.
도 4는 본 발명에 따른 이중표적항체의 VEGFR-2 및 인간 및 마우스 c-Met에 대한 결합능과 친화도(a)와 VEGFR-2 및 인간 및 마우스 c-Met에 대한 동시결합능(b)을 BiaCore로 분석한 결과를 나타낸 것이다.Figure 4 shows the binding capacity and affinity for VEGFR-2 and human and mouse c-Met of the dual target antibody according to the present invention (a) and co-binding capacity (b) for VEGFR-2 and human and mouse c-Met BiaCore The analysis results are shown.
도 5는 본 발명에 따른 이중표적항체 PMC-102의 BxPC3 세포주(a)에서, 또 PMC-102FC의 KP-4 세포주(b 및 c)에서 세포증식 분석(proliferation assay) 결과를 나타낸 것이다.Figure 5 shows the results of proliferation assay in the BxPC3 cell line (a) of the dual target antibody PMC-102 in accordance with the present invention, and in the KP-4 cell lines (b and c) of PMC-102FC.
도 6은 본 발명에 따른 이중표적항체 PMC-102FC의 HUVEC에 대한 세포증식 분석(proliferation assay) 결과를 나타낸 것이다.Figure 6 shows the results of the proliferation assay (proliferation assay) for HUVEC of the dual target antibody PMC-102FC according to the present invention.
도 7은 본 발명에 따른 이중표적항체 PMC-102FC를 KP-4에 처리하였을 때, c-Met의 활성화가 억제되고, Erk의 활성화가 저해되는 현상을 웨스턴블랏으로 분석한 결과를 나타낸 것이다.Figure 7 shows the results of Western blot analysis of the phenomenon that the activation of c-Met is inhibited, the activation of Erk is inhibited when the dual target antibody PMC-102FC according to the present invention treated KP-4.
도 8은 본 발명에 따른 이중표적항체를 HUVEC에 처리하였을 때, VEGFR-2의 활성화가 억제되고, Erk의 활성화가 저해되는 현상을 웨스턴블랏으로 분석한 결과를 나타낸 것이다.Figure 8 shows the results of Western blot analysis of a phenomenon in which the activation of VEGFR-2 is inhibited and the activation of Erk is inhibited when the dual target antibody according to the present invention is treated with HUVEC.
발명의 상세한 설명 및 구체적인 구현예Detailed Description of the Invention and Specific Embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명은 일관점에서, 서열번호 1로 표시되는 아미노산 서열을 가지는 경쇄가변영역과 서열번호 2로 표시되는 중쇄가변영역을 가지는 VEGFR-2(Vasicular Endothelial Growth Factor Receptoer-2) 중화항체의 상기 경쇄가변영역 또는 상기 중쇄가변영역의 말단에 서열번호 3 또는 서열번호 4로 표시되는 c-Met(Mesenchymal Epithelial Transition factor) 중화 펩타이드가 결합되어 있는 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체에 관한 것이다.The present invention consistently, the light chain variable region of the VEGFR-2 (Vasicular Endothelial Growth Factor Receptoer-2) neutralizing antibody having a light chain variable region having an amino acid sequence represented by SEQ ID NO: 1 and a heavy chain variable region represented by SEQ ID NO: 2 Dual-target antibody having binding to VEGFR-2 and c-Met to which a c-Met (Mesenchymal Epithelial Transition factor) neutralizing peptide represented by SEQ ID NO: 3 or SEQ ID NO: 4 at the end of the region or the heavy chain variable region is bound It is about.
본 발명에서는 항암 치료용 항체 개발을 위하여 종양으로부터 유래한 혈관신생의 억제와 더불어, 종양의 증식 및 전이를 동시에 저해하기 위해서 VEGF/VEGFR 및 HGF/c-Met 신호전달 기작을 표적으로 하였다. In the present invention, in addition to the inhibition of angiogenesis derived from tumors for the development of antibodies for anticancer treatment, VEGF / VEGFR and HGF / c-Met signaling mechanisms were targeted to simultaneously inhibit tumor proliferation and metastasis.
본 발명에 있어서, 이중표적항체의 뼈대를 이루고 있는 타니비루맵(TTAC-0001, Tanibirumab, 대한민국 등록특허 제883,430호 및 WO 2008/153237)은 VEGFR-2을 표적으로 하면서 동시에 마우스나 렛트 유래의 flk-1에 대해서도 반응성을 가지는 동시에, 두 번 째 표적인 c-Met을 타겟팅하는 도메인 또한 인간, 마우스를 동시에 타겟팅 할 수 있도록 디자인 되어있어, 이종간 교차반응성을 이용한 동물질환 모델에 대한 연구를 가능케 함으로써, 이행연구를 유도하고 향후 특정 암종에 대한 항암제 개발을 단계적으로 진행시켜 관련 연구를 보다 수월하게 진행할 수 있게 한다. In the present invention, Tanibirumab (TTAC-0001, Tanibirumab, Republic of Korea Patent No. 883,430 and WO 2008/153237), which forms the skeleton of the dual target antibody, targets VEGFR-2 and at the same time flk derived from mouse or rat. Reactive to -1 and the second target c-Met targeting domain is also designed to target human and mouse at the same time, enabling the study of animal disease model using cross-reactivity between different species, Induce transitional research and develop anticancer drugs for specific cancers in the future to make related research easier.
본 발명에 있어서, 상기 VEGFR-2 중화 항체는 scFV(Single Chain Fragment Variable) 또는 IgG인 것을 특징으로 할 수 있으며, 상기 c-Met 중화 펩타이드와 상기 VEGFR-2 중화항체의 경쇄 가변영역 또는 중쇄가변영역은 링커를 통하여 연결되어 있는 것을 특징으로 할 수 있다. In the present invention, the VEGFR-2 neutralizing antibody may be characterized in that the scFV (Single Chain Fragment Variable) or IgG, light chain variable region or heavy chain variable region of the c-Met neutralizing peptide and the VEGFR-2 neutralizing antibody May be connected via a linker.
상기 c-Met 중화 펩타이드는 상기 VEGFR-2 중화항체의 경쇄 가변영역 또는 중쇄가변영역의 N-말단 또는 C-말단에 연결되어 있는 것을 특징으로 할 수 있다.The c-Met neutralizing peptide may be connected to the N-terminus or C-terminus of the light chain variable region or heavy chain variable region of the VEGFR-2 neutralizing antibody.
본 발명의 일 양태에서는 타니비루맵의 경쇄서열(서열번호 1)의 아미노 말단에 NK1(hHGF의 아미노산 28번에서 210까지:서열번호 3) 도메인을 링커로 연결하여 pPMC-102.Lgt를 제작하고, 타니비루맵의 중쇄서열 벡터인 pIgGLD-6A6Hvy과 함께, 293T 세포에 공동 형질도입하여 VEGFR-2와 C-Met의 활성을 동시에 억제하는 이중표적 항체를 발현시켰다. In one embodiment of the present invention, pPMC-102.Lgt is prepared by linking NK1 (amino acids 28 to 210: SEQ ID NO: 3) domains to the amino terminus of the light chain sequence (SEQ ID NO: 1) of Tanivirumab with a linker. Together with pIgGLD-6A6Hvy, a heavy chain sequence vector of Tanivirumab, 293T cells were co-transduced to express a dual target antibody that simultaneously inhibits the activity of VEGFR-2 and C-Met.
본 발명의 다른 양태에서는 상기 NK1에서 8개의 코돈에 돌연변이를 가진 M15 도메인을 제작하고, 타니비루맵의의 중쇄서열에 대하여는 불필요한 서열을 제거하고 코돈최적화를 수행하는 과정을 통하여, 보다 향상된 발현능을 가지는 VEGFR-2와 C-Met의 활성을 동시에 억제하는 이중표적 항체, PMC-102FC를 제조하였다. In another embodiment of the present invention, by producing a M15 domain having a mutation in the eight codons in NK1, and removing the unnecessary sequence for the heavy chain sequence of Tanivirumab, and performing codon optimization, improved expression ability Eggplant was prepared a dual target antibody, PMC-102FC that simultaneously inhibits the activity of VEGFR-2 and C-Met.
본 발명에 따른 이중표적항체의 PMC-102FC의 인간 VEGFR-2 및 인간과 마우스 c-Met에 대한 결합능과 해리상수(Kd, dissociation constant), 동시결합을 확인한 결과, VEGFR-2에는 타니비루맵과 PMC-102FC이 비슷한 결합능을 보이는 것을 확인한 반면, 인간과 마우스 c-Met에는 PMC-102FC만이 결합능을 가지고 있는 것을 확인하였다 (도 4a). 또한, VEGFR-2에 대한 양성대조군인 타니비루맵의 경우 VEGFR-2에만 결합하고, c-Met에 대한 양성대조군인 Fc-M15의 경우 c-Met에만 결합하는 것이 확인되었다 (도 4b). 각 배치별 친화도를 분석한 결과, 타니비루맵, PMC-102FC의 VEGFR-2과 c-Met 각각에 대한 높은 친화도를 확인하였으며(도 4a), 본 발명의 이중표적항체 PMC-102FC는 VEGFR-2와 c-Met에 동시결합능을 보였다(도 4b).As a result of confirming the binding ability, dissociation constant (Kd, dissociation constant) and co-binding of the dual target antibody PMC-102FC to human VEGFR-2 and human and mouse c-Met of the double-target antibody according to the present invention, It was confirmed that PMC-102FC showed a similar binding capacity, while it was confirmed that only PMC-102FC had binding capacity in human and mouse c-Met (FIG. 4A). In addition, it was confirmed that in the case of Tanivirumab, a positive control for VEGFR-2, only binds to VEGFR-2, and in the case of Fc-M15, a positive control for c-Met, it binds only to c-Met (FIG. 4B). As a result of analyzing the affinity for each batch, it was confirmed that the high affinity for each of VEGFR-2 and c-Met of Tanivirumab, PMC-102FC (Fig. 4a), the double-target antibody PMC-102FC of the present invention is VEGFR Simultaneous binding to -2 and c-Met was shown (Fig. 4b).
본 발명의 또다른 양태에서는 이중표적항체 PMC-102FC 처리 후 암세포인 BxPC3 및 KP4의 증식능의 변화를 분석하였으며, 그 결과, BxPC3에 PMC-102를 10 ㎍/㎖로 처리하였을 때 효과적으로, 세포의 증식을 저해하였다(도 5a). 또한, HGF의 자가공급(autocrine) 세포주인 KP4를 사용하였을 때도, 뼈대 항체인 타니비루맵에 비하여 세포의 증식을 저해 하였으며, 저해 효과는 c-Met 억제제(SantaCruz, 미국)와 유사하였다(도 5b 및 도 5c).In another embodiment of the present invention, the change in the proliferative capacity of the cancer cells BxPC3 and KP4 after treatment with the dual target antibody PMC-102FC was analyzed, and as a result, when the PMC-102 is treated with 10 μg / ml in BxPC3, the proliferation of the cells effectively Was inhibited (FIG. 5A). In addition, KP4, an autocrine cell line of HGF, was also used to inhibit the proliferation of cells compared to the Tanibirumab, a skeletal antibody, and the inhibitory effect was similar to that of the c-Met inhibitor (SantaCruz, USA) (FIG. 5B). And FIG. 5C).
