WO2016059953A1 - Electric power supply system - Google Patents

Electric power supply system Download PDF

Info

Publication number
WO2016059953A1
WO2016059953A1 PCT/JP2015/076989 JP2015076989W WO2016059953A1 WO 2016059953 A1 WO2016059953 A1 WO 2016059953A1 JP 2015076989 W JP2015076989 W JP 2015076989W WO 2016059953 A1 WO2016059953 A1 WO 2016059953A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply system
moving body
power
flight
Prior art date
Application number
PCT/JP2015/076989
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 康輔
正祥 増田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016059953A1 publication Critical patent/WO2016059953A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F3/00Ground installations specially adapted for captive aircraft
    • B64F3/02Ground installations specially adapted for captive aircraft with means for supplying electricity to aircraft during flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • This disclosure relates to a power supply system.
  • a technique relating to a method of taking a photograph in which a camera is attached to a moving body such as a flying body or a robot that can be operated wirelessly and captured by the camera is disclosed (for example, see Patent Document 1).
  • a moving body such as a flying body or a robot that can be operated wirelessly and captured by the camera
  • Patent Document 1 A technique relating to a method of taking a photograph in which a camera is attached to a moving body such as a flying body or a robot that can be operated wirelessly and captured by the camera is disclosed (for example, see Patent Document 1).
  • the cost can be reduced compared to using a real airplane or helicopter, images can be taken safely, images can be taken even in low altitudes and narrow places, and the target is approached.
  • Patent Document 2 discloses a technique that removes the restriction on continuous operation time by supplying power to the flying object by wire.
  • the present disclosure proposes a new and improved power supply system capable of transmitting to the mobile body power that can be operated without limiting the movement of the mobile body.
  • the mobile body includes: a mobile body; a booster that boosts the voltage to a voltage larger than a rating of the mobile body; and a conductor that transmits electric power generated by the voltage boosted by the booster to the mobile body.
  • a power supply system including a step-down unit for stepping down the voltage of the power transmitted through the conducting wire to a rating of the moving body.
  • FIG. 3 is an explanatory diagram illustrating an appearance example of a flying device 100 according to an embodiment of the present disclosure. It is explanatory drawing shown about the discrimination
  • Patent Document 2 described above discloses a technique that removes the restriction of continuous operation time by supplying power to the flying object by wire.
  • the present disclosure has intensively studied a technology that can transmit the electric power that the moving body can operate to the moving body without restricting the movement of the moving body.
  • the present disclosure person can operate the mobile body without restricting the movement of the mobile body by transmitting the power to the mobile body after boosting the voltage above the rated voltage of the mobile body, as will be described below. It came to devise the technology which can transmit electric power to a moving body.
  • FIG. 1 is an explanatory diagram illustrating an overall configuration example of a power supply system according to an embodiment of the present disclosure.
  • FIG. 1 shows a configuration example of an electric power supply system for transmitting electric power that can be operated by a flying object to the flying object, which is an example of a moving object.
  • an overall configuration example of the power supply system according to an embodiment of the present disclosure will be described with reference to FIG.
  • the power supply system 1 includes a power supply device 10 and a flying device 100.
  • the power supply device 10 is a device that supplies power to the flying device 100.
  • the power supply device 10 supplies DC power to the flying device 100.
  • the power supply device 10 is connected to the flying device 100 by a conducting wire 20 when supplying DC power to the flying device 100.
  • the power supply device 10 When supplying DC power to the flying device 100 through the conductor 20, the power supply device 10 supplies DC power boosted to a voltage several tens of times the voltage (rated voltage) used in the flying device 100.
  • the conductive wire 20 be thin and light so that it can withstand transmission of DC power boosted by the power supply device 10 and does not hinder the free flight of the flying device 100.
  • the conductor 20 preferably has a cross-sectional size of approximately 0.125 square and a length of approximately 80 to 100 meters.
  • the size and length of the cross-sectional area of the conducting wire 20 are not limited to this.
  • the conductive wire 20 has a diameter of approximately 0.4 mm, a cross-sectional area of approximately 0.13 mm 2 or less, a mass of approximately 1.1 kg / km, a resistance value of approximately 150 ⁇ / km, and a length of approximately 100 m. It is.
  • the flying device 100 is a device that flies using DC power supplied from the power supply device 10 through the conductor 20 as a power source.
  • the flying device 100 functions to fly based on, for example, a pilot by a user or according to a preset flight path.
  • the flying device 100 includes an imaging device and functions to image roads, bridges, tunnels, and other buildings.
  • the flying device 100 may not include an imaging device.
  • the power supply system 1 supplies DC power through the conductor 20.
  • AC power is transmitted at a high voltage
  • noise is generated around the conducting wire, which affects the operation of the flying device 100 and also affects the operation of other electronic devices.
  • the power supply system 1 according to an embodiment of the present disclosure can significantly reduce noise around the conductor 20.
  • the flying device 100 is a device that flies by rotating a blade (rotor) using a motor.
  • the power supply system 1 according to an embodiment of the present disclosure transmits power from the power supply device 10 to the flying device 100 with a high voltage, so that it is highly resistant to voltage fluctuations even when a load with a large power change such as a motor is used. Stable power supply to the load becomes possible.
  • FIG. 2 is an explanatory diagram illustrating a functional configuration example of the power supply system 1 according to an embodiment of the present disclosure.
  • the power supply device 10 includes a DC power supply 11 and a booster 12.
  • the power supply device 10 boosts the DC power supplied from the DC power supply 11 with the booster 12 and supplies the DC power to the flying device 100 through the conductor 20.
