WO2016060282A1 - Control system for work machine, work machine, management system for work machine, and control method and program for work machine - Google Patents

Control system for work machine, work machine, management system for work machine, and control method and program for work machine Download PDF

Info

Publication number
WO2016060282A1
WO2016060282A1 PCT/JP2015/080866 JP2015080866W WO2016060282A1 WO 2016060282 A1 WO2016060282 A1 WO 2016060282A1 JP 2015080866 W JP2015080866 W JP 2015080866W WO 2016060282 A1 WO2016060282 A1 WO 2016060282A1
Authority
WO
WIPO (PCT)
Prior art keywords
work machine
dump truck
map information
detected
travel route
Prior art date
Application number
PCT/JP2015/080866
Other languages
French (fr)
Japanese (ja)
Inventor
敦 坂井
光広 龍満
雅徳 遠嶋
章治 西嶋
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CA2941227A priority Critical patent/CA2941227C/en
Priority to PCT/JP2015/080866 priority patent/WO2016060282A1/en
Priority to US15/122,729 priority patent/US10026308B2/en
Priority to AU2015331288A priority patent/AU2015331288B2/en
Priority to JP2016504235A priority patent/JP6059846B2/en
Priority to CN201580002964.2A priority patent/CN105849586B/en
Publication of WO2016060282A1 publication Critical patent/WO2016060282A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3837Data obtained from a single source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/396Determining accuracy or reliability of position or pseudorange measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096827Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed onboard
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • G08G1/202Dispatching vehicles on the basis of a location, e.g. taxi dispatching
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • G08G1/207Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles with respect to certain areas, e.g. forbidden or allowed areas with possible alerting when inside or outside boundaries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area