본 발명의 또다른 양태에서는 이중표적항체 PMC-102FC 처리 후, 혈관내피세포(HUVEC)의 증식능 변화를 확인하였으며, 그 결과, 이중표적항체 PMC-102FC가 VEGF에 의해 야기되는 HUVEC 세포의 증식능을 모항체인 타니비루맵과 비슷하게 저해하였으며, HGF의 효과도 동시에 차단하여, VEGF와 HGF를 동시에 처리한 경우에도 HUVEC의 증식능을 타니비루맵에 비하여 더욱 강력히 저해할 수 있음을 확인하였다(도 6a 및 도 6b).In another embodiment of the present invention, after the dual target antibody PMC-102FC treatment, the proliferative capacity of vascular endothelial cells (HUVEC) was confirmed, and as a result, the dual target antibody PMC-102FC inhibited the proliferative capacity of HUVEC cells caused by VEGF. It was inhibited similarly to the chain Tanibimap, and also blocked the effects of HGF at the same time, it was confirmed that even when the VEGF and HGF treatment at the same time can more strongly inhibit the proliferative capacity of HUVEC than Tanibimap (Figure 6a and 6b) ).
본 발명의 또다른 양태에서는 PMC-102FC은 췌장암세포인 KP4세포에서 c-Met의 인산화를 효과적으로 저해할 수 있음을 확인할 수 있었으며(도 7), PMC-102FC은 VEGFR-2와 c-Met의 인산화를 동시에 효과적으로 저해할 수 있음을 확인할 수 있었다(도 8).In another embodiment of the present invention it was confirmed that PMC-102FC can effectively inhibit c-Met phosphorylation in KP4 cells, which are pancreatic cancer cells (Fig. 7), PMC-102FC phosphorylation of VEGFR-2 and c-Met At the same time it was confirmed that can be effectively inhibited (Fig. 8).
다른 관점에서, 본 발명은 상기 이중표적 항체를 코딩하는 DNA 및 상기 DNA를 함유하는 재조합 벡터에 관한 것이다. In another aspect, the present invention relates to a DNA encoding the dual target antibody and a recombinant vector containing the DNA.
본 발명에서 이중표적 항체를 코딩하는 DNA는 서열번호 6으로로 표시되는 VEGFR-2 중화항체의 경쇄가변영역과 c-Met 중화 펩타이드가 결합된 단편을 코딩하는 DNA와 서열번호 7로 표시되는 VEGFR-2 중화항체의 중쇄가변영역을 코딩하는 DNA를 포함하는 것을 특징으로 할 수 있다. In the present invention, the DNA encoding the double-target antibody is a DNA encoding the light chain variable region of the VEGFR-2 neutralizing antibody represented by SEQ ID NO: 6 and the fragment to which the c-Met neutralizing peptide is bound, and the VEGFR- represented by SEQ ID NO: 7 It may be characterized by comprising a DNA encoding a heavy chain variable region of the two neutralizing antibodies.
본 발명에서, "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다.In the present invention, "vector" refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host. Vectors can be plasmids, phage particles or simply potential genomic inserts. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of current vectors, "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use plasmid vectors. Typical plasmid vectors that can be used for this purpose include (a) a replication initiation point that allows for efficient replication to include hundreds of plasmid vectors per host cell, and (b) host cells transformed with the plasmid vector. It has a structure comprising an antibiotic resistance gene and (c) a restriction enzyme cleavage site into which foreign DNA fragments can be inserted. Although no appropriate restriction enzyme cleavage site is present, the use of synthetic oligonucleotide adapters or linkers according to conventional methods facilitates ligation of the vector and foreign DNA.
라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 Sambrook, et. al., supra의 1.82 섹션에 기술된 칼슘 클로라이드 방법을 사용해서 용이하게 달성될 수 있다. 선택적으로, 전기천공법 (electroporation)(Neumann, et. al., EMBO J., 1:841, 1982) 또한 이러한 세포들의 형질전환에 사용될 수 있다.After ligation, the vector should be transformed into the appropriate host cell. Transformation is described by Sambrook, et. al., easily achieved using the calcium chloride method described in section 1.82 of supra . Alternatively, electroporation (Neumann, et. Al., EMBO J. , 1: 841, 1982) can also be used for transformation of these cells.
핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다. 당업계에 주지된 바와 같이, 숙주세포에서 형질감염 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 재조합벡터 내에 포함되게 된다. 숙주세포가 진핵세포인 경우에는, 재조합벡터는 진핵 발현숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.Nucleic acids are "operably linked" when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to enable gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s). For example, the DNA for a pre-sequence or secretion leader is operably linked to the DNA for the polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation. In general, "operably linked" means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame. However, enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used. As is well known in the art, to raise the expression level of a transfected gene in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that function in the selected expression host. Preferably, the expression control sequence and the corresponding gene will be included in one recombinant vector containing the bacterial selection marker and the replication origin. If the host cell is a eukaryotic cell, the recombinant vector must further comprise an expression marker useful in the eukaryotic expression host.
상술한 재조합 벡터에 의해 형질전환된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다. Host cells transformed with the recombinant vectors described above constitute another aspect of the present invention. As used herein, the term “transformation” means introducing DNA into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다.Of course, it should be understood that not all vectors function equally well to express the DNA sequences of the present invention. Likewise not all hosts function equally for the same expression system. However, those skilled in the art can make appropriate choices among various vectors, expression control sequences and hosts without departing from the scope of the present invention without undue experimental burden. For example, in selecting a vector, the host must be considered, since the vector must be replicated in it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered.
또 다른 관점에서, 본 발명은 상기 이중표적 항체를 코딩하는 DNA를 함유하는 재조합 벡터로 형질전환된 숙주세포에 관한 것이다. In another aspect, the present invention relates to a host cell transformed with a recombinant vector containing the DNA encoding the dual target antibody.
또 다른 관점에서, 본 발명은 (a) 상기 이중표적 항체를 코딩하는 DNA 및 상기 DNA를 함유하는 재조합 벡터로 형질전환된 숙주세포를 배양하여 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체를 생성시키는 단계; 및 (b) 상기 생성된 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체를 수득하는 단계를 포함하는 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체의 제조방법에 관한 것이다. In another aspect, the present invention is (a) culturing a host cell transformed with the DNA encoding the dual target antibody and the recombinant vector containing the DNA to have a double binding to VEGFR-2 and c-Met Generating a target antibody; And (b) obtaining a dual target antibody having binding to the generated VEGFR-2 and c-Met, the method for producing a dual target antibody having binding to VEGFR-2 and c-Met. It is about.
본 발명의 이중표적 항체는 의약으로서, 과도한 혈관신생에 의하여 발생하는 질병 및 암에 대한 예방 및/또는 치료를 목적으로 한 의약 조성물로서 이용될 수 있다. 본 발명의 항체는 제제화하여 경구적 혹은 비경구적으로 투여할 수 있다. 본 발명의 항체를 포함하는 제제는 의약 조성물로 하여 사람 혹은 동물에 대해 안전하게 투여될 수 있다.The double-target antibody of the present invention can be used as a pharmaceutical, as a pharmaceutical composition for the purpose of preventing and / or treating diseases and cancers caused by excessive angiogenesis. Antibodies of the invention can be formulated and administered orally or parenterally. The formulation containing the antibody of the present invention can be safely administered to a human or animal as a pharmaceutical composition.
또 다른 관점에서, 본 발명은 상기 이중표적항체를 포함하는 혈관신생억제용 약학조성물 및 상기 이중표적항체를 이용한 혈관신생억제 방법에 관한 것이다. In another aspect, the present invention relates to a pharmaceutical composition for inhibiting angiogenesis comprising the double target antibody and a method for inhibiting angiogenesis using the double target antibody.
본 발명의 혈과닌생억제용 조성물은 과도한 혈관신생에 의하여 발생하는 종양의 성장과 전이(metastasis), 연령관련 황반변성(age-related macular degeneration, ARMD), 당뇨병성 망막병증(diabetic retinopathy), 건선(psoriasis), 류마티스성 관절염(rheumatoid arthritis), 만성염증(chronic inflammation)과 같은 질환의 치료용으로 사용될 수 있다.The antihypertensive composition of the present invention is a tumor growth and metastasis caused by excessive angiogenesis (metastasis), age-related macular degeneration (ARMD), diabetic retinopathy, psoriasis It can be used for the treatment of diseases such as psoriasis, rheumatoid arthritis, chronic inflammation.
또 다른 관점에서, 본 발명은 상기 이중표적 항체를 포함하는 암치료용 약학조성물 및 상기 이중표적 항체를 이용한 암의 치료방법에 관한 것이다. In another aspect, the present invention relates to a pharmaceutical composition for treating cancer comprising the double target antibody and a method for treating cancer using the double target antibody.
본 발명에서, 상기 암은 위암, 간암, 폐암, 갑상선암, 유방암, 자궁경부암, 대장암, 췌장암, 직장암, 대장직장암, 전립선암, 신장암, 흑색종, 전립선암의 골전이암, 난소암으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. In the present invention, the cancer is composed of stomach cancer, liver cancer, lung cancer, thyroid cancer, breast cancer, cervical cancer, colon cancer, pancreatic cancer, rectal cancer, colorectal cancer, prostate cancer, kidney cancer, melanoma, prostate cancer bone metastasis cancer, ovarian cancer It may be characterized in that it is selected from the group.
본 발명의 약제학적 조성물에 사용된 담체는 약제학적으로 허용되는 담체, 보조제 및 비히클을 포함하며 총괄적으로 약제학적으로 허용되는 담체라고 한다. 본 발명의 약제학적 조성물에 사용될 수 있는 약제학적으로 허용되는 담체로는 이들로 한정되는 것은 아니지만 이온 교환, 알루미나, 알루미늄 스테아레이트, 레시틴, 혈청 단백질(예, 사람 혈청 알부민), 완충 물질(예, 여러 인산염, 글리신, 소르브산, 칼륨 소르베이트, 포화 식물성 지방산의 부분적인 글리세라이드 혼합물), 물, 염 또는 전해질(예, 프로타민 설페이트, 인산수소이나트륨, 인산수소칼륨, 염화나트륨 및 아연 염), 교질성 실리카, 마그네슘 트리실리케이트, 폴리비닐 피롤리돈, 셀룰로즈-계 기질, 폴리에틸렌 글리콜, 나트륨 카르복시메틸셀룰로즈, 폴리아릴레이트, 왁스, 폴리에틸렌-폴리옥시프로필렌-차단 중합체, 폴리에틸렌 글리콜 및 양모지 등이 포함된다.Carriers used in the pharmaceutical compositions of the present invention include pharmaceutically acceptable carriers, adjuvants and vehicles and are collectively referred to as pharmaceutically acceptable carriers. Pharmaceutically acceptable carriers that can be used in the pharmaceutical compositions of the invention include, but are not limited to, ion exchange, alumina, aluminum stearate, lecithin, serum proteins (eg, human serum albumin), buffer materials (eg, Various phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids), water, salts or electrolytes (e.g. protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride and zinc salts), colloidal Silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substrates, polyethylene glycols, sodium carboxymethylcellulose, polyarylates, waxes, polyethylene-polyoxypropylene-blocking polymers, polyethylene glycols and wool, and the like.
본 발명에 따른 의약 조성물의 투여 경로는 이들로 한정되는 것은 아니지만 구강, 정맥내, 근육내, 동맥내, 골수내, 경막내, 심장내, 경피, 피하, 복강내, 비강내, 장관, 국소, 설하 또는 직장이 포함된다. The route of administration of the pharmaceutical composition according to the present invention is not limited thereto, but is oral, intravenous, intramuscular, intraarterial, intramedullary, intradural, intracardiac, transdermal, subcutaneous, intraperitoneal, intranasal, intestinal, topical, Sublingual or rectal.
경구 및 비경구 투여가 바람직하다. 본원에 사용된 용어 비경구는 피하, 피내, 정맥내, 근육내, 관절내, 활액낭내, 흉골내, 경막내, 병소내 및 두개골내 주사 또는 주입 기술을 포함한다. Oral and parenteral administration is preferred. As used herein, the term parenteral includes subcutaneous, intradermal, intravenous, intramuscular, intraarticular, intramuscular, intrasternal, intradural, intralesional and intracranial injection or infusion techniques.