  • the DC power supply 11 may supply DC power having a voltage of 12 V and a current of 12 A, for example.
  • the power supply device 10 supplies the electric power boosted by the booster 12 to a voltage of about 400 V, for example, to the flying device 100 through the conductor 20.
  • the power supply device 10 can reduce the current flowing through the conductor 20 to 0.36 A by increasing the DC power of the voltage 12 V and the current 12 A to about 400 V.
  • the flying device 100 includes a step-down device 160 and a load 170.
  • the step-down device 160 steps down the electric power supplied from the power supply device 10, for example, with a voltage of 400 V to a voltage (rated voltage) used in the flying device 100.
  • the step-down device 160 supplies electric power whose voltage is stepped down to the load 170.
  • the load 170 in the flying device 100 includes, for example, a motor for rotating the rotor, a processor for controlling flight, a memory, and the like. A specific functional configuration example of the flying device 100 will be described later.
  • the power supply device 10 has the DC power supply 11, but the power supply device 10 may have an AC power supply, or may receive power from a commercial AC power supply. .
  • a configuration example in the case where the power supply apparatus 10 has an AC power supply or receives power supply from a commercial AC power supply is shown.
  • FIG. 3 is an explanatory diagram illustrating a functional configuration example of the power supply system 1 according to an embodiment of the present disclosure.
  • the power supply apparatus 10 includes an AC power supply 13 and a booster 14.
  • the power supply device 10 converts the AC power supplied from the AC power supply 13 into DC power in the booster 14, boosts the AC power, and supplies the boosted power to the flying device 100 through the conductor 20.
  • the power supply device 10 supplies the electric power boosted by the booster 14 to a voltage of about 400 V, for example, to the flying device 100 through the conductor 20.
  • the power supply system 1 is not limited to the power of the power source included in the power supply device 10 or the form of power supplied from the outside, and the flying device 100 through the conductor 20. Can be supplied with DC power.
  • the power supply system 1 is capable of flying by making the conductor 20 capable of withstanding transmission of DC power boosted by the power supply device 10 and being thin and light. It is possible to reliably supply power from the power supply device 10 for the operation of the device 100 and not to prevent free flight of the flying device 100.
  • FIG. 4 is an explanatory diagram illustrating a functional configuration example of the flying device 100 according to an embodiment of the present disclosure.
  • the functional configuration example of the flying device 100 according to the embodiment of the present disclosure will be described with reference to FIG.
  • the flying device 100 includes an imaging device 101, rotors 104a to 104d, motors 108a to 108d, a control unit 110, a communication unit 120, and a sensor unit. 130, a position information acquisition unit 132, a storage unit 140, and a battery 150.
  • the control unit 110 controls the operation of the flying device 100.
  • the control unit 110 may be configured to include a memory such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • a memory such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the control unit 110 adjusts the rotational speeds of the rotors 104a to 104d by adjusting the rotational speeds of the motors 108a to 108d, performs imaging processing by the imaging device 101, and transmits / receives information to / from other devices via the communication unit 120.
  • the storage and reading of information with respect to the storage unit 140 can be controlled.
  • control unit 110 controls the flight by adjusting the rotation speeds of the motors 108a to 108d and the execution of the still image capturing process for the image capturing apparatus 101.
  • the image pickup apparatus 101 includes a lens, an image pickup device such as a CCD image sensor and a CMOS image sensor, a flash, and the like.
  • the imaging device 101 provided in the flying device 100 performs still image or moving image imaging under the control of the control unit 110.
  • An image captured by the imaging apparatus 101 is transmitted from the communication unit 120 to an external apparatus.
  • the imaging device 101 executes imaging processing based on information on the imaging position of a still image included in flight information transmitted from another device.
  • An image obtained by the imaging process of the imaging device 101 can be stored in the storage unit 140 or transmitted from the communication unit 120 to an external device.
  • the imaging apparatus 101 can change the imaging direction to an arbitrary direction by control from the control unit 110, for example. For example, when the horizontal direction of the hovering camera is set to 0 degrees, it is possible to capture an imaging direction represented by a range of ⁇ 90 degrees in the vertical direction. Since the imaging device 101 can change the imaging direction, the flying device 100 can capture an image in a predetermined direction.
  • the rotors 104a to 104d cause the flying device 100 to fly by generating lift by rotation.
  • the rotors 104a to 104d are rotated by the rotation of the motors 108a to 108d.
  • the motors 108a to 108d rotate the rotors 104a to 104d.
  • the rotation of the motors 108a to 108d can be controlled by the control unit 110.
  • the communication unit 120 performs information transmission / reception processing by wireless communication with other devices.
  • the communication unit 120 can be configured by, for example, a communication circuit that performs transmission / reception processing, an antenna that performs wireless communication, and the like.
  • the flying device 100 may transmit an image captured by the imaging device 101 from the communication unit 120 to another device. Further, the flying device 100 may receive an instruction relating to flight from another device by the communication unit 120.
  • FIG. 1 shows a form in which the power supply device 10 and the flying device 100 are connected by a conducting wire 20, the power supplying device 10 and the flying device 100 are connected by a cable including the conducting wire 20. May be.
  • the cable may include a wire for wire communication in addition to the wire 20 for supplying power.
  • the number of cables may be one or a plurality.
  • the communication unit 120 may perform wired communication with other devices. When wired communication is performed between the flying device 100 and another device, the communication unit 120 performs wired communication with the other device using a wire for wired communication included in the cable. By connecting the power supply device 10 and the flying device 100 with a cable composed of a plurality of conducting wires, the communication state of the image captured by the flying device 100 and the operation information for operating the flying device 100 can be determined. This is better than in the case of wireless communication.