Definitions

  • the present invention relates to a work machine control system, a work machine, a work machine management system, a work machine control method, and a program.
  • a mining machine such as a dump truck as disclosed in Patent Document 1, for example, operates.
  • ⁇ Work machines that travel autonomously on the mine's travel route may stop operation if the ionosphere is abnormal and the accuracy of the position detected using the global navigation satellite system will be reduced. As a result, productivity in the mine may be reduced.
  • the object of the present invention is to provide a work machine control system, a work machine, a work machine management system, a work machine control method, and a program capable of suppressing a decrease in productivity in a mine.
  • the present invention relates to a control system for a work machine that travels along a travel route, the position detection unit that detects the position of the work machine, the non-contact sensor that detects the position of an object around the work machine, and the position A measurement output means for detecting the position of the upward projecting object protruding upward from the detection result of the detection means and the detection result of the non-contact sensor, and storing the detected position of the upward projecting object in the map information storage means as map information;
  • the measurement output means determines whether or not the state of the work machine is a state that reduces the accuracy of the map information, and the state of the work machine decreases the accuracy of the map information. When it determines with there being, it is a control system of the working machine which stops the memory
  • Route position storage means for storing information specifying the travel route, determination means for determining whether or not an error in position detected by the position detection means is equal to or less than a predetermined error, and detected by the position detection means
  • the determination unit determines that the position error is equal to or less than the predetermined error
  • the work machine is based on the travel route stored by the route position storage unit based on the position of the work machine detected by the position detection unit. It is preferable to include travel control means for traveling the vehicle.
  • the measurement output unit stores the detection result of the non-contact sensor and the map information storage unit.
  • the position of the work machine is identified by collating with the map information of the travel route, and the travel control unit stores the route position storage unit based on the position of the work machine identified by the measurement output unit. It is preferable that the work machine is caused to travel according to the travel route.
  • the measurement output means determines whether or not the state of the work machine is a state that decreases the position measurement accuracy, and determines that the state of the work machine is a state that decreases the position measurement accuracy, It is preferable that the location of the work machine is stopped by collating the detection result of the non-contact sensor with the map information stored in the map information storage unit.
  • the measurement output means stores the detection result of the non-contact sensor and the map information storage means when the determination means determines that the position error detected by the position detection means is equal to or less than the predetermined error. Whether or not it is suitable to identify the position of the work machine by collating with the map information, and to cause the work machine to travel based on the position of the work machine identified by the position measuring means according to the travel route. It is preferable to determine whether or not.
  • the measurement output means stores the detection result of the non-contact sensor and the map information storage means when the determination means determines that the position error detected by the position detection means is equal to or less than the predetermined error. It is preferable to detect and store the distance between the position of the work machine obtained by collating with the map information and the position detected by the position detecting means.
  • the present invention is a work machine including the control system for the work machine and a vehicle body that travels on a travel route provided in a mine.
  • the present invention includes the work machine, and a management device that is arranged in a control facility installed in the mine and transmits information specifying a travel route provided in the mine to a control system of the work machine of the work machine. It is a management system for work machines.
  • the present invention is a method for controlling a work machine that travels along a travel route, and detects a position of the work machine and a position of an object around the work machine when the work machine travels according to the travel route.
  • the position of the upward projecting object protruding upward is detected from the detection result of the contact sensor, the detected position of the upward projecting object is stored as map information of the travel route, and the state of the work machine indicates the accuracy of the map information.
  • This is a work machine control method that stops storing the map information of the travel route when it is in a state of lowering.
  • the present invention provides a computer installed on a work machine that travels along a travel route, wherein the travel indicates the position of an upward projecting object in which the state of the work machine projects upward when the work machine travels according to the travel route. Determining whether or not the accuracy of the map information on the route is reduced, and determining that the state of the work machine is not in a state of reducing the accuracy of the map information, the position of the work machine and the work.
  • the position of the upper projecting object is detected from the detection result of a non-contact sensor that detects the position of an object around the machine, and the detected position of the upper projecting object is stored in the map information storage means as map information of the travel route. And, when it is determined that the state of the work machine is a state that reduces the accuracy of the map information, the storage of the map information of the travel route is suspended. Is a program to be.
  • FIG. 1 is a diagram illustrating an example of a work machine management system according to the first embodiment.
  • FIG. 2 is a control block diagram of the dump truck according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram of the dump truck according to the first embodiment.
  • FIG. 4 is a front view of the obstacle sensor of the dump truck according to the first embodiment.
  • FIG. 5 is a plan view showing a detection range of the laser sensor of the obstacle sensor shown in FIG.
  • FIG. 6 is a side view showing a detection range of the laser sensor of the obstacle sensor of the dump truck shown in FIG.
  • FIG. 7 is a diagram illustrating a method in which the travel controller of the work machine control system according to the first embodiment specifies the position and the direction.
  • FIG. 1 is a diagram illustrating an example of a work machine management system according to the first embodiment.
  • FIG. 2 is a control block diagram of the dump truck according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram of the dump truck according to the first embodiment.
  • FIG. 8 is a diagram illustrating a method in which the collation navigation calculation unit of the position measurement controller of the work machine control system according to the first embodiment specifies the position and orientation.
  • FIG. 9 is a diagram illustrating a part of map information stored in the map storage database of the work machine control system according to the first embodiment.
  • FIG. 10 is an enlarged view of the XIV part in FIG.
  • FIG. 11 is an example of a flowchart of the work machine control system according to the first embodiment.
  • FIG. 12 is an example of a flowchart of step ST4 in FIG.
  • FIG. 13 is an example of a flowchart of step ST42 in FIG.
  • FIG. 14 is an example of a flowchart of step ST6 in FIG.
  • FIG. 15 is an example of a flowchart of step ST64 in FIG.
  • FIG. 16 is a diagram illustrating an example of an expected detection result of each position and orientation detected by the collation navigation calculation unit of the work machine control system according to the first embodiment.
  • FIG. 17 is a diagram illustrating an example of a detection result actually detected by the laser sensor of the work machine control system according to the first embodiment.
  • FIG. 18 is a diagram illustrating an example of a state in which the matching navigation calculation unit of the position measurement controller of the work machine control system according to the first embodiment calculates the closest detection result.
  • FIG. 19 is an example of a flowchart of the work machine control system according to the second embodiment.
  • FIG. 20 is an example of a flowchart of step ST7 in FIG.
  • FIG. 1 is a diagram illustrating an example of a work machine management system according to the first embodiment.
  • Work machine management system 1 (hereinafter referred to as a management system) manages work machines.
  • the work machine management includes at least one of work machine operation management, work machine productivity evaluation, work machine operator operation technique evaluation, work machine maintenance, and work machine abnormality diagnosis.
  • Work machine is a general term for machines used for various operations in a mine.
  • the work machine includes at least one of a boring machine, an excavating machine, a loading machine, a transporting machine, a crusher, and a vehicle operated by an operator.
  • the excavating machine can excavate the mine.
  • the loading machine can load a load on the transport machine.
  • the loading machine includes at least one of a hydraulic excavator, an electric excavator, and a wheel loader.
  • the transport machine includes a movable body that can move in the mine, and can transport a load.
  • the transport machine includes a dump truck.
  • the load includes at least one of sediment and ore generated by mining.
  • the crusher crushes the soil discharged from the transport machine.
  • the management system 1 manages a transport machine that is a work machine that travels in a mine, and in Embodiment 1, an example in which a dump truck 2 that is a work machine is managed will be described.
  • the dump truck 2 is also a mining machine used in a mine.
  • a loading site LPA, a dumping site DPA, a loading site LPA, and a dumping site DPA in the mine It operates in at least a part of the conveyance path HL leading to and the intersection IS where the conveyance paths HL intersect each other.
  • a crusher CR that crushes the earth discharged may be arranged.
  • the mine is provided with a bank BK configured by stacking soil on at least one of the outside of the loading site LPA, the outside of the soil discharging site DPA, and the outside of the transport path HL.
  • the dump truck 2 is a movable body that can move in the mine.
  • the dump truck 2 can travel at least a part of the loading site LPA, the earth discharging site DPA, the transport path HL, and the intersection IS. That is, the traveling route RP of the dump truck 2 provided in the mine includes at least a part of the loading site LPA, the earth discharging site DPA, the transport route HL, and the intersection IS.
  • the mine is provided with an upward protrusion VP that protrudes upward from the surface of the travel route RP by a predetermined height or more.
  • the upward projecting object VP is an artificial object AF installed on at least one of the bank BK, the loading field LPA, the dumping field DPA, and the conveyance path HL provided outside the travel route RP.
  • a wall WL installed in at least one of the loading site LPA, the earth removal site DPA, and the transport path HL, including artificial objects such as signs and buildings, rocks, and the like.
  • the predetermined height is a height that is undesirable for the dump truck 2 to get over the upward projecting object VP when autonomously traveling.
  • the dump truck 2 is loaded with a load at the loading site LPA.
  • the dump truck 2 lowers (discharges) the load at the dumping site DPA.
  • the dump truck 2 inputs the discharged soil as a load into the crusher CR in the earth discharge site DPA provided with the crusher CR.
  • the dump truck 2 is a so-called unmanned dump truck that normally travels autonomously on the travel route RP in response to a command signal from the management device 10 during operation of the mine.
  • the dump truck 2 traveling autonomously means that the dump truck 2 travels by a command signal from the management device 10 without traveling by an operator's operation. Further, the dump truck 2 can also travel by the operation of an operator (driver).
  • the management system 1 includes a management device 10 arranged in a control facility 7 installed in a mine, a communication system 9, a dump truck 2, and another work machine 3.
  • the management device 10 is installed in the mine control facility 7 and does not move. Moreover, the management apparatus 10 may be movable.
  • the communication system 9 transmits information by wireless communication among the management device 10, the dump truck 2, and the other work machines 3.
  • the communication system 9 can bidirectionally wirelessly communicate between the management device 10 and the dump truck 2, between the management device 10 and another work machine 3, and between the dump truck 2 and another work machine 3.
  • the communication system 9 includes a plurality of repeaters 6 that relay signals (radio waves).
  • the position of the dump truck 2 and the position of the other work machine 3 are detected using RTK-GNSS (Real Time Kinematic-Global Navigation Satellite System, GNSS is a global navigation satellite system).
  • the An example of the global navigation satellite system includes, but is not limited to, GPS (Global Positioning System).
  • the RTK-GNSS has a plurality of positioning satellites 5.
  • RTK-GNSS detects a position in a coordinate system (global coordinate system) that defines latitude, longitude, and altitude.
  • the position detected by the RTK-GNSS includes latitude, longitude, and altitude coordinate data.
  • the position of the dump truck 2 and the positions of other work machines 3 in the mine are detected by the RTK-GNSS.
  • the position detected by RTK-GNSS is an absolute position defined in the global coordinate system.
  • the position detected by the RTK-GNSS is appropriately referred to as a GPS position.
  • the GPS position is an absolute position, and is latitude, longitude, and altitude coordinate data (coordinate values).
  • the positioning state changes due to the positioning satellite 5 arrangement, the ionosphere, the troposphere, or the topography around the antenna that receives information from the positioning satellite 5.
  • the positioning state includes, for example, Fix solution (accuracy ⁇ 1 cm to 2 cm), Float solution (accuracy ⁇ 10 cm to several meters), Single solution (accuracy ⁇ approximately several meters), non-positioning (positioning calculation impossible), etc. There is.
  • the management system 1 also determines the positions of the dump truck 2 and other work machines 3 in the mine according to coordinates defined by the X-axis direction and the Y-axis direction orthogonal to each other shown in FIG. To manage. In addition, the management system 1 manages the direction of the dump truck 2 and the other work machines 3 as 0 degrees north, 90 degrees east, 180 degrees south, and 270 degrees west.
  • the direction of the dump truck 2 and the other work machine 3 is a direction in which the dump truck 2 and the other work machine 3 move when traveling forward. In the first embodiment, the Y-axis direction indicates north, but the present invention is not limited to this.
  • the management device 10 transmits travel route information that is information for designating a travel route RP provided in the mine to the control system 30 of the work machine of the dump truck 2, and as shown in FIG.
  • a display device 16, an input device 17, a wireless communication device 18, and a GPS base station 19 are provided.
  • the computer 11 includes a processing device 12, a storage device 13, and an input / output unit 15.
  • the display device 16, the input device 17, the wireless communication device 18, and the GPS base station 19 are connected to the computer 11 via the input / output unit 15.
  • the input / output unit 15 is used for input / output (interface) of information between the processing device 12 and at least one of the display device 16, the input device 17, the wireless communication device 18, and the GPS base station 19.
  • the processing device 12 executes various processes related to the management of the dump truck 2 and various processes related to the management of other work machines 3.
  • the processing device 12 processes the information regarding the position of the dump truck 2 and the information regarding the position of the other work machine 3 acquired via the communication system 9.
  • the processing device 12 generates travel route information of the dump truck 2.
  • the storage device 13 is connected to the processing device 12.
  • the storage device 13 stores various information related to management of the dump truck 2 and various information related to management of other work machines 3.
  • the storage device 13 stores the position of the dump truck 2 and the position of the other work machine 3.
  • the storage device 13 stores a computer program for causing the processing device 12 to execute various processes.
  • the display device 16 includes, for example, a flat panel display such as a liquid crystal display.
  • the display device 16 can display information related to the position of the dump truck 2 and information related to the positions of other work machines 3.
  • the input device 17 includes at least one of a keyboard, a touch panel, and a mouse.
  • the input device 17 functions as an operation unit that can input an operation signal to the processing device 12.
  • the wireless communication device 18 is disposed in the control facility 7.
  • the wireless communication device 18 is a part of the communication system 9.
  • the wireless communication device 18 is connected to the processing device 12 via the input / output unit 15.
  • the wireless communication device 18 has an antenna 18A.
  • the wireless communication device 18 can receive information transmitted from at least one of the dump truck 2 and the other work machine 3.
  • Information received by the wireless communication device 18 is output to the processing device 12 and stored (registered) in the storage device 13.
  • the wireless communication device 18 can transmit information to at least one of the dump truck 2 and the other work machine 3.
  • the GPS base station 19 is disposed in the control facility 7.
  • the GPS base station 19 includes at least an antenna 19A that receives information from a plurality of positioning satellites 5 and a transmission / reception device 19B connected to the antenna 19A.
  • the transmitter / receiver 19B includes a receiver that receives information from the positioning satellite 5 via the antenna 19A, a transmitter that transmits information to the dump truck 2 via the antenna 19C, and a micro processor such as a CPU (Central Processing Unit).
  • An arithmetic processing unit having a processor and a storage device having a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory) are provided.
  • the transmitting / receiving device 19B detects the GPS position of the GPS base station 19 from the information received by the antenna 19A, and generates corrected observation information for correcting the GPS position of the dump truck 2.
  • the transmission / reception device 19B transmits the corrected observation information to the dump truck 2 and the other work machine 3 through the antenna 19C.
  • the computer 11 includes a communication input / output unit 15, a CPU (Central Processing Unit) for executing a control program, a ROM (Read Only Memory) for storing the control program, and a RAM (Random) used as a work area of the CPU. Access Memory) and a nonvolatile memory in which information is registered by the CPU.
  • the function of the processing device 12 is realized by the CPU reading a control program stored in the ROM and executing it in the work area of the RAM.
  • the function of the storage device 13 is realized by storing a control program in the ROM and registering information in the nonvolatile memory by the CPU.
  • the nonvolatile memory includes at least one of a flash memory and a hard disk drive, and realizes a database. A plurality of processing circuits may realize the functions of the processing device 12 and the storage device 13 in cooperation with each other.
  • the other work machine 3 is a work machine other than the dump truck 2 and is driven by an operator's operation.
  • the other work machine 3 includes a processing device that includes a CPU (Central Processing Unit) and executes various processes related to work contents, a GPS receiver that detects a GPS position, and a wireless communication device 18 of the control facility 7.
  • the radio communication device transmits the GPS position to the radio communication device 18 of the control facility 7 every predetermined time.
  • FIG. 2 is a control block diagram of the dump truck according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram of the dump truck according to the first embodiment.
  • FIG. 4 is a front view of the obstacle sensor of the dump truck according to the first embodiment.
  • FIG. 5 is a plan view showing a detection range of the laser sensor of the obstacle sensor shown in FIG.
  • FIG. 6 is a side view showing a detection range of the laser sensor shown in FIG.
  • the dump truck 2 includes a vehicle main body 21, a vessel 22, wheels 23, an obstacle sensor 24, and a work machine control system 30.
  • the vehicle body 21 travels on the travel route RP.
  • the vehicle body 21 is provided with an internal combustion engine 2E such as a diesel engine, a generator 2G that is operated by the internal combustion engine 2E, and an electric motor 23M that is operated by electric power generated by the generator 2G.
  • the rear wheels 23R are driven by the electric motor 23M.
  • the power of the internal combustion engine 2E may be transmitted to the rear wheel 23R via a transmission including a torque converter.
  • the vehicle body 21 includes a steering device 2S that steers the front wheel 23F of the wheels 23.
  • the vessel 22 is loaded with a load by a loading machine and is lifted in a discharge operation to discharge the load.
  • the obstacle sensor 24 is disposed at the lower part of the front portion of the vehicle main body 21 as shown in FIG.
  • the obstacle sensor 24 detects an obstacle in front of the vehicle body 21 in a non-contact manner.
  • the obstacle sensor 24 includes a plurality of radars 24A that are non-contact sensors and a laser sensor 24B that is a non-contact sensor, as shown in FIG.
  • the radar 24A detects the position of an object around the dump truck 2, emits a radio wave, irradiates the radio wave on an obstacle, and receives the radio wave reflected by the obstacle. Thereby, the radar 24A can detect the direction and distance of the obstacle with respect to the radar 24A.
  • three radars 24 ⁇ / b> A are provided at intervals in the left-right direction of the vehicle body 21, but are not limited thereto.
  • the laser sensor 24B detects the position of an object around the dump truck 2, emits a laser beam, irradiates the obstacle that is the object, and receives the laser beam reflected by the obstacle. Thereby, the laser sensor 24B can detect the direction and distance of the obstacle with respect to the laser sensor 24B. Since the laser sensor 24B emits a laser beam and receives the reflected laser beam, the resolution of the laser sensor 24B is higher than the resolution of the radar 24A.
  • two laser sensors 24 ⁇ / b> B are provided at intervals in the left-right direction of the vehicle main body 21, but are not limited thereto.
  • the laser sensor 24B oscillates the laser beam left and right while emitting four laser beams having different vertical directions, and receives the laser beam reflected by the obstacle.
  • the two laser sensors 24 ⁇ / b> B overlap the laser beam irradiation range IAH at the center in the left-right direction in the plan view of the vehicle body 21 and swing the laser beams to the left and right.
  • the present invention is not limited to this.
  • the laser sensor 24 ⁇ / b> B is within an irradiation range IAV centered on a direction inclined downward from the vehicle body 21 relative to the horizontal direction in a side view of the vehicle body 21.
  • the laser beam is irradiated, the present invention is not limited to this.
  • the radar 24A and the laser sensor 24B are connected to the second communication line 37 of the work machine control system 30. Further, the laser sensor 24B is connected to the position measurement controller 33 of the control system 30 of the work machine.
  • FIG. 7 is a diagram illustrating a method in which the travel controller of the work machine control system according to the first embodiment specifies the position and the direction.
  • FIG. 8 is a diagram illustrating a method in which the collation navigation calculation unit of the position measurement controller of the work machine control system according to the first embodiment specifies the position and orientation.
  • FIG. 9 is a diagram illustrating a part of map information stored in the map storage database of the work machine control system according to the first embodiment.
  • FIG. 10 is an enlarged view of the XIV part in FIG.
  • the work machine control system 30 is a system that is installed in the dump truck 2 and autonomously travels the dump truck 2 according to the travel route RP. As shown in FIG. 3, the work machine control system 30 includes a gyro sensor 26, a speed sensor 27, a GPS receiver 31, a travel route creation device 32, a position measurement controller 33, a travel controller 20, and a laser. At least a sensor 24B, a wireless communication device 34, and a map storage database 36 are provided. In addition, the work machine control system 30 includes a first communication line 35, a second communication line 37, and a safety controller 40.
  • the travel controller 20, the travel route creation device 32, the position measurement controller 33, the map storage database 36 and the safety controller 40 are connected to the first communication line 35. These communicate with each other via the first communication line 35 to transmit and receive information.
  • the travel controller 20 and the safety controller 40 are also connected to the second communication line 37. These communicate with each other via the second communication line 37 to transmit and receive information.
  • the standard of communication using the first communication line 35 and the second communication line 37 is CAN (Controller Area Network) standardized as ISO 11898 and ISO 11519, but is not limited thereto.
  • the gyro sensor 26 detects the direction (direction change amount) of the dump truck 2.
  • the gyro sensor 26 is connected to the travel controller 20.
  • the gyro sensor 26 outputs a detection signal as a detection result to the travel controller 20.
  • the travel controller 20 can obtain the direction (direction change amount) of the dump truck 2 based on the detection signal of the gyro sensor 26.
  • the speed sensor 27 detects the traveling speed of the dump truck 2.
  • the speed sensor 27 detects the rotational speed of the wheels 23 and detects the speed (traveling speed) of the dump truck 2.
  • the speed sensor 27 is connected to the travel controller 20.
  • the speed sensor 27 outputs a detection signal as a detection result to the travel controller 20.
  • the travel controller 20 can determine the travel distance of the dump truck 2 based on the detection signal of the speed sensor 27 and the time information from the timer built in the travel controller 20.
  • the GPS receiver 31 is position detecting means for detecting a GPS position that is the position of the dump truck 2 using GPS.
  • the GPS receiver 31 is connected at least to an antenna 31A that receives information from the positioning satellite 5 and an antenna 31B that receives corrected observation information from the GPS base station 19.
  • the antenna 31A outputs a signal based on the information received from the positioning satellite 5 to the GPS receiver 31, and the antenna 31B outputs a signal based on the received corrected observation information to the GPS receiver 31.
  • the GPS receiver 31 detects the position (GPS position) of the antenna 31 ⁇ / b> A using information from the positioning satellite 5 and corrected observation information from the GPS base station 19.
  • the GPS receiver 31 compares the information from the positioning satellite 5 with the corrected observation information from the GPS base station 19, obtains the distance to the arbitrary positioning satellite 5, and further determines the positioning satellite. 5 is checked to detect the position (GPS position) of the antenna 31A.
  • the GPS receiver 31 uses RTK (Real Time Kinematic) -GNSS, but is not limited thereto.
  • the GPS receiver 31 detects the position (GPS position) of the dump truck 2 by detecting the position (GPS position) of the antenna 31A. In addition, the GPS receiver 31 detects, in the process of detecting the position of the antenna 31A, a Fix solution that indicates the accuracy of the detected GPS position based on the number of positioning satellites 5 that the antenna 31A has received information, a Float solution, or A single solution is detected. The GPS receiver 31 outputs a non-positioning signal when the GPS position cannot be calculated.
  • the accuracy of the GPS position of the Fix solution is an accuracy that allows the dump truck 2 to perform autonomous traveling
  • the accuracy of the GPS position of the Float solution and the Single solution is that the dump truck 2 performs autonomous traveling.
  • the GPS receiver 31 detects a fix solution, a float solution, or a single solution indicating the accuracy of the detected GPS position, and if the positioning calculation is impossible, the GPS receiver 31 sends a signal that is non-positioning to the travel route creation device 32. To the travel controller 20 and the position measurement controller 33.
  • the travel route creation device 32 includes a route position storage unit 32 ⁇ / b> A that is route position storage means for storing travel route information generated by the processing device 12 of the management device 10.
  • the travel route creation device 32 is connected to the wireless communication device 34 to which the antenna 34A is connected.
  • the wireless communication device 34 can receive information (including a command signal) transmitted from at least one of the management device 10 and the work machine 4 other than the host vehicle.
  • the work machines 4 other than the host vehicle are work machines 4 other than the dump truck 2 in which the work machine control system 30 is installed, and are operated by a boring machine, an excavating machine, a loading machine, a transporting machine, and an operator. Including vehicles. That is, the work machine 4 other than the host vehicle includes the dump truck 2 other than the host vehicle.
  • the wireless communication device 34 receives the travel route information transmitted by the wireless communication device 18 of the control facility 7 and the information related to the position of the work machine 4 other than the host vehicle, and outputs the information to the travel route creation device 32 and the position measurement controller 33. .
  • the travel route information and information related to the position of the work machine 4 other than the host vehicle are indicated by XY coordinates.
  • the travel route creation device 32 stores the travel route information in the route position storage unit 32A.
  • the travel route creation device 32 When the travel route creation device 32 receives the travel route information and the information related to the position of the work machine 4 other than the host vehicle from the wireless communication device 34, the travel route creation device 32 controls the position and direction of the dump truck 2 that is the host vehicle through the wireless communication device 34. It transmits to the radio communication device 18 of the facility 7. The travel route creation device 32 is connected to the first communication line 35.
  • the travel controller 20 includes at least a CPU (Central Processing Unit), a ROM (Read Only Memory) that stores a control program, a RAM (Random Access Memory) that is used as a work area of the CPU, and a nonvolatile memory. It is a computer.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the traveling controller 20 receives the GPS position detected by the GPS receiver 31 and the position of the dump truck 2 detected by the position measurement controller 33.
  • the travel controller 20 determines the dump truck 2 according to the travel route RP based on the GPS position of the dump truck 2 detected by the GPS receiver 31 or the position of the dump truck 2 detected by the collation navigation calculation unit 33B of the position measurement controller 33. It is a traveling control means for autonomously traveling.
  • the travel controller 20 includes a detection signal indicating the direction (direction change amount) of the dump truck 2 as a detection result of the gyro sensor 26 and a travel speed of the dump truck 2 as a detection result of the speed sensor 27.
  • a detection signal indicating is input.
  • a detection signal indicating the direction (direction change amount) of the dump truck 2 and a detection signal indicating the traveling speed of the dump truck 2 as a detection result of the speed sensor 27 are input to the traveling controller 20 every T1.
  • the travel controller 20 is connected to the GPS receiver 31 via the wireless communication device 34, the travel route creation device 32, and the first communication line 35.
  • a detection signal indicating a GPS position which is a detection result of the GPS receiver 31, is input to the travel controller 20.
  • a detection signal indicating the GPS position is input to the travel controller 20 every T2 longer than T1.
  • the travel controller 20 includes a GPS position as a detection result of the GPS receiver 31, a travel speed of the dump truck 2 as a detection result of the speed sensor 27, and a direction (direction change amount) of the dump truck 2 as a detection result of the gyro sensor 26. ) To specify the position and orientation of the dump truck 2.
  • the travel controller 20 detects the GPS position as a detection result of the GPS receiver 31, the travel speed of the dump truck 2 as a detection result of the speed sensor 27, and the detection of the gyro sensor 26.
  • the direction (direction change amount) of the dump truck 2 as a result is integrated by a Kalman filter KF (Kalman Filter), and the position and direction of the dump truck 2 are specified.
  • KF Kalman Filter
  • the travel controller 20 detects the detection result of the speed sensor 27 based on the time information from the timer based on the GPS position when the GPS position is input from the GPS receiver 31 and the direction that is the detection result of the gyro sensor 26.
  • the position and direction are specified by integrating the traveling speed.
  • the travel controller 20 converts the GPS position into an XY coordinate position before, during, or after detection of the position and direction.
  • the travel controller 20 includes an accelerator of the dump truck 2 and a braking device (not shown) so that the position of the dump truck 2 overlaps with the position of the travel path RP included in the travel path information, that is, the dump truck 2 travels according to the travel path RP. And at least one of the steering devices 2S. By such control, the travel controller 20 causes the dump truck 2 to travel along the travel route RP.
  • the function of the travel controller 20 is realized by the CPU reading a control program stored in the ROM and executing it in the work area of the RAM. A plurality of processing circuits may realize the function of travel controller 20 in cooperation.
  • the position measurement controller 33 includes a determination unit 33A, a collation navigation calculation unit 33B, and a grid map creation unit 33C.
  • the position measurement controller 33 detects the upward projecting object VP (Embodiment 1) from the GPS position of the dump truck 2 that is the detection result of the GPS receiver 31 and the detection result of the laser sensor 24B.
  • the position of the bank BK is mainly detected, and the detected position of the upward protrusion VP is stored in the map storage database 36 as the map information MI of the travel route RP.
  • the position measurement controller 33 is connected to the first communication line 35.
  • the position measurement controller 33 includes a detection signal indicating the direction (direction change amount) of the dump truck 2 as a detection result of the gyro sensor 26 and a detection result of the speed sensor 27 via the first communication line 35 and the travel controller 20.
  • a detection signal indicating the traveling speed of the dump truck 2 is input.
  • the position measurement controller 33 is connected to the GPS receiver 31 via the wireless communication device 34, the travel route creation device 32, and the first communication line 35.
  • the position measurement controller 33 receives a detection signal indicating a GPS position, which is a detection result of the GPS receiver 31.
  • the determination unit 33A is a determination unit that determines whether or not the GPS position error detected by the GPS receiver 31 is equal to or less than a predetermined error. In the first embodiment, the determination unit 33A determines whether or not the GPS position solution is a Fix solution. If the GPS position solution is a Fix solution, the accuracy of the detected GPS position of the dump truck 2 is high. And the GPS position error is determined to be equal to or less than a predetermined error. When the GPS position solution is a float solution, the determination unit 33A is a single solution, or the GPS position is non-positioning, the accuracy of the detected GPS position of the dump truck 2 is low and GPS It is determined that the position error exceeds a predetermined error.
  • the predetermined error is an error (accuracy) of the GPS position at which the dump truck 2 can autonomously travel according to the travel route RP by dead reckoning navigation to be described later.
  • the GPS receiver 31 detects the GPS position and the solution, but the solution may be detected by another device (for example, the determination unit 33A).
  • the grid map creation unit 33C detects the detection result of the gyro sensor 26 and the detection result of the speed sensor 27. Based on the detection results of the laser sensor 24B, the positions of the upper protrusions VP provided on at least one of the outside of the loading field LPA, the outside of the soil discharging field DPA, and the transport path HL are detected, Information regarding the position of the VP is stored in the map storage database 36 as map information MI of the travel route RP.
  • the grid map creation unit 33C integrates the position and orientation of the dump truck 2 detected by the travel controller 20 and the detection result of the laser sensor 24B, and the detection result other than the upward projecting object VP from the integrated information. And the position of the upward projecting object VP is detected.
  • the map information MI stored in the map storage database 36 by the grid map creation unit 33C is a grid obtained by dividing a mine by a square (rectangle or square) of a predetermined size in plan view, as shown in FIGS. It indicates the position of the XY coordinates of GR and whether or not the upward protrusion VP exists in each grid GR.
  • Each grid GR of the map information MI includes information indicating whether or not the upward protrusion VP exists, that is, 0 or 1.
  • each grid GR of the map information MI is shown as a black square in the figure when there is an upward projecting object VP, and is 0 when there is no upward projecting object VP. Although shown by a white square in the figure, it is not limited to these.
  • the map storage database 36 is map information storage means for storing information on the position of the upward projecting object VP as map information MI of the travel route RP, and is connected to the first communication line 35.
  • the map storage database 36 includes at least one of RAM (Random Access Memory), ROM (Read Only Memory), flash memory, and hard disk drive.
  • the map storage database 36 stores the detection result detected by the grid map creation unit 33C as map information MI every time the grid map creation unit 33C detects it.
  • the map information MI stored in the map storage database 36 is overwritten every time the grid map creation unit 33C detects, but the present invention is not limited to this.
  • the verification navigation calculation unit 33B detects the detection result of the laser sensor 24B and the map storage database. Based on the map information MI stored in 36, the position and orientation of the dump truck 2 are specified. As shown in FIG. 8, the reference navigation calculation unit 33 ⁇ / b> B uses the detection result of the gyro sensor 26, the detection result of the speed sensor 27, the detection result of the laser sensor 24 ⁇ / b> B, and the map information MI stored in the map storage database 36 as particles. The position and orientation of the dump truck 2 are specified by integrating with a filter PF (Particle Filter).
  • PF Particle Filter
  • the collation navigation calculation unit 33B specifies the position and direction for each T3 longer than T1 and shorter than T2, and outputs the position and direction to the travel controller 20.
  • the position and direction detected by the collation navigation calculation unit 33B are input to the travel controller 20 every T3.
  • the position measurement controller 33 transmits information on the position and direction of the dump truck 2 that is the host vehicle detected by the GPS receiver 31 or the reference navigation calculation unit 33B via the wireless communication device 34 to the wireless communication device of the control facility 7. 18 to send.
  • the position measurement controller 33 includes an observation point coordinate conversion unit 38 and an observation point availability determination unit 39 as shown in FIG.
  • the observation point coordinate conversion unit 38 converts the position of the detection result of the laser sensor 24B indicated by coordinates defined by the direction and distance from the laser sensor 24B into XY coordinates.
  • the position of the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 is defined by the orthogonal height direction (Z-axis direction) in addition to the X-axis direction and the Y-axis direction.
  • Information relating to the position of the work machine 4 other than the host vehicle is input to the observation point availability determination unit 39 from the route position storage unit 32A.
  • the observation point availability determination unit 39 detects various noises from the detection results obtained by converting the coordinates by the observation point coordinate conversion unit 38, detection results below a predetermined height from the ground surface, and the work machine 4 other than the host vehicle. Remove expected detection results.
  • the observation point availability determination unit 39 combines the detection result of the laser sensor 24B from which noise has been removed with the detection result of the grid GR.
  • the observation point availability determination unit 39 outputs the combined detection result to both the grid map creation unit 33C and the matching navigation calculation unit 33B.
  • the position measurement controller 33 includes a communication input / output, a CPU (Central Processing unit) for executing a control program, a ROM (Read Only Memory) for storing the control program, and a RAM (Random) used as a work area of the CPU. (Access Memory) and a non-volatile memory in which information is registered by a CPU.
  • the functions of the determination unit 33A, the collation navigation calculation unit 33B, the grid map creation unit 33C, the observation point coordinate conversion unit 38, and the observation point availability determination unit 39 are such that the CPU reads the control program stored in the ROM and operates the RAM. This is realized by executing in the area.
  • the nonvolatile memory includes at least one of a flash memory and a hard disk drive. Further, even if a plurality of processing circuits cooperate to realize the functions of the determination unit 33A, the collation navigation calculation unit 33B, the grid map creation unit 33C, the observation point coordinate conversion unit 38, and the observation point availability determination unit 39. Good.
  • the safety controller 40 obtains the relative position between the dump truck 2 and the obstacle based on the detection signals of the radar 24A and the laser sensor 24B.
  • the safety controller 40 generates a command for controlling at least one of an accelerator, a braking device (not shown), and the steering device 2S using the relative position to the obstacle, and outputs the command to the traveling controller 20.
  • the traveling controller 20 controls the dump truck 2 based on the command acquired from the safety controller 40 to avoid the dump truck 2 from colliding with an obstacle.
  • the traveling controller 20 determines that the GPS position solution is a float solution, a single solution, or the GPS position is non-positioned for a predetermined time, and the reference navigation calculation unit 33B displays the map storage database 36.
  • Control the brake device (not shown) for stopping the vehicle main body 21 when only the detection result of the laser sensor 24B having the estimated accuracy and the reliability with the map information MI stored in is lower than the predetermined value and the predetermined reliability can be obtained.
  • FIG. 11 is an example of a flowchart of the work machine control system according to the first embodiment.
  • FIG. 12 is an example of a flowchart of step ST4 in FIG.
  • FIG. 13 is an example of a flowchart of step ST42 in FIG.
  • FIG. 14 is an example of a flowchart of step ST6 in FIG.
  • FIG. 15 is an example of a flowchart of step ST64 in FIG.
  • FIG. 16 is a diagram illustrating an example of an expected detection result of each position and orientation detected by the collation navigation calculation unit of the work machine control system according to the first embodiment.
  • FIG. 17 is a diagram illustrating an example of a detection result actually detected by the laser sensor of the work machine control system according to the first embodiment.
  • FIG. 18 is a diagram illustrating an example of a state in which the matching navigation calculation unit of the position measurement controller of the work machine control system according to the first embodiment calculates the closest detection result.
  • the work machine control method is a control method of the work machine of the dump truck 2 traveling on the travel route RP.
  • the processing device 12 transmits a command signal to the travel route creation device 32 and the position measurement controller 33 of the dump truck 2 via the wireless communication device 18.
  • the command signal includes information related to the traveling condition of the dump truck 2 and information related to the position of the work machine 4 other than the host vehicle.
  • the information regarding the traveling condition includes the traveling route information generated by the processing device 12 and the information regarding the traveling speed of the dump truck 2.
  • the travel route creation device 32 stores travel route information and information on the position of the work machine 4 other than the host vehicle in the route position storage unit 32 ⁇ / b> A among the command signals from the processing device 12 transmitted via the communication system 9.
  • the position measurement controller 33 receives information on the position and direction of the dump truck 2 that is the host vehicle via the wireless communication device 34. It transmits to the processing device 12.
  • the travel controller 20 controls the travel of the dump truck 2 by controlling the accelerator of the dump truck 2, the braking device (not shown), and the steering device 2S based on the command signal from the processing device 12.
  • the traveling controller 20 of the work machine control system 30 executes step ST1 of traveling the dump truck 2 by dead reckoning according to the traveling route RP based on the GPS position of the dump truck 2 detected by the GPS receiver 31.
  • the travel controller 20 sets the dump truck 2 according to the travel conditions including the travel route information generated by the processing device 12 of the management device 10 and the travel speed (target travel speed) set by the processing device 12. It is made to drive
  • Dead reckoning refers to navigation in which the current position of the object (dump truck 2) is estimated based on the azimuth (azimuth change amount) from a known position and the moving distance.
  • the azimuth (azimuth change amount) of the dump truck 2 is detected by using a gyro sensor 26 disposed on the dump truck 2.
  • the moving distance of the dump truck 2 is detected using a speed sensor 27 arranged on the dump truck 2.
  • the detection signal of the gyro sensor 26 and the detection signal of the speed sensor 27 are output to the travel controller 20 of the dump truck 2.
  • the traveling controller 20 can obtain the direction (direction change amount) of the dump truck 2 from a known starting point based on the detection signal from the gyro sensor 26.
  • the travel controller 20 can determine the moving distance of the dump truck 2 from a known starting point based on the detection signal from the speed sensor 27.
  • the travel controller 20 Based on the detection signal from the gyro sensor 26 and the detection signal from the speed sensor 27, the travel controller 20 generates a control amount related to the travel of the dump truck 2 so that the dump truck 2 travels according to the generated travel route RP. To do.
  • the control amount includes an accelerator signal, a braking signal, and a steering signal.
  • the travel controller 20 controls the travel (operation) of the dump truck 2 based on the steering signal, the accelerator signal, and the braking signal.
  • the dump truck 2 travels while the estimated position obtained by dead reckoning is corrected using RTK-GNSS or collation navigation computing unit 33B.
  • the travel controller 20 detects the position (estimated position) of the dump truck 2 derived (estimated) by dead reckoning, the GPS position detected by the GPS receiver 31, or the position detected by the collation navigation calculation unit 33B.
  • the dump truck 2 is made to travel while correcting using the. Based on the detection signal from the gyro sensor 26, the detection signal from the speed sensor 27, and the GPS position from the GPS receiver 31 or the position detected by the collation navigation calculation unit 33B, the traveling controller 20 A control amount related to the traveling of the dump truck 2 including a correction amount for correcting the position of the dump truck 2 is calculated so as to travel according to the traveling route RP. The travel controller 20 controls the travel (operation) of the dump truck 2 based on the calculated correction amount and control amount so that the dump truck 2 travels according to the travel route RP.
  • the determination unit 33A of the position measurement controller 33 executes step ST2 for determining whether or not the GPS position error of the dump truck 2 detected by the GPS receiver 31 is equal to or less than a predetermined error. That is, in step ST2, the determination unit 33A of the position measurement controller 33 determines whether or not the accuracy of the GPS position of the dump truck 2 detected by the GPS receiver 31 is high. Specifically, the determination unit 33A of the position measurement controller 33 determines whether the GPS position solution detected by the GPS receiver 31 is a Fix solution. The determination unit 33A of the position measurement controller 33 determines that the solution of the GPS position detected by the GPS receiver 31 is a Fix solution, that is, the error of the GPS position of the dump truck 2 detected by the GPS receiver 31 is a predetermined value.
  • step ST2 If it is determined that the error is equal to or less than the error (step ST2: Yes), whether or not the state of the dump truck 2 is a state that reduces the accuracy of the map information MI, that is, the upward projecting object VP detected by the grid map creation unit 33C. It is determined whether or not the information on the position of the map information MI stored in the map storage database 36 is reduced in accuracy (step ST3). Specifically, in the first embodiment, the determination unit 33A of the position measurement controller 33 determines whether or not the traveling speed of the dump truck 2 is zero based on the detection signal of the speed sensor 27, that is, the state of the dump truck 2 Determines whether or not the dump truck 2 that is in a state of reducing the accuracy of the map information MI is stopped. When the dump truck 2 whose traveling speed is zero is stopped, noise is mixed into the map information MI due to dust generated by the operation of the work machine 4 other than the host vehicle, and the accuracy of the map information MI is lowered. Because it may be.
  • step ST3 determines that the state of the dump truck 2 is not in a state of reducing the accuracy of the map information MI (step ST3: No).
  • the grid map creation unit 33C creates the map information MI (step ST4). That is, when the position measurement controller 33 determines that the GPS position error detected by the GPS receiver 31 is equal to or less than a predetermined error, the position measurement controller 33 based on the GPS position of the dump truck 2 detected by the GPS receiver 31.
  • the dump truck 2 is autonomously driven in accordance with the travel route RP stored by 32A, and the detection result regarding the upward projecting object VP is extracted from the detection result of the laser sensor 24B, and the detection result regarding the extracted upward projecting object VP is displayed on the map of the travel route RP.
  • Step ST4 stored in the map storage database 36 as information MI is executed. Specifically, first, the observation point coordinate conversion unit 38 indicates the position of the detection result of the laser sensor 24B indicated by the coordinates specified by the direction and the distance from the laser sensor 24B, in the coordinates indicated by the XY coordinates. (Step ST41).
  • the observation point availability determination unit 39 extracts the detection result related to the upward projecting object VP from the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 (step ST42).
  • the observation point availability determination unit 39 extracts a detection result related to the upward projecting object VP, first, various noises in the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 are removed (step ST421).
  • the observation point availability determining unit 39 detects, as noise, a detection result with a low reflection intensity, a detection result that the laser beam is considered to have passed through the transparent object, a detection result that the laser beam is considered to detect dust, the ground
  • the detection result that the laser beam seems to have been reflected by the above and the detection result that the laser beam seems to have detected a lump of soil on the ground are removed from the detection result whose coordinates have been converted by the observation point coordinate conversion unit 38.
  • the observation point availability determination unit 39 removes the detection result whose distance is equal to or larger than the predetermined maximum distance and the detection result whose distance is equal to or smaller than the predetermined minimum distance from the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 ( Step ST422).
  • the predetermined maximum distance is a distance necessary for removing noise caused by sunlight
  • the predetermined minimum distance is a distance for removing dark dust noise that occurs at a short distance from the laser sensor 24B. It is.
  • the observation point availability determination unit 39 removes a detection result of a predetermined height or less from the ground surface from the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 (step ST423).
  • the observation point availability determination unit 39 removes the detection result equal to or lower than the predetermined height, but is not limited thereto.
  • the observation point availability determination unit 39 refers to the information on the position of the work machine 4 other than the host vehicle stored in the route position storage unit 32A, and automatically determines from the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38.
  • the detection result that is expected to detect the work machine 4 other than the vehicle is removed (step ST424).
  • the observation point availability determination unit 39 extracts the detection result related to the upward projecting object VP from the detection result by removing various noises and the like from the detection result.
  • the detection result of the laser sensor 24B before the process can be reduced to about 1/6.
  • the observation point availability determining unit 39 synthesizes the detection result from which various noises and the like are removed into a detection result whose position is indicated by an XY coordinate and is configured by a grid GR having a predetermined size.
  • the observation point availability determination unit 39 outputs the combined detection result to both the grid map creation unit 33C and the matching navigation calculation unit 33B.
  • the grid map creation unit 33C of the position measurement controller 33 stores the position of the upward projecting object VP, which is the detection result synthesized by the observation point availability determination unit 39, in the map storage database 36 as the map information MI of the travel route RP ( Step ST43).
  • step ST1 to step ST4 executes step ST1 to step ST4, so that the error of the GPS position of the dump truck 2 detected by the GPS receiver 31 is equal to or less than a predetermined error, and the speed sensor 27 is While detecting that the dump truck 2 has not stopped, that is, while determining that the state of the dump truck 2 is not in a state of reducing the accuracy of the map information MI, the detection result of the laser sensor 24B
  • the detection result regarding the upward projecting object VP is extracted from the above, and the detection result regarding the extracted upward projecting object VP is continuously stored as the map information MI of the travel route RP.
  • step ST3 determines that the state of the dump truck 2 is a state that reduces the accuracy of the map information MI (step ST3: Yes). Then, the storage of the map information MI is paused (step ST10), and the process returns to step ST1.
  • the ROM 333 of the position measurement controller 33 stores a program that causes the position measurement controller 33 that is a computer to execute step ST3, step ST4, and step ST10.
  • step ST3 Yes
  • the work machine control system 30 pauses the storage of the map information MI ( By returning to step ST10) and step ST1, when the speed sensor 27 detects that the dump truck 2 has stopped, that is, the state of the dump truck 2 reduces the accuracy of the map information MI.
  • the storage of the map information MI of the travel route RP is suspended.
  • the determination unit 33A of the position measurement controller 33 determines that the solution of the GPS position detected by the GPS receiver 31 is not the Fix solution, that is, the error of the GPS position of the dump truck 2 detected by the GPS receiver 31 is If it is determined that the predetermined error has been exceeded (step ST2: No), whether or not the state of the dump truck 2 is a state in which the position measurement accuracy is lowered, that is, the collation navigation calculation unit 33B determines whether the laser sensor 24B Based on the detection result and the map information MI stored in the map storage database 36, it is determined whether or not the detected measurement accuracy of the position and orientation of the dump truck 2 is lowered (step ST5).
  • the determination unit 33A of the position measurement controller 33 determines whether or not the traveling speed of the dump truck 2 is zero based on the detection signal of the speed sensor 27, that is, the state of the dump truck 2 Determines whether or not the dump truck 2 is in a state of lowering the position measurement accuracy.
  • the dump truck 2 whose traveling speed is zero is stopped, noise is mixed into the detection result of the laser sensor 24B due to dust generated by the operation of the work machine 4 other than the own vehicle, and the collation navigation calculation unit 33B. This is because the accuracy of position measurement may be reduced. Moreover, it is because the position of the dump truck 2 does not change when the dump truck 2 whose traveling speed is zero is stopped.
  • step ST5 determines that the state of the dump truck 2 is not in a state of lowering the position measurement accuracy (step ST5: No)
  • verification is performed.
  • the navigation calculation unit 33B specifies the position and direction of the dump truck 2 based on the detection result of the laser sensor 24B and the map information MI stored in the map storage database 36, and the travel controller 20 performs dumping according to the travel route RP.
  • the truck 2 is caused to travel (step ST6). That is, when the position measurement controller 33 determines that the GPS position error detected by the GPS receiver 31 exceeds a predetermined error, the position measurement controller 33 detects the detection result of the laser sensor 24B and the map information MI stored in the map storage database 36. To identify the position and orientation of the dump truck 2.
  • the observation point coordinate conversion unit 38 converts the position of the detection result of the laser sensor 24B indicated by the coordinates specified by the direction and distance from the laser sensor 24B into the position of the XY coordinates (step S1). ST61).
  • the observation point availability determination unit 39 extracts the detection result related to the upward projecting object VP from the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 (step ST62). Since step ST61 is the same process as step ST41, and step ST62 is the same process as step ST42, detailed description thereof will be omitted.
  • the collation navigation calculation unit 33B passes the detection result from which the noise has been removed by the observation point availability determination unit 39 through an isolation filter, and thins out the detection result (step ST63). Specifically, the collation navigation calculation unit 33B leaves only detection results that are separated from each other by a predetermined distance among the detection results from which noise is removed by the observation point availability determination unit 39, and removes other detection results. By the process of step ST63, the detection result of the laser sensor 24B before the process can be reduced to about 1/6.
  • the collation navigation calculation unit 33B integrates the detection result of the gyro sensor 26, the detection result of the speed sensor 27, the detection result of the laser sensor 24B, and the map information MI stored in the map storage database 36 by the particle filter PF.
  • the position and direction of the dump truck 2 are specified (step ST64). Specifically, the collation navigation calculation unit 33B is within a range where the dump truck 2 is expected to exist at a certain point in time based on the direction that is the detection result of the gyro sensor 26 and the traveling speed that is the detection result of the speed sensor 27. Are calculated (step ST641).
  • the reference navigation calculation unit 33 ⁇ / b> B is configured to detect the laser sensor 24 ⁇ / b> B when the dump truck 2 is located at each expected position and direction based on the map information MI stored in the map storage database 36. A detection result that is expected to be detected is estimated.
  • the collation navigation calculation unit 33B collates the detection result DR1 that is expected to be detected by the laser sensor 24B at each position and orientation shown in FIG. 16 with the detection result DR2 that is actually detected by the laser sensor 24B shown in FIG. Then, the likelihood for the detection result DR2 actually detected by the laser sensor 24B of the detection result DR1 that is expected to be detected by the laser sensor 24B at each position and orientation is calculated.
  • the reference navigation calculation unit 33B normalizes the likelihood of each position and direction (step ST642).
  • the collation navigation calculation unit 33B calculates the final estimated value from the likelihood of the detection result DR1 that the laser sensor 24B is expected to detect at each position and orientation and each position, and the laser sensor 24B detects the result as shown in FIG. Then, the expected detection result DR1 calculates the position and orientation most similar to the detection result DR2 actually detected by the laser sensor 24B.
  • the collation navigation calculation unit 33B detects the most similar position and direction as the position and direction of the dump truck 2.
  • the matching navigation calculation unit 33B calculates the most similar position and orientation, it also calculates the estimation accuracy and reliability of the most similar position and orientation (step ST643).
  • 16 and 18 show the grid GR in which the upward protrusion VP exists with dense parallel oblique lines, and FIG.
  • FIG. 17 shows the detection result of the upward protrusion VP with rough parallel oblique lines.
  • FIG. 18 shows an example in which the detection result DR2 actually detected by the laser sensor 24B is a part of the expected detection result DR1, but the present invention is not limited to this.
  • the collation navigation calculation unit 33B performs various diagnoses on the detected position and orientation of the dump truck 2 (step ST644). Specifically, the reference navigation calculation unit 33B detects the detected position and direction of the dump truck 2 from the detection result detected when the laser sensor 24B is out of order, and detects the gyro sensor 26 during the outage.
  • Detected from the detection results those detected from the detection results of laser sensors 24B less than a predetermined number, reliability is lower than a predetermined reliability, likelihood is lower than a predetermined value, and estimation accuracy is predetermined
  • the position and direction of the detected dump truck 2 are discarded if the difference between the position and direction is lower than the value, the position and direction are larger than the predetermined value by dead reckoning navigation, or the problem is detected using the problematic map information MI.
  • a plurality of positions and orientations within a range where the dump truck 2 is expected to exist at a certain time are calculated again (step ST645).
  • the calculated plurality of positions and orientations are used as the plurality of positions and orientations calculated in step ST641 when step ST6 is executed next.
  • the reference navigation calculation unit 33B detects the detected position and orientation of the dump truck 2 from the detection result detected when the laser sensor 24B is out of order, and the detection result detected when the gyro sensor 26 is out of order. Detected from the detection results of the laser sensors 24B less than the predetermined number, the reliability is lower than the predetermined reliability, the likelihood is lower than the predetermined value, and the estimation accuracy is lower than the predetermined value If the gap between the position and the direction by the dead reckoning navigation is larger than the predetermined value and does not correspond to all of those detected using the problematic map information MI, the dead reckoning navigation using the detected position and orientation ( Step ST1) is executed, and the position measurement controller 33 controls the travel (operation) of the dump truck 2 so that the dump truck 2 travels according to the travel route RP.
  • step ST1, step ST2, step ST5, and step ST6, whereby the error in the GPS position of the dump truck 2 detected by the GPS receiver 31 becomes a predetermined error.
  • the speed sensor 27 detects that the dump truck 2 is not stopped, that is, while the state of the dump truck 2 determines that the position measurement accuracy is not lowered.
  • the travel controller 20 continues to specify the position and orientation of the dump truck 2 by collating the detection result of the laser sensor 24B with the map information MI of the travel route RP stored in the map storage database 36. Based on the position and direction of the dump truck 2 detected by the controller 33, the travel route RP is followed. To run the dump truck 2.
  • step ST5 determines that the state of the dump truck 2 is stopped, that is, determines that the state of the dump truck 2 is a state that decreases the position measurement accuracy (step ST5: Yes), step ST1. Return to.
  • the determination unit 33A determines that the state of the dump truck 2 is a state in which the position measurement accuracy is lowered (step ST5: Yes)
  • the position measurement controller 33 causes the speed sensor 27 to return to the dump truck by returning to step ST1.
  • the detection result of the laser sensor 24B and the travel route stored in the map storage database 36 The identification of the position and direction of the dump truck 2 is stopped by collating with the map information MI of the RP.
  • the program stored in the work machine control system 30, the work machine control method, and the position measurement controller 33 is based on the detection result of the GPS receiver 31 when the dump truck 2 travels according to the travel route RP.
  • the position of the upward projecting object VP is detected from a certain GPS position and the detection result of the laser sensor 24B, and the position measurement controller 33 stores the detected position of the upward projecting object VP as map information MI in the map storage database 36.
  • the work machine control system 30 identifies the position and orientation of the host vehicle based on the map information MI and the detection result of the laser sensor 24B even in a situation where the position and orientation cannot be identified by GPS.
  • the vehicle can travel along the travel route RP, and the traveling of the dump truck 2, that is, the operation of the mine can be continued.
  • the work machine control system 30, the work machine control method, and the program stored in the position measurement controller 33 determine that the state of the dump truck 2 is in a state of reducing the accuracy of the map information MI. During this time, the storage of the map information MI is suspended, so that the map information MI stored in the map storage database 36 can be prevented from including noise. As a result, the work machine control system 30 can identify the position and orientation of the host vehicle based on the map information MI with little noise even in a situation where the position and orientation cannot be identified by GPS. 2 traveling, that is, the operation of the mine can be continued.
  • the work machine control system 30 causes the dump truck 2 to autonomously travel according to the travel route RP based on the GPS position or the like. For this reason, the control system 30 of the work machine can autonomously travel the dump truck 2 with high accuracy according to the travel route RP when the solution of the GPS position detected by the GPS receiver 31 is the Fix solution. The operation can be continued.
  • the work machine control system 30 allows the laser sensor 24B to autonomously travel the dump truck 2 according to the travel route RP based on the GPS position or the like. Based on the detection result, map information MI including the position of the upward projecting object VP is created and stored in the map storage database 36. As a result, the accuracy of the map information MI is improved, and the control system 30 of the work machine can detect the map information MI and the laser sensor 24B with improved accuracy even in a situation where the position and orientation cannot be specified by GPS. Based on the result, the vehicle can travel along the travel route RP, and the traveling of the dump truck 2, that is, the operation of the mine can be continued.
  • the work machine control system 30 When the GPS position solution detected by the GPS receiver 31 is not a Fix solution, the work machine control system 30 according to the first embodiment detects the detection result of the laser sensor 24B and the map information stored in the map storage database 36. The position and orientation of the dump truck 2 are specified by collating with MI. As a result, the work machine control system 30 identifies the position and orientation based on the detection result of the laser sensor 24B having a higher resolution than the radar 24A even in a situation where the position and orientation cannot be identified by GPS.
  • the dump truck 2 can be run, that is, the mine can be operated continuously.
  • the work machine control system 30 determines that the state of the dump truck 2 is a state in which the position measurement accuracy is lowered, and the map information MI stored in the map storage database 36 with the detection result of the laser sensor 24B. And the identification of the position and orientation of the dump truck 2 is paused. As a result, the work machine control system 30 can suppress, for example, unnecessary updating of the position and orientation of the dump truck 2 while the vehicle is stopped.
  • the dump truck 2 and the management system 1 include the above-described work machine control system 30, and thus are configured at the position of the upward projecting object VP when the dump truck 2 travels according to the travel route RP. Since the map information MI is stored in the map storage database 36, even if the position and direction cannot be specified by GPS, the position and direction of the host vehicle can be specified using the map information MI. The traveling of the truck 2, that is, the operation of the mine can be continued.
  • the work machine control system 30 is configured by information indicating whether or not each grid GR of the map information MI has the upward projecting object VP, that is, 0 or 1, so that the information amount of the entire map information MI Can be suppressed.
  • the work machine control system 30 can identify the position of the dump truck 2 in real time even by the limited processing capability of the position measurement controller 33 installed in the dump truck 2, and the position and direction can be determined by GPS. Even in a situation where it cannot be specified, traveling of the dump truck 2, that is, operation of the mine can be continued.
  • the observation point availability determination unit 39 detects a detection result with a low reflection intensity from a detection result of the laser sensor 24B, a detection result that the laser beam seems to have passed through the transparent object, and a laser beam detects dust.
  • the detection result, the detection result that the laser beam is supposed to be reflected by the ground, and the detection result that the laser beam is supposed to have detected a lump of soil on the ground are removed as noise.
  • the observation point availability determination unit 39 detects from the detection result of the laser sensor 24B the detection result of the maximum distance or more, the detection result of the minimum distance or less, the detection result of the predetermined height or less, and other than the own vehicle. The detection result expected to have detected the work machine 4 is removed.
  • the work machine control system 30 can suppress information other than the upward projecting object VP in the map information MI stored in the map storage database 36 and stores it in the map storage database 36 installed in the dump truck 2.
  • the amount of information can be suppressed, and the collation navigation calculation unit 33B can accurately specify the position of the dump truck 2.
  • the verification navigation calculation unit 33B passes the detection result of the laser sensor 24B from which various noises have been removed, through an isolation filter, and further reduces the detection result.
  • the work machine control system 30 can identify the position of the dump truck 2 in real time even by the limited processing capability of the position measurement controller 33 installed in the dump truck 2, and the position and direction can be determined by GPS. Even in a situation where it cannot be specified, traveling of the dump truck 2, that is, operation of the mine can be continued.
  • the work machine control system 30 suppresses erroneous detection of the position and orientation of the dump truck 2 because the verification navigation calculation unit 33B performs various diagnoses on the position and orientation of the dump truck 2 detected by the particle filter PF. can do. As a result, the work machine control system 30 can continue to run the dump truck 2, that is, the operation of the mine, even in a situation where the position and direction cannot be specified by GPS.
  • the work machine control system 30 creates and stores map information MI configured based on the detection result of the laser sensor 24B when the GPS position solution detected by the GPS receiver 31 is a Fix solution. .
  • the work machine control system 30 collates the detection result of the laser sensor 24B with the map information MI stored in the map storage database 36.
  • the position and direction of the dump truck 2 are specified. In this way, the work machine control system 30 creates the map information MI created by each dump truck 2 when each dump truck 2 creates the map information MI and the GPS position error exceeds a predetermined error. Use to drive.
  • each grid GR of the map information MI is configured by information indicating whether or not the upward projecting object VP exists, that is, 0 or 1
  • the work machine control system 30 has the individual difference of each dump truck 2. Even if there is a difference in the detection results of the laser sensor 24B between the dump trucks 2, it is possible to accurately detect the position of the host vehicle using the map information MI created by itself. Even in a situation where it is impossible, the traveling of the dump truck 2, that is, the operation of the mine can be continued.
  • FIG. 19 is an example of a flowchart of the work machine control system according to the second embodiment.
  • FIG. 20 is an example of a flowchart of step ST7 in FIG. 19 and 20, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the construction machine control system 30 according to the second embodiment has the same configuration as the construction machine control system 30 according to the first embodiment.
  • the determination unit 33A of the position measurement controller 33 determines that the dump truck 2 is not stopped, that is, the state of the dump truck 2 reduces the accuracy of the map information MI.
  • the grid map creation unit 33C creates the map information MI (step ST4)
  • the collation navigation computation unit 33B uses the detection result of the laser sensor 24B and the map storage
  • the position and orientation of the dump truck 2 are specified based on the map information MI stored in the database 36, and the accuracy of the detected position and orientation is confirmed (step ST7).
  • the observation point coordinate conversion unit 38 converts the position of the detection result of the laser sensor 24B into the position of the XY coordinates.
  • the observation point availability determination unit 39 extracts the detection result regarding the upward projecting object VP from the detection result obtained by converting the coordinates, and combines the detection result with the position indicated by the XY coordinates and configured by a plurality of grids GR. To do.
  • the detection result synthesized by the grid map creation unit 33C is stored in the map storage database 36 as map information MI.
  • the reference navigation calculation unit 33B specifies the position and orientation of the dump truck 2 based on the detection result of the laser sensor 24B and the map information MI stored in the map storage database 36 (step ST71).
  • the position measurement controller 33 determines whether or not the position of the dump truck 2 detected by the verification navigation calculation unit 33B is highly accurate (step ST72). Specifically, the position measurement controller 33 converts the GPS position detected by the GPS receiver 31 into an XY coordinate position, converts the GPS position into an XY coordinate position, and a collation navigation calculation unit. The distance (difference distance) from the position of the dump truck 2 detected by 33B is detected. The position measurement controller 33 detects the dump detected by the collation navigation calculation unit 33B when the distance between the position obtained by converting the GPS position into the XY coordinate position and the position detected by the collation navigation calculation unit 33B is equal to or less than a predetermined distance. It is determined that the position of the track 2 is highly accurate.
  • the position measurement controller 33 detects the dump truck detected by the collation navigation calculation unit 33B. It is determined that the position of 2 is not highly accurate.
  • the predetermined distance is a distance that enables the dump truck 2 to autonomously travel when the solution of the GPS position detected by the GPS receiver 31 is not the Fix solution.
  • step ST72 If the position measurement controller 33 determines that the position of the dump truck 2 detected by the reference navigation calculation unit 33B is highly accurate (step ST72: Yes), is the number of detection results detected by the laser sensor 24B sufficient? It is determined whether or not (step ST73). Specifically, the position measurement controller 33 determines that the number of detection results detected by the laser sensor 24B is greater than or equal to a predetermined number, and determines that the number is less than the predetermined number. .
  • the predetermined number is a number that enables the dump truck 2 to autonomously travel when the GPS position solution detected by the GPS receiver 31 is not a Fix solution.
  • the position measurement controller 33 determines that the number of detection results detected by the laser sensor 24B is sufficient (step ST73: Yes), the detection result of the laser sensor 24B detected by the observation point availability determination unit 39, and a map It is determined whether or not the map information MI stored in the storage database 36 matches (step ST74). Specifically, the position measurement controller 33 performs pattern matching using the normalized correlation between the detection result detected by the laser sensor 24B and the map information MI stored in the map storage database 36, and the correlation value is predetermined. It is determined that the value is equal to or greater than the value, and it is determined that the correlation value is less than the predetermined value.
  • the predetermined value is a value that enables the dump truck 2 to autonomously travel when the GPS position solution detected by the GPS receiver 31 is not a Fix solution.
  • the position measurement controller 33 determines that the detection result of the laser sensor 24B detected by the observation point availability determination unit 39 matches the map information MI stored in the map storage database 36 (step ST74: Yes). ) And the distance between the position obtained by the determination unit 33A converting the GPS position into the XY coordinate position and the position of the dump truck 2 detected by the collation navigation calculation unit 33B is stored in the nonvolatile memory 335 (step ST75). . In step ST75, the position measurement controller 33 always detects the average distance between the position obtained by converting the GPS position into the XY coordinate position and the position of the dump truck 2 detected by the collation navigation calculation unit 33B. The average distance is stored in the nonvolatile memory 335.
  • step ST6 the position measurement controller 33 specifies the position and orientation of the dump truck 2 based on the detection result of the laser sensor 24B and the map information MI stored in the map storage database 36.
  • the detected position and orientation of the dump truck 2 are corrected by the average distance.
  • step ST72: No If the position measurement controller 33 determines that the position of the dump truck 2 detected by the verification navigation calculation unit 33B is not highly accurate (step ST72: No), the number of detection results detected by the laser sensor 24B is not sufficient.
  • step ST73: No or when it is determined that the detection result of the laser sensor 24B detected by the observation point availability determination unit 39 does not match the map information MI stored in the map storage database 36 (Step ST74: No), it is determined that the position and direction of the dump truck 2 detected by the reference navigation calculation unit 33B is not suitable for autonomous traveling, and the wireless communication of the control facility 7 is performed via the wireless communication device 34 to that effect. Transmit to device 18.
  • the control facility 7 receives that the position and direction of the dump truck 2 are not suitable for autonomous traveling, the control facility 7 stores them in the storage device 13 (step ST76).
  • the determination unit 33A determines that the error in the GPS position of the dump truck 2 detected by the GPS receiver 31 is equal to or less than a predetermined error (step ST2: Yes), and the dump truck 2 If it is determined that the vehicle has not stopped, that is, the state of the dump truck 2 is not in a state of reducing the accuracy of the map information MI (step ST3: No), the grid map creation unit 33C creates the map information MI. At the same time (step ST4), the collation navigation calculation unit 33B identifies the position and orientation of the dump truck 2 and confirms the accuracy of the detected position and orientation (step ST7).
  • the position measurement controller 33 allows the detection result of the laser sensor and the map storage database 36 when the determination unit 33A determines that the GPS position error detected by the GPS receiver 31 is equal to or less than a predetermined error.
  • the position and direction of the dump truck 2 are identified by comparing with the map information MI stored by the vehicle, and the dump truck 2 is caused to travel based on the position of the dump truck 2 identified by the GPS receiver 30 according to the travel route RP. It is determined whether or not is suitable.
  • step ST75 the position measurement controller 33 of the second embodiment stores the difference distance, so that the determination unit 33A determines that the GPS position error detected by the GPS receiver 31 is equal to or less than a predetermined error.
  • the position and direction of the dump truck 2 obtained by collating the detection result of the laser sensor 24B with the map information MI of the travel route RP stored in the map storage database 36 and the GPS receiver 31 detect The difference (difference distance) from the determined position and orientation is detected and stored.
  • the work machine control system 30 detects the distance (difference distance) between the GPS position detected by the GPS receiver 31 and the position of the dump truck 2 detected by the verification navigation calculation unit 33B. It is determined whether or not the position and direction of the dump truck 2 detected by the navigation calculation unit 33B enables autonomous traveling. For this reason, the work machine control system 30 checks the accuracy of the position detected by the reference navigation calculation unit 33B while the vehicle is autonomously traveling with the GPS position error detected by the GPS receiver 31 being equal to or less than a predetermined error. be able to.
  • the work machine control system 30 adds landmarks that can be detected by the laser sensor 24B to places where the position and direction detected by the reference navigation calculation unit 33B cannot autonomously travel. It is a situation where it is possible to prompt the worker to install and run multiple times while detecting the position where autonomous driving is not possible, and the position and direction cannot be specified by GPS. However, the traveling of the dump truck 2, that is, the operation of the mine can be continued.
  • the work machine control system 30 detects and stores the average distance (difference distance) between the GPS position detected by the GPS receiver 31 and the position of the dump truck 2 detected by the verification navigation calculation unit 33B.
  • the work machine control system 30 specifies the position and orientation of the dump truck 2 based on the detection result of the laser sensor 24B and the map information MI stored in the map storage database 36, and the dump truck 2 according to the travel route RP.
  • the detected position and orientation of the dump truck 2 are corrected by the average distance.
  • the work machine control system 30 Even in a situation where the position and direction cannot be specified by GPS, the dump truck 2 can be run, that is, the mine can be operated continuously.
  • the grid map creation unit 33C when the work machine control system 30 determines that the error in the GPS position detected by the GPS receiver 31 is equal to or less than the predetermined error (step ST2: Yes), the grid map creation unit 33C However, at least during the creation of the map information MI, the reference navigation calculation unit 33B detects the position, direction, and difference distance of the dump truck 2 as in step ST7, and the detected position and direction are detected. The accuracy may be confirmed and the difference distance may be stored.
  • the work machine control system 30 stores the map information MI in the map storage database 36 during the autonomous traveling of the dump truck 2 whose GPS position solution is the Fix solution. It is not limited to.
  • the work machine control system 30 may store the map information MI in the map storage database 36 when the dump truck 2 travels by the operation of the operator (driver).
  • the work machine control system 30 sets the state where the dump truck 2 is stopped in a state in which the accuracy of the map information MI is lowered or the position measurement accuracy is lowered. Not.
  • the work machine control system 30 reduces the accuracy of the map information MI when the GPS position solution is not a Fix solution, the traveling route creation device 32 is out of order, or the dump truck 2 is being inspected. It is good also as a state which reduces a state or position measurement accuracy.
  • the work machine control system 30 uses the detection result of the laser sensor 24B to create the map information MI and specify the position and orientation of the dump truck 2.
  • the work machine control system 30 may create the map information MI and specify the position and orientation of the dump truck 2 using the detection result of the radar 24A which is a non-contact sensor.
  • the work machine control system 30 generates map information MI using the detection results of a plurality of CCD (Charge-Coupled Device) cameras provided on the dump truck 2 which is a non-contact sensor, and generates the dump truck 2. You may specify the position and azimuth
  • CCD Charge-Coupled Device
  • the mining machine used in the mine has been described as an example.
  • the present invention is not limited thereto, and may be applied to a working machine used in an underground mine or a working machine used on the ground work site.
  • the work machine includes a mining machine.
  • the position of the mining machine is detected using the GPS detector.
  • the present invention is not limited to this, and the position of the mining machine may be detected based on a well-known “position detecting unit”.
  • GPS cannot be detected in underground mines, for example, IMES (Indoor Messaging System), pseudo satellites (Pseudolite), RFID (Radio Frequency IDentifier), beacons, surveying instruments, wireless LAN, UWB (UWB ( Self-localization of a working machine using an Ultra Wide Band, SLAM (Simultaneous Localization and Mapping), or a landmark (a mark provided beside the travel route) may be used. You may use these position detection apparatuses for the working machine used in the mining machine in an above-ground mine, or the work site on the ground.
  • Work machine control system for a work machine (hydraulic excavator, bulldozer, wheel loader, etc.) used in a work machine or on the ground, which includes a “position detection device”, a “non-contact sensor”, and a “position calculation unit” Also included.
  • Management system Dump truck (work machine) 7 Control facility 10 Management device 20 Travel controller (travel control means) 21 Vehicle body 24A Radar (non-contact sensor) 24B Laser sensor (non-contact sensor) 27 Speed sensor 30 Work machine control system 31 GPS receiver (position detection means) 32A route position storage unit (route position storage means) 33 Position measurement controller (measurement output means) 33A determination unit (determination means) RP Route VP Upward projecting object BK Bank MI Map information