약제학적 조성물은 멸균 주사용 수성 또는 유성 현탁액으로서 멸균 주사용 제제의 형태일 수 있다. 이 현탁액은 적합한 분산제 또는 습윤제(예, 트윈 80) 및 현탁화제를 사용하여 본 분야에 공지된 기술에 따라 제형될 수 있다. 멸균 주사용 제제는 또한 무독성의 비경구적으로 허용되는 희석제 또는 용매중의 멸균 주사용액 또는 현탁액(예, 1,3-부탄디올중의 용액)일 수 있다. 허용적으로 사용될 수 있는 비히클 및 용매로는 만니톨, 물, 링겔 용액 및 등장성 염화나트륨 용액이 있다. 또한, 멸균 불휘발성 오일이 통상적으로 용매 또는 현탁화 매질로서 사용된다. 이러한 목적을 위해, 합성 모노 또는 디글리세라이드를 포함하여 자극성이 적은 어떠한 불휘발성 오일도 사용할 수 있다. 올레산 및 이의 글리세라이드 유도체와 같은 지방산이 약제학적으로 허용되는 천연 오일(예, 올리브유 또는 피마자유), 특히 이들의 폴리옥시에틸화된 것과 마찬가지로 주사 제제에 유용하다.Pharmaceutical compositions may be in the form of sterile injectable preparations as sterile injectable aqueous or oily suspensions. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (eg, Tween 80) and suspending agents. Sterile injectable preparations may also be sterile injectable solutions or suspensions (eg, solutions in 1,3-butanediol) in nontoxic parenterally acceptable diluents or solvents. Vehicles and solvents that may be used that are acceptable include mannitol, water, ring gel solution, and isotonic sodium chloride solution. In addition, sterile nonvolatile oils are conventionally employed as a solvent or suspending medium. For this purpose, any non-irritating oil may be used including synthetic mono or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives, are useful in injection formulations as well as pharmaceutically acceptable natural oils (eg olive oil or castor oil), especially their polyoxyethylated ones.
본 발명의 약제학적 조성물은 이들로 한정되는 것은 아니지만 캡슐, 정제 및 수성 현탁액 및 용액을 포함하여 경구적으로 허용되는 어떠한 용량형으로도 경구 투여될 수 있다. 경구용 정제의 경우, 흔히 사용되는 담체로는 락토즈 및 옥수수 전분이 포함된다. 마그네슘 스테아레이트와 같은 윤활제가 또한 전형적으로 첨가된다. 캡슐형으로 경구 투여하는 경우 유용한 희석제로는 락토즈 및 건조된 옥수수 전분이 포함된다. 수성 현탁액이 경구 투여될 때 활성 성분은 유화제 및 현탁화제와 배합된다. 필요한 경우, 감미제 및/또는 풍미제 및/또는 착색제가 첨가될 수 있다.The pharmaceutical compositions of the present invention may be administered orally in any orally acceptable dosage form, including but not limited to capsules, tablets, and aqueous suspensions and solutions. For oral tablets, commonly used carriers include lactose and corn starch. Lubricants such as magnesium stearate are also typically added. Useful diluents for oral administration in a capsule form include lactose and dried corn starch. The active ingredient is combined with emulsifiers and suspending agents when the aqueous suspension is administered orally. If desired, sweetening and / or flavoring and / or coloring agents may be added.
본 발명의 화합물은 통상적인 항염증제와 혼합하거나 매트릭스 메탈로프로테아제 억제제, 리폭시게나제 억제제 및 IL-1외의 사이토킨의 억제제와 혼합하여 사용할 수 있다. 본 발명의 화합물은 또한 염증과 같은 IL-1 매개된 질환 증세를 예방 또는 퇴치하기 위해 면역조절제(예, 브로피리민, 항-사람 알파 인터페론 항체, IL-2, GM-CSF, 메티오닌 엔케팔린, 인터페론 알파, 디에틸디티오카바메이트, 종양 괴사 인자, 날트렉손 및 rEPO) 또는 프로스타글란딘과 배합하여 투여할 수 있다. 본 발명의 화합물이 다른 치료 제제와 배합하여 투여될 때 이들은 환자에게 순차적으로 또는 동시에 투여될 수 있다. 다른 방도로서, 본 발명에 따른 약제학적 조성물은 일반식(1)의 화합물과 상기된 다른 치료 또는 예방제와 혼합하여 이루어질 수 있다.The compounds of the present invention can be used in combination with conventional anti-inflammatory agents or in combination with matrix metalloprotease inhibitors, lipoxygenase inhibitors and inhibitors of cytokines other than IL-1. The compounds of the present invention also provide immunomodulators (eg, bropyrimin, anti-human alpha interferon antibodies, IL-2, GM-CSF, methionine enkephalins, interferons to prevent or combat IL-1 mediated disease symptoms such as inflammation). Alpha, diethyldithiocarbamate, tumor necrosis factor, naltrexone and rEPO) or prostaglandin. When the compounds of the present invention are administered in combination with other therapeutic agents, they may be administered sequentially or simultaneously to the patient. Alternatively, the pharmaceutical composition according to the present invention may be made by mixing the compound of formula (1) with other therapeutic or prophylactic agents described above.
본 발명의 의약조성물에 대한 유효량은 사용된 특정 화합물의 활성, 연령, 체중, 일반적인 건강, 성별, 규정식, 투여시간, 투여경로, 배출율, 약물 배합 및 예방 또는 치료될 특정 질환의 중증을 포함한 여러 요인에 따라 변할 수 있음은 이해될 것이다. 본 발명에 따른 의약 조성물은 환제, 당의정, 캡슐, 액제, 겔, 시럽, 슬러리, 현탁제로 제형될 수 있다. An effective amount for a pharmaceutical composition of the present invention may be determined by various methods including the activity, age, weight, general health, sex, diet, time of administration, route of administration, rate of release, drug combination and severity of the particular disease to be prevented or treated. It will be appreciated that the factors may vary. The pharmaceutical composition according to the present invention may be formulated as pills, dragees, capsules, solutions, gels, syrups, slurries, suspensions.
바람직한 양태로서, 비경구적 투여의 경우 본 발명의 의약 조성물은 수용성 용액으로 제조할 수 있다. 바람직하게는, 한스 용액 (Hank's solution), 링거 용액 (Ringer's solution) 또는 물리적으로 완충된 염수와 같은 물리적으로 적절한 완충용액을 사용할 수 있다. 수용성 주입 (injection) 현탁액은 소디움 카복시메틸 셀루로스, 솔비톨 또는 덱스트란과 같이 현탁액의 점도를 증가시킬 수 있는 기질을 첨가할 수 있다. 덧붙여서, 활성 성분의 현탁액은 적합한 유질의 주입 현탁액 (oily injection suspensions)으로 제조될 수 있다. 적합한 친지성 용매 또는 담체는 참기름과 같은 지방산 또는 에틸 올레이트, 트리글리세라이드 또는 리포솜과 같은 합성 지방산 에스테르를 포함한다. 복수양이온성 비지질 아미노 폴리머(polycationic amino polymers)도 운반체로서 사용될 수 있다. 임의로, 현탁액은 화합물의 용해도를 증가시키고 고농도의 용액을 제조하기 위해 적합한 안정화제 또는 약제를 사용할 수 있다.In a preferred embodiment, for parenteral administration, the pharmaceutical composition of the present invention can be prepared in an aqueous solution. Preferably, a physically suitable buffer such as Hanks' solution, Ringer's solution, or physically buffered saline may be used. Aqueous injection suspensions may add a substrate that can increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol or dextran. In addition, suspensions of the active ingredient may be prepared as suitable oily injection suspensions. Suitable lipophilic solvents or carriers include fatty acids such as sesame oil or synthetic fatty acid esters such as ethyl oleate, triglycerides or liposomes. Polycationic amino polymers can also be used as carriers. Optionally, the suspension may use a suitable stabilizer or agent to increase the solubility of the compound and to prepare a high concentration of solution.
의약 조성물중의 항체는 바이알 등의 유리용기와 주사통 등에 흡착하고 또한 불안정하며, 여러 가지 물리화학적 인자, 예컨대 열, pH 및 습도 등에 의해 쉽게 실활한다. 따라서, 안정한 형으로 제제화하기 위해 안정화제, pH조정제, 완충제, 가용화제, 계면활성제 등을 첨가한다. 안정화제로서는 글리신, 알라닌 등의 아미노산류, 덱스트란 40 및 만노우스등의 당류, 솔비톨, 만니톨, 크실톨 등의 당알콜등이 열거되고, 또한 이들의 2종이상을 병용해도 좋다. 이들 안정화제의 첨가량은 항체의 중량에 대하여 0.01 내지 100배, 특히 0.1 내지 10배 첨가하는 것이 좋다. 이들 안정화제를 가함에 의해 액상제제 또는 동결건조제제의 보존안정성을 향상할 수 있다. 완충제로서는 예컨대 인산버퍼, 구연산버퍼등이 열거된다. 완충제는 액상제제 또는 동결건조제제의 재용해 후 수용액의 pH를 조정하고, 항체의 안정성, 용해성에 기여한다. 완충제의 첨가량으로서는 예컨대 액상제제 혹은 동결건조제제를 재용해 한 후의 수량에 대해 1 내지 10mM로 하는 것이 좋다. 계면활성제로서는 폴리솔베이트 20, 프르로닉(pulluronic) F-68, 폴리에틸렌글리콜 등을 사용할 수 있으며 특히 바람직하게는 폴리솔베이트 80이 열거되고, 또 이들의 2종 이상을 병용해도 좋다. Antibodies in pharmaceutical compositions adsorb and are unstable in glass containers such as vials, syringes, and the like, and are easily deactivated by various physicochemical factors such as heat, pH, and humidity. Thus, stabilizers, pH adjusters, buffers, solubilizers, surfactants and the like are added to formulate into stable forms. Examples of the stabilizer include amino acids such as glycine and alanine, sugars such as dextran 40 and mannose, sugar alcohols such as sorbitol, mannitol, and xyltol, and two or more kinds thereof may be used in combination. The amount of these stabilizers added is preferably 0.01 to 100 times, in particular 0.1 to 10 times the weight of the antibody. By adding these stabilizers, the storage stability of the liquid preparation or the lyophilized preparation can be improved. Examples of the buffer include phosphate buffers and citric acid buffers. The buffer adjusts the pH of the aqueous solution after redissolution of the liquid or lyophilized formulation and contributes to the stability and solubility of the antibody. As the addition amount of the buffer, for example, the amount of the liquid preparation or the freeze-dried preparation is preferably 1 to 10 mM with respect to the amount after re-dissolution. Polysorbate 20, pulluronic F-68, polyethyleneglycol, etc. can be used as surfactant, Especially preferably, polysorbate 80 is mentioned, You may use together 2 or more types.