  • the sensor unit 130 is a device group that acquires the state of the flying device 100, and may be configured by, for example, an acceleration sensor, a gyro sensor, an ultrasonic sensor, an atmospheric pressure sensor, a contact sensor, a tension sensor, an optical flow sensor, a laser range finder, and the like. .
  • the sensor unit 130 may convert the acquired state of the flying device 100 into a predetermined signal and provide it to the control unit 110 as necessary.
  • the position information acquisition unit 132 is, for example, a GPS (Global Positioning System), a GNSS (Global Information on the current position of the flying device 100 is acquired using a navigation satellite system), a vision sensor, or the like.
  • the position information acquisition unit 132 can provide the acquired information on the current position of the flying device 100 to the control unit 110 as necessary.
  • the control unit 110 uses the information on the current position of the flying device 100 acquired by the position information acquiring unit 132 to execute flight control of the flying device 100 based on flight information received from another device.
  • the sensor unit 130 detects an obstacle that may hinder flight during flight.
  • the flying device 100 can provide information regarding the detected obstacle to other devices.
  • the sensor unit 130 detects the presence / absence of contact of the conductive wire 20, the contact position and the contact direction when there is a contact, and the like. Further, the sensor unit 130 detects the presence / absence of the pulling of the conductive wire 20 and the direction and number of times of pulling when there is a pulling.
  • the storage unit 140 stores various information.
  • the storage unit 140 can be configured by a rewritable memory such as a flash memory. Examples of the information stored in the storage unit 140 include flight information of the flying device 100 transmitted from another device, an image captured by the imaging device 101, and the like.
  • the battery 150 stores electric power for temporarily operating the flying device 100 when the power supply from the power supply device 10 is interrupted.
  • the battery 150 may be a primary battery that can only be discharged, or may be a secondary battery that can be charged. However, the power supply from the power supply device 10 may be performed by cutting the conductor 20 or the power supply device. In the case of interruption for some reason such as 10 problems, the power for temporarily operating the flying device 100 is stored, so that it is sufficient to have a capacity capable of flying for about several minutes.
  • the step-down device 160 steps down the DC power supplied from the power supply device 10 through the conductor 20 to the rated voltage in the flying device 100. For example, when the voltage of the DC power supplied from the power supply device 10 through the conductor 20 is 400V and the rated voltage in the flying device 100 is 12V, the step-down device 160 steps down the 400V voltage to 12V. The stepped down power is supplied to the motors 108 a to 108 d and other blocks of the flying device 100.
  • the flying device 100 can operate based on the power supplied from the power supply device 10 through the conductor 20 by having the configuration as shown in FIG.
  • the weight of the flying device 100 that rotates four rotors 104a to 104d as shown in FIG. 4 is 300 g
  • a battery with a voltage of 11.2 V, a capacity of 1300 mAh, and a weight of 110 g is used.
  • Experiments by the present disclosure have shown that it is possible to fly for approximately 8 minutes.
  • the battery capacity needs to be increased. For example, when the battery voltage is the same 11.2 V and the capacity is increased to 2200 mAh, the weight of the battery is about 262 g. Also, for example, if the battery voltage is the same 11.2 V and increased to 5000 mAh, the weight of the battery becomes approximately 397 g.
  • the weight of the 5000 mAh battery becomes heavier than the weight of the flying device 100, making it impossible to fly with the same aircraft, and a larger aircraft must be created. In addition, as the weight of the battery increases, more power must be consumed for buoyancy.
  • the step-down device 160 is realized with the same size as the above-mentioned battery capable of flying for 8 minutes, it can be realized in a light weight.
  • the step-down device 160 can be realized with a weight of about 50 g. Therefore, when the step-down device 160 is provided in place of the above-described battery, the step-down device 160 is 60 g lighter than the above-described battery, and the flying device 100 can obtain surplus buoyancy for 60 g lightened.
  • the flying device 100 which concerns on one Embodiment of this indication is equipped with the battery 150 which stores the electric power for operating the flying device 100 temporarily, and the electric power supply from the electric power supply apparatus 10 is for some reason Even if it is interrupted, flight can be continued.
  • the flying device 100 switches the battery 150 to a power source so as to fly to a predetermined position. You may control by the control part 110, and you may control by the control part 110 so that it may descend
  • FIG. 5 is an explanatory diagram illustrating an appearance example of the flying device 100 according to an embodiment of the present disclosure.
  • the flying device 100 is stabilized without being affected by the lead wire 20 by being connected to the lead wire 20 so that the lead wire 20 extends from the center of gravity at the center of the fuselage toward the bottom of the fuselage. You can fly. Further, since the conductor 20 is connected to the conductor 20 so that the conductor 20 extends from the center of gravity of the aircraft toward the lower part of the aircraft, the flying device 100 can fly so that the conductor 20 does not get entangled with the rotors 104a to 104d. I can do it. In FIG.
  • a state is shown in which the conductor 20 is connected to the conductor 20 so that the conductor 20 extends from the center of gravity at the center of the aircraft toward the lower side of the aircraft, but the present disclosure is not limited to such an example. Instead, the conductor 20 may be connected to the conductor 20 so that the conductor 20 extends from the center of gravity at the center of the aircraft toward the upper side of the aircraft.
  • the flying device 100 may be connected to the conductive wire 20 on its surface by a rotating connector that can conduct electricity.
  • the lead wire 20 can be prevented from being twisted by the flight of the flying device 100.
  • the flying device 100 is connected to the conducting wire 20 by a rotary connector that can conduct electricity by being boosted to a very high voltage in the power supply device 10, the electric power by the rotary connector that can conduct electricity. Little affected by loss.