Abstract

A control system 30 for a work machine is provided with: a GPS receiver 31 that detects the GPS position of a dump truck; a laser sensor 24B that detects the positions of objects in the vicinity of the dump truck; and a position measurement controller 33 that, when the dump truck is traveling along a travel route, detects, from the detection results of the GPS receiver 31 and the detection results of the laser sensor 24B, the position of an upward protrusion that protrudes upward from the surface of the travel route, and stores, in a database 36 for map storage, the detected position of the upward protrusion as map information for the travel route. The position measurement controller 33 determines whether the state of the dump truck reduces the precision of map information. When it is determined that the state of the dump truck does not reduce the precision of map information, the storage of map information for the travel route continues. When it is determined that the state of the dump truck reduces the precision of map information, the storage of map information for the travel route is halted.

Description

作業機械の制御システム、作業機械、作業機械の管理システム、作業機械の制御方法及びプログラムWork machine control system, work machine, work machine management system, work machine control method and program
 本発明は、作業機械の制御システム、作業機械、作業機械の管理システム、作業機械の制御方法及びプログラムに関する。 The present invention relates to a work machine control system, a work machine, a work machine management system, a work machine control method, and a program.
 鉱山の採掘現場においては、例えば特許文献1に開示されているような、ダンプトラックなどの鉱山機械が稼働する。 At a mining site, a mining machine such as a dump truck as disclosed in Patent Document 1, for example, operates.
特開平11-242520号公報Japanese Patent Laid-Open No. 11-242520
 鉱山の走行経路を自律走行する作業機械は、電離層に異常が生じると、全地球航法衛星システムを用いて検出された位置の精度が低下し、稼働が停止されることがある。その結果、鉱山における生産性が低下する可能性がある。 作業 Work machines that travel autonomously on the mine's travel route may stop operation if the ionosphere is abnormal and the accuracy of the position detected using the global navigation satellite system will be reduced. As a result, productivity in the mine may be reduced.
 本発明は、鉱山における生産性の低下を抑制できる作業機械の制御システム、作業機械、作業機械の管理システム、作業機械の制御方法及びプログラムを提供することを目的とする。 The object of the present invention is to provide a work machine control system, a work machine, a work machine management system, a work machine control method, and a program capable of suppressing a decrease in productivity in a mine.
 本発明は、走行経路を走行する作業機械の制御システムであって、前記作業機械の位置を検出する位置検出手段と、前記作業機械の周囲の物体の位置を検出する非接触センサと、前記位置検出手段の検出結果及び前記非接触センサの検出結果から上方に突出した上方突出物の位置を検出し、検出した前記上方突出物の位置を地図情報として地図情報記憶手段に記憶する計測出力手段と、を備え、前記計測出力手段は、前記作業機械の状態が前記地図情報の精度を低下させる状態であるか否かを判定し、前記作業機械の状態が前記地図情報の精度を低下させる状態であると判定した場合に、前記地図情報の記憶を休止する作業機械の制御システムである。 The present invention relates to a control system for a work machine that travels along a travel route, the position detection unit that detects the position of the work machine, the non-contact sensor that detects the position of an object around the work machine, and the position A measurement output means for detecting the position of the upward projecting object protruding upward from the detection result of the detection means and the detection result of the non-contact sensor, and storing the detected position of the upward projecting object in the map information storage means as map information; The measurement output means determines whether or not the state of the work machine is a state that reduces the accuracy of the map information, and the state of the work machine decreases the accuracy of the map information. When it determines with there being, it is a control system of the working machine which stops the memory | storage of the said map information.
 前記走行経路を指定する情報を記憶する経路位置記憶手段と、前記位置検出手段が検出した位置の誤差が所定の誤差以下であるか否かを判定する判定手段と、前記位置検出手段が検出した位置の誤差が前記所定の誤差以下であると前記判定手段が判定すると、前記位置検出手段が検出した前記作業機械の位置に基づいて、前記経路位置記憶手段が記憶した前記走行経路に従って前記作業機械を走行させる走行制御手段と、を備えることが好ましい。 Route position storage means for storing information specifying the travel route, determination means for determining whether or not an error in position detected by the position detection means is equal to or less than a predetermined error, and detected by the position detection means When the determination unit determines that the position error is equal to or less than the predetermined error, the work machine is based on the travel route stored by the route position storage unit based on the position of the work machine detected by the position detection unit. It is preferable to include travel control means for traveling the vehicle.
 前記計測出力手段は、前記位置検出手段が検出した位置の誤差が前記所定の誤差を超えていると前記判定手段が判定すると、前記非接触センサの検出結果と前記地図情報記憶手段が記憶した前記走行経路の地図情報とを照合することにより前記作業機械の位置を特定し、前記走行制御手段は、前記計測出力手段が特定した前記作業機械の位置に基づいて、前記経路位置記憶手段が記憶した前記走行経路に従って前記作業機械を走行させることが好ましい。 When the determination unit determines that the position error detected by the position detection unit exceeds the predetermined error, the measurement output unit stores the detection result of the non-contact sensor and the map information storage unit. The position of the work machine is identified by collating with the map information of the travel route, and the travel control unit stores the route position storage unit based on the position of the work machine identified by the measurement output unit. It is preferable that the work machine is caused to travel according to the travel route.
 前記計測出力手段は、前記作業機械の状態が位置計測精度を低下させる状態であるか否かを判定し、前記作業機械の状態が位置計測精度を低下させる状態であると判定した場合に、前記非接触センサの検出結果と前記地図情報記憶手段が記憶した前記地図情報とを照合することにより前記作業機械の位置を特定することを休止することが好ましい。 The measurement output means determines whether or not the state of the work machine is a state that decreases the position measurement accuracy, and determines that the state of the work machine is a state that decreases the position measurement accuracy, It is preferable that the location of the work machine is stopped by collating the detection result of the non-contact sensor with the map information stored in the map information storage unit.
 前記計測出力手段は、前記位置検出手段が検出した位置の誤差が前記所定の誤差以下であると前記判定手段が判定した場合に、前記非接触センサの検出結果と前記地図情報記憶手段が記憶した前記地図情報とを照合することにより前記作業機械の位置を特定して、前記走行経路に従って前記位置計測手段が特定した前記作業機械の位置に基づいて前記作業機械を走行させることが適しているか否かを判定することが好ましい。 The measurement output means stores the detection result of the non-contact sensor and the map information storage means when the determination means determines that the position error detected by the position detection means is equal to or less than the predetermined error. Whether or not it is suitable to identify the position of the work machine by collating with the map information, and to cause the work machine to travel based on the position of the work machine identified by the position measuring means according to the travel route. It is preferable to determine whether or not.
 前記計測出力手段は、前記位置検出手段が検出した位置の誤差が前記所定の誤差以下であると前記判定手段が判定した場合に、前記非接触センサの検出結果と前記地図情報記憶手段が記憶した前記地図情報とを照合することにより得られた前記作業機械の位置と、前記位置検出手段が検出した位置との距離を検出し、記憶することが好ましい。 The measurement output means stores the detection result of the non-contact sensor and the map information storage means when the determination means determines that the position error detected by the position detection means is equal to or less than the predetermined error. It is preferable to detect and store the distance between the position of the work machine obtained by collating with the map information and the position detected by the position detecting means.
 本発明は、前記作業機械の制御システムと、鉱山に設けられる走行経路を走行する車両本体と、を備える作業機械である。 The present invention is a work machine including the control system for the work machine and a vehicle body that travels on a travel route provided in a mine.
 本発明は、前記作業機械と、鉱山に設置される管制施設に配置され、かつ前記作業機械の作業機械の制御システムに鉱山に設けられる走行経路を指定する情報を送信する管理装置と、を備える作業機械の管理システムである。 The present invention includes the work machine, and a management device that is arranged in a control facility installed in the mine and transmits information specifying a travel route provided in the mine to a control system of the work machine of the work machine. It is a management system for work machines.
 本発明は、走行経路を走行する作業機械の制御方法であって、前記作業機械が前記走行経路に従って走行する際に、前記作業機械の位置及び前記作業機械の周囲の物体の位置を検出する非接触センサの検出結果から上方に突出した上方突出物の位置を検出し、検出した前記上方突出物の位置を前記走行経路の地図情報として記憶するとともに、前記作業機械の状態が前記地図情報の精度を低下させる状態である場合に、前記走行経路の地図情報の記憶を休止する作業機械の制御方法である。 The present invention is a method for controlling a work machine that travels along a travel route, and detects a position of the work machine and a position of an object around the work machine when the work machine travels according to the travel route. The position of the upward projecting object protruding upward is detected from the detection result of the contact sensor, the detected position of the upward projecting object is stored as map information of the travel route, and the state of the work machine indicates the accuracy of the map information. This is a work machine control method that stops storing the map information of the travel route when it is in a state of lowering.
 本発明は、走行経路を走行する作業機械に設置されたコンピュータに、前記作業機械が前記走行経路に従って走行する際に、前記作業機械の状態が上方に突出した上方突出物の位置を示す前記走行経路の地図情報の精度を低下させる状態であるか否かを判定するステップと、前記作業機械の状態が前記地図情報の精度を低下させる状態ではないと判定すると、前記作業機械の位置及び前記作業機械の周囲の物体の位置を検出する非接触センサの検出結果から前記上方突出物の位置を検出し、検出した前記上方突出物の位置を前記走行経路の地図情報として地図情報記憶手段に記憶するステップと、前記作業機械の状態が前記地図情報の精度を低下させる状態であると判定すると、前記走行経路の地図情報の記憶を休止するステップと、を実行させるプログラムである。 The present invention provides a computer installed on a work machine that travels along a travel route, wherein the travel indicates the position of an upward projecting object in which the state of the work machine projects upward when the work machine travels according to the travel route. Determining whether or not the accuracy of the map information on the route is reduced, and determining that the state of the work machine is not in a state of reducing the accuracy of the map information, the position of the work machine and the work The position of the upper projecting object is detected from the detection result of a non-contact sensor that detects the position of an object around the machine, and the detected position of the upper projecting object is stored in the map information storage means as map information of the travel route. And, when it is determined that the state of the work machine is a state that reduces the accuracy of the map information, the storage of the map information of the travel route is suspended. Is a program to be.
 本発明によると、鉱山における生産性の低下が抑制される。 According to the present invention, a decrease in productivity in the mine is suppressed.
図1は、実施形態1に係る作業機械の管理システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a work machine management system according to the first embodiment. 図2は、実施形態1に係るダンプトラックの制御ブロック図である。FIG. 2 is a control block diagram of the dump truck according to the first embodiment. 図3は、実施形態1に係るダンプトラックのハードウエア構成図である。FIG. 3 is a hardware configuration diagram of the dump truck according to the first embodiment. 図4は、実施形態1に係るダンプトラックの障害物センサの正面図である。FIG. 4 is a front view of the obstacle sensor of the dump truck according to the first embodiment. 図5は、図4に示された障害物センサのレーザーセンサの検出範囲を示す平面図である。FIG. 5 is a plan view showing a detection range of the laser sensor of the obstacle sensor shown in FIG. 図6は、図4に示されたダンプトラックの障害物センサのレーザーセンサの検出範囲を示す側面図である。FIG. 6 is a side view showing a detection range of the laser sensor of the obstacle sensor of the dump truck shown in FIG. 図7は、実施形態1に係る作業機械の制御システムの走行コントローラが位置及び方位を特定する方法を説明する図である。FIG. 7 is a diagram illustrating a method in which the travel controller of the work machine control system according to the first embodiment specifies the position and the direction. 図8は、実施形態1に係る作業機械の制御システムの位置計測コントローラの照合航法演算部が位置及び方位を特定する方法を説明する図である。FIG. 8 is a diagram illustrating a method in which the collation navigation calculation unit of the position measurement controller of the work machine control system according to the first embodiment specifies the position and orientation. 図9は、実施形態1に係る作業機械の制御システムのマップ保存用データベースに記憶される地図情報の一部を示す図である。FIG. 9 is a diagram illustrating a part of map information stored in the map storage database of the work machine control system according to the first embodiment. 図10は、図9中のXIV部を拡大して示す図である。FIG. 10 is an enlarged view of the XIV part in FIG. 図11は、実施形態1に係る作業機械の制御システムのフローチャートの一例である。FIG. 11 is an example of a flowchart of the work machine control system according to the first embodiment. 図12は、図11のステップST4のフローチャートの一例である。FIG. 12 is an example of a flowchart of step ST4 in FIG. 図13は、図12のステップST42のフローチャートの一例である。FIG. 13 is an example of a flowchart of step ST42 in FIG. 図14は、図11のステップST6のフローチャートの一例である。FIG. 14 is an example of a flowchart of step ST6 in FIG. 図15は、図14のステップST64のフローチャートの一例である。FIG. 15 is an example of a flowchart of step ST64 in FIG. 図16は、実施形態1に係る作業機械の制御システムの照合航法演算部が検出した各位置及び方位の予想される検出結果の一例を示す図である。FIG. 16 is a diagram illustrating an example of an expected detection result of each position and orientation detected by the collation navigation calculation unit of the work machine control system according to the first embodiment. 図17は、実施形態1に係る作業機械の制御システムのレーザーセンサが現実に検出した検出結果の一例を示す図である。FIG. 17 is a diagram illustrating an example of a detection result actually detected by the laser sensor of the work machine control system according to the first embodiment. 図18は、実施形態1に係る作業機械の制御システムの位置計測コントローラの照合航法演算部が最も近い検出結果を算出した状態の一例を示す図である。FIG. 18 is a diagram illustrating an example of a state in which the matching navigation calculation unit of the position measurement controller of the work machine control system according to the first embodiment calculates the closest detection result. 図19は、実施形態2に係る作業機械の制御システムのフローチャートの一例である。FIG. 19 is an example of a flowchart of the work machine control system according to the second embodiment. 図20は、図19のステップST7のフローチャートの一例である。FIG. 20 is an example of a flowchart of step ST7 in FIG.
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
実施形態1.
<作業機械の管理システムの概要>
 図1は、実施形態1に係る作業機械の管理システムの一例を示す図である。
Embodiment 1. FIG.
<Overview of work machine management system>
FIG. 1 is a diagram illustrating an example of a work machine management system according to the first embodiment.
 作業機械の管理システム1(以下、管理システムと記す)は、作業機械の管理を行う。作業機械の管理は、作業機械の運行管理、作業機械の生産性の評価、作業機械のオペレータの操作技術の評価、作業機械の保全、及び作業機械の異常診断の少なくとも一つを含む。 Work machine management system 1 (hereinafter referred to as a management system) manages work machines. The work machine management includes at least one of work machine operation management, work machine productivity evaluation, work machine operator operation technique evaluation, work machine maintenance, and work machine abnormality diagnosis.
 作業機械とは、鉱山における各種作業に用いる機械類の総称である。作業機械は、ボーリング機械、掘削機械、積込機械、運搬機械、破砕機及び作業者が運転する車両の少なくとも一つを含む。掘削機械は、鉱山を掘削可能である。積込機械は、運搬機械に積荷を積み込み可能である。積込機械は、油圧ショベル、電気ショベル、及びホイールローダの少なくとも一つを含む。運搬機械は、鉱山において移動可能な移動体を含み、積荷を運搬可能である。運搬機械は、ダンプトラックを含む。積荷は、採掘により発生した土砂及び鉱石の少なくとも一方を含む。破砕機は、運搬機械から投入された排土を破砕する。 Work machine is a general term for machines used for various operations in a mine. The work machine includes at least one of a boring machine, an excavating machine, a loading machine, a transporting machine, a crusher, and a vehicle operated by an operator. The excavating machine can excavate the mine. The loading machine can load a load on the transport machine. The loading machine includes at least one of a hydraulic excavator, an electric excavator, and a wheel loader. The transport machine includes a movable body that can move in the mine, and can transport a load. The transport machine includes a dump truck. The load includes at least one of sediment and ore generated by mining. The crusher crushes the soil discharged from the transport machine.
 管理システム1により、鉱山を走行する作業機械である運搬機械が管理され、実施形態1においては、作業機械であるダンプトラック2が管理される例について説明する。ダンプトラック2は、鉱山で用いられる鉱山機械でもあり、図1及び図2に示すように、鉱山における積込場LPAと、排土場DPAと、積込場LPA及び排土場DPAの少なくとも一方に通じる搬送路HLと、搬送路HL同士が交差する交差点ISと、の少なくとも一部において稼働する。少なくとも一つの排土場DPAは、排土を破砕する破砕機CRが配置されることがある。鉱山は、積込場LPAの外側、排土場DPAの外側及び搬送路HLの外側の少なくとも一以上に土が積み上げられて構成された土手BKが設けられる。 The management system 1 manages a transport machine that is a work machine that travels in a mine, and in Embodiment 1, an example in which a dump truck 2 that is a work machine is managed will be described. The dump truck 2 is also a mining machine used in a mine. As shown in FIGS. 1 and 2, at least one of a loading site LPA, a dumping site DPA, a loading site LPA, and a dumping site DPA in the mine. It operates in at least a part of the conveyance path HL leading to and the intersection IS where the conveyance paths HL intersect each other. In at least one earth discharging site DPA, a crusher CR that crushes the earth discharged may be arranged. The mine is provided with a bank BK configured by stacking soil on at least one of the outside of the loading site LPA, the outside of the soil discharging site DPA, and the outside of the transport path HL.
 ダンプトラック2は、鉱山において移動可能な移動体である。ダンプトラック2は、積込場LPA、排土場DPA、搬送路HL、及び交差点ISの少なくとも一部を走行可能である。即ち、鉱山に設けられるダンプトラック2の走行経路RPは、積込場LPA、排土場DPA、搬送路HL、及び交差点ISの少なくとも一部を含む。鉱山は、走行経路RPの表面から上方に所定高さ以上突出した上方突出物VPが設けられる。実施形態1において、上方突出物VPは、走行経路RPの外側に設けられた土手BK、積込場LPAと排土場DPAと搬送路HLとの内の少なくとも一つに設置される人工物AF、及び、積込場LPAと排土場DPAと搬送路HLとの内の少なくとも一つに設置される壁WLにより構成されるが、標識や建物などの人工物や岩なども含まれる。所定高さは、ダンプトラック2が、自律走行する際に上方突出物VPを乗り越えることが望ましくない高さである。 The dump truck 2 is a movable body that can move in the mine. The dump truck 2 can travel at least a part of the loading site LPA, the earth discharging site DPA, the transport path HL, and the intersection IS. That is, the traveling route RP of the dump truck 2 provided in the mine includes at least a part of the loading site LPA, the earth discharging site DPA, the transport route HL, and the intersection IS. The mine is provided with an upward protrusion VP that protrudes upward from the surface of the travel route RP by a predetermined height or more. In the first embodiment, the upward projecting object VP is an artificial object AF installed on at least one of the bank BK, the loading field LPA, the dumping field DPA, and the conveyance path HL provided outside the travel route RP. , And a wall WL installed in at least one of the loading site LPA, the earth removal site DPA, and the transport path HL, including artificial objects such as signs and buildings, rocks, and the like. The predetermined height is a height that is undesirable for the dump truck 2 to get over the upward projecting object VP when autonomously traveling.
 ダンプトラック2は、積込場LPAにおいて、積荷を積み込まれる。ダンプトラック2は、排土場DPAにおいて、積荷を下ろす(排出する)。ダンプトラック2は、破砕機CRが設けられた排土場DPAにおいて、破砕機CR内に積荷である排土を投入する。ダンプトラック2は、鉱山の操業時には、通常、管理装置10からの指令信号により走行経路RPを自律走行する、所謂、無人ダンプトラックである。ダンプトラック2が、自律走行するとは、ダンプトラック2が作業者の操作により走行せずに管理装置10からの指令信号により走行することをいう。また、ダンプトラック2は、作業者(運転者)の操作により走行することも可能である。 The dump truck 2 is loaded with a load at the loading site LPA. The dump truck 2 lowers (discharges) the load at the dumping site DPA. The dump truck 2 inputs the discharged soil as a load into the crusher CR in the earth discharge site DPA provided with the crusher CR. The dump truck 2 is a so-called unmanned dump truck that normally travels autonomously on the travel route RP in response to a command signal from the management device 10 during operation of the mine. The dump truck 2 traveling autonomously means that the dump truck 2 travels by a command signal from the management device 10 without traveling by an operator's operation. Further, the dump truck 2 can also travel by the operation of an operator (driver).
 図1において、管理システム1は、鉱山に設置される管制施設7に配置された管理装置10と、通信システム9と、ダンプトラック2と、他の作業機械3と、を備えている。管理装置10は、鉱山の管制施設7に設置され、移動しない。また、管理装置10が移動可能でもよい。通信システム9は、管理装置10とダンプトラック2と他の作業機械3との間において無線通信により情報を伝達する。通信システム9は、管理装置10とダンプトラック2との間、管理装置10と他の作業機械3との間、及びダンプトラック2と他の作業機械3との間を、双方向に無線通信可能にする。実施形態1において、通信システム9は、信号(電波)を中継する中継器6を複数有する。 1, the management system 1 includes a management device 10 arranged in a control facility 7 installed in a mine, a communication system 9, a dump truck 2, and another work machine 3. The management device 10 is installed in the mine control facility 7 and does not move. Moreover, the management apparatus 10 may be movable. The communication system 9 transmits information by wireless communication among the management device 10, the dump truck 2, and the other work machines 3. The communication system 9 can bidirectionally wirelessly communicate between the management device 10 and the dump truck 2, between the management device 10 and another work machine 3, and between the dump truck 2 and another work machine 3. To. In the first embodiment, the communication system 9 includes a plurality of repeaters 6 that relay signals (radio waves).
 実施形態1において、ダンプトラック2の位置及び他の作業機械3の位置が、RTK-GNSS(Real Time Kinematic - Global Navigation Satellite System、GNSSは、全地球航法衛星システムをいう)を利用して検出される。全地球航法衛星システムの一例としては、GPS(Global Positioning System)が挙げられるが、これに限定されない。RTK-GNSSは、複数の測位衛星5を有する。RTK-GNSSは、緯度、経度、及び高度を規定する座標系(グローバル座標系)における位置を検出する。RTK-GNSSにより検出される位置は、緯度、経度、及び高度の座標データを含む。RTK-GNSSにより、鉱山におけるダンプトラック2の位置及び他の作業機械3の位置が検出される。RTK-GNSSにより検出される位置は、グローバル座標系において規定される絶対位置である。以下の説明においては、RTK-GNSSによって検出される位置を適宜、GPS位置、と称する。GPS位置は、絶対位置であり、緯度、経度、及び高度の座標データ(座標値)である。また、RTK-GNSSでは、測位衛星5の配置、電離層、対流圏、又は測位衛星5からの情報を受信するアンテナ周辺の地形の影響により測位の状態が変化する。この測位の状態には、例えば、Fix解(精度±1cmから2cm程度)、Float解(精度±10cmから数m程度)、Single解(精度±数m程度)、非測位(測位計算不能)等がある。 In the first embodiment, the position of the dump truck 2 and the position of the other work machine 3 are detected using RTK-GNSS (Real Time Kinematic-Global Navigation Satellite System, GNSS is a global navigation satellite system). The An example of the global navigation satellite system includes, but is not limited to, GPS (Global Positioning System). The RTK-GNSS has a plurality of positioning satellites 5. RTK-GNSS detects a position in a coordinate system (global coordinate system) that defines latitude, longitude, and altitude. The position detected by the RTK-GNSS includes latitude, longitude, and altitude coordinate data. The position of the dump truck 2 and the positions of other work machines 3 in the mine are detected by the RTK-GNSS. The position detected by RTK-GNSS is an absolute position defined in the global coordinate system. In the following description, the position detected by the RTK-GNSS is appropriately referred to as a GPS position. The GPS position is an absolute position, and is latitude, longitude, and altitude coordinate data (coordinate values). In RTK-GNSS, the positioning state changes due to the positioning satellite 5 arrangement, the ionosphere, the troposphere, or the topography around the antenna that receives information from the positioning satellite 5. The positioning state includes, for example, Fix solution (accuracy ± 1 cm to 2 cm), Float solution (accuracy ± 10 cm to several meters), Single solution (accuracy ± approximately several meters), non-positioning (positioning calculation impossible), etc. There is.
 また、管理システム1は、鉱山におけるダンプトラック2及び他の作業機械3の位置を、図1に示す互いに直交するX軸方向とY軸方向とで規定される座標(以下、X-Y座標と記す)により管理する。また、管理システム1は、ダンプトラック2及び他の作業機械3の方位を、北を零度とし、東を90度とし、南を180度とし、西を270度として管理する。ダンプトラック2及び他の作業機械3の方位は、ダンプトラック2及び他の作業機械3が前方に走行する際に、移動する方向である。なお、実施形態1において、Y軸方向が、北を示しているが、これに限定されない。 The management system 1 also determines the positions of the dump truck 2 and other work machines 3 in the mine according to coordinates defined by the X-axis direction and the Y-axis direction orthogonal to each other shown in FIG. To manage. In addition, the management system 1 manages the direction of the dump truck 2 and the other work machines 3 as 0 degrees north, 90 degrees east, 180 degrees south, and 270 degrees west. The direction of the dump truck 2 and the other work machine 3 is a direction in which the dump truck 2 and the other work machine 3 move when traveling forward. In the first embodiment, the Y-axis direction indicates north, but the present invention is not limited to this.
<管理装置>
 次に、管制施設7に配置される管理装置10について説明する。管理装置10は、ダンプトラック2の作業機械の制御システム30に鉱山に設けられる走行経路RPを指定する情報である走行経路情報を送信するものであり、図1に示すように、コンピュータ11と、表示装置16と、入力装置17と、無線通信装置18と、GPS基地局19と、を備えている。
<Management device>
Next, the management device 10 disposed in the control facility 7 will be described. The management device 10 transmits travel route information that is information for designating a travel route RP provided in the mine to the control system 30 of the work machine of the dump truck 2, and as shown in FIG. A display device 16, an input device 17, a wireless communication device 18, and a GPS base station 19 are provided.
 コンピュータ11は、処理装置12と、記憶装置13と、入出力部15とを備えている。表示装置16、入力装置17、無線通信装置18、及びGPS基地局19は、入出力部15を介して、コンピュータ11と接続される。入出力部15は、処理装置12と、表示装置16、入力装置17、無線通信装置18、及びGPS基地局19の少なくとも一つとの情報の入出力(インターフェース)に用いられる。 The computer 11 includes a processing device 12, a storage device 13, and an input / output unit 15. The display device 16, the input device 17, the wireless communication device 18, and the GPS base station 19 are connected to the computer 11 via the input / output unit 15. The input / output unit 15 is used for input / output (interface) of information between the processing device 12 and at least one of the display device 16, the input device 17, the wireless communication device 18, and the GPS base station 19.
 処理装置12は、ダンプトラック2の管理に関する各種の処理及び他の作業機械3の管理に関する各種の処理を実行する。処理装置12は、通信システム9を介して取得した、ダンプトラック2の位置に関する情報及び他の作業機械3の位置に関する情報を処理する。処理装置12は、ダンプトラック2の走行経路情報を生成する。記憶装置13は、処理装置12と接続される。記憶装置13は、ダンプトラック2の管理に関する各種の情報及び他の作業機械3の管理に関する各種の情報を記憶する。記憶装置13は、ダンプトラック2の位置、及び他の作業機械3の位置を記憶する。記憶装置13は、処理装置12に各種の処理を実行させるためのコンピュータプログラムを記憶する。 The processing device 12 executes various processes related to the management of the dump truck 2 and various processes related to the management of other work machines 3. The processing device 12 processes the information regarding the position of the dump truck 2 and the information regarding the position of the other work machine 3 acquired via the communication system 9. The processing device 12 generates travel route information of the dump truck 2. The storage device 13 is connected to the processing device 12. The storage device 13 stores various information related to management of the dump truck 2 and various information related to management of other work machines 3. The storage device 13 stores the position of the dump truck 2 and the position of the other work machine 3. The storage device 13 stores a computer program for causing the processing device 12 to execute various processes.
 表示装置16は、例えば、液晶ディスプレイのようなフラットパネルディスプレイを含む。表示装置16は、ダンプトラック2の位置に関する情報及び他の作業機械3の位置に関する情報を表示可能である。入力装置17は、キーボード、タッチパネル、及びマウスの少なくとも一つを含む。入力装置17は、処理装置12に操作信号を入力可能な操作部として機能する。 The display device 16 includes, for example, a flat panel display such as a liquid crystal display. The display device 16 can display information related to the position of the dump truck 2 and information related to the positions of other work machines 3. The input device 17 includes at least one of a keyboard, a touch panel, and a mouse. The input device 17 functions as an operation unit that can input an operation signal to the processing device 12.
 無線通信装置18は、管制施設7に配置される。無線通信装置18は、通信システム9の一部である。無線通信装置18は、入出力部15を介して、処理装置12と接続される。無線通信装置18は、アンテナ18Aを有する。無線通信装置18は、ダンプトラック2及び他の作業機械3の少なくとも一方から送信された情報を受信可能である。無線通信装置18で受信した情報は、処理装置12に出力され、記憶装置13に記憶(登録)される。無線通信装置18は、ダンプトラック2と他の作業機械3の少なくとも一つに情報を送信可能である。 The wireless communication device 18 is disposed in the control facility 7. The wireless communication device 18 is a part of the communication system 9. The wireless communication device 18 is connected to the processing device 12 via the input / output unit 15. The wireless communication device 18 has an antenna 18A. The wireless communication device 18 can receive information transmitted from at least one of the dump truck 2 and the other work machine 3. Information received by the wireless communication device 18 is output to the processing device 12 and stored (registered) in the storage device 13. The wireless communication device 18 can transmit information to at least one of the dump truck 2 and the other work machine 3.
 GPS基地局19は、管制施設7に配置される。GPS基地局19は、複数の測位衛星5からの情報を受信するアンテナ19Aと、アンテナ19Aに接続された送受信装置19Bと、を少なくとも備える。送受信装置19Bは、アンテナ19Aを介して測位衛星5からの情報を受信する受信機と、アンテナ19Cを介してダンプトラック2に情報を送信する送信機と、CPU(Central Processing Unit)のようなマイクロプロセッサを有する演算処理装置と、ROM(Read Only Memory)又はRAM(Random Access Memory)のようなメモリを有する記憶装置と、を少なくとも備える。送受信装置19Bは、アンテナ19Aが受信した情報からGPS基地局19のGPS位置を検出するとともに、ダンプトラック2のGPS位置を補正するための補正観測情報を生成する。GPS基地局19は、送受信装置19Bがアンテナ19Cを通して、ダンプトラック2及び他の作業機械3に補正観測情報を送信する。 The GPS base station 19 is disposed in the control facility 7. The GPS base station 19 includes at least an antenna 19A that receives information from a plurality of positioning satellites 5 and a transmission / reception device 19B connected to the antenna 19A. The transmitter / receiver 19B includes a receiver that receives information from the positioning satellite 5 via the antenna 19A, a transmitter that transmits information to the dump truck 2 via the antenna 19C, and a micro processor such as a CPU (Central Processing Unit). An arithmetic processing unit having a processor and a storage device having a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory) are provided. The transmitting / receiving device 19B detects the GPS position of the GPS base station 19 from the information received by the antenna 19A, and generates corrected observation information for correcting the GPS position of the dump truck 2. In the GPS base station 19, the transmission / reception device 19B transmits the corrected observation information to the dump truck 2 and the other work machine 3 through the antenna 19C.
 コンピュータ11は、通信用の入出力部15と、制御プログラムを実行するCPU(Central Processing Unit)と、制御プログラムを記憶するROM(Read Only Memory)と、CPUの作業領域として使用されるRAM(Random Access Memory)と、CPUにより情報が登録される不揮発性メモリとを少なくとも備える。処理装置12の機能は、CPUがROMに記憶された制御プログラムを読み込んでRAMの作業領域で実行することにより実現される。記憶装置13の機能は、ROMが制御プログラムを記憶することと、CPUにより情報が不揮発性メモリに登録されることにより実現される。不揮発性メモリは、フラッシュメモリ及びハードディスクドライブの少なくとも一つを含み、データベースを実現する。また、複数の処理回路が、連携して、処理装置12、及び記憶装置13の機能を実現してもよい。 The computer 11 includes a communication input / output unit 15, a CPU (Central Processing Unit) for executing a control program, a ROM (Read Only Memory) for storing the control program, and a RAM (Random) used as a work area of the CPU. Access Memory) and a nonvolatile memory in which information is registered by the CPU. The function of the processing device 12 is realized by the CPU reading a control program stored in the ROM and executing it in the work area of the RAM. The function of the storage device 13 is realized by storing a control program in the ROM and registering information in the nonvolatile memory by the CPU. The nonvolatile memory includes at least one of a flash memory and a hard disk drive, and realizes a database. A plurality of processing circuits may realize the functions of the processing device 12 and the storage device 13 in cooperation with each other.
<他の作業機械>
 次に、他の作業機械3について説明する。実施形態1において、他の作業機械3は、ダンプトラック2以外の作業機械であり、作業者の操作により駆動する。他の作業機械3は、CPU(Central Processing Unit)を含みかつ作業内容に関する各種の処理を実行する処理装置と、GPS位置を検出するGPS受信器と、管制施設7の無線通信装置18と情報を送受信する無線通信装置と、を少なくとも備える。他の作業機械3は、所定時間毎にGPS位置を無線通信装置が管制施設7の無線通信装置18に送信する。
<Other work machines>
Next, another work machine 3 will be described. In the first embodiment, the other work machine 3 is a work machine other than the dump truck 2 and is driven by an operator's operation. The other work machine 3 includes a processing device that includes a CPU (Central Processing Unit) and executes various processes related to work contents, a GPS receiver that detects a GPS position, and a wireless communication device 18 of the control facility 7. A wireless communication device for transmitting and receiving. In the other work machines 3, the radio communication device transmits the GPS position to the radio communication device 18 of the control facility 7 every predetermined time.
<ダンプトラック>
 次に、ダンプトラック2について説明する。図2は、実施形態1に係るダンプトラックの制御ブロック図である。図3は、実施形態1に係るダンプトラックのハードウエア構成図である。図4は、実施形態1に係るダンプトラックの障害物センサの正面図である。図5は、図4に示された障害物センサのレーザーセンサの検出範囲を示す平面図である。図6は、図4に示されたレーザーセンサの検出範囲を示す側面図である。
<Dump truck>
Next, the dump truck 2 will be described. FIG. 2 is a control block diagram of the dump truck according to the first embodiment. FIG. 3 is a hardware configuration diagram of the dump truck according to the first embodiment. FIG. 4 is a front view of the obstacle sensor of the dump truck according to the first embodiment. FIG. 5 is a plan view showing a detection range of the laser sensor of the obstacle sensor shown in FIG. FIG. 6 is a side view showing a detection range of the laser sensor shown in FIG.
 図3に示すように、ダンプトラック2は、車両本体21と、ベッセル22と、車輪23と、障害物センサ24と、作業機械の制御システム30と、を備える。車両本体21は、走行経路RPを走行するものである。車両本体21には、ディーゼルエンジンのような内燃機関2Eと、内燃機関2Eにより作動する発電機2Gと、発電機2Gで発生した電力により作動する電動機23Mと、が配置される。電動機23Mにより、車輪23のうち後輪23Rが駆動される。なお、内燃機関2Eの動力が、トルクコンバータを含むトランスミッションを介して後輪23Rに伝達されてもよい。また、車両本体21は、車輪23のうち前輪23Fを操舵する操舵装置2Sを備える。ベッセル22は、積込機械により積荷が積み込まれ、排出作業において持ち上げられて積荷を排出する。 As shown in FIG. 3, the dump truck 2 includes a vehicle main body 21, a vessel 22, wheels 23, an obstacle sensor 24, and a work machine control system 30. The vehicle body 21 travels on the travel route RP. The vehicle body 21 is provided with an internal combustion engine 2E such as a diesel engine, a generator 2G that is operated by the internal combustion engine 2E, and an electric motor 23M that is operated by electric power generated by the generator 2G. Of the wheels 23, the rear wheels 23R are driven by the electric motor 23M. Note that the power of the internal combustion engine 2E may be transmitted to the rear wheel 23R via a transmission including a torque converter. Further, the vehicle body 21 includes a steering device 2S that steers the front wheel 23F of the wheels 23. The vessel 22 is loaded with a load by a loading machine and is lifted in a discharge operation to discharge the load.
 障害物センサ24は、図4に示すように、車両本体21の前部の下部に配置される。障害物センサ24は、車両本体21の前方の障害物を非接触で検出する。実施形態1において、障害物センサ24は、図4に示すように、非接触センサである複数のレーダー24Aと、非接触センサであるレーザーセンサ24Bと、を備える。レーダー24Aは、ダンプトラック2の周囲の物体の位置を検出するものであり、電波を発射して、その電波を障害物に照射し、障害物により反射された電波を受信する。これにより、レーダー24Aは、レーダー24Aに対する障害物の方向及び距離を検出可能である。実施形態1において、レーダー24Aは、車両本体21の左右方向に間隔をあけて三つ設けられているが、これに限定されない。 The obstacle sensor 24 is disposed at the lower part of the front portion of the vehicle main body 21 as shown in FIG. The obstacle sensor 24 detects an obstacle in front of the vehicle body 21 in a non-contact manner. In the first embodiment, the obstacle sensor 24 includes a plurality of radars 24A that are non-contact sensors and a laser sensor 24B that is a non-contact sensor, as shown in FIG. The radar 24A detects the position of an object around the dump truck 2, emits a radio wave, irradiates the radio wave on an obstacle, and receives the radio wave reflected by the obstacle. Thereby, the radar 24A can detect the direction and distance of the obstacle with respect to the radar 24A. In the first embodiment, three radars 24 </ b> A are provided at intervals in the left-right direction of the vehicle body 21, but are not limited thereto.