상기한 바와 같이 항체와 같은 고분자 단백질은 용기의 재질인 유리와 수지 등에 흡착하기 쉽기 때문에, 계면활성제를 첨가하는 것에 의해 액상제제 혹은 동결건조제제의 재용해 후 항체의 용기로의 흡착을 방지할 수 있다. 계면활성제의 첨가량으로서는 액상제제 혹은 동결건조제제의 재용해 후 물 중량에 대해 0.001 내지 1.0% 첨가함이 좋다. 이상과 같은 안정화제, 완충제 혹은 흡착방지제를 가하여 본 발명 항체의 제제를 조제할 수 있지만, 특히 의료용 또는 동물약용 주사제로서 이용하는 경우는 삼투압비로서 허용되는 삼투압비는 1 내지 2가 좋다. 삼투압비는 약제화시에 염화나트륨의 증감에 의해 조제할 수 있다. 조제중의 항체 함량은 적용질환 적용투여경로 등에 따라 적절히 조정할 수 있고, 사람에 대한 사람형화 항체의 투여량은 항체의 사람 단백질 NSP에 대한 친화성, 즉 사람 단백질 NSP에 대한 해리정수(Kd값)에 의존하고, 친화성이 높은(Kd값이 낮은)만큼 사람에 대한 투여량을 적게해도 약효를 발현할 수 있다.As described above, polymer proteins such as antibodies are easily adsorbed to glass, resin, and the like, which are the materials of the container. Therefore, by adding a surfactant, adsorption of the antibody into the container after re-dissolution of the liquid or lyophilized agent can be prevented. have. As the addition amount of the surfactant, it is preferable to add 0.001 to 1.0% to the weight of water after re-dissolution of the liquid formulation or the lyophilized formulation. Although the above stabilizer, buffer, or adsorption agent can be added to the preparation of the antibody of the present invention, the osmotic pressure ratio that can be used as the osmotic pressure ratio is preferably 1 to 2, especially when used as a medical or animal medicine injection. Osmotic pressure ratio can be prepared by increasing or decreasing sodium chloride at the time of chemical | medicalization. The antibody content in the preparation can be appropriately adjusted according to the applied disease application route, and the dose of the humanized antibody to human is determined by the affinity of the antibody for human protein NSP, that is, the dissociation constant for human protein NSP (Kd value). Depends on the drug, the drug can be expressed even if the dose to the human being is reduced by the high affinity (low Kd value).
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.
특히, 하기 실시예에서는 본 발명에 따른 유전자를 제거하기 위하여 특정 벡터와 숙주세포로 숙신산 생성 미생물인 맨하이미아 속 미생물 만을 예시하였으나, 다른 종류의 숙신산 생성 미생물들을 사용하여도 순수 숙신산 생성 변이 미생물을 수득할 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 자명한 사항이라 할 것이다. Particularly, in the following examples, only succinic acid-producing microorganisms of the genus Maniamia are exemplified by specific vectors and host cells in order to remove the genes according to the present invention. What can be obtained will be apparent to those of ordinary skill in the art.
실시예 1 NK1의 클로닝Example 1 Cloning of NK1
C-Met과 결합하여 활성을 억제하는 인간 HGF 도메인 관련 DNA는 RT-PCR을 이용한 통상적인 분자 생물학적인 방법을 통하여 추출하여 사용하였다. Human HGF domain-associated DNA that binds to C-Met and inhibits its activity was extracted and used through conventional molecular and biological methods using RT-PCR.
추출된 DNA를 이용하여 NK1 도메인만을 증폭하기 위해서 다음과 같은 조건에서 PCR을 수행하였다: 94℃ 4분,(94℃, 45초/50℃, 45초/72℃, 1분) 25회, 72℃ 7분, 4℃. 이때 사용된 반응물 조성은 다음과 같다: BstXI 제한효소 인식부위를 가지는 프라이머 SP-SBs와 SalI site와 6XHis sequence를 가진 역방향 프라이머 NK1HisSal-As 각 2 ㎕(10 pmole/㎕), 주형 DNA로써 인간 HGF cDNA 1 ㎕(100 ng/㎕), 중합효소로써 i-Max™ II Taq 2.5 U(Intron #25261, 대한민국), 10X 버퍼 5 ㎕, dNTP 2 ㎕(각 2.5 mM), 증류수 37.5 ㎕. PCR을 통해서 얻어낸 산물은 1% 아가로스 겔을 통해서 전기영동을 수행하여 확인하였으며, BstXI 와 SalI 으로 절단하여, 이후 600 bp에 못 미치는 희미한 밴드를 HiYieldTM Gel/PCR DNA Extraction Kit(RBC Bioscience #YDF300, 대만)를 이용해서 분리해 내어, pcDNA3(invitrogen)가 변형된 발현벡터를 BstXI 와 XhoI으로 절단한 부분에 연결하여 클로닝하여 염기서열 분석을 통해 바르게 클로닝된 NK1 발현벡터 pSP.NK1.His을 수득하였다.PCR was performed under the following conditions to amplify only the NK1 domain using the extracted DNA: 94 ° C. 4 min, (94 ° C., 45 sec / 50 ° C., 45 sec / 72 ° C., 1 min) 25 times, 72 ° C 7 minutes, 4 ° C. The reactant composition used was as follows: primers SP-SBs with BstXI restriction enzyme recognition site and reverse primer NK1HisSal-As with SalI site and 6XHis sequence, respectively 2 μl (10 pmole / μl), human HGF cDNA as template DNA. 1 μl (100 ng / μl), i-Max ™ II Taq 2.5 U as polymerase (Intron # 25261, South Korea), 5 μl of 10 × buffer, 2 μl of dNTP (2.5 mM each), 37.5 μl of distilled water. The product obtained by PCR was confirmed by electrophoresis through a 1% agarose gel, cleaved with BstXI and SalI, and then a faint band of less than 600 bp was detected by HiYieldTM Gel / PCR DNA Extraction Kit (RBC Bioscience # YDF300, Taiwan), and cloned the cloned expression vector of pcDNA3 (invitrogen) to the fragment cut with Bst XI and Xho I and cloned the NK1 expression vector pSP.NK1.His that was correctly cloned through sequencing. Obtained.
SP-SBs 프라이머:NNN CCA GCG GTG TGG GCC ACC ATG GGC TGG TCC TAC ATC (서열번호:8)SP-SBs Primer: NNN CCA GCG GTG TGG GCC ACC ATG GGC TGG TCC TAC ATC (SEQ ID NO: 8)
NK1HisSal-As 프라이머:NNN GTC GAG CTA GTG ATG GTG ATG GTG ATG TTC AAC TTC TGA ACA CT (서열번호:9)NK1HisSal-As Primer: NNN GTC GAG CTA GTG ATG GTG ATG GTG ATG TTC AAC TTC TGA ACA CT (SEQ ID NO: 9)
본 발명자들이 출원하여 등록된 타니비루맵(TTAC-0001, 대한민국 등록특허 제10-0883430호 및 국제출원 제PCT/KR07/003077호)에 기재된 pIgGLD-6A6Lgt을 backbone 벡터로 하여, pIgGLD-6A6Lgt의 타니비루맵 경쇄서열(서열번호 1)의 아미노 말단에 NK1(hHGF의 아미노산 28번에서 210까지:서열번호 3) 도메인을 [G4S]X2 링커(아미노산 서열; sggggsggggsgs)로, PCR을 이용하여, pPMC-102.Lgt를 제작하였다. The present inventors have applied for and registered pIgGLD-6A6Lgt described in Tanivirumab (TTAC-0001, Korean Patent No. 10-0883430 and International Application No. PCT / KR07 / 003077) as backbone vectors, and the other of pIgGLD-6A6Lgt NK1 (amino acids 28-210 of hHGF: SEQ ID NO: 3) domains at the amino terminus of the nibirumap light chain sequence (SEQ ID NO: 1) with the [G4S] X2 linker (amino acid sequence; sggggsggggsgs), using PCR, pPMC- 102. Lgt was produced.
타니비루맵의 중쇄서열 벡터인 pIgGLD-6A6Hvy과 함께, 293T 세포에 공동 형질도입하여 임의발현을 유도한 후, 그 배양액을 얻어 인간 IgG에 대한 SDS-PAGE 및 웨스턴블로팅을 통해서 그 발현여부를 확인하였다(도 1a).Co-transduction of 293T cells with pIgGLD-6A6Hvy, a heavy chain sequence vector of Tanivirumab, induced random expression, and the culture was obtained to confirm its expression through SDS-PAGE and Western blotting on human IgG. (FIG. 1A).
이 때, 형질도입은 lipofectamine™ 2000(Invitrogen #11668-019, 미국)을 이용하였으며, DMEM 배지(Welgene, 대한민국)가 들어있는 6-웰 플레이트에 웰당 2×106개의 293T 세포를 접종한 후, 가습이 유지되는 CO2(5%) 배양기를 사용하여 37℃에서 24시간 정치하고, 세포밀도가 90% 이상 되도록 조밀하게 배양하였다. At this time, transduction was performed using lipofectamine ™ 2000 (Invitrogen # 11668-019, USA), and inoculated with 2 × 10 6 293T cells per well in a 6-well plate containing DMEM medium (Welgene, South Korea). A humidified CO 2 (5%) incubator was used to stand at 37 ° C for 24 hours, and the cells were densely cultured to have a cell density of 90% or more.
재조합벡터 3㎍(pPMC-102.Lgt와 pIgGLD-6A6Hvy 각 2㎍씩)과 6㎕의 lipofectamin™ 2000을 각기 250 ㎕의 무혈청 OptiMEM 배지에 희석하여 상온에서 5분간 방치하였다. DNA 희석액과 lipofectamin™ 2000 희석액을 섞어 상온에서 20분간 반응시켜 DNA-lipofectamin™ 2000 복합체가 형성되도록 하였다. 배양된 세포에서 기존의 배지를 제거한 후, DNA-lipofectamin™ 2000 복합체 500 ㎕와 무혈청 OptiMEM 배지 500 ㎕를 각 웰에 첨가하여, 37℃ 조건의 CO2 배양기에서 6시간 동안 배양하였다. Freestyle 293 배지 2 ㎖를 추가하여 48-72시간 동안 배양한 후, 그 상등액만을 분리하여 항체의 발현 여부를 SDS-PAGE와 웨스턴블로팅을 통해 확인하였다. SDS-PAGE 및 웨스턴블로팅은 당업계에서 일반적으로 사용되는 방법을 준용하였으며, 사용된 시료는 다음과 같다: 10% SDS-polyacrylamide Gel, PVDF 멤브레인(Millipore #IPVH00010, 미국), HRP-conjugated goat anti-human IgG(kappa) 항체, 그리고 HRP-conjugated goat anti-human IgG(Fc) 항체(Pierce, 미국). 3 μg of the recombinant vectors (2 μg each of pPMC-102.Lgt and pIgGLD-6A6Hvy) and 6 μl of lipofectamin ™ 2000 were diluted in 250 μl of serum-free OptiMEM medium and allowed to stand at room temperature for 5 minutes. The DNA and lipofectamin ™ 2000 dilutions were mixed and allowed to react at room temperature for 20 minutes to form the DNA-lipofectamin ™ 2000 complex. After removing the existing medium from the cultured cells, 500 μl of DNA-lipofectamin ™ 2000 complex and 500 μl of serum-free OptiMEM medium were added to each well and incubated for 6 hours in a CO 2 incubator at 37 ° C. After adding 2 ml of Freestyle 293 medium and incubating for 48-72 hours, only the supernatant was isolated and confirmed by SDS-PAGE and Western blotting. SDS-PAGE and Western blotting were applied in a manner generally used in the art, and the samples used were as follows: 10% SDS-polyacrylamide Gel, PVDF membrane (Millipore® IPVH00010, USA), HRP-conjugated goat anti -human IgG (kappa) antibodies, and HRP-conjugated goat anti-human IgG (Fc) antibodies (Pierce, USA).