  • a rotary connector or a slip ring can be used as the rotary connector that can conduct electricity.
  • the flying device 100 may perform posture determination using the position of the connected conductor 20.
  • FIG. 6 is an explanatory diagram showing the posture determination using the position of the conducting wire 20 by the flying device 100.
  • FIG. 6 shows a state in which the contact sensors 131a and 131b constituting the sensor unit 130 of FIG.
  • Contact sensors 131a and 131b are sensors for detecting the contact of the conductive wire 20. If the conducting wire 20 does not touch the contact sensors 131a and 131b, the flying device 100 can determine that it is in a horizontal state. On the other hand, if the conducting wire 20 touches one of the contact sensors 131a and 131b, the flying device 100 can determine that it is tilted.
  • the number, position, and size of the contact sensors for detecting the contact of the conductive wire 20 are not limited to those shown in FIG.
  • the power supply system 1 may extend the conductive wire 20 from the apex of a pole extended from the power supply device 10 or installed in the vicinity of the power supply device 10.
  • FIG. 7 is an explanatory diagram illustrating a configuration example of the power supply system 1 according to an embodiment of the present disclosure.
  • FIG. 7 shows a state in which a pole 30 having a predetermined length extends from the power supply device 10, and the conductor 20 extends from the vicinity of the apex of the pole 30.
  • the flying device 100 is connected to the power supply device 10 by the conducting wire 20, so that the flight range is restricted by the conducting wire 20.
  • the limitation of the flight range of the flying device 100 is eliminated by moving the power supply device 10. For example, by placing the power supply device 10 on a vehicle body such as a passenger car or a truck and repeating the movement of the power supply device 10 and the flight of the flying device 100, the restriction on the flight range of the flying device 100 can be eliminated.
  • the movement of the power supply device 10 and the flying device 100 are performed.
  • the flight may be performed in parallel.
  • the flying device 100 may detect that the conducting wire 20 has been pulled based on the sensing data from the sensor unit 130 by the control unit 110 and perform a flight based on the detection.
  • the flying device 100 may be detected by the sensor unit 130 in the direction in which the conductor 20 is pulled by the user, and may be controlled by the control unit 110 so as to fly in the direction pulled by the user.
  • the flying device 100 may detect the number of times that the conducting wire 20 has been pulled by the user based on the sensing data from the sensor unit 130 by the control unit 110 and perform a flight based on the detection.
  • the flying device 100 controls the controlling unit 110 to fly in the direction in which the conducting wire 20 is pulled.
  • the control unit 110 may control to fly to a predetermined position according to the pull.
  • the above-described relationship between the number of pulls and flight control is merely an example, and it goes without saying that the relationship between the number of pulls and flight control can be set as appropriate.
  • the conducting wire 20 may have a function of communicating information in addition to a function of supplying power. That is, the power supply system 1 according to the present embodiment causes the power supply device 10 to superimpose predetermined information on the DC power and transmit the power with the information to the flying device 100 through the conductor 20. Good.
  • the conductor 20 may be cut off.
  • the flying device 100 may use the sensor unit 130 to detect that a sudden change has occurred in the posture.
  • the flying device 100 may notify other devices, for example, the power supply device 10, that the posture has suddenly changed.
  • the flying device 100 may notify other devices, for example, the power supply device 10, that the posture has suddenly changed.
  • the flying device 100 may notify other devices, for example, the power supply device 10, that the posture has suddenly changed.
  • whether or not a sudden change has occurred in the posture may be determined by whether or not the data sensed by the sensor unit 130 has changed by a predetermined threshold or more per unit time.
  • the power supply device 10 When the power supply device 10 receives a notification from the flying device 100 that a sudden change has occurred in the attitude of the flying device 100, for example, the power supply device 10 automatically winds up the conductor 20 to stabilize the attitude of the flying device 100. Such an operation may be executed.
  • the conducting wire 20 is thin and light so as not to prevent free flight of the flying device 100, winding by the power supply device 10 is facilitated.
  • the winding of the conducting wire 20 may be performed by a human.
  • the power supply system 1 that supplies power from the power supply device 10 to the flying device 100 through the conductor 20 is provided.
  • the power supply system 1 according to the embodiment of the present invention supplies the power supply device 10 to the flight device 100 from the power supply device 10 through the lead wire 20 with the power supply device 10 having a voltage that is significantly higher than the rated voltage of the flight device 100. .
  • the power supply system 1 can permanently supply power to the flying device 100 as long as power is not interrupted in the power supply device 10 or the conductor 20 is not disconnected. become.
  • the power supply system 1 By supplying power to the flying device 100 permanently, the power supply system 1 according to an embodiment of the present disclosure dramatically increases the flight duration of the flying device 100 compared to a case where only the battery is provided. Can be improved.
  • the power supply system 1 can save the trouble of charging and replacing the battery of the flying device 100 by supplying the flying device 100 from the power supply device 10 to the flying device 100 through the conductor 20.
  • the mobile body which receives supply of electric power from the power supply apparatus 10 is not limited to the flying apparatus 100, for example, It may be a device such as a robot that operates by receiving power.
  • a moving object A booster that boosts the voltage to a voltage greater than the rating of the mobile body;
  • a conducting wire that transmits electric power generated by the voltage boosted by the boosting unit to the moving body;
  • the moving body is A power supply system including a step-down unit for stepping down a voltage of electric power transmitted through the conducting wire to a rating in the moving body.
  • the power supply system according to (1), wherein the power transmitted through the conducting wire is DC power.