 レーザーセンサ24Bは、ダンプトラック2の周囲の物体の位置を検出するものであり、レーザー光線を発射して、そのレーザー光線を物体である障害物に照射し、障害物により反射されたレーザー光線を受信する。これにより、レーザーセンサ24Bは、レーザーセンサ24Bに対する障害物の方向及び距離を検出可能である。レーザーセンサ24Bは、レーザー光線を発射し、反射されたレーザー光線を受信するために、レーザーセンサ24Bの分解能は、レーダー24Aの分解能よりも高分解能である。実施形態1において、レーザーセンサ24Bは、図4に示すように、車両本体21の左右方向に間隔をあけて二つ設けられているが、これに限定されない。 The laser sensor 24B detects the position of an object around the dump truck 2, emits a laser beam, irradiates the obstacle that is the object, and receives the laser beam reflected by the obstacle. Thereby, the laser sensor 24B can detect the direction and distance of the obstacle with respect to the laser sensor 24B. Since the laser sensor 24B emits a laser beam and receives the reflected laser beam, the resolution of the laser sensor 24B is higher than the resolution of the radar 24A. In the first embodiment, as shown in FIG. 4, two laser sensors 24 </ b> B are provided at intervals in the left-right direction of the vehicle main body 21, but are not limited thereto.
 レーザーセンサ24Bは、上下方向の方位が異なる四本のレーザー光線を発射しながらレーザー光線を左右に揺動させるとともに障害物により反射されたレーザー光線を受信する。実施形態1において、二つのレーザーセンサ24Bは、図5に示すように、車両本体21の平面視において、左右方向の中央でレーザー光線の照射範囲IAHが重なり、かつ各々左右にレーザー光線を揺動させるが、これに限定されない。また、実施形態1において、レーザーセンサ24Bは、図6に示すように、車両本体21の側面視において、車両本体21から水平方向よりも下方側に傾斜した方向を中心とする照射範囲IAV内にレーザー光線を照射するが、これに限定されない。 The laser sensor 24B oscillates the laser beam left and right while emitting four laser beams having different vertical directions, and receives the laser beam reflected by the obstacle. In the first embodiment, as shown in FIG. 5, the two laser sensors 24 </ b> B overlap the laser beam irradiation range IAH at the center in the left-right direction in the plan view of the vehicle body 21 and swing the laser beams to the left and right. However, the present invention is not limited to this. In the first embodiment, as shown in FIG. 6, the laser sensor 24 </ b> B is within an irradiation range IAV centered on a direction inclined downward from the vehicle body 21 relative to the horizontal direction in a side view of the vehicle body 21. Although the laser beam is irradiated, the present invention is not limited to this.
 また、レーダー24A及びレーザーセンサ24Bは、作業機械の制御システム30の第2通信線37に接続される。また、レーザーセンサ24Bは、作業機械の制御システム30の位置計測コントローラ33に接続される。 Further, the radar 24A and the laser sensor 24B are connected to the second communication line 37 of the work machine control system 30. Further, the laser sensor 24B is connected to the position measurement controller 33 of the control system 30 of the work machine.
<作業機械の制御システム>
 次に、作業機械の制御システムを説明する。図7は、実施形態1に係る作業機械の制御システムの走行コントローラが位置及び方位を特定する方法を説明する図である。図8は、実施形態1に係る作業機械の制御システムの位置計測コントローラの照合航法演算部が位置及び方位を特定する方法を説明する図である。図9は、実施形態1に係る作業機械の制御システムのマップ保存用データベースに記憶される地図情報の一部を示す図である。図10は、図9中のXIV部を拡大して示す図である。
<Work machine control system>
Next, a work machine control system will be described. FIG. 7 is a diagram illustrating a method in which the travel controller of the work machine control system according to the first embodiment specifies the position and the direction. FIG. 8 is a diagram illustrating a method in which the collation navigation calculation unit of the position measurement controller of the work machine control system according to the first embodiment specifies the position and orientation. FIG. 9 is a diagram illustrating a part of map information stored in the map storage database of the work machine control system according to the first embodiment. FIG. 10 is an enlarged view of the XIV part in FIG.
 作業機械の制御システム30は、ダンプトラック2に設置されて、ダンプトラック2を走行経路RPに従って自律走行させるシステムである。作業機械の制御システム30は、図3に示すように、ジャイロセンサ26と、速度センサ27と、GPS受信器31と、走行経路作成装置32と、位置計測コントローラ33と、走行コントローラ20と、レーザーセンサ24Bと、無線通信装置34と、マップ保存用データベース36を少なくとも備える。この他に、作業機械の制御システム30は、第1通信線35と、第2通信線37と、安全コントローラ40とを備える。 The work machine control system 30 is a system that is installed in the dump truck 2 and autonomously travels the dump truck 2 according to the travel route RP. As shown in FIG. 3, the work machine control system 30 includes a gyro sensor 26, a speed sensor 27, a GPS receiver 31, a travel route creation device 32, a position measurement controller 33, a travel controller 20, and a laser. At least a sensor 24B, a wireless communication device 34, and a map storage database 36 are provided. In addition, the work machine control system 30 includes a first communication line 35, a second communication line 37, and a safety controller 40.
 図3に示されるように、走行コントローラ20、走行経路作成装置32、位置計測コントローラ33、マップ保存用データベース36及び安全コントローラ40は、第1通信線35に接続される。これらは、第1通信線35を介して互いに通信して情報を送受信する。走行コントローラ20及び安全コントローラ40は、第2通信線37にも接続される。これらは、第2通信線37を介して互いに通信して情報を送受信する。実施形態1において、第1通信線35及び第2通信線37を用いた通信の規格は、ISO11898及びISO11519として標準化されたCAN(Controller Area Network)であるが、これに限定されない。 3, the travel controller 20, the travel route creation device 32, the position measurement controller 33, the map storage database 36 and the safety controller 40 are connected to the first communication line 35. These communicate with each other via the first communication line 35 to transmit and receive information. The travel controller 20 and the safety controller 40 are also connected to the second communication line 37. These communicate with each other via the second communication line 37 to transmit and receive information. In the first embodiment, the standard of communication using the first communication line 35 and the second communication line 37 is CAN (Controller Area Network) standardized as ISO 11898 and ISO 11519, but is not limited thereto.
 ジャイロセンサ26は、ダンプトラック2の方位(方位変化量)を検出する。ジャイロセンサ26は、走行コントローラ20と接続される。ジャイロセンサ26は、検出結果である検出信号を走行コントローラ20に出力する。走行コントローラ20は、ジャイロセンサ26の検出信号に基づいて、ダンプトラック2の方位(方位変化量)を求めることができる。 The gyro sensor 26 detects the direction (direction change amount) of the dump truck 2. The gyro sensor 26 is connected to the travel controller 20. The gyro sensor 26 outputs a detection signal as a detection result to the travel controller 20. The travel controller 20 can obtain the direction (direction change amount) of the dump truck 2 based on the detection signal of the gyro sensor 26.
 速度センサ27は、ダンプトラック2の走行速度を検出する。実施形態1において、速度センサ27は、車輪23の回転速度を検出して、ダンプトラック2の速度(走行速度)を検出する。速度センサ27は、走行コントローラ20と接続される。速度センサ27は、検出結果である検出信号を走行コントローラ20に出力する。走行コントローラ20は、速度センサ27の検出信号と、走行コントローラ20に内蔵されているタイマーからの時間情報とに基づいて、ダンプトラック2の移動距離を求めることができる。 The speed sensor 27 detects the traveling speed of the dump truck 2. In the first embodiment, the speed sensor 27 detects the rotational speed of the wheels 23 and detects the speed (traveling speed) of the dump truck 2. The speed sensor 27 is connected to the travel controller 20. The speed sensor 27 outputs a detection signal as a detection result to the travel controller 20. The travel controller 20 can determine the travel distance of the dump truck 2 based on the detection signal of the speed sensor 27 and the time information from the timer built in the travel controller 20.
 GPS受信器31は、GPSを用いてダンプトラック2の位置であるGPS位置を検出する位置検出手段である。GPS受信器31は、測位衛星5からの情報を受信するアンテナ31Aと、GPS基地局19からの補正観測情報を受信するアンテナ31Bと、が少なくとも接続される。アンテナ31Aは、測位衛星5から受信した情報に基づく信号をGPS受信器31に出力し、アンテナ31Bは、受信した補正観測情報に基づく信号をGPS受信器31に出力する。GPS受信器31は、測位衛星5からの情報と、GPS基地局19からの補正観測情報と、を用いて、アンテナ31Aの位置(GPS位置)を検出する。具体的には、GPS受信器31は、測位衛星5からの情報と、GPS基地局19からの補正観測情報と、を比較して、任意の測位衛星5までの距離を求め、更に、測位衛星5からの電波の位相を調べて、アンテナ31Aの位置(GPS位置)を検出する。実施形態1において、GPS受信器31は、RTK(Real Time Kinematic)-GNSSを用いるが、これに限定されない。 The GPS receiver 31 is position detecting means for detecting a GPS position that is the position of the dump truck 2 using GPS. The GPS receiver 31 is connected at least to an antenna 31A that receives information from the positioning satellite 5 and an antenna 31B that receives corrected observation information from the GPS base station 19. The antenna 31A outputs a signal based on the information received from the positioning satellite 5 to the GPS receiver 31, and the antenna 31B outputs a signal based on the received corrected observation information to the GPS receiver 31. The GPS receiver 31 detects the position (GPS position) of the antenna 31 </ b> A using information from the positioning satellite 5 and corrected observation information from the GPS base station 19. Specifically, the GPS receiver 31 compares the information from the positioning satellite 5 with the corrected observation information from the GPS base station 19, obtains the distance to the arbitrary positioning satellite 5, and further determines the positioning satellite. 5 is checked to detect the position (GPS position) of the antenna 31A. In the first embodiment, the GPS receiver 31 uses RTK (Real Time Kinematic) -GNSS, but is not limited thereto.
 GPS受信器31は、アンテナ31Aの位置(GPS位置)を検出することによって、ダンプトラック2の位置(GPS位置)を検出する。また、GPS受信器31は、アンテナ31Aの位置を検出する過程において、アンテナ31Aが情報を受信した測位衛星5の数などに基づいて、検出したGPS位置の精度を示すFix解、Float解、又はSingle解を検出する。GPS受信器31は、GPS位置を測位計算不能である場合に、非測位である信号を出力する。実施形態1において、Fix解のGPS位置の精度は、ダンプトラック2が自律走行を行うことができる精度であり、Float解、Single解のGPS位置の精度は、ダンプトラック2が自律走行を行うことができない精度であるが、これらに限定されない。このように、GPS受信器31は、検出したGPS位置の精度を示すFix解、Float解、又はSingle解を検出し、測位計算不能である場合に非測位である信号を走行経路作成装置32を介して走行コントローラ20及び位置計測コントローラ33に出力する。 The GPS receiver 31 detects the position (GPS position) of the dump truck 2 by detecting the position (GPS position) of the antenna 31A. In addition, the GPS receiver 31 detects, in the process of detecting the position of the antenna 31A, a Fix solution that indicates the accuracy of the detected GPS position based on the number of positioning satellites 5 that the antenna 31A has received information, a Float solution, or A single solution is detected. The GPS receiver 31 outputs a non-positioning signal when the GPS position cannot be calculated. In Embodiment 1, the accuracy of the GPS position of the Fix solution is an accuracy that allows the dump truck 2 to perform autonomous traveling, and the accuracy of the GPS position of the Float solution and the Single solution is that the dump truck 2 performs autonomous traveling. However, the accuracy is not limited thereto. In this way, the GPS receiver 31 detects a fix solution, a float solution, or a single solution indicating the accuracy of the detected GPS position, and if the positioning calculation is impossible, the GPS receiver 31 sends a signal that is non-positioning to the travel route creation device 32. To the travel controller 20 and the position measurement controller 33.
 走行経路作成装置32は、図2に示すように、管理装置10の処理装置12が生成した走行経路情報を記憶する経路位置記憶手段である経路位置記憶部32Aを備える。走行経路作成装置32は、アンテナ34Aが接続された無線通信装置34と接続している。無線通信装置34は、管理装置10及び自車両以外の作業機械4の少なくとも一つから送信された情報(指令信号を含む)を受信可能である。なお、自車両以外の作業機械4は、作業機械の制御システム30が設置されたダンプトラック2以外の作業機械4であり、ボーリング機械、掘削機械、積込機械、運搬機械、及び作業者が運転する車両を含む。即ち、自車両以外の作業機械4は、自車両以外のダンプトラック2を含む。 As shown in FIG. 2, the travel route creation device 32 includes a route position storage unit 32 </ b> A that is route position storage means for storing travel route information generated by the processing device 12 of the management device 10. The travel route creation device 32 is connected to the wireless communication device 34 to which the antenna 34A is connected. The wireless communication device 34 can receive information (including a command signal) transmitted from at least one of the management device 10 and the work machine 4 other than the host vehicle. The work machines 4 other than the host vehicle are work machines 4 other than the dump truck 2 in which the work machine control system 30 is installed, and are operated by a boring machine, an excavating machine, a loading machine, a transporting machine, and an operator. Including vehicles. That is, the work machine 4 other than the host vehicle includes the dump truck 2 other than the host vehicle.
 無線通信装置34は、管制施設7の無線通信装置18が送信した走行経路情報及び自車両以外の作業機械4の位置に関する情報を受信して、走行経路作成装置32及び位置計測コントローラ33に出力する。なお、走行経路情報及び自車両以外の作業機械4の位置に関する情報は、X-Y座標で示されている。走行経路作成装置32は、無線通信装置34から走行経路情報及び自車両以外の作業機械4の位置に関する情報を受信すると、経路位置記憶部32Aに記憶する。走行経路作成装置32は、無線通信装置34から走行経路情報及び自車両以外の作業機械4の位置に関する情報を受信すると、自車両であるダンプトラック2の位置及び方位を無線通信装置34を通して、管制施設7の無線通信装置18に送信する。また、走行経路作成装置32は、第1通信線35に接続している。 The wireless communication device 34 receives the travel route information transmitted by the wireless communication device 18 of the control facility 7 and the information related to the position of the work machine 4 other than the host vehicle, and outputs the information to the travel route creation device 32 and the position measurement controller 33. . The travel route information and information related to the position of the work machine 4 other than the host vehicle are indicated by XY coordinates. When the travel route creation device 32 receives the travel route information and information related to the position of the work machine 4 other than the host vehicle from the wireless communication device 34, the travel route creation device 32 stores the travel route information in the route position storage unit 32A. When the travel route creation device 32 receives the travel route information and the information related to the position of the work machine 4 other than the host vehicle from the wireless communication device 34, the travel route creation device 32 controls the position and direction of the dump truck 2 that is the host vehicle through the wireless communication device 34. It transmits to the radio communication device 18 of the facility 7. The travel route creation device 32 is connected to the first communication line 35.
 走行コントローラ20は、CPU(Central Processing Unit)と、制御プログラムを記憶するROM(Read Only Memory)と、CPUの作業領域として使用されるRAM(Random Access Memory)と、不揮発性メモリと、を少なくとも備えるコンピュータである。 The travel controller 20 includes at least a CPU (Central Processing Unit), a ROM (Read Only Memory) that stores a control program, a RAM (Random Access Memory) that is used as a work area of the CPU, and a nonvolatile memory. It is a computer.
 走行コントローラ20は、GPS受信器31が検出したGPS位置及び位置計測コントローラ33が検出したダンプトラック2の位置を受信する。走行コントローラ20は、GPS受信器31が検出したダンプトラック2のGPS位置、又は位置計測コントローラ33の照合航法演算部33Bが検出したダンプトラック2の位置に基づいて、走行経路RPに従ってダンプトラック2を自律走行させる走行制御手段である。 The traveling controller 20 receives the GPS position detected by the GPS receiver 31 and the position of the dump truck 2 detected by the position measurement controller 33. The travel controller 20 determines the dump truck 2 according to the travel route RP based on the GPS position of the dump truck 2 detected by the GPS receiver 31 or the position of the dump truck 2 detected by the collation navigation calculation unit 33B of the position measurement controller 33. It is a traveling control means for autonomously traveling.
 走行コントローラ20には、ダンプトラック2の位置以外にジャイロセンサ26の検出結果であるダンプトラック2の方位(方位変化量)を示す検出信号及び速度センサ27の検出結果であるダンプトラック2の走行速度を示す検出信号が入力する。実施形態1において、走行コントローラ20には、ダンプトラック2の方位(方位変化量)を示す検出信号及び速度センサ27の検出結果であるダンプトラック2の走行速度を示す検出信号が、T1毎に入力する。また、走行コントローラ20は、無線通信装置34、走行経路作成装置32及び第1通信線35を介して、GPS受信器31と接続している。走行コントローラ20には、GPS受信器31の検出結果であるGPS位置を示す検出信号が入力する。実施形態1において、GPS位置を示す検出信号が、走行コントローラ20にT1よりも長いT2毎に入力する。 In addition to the position of the dump truck 2, the travel controller 20 includes a detection signal indicating the direction (direction change amount) of the dump truck 2 as a detection result of the gyro sensor 26 and a travel speed of the dump truck 2 as a detection result of the speed sensor 27. A detection signal indicating is input. In the first embodiment, a detection signal indicating the direction (direction change amount) of the dump truck 2 and a detection signal indicating the traveling speed of the dump truck 2 as a detection result of the speed sensor 27 are input to the traveling controller 20 every T1. To do. The travel controller 20 is connected to the GPS receiver 31 via the wireless communication device 34, the travel route creation device 32, and the first communication line 35. A detection signal indicating a GPS position, which is a detection result of the GPS receiver 31, is input to the travel controller 20. In the first embodiment, a detection signal indicating the GPS position is input to the travel controller 20 every T2 longer than T1.
 走行コントローラ20は、GPS受信器31の検出結果であるGPS位置、速度センサ27の検出結果であるダンプトラック2の走行速度、及びジャイロセンサ26の検出結果であるダンプトラック2の方位(方位変化量)に基づいて、ダンプトラック2の位置及び方位を特定する。実施形態1において、走行コントローラ20は、図7に示すように、GPS受信器31の検出結果であるGPS位置、速度センサ27の検出結果であるダンプトラック2の走行速度、及びジャイロセンサ26の検出結果であるダンプトラック2の方位(方位変化量)をカルマンフィルタKF(Kalman Filter)により統合して、ダンプトラック2の位置及び方位を特定する。具体的には、走行コントローラ20は、GPS受信器31からGPS位置が入力した時点のGPS位置及びジャイロセンサ26の検出結果である方位を基に、タイマーからの時間情報により速度センサ27の検出結果である走行速度を積分して、位置及び方位を特定する。走行コントローラ20は、位置及び方位の検出前、検出中、検出後のいずれかにおいてGPS位置をX-Y座標の位置に変換する。 The travel controller 20 includes a GPS position as a detection result of the GPS receiver 31, a travel speed of the dump truck 2 as a detection result of the speed sensor 27, and a direction (direction change amount) of the dump truck 2 as a detection result of the gyro sensor 26. ) To specify the position and orientation of the dump truck 2. In the first embodiment, as illustrated in FIG. 7, the travel controller 20 detects the GPS position as a detection result of the GPS receiver 31, the travel speed of the dump truck 2 as a detection result of the speed sensor 27, and the detection of the gyro sensor 26. The direction (direction change amount) of the dump truck 2 as a result is integrated by a Kalman filter KF (Kalman Filter), and the position and direction of the dump truck 2 are specified. Specifically, the travel controller 20 detects the detection result of the speed sensor 27 based on the time information from the timer based on the GPS position when the GPS position is input from the GPS receiver 31 and the direction that is the detection result of the gyro sensor 26. The position and direction are specified by integrating the traveling speed. The travel controller 20 converts the GPS position into an XY coordinate position before, during, or after detection of the position and direction.
 走行コントローラ20は、ダンプトラック2の位置が走行経路情報に含まれる走行経路RPの位置と重なる、即ち、ダンプトラック2が走行経路RPに従って走行するように、ダンプトラック2のアクセル、図示しない制動装置及び操舵装置2Sの少なくとも1つを制御する。このような制御により、走行コントローラ20は、ダンプトラック2を走行経路RPに沿って走行させる。走行コントローラ20の機能は、CPUがROMに記憶された制御プログラムを読み込んでRAMの作業領域で実行することにより実現される。また、複数の処理回路が、連携して、走行コントローラ20の機能を実現してもよい。 The travel controller 20 includes an accelerator of the dump truck 2 and a braking device (not shown) so that the position of the dump truck 2 overlaps with the position of the travel path RP included in the travel path information, that is, the dump truck 2 travels according to the travel path RP. And at least one of the steering devices 2S. By such control, the travel controller 20 causes the dump truck 2 to travel along the travel route RP. The function of the travel controller 20 is realized by the CPU reading a control program stored in the ROM and executing it in the work area of the RAM. A plurality of processing circuits may realize the function of travel controller 20 in cooperation.
 位置計測コントローラ33は、図2に示すように、判定部33Aと、照合航法演算部33Bと、グリッドマップ作成部33Cと、を備える。位置計測コントローラ33は、ダンプトラック2が走行経路RPに従って走行する際に、GPS受信器31の検出結果であるダンプトラック2のGPS位置及びレーザーセンサ24Bの検出結果から上方突出物VP(実施形態1において、主に土手BK)の位置を検出し、検出した上方突出物VPの位置を走行経路RPの地図情報MIとしてマップ保存用データベース36に記憶する計測出力手段である。位置計測コントローラ33は、第1通信線35に接続している。位置計測コントローラ33には、第1通信線35及び走行コントローラ20を介してジャイロセンサ26の検出結果であるダンプトラック2の方位(方位変化量)を示す検出信号及び速度センサ27の検出結果であるダンプトラック2の走行速度を示す検出信号が入力する。 As shown in FIG. 2, the position measurement controller 33 includes a determination unit 33A, a collation navigation calculation unit 33B, and a grid map creation unit 33C. When the dump truck 2 travels according to the travel route RP, the position measurement controller 33 detects the upward projecting object VP (Embodiment 1) from the GPS position of the dump truck 2 that is the detection result of the GPS receiver 31 and the detection result of the laser sensor 24B. In FIG. 5, the position of the bank BK) is mainly detected, and the detected position of the upward protrusion VP is stored in the map storage database 36 as the map information MI of the travel route RP. The position measurement controller 33 is connected to the first communication line 35. The position measurement controller 33 includes a detection signal indicating the direction (direction change amount) of the dump truck 2 as a detection result of the gyro sensor 26 and a detection result of the speed sensor 27 via the first communication line 35 and the travel controller 20. A detection signal indicating the traveling speed of the dump truck 2 is input.
 また、位置計測コントローラ33は、無線通信装置34、走行経路作成装置32及び第1通信線35を介して、GPS受信器31と接続している。位置計測コントローラ33には、GPS受信器31の検出結果であるGPS位置を示す検出信号が入力する。 The position measurement controller 33 is connected to the GPS receiver 31 via the wireless communication device 34, the travel route creation device 32, and the first communication line 35. The position measurement controller 33 receives a detection signal indicating a GPS position, which is a detection result of the GPS receiver 31.
 判定部33Aは、GPS受信器31が検出したGPS位置の誤差が所定の誤差以下であるか否かを判定する判定手段である。実施形態1において、判定部33Aは、GPS位置の解がFix解であるか否かを判定し、GPS位置の解がFix解であると、検出したダンプトラック2のGPS位置の精度が高精度でありかつGPS位置の誤差が所定の誤差以下であると判定する。判定部33Aは、GPS位置の解がFloat解である場合、Single解である場合、又はGPS位置が非測位である場合に、検出したダンプトラック2のGPS位置の精度が低精度でありかつGPS位置の誤差が所定の誤差を超えていると判定する。なお、所定の誤差は、ダンプトラック2が、後述する推測航法により走行経路RPに従って自律走行することができるGPS位置の誤差(精度)である。実施形態1において、GPS受信器31がGPS位置及び解の検出を行うが、解の検出を他の機器(例えば、判定部33A)が行ってもよい。 The determination unit 33A is a determination unit that determines whether or not the GPS position error detected by the GPS receiver 31 is equal to or less than a predetermined error. In the first embodiment, the determination unit 33A determines whether or not the GPS position solution is a Fix solution. If the GPS position solution is a Fix solution, the accuracy of the detected GPS position of the dump truck 2 is high. And the GPS position error is determined to be equal to or less than a predetermined error. When the GPS position solution is a float solution, the determination unit 33A is a single solution, or the GPS position is non-positioning, the accuracy of the detected GPS position of the dump truck 2 is low and GPS It is determined that the position error exceeds a predetermined error. The predetermined error is an error (accuracy) of the GPS position at which the dump truck 2 can autonomously travel according to the travel route RP by dead reckoning navigation to be described later. In the first embodiment, the GPS receiver 31 detects the GPS position and the solution, but the solution may be detected by another device (for example, the determination unit 33A).
 グリッドマップ作成部33Cは、GPS受信器31が検出したダンプトラック2のGPS位置の誤差が所定の誤差以下であると判定部33Aが判定すると、ジャイロセンサ26の検出結果、速度センサ27の検出結果、及びレーザーセンサ24Bの検出結果に基づいて、積込場LPAの外側、排土場DPAの外側、搬送路HLの少なくとも一以上に設けられた上方突出物VPの位置を検出し、上方突出物VPの位置に関する情報を走行経路RPの地図情報MIとしてマップ保存用データベース36に記憶する。具体的には、グリッドマップ作成部33Cは、走行コントローラ20が検出したダンプトラック2の位置及び方位と、レーザーセンサ24Bの検出結果とを統合し、統合した情報から上方突出物VP以外の検出結果を削除して、上方突出物VPの位置を検出する。また、グリッドマップ作成部33Cがマップ保存用データベース36に保存する地図情報MIは、図9及び図10に示すように、平面視において、鉱山を所定サイズの四角形(矩形又は正方形)で区切ったグリッドGRのX-Y座標の位置と、各グリッドGRに上方突出物VPが存在するか否かを示すものである。地図情報MIの各グリッドGRは、上方突出物VPが存在するか否か、即ち、0か1かの情報を含んでいる。実施形態1では、図9及び図10に示すように、地図情報MIの各グリッドGRは、上方突出物VPがあると1として図中に黒四角で示し、上方突出物VPがないと0として図中に白四角で示すが、これらに限定されない。 When the determination unit 33A determines that the error of the GPS position of the dump truck 2 detected by the GPS receiver 31 is equal to or less than a predetermined error, the grid map creation unit 33C detects the detection result of the gyro sensor 26 and the detection result of the speed sensor 27. Based on the detection results of the laser sensor 24B, the positions of the upper protrusions VP provided on at least one of the outside of the loading field LPA, the outside of the soil discharging field DPA, and the transport path HL are detected, Information regarding the position of the VP is stored in the map storage database 36 as map information MI of the travel route RP. Specifically, the grid map creation unit 33C integrates the position and orientation of the dump truck 2 detected by the travel controller 20 and the detection result of the laser sensor 24B, and the detection result other than the upward projecting object VP from the integrated information. And the position of the upward projecting object VP is detected. Further, the map information MI stored in the map storage database 36 by the grid map creation unit 33C is a grid obtained by dividing a mine by a square (rectangle or square) of a predetermined size in plan view, as shown in FIGS. It indicates the position of the XY coordinates of GR and whether or not the upward protrusion VP exists in each grid GR. Each grid GR of the map information MI includes information indicating whether or not the upward protrusion VP exists, that is, 0 or 1. In the first embodiment, as shown in FIG. 9 and FIG. 10, each grid GR of the map information MI is shown as a black square in the figure when there is an upward projecting object VP, and is 0 when there is no upward projecting object VP. Although shown by a white square in the figure, it is not limited to these.
 マップ保存用データベース36は、上方突出物VPの位置に関する情報を走行経路RPの地図情報MIとして記憶する地図情報記憶手段であり、第1通信線35に接続している。マップ保存用データベース36は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、及びハードディスクドライブの少なくとも一つにより構成される。マップ保存用データベース36は、GPS受信器31が検出したダンプトラック2のGPS位置の誤差が所定の誤差以下であると判定部33Aが判定すると、レーザーセンサ24Bの検出結果から上方突出物VPに関する検出結果を抜き出して、抜き出した上方突出物VPに関する検出結果を走行経路RPの地図情報MIとして記憶するものである。マップ保存用データベース36は、グリッドマップ作成部33Cが検出した検出結果を、グリッドマップ作成部33Cが検出する度に地図情報MIとして記憶する。実施形態1において、マップ保存用データベース36に記憶される地図情報MIは、グリッドマップ作成部33Cが検出する度に上書きされるが、これに限定されない。 The map storage database 36 is map information storage means for storing information on the position of the upward projecting object VP as map information MI of the travel route RP, and is connected to the first communication line 35. The map storage database 36 includes at least one of RAM (Random Access Memory), ROM (Read Only Memory), flash memory, and hard disk drive. When the determination unit 33A determines that the error in the GPS position of the dump truck 2 detected by the GPS receiver 31 is equal to or less than a predetermined error, the map storage database 36 detects the upward projecting object VP from the detection result of the laser sensor 24B. The result is extracted, and the detection result regarding the extracted upward projecting object VP is stored as the map information MI of the travel route RP. The map storage database 36 stores the detection result detected by the grid map creation unit 33C as map information MI every time the grid map creation unit 33C detects it. In the first embodiment, the map information MI stored in the map storage database 36 is overwritten every time the grid map creation unit 33C detects, but the present invention is not limited to this.
 照合航法演算部33Bは、GPS受信器31が検出したダンプトラック2のGPS位置の誤差が所定の誤差を超えていると判定部33Aが判定すると、レーザーセンサ24Bの検出結果、及びマップ保存用データベース36に記憶された地図情報MIに基づいて、ダンプトラック2の位置及び方位を特定する。照合航法演算部33Bは、図8に示すように、ジャイロセンサ26の検出結果、速度センサ27の検出結果、レーザーセンサ24Bの検出結果、及びマップ保存用データベース36に記憶された地図情報MIをパーティクルフィルタPF(Particle Filter)により統合して、ダンプトラック2の位置及び方位を特定する。実施形態1において、照合航法演算部33Bは、T1よりも長くかつT2よりも短いT3毎に位置及び方位を特定し、走行コントローラ20に出力する。実施形態1において、走行コントローラ20には、T3毎に照合航法演算部33Bが検出した位置及び方位が入力する。 When the determination unit 33A determines that the GPS position error of the dump truck 2 detected by the GPS receiver 31 exceeds a predetermined error, the verification navigation calculation unit 33B detects the detection result of the laser sensor 24B and the map storage database. Based on the map information MI stored in 36, the position and orientation of the dump truck 2 are specified. As shown in FIG. 8, the reference navigation calculation unit 33 </ b> B uses the detection result of the gyro sensor 26, the detection result of the speed sensor 27, the detection result of the laser sensor 24 </ b> B, and the map information MI stored in the map storage database 36 as particles. The position and orientation of the dump truck 2 are specified by integrating with a filter PF (Particle Filter). In the first embodiment, the collation navigation calculation unit 33B specifies the position and direction for each T3 longer than T1 and shorter than T2, and outputs the position and direction to the travel controller 20. In the first embodiment, the position and direction detected by the collation navigation calculation unit 33B are input to the travel controller 20 every T3.
 また、位置計測コントローラ33は、GPS受信器31又は照合航法演算部33Bが検出した自車両であるダンプトラック2の位置及び方位に関する情報を無線通信装置34を介して、管制施設7の無線通信装置18に送信する。 In addition, the position measurement controller 33 transmits information on the position and direction of the dump truck 2 that is the host vehicle detected by the GPS receiver 31 or the reference navigation calculation unit 33B via the wireless communication device 34 to the wireless communication device of the control facility 7. 18 to send.
 さらに、位置計測コントローラ33は、図2に示すように、観測点座標変換部38と、観測点利用可能判断部39とを備える。観測点座標変換部38は、レーザーセンサ24Bからの方向及び距離で規定された座標で示されたレーザーセンサ24Bの検出結果の位置を、X-Y座標に変換する。観測点座標変換部38により座標が変換された検出結果の位置は、X軸方向とY軸方向とに加え、これらの直交する高さ方向(Z軸方向)により規定されている。観測点利用可能判断部39には、経路位置記憶部32Aから自車両以外の作業機械4の位置に関する情報が入力される。観測点利用可能判断部39は、観測点座標変換部38により座標が変換された検出結果から各種のノイズ、地表から所定高さ以下の検出結果、及び自車両以外の作業機械4を検出したと予想される検出結果を除去する。観測点利用可能判断部39は、ノイズを除去したレーザーセンサ24Bの検出結果を、グリッドGRの検出結果に合成する。観測点利用可能判断部39は、合成した検出結果をグリッドマップ作成部33Cと、照合航法演算部33Bとの双方に出力する。 Furthermore, the position measurement controller 33 includes an observation point coordinate conversion unit 38 and an observation point availability determination unit 39 as shown in FIG. The observation point coordinate conversion unit 38 converts the position of the detection result of the laser sensor 24B indicated by coordinates defined by the direction and distance from the laser sensor 24B into XY coordinates. The position of the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 is defined by the orthogonal height direction (Z-axis direction) in addition to the X-axis direction and the Y-axis direction. Information relating to the position of the work machine 4 other than the host vehicle is input to the observation point availability determination unit 39 from the route position storage unit 32A. The observation point availability determination unit 39 detects various noises from the detection results obtained by converting the coordinates by the observation point coordinate conversion unit 38, detection results below a predetermined height from the ground surface, and the work machine 4 other than the host vehicle. Remove expected detection results. The observation point availability determination unit 39 combines the detection result of the laser sensor 24B from which noise has been removed with the detection result of the grid GR. The observation point availability determination unit 39 outputs the combined detection result to both the grid map creation unit 33C and the matching navigation calculation unit 33B.
 位置計測コントローラ33は、通信用の入出力と、制御プログラムを実行するCPU(Central Processing unit)と、制御プログラムを記憶するROM(Read Only Memory)と、CPUの作業領域として使用されるRAM(Random Access Memory)と、CPUにより情報が登録される不揮発性メモリとを少なくとも備えるコンピュータである。判定部33A、照合航法演算部33B、グリッドマップ作成部33C、観測点座標変換部38、及び観測点利用可能判断部39の機能は、CPUがROMに記憶された制御プログラムを読み込んでRAMの作業領域で実行することにより実現される。不揮発性メモリは、フラッシュメモリ及びハードディスクドライブの少なくとも一つを含む。また、複数の処理回路が、連携して、判定部33A、照合航法演算部33B、グリッドマップ作成部33C、観測点座標変換部38、及び観測点利用可能判断部39の機能を実現してもよい。 The position measurement controller 33 includes a communication input / output, a CPU (Central Processing unit) for executing a control program, a ROM (Read Only Memory) for storing the control program, and a RAM (Random) used as a work area of the CPU. (Access Memory) and a non-volatile memory in which information is registered by a CPU. The functions of the determination unit 33A, the collation navigation calculation unit 33B, the grid map creation unit 33C, the observation point coordinate conversion unit 38, and the observation point availability determination unit 39 are such that the CPU reads the control program stored in the ROM and operates the RAM. This is realized by executing in the area. The nonvolatile memory includes at least one of a flash memory and a hard disk drive. Further, even if a plurality of processing circuits cooperate to realize the functions of the determination unit 33A, the collation navigation calculation unit 33B, the grid map creation unit 33C, the observation point coordinate conversion unit 38, and the observation point availability determination unit 39. Good.
 安全コントローラ40は、レーダー24A及びレーザーセンサ24Bの検出信号に基づいて、ダンプトラック2と障害物との相対位置を求める。安全コントローラ40は、障害物との相対位置を用いて、アクセル、図示しない制動装置及び操舵装置2Sの少なくとも1つを制御するための指令を生成し、走行コントローラ20に出力する。走行コントローラ20は、安全コントローラ40から取得した指令に基づいてダンプトラック2を制御して、ダンプトラック2が障害物に衝突することを回避する。 The safety controller 40 obtains the relative position between the dump truck 2 and the obstacle based on the detection signals of the radar 24A and the laser sensor 24B. The safety controller 40 generates a command for controlling at least one of an accelerator, a braking device (not shown), and the steering device 2S using the relative position to the obstacle, and outputs the command to the traveling controller 20. The traveling controller 20 controls the dump truck 2 based on the command acquired from the safety controller 40 to avoid the dump truck 2 from colliding with an obstacle.
 また、走行コントローラ20は、GPS位置の解がFloat解である場合、Single解である場合、又はGPS位置が非測位であることが所定時間経過し、照合航法演算部33Bがマップ保存用データベース36に記憶された地図情報MIとの推定精度及び信頼度が所定値及び所定の信頼度よりも低いレーザーセンサ24Bの検出結果しか得られない場合に、車両本体21を停車させる図示しない制動装置を制御するための指令を出力する。 Further, the traveling controller 20 determines that the GPS position solution is a float solution, a single solution, or the GPS position is non-positioned for a predetermined time, and the reference navigation calculation unit 33B displays the map storage database 36. Control the brake device (not shown) for stopping the vehicle main body 21 when only the detection result of the laser sensor 24B having the estimated accuracy and the reliability with the map information MI stored in is lower than the predetermined value and the predetermined reliability can be obtained. Command to output.
<作業機械の制御方法>
 次に、実施形態1に係る作業機械の制御方法、即ち作業機械の制御システム30の動作の一例について説明する。図11は、実施形態1に係る作業機械の制御システムのフローチャートの一例である。図12は、図11のステップST4のフローチャートの一例である。図13は、図12のステップST42のフローチャートの一例である。図14は、図11のステップST6のフローチャートの一例である。図15は、図14のステップST64のフローチャートの一例である。図16は、実施形態1に係る作業機械の制御システムの照合航法演算部が検出した各位置及び方位の予想される検出結果の一例を示す図である。図17は、実施形態1に係る作業機械の制御システムのレーザーセンサが現実に検出した検出結果の一例を示す図である。図18は、実施形態1に係る作業機械の制御システムの位置計測コントローラの照合航法演算部が最も近い検出結果を算出した状態の一例を示す図である。
<Control method of work machine>
Next, an example of an operation of the work machine control method according to the first embodiment, that is, an operation of the work machine control system 30 will be described. FIG. 11 is an example of a flowchart of the work machine control system according to the first embodiment. FIG. 12 is an example of a flowchart of step ST4 in FIG. FIG. 13 is an example of a flowchart of step ST42 in FIG. FIG. 14 is an example of a flowchart of step ST6 in FIG. FIG. 15 is an example of a flowchart of step ST64 in FIG. FIG. 16 is a diagram illustrating an example of an expected detection result of each position and orientation detected by the collation navigation calculation unit of the work machine control system according to the first embodiment. FIG. 17 is a diagram illustrating an example of a detection result actually detected by the laser sensor of the work machine control system according to the first embodiment. FIG. 18 is a diagram illustrating an example of a state in which the matching navigation calculation unit of the position measurement controller of the work machine control system according to the first embodiment calculates the closest detection result.