임의 발현으로 얻어진 배지 내 IgG 발현농도는 ELISA를 사용하여 확인하였다. 이를 위해서 96-웰 플레이트에 1차 항체로써, 2 ㎍/㎖의 goat anti-human IgG(Fc)(Pierce, 미국)를 100 ㎕씩 첨가하고, 4℃에서 12시간 방치함으로써 코팅을 마쳤다. 이후 웰 속에 남아있는 용액을 버린 후, 1x PBS에 2% 탈지우유를 함유한 blocking solution을 200 ㎕씩 첨가, 37℃에서 1시간 방치하였다. 1X PBS에 0.05% Tween-20을 함유한 Washing buffer로 각 웰을 3번 반복하여 씻은 후, 293T 형질도입을 통하여 얻은 세포배양액 100 ㎕씩을 첨가하여 상온에서 1시간 반응시켰다. 재차 washing buffer로 각 웰을 3번 반복해서 씻고 난 후, 2차 항체로써 HRP-conjugated goat anti-human IgG(kappa)를 washing buffer에 1:5,000 비율로 희석하여 100 ㎕씩 첨가, 상온에서 1시간 동안 반응시켰다. 다시 washing buffer로 각 웰을 3번 반복해서 씻고 난 후, TMB substrate reagent(BD biosciences, 미국)를 100 ㎕씩 첨가, 5∼10분 동안 반응시킨 후, 2N 황산(H2SO4)용액 50 ㎕씩 첨가하여 발색반응을 중지시켰다. 마이크로플레이트 리더(Tecan, 스위스)를 사용하여 O.D450-650nm 값을 얻어 결과 표준품과 비교하여 정량을 수행 하였으며, 그 결과를 도 1b에 나타내었다.IgG expression concentration in the medium obtained by the arbitrary expression was confirmed using ELISA. For this purpose, 100 μl of 2 μg / ml goat anti-human IgG (Fc) (Pierce, USA) was added to the 96-well plate as a primary antibody, and the coating was completed by standing at 4 ° C. for 12 hours. After discarding the remaining solution in the well, 200 μl each of the blocking solution containing 2% skim milk in 1x PBS, and left for 1 hour at 37 ℃. After washing each well three times with Washing buffer containing 0.05% Tween-20 in 1X PBS, 100 μl of the cell culture solution obtained through 293T transduction was added thereto and reacted at room temperature for 1 hour. After washing each well three times with washing buffer again, dilute HRP-conjugated goat anti-human IgG (kappa) in washing buffer at a ratio of 1: 5,000 in a washing buffer and add 100 μl each at room temperature for 1 hour. Reacted for a while. After washing each well three times with washing buffer again, 100 μl of TMB substrate reagent (BD biosciences, USA) was added and reacted for 5-10 minutes, followed by 50 μl of 2N sulfuric acid (H 2 SO 4 ) solution. The color reaction was stopped by the addition. Using a microplate reader (Tecan, Switzerland) to obtain the OD 450-650nm value was compared with the standard results and the results were shown in Figure 1b.
실시예 2 타니비루맵 서열의 코돈 적합화와 pPMC-102FC 제작 Example 2 Codon Adaptation and pPMC-102FC Construction of Tanivirumab Sequences
정량실험을 통하여 PMC-102의 발현율은 매우 저조한 것으로 확인되었다(도 4b). NK1 자체는 불안정한 단백질로 알려져 있으며, 발현이 저조하기 때문에 경쇄의 아미노 말단에 연결했을 때에도 그 발현율이 낮은 것으로 판단되었다. 이에 따라 발현율과 안정성을 개선한 형태의(Douglas et al., Proc. Natl. Acad. Sci. USA, 108:13035, 2011) NK1 변이체(M15)를 제작하였다(도 2). Through quantitative experiments, the expression rate of PMC-102 was found to be very low (FIG. 4B). NK1 itself is known as an unstable protein, and since its expression is poor, it was judged that its expression rate is low even when it is connected to the amino terminal of the light chain. Accordingly, NK1 variants (M15) were prepared (Douglas et al., Proc. Natl. Acad. Sci. USA, 108: 13035, 2011), which improved the expression rate and stability (FIG. 2).
즉, 실시예 1에서 제작한 pSP.NK1.His을 주형으로하여, 하기 기재된 프라이머를 이용하여, 도 2에 나타난 바와 같은 8개의 코돈에 돌연변이를 가진 M15가 만들어질 때까지 PCR 및 클로닝을 진행하였다. 이렇게 하여 pSP.M15.His를 제작하였는데 야생형 NK1 유전자 서열을 이용하여, 여러 단계의 PCR을 통한 돌연변이를 일으키고, 여섯 개의 히스티딘(6X His)을 종결코돈 직전에 삽입하여, 발현벡터 pSP.M15.His를 제작하였으며, M15 단편의 서열을 서열번호 4에 나타내었다.That is, pSP.NK1.His prepared in Example 1 was used as a template, and PCR and cloning were performed using the primers described below until M15 having a mutation in 8 codons as shown in FIG. . Thus, pSP.M15.His was prepared. Using wild-type NK1 gene sequence, mutations were carried out through multiple steps of PCR, and six histidines (6X His) were inserted immediately before the stop codon, thereby expressing the expression vector pSP.M15.His. Was prepared, and the sequence of the M15 fragment is shown in SEQ ID NO: 4.
M1KS : TGA AGA TAG AAA CCA AAA AA (서열번호:10)M1KS: TGA AGA TAG AAA CCA AAA AA (SEQ ID NO: 10)
M1KAS: TTT TTT GGT TTC TAT CTT CA (서열번호:11)M1KAS: TTT TTT GGT TTC TAT CTT CA (SEQ ID NO: 11)
M2KS: CAA GAA AAA GAT GCC TCT G (서열번호:12)M2KS: CAA GAA AAA GAT GCC TCT G (SEQ ID NO: 12)
M2KAS: CAG AGG CAT CTT TTT CTT G (서열번호:13)M2KAS: CAG AGG CAT CTT TTT CTT G (SEQ ID NO.:13)
M345KS: ATT GGT AAT GGA CGC AGC TAC AGG GGA ACA G (서열번호:14)M345KS: ATT GGT AAT GGA CGC AGC TAC AGG GGA ACA G (SEQ ID NO: 14)
M345KAS: GCT GCG TCC ATT ACC AAT GAT GCA TTT TCT AAT GT (서열번호:15)M345KAS: GCT GCG TCC ATT ACC AAT GAT GCA TTT TCT AAT GT (SEQ ID NO: 15)
M67KS: ATC GGG GTG AAG ACC TAC GGG AAA ACT (서열번호:16)M67KS: ATC GGG GTG AAG ACC TAC GGG AAA ACT (SEQ ID NO: 16)
M67KAS: AGT TTT CCC GTA GGT CTT CAC CCC GAT (서열번호:17)M67KAS: AGT TTT CCC GTA GGT CTT CAC CCC GAT (SEQ ID NO: 17)
M8KS: TCA CAA GCG ATC CAG AGG T (서열번호:18)M8KS: TCA CAA GCG ATC CAG AGG T (SEQ ID NO.:18)
M8KAS: ACC TCT GGA TCG CTT GTG A (서열번호:19)M8KAS: ACC TCT GGA TCG CTT GTG A (SEQ ID NO.:19)
이렇게 만들어진 NK1의 변이체 M15를 코돈적합화를 통해 합성하고(인비트로젠, 미국), 역시 코돈 적합화를 통해 얻은 타니비루맵의 경쇄서열의 카르복시 말단에 상기의 [G4S]X2 링커를 연결한, 타니비루맵경쇄-M15를 PCR 법을 이용하여 증폭하였다. PCR 증폭시 N-말단 쪽 프라이머에 제한효소 AscI, C-말단 쪽 프라이머에 HpaI을 넣어 주어 절단한 후, pcDNA3를 기반으로 하는 dual 발현벡터의 AscI, HpaI 절단 부위에 삽입하였다. 이어, 타니비루맵의 코돈 적합화를 통해 얻은 중쇄서열을 PCR 증폭시 N-말단 쪽 프라이머에 제한효소 BamHI, C-말단 쪽 프라이머에 NheI을 넣어 주어 절단한 후, 상기의 타니비루맵경쇄-M15 서열을 이미 함유하고 있는 dual 발현벡터의 BamHI, Nhe I 절단 부위에 삽입하여, 도 3의 pPMC-102FC를 완성하였다. 완성된 벡터의 중쇄 및 경쇄 부분의 염기서열은 서열번호 6 및 7에 기재하였다. The mutant M15 of NK1 thus prepared was synthesized through codon adaptation (Invitrogen, USA), and the above-mentioned [G4S] X2 linker was linked to the carboxy terminus of the light chain sequence of Tanivirumab, which was also obtained through codon adaptation. Tanivirumab light chain-M15 was amplified using the PCR method. During PCR amplification, the restriction enzyme Asc I was injected into the N-terminal primer and Hpa I was injected into the C-terminal primer, and then cleaved. The PCR was inserted into the Asc I and Hpa I cleavage sites of the dual expression vector based on pcDNA3. Subsequently, the heavy chain sequence obtained through codon adaptation of Tanibirumab was digested by inserting restriction enzyme Bam HI into the N-terminal primer and Nhe I into the C-terminal primer, and then cutting the Tanibirumab light chain. The pPMC-102FC of FIG. 3 was completed by inserting the BamHI and Nhe I cleavage sites of the dual expression vector already containing the -M15 sequence. The base sequences of the heavy and light chain portions of the completed vector are set forth in SEQ ID NOs: 6 and 7.
상기 제작된 pPMC-102FC를 293T에서 실시예 1에서 예시된 방법으로 트랜스펙션하여 발현시키고 그 배양액을 얻어 ELISA 방법으로 정량하였을 때, PMC-102에 비하여 현저하게 많은 양의 PMC-102FC가 생산되는 것을 확인하였다(도 1b). 이에 따라, 유전자 서열과 아미노산 서열 중 VEGFR-2를 길항하는 성질을 유지하도록 하면서, 불필요한 서열을 제거하도록 디자인하고, 인비트로젠-진아트(Invitrogen-GeneArt)에 의뢰하여 코돈 최적화(codon optimization)를 수행하여, 서열번호 7의 중쇄서열을 합성하여 얻었다. When the pPMC-102FC prepared above was transfected and expressed in 293T by the method exemplified in Example 1, and the culture was obtained and quantified by ELISA, a significantly larger amount of PMC-102FC was produced than PMC-102. It was confirmed (Fig. 1b). Accordingly, while maintaining the properties of antagonizing VEGFR-2 in the gene sequence and amino acid sequence, it is designed to remove unnecessary sequences, and commissioned to Invitrogen-GeneArt to codon optimization (codon optimization) The heavy chain sequence of SEQ ID NO: 7 was synthesized.
또한, c-Met을 타겟팅하는 NK1의 도메인은 타니비루맵의 경쇄서열(서열번호 1)의 카르복시 말단에 NK1의 변이체인 M15를 링커를 통해 연결하도록 디자인 하여, 역시 인비트로젠-진아트(Invitrogen-GeneArt)에 의뢰하여 코돈 적합화(codon optimization)를 수행하였다. 경쇄-M15 하이브리드를 합성하여 pPMC-102FC의 경쇄-M15 (AscI/HpaI sites)와 중쇄(BamHI/NheI sites)를 포함하는 벡터 pPMC-102FC를 완성하였고(도 3), 경쇄-M15의 아미노산 서열을 서열번호 5에 나타내었으며, 염기서열을 서열번호 6 및 도 3b에 나타내었다. pPMC-102FC를 293T 세포에 PEI 침전법으로 임시 발현을 통하여, 약 8 ㎎/L의 생산량을 보였고, protein A 레진에 결합한 IgG를 정제한 결과 4.4 ㎎의 높은 순도의 PMC-102FC를 수득하였다. 이에 대한 환원적, 비환원적 SDS-PAGE 후 Coomassie blue 염색 결과를 도 1c에 나타내었다. In addition, the domain of NK1 targeting c-Met is designed to connect M15, a variant of NK1, to the carboxy terminus of the light chain sequence of Tanivirumab (SEQ ID NO: 1) via a linker, which is also an invitrogen-geneart (Invitrogen). Codon optimization was performed by requesting to -GeneArt). The light chain-M15 hybrid was synthesized to complete the vector pPMC-102FC comprising the light chain-M15 ( Asc I / Hpa I sites) and heavy chain ( Bam HI / Nhe I sites) of pPMC-102FC (FIG. 3). The amino acid sequence of is shown in SEQ ID NO: 5, the nucleotide sequence is shown in SEQ ID NO: 6 and Figure 3b. pPMC-102FC was temporarily expressed in 293T cells by PEI precipitation, yielding about 8 mg / L. Purification of IgG bound to protein A resin yielded 4.4 mg of high purity PMC-102FC. Coomassie blue staining results after reducing and non-reducing SDS-PAGE are shown in FIG. 1C.