  • the moving body includes a control unit that detects pulling of the conducting wire.
  • the said control part is an electric power supply system as described in said (3) which controls the said mobile body to fly in the direction of the pull of the detected said conducting wire.
  • the said control part is an electric power supply system as described in said (3) or (4) which controls the flight of the said mobile body according to the frequency
  • the said mobile body is a power supply system as described in said (1) provided with the battery for continuing the flight of the said mobile body when the electric power supply from the said conducting wire stops.
  • the moving body is A power detection unit for detecting that power supply from the conducting wire has been interrupted; When the power detection unit detects that the power supply from the conducting wire has been interrupted, a flight control unit that controls the flight of the mobile body to perform a predetermined flight with the power of the battery;
  • the power supply system according to (6) comprising: (8)
  • the said flight control part is an electric power supply system as described in said (7) which controls flight of the said mobile body so that it may fly to a predetermined position.
  • the boosting unit boosts the voltage to a voltage of 30 times or more of a rating of the moving body.

Abstract

[Problem] To provide an electric power supply system capable of providing a moving body with electric power by which the moving body is able to operate, without imposing any limitations to movement of the moving body. [Solution] Provided is an electric power supply system comprising a moving body, a step-up unit for raising the voltage to a higher level than the rated voltage of the moving body, and a conductor wire for transmitting electric power at the voltage stepped up by the step-up unit to the moving body, wherein the moving body includes a step-down unit for lowering the voltage of the electric power transmitted by the conductor wire to the rated voltage of the moving body.

Description

電力供給システムPower supply system
 本開示は、電力供給システムに関する。 This disclosure relates to a power supply system.
 無線で操縦できる飛行体やロボットをはじめとした移動体にカメラを取り付けて、そのカメラで撮像するという写真の撮像方法に関する技術が開示されている(例えば特許文献1等参照)。移動体にカメラを取り付けることで、上空からや、三脚が立てられない場所からの写真を撮像することが可能になる。また移動体にカメラを取り付けて撮像することで、本物の飛行機やヘリコプターを使用した場合よりもコストを抑えることが出来る、安全に撮像が出来る、低空や狭い場所でも撮像が出来る、目標に接近して撮像が出来る等の様々な利点がもたらされる。 A technique relating to a method of taking a photograph in which a camera is attached to a moving body such as a flying body or a robot that can be operated wirelessly and captured by the camera is disclosed (for example, see Patent Document 1). By attaching the camera to the moving body, it is possible to take a picture from the sky or from a place where the tripod cannot be stood. Also, by attaching a camera to a moving object and taking images, the cost can be reduced compared to using a real airplane or helicopter, images can be taken safely, images can be taken even in low altitudes and narrow places, and the target is approached. Thus, various advantages such as being able to take an image are brought about.
 しかし、このような飛行体やロボットをはじめとした移動体を自動で移動させるためには、例えばバッテリから電力を供給する必要がある。しかし、バッテリによる連続稼働時間には非常に厳しい制約がある。そこで、例えば特許文献2には、有線によって飛行体に電力を供給することで連続稼働時間の制約を取り除いた技術が開示されている。 However, in order to automatically move such moving objects such as flying objects and robots, it is necessary to supply power from, for example, a battery. However, there are very severe restrictions on the continuous operation time by the battery. Thus, for example, Patent Document 2 discloses a technique that removes the restriction on continuous operation time by supplying power to the flying object by wire.
特開2006-27448号公報JP 2006-27448 A 特開2013-79034号公報JP 2013-79034 A
 このような状況を鑑みれば、移動体の動きを制限することなく、移動体が動作し得る電力を効率良く移動体に供給するための技術が求められる。 In view of such a situation, there is a need for a technique for efficiently supplying power that can move the moving body to the moving body without restricting the movement of the moving body.
 そこで本開示では、移動体の動きを制限せずに移動体が動作し得る電力を移動体に送電することが可能な、新規かつ改良された電力供給システムを提案する。 Therefore, the present disclosure proposes a new and improved power supply system capable of transmitting to the mobile body power that can be operated without limiting the movement of the mobile body.
 本開示によれば、移動体と、前記移動体における定格より大きな電圧に昇圧する昇圧部と、前記昇圧部で昇圧した電圧による電力を前記移動体に伝送する導線と、を備え、前記移動体は、前記導線で伝送された電力の電圧を前記移動体における定格に降圧する降圧部を含む、電力供給システムが提供される。 According to the present disclosure, the mobile body includes: a mobile body; a booster that boosts the voltage to a voltage larger than a rating of the mobile body; and a conductor that transmits electric power generated by the voltage boosted by the booster to the mobile body. Provides a power supply system including a step-down unit for stepping down the voltage of the power transmitted through the conducting wire to a rating of the moving body.
 以上説明したように本開示によれば、移動体の動きを制限せずに移動体が動作し得る電力を移動体に送電することが可能な、新規かつ改良された電力供給システムを提供することが出来る。 As described above, according to the present disclosure, it is possible to provide a new and improved power supply system capable of transmitting to a moving body the power that the moving body can operate without restricting the movement of the moving body. I can do it.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の一実施形態に係る電力供給システムの全体構成例を示す説明図である。It is explanatory drawing which shows the example of whole structure of the electric power supply system which concerns on one Embodiment of this indication. 本開示の一実施形態に係る電力供給システム1の機能構成例について示す説明図である。It is explanatory drawing shown about the function structural example of the electric power supply system 1 which concerns on one Embodiment of this indication. 本開示の一実施形態に係る電力供給システム1の機能構成例について示す説明図である。It is explanatory drawing shown about the function structural example of the electric power supply system 1 which concerns on one Embodiment of this indication. 本開示の一実施形態にかかる飛行装置100の機能構成例を示す説明図である。It is explanatory drawing which shows the function structural example of the flying apparatus 100 concerning one Embodiment of this indication. 本開示の一実施形態に係る飛行装置100の外観例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an appearance example of a flying device 100 according to an embodiment of the present disclosure. 飛行装置100による、導線20の位置を用いた姿勢の判別について示す説明図である。It is explanatory drawing shown about the discrimination | determination of the attitude | position using the position of the conducting wire 20 by the flying device 100. FIG. 本開示の一実施形態に係る電力供給システム1の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the electric power supply system 1 which concerns on one Embodiment of this indication.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.背景
 2.本開示の一実施形態
 3.まとめ
The description will be made in the following order.