 作業機械の制御方法は、走行経路RPを走行するダンプトラック2の作業機械の制御方法である。作業機械の制御方法において、処理装置12は、無線通信装置18を介して、ダンプトラック2の走行経路作成装置32及び位置計測コントローラ33に指令信号を送信する。指令信号は、ダンプトラック2の走行条件に関する情報及び自車両以外の作業機械4の位置に関する情報を含む。走行条件に関する情報は、処理装置12で生成された走行経路情報、及びダンプトラック2の走行速度に関する情報を含む。 The work machine control method is a control method of the work machine of the dump truck 2 traveling on the travel route RP. In the work machine control method, the processing device 12 transmits a command signal to the travel route creation device 32 and the position measurement controller 33 of the dump truck 2 via the wireless communication device 18. The command signal includes information related to the traveling condition of the dump truck 2 and information related to the position of the work machine 4 other than the host vehicle. The information regarding the traveling condition includes the traveling route information generated by the processing device 12 and the information regarding the traveling speed of the dump truck 2.
 走行経路作成装置32は、通信システム9を介して送信された処理装置12からの指令信号のうち走行経路情報及び自車両以外の作業機械4の位置に関する情報を経路位置記憶部32Aに記憶する。位置計測コントローラ33は、走行経路作成装置32が走行経路情報を含む処理装置12からの指令信号を受信すると、無線通信装置34を介して、自車両であるダンプトラック2の位置及び方位に関する情報を処理装置12に送信する。走行コントローラ20は、処理装置12からの指令信号に基づいて、ダンプトラック2のアクセル、図示しない制動装置及び操舵装置2Sを制御して、ダンプトラック2の走行を制御する。 The travel route creation device 32 stores travel route information and information on the position of the work machine 4 other than the host vehicle in the route position storage unit 32 </ b> A among the command signals from the processing device 12 transmitted via the communication system 9. When the travel route creation device 32 receives a command signal from the processing device 12 including travel route information, the position measurement controller 33 receives information on the position and direction of the dump truck 2 that is the host vehicle via the wireless communication device 34. It transmits to the processing device 12. The travel controller 20 controls the travel of the dump truck 2 by controlling the accelerator of the dump truck 2, the braking device (not shown), and the steering device 2S based on the command signal from the processing device 12.
 作業機械の制御システム30の走行コントローラ20は、GPS受信器31が検出したダンプトラック2のGPS位置に基づいて、走行経路RPに従ってダンプトラック2を推測航法により走行させるステップST1を実行する。実施形態1において、走行コントローラ20は、管理装置10の処理装置12により生成された走行経路情報、及び処理装置12で設定された走行速度(目標走行速度)を含む走行条件に従って、ダンプトラック2を積込場LPA、排土場DPA、搬送路HL、及び交差点ISの少なくとも一部で走行させる。推測航法とは、既知の位置からの方位(方位変化量)と移動距離とに基づいて、対象物(ダンプトラック2)の現在位置を推測する航法をいう。ダンプトラック2の方位(方位変化量)は、ダンプトラック2に配置されたジャイロセンサ26を用いて検出される。ダンプトラック2の移動距離は、ダンプトラック2に配置された速度センサ27を用いて検出される。ジャイロセンサ26の検出信号及び速度センサ27の検出信号は、ダンプトラック2の走行コントローラ20に出力される。 The traveling controller 20 of the work machine control system 30 executes step ST1 of traveling the dump truck 2 by dead reckoning according to the traveling route RP based on the GPS position of the dump truck 2 detected by the GPS receiver 31. In the first embodiment, the travel controller 20 sets the dump truck 2 according to the travel conditions including the travel route information generated by the processing device 12 of the management device 10 and the travel speed (target travel speed) set by the processing device 12. It is made to drive | work at least one part of the loading place LPA, the earth removal place DPA, the conveyance path HL, and the intersection IS. Dead reckoning refers to navigation in which the current position of the object (dump truck 2) is estimated based on the azimuth (azimuth change amount) from a known position and the moving distance. The azimuth (azimuth change amount) of the dump truck 2 is detected by using a gyro sensor 26 disposed on the dump truck 2. The moving distance of the dump truck 2 is detected using a speed sensor 27 arranged on the dump truck 2. The detection signal of the gyro sensor 26 and the detection signal of the speed sensor 27 are output to the travel controller 20 of the dump truck 2.
 走行コントローラ20は、ジャイロセンサ26からの検出信号に基づいて、既知の起点からのダンプトラック2の方位(方位変化量)を求めることができる。走行コントローラ20は、速度センサ27からの検出信号に基づいて、既知の起点からのダンプトラック2の移動距離を求めることができる。走行コントローラ20は、ジャイロセンサ26からの検出信号及び速度センサ27からの検出信号に基づいて、ダンプトラック2が生成された走行経路RPに従って走行するように、ダンプトラック2の走行に関する制御量を生成する。制御量は、アクセル信号、制動信号、及び操舵信号を含む。走行コントローラ20は、操舵信号、アクセル信号及び制動信号に基づいて、ダンプトラック2の走行(操作)を制御する。 The traveling controller 20 can obtain the direction (direction change amount) of the dump truck 2 from a known starting point based on the detection signal from the gyro sensor 26. The travel controller 20 can determine the moving distance of the dump truck 2 from a known starting point based on the detection signal from the speed sensor 27. Based on the detection signal from the gyro sensor 26 and the detection signal from the speed sensor 27, the travel controller 20 generates a control amount related to the travel of the dump truck 2 so that the dump truck 2 travels according to the generated travel route RP. To do. The control amount includes an accelerator signal, a braking signal, and a steering signal. The travel controller 20 controls the travel (operation) of the dump truck 2 based on the steering signal, the accelerator signal, and the braking signal.
 次に、推測航法により求められた推測位置がRTK-GNSS又は照合航法演算部33Bを使って補正されつつダンプトラック2が走行する例について説明する。ダンプトラック2の走行距離が長くなると、ジャイロセンサ26及び速度センサ27の一方又は両方の検出誤差の蓄積により、推測された位置(推測位置)と実際の位置との間に誤差が生じる可能性がある。その結果、ダンプトラック2は、処理装置12によって生成された走行経路RPから外れて走行してしまう可能性がある。実施形態1において、走行コントローラ20は、推測航法により導出(推測)されたダンプトラック2の位置(推測位置)を、GPS受信器31により検出されたGPS位置又は照合航法演算部33Bが検出した位置を使って補正しつつ、ダンプトラック2を走行させる。走行コントローラ20は、ジャイロセンサ26からの検出信号と、速度センサ27からの検出信号と、GPS受信器31からのGPS位置又は照合航法演算部33Bが検出した位置とに基づいて、ダンプトラック2が走行経路RPに従って走行するように、ダンプトラック2の位置を補正する補正量を含む、ダンプトラック2の走行に関する制御量を算出する。走行コントローラ20は、ダンプトラック2が走行経路RPに従って走行するように、算出した補正量及び制御量に基づいて、ダンプトラック2の走行(操作)を制御する。 Next, an example will be described in which the dump truck 2 travels while the estimated position obtained by dead reckoning is corrected using RTK-GNSS or collation navigation computing unit 33B. When the travel distance of the dump truck 2 is increased, an error may occur between the estimated position (estimated position) and the actual position due to accumulation of detection errors of one or both of the gyro sensor 26 and the speed sensor 27. is there. As a result, the dump truck 2 may travel off the travel route RP generated by the processing device 12. In the first embodiment, the travel controller 20 detects the position (estimated position) of the dump truck 2 derived (estimated) by dead reckoning, the GPS position detected by the GPS receiver 31, or the position detected by the collation navigation calculation unit 33B. The dump truck 2 is made to travel while correcting using the. Based on the detection signal from the gyro sensor 26, the detection signal from the speed sensor 27, and the GPS position from the GPS receiver 31 or the position detected by the collation navigation calculation unit 33B, the traveling controller 20 A control amount related to the traveling of the dump truck 2 including a correction amount for correcting the position of the dump truck 2 is calculated so as to travel according to the traveling route RP. The travel controller 20 controls the travel (operation) of the dump truck 2 based on the calculated correction amount and control amount so that the dump truck 2 travels according to the travel route RP.
 次に、位置計測コントローラ33の判定部33Aは、GPS受信器31が検出したダンプトラック2のGPS位置の誤差が所定の誤差以下であるか否かを判定するステップST2を実行する。即ち、ステップST2において、位置計測コントローラ33の判定部33Aは、GPS受信器31が検出したダンプトラック2のGPS位置の精度が高精度であるか否かを判定する。具体的には、位置計測コントローラ33の判定部33Aは、GPS受信器31が検出したGPS位置の解がFix解であるか否かを判定する。位置計測コントローラ33の判定部33Aは、GPS受信器31が検出したGPS位置の解がFix解であると判定する、即ち、GPS受信器31が検出したダンプトラック2のGPS位置の誤差が所定の誤差以下であると判定する(ステップST2:Yes)と、ダンプトラック2の状態が地図情報MIの精度を低下させる状態であるか否か、即ち、グリットマップ作成部33Cが検出した上方突出物VPの位置に関する情報がマップ保存用データベース36に記憶された地図情報MIの精度を低下させるか否かを判定する(ステップST3)。具体的には、実施形態1において、位置計測コントローラ33の判定部33Aは、速度センサ27の検出信号に基づいてダンプトラック2の走行速度が零であるか否か、即ち、ダンプトラック2の状態が地図情報MIの精度を低下させる状態であるダンプトラック2が停車しているか否かを判定する。走行速度が零であるダンプトラック2の停車中の場合、自車両以外の作業機械4の稼働などにより発生する埃などにより、地図情報MIにノイズが混入して、地図情報MIの精度が低下するかもしれないためである。 Next, the determination unit 33A of the position measurement controller 33 executes step ST2 for determining whether or not the GPS position error of the dump truck 2 detected by the GPS receiver 31 is equal to or less than a predetermined error. That is, in step ST2, the determination unit 33A of the position measurement controller 33 determines whether or not the accuracy of the GPS position of the dump truck 2 detected by the GPS receiver 31 is high. Specifically, the determination unit 33A of the position measurement controller 33 determines whether the GPS position solution detected by the GPS receiver 31 is a Fix solution. The determination unit 33A of the position measurement controller 33 determines that the solution of the GPS position detected by the GPS receiver 31 is a Fix solution, that is, the error of the GPS position of the dump truck 2 detected by the GPS receiver 31 is a predetermined value. If it is determined that the error is equal to or less than the error (step ST2: Yes), whether or not the state of the dump truck 2 is a state that reduces the accuracy of the map information MI, that is, the upward projecting object VP detected by the grid map creation unit 33C. It is determined whether or not the information on the position of the map information MI stored in the map storage database 36 is reduced in accuracy (step ST3). Specifically, in the first embodiment, the determination unit 33A of the position measurement controller 33 determines whether or not the traveling speed of the dump truck 2 is zero based on the detection signal of the speed sensor 27, that is, the state of the dump truck 2 Determines whether or not the dump truck 2 that is in a state of reducing the accuracy of the map information MI is stopped. When the dump truck 2 whose traveling speed is zero is stopped, noise is mixed into the map information MI due to dust generated by the operation of the work machine 4 other than the host vehicle, and the accuracy of the map information MI is lowered. Because it may be.
 位置計測コントローラ33の判定部33Aが、ダンプトラック2が停車していないと判定、即ち、ダンプトラック2の状態が地図情報MIの精度を低下させる状態ではないと判定する(ステップST3:No)と、グリッドマップ作成部33Cが、地図情報MIを作成する(ステップST4)。即ち、位置計測コントローラ33は、GPS受信器31が検出したGPS位置の誤差が所定の誤差以下であると判定すると、GPS受信器31が検出したダンプトラック2のGPS位置に基づいて経路位置記憶部32Aが記憶した走行経路RPに従ってダンプトラック2を自律走行させるとともに、レーザーセンサ24Bの検出結果から上方突出物VPに関する検出結果を抜き出して、抜き出した上方突出物VPに関する検出結果を走行経路RPの地図情報MIとしてマップ保存データベース36に記憶するステップST4を実行する。具体的には、まず、観測点座標変換部38は、レーザーセンサ24Bから方向及び距離で規定された座標で示されたレーザーセンサ24Bの検出結果の位置を、X-Y座標で示された座標の位置に変換する(ステップST41)。 When the determination unit 33A of the position measurement controller 33 determines that the dump truck 2 is not stopped, that is, determines that the state of the dump truck 2 is not in a state of reducing the accuracy of the map information MI (step ST3: No). The grid map creation unit 33C creates the map information MI (step ST4). That is, when the position measurement controller 33 determines that the GPS position error detected by the GPS receiver 31 is equal to or less than a predetermined error, the position measurement controller 33 based on the GPS position of the dump truck 2 detected by the GPS receiver 31. The dump truck 2 is autonomously driven in accordance with the travel route RP stored by 32A, and the detection result regarding the upward projecting object VP is extracted from the detection result of the laser sensor 24B, and the detection result regarding the extracted upward projecting object VP is displayed on the map of the travel route RP. Step ST4 stored in the map storage database 36 as information MI is executed. Specifically, first, the observation point coordinate conversion unit 38 indicates the position of the detection result of the laser sensor 24B indicated by the coordinates specified by the direction and the distance from the laser sensor 24B, in the coordinates indicated by the XY coordinates. (Step ST41).
 観測点利用可能判断部39は、観測点座標変換部38により座標が変換された検出結果から上方突出物VPに関する検出結果を抜き出す(ステップST42)。観測点利用可能判断部39は、上方突出物VPに関する検出結果を抜き出す際には、まず、観測点座標変換部38により座標が変換された検出結果の各種のノイズを除去する(ステップST421)。具体的には、観測点利用可能判断部39は、ノイズとして、反射強度の低い検出結果、レーザー光線が透明物体を通過したと思われる検出結果、レーザー光線が埃を検出したと思われる検出結果、地面によりレーザー光線が反射されたと思われる検出結果、及びレーザー光線が地面上の土の塊を検出したと思われる検出結果を、観測点座標変換部38により座標が変換された検出結果から除去する。 The observation point availability determination unit 39 extracts the detection result related to the upward projecting object VP from the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 (step ST42). When the observation point availability determination unit 39 extracts a detection result related to the upward projecting object VP, first, various noises in the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 are removed (step ST421). Specifically, the observation point availability determining unit 39 detects, as noise, a detection result with a low reflection intensity, a detection result that the laser beam is considered to have passed through the transparent object, a detection result that the laser beam is considered to detect dust, the ground The detection result that the laser beam seems to have been reflected by the above and the detection result that the laser beam seems to have detected a lump of soil on the ground are removed from the detection result whose coordinates have been converted by the observation point coordinate conversion unit 38.
 観測点利用可能判断部39は、観測点座標変換部38により座標が変換された検出結果から距離が所定の最大距離以上の検出結果、及び距離が所定の最少距離以下の検出結果を除去する(ステップST422)。実施形態1において、所定の最大距離は、太陽光によるノイズを除去するために必要な距離であり、所定の最少距離は、レーザーセンサ24Bから近距離で起こる濃い埃のノイズを除去するための距離である。 The observation point availability determination unit 39 removes the detection result whose distance is equal to or larger than the predetermined maximum distance and the detection result whose distance is equal to or smaller than the predetermined minimum distance from the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 ( Step ST422). In the first embodiment, the predetermined maximum distance is a distance necessary for removing noise caused by sunlight, and the predetermined minimum distance is a distance for removing dark dust noise that occurs at a short distance from the laser sensor 24B. It is.
 観測点利用可能判断部39は、観測点座標変換部38により座標が変換された検出結果から地表から所定高さ以下の検出結果を除去する(ステップST423)。実施形態1において、観測点利用可能判断部39は、前記所定高さ以下の検出結果を除去するが、これに限定されない。観測点利用可能判断部39は、経路位置記憶部32Aに記憶された自車両以外の作業機械4の位置に関する情報を参照して、観測点座標変換部38により座標が変換された検出結果から自車両以外の作業機械4を検出したと予想される検出結果を除去する(ステップST424)。このように、観測点利用可能判断部39は、検出結果から各種のノイズなどを除去することで、検出結果から上方突出物VPに関する検出結果を抜き出すこととなる。ステップST424の処理により、処理前のレーザーセンサ24Bの検出結果を5~6分の1程度に削減することができる。 The observation point availability determination unit 39 removes a detection result of a predetermined height or less from the ground surface from the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 (step ST423). In the first embodiment, the observation point availability determination unit 39 removes the detection result equal to or lower than the predetermined height, but is not limited thereto. The observation point availability determination unit 39 refers to the information on the position of the work machine 4 other than the host vehicle stored in the route position storage unit 32A, and automatically determines from the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38. The detection result that is expected to detect the work machine 4 other than the vehicle is removed (step ST424). In this way, the observation point availability determination unit 39 extracts the detection result related to the upward projecting object VP from the detection result by removing various noises and the like from the detection result. By the process in step ST424, the detection result of the laser sensor 24B before the process can be reduced to about 1/6.
 観測点利用可能判断部39は、各種のノイズなどが除去された検出結果を、X-Y座標で位置が示されかつ所定サイズのグリッドGRで構成される検出結果に合成する。観測点利用可能判断部39は、合成した検出結果をグリッドマップ作成部33Cと、照合航法演算部33Bとの双方に出力する。位置計測コントローラ33のグリッドマップ作成部33Cは、観測点利用可能判断部39が合成した検出結果である上方突出物VPの位置を走行経路RPの地図情報MIとしてマップ保存用データベース36に記憶する(ステップST43)。また、作業機械の制御システム30は、ステップST1からステップST4を実行することで、GPS受信器31が検出したダンプトラック2のGPS位置の誤差が所定の誤差以下であり、かつ、速度センサ27が、ダンプトラック2が停車していないことを検出している間、即ち、ダンプトラック2の状態が地図情報MIの精度を低下させる状態ではないと判定している間において、レーザーセンサ24Bの検出結果から上方突出物VPに関する検出結果を抜き出して、抜き出した上方突出物VPに関する検出結果を走行経路RPの地図情報MIとして記憶することを継続する。 The observation point availability determining unit 39 synthesizes the detection result from which various noises and the like are removed into a detection result whose position is indicated by an XY coordinate and is configured by a grid GR having a predetermined size. The observation point availability determination unit 39 outputs the combined detection result to both the grid map creation unit 33C and the matching navigation calculation unit 33B. The grid map creation unit 33C of the position measurement controller 33 stores the position of the upward projecting object VP, which is the detection result synthesized by the observation point availability determination unit 39, in the map storage database 36 as the map information MI of the travel route RP ( Step ST43). Further, the work machine control system 30 executes step ST1 to step ST4, so that the error of the GPS position of the dump truck 2 detected by the GPS receiver 31 is equal to or less than a predetermined error, and the speed sensor 27 is While detecting that the dump truck 2 has not stopped, that is, while determining that the state of the dump truck 2 is not in a state of reducing the accuracy of the map information MI, the detection result of the laser sensor 24B The detection result regarding the upward projecting object VP is extracted from the above, and the detection result regarding the extracted upward projecting object VP is continuously stored as the map information MI of the travel route RP.
 位置計測コントローラ33の判定部33Aが、ダンプトラック2が停車していると判定、即ち、ダンプトラック2の状態が地図情報MIの精度を低下させる状態であると判定する(ステップST3:Yes)と、地図情報MIの記憶を休止して(ステップST10)、ステップST1に戻る。このように、位置計測コントローラ33のROM333は、コンピュータである位置計測コントローラ33にステップST3とステップST4とステップST10とを実行させるプログラムを記憶している。作業機械の制御システム30は、判定部33Aがダンプトラック2の状態が地図情報MIの精度を低下させる状態であると判定すると(ステップST3:Yes)と、地図情報MIの記憶を休止して(ステップST10)、ステップST1に戻ることにより、マップ保存用データベース36は、速度センサ27が、ダンプトラック2が停車したことを検出した場合、即ち、ダンプトラック2の状態が地図情報MIの精度を低下させる状態であると判定した場合に、走行経路RPの地図情報MIの記憶を休止する。 When the determination unit 33A of the position measurement controller 33 determines that the dump truck 2 is stopped, that is, determines that the state of the dump truck 2 is a state that reduces the accuracy of the map information MI (step ST3: Yes). Then, the storage of the map information MI is paused (step ST10), and the process returns to step ST1. As described above, the ROM 333 of the position measurement controller 33 stores a program that causes the position measurement controller 33 that is a computer to execute step ST3, step ST4, and step ST10. When the determination unit 33A determines that the state of the dump truck 2 is in a state of reducing the accuracy of the map information MI (step ST3: Yes), the work machine control system 30 pauses the storage of the map information MI ( By returning to step ST10) and step ST1, when the speed sensor 27 detects that the dump truck 2 has stopped, that is, the state of the dump truck 2 reduces the accuracy of the map information MI. When it is determined that it is in a state to be performed, the storage of the map information MI of the travel route RP is suspended.
 また、位置計測コントローラ33の判定部33Aは、GPS受信器31が検出したGPS位置の解がFix解ではないと判定する、即ち、GPS受信器31が検出したダンプトラック2のGPS位置の誤差が所定の誤差を超えていると判定する(ステップST2:No)と、ダンプトラック2の状態が位置計測精度を低下させる状態であるか否か、即ち、照合航法演算部33Bが、レーザーセンサ24Bの検出結果及びマップ保存用データベース36に記憶された地図情報MIに基づいて、検出したダンプトラック2の位置及び方位の計測精度を低下させる状態であるか否かを判定する(ステップST5)。具体的には、実施形態1において、位置計測コントローラ33の判定部33Aは、速度センサ27の検出信号に基づいてダンプトラック2の走行速度が零であるか否か、即ち、ダンプトラック2の状態が位置計測精度を低下させる状態であるダンプトラック2が停車しているか否かを判定する。走行速度が零であるダンプトラック2の停車中の場合、自車両以外の作業機械4の稼働などにより発生する埃などによりレーザーセンサ24Bの検出結果にノイズが混入してしまい、照合航法演算部33Bの位置計測の精度が低下するかもしれないためである。また、走行速度が零であるダンプトラック2の停車中の場合、ダンプトラック2の位置が変化しないからである。 Further, the determination unit 33A of the position measurement controller 33 determines that the solution of the GPS position detected by the GPS receiver 31 is not the Fix solution, that is, the error of the GPS position of the dump truck 2 detected by the GPS receiver 31 is If it is determined that the predetermined error has been exceeded (step ST2: No), whether or not the state of the dump truck 2 is a state in which the position measurement accuracy is lowered, that is, the collation navigation calculation unit 33B determines whether the laser sensor 24B Based on the detection result and the map information MI stored in the map storage database 36, it is determined whether or not the detected measurement accuracy of the position and orientation of the dump truck 2 is lowered (step ST5). Specifically, in the first embodiment, the determination unit 33A of the position measurement controller 33 determines whether or not the traveling speed of the dump truck 2 is zero based on the detection signal of the speed sensor 27, that is, the state of the dump truck 2 Determines whether or not the dump truck 2 is in a state of lowering the position measurement accuracy. When the dump truck 2 whose traveling speed is zero is stopped, noise is mixed into the detection result of the laser sensor 24B due to dust generated by the operation of the work machine 4 other than the own vehicle, and the collation navigation calculation unit 33B. This is because the accuracy of position measurement may be reduced. Moreover, it is because the position of the dump truck 2 does not change when the dump truck 2 whose traveling speed is zero is stopped.
 位置計測コントローラ33の判定部33Aが、ダンプトラック2が停車していないと判定、即ち、ダンプトラック2の状態が位置計測精度を低下させる状態ではないと判定する(ステップST5:No)と、照合航法演算部33Bが、レーザーセンサ24Bの検出結果及びマップ保存用データベース36に記憶された地図情報MIに基づいて、ダンプトラック2の位置及び方位を特定して、走行コントローラ20が走行経路RPに従ってダンプトラック2を走行させる(ステップST6)。即ち、位置計測コントローラ33は、GPS受信器31が検出したGPS位置の誤差が所定の誤差を超えていると判定すると、レーザーセンサ24Bの検出結果とマップ保存用データベース36が記憶した地図情報MIとを照合することにより、ダンプトラック2の位置及び方位を特定する。 When the determination unit 33A of the position measurement controller 33 determines that the dump truck 2 is not stopped, that is, determines that the state of the dump truck 2 is not in a state of lowering the position measurement accuracy (step ST5: No), verification is performed. The navigation calculation unit 33B specifies the position and direction of the dump truck 2 based on the detection result of the laser sensor 24B and the map information MI stored in the map storage database 36, and the travel controller 20 performs dumping according to the travel route RP. The truck 2 is caused to travel (step ST6). That is, when the position measurement controller 33 determines that the GPS position error detected by the GPS receiver 31 exceeds a predetermined error, the position measurement controller 33 detects the detection result of the laser sensor 24B and the map information MI stored in the map storage database 36. To identify the position and orientation of the dump truck 2.
 具体的には、観測点座標変換部38は、レーザーセンサ24Bから方向及び距離で規定された座標で示されたレーザーセンサ24Bの検出結果の位置を、X-Y座標の位置に変換する(ステップST61)。観測点利用可能判断部39は、観測点座標変換部38により座標が変換された検出結果から上方突出物VPに関する検出結果を抜き出す(ステップST62)。なお、ステップST61は、ステップST41と同じ処理であり、ステップST62は、ステップST42と同じ処理であるので、詳細な説明を省略する。 Specifically, the observation point coordinate conversion unit 38 converts the position of the detection result of the laser sensor 24B indicated by the coordinates specified by the direction and distance from the laser sensor 24B into the position of the XY coordinates (step S1). ST61). The observation point availability determination unit 39 extracts the detection result related to the upward projecting object VP from the detection result obtained by converting the coordinates by the observation point coordinate conversion unit 38 (step ST62). Since step ST61 is the same process as step ST41, and step ST62 is the same process as step ST42, detailed description thereof will be omitted.
 照合航法演算部33Bは、観測点利用可能判断部39によりノイズが除去された検出結果をアイソレーションフィルタ(Isolation Filter)に通して、検出結果を間引きする(ステップST63)。具体的には、照合航法演算部33Bは、観測点利用可能判断部39によりノイズが除去された検出結果のうち互いに所定距離以上離れた検出結果のみ残し、他の検出結果を除去する。ステップST63の処理により、処理前のレーザーセンサ24Bの検出結果を5~6分の1程度に削減することができる。 The collation navigation calculation unit 33B passes the detection result from which the noise has been removed by the observation point availability determination unit 39 through an isolation filter, and thins out the detection result (step ST63). Specifically, the collation navigation calculation unit 33B leaves only detection results that are separated from each other by a predetermined distance among the detection results from which noise is removed by the observation point availability determination unit 39, and removes other detection results. By the process of step ST63, the detection result of the laser sensor 24B before the process can be reduced to about 1/6.
 照合航法演算部33Bは、ジャイロセンサ26の検出結果、速度センサ27の検出結果、レーザーセンサ24Bの検出結果、及びマップ保存用データベース36に記憶された地図情報MIをパーティクルフィルタPFにより統合して、ダンプトラック2の位置及び方位を特定する(ステップST64)。具体的には、照合航法演算部33Bは、ジャイロセンサ26の検出結果である方位及び速度センサ27の検出結果である走行速度を基に、ある時点でダンプトラック2が存在すると予想される範囲内の複数の位置及び方位を算出する(ステップST641)。 The collation navigation calculation unit 33B integrates the detection result of the gyro sensor 26, the detection result of the speed sensor 27, the detection result of the laser sensor 24B, and the map information MI stored in the map storage database 36 by the particle filter PF. The position and direction of the dump truck 2 are specified (step ST64). Specifically, the collation navigation calculation unit 33B is within a range where the dump truck 2 is expected to exist at a certain point in time based on the direction that is the detection result of the gyro sensor 26 and the traveling speed that is the detection result of the speed sensor 27. Are calculated (step ST641).
 照合航法演算部33Bは、図16に示すように、マップ保存用データベース36に保存された地図情報MIに基づいて、予想される各位置及び方位にダンプトラック2が位置する場合にレーザーセンサ24Bが検出すると予想される検出結果を推定する。照合航法演算部33Bは、図16に一例を示す各位置及び方位においてレーザーセンサ24Bが検出すると予想される検出結果DR1と、図17に示すレーザーセンサ24Bが現実に検出した検出結果DR2とを照合して、各位置及び方位においてレーザーセンサ24Bが検出すると予想される検出結果DR1のレーザーセンサ24Bが現実に検出した検出結果DR2に対する尤度を算出する。照合航法演算部33Bは、各位置及び方位の尤度を正規化する(ステップST642)。 As shown in FIG. 16, the reference navigation calculation unit 33 </ b> B is configured to detect the laser sensor 24 </ b> B when the dump truck 2 is located at each expected position and direction based on the map information MI stored in the map storage database 36. A detection result that is expected to be detected is estimated. The collation navigation calculation unit 33B collates the detection result DR1 that is expected to be detected by the laser sensor 24B at each position and orientation shown in FIG. 16 with the detection result DR2 that is actually detected by the laser sensor 24B shown in FIG. Then, the likelihood for the detection result DR2 actually detected by the laser sensor 24B of the detection result DR1 that is expected to be detected by the laser sensor 24B at each position and orientation is calculated. The reference navigation calculation unit 33B normalizes the likelihood of each position and direction (step ST642).
 照合航法演算部33Bは、各位置及び方位においてレーザーセンサ24Bが検出すると予想される検出結果DR1の尤度と各位置とから最終推定値を算出し、図18に示すようにレーザーセンサ24Bが検出すると予想される検出結果DR1がレーザーセンサ24Bが現実に検出した検出結果DR2に最も似る位置及び方位を算出する。照合航法演算部33Bは、最も似る位置及び方位をダンプトラック2の位置及び方位として検出する。照合航法演算部33Bは、最も似る位置及び方位を算出した際に、最も似る位置及び方位の推定精度、信頼度も算出する(ステップST643)。図16及び図18は、上方突出物VPが存在するグリッドGRを密な平行斜線で示し、図17は、上方突出物VPの検出結果を粗な平行斜線で示している。なお、図18は、レーザーセンサ24Bが現実に検出した検出結果DR2が、予想される検出結果DR1の一部分である例を示しているが、これに限定されない。 The collation navigation calculation unit 33B calculates the final estimated value from the likelihood of the detection result DR1 that the laser sensor 24B is expected to detect at each position and orientation and each position, and the laser sensor 24B detects the result as shown in FIG. Then, the expected detection result DR1 calculates the position and orientation most similar to the detection result DR2 actually detected by the laser sensor 24B. The collation navigation calculation unit 33B detects the most similar position and direction as the position and direction of the dump truck 2. When the matching navigation calculation unit 33B calculates the most similar position and orientation, it also calculates the estimation accuracy and reliability of the most similar position and orientation (step ST643). 16 and 18 show the grid GR in which the upward protrusion VP exists with dense parallel oblique lines, and FIG. 17 shows the detection result of the upward protrusion VP with rough parallel oblique lines. FIG. 18 shows an example in which the detection result DR2 actually detected by the laser sensor 24B is a part of the expected detection result DR1, but the present invention is not limited to this.
 照合航法演算部33Bは、検出したダンプトラック2の位置及び方位に各種の診断を施す(ステップST644)。具体的には、照合航法演算部33Bは、検出したダンプトラック2の位置及び方位が、レーザーセンサ24Bが故障中に検出された検出結果から検出されたもの、ジャイロセンサ26が故障中に検出された検出結果から検出されたもの、所定数よりも少ないレーザーセンサ24Bの検出結果から検出されたもの、信頼度が所定の信頼度よりも低い、尤度が所定値よりも低い、推定精度が所定値よりも低い、推測航法により位置及び方位とのズレが所定値よりも大きい、又は問題がある地図情報MIを用いて検出されたものに該当すると、検出したダンプトラック2の位置及び方位を破棄し、再度、ある時点でダンプトラック2が存在すると予想される範囲内の複数の位置及び方位を算出する(ステップST645)。算出した複数の位置及び方位は、ステップST6を次に実行される際に、ステップST641において算出される複数の位置及び方位として用いられる。 The collation navigation calculation unit 33B performs various diagnoses on the detected position and orientation of the dump truck 2 (step ST644). Specifically, the reference navigation calculation unit 33B detects the detected position and direction of the dump truck 2 from the detection result detected when the laser sensor 24B is out of order, and detects the gyro sensor 26 during the outage. Detected from the detection results, those detected from the detection results of laser sensors 24B less than a predetermined number, reliability is lower than a predetermined reliability, likelihood is lower than a predetermined value, and estimation accuracy is predetermined The position and direction of the detected dump truck 2 are discarded if the difference between the position and direction is lower than the value, the position and direction are larger than the predetermined value by dead reckoning navigation, or the problem is detected using the problematic map information MI. Then, a plurality of positions and orientations within a range where the dump truck 2 is expected to exist at a certain time are calculated again (step ST645). The calculated plurality of positions and orientations are used as the plurality of positions and orientations calculated in step ST641 when step ST6 is executed next.
 また、照合航法演算部33Bは、検出したダンプトラック2の位置及び方位が、レーザーセンサ24Bが故障中に検出された検出結果から検出されたもの、ジャイロセンサ26が故障中に検出された検出結果から検出されたもの、所定数よりも少ないレーザーセンサ24Bの検出結果から検出されたもの、信頼度が所定の信頼度よりも低い、尤度が所定値よりも低い、推定精度が所定値よりも低い、推測航法による位置及び方位とのズレが所定値よりも大きい、及び、問題がある地図情報MIを用いて検出されたものの全てに該当しないと、検出した位置及び方位を用いて推測航法(ステップST1)を実行し、位置計測コントローラ33がダンプトラック2が走行経路RPに従って走行するように、ダンプトラック2の走行(操作)を制御する。このように、作業機械の制御システム30は、ステップST1、ステップST2、ステップST5、及びステップST6を実行することで、GPS受信器31が検出したダンプトラック2のGPS位置の誤差が所定の誤差を超え、かつ、速度センサ27が、ダンプトラック2が停車していないことを検出している間、即ち、ダンプトラック2の状態が位置計測精度を低下させる状態ではないと判定している間において、レーザーセンサ24Bの検出結果とマップ保存用データベース36が記憶した走行経路RPの地図情報MIとを照合することによりダンプトラック2の位置及び方位を特定することを継続し、走行コントローラ20は、位置計測コントローラ33が検出したダンプトラック2の位置及び方位に基づいて、走行経路RPに従ってダンプトラック2を走行させる。 Further, the reference navigation calculation unit 33B detects the detected position and orientation of the dump truck 2 from the detection result detected when the laser sensor 24B is out of order, and the detection result detected when the gyro sensor 26 is out of order. Detected from the detection results of the laser sensors 24B less than the predetermined number, the reliability is lower than the predetermined reliability, the likelihood is lower than the predetermined value, and the estimation accuracy is lower than the predetermined value If the gap between the position and the direction by the dead reckoning navigation is larger than the predetermined value and does not correspond to all of those detected using the problematic map information MI, the dead reckoning navigation using the detected position and orientation ( Step ST1) is executed, and the position measurement controller 33 controls the travel (operation) of the dump truck 2 so that the dump truck 2 travels according to the travel route RP. To. In this way, the work machine control system 30 executes step ST1, step ST2, step ST5, and step ST6, whereby the error in the GPS position of the dump truck 2 detected by the GPS receiver 31 becomes a predetermined error. While the speed sensor 27 detects that the dump truck 2 is not stopped, that is, while the state of the dump truck 2 determines that the position measurement accuracy is not lowered. The travel controller 20 continues to specify the position and orientation of the dump truck 2 by collating the detection result of the laser sensor 24B with the map information MI of the travel route RP stored in the map storage database 36. Based on the position and direction of the dump truck 2 detected by the controller 33, the travel route RP is followed. To run the dump truck 2.
 位置計測コントローラ33の判定部33Aがダンプトラック2が停車していると判定、即ち、ダンプトラック2の状態が位置計測精度を低下させる状態であると判定する(ステップST5:Yes)と、ステップST1に戻る。判定部33Aがダンプトラック2の状態が位置計測精度を低下させる状態であると判定すると(ステップST5:Yes)と、ステップST1に戻ることにより、位置計測コントローラ33は、速度センサ27が、ダンプトラック2が停車したことを検出した場合、即ち、ダンプトラック2の状態が位置計測精度を低下させる状態であると判定した場合に、レーザーセンサ24Bの検出結果とマップ保存用データベース36が記憶した走行経路RPの地図情報MIとを照合することによりダンプトラック2の位置及び方位を特定することを休止する。 When the determination unit 33A of the position measurement controller 33 determines that the dump truck 2 is stopped, that is, determines that the state of the dump truck 2 is a state that decreases the position measurement accuracy (step ST5: Yes), step ST1. Return to. When the determination unit 33A determines that the state of the dump truck 2 is a state in which the position measurement accuracy is lowered (step ST5: Yes), the position measurement controller 33 causes the speed sensor 27 to return to the dump truck by returning to step ST1. 2 is detected, that is, when it is determined that the state of the dump truck 2 is a state in which the position measurement accuracy is deteriorated, the detection result of the laser sensor 24B and the travel route stored in the map storage database 36 The identification of the position and direction of the dump truck 2 is stopped by collating with the map information MI of the RP.
 実施形態1において、作業機械の制御システム30、作業機械の制御方法及び位置計測コントローラ33に記憶されたプログラムは、ダンプトラック2が走行経路RPに従って走行する際に、GPS受信器31の検出結果であるGPS位置及びレーザーセンサ24Bの検出結果から上方突出物VPの位置を検出し、検出した上方突出物VPの位置を地図情報MIとして、位置計測コントローラ33がマップ保存用データベース36に記憶する。その結果、作業機械の制御システム30は、GPSにより位置及び方位を特定することができない状況であっても、地図情報MI及びレーザーセンサ24Bの検出結果に基づいて自車両の位置及び方位を特定することにより走行経路RPに従って走行でき、ダンプトラック2の走行、即ち、鉱山の操業を継続して行うことができる。 In the first embodiment, the program stored in the work machine control system 30, the work machine control method, and the position measurement controller 33 is based on the detection result of the GPS receiver 31 when the dump truck 2 travels according to the travel route RP. The position of the upward projecting object VP is detected from a certain GPS position and the detection result of the laser sensor 24B, and the position measurement controller 33 stores the detected position of the upward projecting object VP as map information MI in the map storage database 36. As a result, the work machine control system 30 identifies the position and orientation of the host vehicle based on the map information MI and the detection result of the laser sensor 24B even in a situation where the position and orientation cannot be identified by GPS. Thus, the vehicle can travel along the travel route RP, and the traveling of the dump truck 2, that is, the operation of the mine can be continued.