임의발현 배양을 통해서 확보된 이중표적항체 PMC-102FC는 보다 세밀한 연구를 위해서 MAbSelect Sure(GE health care, 스웨덴)을 패킹한 후 FPLC(fast protein liquid chromatography) 시스템으로 정제하여, 95% 이상 순도의 항체만을 확보하였다(도 1c). 우선, 배양액을 0.45 ㎛ 필터를 이용하여 불순물들을 걸러내고, 0.1 M NaCl이 포함된 20 mM sodium phosphate(pH 7.0)로 안정화된 protien A 컬럼에, UF(Ultrafiltration)를 거친 배지를 넣은 후, 결합하지 않은 단백질을 동일 버퍼를 사용하여 씻어내고, 다시 한 번 0.5 M NaCl이 포함된 20 mM sodium phosphate(pH 7.0) 버퍼 용액을 이용해서 비특이적으로 protein A 레진에 결합한 단백질을 씻어냈다. Protein-A에 특이적으로 결합하는 단백질은 0.1 M NaCl이 포함된 0.1 M Glycine-Cl(pH 3.5) 버퍼를 사용하여 용출하였으며, 1 M Tris를 이용하여 pH 6.0으로 시료를 중화시켰다. The dual-target antibody PMC-102FC obtained through random expression culture was packed with MAbSelect Sure (GE health care, Sweden) for further study, and then purified by FPLC (fast protein liquid chromatography) system. Only bays were secured (FIG. 1C). First, the culture medium was filtered using a 0.45 μm filter, and the medium passed through ultrafiltration (UF) was added to a protien A column stabilized with 20 mM sodium phosphate (pH 7.0) containing 0.1 M NaCl. The protein was washed out using the same buffer, and once again, the protein bound to protein A resin was non-specifically washed using 20 mM sodium phosphate (pH 7.0) buffer solution containing 0.5 M NaCl. Proteins that specifically bind to Protein-A were eluted using 0.1 M Glycine-Cl (pH 3.5) buffer containing 0.1 M NaCl, and the samples were neutralized to pH 6.0 using 1 M Tris.
실시예 3 이중표적항체 PMC-102FC의 결합능 시험Example 3 Avidity Test of Double Target Antibody PMC-102FC
PMC-102FC의 VEGFR-2 및 c-Met에 대한 결합능, 친화도, 동시결합 시험Binding affinity, affinity and co-binding of PMC-102FC to VEGFR-2 and c-Met
PMC-102FC의 인간 VEGFR-2 및 인간과 마우스 c-Met에 대한 결합능과 해리상수(Kd, dissociation constant), 동시결합을 알아보기 위해 BIACORE  3000(GE Healthcare)을 사용하였으며 CM5 chip을 사용하였다. 해리상수는 Km 값의 유사값으로 효소-기질복합체에서 효소의 기질에 대한 친화성의 지표로 사용되며, 값이 낮을수록 효소와 기질의 친화도가 높은 것을 의미한다. BIACORE® 3000 (GE Healthcare) was used to investigate the binding capacity, dissociation constant (Kd, dissociation constant), and covalent binding of PMC-102FC to human VEGFR-2 and human and mouse c-Met, and CM5 chip. The dissociation constant is a similar value of the Km value and is used as an indicator of the affinity of the enzyme in the enzyme-substrate complex. The lower the value, the higher the affinity between the enzyme and the substrate.
시료의 고정화는 Amine Coupling Kit(GE Healthcare)인 400mM EDC(N-ethyl-N'-(dimethylaminopropyl) Carbodiimide), 100mM NHS(N-Hydroxysuccinimide), 1M 에탄올 아민 염화수소(Ethanolamine hydrocholoride, pH 8.5)를 사용하며, 재생 버퍼로는 20mM 수산화나트륨, 고정화 버퍼로는 1X PBS에 희석한 후 pH 5.0의 10mM 아세테이트(GE Healthcare)에 분석시료를 1/40으로 희석하였다. 고정화 범위로는 4000RU(Response Unit)에서 고정화시켰다. 분석시료의 흡착성 측정 버퍼는 HBS-EP 버퍼(GE Healthcare)를 사용하였다. 항원으로는 인간 c-Met(hHGFR; R&D Systems)를 측정 농도 각각 7.8nM, 15.6nM, 31.3nM, 62.5nM, 125nM 및 250nM, 마우스 c-Met(mHGFR; R&D Systems)를 측정 농도 각각 0.78nM, 1.56nM, 3.13nM, 6.25nM, 12.5nM 및 25 nM로 HBS-EP 버퍼를 사용하여 최종 부피가 200㎕가 되도록 단계별 희석하였다. 6개의 농도 중 5개의 농도를 선택하여 fitting하였다. 재생버퍼는 실제 분석하기 전에 예비로 7.8nM 시료를 결합단계, 해리단계를 거친 후 수산화나트륨을 이용 베이스라인(base line)의 + 10% 정도 재생되는지를 확인 후 사용 농도를 선택하였다. 분석 유속은 30㎕/min이며, 결합 구간은 60초, 해리 구간은 300초로 하여 분석시료의 친화도를 측정하였다. Immobilization of the sample was performed using Amine Coupling Kit (GE Healthcare) 400 mM N-ethyl-N '-(dimethylaminopropyl) Carbodiimide (EDM), 100 mM NHS (N-Hydroxysuccinimide), and 1 M Ethanolamine hydrocholoride (pH 8.5). After dilution with 20 mM sodium hydroxide as the regeneration buffer and 1 × PBS as the immobilization buffer, the assay sample was diluted to 1/40 in 10 mM acetate (GE Healthcare) at pH 5.0. The immobilization range was immobilized at 4000RU (Response Unit). As the adsorption measurement buffer of the assay sample, HBS-EP buffer (GE Healthcare) was used. As antigen, human c-Met (hHGFR; R & D Systems) was measured at concentrations of 7.8 nM, 15.6 nM, 31.3 nM, 62.5 nM, 125 nM and 250 nM, and mouse c-Met (mHGFR; R & D Systems) was measured at concentrations of 0.78 nM, respectively. Dilutions were stepwise at 1.56 nM, 3.13 nM, 6.25 nM, 12.5 nM and 25 nM with HBS-EP buffer to a final volume of 200 μl. Five of the six concentrations were selected and fitted. The regeneration buffer was selected after using the sodium hydroxide hydroxide after the binding step and dissociation step of the 7.8 nM sample in advance, before the actual analysis. The assay flow rate was 30 μl / min, binding time was 60 seconds, dissociation time was 300 seconds, and the affinity of the sample was measured.
그 결과, VEGFR-2에는 타니비루맵과 PMC-102FC이 비슷한 결합능을 보이는 것을 확인한 반면, 인간과 마우스 c-Met에는 PMC-102FC만이 결합능을 가지고 있는 것을 확인하였다 (도 4a). 또한, VEGFR-2에 대한 양성대조군인 타니비루맵의 경우 VEGFR-2에만 결합하고, c-Met에 대한 양성대조군인 Fc-M15의 경우 c-Met에만 결합하는 것이 확인되었다 (도 4b).As a result, it was confirmed that Tanivirumab and PMC-102FC showed similar binding capacity to VEGFR-2, whereas only PMC-102FC had binding capacity to human and mouse c-Met (FIG. 4A). In addition, it was confirmed that in the case of Tanivirumab, a positive control for VEGFR-2, only binds to VEGFR-2, and in the case of Fc-M15, a positive control for c-Met, it binds only to c-Met (FIG. 4B).
각 배치별 친화도를 분석한 결과, 타니비루맵, PMC-102FC의 VEGFR-2과 c-Met 각각에 대한 높은 친화도를 확인하였으며(도 4a), 본 발명의 이중표적항체 PMC-102FC는 VEGFR-2와 c-Met에 동시결합능을 보였다(도 4b).As a result of analyzing the affinity for each batch, it was confirmed that the high affinity for each of VEGFR-2 and c-Met of Tanivirumab, PMC-102FC (Fig. 4a), the double-target antibody PMC-102FC of the present invention is VEGFR Simultaneous binding to -2 and c-Met was shown (Fig. 4b).
실시예 4 이중표적항체 PMC-102FC 처리 후 BxPC3 및 KP4의 증식능 분석Example 4 Analysis of Proliferative Capacity of BxPC3 and KP4 after Treatment with Dual Target Antibody PMC-102FC
본 발명에 따른 이중표적항체 PMC-102FC 처리 후, BxPC3 세포 (ATCC, 미국) 및 KP4 세포(Riken, 일본)의 증식변화를 확인하기 위해서, 세포 증식능 분석을 실시하였다. BxPC3 및 KP4의 배양은 10% 우태혈청(Gibco, 미국)을 첨가한 RPMI-1640 배지(Welgene, 한국)을 사용하였으며, 세포배양은 가습 된 5% CO2혼합공기 조건의 37℃ 배양기에서 배양하였다. 증식능 분석을 위해서 1% 우태혈청이 첨가된 RPMI-1640배지에서 각각의 BxPC3 및 KP4 세포를 10 ㎍/㎖의 PMC-102(기본형), PMC-102FC, 인간 IgG, 음성대조군인 타니비루맵, 양성대조군 Fc-M15 및 최종 2μM c-Met 억제제(SantaCruz, 미국)와 혼합하여 20분간 선 처리한 후, 30 ng/㎖ recombinant human HGF (R&D systems, 미국)을 처리하였다. 항체와 성장인자를 처리한 KP4는 96-웰 플레이트에 2×103세포/웰의 밀도로 72시간 배양 후 WST-8(Dojindo, 일본)을 2~4 시간 처리하여 450 ㎚ 파장에서 흡광도를 측정함으로써, 각 조건에서의 세포 증식능을 비교하였다.After treatment with the dual target antibody PMC-102FC according to the present invention, cell proliferation analysis was performed to confirm the proliferation change of BxPC3 cells (ATCC, USA) and KP4 cells (Riken, Japan). BxPC3 and KP4 were cultured using RPMI-1640 medium (Welgene, Korea) added with 10% fetal bovine serum (Gibco, USA), and cell cultures were incubated in a humidified 5% CO 2 mixed air in a 37 ° C incubator. . BxPC3 and KP4 cells were cultured in RPMI-1640 medium supplemented with 1% fetal bovine serum for 10 g / ml PMC-102 (basic), PMC-102FC, human IgG, and Tanibirumab, a negative control. 20 min pretreatment with mixed control Fc-M15 and final 2 μM c-Met inhibitor (SantaCruz, USA) followed by 30 ng / ml recombinant human HGF (R & D systems, USA). KP4 treated with antibody and growth factor was incubated for 72 hours at a density of 2 × 10 3 cells / well in a 96-well plate, and then absorbed at 450 nm by treatment with WST-8 (Dojindo, Japan) for 2-4 hours. By doing this, the cell proliferation ability in each condition was compared.