1. Background 2 2. One embodiment of the present disclosure Summary
 <1.背景>
 本開示の一実施形態について詳細に説明する前に、まず本開示の一実施形態の背景について説明する。
<1. Background>
Before describing an embodiment of the present disclosure in detail, first, the background of the embodiment of the present disclosure will be described.
 飛行体をはじめとした移動体を自動で移動させるためには、例えばバッテリから電力を供給する必要がある。しかし、バッテリによる連続稼働時間には非常に厳しい制約がある。撮像装置を備えた飛行体に、人間が入り込むには困難であったり、危険であったりする場所を撮像させるような場合、バッテリによる連続稼働時間が短いと、何度もバッテリを交換したり、充電を頻繁に繰り返したりしないといけない。 In order to automatically move a moving object such as a flying object, it is necessary to supply electric power from a battery, for example. However, there are very severe restrictions on the continuous operation time by the battery. When shooting a place that is difficult or dangerous for humans to enter a flying object equipped with an imaging device, if the continuous operation time by the battery is short, the battery can be replaced many times, I have to repeat charging frequently.
 そこで、例えば上述した特許文献2には、有線によって飛行体に電力を供給することで連続稼働時間の制約を取り除いた技術が開示されている。 Therefore, for example, Patent Document 2 described above discloses a technique that removes the restriction of continuous operation time by supplying power to the flying object by wire.
 ここで、移動体に有線で電力を供給するには、移動体における定格電圧の電力を供給することが重要であるが、従来の移動体への電力の伝送は、移動体で実際に使用される電圧に対して、あまり高くない電圧を用いていた。 Here, in order to supply power to a mobile body by wire, it is important to supply power at a rated voltage in the mobile body, but the conventional transmission of power to the mobile body is actually used in the mobile body. A voltage that is not so high was used.
 移動体は大きな電力を消費するものが多く、移動体で送電する電力の電圧があまり高くないと、線材に流れる電流が大きくなり、電圧降下や発熱等の現象を回避するために、太く硬い線材を使わなくてはいけなかった。太く硬い線材を使うことで、移動体に自由な移動が大きく制約されてしまうことになる。 Many moving objects consume large amounts of power, and if the voltage of the power transmitted by the moving object is not very high, the current flowing through the wire will increase, and in order to avoid phenomena such as voltage drop and heat generation, thick and hard wires I had to use. By using a thick and hard wire rod, free movement is greatly restricted by the moving body.
 そこで本件開示者は、移動体の動きを制限せずに、移動体が動作し得る電力を移動体に送電することが可能な技術について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、移動体の定格電圧以上に昇圧してから移動体に送電することで、移動体の動きを制限せずに、移動体が動作し得る電力を移動体に送電することが可能な技術を考案するに至った。 Therefore, the present disclosure has intensively studied a technology that can transmit the electric power that the moving body can operate to the moving body without restricting the movement of the moving body. As a result, the present disclosure person can operate the mobile body without restricting the movement of the mobile body by transmitting the power to the mobile body after boosting the voltage above the rated voltage of the mobile body, as will be described below. It came to devise the technology which can transmit electric power to a moving body.
 以上、本開示の一実施形態の背景について説明した。 The background of the embodiment of the present disclosure has been described above.
 <2.本開示の一実施形態>
 続いて、本開示の一実施形態について説明する。図1は、本開示の一実施形態に係る電力供給システムの全体構成例を示す説明図である。図1に示したのは、移動体の一例である飛行体に対して、飛行体が動作し得る電力を飛行体に送電することを目的とした電力供給システムの構成例である。以下、図1を用いて本開示の一実施形態に係る電力供給システムの全体構成例について説明する。
<2. One Embodiment of the Present Disclosure>
Subsequently, an embodiment of the present disclosure will be described. FIG. 1 is an explanatory diagram illustrating an overall configuration example of a power supply system according to an embodiment of the present disclosure. FIG. 1 shows a configuration example of an electric power supply system for transmitting electric power that can be operated by a flying object to the flying object, which is an example of a moving object. Hereinafter, an overall configuration example of the power supply system according to an embodiment of the present disclosure will be described with reference to FIG.
 図1に示したように、本開示の一実施形態に係る電力供給システム1は、電力供給装置10と、飛行装置100と、を含んで構成される。 As shown in FIG. 1, the power supply system 1 according to an embodiment of the present disclosure includes a power supply device 10 and a flying device 100.
 電力供給装置10は、飛行装置100に電力を供給する装置である。本実施形態では、電力供給装置10は、飛行装置100へ直流電力を供給する。電力供給装置10は、飛行装置100へ直流電力を供給するにあたり、導線20で飛行装置100と接続されている。 The power supply device 10 is a device that supplies power to the flying device 100. In the present embodiment, the power supply device 10 supplies DC power to the flying device 100. The power supply device 10 is connected to the flying device 100 by a conducting wire 20 when supplying DC power to the flying device 100.