 また、実施形態1において、作業機械の制御システム30、作業機械の制御方法及び位置計測コントローラ33に記憶されたプログラムは、ダンプトラック2の状態が地図情報MIの精度を低下させる状態であると判定される間において地図情報MIの記憶を休止するので、マップ保存用データベース36が記憶する地図情報MIにノイズが含まれることを抑制することができる。その結果、作業機械の制御システム30は、GPSにより位置及び方位を特定することができない状況であっても、ノイズの少ない地図情報MIに基づいて自車両の位置及び方位を特定できるので、ダンプトラック2の走行、即ち、鉱山の操業を継続して行うことができる。 In the first embodiment, the work machine control system 30, the work machine control method, and the program stored in the position measurement controller 33 determine that the state of the dump truck 2 is in a state of reducing the accuracy of the map information MI. During this time, the storage of the map information MI is suspended, so that the map information MI stored in the map storage database 36 can be prevented from including noise. As a result, the work machine control system 30 can identify the position and orientation of the host vehicle based on the map information MI with little noise even in a situation where the position and orientation cannot be identified by GPS. 2 traveling, that is, the operation of the mine can be continued.
 また、作業機械の制御システム30は、GPS受信器31が検出したGPS位置の解がFix解である時に、GPS位置等に基づいて走行経路RPに従ってダンプトラック2を自律走行させる。このために、作業機械の制御システム30は、GPS受信器31が検出したGPS位置の解がFix解である時に、走行経路RPに従って高精度にダンプトラック2を自律走行させることができ、鉱山の操業を継続して行うことができる。 Further, when the GPS position solution detected by the GPS receiver 31 is the Fix solution, the work machine control system 30 causes the dump truck 2 to autonomously travel according to the travel route RP based on the GPS position or the like. For this reason, the control system 30 of the work machine can autonomously travel the dump truck 2 with high accuracy according to the travel route RP when the solution of the GPS position detected by the GPS receiver 31 is the Fix solution. The operation can be continued.
 また、作業機械の制御システム30は、GPS受信器31が検出したGPS位置の解がFix解である時に、GPS位置等に基づいて走行経路RPに従ってダンプトラック2を自律走行させながら、レーザーセンサ24Bの検出結果に基づいて、上方突出物VPの位置で構成される地図情報MIを作成し、マップ保存用データベース36に記憶することとなる。その結果、地図情報MIの精度が向上し、作業機械の制御システム30は、GPSにより位置及び方位を特定することができない状況であっても、精度が向上した地図情報MI及びレーザーセンサ24Bの検出結果に基づいて走行経路RPに従って走行でき、ダンプトラック2の走行、即ち、鉱山の操業を継続して行うことができる。 In addition, when the GPS position solution detected by the GPS receiver 31 is a Fix solution, the work machine control system 30 allows the laser sensor 24B to autonomously travel the dump truck 2 according to the travel route RP based on the GPS position or the like. Based on the detection result, map information MI including the position of the upward projecting object VP is created and stored in the map storage database 36. As a result, the accuracy of the map information MI is improved, and the control system 30 of the work machine can detect the map information MI and the laser sensor 24B with improved accuracy even in a situation where the position and orientation cannot be specified by GPS. Based on the result, the vehicle can travel along the travel route RP, and the traveling of the dump truck 2, that is, the operation of the mine can be continued.
 実施形態1に係る作業機械の制御システム30は、GPS受信器31が検出したGPS位置の解がFix解ではない時に、レーザーセンサ24Bの検出結果と、マップ保存用データベース36に記憶された地図情報MIとを照合して、ダンプトラック2の位置及び方位を特定する。その結果、作業機械の制御システム30は、GPSにより位置及び方位を特定することができない状況であっても、レーダー24Aよりも高分解能なレーザーセンサ24Bの検出結果に基づいて位置及び方位を特定することができ、ダンプトラック2の走行、即ち、鉱山の操業を継続して行うことができる。 When the GPS position solution detected by the GPS receiver 31 is not a Fix solution, the work machine control system 30 according to the first embodiment detects the detection result of the laser sensor 24B and the map information stored in the map storage database 36. The position and orientation of the dump truck 2 are specified by collating with MI. As a result, the work machine control system 30 identifies the position and orientation based on the detection result of the laser sensor 24B having a higher resolution than the radar 24A even in a situation where the position and orientation cannot be identified by GPS. The dump truck 2 can be run, that is, the mine can be operated continuously.
 また、作業機械の制御システム30は、ダンプトラック2の状態が位置計測精度を低下させる状態であると判定される間においてレーザーセンサ24Bの検出結果とマップ保存用データベース36に記憶された地図情報MIとを照合して、ダンプトラック2の位置及び方位を特定することを休止する。その結果、作業機械の制御システム30は、例えば、停車中に不必要にダンプトラック2の位置及び方位が更新されてしまうことを抑制できる。 Further, the work machine control system 30 determines that the state of the dump truck 2 is a state in which the position measurement accuracy is lowered, and the map information MI stored in the map storage database 36 with the detection result of the laser sensor 24B. And the identification of the position and orientation of the dump truck 2 is paused. As a result, the work machine control system 30 can suppress, for example, unnecessary updating of the position and orientation of the dump truck 2 while the vehicle is stopped.
 また、実施形態1において、ダンプトラック2及び管理システム1は、前述した作業機械の制御システム30を備えるので、ダンプトラック2が走行経路RPに従って走行する際に、上方突出物VPの位置で構成される地図情報MIをマップ保存用データベース36に記憶するので、GPSにより位置及び方位を特定することができない状況であっても、地図情報MIを用いて自車両の位置及び方位を特定できるので、ダンプトラック2の走行、即ち、鉱山の操業を継続して行うことができる。 Further, in the first embodiment, the dump truck 2 and the management system 1 include the above-described work machine control system 30, and thus are configured at the position of the upward projecting object VP when the dump truck 2 travels according to the travel route RP. Since the map information MI is stored in the map storage database 36, even if the position and direction cannot be specified by GPS, the position and direction of the host vehicle can be specified using the map information MI. The traveling of the truck 2, that is, the operation of the mine can be continued.
 また、作業機械の制御システム30は、地図情報MIの各グリッドGRが上方突出物VPが存在するか否か即ち0か1かを示す情報により構成されているので、地図情報MI全体の情報量を抑制することができる。その結果、作業機械の制御システム30は、ダンプトラック2に設置される位置計測コントローラ33の限られた処理能力によってもリアルタイムでダンプトラック2の位置を特定することができ、GPSにより位置及び方位を特定することができない状況であっても、ダンプトラック2の走行、即ち、鉱山の操業を継続して行うことができる。 Further, the work machine control system 30 is configured by information indicating whether or not each grid GR of the map information MI has the upward projecting object VP, that is, 0 or 1, so that the information amount of the entire map information MI Can be suppressed. As a result, the work machine control system 30 can identify the position of the dump truck 2 in real time even by the limited processing capability of the position measurement controller 33 installed in the dump truck 2, and the position and direction can be determined by GPS. Even in a situation where it cannot be specified, traveling of the dump truck 2, that is, operation of the mine can be continued.
 作業機械の制御システム30は、観測点利用可能判断部39がレーザーセンサ24Bの検出結果から反射強度の低い検出結果、レーザー光線が透明物体を通過したと思われる検出結果、レーザー光線が埃を検出したと思われる検出結果、地面によりレーザー光線が反射されたと思われる検出結果及びレーザー光線が地面上の土の塊を検出したと思われる検出結果をノイズとして除去する。作業機械の制御システム30は、観測点利用可能判断部39がレーザーセンサ24Bの検出結果から、最大距離以上の検出結果、最少距離以下の検出結果、所定高さ以下の検出結果、及び自車両以外の作業機械4を検出したと予想される検出結果を除去する。その結果、作業機械の制御システム30は、マップ保存用データベース36に記憶する地図情報MI内の上方突出物VP以外の情報を抑制でき、ダンプトラック2に設置されるマップ保存用データベース36に記憶する情報量を抑制できるとともに、照合航法演算部33Bが正確にダンプトラック2の位置を特定することができる。 According to the work machine control system 30, the observation point availability determination unit 39 detects a detection result with a low reflection intensity from a detection result of the laser sensor 24B, a detection result that the laser beam seems to have passed through the transparent object, and a laser beam detects dust. The detection result, the detection result that the laser beam is supposed to be reflected by the ground, and the detection result that the laser beam is supposed to have detected a lump of soil on the ground are removed as noise. In the work machine control system 30, the observation point availability determination unit 39 detects from the detection result of the laser sensor 24B the detection result of the maximum distance or more, the detection result of the minimum distance or less, the detection result of the predetermined height or less, and other than the own vehicle. The detection result expected to have detected the work machine 4 is removed. As a result, the work machine control system 30 can suppress information other than the upward projecting object VP in the map information MI stored in the map storage database 36 and stores it in the map storage database 36 installed in the dump truck 2. The amount of information can be suppressed, and the collation navigation calculation unit 33B can accurately specify the position of the dump truck 2.
 また、作業機械の制御システム30は、照合航法演算部33Bが各種のノイズを除去されたレーザーセンサ24Bの検出結果をアイソレーションフィルタに通して更に検出結果を削減する。その結果、作業機械の制御システム30は、ダンプトラック2に設置される位置計測コントローラ33の限られた処理能力によってもリアルタイムでダンプトラック2の位置を特定することができ、GPSにより位置及び方位を特定することができない状況であっても、ダンプトラック2の走行、即ち、鉱山の操業を継続して行うことができる。 Also, in the work machine control system 30, the verification navigation calculation unit 33B passes the detection result of the laser sensor 24B from which various noises have been removed, through an isolation filter, and further reduces the detection result. As a result, the work machine control system 30 can identify the position of the dump truck 2 in real time even by the limited processing capability of the position measurement controller 33 installed in the dump truck 2, and the position and direction can be determined by GPS. Even in a situation where it cannot be specified, traveling of the dump truck 2, that is, operation of the mine can be continued.
 作業機械の制御システム30は、照合航法演算部33BがパーティクルフィルタPFにより検出されたダンプトラック2の位置及び方位に各種の診断を行うので、ダンプトラック2の位置及び方位を誤検出することを抑制することができる。その結果、作業機械の制御システム30は、GPSにより位置及び方位を特定することができない状況であっても、ダンプトラック2の走行、即ち、鉱山の操業を継続して行うことができる。 The work machine control system 30 suppresses erroneous detection of the position and orientation of the dump truck 2 because the verification navigation calculation unit 33B performs various diagnoses on the position and orientation of the dump truck 2 detected by the particle filter PF. can do. As a result, the work machine control system 30 can continue to run the dump truck 2, that is, the operation of the mine, even in a situation where the position and direction cannot be specified by GPS.
 また、作業機械の制御システム30は、GPS受信器31が検出したGPS位置の解がFix解である時に、レーザーセンサ24Bの検出結果に基づいて、構成される地図情報MIを作成し、記憶する。作業機械の制御システム30は、GPS受信器31が検出したGPS位置の解がFix解ではない時に、レーザーセンサ24Bの検出結果と、マップ保存用データベース36に記憶された地図情報MIとを照合して、ダンプトラック2の位置及び方位を特定する。このように、作業機械の制御システム30は、各ダンプトラック2が地図情報MIを作成し、GPS位置の誤差が所定の誤差を超えている時に、各ダンプトラック2が自ら作成した地図情報MIを用いて走行する。その結果、作業機械の制御システム30は、地図情報MIの各グリッドGRを上方突出物VPが存在するか否か即ち0か1かを示す情報により構成しても、各ダンプトラック2の固体差によりダンプトラック2間でレーザーセンサ24Bの検出結果に違いが生じても、自ら作成した地図情報MIを用いて、自車両の位置を精度よく検出できるので、GPSにより位置及び方位を特定することができない状況であっても、ダンプトラック2の走行、即ち、鉱山の操業を継続して行うことができる。 The work machine control system 30 creates and stores map information MI configured based on the detection result of the laser sensor 24B when the GPS position solution detected by the GPS receiver 31 is a Fix solution. . When the GPS position solution detected by the GPS receiver 31 is not the Fix solution, the work machine control system 30 collates the detection result of the laser sensor 24B with the map information MI stored in the map storage database 36. Thus, the position and direction of the dump truck 2 are specified. In this way, the work machine control system 30 creates the map information MI created by each dump truck 2 when each dump truck 2 creates the map information MI and the GPS position error exceeds a predetermined error. Use to drive. As a result, even if each grid GR of the map information MI is configured by information indicating whether or not the upward projecting object VP exists, that is, 0 or 1, the work machine control system 30 has the individual difference of each dump truck 2. Even if there is a difference in the detection results of the laser sensor 24B between the dump trucks 2, it is possible to accurately detect the position of the host vehicle using the map information MI created by itself. Even in a situation where it is impossible, the traveling of the dump truck 2, that is, the operation of the mine can be continued.
 実施形態2.
<作業機械の制御方法>
 次に、実施形態2に係る作業機械の制御方法、即ち作業機械の制御システム30の動作の一例について説明する。図19は、実施形態2に係る作業機械の制御システムのフローチャートの一例である。図20は、図19のステップST7のフローチャートの一例である。なお、図19及び図20において、実施形態1と同一部分には、同一符号を付して説明を省略する。実施形態2の作業機械の制御システム30は、実施形態1の作業機械の制御システム30と構成が等しい。
Embodiment 2. FIG.
<Control method of work machine>
Next, an example of the operation of the work machine control method according to the second embodiment, that is, the operation of the work machine control system 30 will be described. FIG. 19 is an example of a flowchart of the work machine control system according to the second embodiment. FIG. 20 is an example of a flowchart of step ST7 in FIG. 19 and 20, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The construction machine control system 30 according to the second embodiment has the same configuration as the construction machine control system 30 according to the first embodiment.
 実施形態2に係る作業機械の制御方法は、位置計測コントローラ33の判定部33Aが、ダンプトラック2が停車していないと判定する、即ち、ダンプトラック2の状態が地図情報MIの精度を低下させる状態ではないと判定する(ステップST3:No)と、グリッドマップ作成部33Cが、地図情報MIを作成する(ステップST4)とともに、照合航法演算部33Bが、レーザーセンサ24Bの検出結果及びマップ保存用データベース36に記憶された地図情報MIに基づいてダンプトラック2の位置及び方位を特定し、検出した位置及び方位の精度を確認する(ステップST7)。 In the work machine control method according to the second embodiment, the determination unit 33A of the position measurement controller 33 determines that the dump truck 2 is not stopped, that is, the state of the dump truck 2 reduces the accuracy of the map information MI. When it is determined that it is not in the state (step ST3: No), the grid map creation unit 33C creates the map information MI (step ST4), and the collation navigation computation unit 33B uses the detection result of the laser sensor 24B and the map storage The position and orientation of the dump truck 2 are specified based on the map information MI stored in the database 36, and the accuracy of the detected position and orientation is confirmed (step ST7).
 具体的には、実施形態1と同様に、観測点座標変換部38がレーザーセンサ24Bの検出結果の位置を、X-Y座標の位置に変換する。観測点利用可能判断部39が、座標が変換された検出結果から上方突出物VPに関する検出結果を抜き出すとともに、X-Y座標で位置が示されかつ複数のグリッドGRで構成される検出結果に合成する。グリッドマップ作成部33Cが合成した検出結果を地図情報MIとしてマップ保存用データベース36に記憶する。照合航法演算部33Bが、レーザーセンサ24Bの検出結果及びマップ保存用データベース36に記憶された地図情報MIに基づいて、ダンプトラック2の位置及び方位を特定する(ステップST71)。 Specifically, as in the first embodiment, the observation point coordinate conversion unit 38 converts the position of the detection result of the laser sensor 24B into the position of the XY coordinates. The observation point availability determination unit 39 extracts the detection result regarding the upward projecting object VP from the detection result obtained by converting the coordinates, and combines the detection result with the position indicated by the XY coordinates and configured by a plurality of grids GR. To do. The detection result synthesized by the grid map creation unit 33C is stored in the map storage database 36 as map information MI. The reference navigation calculation unit 33B specifies the position and orientation of the dump truck 2 based on the detection result of the laser sensor 24B and the map information MI stored in the map storage database 36 (step ST71).
 位置計測コントローラ33は、照合航法演算部33Bが検出したダンプトラック2の位置が高精度であるか否かを判定する(ステップST72)。具体的には、位置計測コントローラ33は、GPS受信器31が検出したGPS位置をX-Y座標の位置に変換し、GPS位置をX-Y座標の位置に変換した位置と、照合航法演算部33Bが検出したダンプトラック2の位置との距離(差分距離)を検出する。位置計測コントローラ33は、GPS位置をX-Y座標の位置に変換した位置と、照合航法演算部33Bが検出した位置との距離が所定距離以下であると、照合航法演算部33Bが検出したダンプトラック2の位置が高精度であると判定する。位置計測コントローラ33は、GPS位置をX-Y座標の位置に変換した位置と、照合航法演算部33Bが検出した位置との距離が所定距離を超えると、照合航法演算部33Bが検出したダンプトラック2の位置が高精度ではないと判定する。なお、所定距離は、GPS受信器31が検出したGPS位置の解がFix解ではない場合に、ダンプトラック2の自律走行を可能とする距離である。 The position measurement controller 33 determines whether or not the position of the dump truck 2 detected by the verification navigation calculation unit 33B is highly accurate (step ST72). Specifically, the position measurement controller 33 converts the GPS position detected by the GPS receiver 31 into an XY coordinate position, converts the GPS position into an XY coordinate position, and a collation navigation calculation unit. The distance (difference distance) from the position of the dump truck 2 detected by 33B is detected. The position measurement controller 33 detects the dump detected by the collation navigation calculation unit 33B when the distance between the position obtained by converting the GPS position into the XY coordinate position and the position detected by the collation navigation calculation unit 33B is equal to or less than a predetermined distance. It is determined that the position of the track 2 is highly accurate. When the distance between the position obtained by converting the GPS position into the XY coordinate position and the position detected by the collation navigation calculation unit 33B exceeds a predetermined distance, the position measurement controller 33 detects the dump truck detected by the collation navigation calculation unit 33B. It is determined that the position of 2 is not highly accurate. The predetermined distance is a distance that enables the dump truck 2 to autonomously travel when the solution of the GPS position detected by the GPS receiver 31 is not the Fix solution.
 位置計測コントローラ33は、照合航法演算部33Bが検出したダンプトラック2の位置が高精度であると判定する(ステップST72:Yes)と、レーザーセンサ24Bが検出した検出結果の数が充分であるか否かを判定する(ステップST73)。具体的には、位置計測コントローラ33は、レーザーセンサ24Bが検出した検出結果の数が所定数以上であると、充分であると判定し、所定数未満であると、不充分であると判定する。なお、所定数は、GPS受信器31が検出したGPS位置の解がFix解ではない場合に、ダンプトラック2の自律走行を可能とする数である。 If the position measurement controller 33 determines that the position of the dump truck 2 detected by the reference navigation calculation unit 33B is highly accurate (step ST72: Yes), is the number of detection results detected by the laser sensor 24B sufficient? It is determined whether or not (step ST73). Specifically, the position measurement controller 33 determines that the number of detection results detected by the laser sensor 24B is greater than or equal to a predetermined number, and determines that the number is less than the predetermined number. . The predetermined number is a number that enables the dump truck 2 to autonomously travel when the GPS position solution detected by the GPS receiver 31 is not a Fix solution.
 位置計測コントローラ33は、レーザーセンサ24Bが検出した検出結果の数が充分であると判定する(ステップST73:Yes)と、観測点利用可能判断部39が検出したレーザーセンサ24Bの検出結果と、マップ保存用データベース36に記憶された地図情報MIとが一致しているか否かを判定する(ステップST74)。具体的には、位置計測コントローラ33は、レーザーセンサ24Bが検出した検出結果と、マップ保存用データベース36に記憶された地図情報MIとを正規化相関を用いてパターンマッチングを行い、相関値が所定値以上であると一致していると判定し、相関値が所定値未満であると一致していないと判定する。なお、所定値は、GPS受信器31が検出したGPS位置の解がFix解ではない場合に、ダンプトラック2の自律走行を可能とする値である。 When the position measurement controller 33 determines that the number of detection results detected by the laser sensor 24B is sufficient (step ST73: Yes), the detection result of the laser sensor 24B detected by the observation point availability determination unit 39, and a map It is determined whether or not the map information MI stored in the storage database 36 matches (step ST74). Specifically, the position measurement controller 33 performs pattern matching using the normalized correlation between the detection result detected by the laser sensor 24B and the map information MI stored in the map storage database 36, and the correlation value is predetermined. It is determined that the value is equal to or greater than the value, and it is determined that the correlation value is less than the predetermined value. The predetermined value is a value that enables the dump truck 2 to autonomously travel when the GPS position solution detected by the GPS receiver 31 is not a Fix solution.
 位置計測コントローラ33は、観測点利用可能判断部39が検出したレーザーセンサ24Bの検出結果と、マップ保存用データベース36に記憶された地図情報MIとが一致していると判定する(ステップST74:Yes)と、判定部33AがGPS位置をX-Y座標の位置に変換した位置と、照合航法演算部33Bが検出したダンプトラック2の位置との距離を不揮発性メモリ335に記憶する(ステップST75)。ステップST75において、位置計測コントローラ33は、GPS位置をX-Y座標の位置に変換した位置と、照合航法演算部33Bが検出したダンプトラック2の位置との距離の平均距離を常に検出し、この平均距離を不揮発性メモリ335に記憶する。位置計測コントローラ33は、ステップST6において、照合航法演算部33Bが、レーザーセンサ24Bの検出結果及びマップ保存用データベース36に記憶された地図情報MIに基づいて、ダンプトラック2の位置及び方位を特定して、走行経路RPに従ってダンプトラック2を走行させる際に、検出したダンプトラック2の位置及び方位を平均距離により補正する。 The position measurement controller 33 determines that the detection result of the laser sensor 24B detected by the observation point availability determination unit 39 matches the map information MI stored in the map storage database 36 (step ST74: Yes). ) And the distance between the position obtained by the determination unit 33A converting the GPS position into the XY coordinate position and the position of the dump truck 2 detected by the collation navigation calculation unit 33B is stored in the nonvolatile memory 335 (step ST75). . In step ST75, the position measurement controller 33 always detects the average distance between the position obtained by converting the GPS position into the XY coordinate position and the position of the dump truck 2 detected by the collation navigation calculation unit 33B. The average distance is stored in the nonvolatile memory 335. In step ST6, the position measurement controller 33 specifies the position and orientation of the dump truck 2 based on the detection result of the laser sensor 24B and the map information MI stored in the map storage database 36. Thus, when the dump truck 2 travels according to the travel route RP, the detected position and orientation of the dump truck 2 are corrected by the average distance.
 位置計測コントローラ33は、照合航法演算部33Bが検出したダンプトラック2の位置が高精度ではないと判定した場合(ステップST72:No)、レーザーセンサ24Bが検出した検出結果の数が充分ではないと判定した場合(ステップST73:No)、又は観測点利用可能判断部39が検出したレーザーセンサ24Bの検出結果とマップ保存用データベース36に記憶された地図情報MIとが一致していないと判定した場合(ステップST74:No)に、照合航法演算部33Bが検出したダンプトラック2の位置及び方位が自律走行に適していないと判定し、その旨を無線通信装置34を介して管制施設7の無線通信装置18に送信する。管制施設7は、ダンプトラック2の位置及び方位が自律走行に適していない旨を受信すると、記憶装置13に記憶する(ステップST76)。 If the position measurement controller 33 determines that the position of the dump truck 2 detected by the verification navigation calculation unit 33B is not highly accurate (step ST72: No), the number of detection results detected by the laser sensor 24B is not sufficient. When determined (step ST73: No), or when it is determined that the detection result of the laser sensor 24B detected by the observation point availability determination unit 39 does not match the map information MI stored in the map storage database 36 (Step ST74: No), it is determined that the position and direction of the dump truck 2 detected by the reference navigation calculation unit 33B is not suitable for autonomous traveling, and the wireless communication of the control facility 7 is performed via the wireless communication device 34 to that effect. Transmit to device 18. When the control facility 7 receives that the position and direction of the dump truck 2 are not suitable for autonomous traveling, the control facility 7 stores them in the storage device 13 (step ST76).
 実施形態2の位置計測コントローラ33は、判定部33Aが、GPS受信器31が検出したダンプトラック2のGPS位置の誤差が所定の誤差以下であると判定し(ステップST2:Yes)、ダンプトラック2が停車していないと判定、即ち、ダンプトラック2の状態が地図情報MIの精度を低下させる状態ではないと判定する(ステップST3:No)と、グリッドマップ作成部33Cが、地図情報MIを作成する(ステップST4)とともに、照合航法演算部33Bが、ダンプトラック2の位置及び方位を特定し、検出した位置及び方位の精度を確認する(ステップST7)。こうすることにより、位置計測コントローラ33は、GPS受信器31が検出したGPS位置の誤差が所定の誤差以下であると判定部33Aが判定した場合に、レーザーセンサの検出結果とマップ保存用データベース36が記憶した地図情報MIとを照合することによりダンプトラック2の位置及び方位を特定して、走行経路RPに従ってGPS受信器30が特定したダンプトラック2の位置に基づいてダンプトラック2を走行させることが適しているか否かを判定する。 In the position measurement controller 33 of the second embodiment, the determination unit 33A determines that the error in the GPS position of the dump truck 2 detected by the GPS receiver 31 is equal to or less than a predetermined error (step ST2: Yes), and the dump truck 2 If it is determined that the vehicle has not stopped, that is, the state of the dump truck 2 is not in a state of reducing the accuracy of the map information MI (step ST3: No), the grid map creation unit 33C creates the map information MI. At the same time (step ST4), the collation navigation calculation unit 33B identifies the position and orientation of the dump truck 2 and confirms the accuracy of the detected position and orientation (step ST7). By doing so, the position measurement controller 33 allows the detection result of the laser sensor and the map storage database 36 when the determination unit 33A determines that the GPS position error detected by the GPS receiver 31 is equal to or less than a predetermined error. The position and direction of the dump truck 2 are identified by comparing with the map information MI stored by the vehicle, and the dump truck 2 is caused to travel based on the position of the dump truck 2 identified by the GPS receiver 30 according to the travel route RP. It is determined whether or not is suitable.
 また、実施形態2の位置計測コントローラ33は、ステップST75において、差分距離を記憶することにより、GPS受信器31が検出したGPS位置の誤差が所定の誤差以下であると判定部33Aが判定している間において、レーザーセンサ24Bの検出結果とマップ保存用データベース36が記憶した走行経路RPの地図情報MIとを照合することにより得られたダンプトラック2の位置及び方位と、GPS受信器31が検出した位置及び方位との差(差分距離)を検出し、記憶する。 Further, in step ST75, the position measurement controller 33 of the second embodiment stores the difference distance, so that the determination unit 33A determines that the GPS position error detected by the GPS receiver 31 is equal to or less than a predetermined error. The position and direction of the dump truck 2 obtained by collating the detection result of the laser sensor 24B with the map information MI of the travel route RP stored in the map storage database 36 and the GPS receiver 31 detect The difference (difference distance) from the determined position and orientation is detected and stored.
 実施形態2において、作業機械の制御システム30は、GPS受信器31が検出したGPS位置と、照合航法演算部33Bが検出したダンプトラック2の位置との距離(差分距離)を検出して、照合航法演算部33Bが検出したダンプトラック2の位置及び方位が自律走行を可能とするか否かを判定する。このため、作業機械の制御システム30は、GPS受信器31が検出したGPS位置の誤差が所定の誤差以下で自律走行している間に、照合航法演算部33Bが検出する位置の精度を確認することができる。その結果、作業機械の制御システム30は、実施形態1の効果に加え、照合航法演算部33Bが検出する位置及び方位が自律走行を可能としない場所に、レーザーセンサ24Bが検出可能なランドマークを設置すること、及び、自律走行を可能としない場所を位置検出を行いながら複数回走行させること等の対処を作業者に促すことができ、GPSにより位置及び方位を特定することができない状況であっても、ダンプトラック2の走行、即ち、鉱山の操業を継続して行うことができる。 In the second embodiment, the work machine control system 30 detects the distance (difference distance) between the GPS position detected by the GPS receiver 31 and the position of the dump truck 2 detected by the verification navigation calculation unit 33B. It is determined whether or not the position and direction of the dump truck 2 detected by the navigation calculation unit 33B enables autonomous traveling. For this reason, the work machine control system 30 checks the accuracy of the position detected by the reference navigation calculation unit 33B while the vehicle is autonomously traveling with the GPS position error detected by the GPS receiver 31 being equal to or less than a predetermined error. be able to. As a result, in addition to the effects of the first embodiment, the work machine control system 30 adds landmarks that can be detected by the laser sensor 24B to places where the position and direction detected by the reference navigation calculation unit 33B cannot autonomously travel. It is a situation where it is possible to prompt the worker to install and run multiple times while detecting the position where autonomous driving is not possible, and the position and direction cannot be specified by GPS. However, the traveling of the dump truck 2, that is, the operation of the mine can be continued.
 作業機械の制御システム30は、GPS受信器31が検出したGPS位置と、照合航法演算部33Bが検出したダンプトラック2の位置との距離(差分距離)の平均距離を検出して記憶する。作業機械の制御システム30は、レーザーセンサ24Bの検出結果及びマップ保存用データベース36に記憶された地図情報MIに基づいて、ダンプトラック2の位置及び方位を特定して、走行経路RPに従ってダンプトラック2を走行させる際に、検出したダンプトラック2の位置及び方位を平均距離により補正する。その結果、作業機械の制御システム30は、レーザーセンサ24Bの取付誤差などにより判定部33Aが検出したダンプトラック2の位置と、照合航法演算部33Bが検出したダンプトラック2の位置とがずれても、GPSにより位置及び方位を特定することができない状況であっても、ダンプトラック2の走行、即ち、鉱山の操業を継続して行うことができる。 The work machine control system 30 detects and stores the average distance (difference distance) between the GPS position detected by the GPS receiver 31 and the position of the dump truck 2 detected by the verification navigation calculation unit 33B. The work machine control system 30 specifies the position and orientation of the dump truck 2 based on the detection result of the laser sensor 24B and the map information MI stored in the map storage database 36, and the dump truck 2 according to the travel route RP. When traveling the vehicle, the detected position and orientation of the dump truck 2 are corrected by the average distance. As a result, even if the position of the dump truck 2 detected by the determination unit 33A and the position of the dump truck 2 detected by the collation navigation calculation unit 33B deviate from each other due to an attachment error of the laser sensor 24B or the like, the work machine control system 30 Even in a situation where the position and direction cannot be specified by GPS, the dump truck 2 can be run, that is, the mine can be operated continuously.
 また、実施形態2において、作業機械の制御システム30は、GPS受信器31が検出したGPS位置の誤差が所定の誤差以下であると判定した場合(ステップST2:Yes)に、グリッドマップ作成部33Cが、地図情報MIを作成している間の少なくとも一部において、照合航法演算部33Bが、ステップST7のように、ダンプトラック2の位置、方位及び差分距離を検出し、検出した位置及び方位の精度を確認し、差分距離を記憶してもよい。 In the second embodiment, when the work machine control system 30 determines that the error in the GPS position detected by the GPS receiver 31 is equal to or less than the predetermined error (step ST2: Yes), the grid map creation unit 33C However, at least during the creation of the map information MI, the reference navigation calculation unit 33B detects the position, direction, and difference distance of the dump truck 2 as in step ST7, and the detected position and direction are detected. The accuracy may be confirmed and the difference distance may be stored.
 前述した実施形態1及び実施形態2において、作業機械の制御システム30は、GPS位置の解がFix解であるダンプトラック2の自律走行時に地図情報MIをマップ保存用データベース36に記憶するが、これに限定されない。作業機械の制御システム30は、ダンプトラック2が、作業者(運転者)の操作により走行する際に、地図情報MIをマップ保存用データベース36に記憶してもよい。 In the first embodiment and the second embodiment described above, the work machine control system 30 stores the map information MI in the map storage database 36 during the autonomous traveling of the dump truck 2 whose GPS position solution is the Fix solution. It is not limited to. The work machine control system 30 may store the map information MI in the map storage database 36 when the dump truck 2 travels by the operation of the operator (driver).
 前述した実施形態1及び実施形態2において、作業機械の制御システム30は、ダンプトラック2の停車時を地図情報MIの精度を低下させる状態又は位置計測精度を低下させる状態としたが、これに限定されない。作業機械の制御システム30は、GPS位置の解が、Fix解でない状態、走行経路作成装置32が故障している状態、又はダンプトラック2を点検している状態を地図情報MIの精度を低下させる状態又は位置計測精度を低下させる状態としてもよい。 In the first embodiment and the second embodiment described above, the work machine control system 30 sets the state where the dump truck 2 is stopped in a state in which the accuracy of the map information MI is lowered or the position measurement accuracy is lowered. Not. The work machine control system 30 reduces the accuracy of the map information MI when the GPS position solution is not a Fix solution, the traveling route creation device 32 is out of order, or the dump truck 2 is being inspected. It is good also as a state which reduces a state or position measurement accuracy.
 実施形態1及び実施形態2において、作業機械の制御システム30は、レーザーセンサ24Bの検出結果をもちいて地図情報MIの作成、ダンプトラック2の位置及び方位を特定した。本発明において、作業機械の制御システム30は、非接触センサであるレーダー24Aの検出結果をもちいて地図情報MIの作成、ダンプトラック2の位置及び方位を特定してもよい。また、本発明において、作業機械の制御システム30は、非接触センサであるダンプトラック2に複数設けられたCCD(Charge-Coupled Device)カメラの検出結果をもちいて地図情報MIの作成、ダンプトラック2の位置及び方位を特定してもよい。 In Embodiment 1 and Embodiment 2, the work machine control system 30 uses the detection result of the laser sensor 24B to create the map information MI and specify the position and orientation of the dump truck 2. In the present invention, the work machine control system 30 may create the map information MI and specify the position and orientation of the dump truck 2 using the detection result of the radar 24A which is a non-contact sensor. In the present invention, the work machine control system 30 generates map information MI using the detection results of a plurality of CCD (Charge-Coupled Device) cameras provided on the dump truck 2 which is a non-contact sensor, and generates the dump truck 2. You may specify the position and azimuth | direction.
 上述した各実施形態の構成要件は、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものを含む。また、上述した各実施形態の構成要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。 The configuration requirements of each embodiment described above include those that can be easily assumed by those skilled in the art, substantially the same, and so-called equivalent ranges. In addition, the configuration requirements of each embodiment described above can be combined as appropriate. Some components may not be used.
 なお、上述の実施形態では鉱山にて用いられる鉱山機械を例に説明したが、それに限られず、地下鉱山で用いられる作業機械や、地上の作業現場で用いられる作業機械に適用してもよい。作業機械は、鉱山機械を含むものである。 In the above-described embodiment, the mining machine used in the mine has been described as an example. However, the present invention is not limited thereto, and may be applied to a working machine used in an underground mine or a working machine used on the ground work site. The work machine includes a mining machine.
 また、上述の実施形態ではGPS検出器を用いて鉱山機械の位置を検出していたが、それに限られず、周知の「位置検出手段」に基づいて鉱山機械の位置を検出できるようにしてもよい。特に、地下鉱山ではGPSを検出できないため、例えば、既存の位置検出装置であるIMES(Indoor Messaging System)、疑似衛星(スードライト)、RFID(Radio Frequency IDentifier)、ビーコン、測量器、無線LAN、UWB(Ultra Wide Band)、SLAM(Simultaneous Localization and Mapping)、ランドマーク(走行経路の傍らに設けた目印)を使用した作業機械の自己位置推定等を用いてもよい。これらの位置検出装置を、地上の鉱山における鉱山機械または地上の作業現場で用いられる作業機械に用いてもよい。 In the above-described embodiment, the position of the mining machine is detected using the GPS detector. However, the present invention is not limited to this, and the position of the mining machine may be detected based on a well-known “position detecting unit”. . In particular, since GPS cannot be detected in underground mines, for example, IMES (Indoor Messaging System), pseudo satellites (Pseudolite), RFID (Radio Frequency IDentifier), beacons, surveying instruments, wireless LAN, UWB (UWB ( Self-localization of a working machine using an Ultra Wide Band, SLAM (Simultaneous Localization and Mapping), or a landmark (a mark provided beside the travel route) may be used. You may use these position detection apparatuses for the working machine used in the mining machine in an above-ground mine, or the work site on the ground.
 また、「作業機械の制御システム」として、上述の実施形態では地上の鉱山におけるダンプトラックの制御システムを例に説明したが、それに限られず、地上の鉱山における他の鉱山機械、地下鉱山に用いられる作業機械又は地上の作業現場で用いられる作業機械(油圧ショベル、ブルドーザ、ホイールローダ等)であって、「位置検出装置」、「非接触センサ」および「位置演算部」を備える作業機械の制御システムも含んでいる。 Further, as the “work machine control system”, the above-described embodiment has been described with reference to the dump truck control system in the ground mine as an example. Work machine control system for a work machine (hydraulic excavator, bulldozer, wheel loader, etc.) used in a work machine or on the ground, which includes a “position detection device”, a “non-contact sensor”, and a “position calculation unit” Also included.
1 管理システム
2 ダンプトラック(作業機械)
7 管制施設
10 管理装置
20 走行コントローラ(走行制御手段)
21 車両本体
24A レーダー(非接触センサ)
24B レーザーセンサ(非接触センサ)
27 速度センサ
30 作業機械の制御システム
31 GPS受信器(位置検出手段)
32A 経路位置記憶部(経路位置記憶手段)
33 位置計測コントローラ(計測出力手段)
33A 判定部(判定手段)
RP 走行経路
VP 上方突出物
BK 土手
MI 地図情報
1 Management system 2 Dump truck (work machine)
7 Control facility 10 Management device 20 Travel controller (travel control means)
21 Vehicle body 24A Radar (non-contact sensor)
24B Laser sensor (non-contact sensor)
27 Speed sensor 30 Work machine control system 31 GPS receiver (position detection means)
32A route position storage unit (route position storage means)
33 Position measurement controller (measurement output means)
33A determination unit (determination means)
RP Route VP Upward projecting object BK Bank MI Map information