그 결과, BxPC3에 PMC-102를 10 ㎍/㎖로 처리하였을 때 효과적으로, 세포의 증식을 저해하였다(도 5a). 또, HGF의 자가공급(autocrine) 세포주인 KP4를 사용하였을 때도, 뼈대 항체인 타니비루맵에 비하여 세포의 증식을 저해 하였으며, 저해 효과는 c-Met 억제제(SantaCruz, 미국)와 유사하였다(도 5b 및 도 5c).As a result, when BxPC3 was treated with 10 μg / ml of PMC-102, cell proliferation was effectively inhibited (FIG. 5A). In addition, even when KP4, an autocrine cell line of HGF, was used, cell proliferation was inhibited compared to the Tanibirumab, a skeletal antibody, and the inhibitory effect was similar to that of a c-Met inhibitor (SantaCruz, USA) (FIG. 5B). And FIG. 5C).
실시예 5 이중표적항체 PMC-102FC 처리에 따른 HUVEC의 증식능 분석Example 5 Analysis of Proliferation Capacity of HUVEC Following Treatment with Dual Target Antibody PMC-102FC
본 발명에 따른 이중표적항체 PMC-102FC 처리 후, 혈관내피세포(Human umbilical vein endothelial cell, HUVEC)(Lonza, 스위스)의 증식능 변화를 확인하기 위해서, 세포 증식능 분석을 실시하였다. After treatment with the dual target antibody PMC-102FC according to the present invention, cell proliferation analysis was performed to confirm the change in proliferative capacity of vascular endothelial cells (HUVEC) (Lonza, Switzerland).
HUVEC의 배양은 LifeLine 배지(Vasculife 배지에Lifefactors(rhVEGF, rhIGF-1, rh FGF-B, Ascorbic acid, rh EGF, Heparin, FBS, L-Glutamine, Hydrocort 포함)첨가)(LifeLine, 미국)를 사용하였으며, 세포배양은 가습된 5% CO2 혼합공기 조건의 37℃ 배양기에서 배양하였다. 혈관내피세포의 생존률 분석을 위해서 이들 세포를 24-웰 플레이트에 2×104 세포/웰의 밀도로 24시간 배양하였다. 이후, M199 배지로 2회 씻어낸 후, 1% 우태혈청(Hyclone, 미국)이 포함된 M199 배지의 낮은 혈청농도 조건에서 6시간 동안 배양하였다. 다양한 농도의 항체를 세포에 30분간 선 처리한 후, 20 ng/㎖ VEGF (R&D systems, 미국)을 처리하였다. 48시간 배양 후 WST-8(Dojindo, 일본)을 2시간 처리하여 450 nm 파장에서의 흡광도를 측정함으로써, 각 조건에서의 세포 증식능을 비교하였다.HUVEC was cultured using LifeLine medium (Lifefactors (including rhVEGF, rhIGF-1, rh FGF-B, Ascorbic acid, rh EGF, Heparin, FBS, L-Glutamine, Hydrocort) added to Vasculife medium) (LifeLine, USA). , Cell culture was incubated in a 37 ℃ incubator in humidified 5% CO 2 mixed air conditions. For survival analysis of vascular endothelial cells, these cells were incubated for 24 hours at a density of 2 × 10 4 cells / well in 24-well plates. Then, after washing twice with M199 medium, and cultured for 6 hours at low serum concentration conditions of M199 medium containing 1% fetal bovine serum (Hyclone, USA). Antibodies of various concentrations were pretreated with cells for 30 min, followed by 20 ng / ml VEGF (R & D systems, USA). After 48 hours of incubation, WST-8 (Dojindo, Japan) was treated for 2 hours and the absorbance at 450 nm was measured to compare cell proliferation capacity under each condition.
그 결과, HUVEC 세포에 대한 세포 증식능 어세이를 통해서, 이중표적항체 PMC-102FC가 VEGF에 의해 야기되는 HUVEC 세포의 증식능을 모항체인 타니비루맵과 비슷하게 저해하였으며, HGF의 효과도 동시에 차단하여, VEGF와 HGF를 동시에 처리한 경우에도 HUVEC의 증식능을 타니비루맵에 비하여 더욱 강력히 저해할 수 있음을 확인하였다(도 6a 및 도 6b).As a result, through the cell proliferative assay for HUVEC cells, the dual target antibody PMC-102FC inhibited the proliferative capacity of HUVEC cells caused by VEGF similarly to the parental antibody Tanivirumab, and simultaneously blocked the effects of HGF, resulting in VEGF. In the case of simultaneous treatment with and HGF, it was confirmed that the proliferative capacity of HUVECs could be more strongly inhibited than that of Tanivirumab (FIGS. 6A and 6B).
실시예 6 웨스턴 블로팅법을 통한 세포 내 c-Met 또는 VEGFR-2의 인산화 저해Example 6 Inhibition of Phosphorylation of Intracellular c-Met or VEGFR-2 by Western Blotting
6-1. 암세포 특이적 c-Met 인산화 저해6-1. Cancer cell specific c-Met phosphorylation inhibition
본 발명에 따른 이중표적항체 PMC-102FC의 c-Met에 대한 인산화 저해를 확인하기 위해서 웨스턴 블로팅법을 실시하였다. KP4 세포는 10% 우태혈청이 첨가된 RPMI-1640 배지에서 세포를 6-웰 플레이트에 5×105세포/웰의 밀도로 24시간 동안 배양하였다. 이후 KP4를 우태혈청이 포함되지 않은 RPMI-1640 배지로 바꿔준 후 6시간 동안 배양하고, 10 ㎍/㎖ 또는 20 ㎍/㎖의 PMC-102FC, 10 ㎍/㎖의 인간 IgG, 음성대조군 타니비루맵, 양성대조군 Fc-M15을 30분간 선 처리하였다. 이후, 30 ng/㎖ 재조합 인간 HGF를 15분간 처리하였다.Western blotting was performed to confirm the inhibition of phosphorylation on c-Met of the dual target antibody PMC-102FC according to the present invention. KP4 cells were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum for 24 hours at a density of 5 × 10 5 cells / well in 6-well plates. Subsequently, KP4 was changed to RPMI-1640 medium containing no fetal bovine serum, followed by incubation for 6 hours, 10 μg / ml or 20 μg / ml PMC-102FC, 10 μg / ml human IgG, and negative control Tanibirumab. The positive control Fc-M15 was pretreated for 30 minutes. Thereafter, 30 ng / ml recombinant human HGF was treated for 15 minutes.
웨스턴블로팅법을 통한 분석을 위해서, 샘플버퍼 (1%(w/v) SDS, 1 mM Na3VO4, 1X Protease Inhibitor Cocktail)을 처리하여 용해질을 얻은 후 BCA 정량을 통해 정량하였다. 정량된 용해질에 β-mercaptoethanol을 첨가한 후 10분간 끓여 준비하였다. SDS-PAGE 및 웨스턴블로팅은 당업계에서 일반적으로 사용되는 방법을 준용하였으며, 사용된 시료는 다음과 같다: 4-20% SDS-polyacrylamide Gel(BioRad, 미국), PVDF멤브레인(Millipore #IPVH00010, 미국), c-Met 인산화 저해활성 분석을 위한 1차 항체로써 anti-c-Met 항체(Santa Cruz, 미국)와 anti-phospho-Erk 항체, anti-phospho-c-Met 항체(Cell Signaling technology, 미국); anti-β actin 항체(Abfrontier, 한국)와 그리고 화학발광법을 위해 1차 항체와 결합할 2차 항체로써 HRP-conjugated goat anti-mouse IgG 항체(Santa Cruze Biotechnology, 미국) 및 HRP-conjugated goat anti-rabbit IgG(Santa Cruz Biotechnology, 미국).For analysis by western blotting, sample buffer (1% (w / v) SDS, 1 mM Na3VO4, 1X Protease Inhibitor Cocktail) was treated to obtain lysate and quantitated by BCA quantification. Β-mercaptoethanol was added to the quantitative lysate and boiled for 10 minutes. SDS-PAGE and Western blotting were applied according to the methods commonly used in the art, and the samples used were as follows: 4-20% SDS-polyacrylamide Gel (BioRad, USA), PVDF membrane (Millipore® IPVH00010, USA ), anti-c-Met antibody (Santa Cruz, USA), anti-phospho-Erk antibody, anti-phospho-c-Met antibody (Cell Signaling technology, USA) as primary antibody for c-Met phosphorylation inhibitory activity assay ; HRP-conjugated goat anti-mouse IgG antibody (Santa Cruze Biotechnology, USA) and HRP-conjugated goat anti- as secondary antibodies to bind with anti-β actin antibody (Abfrontier, Korea) and as primary antibody for chemiluminescence rabbit IgG (Santa Cruz Biotechnology, USA).
그 결과, PMC-102FC은 췌장암세포인 KP4세포에서 c-Met의 인산화를 효과적으로 저해할 수 있음을 확인할 수 있었다(도 7). C-Met의 인산화는 HGF에 의존적으로 진행되기 때문에, 대조군(Mock)의 경우, HGF가 처리된 KP4 세포에서 c-Met 인산화가 확인되었다. 반면 10 ㎍/㎖ 또는 20 ㎍/㎖ PMC-102FC 처리군의 경우, HGF가 처리된 세포에서 조차도 c-Met 인산화는 확인되지 않았다.As a result, it could be confirmed that PMC-102FC can effectively inhibit c-Met phosphorylation in KP4 cells, which are pancreatic cancer cells (FIG. 7). Since phosphorylation of C-Met proceeds dependent on HGF, in the control group (Mock), c-Met phosphorylation was confirmed in HGF-treated KP4 cells. On the other hand, in the 10 μg / ml or 20 μg / ml PMC-102FC treated group, c-Met phosphorylation was not confirmed even in cells treated with HGF.
6-2. 혈관 내피세포의 c-Met과 VEGFR-2의 인산화 저해6-2. Phosphorylation of c-Met and VEGFR-2 in Vascular Endothelial Cells
웨스턴 블로팅법을 통한 세포내 VEGFR-2 인산화 저해 분석Inhibition of Intracellular VEGFR-2 Phosphorylation by Western Blotting
본 발명에 따른 이중표적항체 PMC-102FC의 VEGFR-2 에 대한 인산화 저해를 확인하기 위해서 웨스턴블로팅법을 실시하였다. 이중표적항체 PMC-102FC 처리 후, 혈관내피세포의 세포신호전달의 변화를 확인하기 위해서, 웨스턴블랏을 실시하였다. 24시간 동안 배양된 혈관내피세포(HUVEC)를 1% 우태혈청을 포함하는 M199 배지 조건에서 6시간 배양 후, 10 ㎍/㎖의 PMC-102FC 항체, 양성 대조군 타니비루맵과 Fc-M15, 음성 대조군 hIgG 항체를 20분간 선 처리하였다. 이후, 10 ng/㎖ VEGF와 30 ng/㎖ hHGF을 15분간 처리하여, 세포를 용해시켜 웨스턴블랏에 이용하였다.Western blotting was performed to confirm the inhibition of phosphorylation on VEGFR-2 of the dual target antibody PMC-102FC according to the present invention. After treatment with the dual target antibody PMC-102FC, Western blotting was performed to confirm the change in cell signaling of vascular endothelial cells. Vascular endothelial cells (HUVEC) cultured for 24 hours were cultured for 6 hours in M199 medium containing 1% fetal bovine serum, followed by 10 μg / ml PMC-102FC antibody, positive control Tanivirumab and Fc-M15, negative control. hIgG antibody was pretreated for 20 minutes. Thereafter, 10 ng / ml VEGF and 30 ng / ml hHGF were treated for 15 minutes, and the cells were lysed and used for western blot.