 電力供給装置10は、導線20を通じて飛行装置100へ直流電力を供給するにあたり、飛行装置100において使用される電圧(定格電圧)の数十倍の電圧に昇圧した直流電力を供給する。 When supplying DC power to the flying device 100 through the conductor 20, the power supply device 10 supplies DC power boosted to a voltage several tens of times the voltage (rated voltage) used in the flying device 100.
 すなわち、導線20は、電力供給装置10で昇圧された直流電力の送電に耐えうるものであり、かつ、飛行装置100の自由飛行を妨げないような、細くて軽いものであることが望ましい。 That is, it is desirable that the conductive wire 20 be thin and light so that it can withstand transmission of DC power boosted by the power supply device 10 and does not hinder the free flight of the flying device 100.
 一例を挙げれば、導線20は、断面積のサイズがおよそ0.125スクエアであり、長さがおよそ80~100メートル程度のものであることが望ましい。もちろん導線20の断面積のサイズや長さはこれに限定されるものではない。例えば、本実施形態においては、導線20は直径がおよそ0.4mm、断面積がおよそ0.13mm以下、質量がおよそ1.1kg/km、抵抗値はおよそ150Ω/km、長さがおよそ100mである。 For example, the conductor 20 preferably has a cross-sectional size of approximately 0.125 square and a length of approximately 80 to 100 meters. Of course, the size and length of the cross-sectional area of the conducting wire 20 are not limited to this. For example, in the present embodiment, the conductive wire 20 has a diameter of approximately 0.4 mm, a cross-sectional area of approximately 0.13 mm 2 or less, a mass of approximately 1.1 kg / km, a resistance value of approximately 150 Ω / km, and a length of approximately 100 m. It is.
 飛行装置100は、電力供給装置10から導線20を通じて供給される直流電力を電力源として飛行する装置である。飛行装置100は、例えば、ユーザによる操縦に基づき、または、予め設定された飛行経路によって飛行するよう機能する。また本実施形態では、飛行装置100は撮像装置を備え、道路、橋梁、トンネルその他の建築物を撮像するよう機能する。もちろん飛行装置100は撮像装置を備えていなくてもよい。 The flying device 100 is a device that flies using DC power supplied from the power supply device 10 through the conductor 20 as a power source. The flying device 100 functions to fly based on, for example, a pilot by a user or according to a preset flight path. In the present embodiment, the flying device 100 includes an imaging device and functions to image roads, bridges, tunnels, and other buildings. Of course, the flying device 100 may not include an imaging device.
 本開示の一実施形態に係る電力供給システム1は、直流電力を導線20で供給している。交流電力を高い電圧で送電すると、導線の周囲にノイズを発生させてしまい、飛行装置100の動作に影響を与える他、その他の電子機器の動作にも影響を与えることになる。しかし直流電力を高い電圧で送電することで、本開示の一実施形態に係る電力供給システム1は、導線20の周囲へのノイズを大幅に低減させることが出来る。 The power supply system 1 according to an embodiment of the present disclosure supplies DC power through the conductor 20. When AC power is transmitted at a high voltage, noise is generated around the conducting wire, which affects the operation of the flying device 100 and also affects the operation of other electronic devices. However, by transmitting DC power at a high voltage, the power supply system 1 according to an embodiment of the present disclosure can significantly reduce noise around the conductor 20.
 飛行装置100は、モータを用いて羽根(ロータ)を回転させることで飛行する装置である。本開示の一実施形態に係る電力供給システム1は、高い電圧で電力供給装置10から飛行装置100へ送電することで、モータのような電力変化の大きい負荷が用いられても、電圧変動に強く、負荷への安定した電力供給が可能になる。 The flying device 100 is a device that flies by rotating a blade (rotor) using a motor. The power supply system 1 according to an embodiment of the present disclosure transmits power from the power supply device 10 to the flying device 100 with a high voltage, so that it is highly resistant to voltage fluctuations even when a load with a large power change such as a motor is used. Stable power supply to the load becomes possible.
 図2は、本開示の一実施形態に係る電力供給システム1の機能構成例について示す説明図である。 FIG. 2 is an explanatory diagram illustrating a functional configuration example of the power supply system 1 according to an embodiment of the present disclosure.
 図2に示したように、電力供給装置10は、直流電源11と、昇圧器12と、を含んで構成される。電力供給装置10は、直流電源11から供給される直流電力を、昇圧器12で昇圧させて、導線20を通じて飛行装置100に供給する。直流電源11は、例えば電圧12V、電流12Aの直流電力を供給するものであってもよい。 As shown in FIG. 2, the power supply device 10 includes a DC power supply 11 and a booster 12. The power supply device 10 boosts the DC power supplied from the DC power supply 11 with the booster 12 and supplies the DC power to the flying device 100 through the conductor 20. The DC power supply 11 may supply DC power having a voltage of 12 V and a current of 12 A, for example.
 電力供給装置10は、昇圧器12で、例えば400V程度の電圧まで昇圧させた電力を、導線20を通じて飛行装置100に供給する。電力供給装置10は、電圧12V、電流12Aの直流電力を400V程度まで昇圧させることで、導線20に流す電流を0.36Aまで下げることが出来る。 The power supply device 10 supplies the electric power boosted by the booster 12 to a voltage of about 400 V, for example, to the flying device 100 through the conductor 20. The power supply device 10 can reduce the current flowing through the conductor 20 to 0.36 A by increasing the DC power of the voltage 12 V and the current 12 A to about 400 V.