Claims (10)

  1.  走行経路を走行する作業機械の制御システムであって、
     前記作業機械の位置を検出する位置検出手段と、
     前記作業機械の周囲の物体の位置を検出する非接触センサと、
     前記位置検出手段の検出結果及び前記非接触センサの検出結果から上方に突出した上方突出物の位置を検出し、検出した前記上方突出物の位置を地図情報として地図情報記憶手段に記憶する計測出力手段と、を備え、
     前記計測出力手段は、
     前記作業機械の状態が前記地図情報の精度を低下させる状態であるか否かを判定し、
     前記作業機械の状態が前記地図情報の精度を低下させる状態であると判定した場合に、前記地図情報の記憶を休止する作業機械の制御システム。
    A control system for a work machine that travels along a travel route,
    Position detecting means for detecting the position of the work machine;
    A non-contact sensor for detecting the position of an object around the work machine;
    A measurement output for detecting the position of the upward projecting object protruding upward from the detection result of the position detecting means and the detection result of the non-contact sensor, and storing the detected position of the upward projecting object as map information in the map information storage means Means, and
    The measurement output means includes
    Determining whether the state of the work machine is a state that reduces the accuracy of the map information;
    A control system for a work machine that suspends storage of the map information when it is determined that the state of the work machine is a state that reduces the accuracy of the map information.
  2.  前記走行経路を指定する情報を記憶する経路位置記憶手段と、
     前記位置検出手段が検出した位置の誤差が所定の誤差以下であるか否かを判定する判定手段と、
     前記位置検出手段が検出した位置の誤差が前記所定の誤差以下であると前記判定手段が判定すると、前記位置検出手段が検出した前記作業機械の位置に基づいて、前記経路位置記憶手段が記憶した前記走行経路に従って前記作業機械を走行させる走行制御手段と、を備える請求項1に記載の作業機械の制御システム。
    Route position storage means for storing information for designating the travel route;
    Determination means for determining whether or not an error in the position detected by the position detection means is equal to or less than a predetermined error;
    When the determination unit determines that the position error detected by the position detection unit is equal to or less than the predetermined error, the path position storage unit stores the path based on the position of the work machine detected by the position detection unit. The work machine control system according to claim 1, further comprising travel control means for causing the work machine to travel according to the travel route.
  3.  前記計測出力手段は、前記位置検出手段が検出した位置の誤差が前記所定の誤差を超えていると前記判定手段が判定すると、前記非接触センサの検出結果と前記地図情報記憶手段が記憶した前記走行経路の地図情報とを照合することにより前記作業機械の位置を特定し、
     前記走行制御手段は、前記計測出力手段が特定した前記作業機械の位置に基づいて、前記経路位置記憶手段が記憶した前記走行経路に従って前記作業機械を走行させる請求項1または2に記載の作業機械の制御システム。
    When the determination unit determines that the position error detected by the position detection unit exceeds the predetermined error, the measurement output unit stores the detection result of the non-contact sensor and the map information storage unit. Identify the position of the work machine by collating with the map information of the travel route,
    3. The work machine according to claim 1, wherein the travel control unit causes the work machine to travel according to the travel route stored by the route position storage unit based on the position of the work machine specified by the measurement output unit. Control system.
  4.  前記計測出力手段は、
     前記作業機械の状態が位置計測精度を低下させる状態であるか否かを判定し、
     前記作業機械の状態が位置計測精度を低下させる状態であると判定した場合に、前記非接触センサの検出結果と前記地図情報記憶手段が記憶した前記地図情報とを照合することにより前記作業機械の位置を特定することを休止する請求項3に記載の作業機械の制御システム。
    The measurement output means includes
    Determining whether or not the state of the work machine is a state that reduces the position measurement accuracy,
    When it is determined that the state of the work machine is in a state of reducing the position measurement accuracy, the result of the non-contact sensor and the map information stored in the map information storage unit are collated to check the work machine The work machine control system according to claim 3, wherein the position determination is suspended.
  5.  前記計測出力手段は、前記位置検出手段が検出した位置の誤差が前記所定の誤差以下であると前記判定手段が判定した場合に、前記非接触センサの検出結果と前記地図情報記憶手段が記憶した前記地図情報とを照合することにより前記作業機械の位置を特定して、前記走行経路に従って前記位置計測手段が特定した前記作業機械の位置に基づいて前記作業機械を走行させることが適しているか否かを判定する請求項2から請求項4のうちいずれか一項に記載の作業機械の制御システム。 The measurement output means stores the detection result of the non-contact sensor and the map information storage means when the determination means determines that the position error detected by the position detection means is equal to or less than the predetermined error. Whether or not it is suitable to identify the position of the work machine by collating with the map information, and to cause the work machine to travel based on the position of the work machine identified by the position measuring means according to the travel route. The work machine control system according to any one of claims 2 to 4, wherein the control is performed.
  6.  前記計測出力手段は、前記位置検出手段が検出した位置の誤差が前記所定の誤差以下であると前記判定手段が判定した場合に、前記非接触センサの検出結果と前記地図情報記憶手段が記憶した前記地図情報とを照合することにより得られた前記作業機械の位置と、前記位置検出手段が検出した位置との距離を検出し、記憶する請求項5に記載の作業機械の制御システム。 The measurement output means stores the detection result of the non-contact sensor and the map information storage means when the determination means determines that the position error detected by the position detection means is equal to or less than the predetermined error. 6. The work machine control system according to claim 5, wherein a distance between the position of the work machine obtained by collating with the map information and the position detected by the position detection unit is detected and stored.
  7.  請求項1から請求項6のうちいずれか一項に記載の作業機械の制御システムと、
     鉱山に設けられる走行経路を走行する車両本体と、を備える作業機械。
    A control system for a work machine according to any one of claims 1 to 6,
    A work machine comprising: a vehicle main body that travels along a travel route provided in a mine.
  8.  請求項7に記載の作業機械と、
     鉱山に設置される管制施設に配置され、かつ前記作業機械の作業機械の制御システムに鉱山に設けられる走行経路を指定する情報を送信する管理装置と、を備える作業機械の管理システム。
    A work machine according to claim 7;
    A work machine management system comprising: a management device that is arranged in a control facility installed in a mine and transmits information specifying a travel route provided in the mine to a work machine control system of the work machine.
  9.  走行経路を走行する作業機械の制御方法であって、
     前記作業機械が前記走行経路に従って走行する際に、前記作業機械の位置及び前記作業機械の周囲の物体の位置を検出する非接触センサの検出結果から上方に突出した上方突出物の位置を検出し、検出した前記上方突出物の位置を前記走行経路の地図情報として記憶するとともに、前記作業機械の状態が前記地図情報の精度を低下させる状態である場合に、前記走行経路の地図情報の記憶を休止する作業機械の制御方法。
    A method for controlling a work machine that travels along a travel route,
    When the work machine travels according to the travel route, the position of the upward projecting object that projects upward is detected from the detection result of the non-contact sensor that detects the position of the work machine and the positions of objects around the work machine. Storing the detected position of the upward projecting object as map information of the travel route, and storing the map information of the travel route when the state of the work machine is in a state of reducing the accuracy of the map information. Control method of work machine to be stopped.
  10.  走行経路を走行する作業機械に設置されたコンピュータに、
     前記作業機械が前記走行経路に従って走行する際に、前記作業機械の状態が上方に突出した上方突出物の位置を示す前記走行経路の地図情報の精度を低下させる状態であるか否かを判定するステップと、
     前記作業機械の状態が前記地図情報の精度を低下させる状態ではないと判定すると、前記作業機械の位置及び前記作業機械の周囲の物体の位置を検出する非接触センサの検出結果から前記上方突出物の位置を検出し、検出した前記上方突出物の位置を前記走行経路の地図情報として地図情報記憶手段に記憶するステップと、
     前記作業機械の状態が前記地図情報の精度を低下させる状態であると判定すると、前記走行経路の地図情報の記憶を休止するステップと、
     を実行させるプログラム。
    In the computer installed on the work machine that travels along the travel route,
    When the work machine travels according to the travel route, it is determined whether or not the state of the work machine is a state in which the accuracy of the map information of the travel route indicating the position of the upward projecting object projecting upward is reduced. Steps,
    When it is determined that the state of the work machine is not in a state of reducing the accuracy of the map information, the upward projecting object is detected from a detection result of a non-contact sensor that detects a position of the work machine and a position of an object around the work machine Storing the detected position of the upward projecting object in the map information storage means as map information of the travel route;
    If it is determined that the state of the work machine is a state that reduces the accuracy of the map information, the step of stopping storing the map information of the travel route;
    A program that executes
PCT/JP2015/080866 2015-10-30 2015-10-30 Control system for work machine, work machine, management system for work machine, and control method and program for work machine WO2016060282A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2941227A CA2941227C (en) 2015-10-30 2015-10-30 Construction machine control system, construction machine, construction machine management system, and construction machine control method and program
PCT/JP2015/080866 WO2016060282A1 (en) 2015-10-30 2015-10-30 Control system for work machine, work machine, management system for work machine, and control method and program for work machine
US15/122,729 US10026308B2 (en) 2015-10-30 2015-10-30 Construction machine control system, construction machine, construction machine management system, and construction machine control method and program
AU2015331288A AU2015331288B2 (en) 2015-10-30 2015-10-30 Construction machine control system, construction machine, construction machine management system, and construction machine control method and program
JP2016504235A JP6059846B2 (en) 2015-10-30 2015-10-30 Mining work machine control system, mining work machine, mining work machine management system, mining work machine control method and program
CN201580002964.2A CN105849586B (en) 2015-10-30 2015-10-30 Control system, Work machine, its management system and the control method of Work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080866 WO2016060282A1 (en) 2015-10-30 2015-10-30 Control system for work machine, work machine, management system for work machine, and control method and program for work machine