6-1의 실시예를 준용하되, 1차 항체로써 부가적으로 anti-VEGFR-2 항체(Cell Signaling technology, 미국)를 추가하여 웨스턴 블로팅을 수행한 결과, Fc-M15의 경우 c-Met 활성화만을 저해함으로써, Erk를 부분적으로 저해하는 것처럼 보이지만, VEGFR-2의 인산화는 저해하지 못한 반면, PMC-102FC의 경우 타니비루맵과 동등하거나, 더 효과적으로 VEGFR-2와 Erk의 인산화를 저해할 수 있음을 확인할 수 있었다(도 8).Example 6-1 was applied mutatis mutandis, but c-Met activation for Fc-M15 as a result of Western blotting using an additional anti-VEGFR-2 antibody (Cell Signaling technology, USA) as a primary antibody. By inhibiting only, it appears to partially inhibit Erk, but does not inhibit the phosphorylation of VEGFR-2, while PMC-102FC can be equivalent to, or more effectively, inhibit the phosphorylation of VEGFR-2 and Erk in the case of PMB-102FC. It could be confirmed (Fig. 8).
본 발명에 따른 이중표적항체는 혈관신생과 암세포 증식에 관여하는 두 가지 표적을 동시에 중화시킴으로써, 기존의 단일표적 항체에 비해서 뛰어난 중화능을 보일 뿐만 아니라, 암 치료에도 매우 효과적이다. 또한, 기존에 생산이 용이하지 않았던 c-Met 중화활성 도메인을 대량생산할 수 있는 효과를 기대할 수 있다.The dual target antibody according to the present invention simultaneously neutralizes two targets involved in angiogenesis and cancer cell proliferation, thereby exhibiting superior neutralizing ability as compared to the conventional single target antibody, and is very effective in treating cancer. In addition, the effect of mass production of c-Met neutralizing domain, which was not easy to produce in the past, can be expected.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. The specific parts of the present invention have been described in detail above, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
전자파일 첨부하였음.Electronic file attached.

Claims (12)

  1. 서열번호 1로 표시되는 아미노산 서열을 가지는 경쇄가변영역과 서열번호 2로 표시되는 중쇄가변영역을 가지는 VEGFR-2(Vasicular Endothelial Growth Factor Receptoer-2) 중화항체의 상기 경쇄가변영역 또는 상기 중쇄가변영역의 말단에 서열번호 3 또는 서열번호 4로 표시되는 c-Met(Mesenchymal Epithelial Transition factor) 중화 펩타이드가 결합되어 있는 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체.Of the light chain variable region or the heavy chain variable region of VEGFR-2 (Vasicular Endothelial Growth Factor Receptoer-2) neutralizing antibody having a light chain variable region having an amino acid sequence represented by SEQ ID NO: 1 and a heavy chain variable region represented by SEQ ID NO: 2 A dual target antibody having binding to VEGFR-2 and c-Met to which a c-Met (Mesenchymal Epithelial Transition factor) neutralizing peptide represented by SEQ ID NO: 3 or SEQ ID NO: 4 is bound at its terminal.
  2. 제1항에 있어서, 상기 VEGFR-2 중화 항체는 scFV(Single Chain Fragment Variable) 또는 IgG인 것을 특징으로 하는 이중표적항체.The dual target antibody of claim 1, wherein the VEGFR-2 neutralizing antibody is scFV (Single Chain Fragment Variable) or IgG.
  3. 제1항에 있어서, 상기 c-Met 중화 펩타이드와 상기 VEGFR-2 중화항체의 경쇄 가변영역 또는 중쇄가변영역은 링커를 통하여 연결되어 있는 것을 특징으로 하는 이중표적 항체.The dual target antibody of claim 1, wherein the c-Met neutralizing peptide and the light chain variable region or heavy chain variable region of the VEGFR-2 neutralizing antibody are linked through a linker.
  4. 상기 c-Met 중화 펩타이드는 상기 VEGFR-2 중화항체의 경쇄 가변영역 또는 중쇄가변영역의 N-말단 또는 C-말단에 연결되어 있는 것을 특징으로 하는 이중표적항체.The c-Met neutralizing peptide is a dual target antibody, characterized in that connected to the N-terminal or C-terminus of the light chain variable region or heavy chain variable region of the VEGFR-2 neutralizing antibody.
  5. 제1항 내지 제4항 중 어느 한 항의 이중표적 항체를 코딩하는 DNA.DNA encoding the dual target antibody of any one of claims 1-4.
  6. 제5항에 있어서, 서열번호 6으로로 표시되는 VEGFR-2 중화항체의 경쇄가변영역과 c-Met 중화 펩타이드가 결합된 단편을 코딩하는 DNA와 서열번호 7로 표시되는 VEGFR-2 중화항체의 중쇄가변영역을 코딩하는 DNA를 포함하는 것을 특징으로 하는 DNA.The heavy chain of the VEGFR-2 neutralizing antibody represented by SEQ ID NO: 7, wherein the DNA encodes a fragment in which the light chain variable region of the VEGFR-2 neutralizing antibody represented by SEQ ID NO: 6 is bound to the c-Met neutralizing peptide. DNA comprising a DNA encoding the variable region.
  7. 제5항의 DNA를 함유하는 재조합 벡터.A recombinant vector containing the DNA of claim 5.
  8. 제7항의 재조합 벡터로 형질전환된 숙주세포.A host cell transformed with the recombinant vector of claim 7.
  9. 다음 단계를 포함하는 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체의 제조방법:A method for preparing a dual target antibody having binding to VEGFR-2 and c-Met, comprising the following steps:
    (a) 제8항의 숙주세포를 배양하여 VEGFR-2 및 c-Met에 대하여 결합성을 갖는이중표적항체를 생성시키는 단계; 및(a) culturing the host cell of claim 8 to produce a dual target antibody having binding to VEGFR-2 and c-Met; And
    (b) 상기 생성된 VEGFR-2 및 c-Met에 대하여 결합성을 갖는 이중표적항체를 수득하는 단계.(b) obtaining a dual target antibody having binding to the generated VEGFR-2 and c-Met.
  10. 제1항 내지 제4항 중 어느 한 항의 이중표적항체를 포함하는 혈관신생억제용 약학조성물.A pharmaceutical composition for inhibiting angiogenesis, comprising the dual target antibody of any one of claims 1 to 4.
  11. 제1항 내지 제4항 중 어느 한 항의 이중표적항체를 포함하는 암치료용 약학조성물.A pharmaceutical composition for treating cancer, comprising the dual target antibody of any one of claims 1 to 4.
  12. 제11항에 있어서, 상기 암은 위암, 간암, 폐암, 갑상선암, 유방암, 자궁경부암, 대장암, 췌장암, 직장암, 대장직장암, 전립선암, 신장암, 흑색종, 전립선암의 골전이암, 난소암으로 구성된 군에서 선택되는 것을 특징으로 하는 약학조성물.The method of claim 11, wherein the cancer is gastric cancer, liver cancer, lung cancer, thyroid cancer, breast cancer, cervical cancer, colon cancer, pancreatic cancer, rectal cancer, colorectal cancer, prostate cancer, kidney cancer, melanoma, bone metastasis cancer of the prostate cancer, ovarian cancer Pharmaceutical composition, characterized in that selected from the group consisting of.
PCT/KR2014/009697 2014-10-16 2014-10-16 Dual-target antibody having binding ability to vegfr-2 and c-met WO2016060297A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/009697 WO2016060297A1 (en) 2014-10-16 2014-10-16 Dual-target antibody having binding ability to vegfr-2 and c-met

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/009697 WO2016060297A1 (en) 2014-10-16 2014-10-16 Dual-target antibody having binding ability to vegfr-2 and c-met

Publications (1)

Publication Number Publication Date
WO2016060297A1 true WO2016060297A1 (en) 2016-04-21

Family

ID=55746826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009697 WO2016060297A1 (en) 2014-10-16 2014-10-16 Dual-target antibody having binding ability to vegfr-2 and c-met

Country Status (1)

Country Link
WO (1) WO2016060297A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11142578B2 (en) 2016-11-16 2021-10-12 Regeneron Pharmaceuticals, Inc. Anti-MET antibodies, bispecific antigen binding molecules that bind MET, and methods of use thereof
US11896682B2 (en) 2019-09-16 2024-02-13 Regeneron Pharmaceuticals, Inc. Radiolabeled MET binding proteins for immuno-PET imaging and methods of use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050045419A (en) * 2003-11-11 2005-05-17 국립암센터 Neutralizable epitope of hgf and neutralizing antibody binding to same
KR20100125033A (en) * 2009-05-20 2010-11-30 주식회사 파멥신 Bispecific antibody having a novel form and use thereof
WO2012161372A1 (en) * 2011-05-23 2012-11-29 주식회사 파멥신 Double-target antibody fused with a peptide and use of same
WO2013033008A2 (en) * 2011-08-26 2013-03-07 Merrimack Pharmaceuticals, Inc. Tandem fc bispecific antibodies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050045419A (en) * 2003-11-11 2005-05-17 국립암센터 Neutralizable epitope of hgf and neutralizing antibody binding to same
KR20100125033A (en) * 2009-05-20 2010-11-30 주식회사 파멥신 Bispecific antibody having a novel form and use thereof
WO2012161372A1 (en) * 2011-05-23 2012-11-29 주식회사 파멥신 Double-target antibody fused with a peptide and use of same
WO2013033008A2 (en) * 2011-08-26 2013-03-07 Merrimack Pharmaceuticals, Inc. Tandem fc bispecific antibodies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE Genbank [O] 1 March 2011 (2011-03-01), retrieved from NCBI Database accession no. ADW08086.1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11142578B2 (en) 2016-11-16 2021-10-12 Regeneron Pharmaceuticals, Inc. Anti-MET antibodies, bispecific antigen binding molecules that bind MET, and methods of use thereof
US11896682B2 (en) 2019-09-16 2024-02-13 Regeneron Pharmaceuticals, Inc. Radiolabeled MET binding proteins for immuno-PET imaging and methods of use thereof

Similar Documents

Publication Publication Date Title
RU2727238C2 (en) Pharmaceutical composition containing as an active ingredient a fused protein in which a tumor-penetrating peptide and an antiangiogenic agent are fused for preventing and treating cancer or angiogenesis-related diseases
WO2014081202A1 (en) Dual-target antibody targeting vegfr-2 and dll4, and pharmaceutical composition comprising same
WO2010134666A1 (en) Dual targeting antibody of novel form, and use thereof
JP5324593B2 (en) Inhibition of macrophage stimulating protein receptor (RON) and methods of treatment thereof
US9493529B2 (en) Robo1-Fc fusion protein and use thereof for treating tumours
EA019595B1 (en) PDGFRβ-SPECIFIC INHIBITORS
EP3646887A1 (en) Conjugate of vegf-grab protein and drug, and use thereof
JP2008508858A (en) Inhibition of macrophage-stimulated protein receptor (RON)
WO2012161372A1 (en) Double-target antibody fused with a peptide and use of same
KR20100057018A (en) Anti-epha2 antibody
WO2012169822A9 (en) Fusion protein for suppressing cancer cell growth and suppressing vasculogenesis, and anticancer composition comprising same
WO2016060297A1 (en) Dual-target antibody having binding ability to vegfr-2 and c-met
US9580499B2 (en) VEGFR2/Ang2 compounds
WO2014166029A1 (en) Epidermal growth factor receptor antibody
KR101631646B1 (en) Double Target Antibody having Binding ability for VEGFR-2 and c-Met
US11214774B2 (en) PINK1 C-terminal domain polypeptide and methods using the same in cancer treatment
WO2023136647A1 (en) Fusion protein comprising modified anti-vegfr2(kdr) antibody, and use thereof
R Michaud Novel peptides targeting the hepatocyte growth factor receptor c-Met for the treatment of cancer: Dyax Corp. & Bracco International: WO2004078778
WO2013051001A1 (en) Combination therapy with erbb ligands binding molecules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904105

Country of ref document: EP

Kind code of ref document: A1