Publications (1)

Publication Number Publication Date
WO2016060282A1 true WO2016060282A1 (en) 2016-04-21

Family

ID=55746811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080866 WO2016060282A1 (en) 2015-10-30 2015-10-30 Control system for work machine, work machine, management system for work machine, and control method and program for work machine

Country Status (6)

Country Link
US (1) US10026308B2 (en)
JP (1) JP6059846B2 (en)
CN (1) CN105849586B (en)
AU (1) AU2015331288B2 (en)
CA (1) CA2941227C (en)
WO (1) WO2016060282A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012063A (en) * 2017-06-30 2019-01-24 酒井重工業株式会社 Obstacle detection device for construction vehicle
CN109564430A (en) * 2016-07-29 2019-04-02 日本电产株式会社 Moving body guides system, moving body, guide device and computer program
JP2019124472A (en) * 2018-01-12 2019-07-25 株式会社日立産機システム Position detection system
WO2020026491A1 (en) * 2018-07-31 2020-02-06 株式会社小松製作所 Work machine control system, work machine, and work machine control method
JP2020076663A (en) * 2018-11-08 2020-05-21 株式会社Ihiエアロスペース Unmanned mobile object and method for controlling unmanned mobile object
WO2021002325A1 (en) * 2019-07-02 2021-01-07 株式会社デンソー On-vehicle sensor device
JP2021519434A (en) * 2018-03-28 2021-08-10 サイオニク エルエルシー Navigation devices and methods
WO2022186103A1 (en) * 2021-03-02 2022-09-09 パイオニア株式会社 Information processing device, information processing method, program, and storage medium
JP2022547766A (en) * 2019-06-14 2022-11-16 ケーピーアイティ テクノロジーズ リミテッド Lidar and radar based tracking and mapping system and method
WO2024070558A1 (en) * 2022-09-30 2024-04-04 株式会社小松製作所 Work site detection system, and work site detection method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2999229A1 (en) * 2015-12-25 2017-06-29 Komatsu Ltd. Control system for work machine, work machine, management system for work machine, and management method for work machine
CN107231813A (en) * 2016-02-01 2017-10-03 株式会社小松制作所 The management system of the control system of Work machine, Work machine and Work machine
AU2016204167B2 (en) * 2016-02-01 2017-11-02 Komatsu Ltd. Work machine control system, work machine, and work machine management system
US20180018880A1 (en) * 2016-07-12 2018-01-18 Caterpillar Inc. System and method for worksite route management
US10733420B2 (en) * 2017-11-21 2020-08-04 GM Global Technology Operations LLC Systems and methods for free space inference to break apart clustered objects in vehicle perception systems
JP6900897B2 (en) * 2017-12-25 2021-07-07 コベルコ建機株式会社 Obstacle detector for construction machinery
CN108104192A (en) * 2018-01-10 2018-06-01 深圳市晟达机械设计有限公司 A kind of underground carry scraper
CN108337787B (en) * 2018-02-07 2020-04-14 江西电力职业技术学院 Automatic management and control system and method
US10404261B1 (en) * 2018-06-01 2019-09-03 Yekutiel Josefsberg Radar target detection system for autonomous vehicles with ultra low phase noise frequency synthesizer
CN109763824A (en) * 2019-01-24 2019-05-17 本钢板材股份有限公司 A kind of satellite positioning dynamic ore-proportioning method
CN110298536A (en) * 2019-05-20 2019-10-01 北京讯腾智慧科技股份有限公司 Burning line quality of data evaluation method, device and collecting method
WO2021102333A1 (en) * 2019-11-20 2021-05-27 Autonomous Solutions, Inc. Autonomous loader controller
US11274930B1 (en) * 2019-12-11 2022-03-15 Amazon Technologies, Inc. System for assessing an autonomously determined map
CN115087887A (en) 2020-02-27 2022-09-20 沃尔沃卡车集团 AD or ADAS assisted steering of a vehicle
FR3124606B1 (en) * 2021-06-10 2023-07-07 Aximum Method for determining a position of a construction machine or an agricultural machine, and method for piloting this machine
CN114325755B (en) * 2021-11-26 2023-08-01 江苏徐工工程机械研究院有限公司 Retaining wall detection method and system suitable for automatic driving vehicle
WO2024039269A1 (en) * 2022-08-17 2024-02-22 Epiroc Rock Drills Aktiebolag Method and arrangement for localization of a work machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300493A (en) * 1997-04-28 1998-11-13 Honda Motor Co Ltd Vehicle position estimating device and method and traffic lane keeping device and method
JP2002215236A (en) * 2001-01-22 2002-07-31 Komatsu Ltd Controller for travel of unmanned vehicle
JP2008116370A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Mobile location positioning device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610815A (en) * 1989-12-11 1997-03-11 Caterpillar Inc. Integrated vehicle positioning and navigation system, apparatus and method
US5612883A (en) * 1990-02-05 1997-03-18 Caterpillar Inc. System and method for detecting obstacles in the path of a vehicle
US6064926A (en) 1997-12-08 2000-05-16 Caterpillar Inc. Method and apparatus for determining an alternate path in response to detection of an obstacle
US6501422B1 (en) * 1998-08-19 2002-12-31 Trimble Navigation, Ltd. Precise parallel swathing guidance via satellite navigation and tilt measurement
US7266477B2 (en) * 2005-06-22 2007-09-04 Deere & Company Method and system for sensor signal fusion
ATE504872T1 (en) * 2005-07-26 2011-04-15 Macdonald Dettwiler & Associates Inc GUIDANCE, NAVIGATION AND CONTROL SYSTEM FOR A VEHICLE
US20100066587A1 (en) * 2006-07-14 2010-03-18 Brian Masao Yamauchi Method and System for Controlling a Remote Vehicle
CN101563625A (en) * 2006-11-06 2009-10-21 电子地图有限公司 Arrangement for and method of two dimensional and three dimensional precision location and orientation determination
US8554478B2 (en) * 2007-02-23 2013-10-08 Honeywell International Inc. Correlation position determination
JP5503419B2 (en) 2010-06-03 2014-05-28 株式会社日立製作所 Automated guided vehicle and travel control method
US8996228B1 (en) * 2012-09-05 2015-03-31 Google Inc. Construction zone object detection using light detection and ranging
CA2941226C (en) * 2015-10-30 2018-10-02 Komatsu Ltd. Construction machine control system, construction machine, construction machine management system, and construction machine control method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300493A (en) * 1997-04-28 1998-11-13 Honda Motor Co Ltd Vehicle position estimating device and method and traffic lane keeping device and method
JP2002215236A (en) * 2001-01-22 2002-07-31 Komatsu Ltd Controller for travel of unmanned vehicle
JP2008116370A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Mobile location positioning device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564430A (en) * 2016-07-29 2019-04-02 日本电产株式会社 Moving body guides system, moving body, guide device and computer program
CN109564430B (en) * 2016-07-29 2022-07-12 日本电产株式会社 Moving body guidance system, moving body, guidance device, and computer program
JP2019012063A (en) * 2017-06-30 2019-01-24 酒井重工業株式会社 Obstacle detection device for construction vehicle
JP7089954B2 (en) 2017-06-30 2022-06-23 酒井重工業株式会社 Obstacle detector for construction vehicles
JP2019124472A (en) * 2018-01-12 2019-07-25 株式会社日立産機システム Position detection system
JP2021519434A (en) * 2018-03-28 2021-08-10 サイオニク エルエルシー Navigation devices and methods
JP2020020655A (en) * 2018-07-31 2020-02-06 株式会社小松製作所 Control system for work machine, work machine, and method for controlling work machine
WO2020026491A1 (en) * 2018-07-31 2020-02-06 株式会社小松製作所 Work machine control system, work machine, and work machine control method
JP7141883B2 (en) 2018-07-31 2022-09-26 株式会社小松製作所 WORKING MACHINE CONTROL SYSTEM, WORKING MACHINE, AND WORKING MACHINE CONTROL METHOD
JP2020076663A (en) * 2018-11-08 2020-05-21 株式会社Ihiエアロスペース Unmanned mobile object and method for controlling unmanned mobile object
JP7195883B2 (en) 2018-11-08 2022-12-26 株式会社Ihiエアロスペース unmanned mobile and control method for unmanned mobile
JP2022547766A (en) * 2019-06-14 2022-11-16 ケーピーアイティ テクノロジーズ リミテッド Lidar and radar based tracking and mapping system and method
JP7372350B2 (en) 2019-06-14 2023-10-31 ケーピーアイティ テクノロジーズ リミテッド Lidar and radar based tracking and mapping systems and methods thereof
JP2021009098A (en) * 2019-07-02 2021-01-28 株式会社デンソー On-vehicle sensor device
WO2021002325A1 (en) * 2019-07-02 2021-01-07 株式会社デンソー On-vehicle sensor device
JP7196789B2 (en) 2019-07-02 2022-12-27 株式会社デンソー In-vehicle sensor device
WO2022186103A1 (en) * 2021-03-02 2022-09-09 パイオニア株式会社 Information processing device, information processing method, program, and storage medium
WO2024070558A1 (en) * 2022-09-30 2024-04-04 株式会社小松製作所 Work site detection system, and work site detection method

Also Published As

Publication number Publication date
JPWO2016060282A1 (en) 2017-04-27
JP6059846B2 (en) 2017-01-11
CA2941227C (en) 2018-09-25
CA2941227A1 (en) 2016-04-21
US20170124862A1 (en) 2017-05-04
AU2015331288A1 (en) 2017-05-18
US10026308B2 (en) 2018-07-17
AU2015331288B2 (en) 2017-08-17
CN105849586A (en) 2016-08-10
CN105849586B (en) 2018-11-09

Similar Documents

Publication Publication Date Title
JP6059846B2 (en) Mining work machine control system, mining work machine, mining work machine management system, mining work machine control method and program
JP6055120B2 (en) Work machine control system, work machine, work machine management system, work machine control method and program
JP6909726B2 (en) Work machine control system, work machine, work machine management system, and work machine management method
JP6267783B2 (en) Work machine control system, work machine, and work machine management system
CA2951515C (en) Control system for work machine, work machine, and control method for work machine
WO2016093374A1 (en) Control system for work machines, work machine, and management system for work machines
JP6617192B2 (en) Work machine management system and work machine
US10520320B2 (en) Management system for work machine, work machine, and management device for work machine
JP6757749B2 (en) Work machine management system, work machine, work machine management method
WO2017130418A1 (en) Work machine management system and work machine
JP6538793B2 (en) Work machine control system, work machine, and work machine management system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016504235

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2941227

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15122729

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015331288

Country of ref document: AU

Date of ref document: 20151030

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850874

Country of ref document: EP

Kind code of ref document: A1