 そして図2に示したように、飛行装置100は、降圧器160と、負荷170と、を含んで構成される。降圧器160は、電力供給装置10から供給される、例えば電圧が400Vの電力を、飛行装置100において使用される電圧(定格電圧)まで降圧させる。降圧器160は、電圧を降圧させた電力を負荷170に供給する。 As shown in FIG. 2, the flying device 100 includes a step-down device 160 and a load 170. The step-down device 160 steps down the electric power supplied from the power supply device 10, for example, with a voltage of 400 V to a voltage (rated voltage) used in the flying device 100. The step-down device 160 supplies electric power whose voltage is stepped down to the load 170.
 なお、飛行装置100における負荷170としては、例えばロータを回転させるためのモータ、飛行を制御するためのプロセッサやメモリなどがある。飛行装置100の具体的な機能構成例については後述する。 The load 170 in the flying device 100 includes, for example, a motor for rotating the rotor, a processor for controlling flight, a memory, and the like. A specific functional configuration example of the flying device 100 will be described later.
 図2では、電力供給装置10は直流電源11を有していたが、電力供給装置10は交流電源を有してもよく、または商用の交流電源から電力の供給を受けるものであっても良い。電力供給装置10が交流電源を有するもの、または商用の交流電源から電力の供給を受けるものである場合の構成例を示す。 In FIG. 2, the power supply device 10 has the DC power supply 11, but the power supply device 10 may have an AC power supply, or may receive power from a commercial AC power supply. . A configuration example in the case where the power supply apparatus 10 has an AC power supply or receives power supply from a commercial AC power supply is shown.
 図3は、本開示の一実施形態に係る電力供給システム1の機能構成例について示す説明図である。 FIG. 3 is an explanatory diagram illustrating a functional configuration example of the power supply system 1 according to an embodiment of the present disclosure.
 図3に示したように、電力供給装置10は、交流電源13と、昇圧器14と、を含んで構成される。電力供給装置10は、交流電源13から供給される交流電力を、昇圧器14において直流電力に変換した上で昇圧させて、導線20を通じて飛行装置100に供給する。電力供給装置10は、昇圧器14で、例えば400V程度の電圧まで昇圧させた電力を、導線20を通じて飛行装置100に供給する。 As shown in FIG. 3, the power supply apparatus 10 includes an AC power supply 13 and a booster 14. The power supply device 10 converts the AC power supplied from the AC power supply 13 into DC power in the booster 14, boosts the AC power, and supplies the boosted power to the flying device 100 through the conductor 20. The power supply device 10 supplies the electric power boosted by the booster 14 to a voltage of about 400 V, for example, to the flying device 100 through the conductor 20.
 このように、本開示の一実施形態に係る電力供給システム1は、電力供給装置10が有している電源の電力や、外部から供給を受ける電力の形態に依らず、導線20を通じて飛行装置100に直流電力を供給することが出来る。 As described above, the power supply system 1 according to the embodiment of the present disclosure is not limited to the power of the power source included in the power supply device 10 or the form of power supplied from the outside, and the flying device 100 through the conductor 20. Can be supplied with DC power.
 そして導線20を、電力供給装置10で昇圧された直流電力の送電に耐えうるものであり、かつ、細くて軽いものとすることで、本開示の一実施形態に係る電力供給システム1は、飛行装置100の動作のために電力を電力供給装置10から確実に供給するとともに、飛行装置100の自由飛行を妨げないように出来る。 The power supply system 1 according to an embodiment of the present disclosure is capable of flying by making the conductor 20 capable of withstanding transmission of DC power boosted by the power supply device 10 and being thin and light. It is possible to reliably supply power from the power supply device 10 for the operation of the device 100 and not to prevent free flight of the flying device 100.
 続いて、本開示の一実施形態にかかる飛行装置100の機能構成例について説明する。図4は、本開示の一実施形態にかかる飛行装置100の機能構成例を示す説明図である。以下、図4を用いて本開示の一実施形態にかかる飛行装置100の機能構成例について説明する。 Subsequently, a functional configuration example of the flying device 100 according to an embodiment of the present disclosure will be described. FIG. 4 is an explanatory diagram illustrating a functional configuration example of the flying device 100 according to an embodiment of the present disclosure. Hereinafter, the functional configuration example of the flying device 100 according to the embodiment of the present disclosure will be described with reference to FIG.
 図4に示したように、本開示の一実施形態に係る飛行装置100は、撮像装置101と、ロータ104a~104dと、モータ108a~108dと、制御部110と、通信部120と、センサ部130と、位置情報取得部132と、記憶部140と、バッテリ150と、を含んで構成される。 As illustrated in FIG. 4, the flying device 100 according to an embodiment of the present disclosure includes an imaging device 101, rotors 104a to 104d, motors 108a to 108d, a control unit 110, a communication unit 120, and a sensor unit. 130, a position information acquisition unit 132, a storage unit 140, and a battery 150.
 制御部110は、飛行装置100の動作を制御する。制御部110は、例えばCPU(Central Processing Unit)や、ROM(Read Only Memory)、RAM(Random Access Memory)等のメモリなどを含んで構成されうる。例えば制御部110は、モータ108a~108dの回転速度の調整によるロータ104a~104dの回転速度の調整、撮像装置101による撮像処理、通信部120を介した他の装置との間の情報の送受信処理、記憶部140に対する情報の記憶や読出しを制御し得る。 The control unit 110 controls the operation of the flying device 100. The control unit 110 may be configured to include a memory such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. For example, the control unit 110 adjusts the rotational speeds of the rotors 104a to 104d by adjusting the rotational speeds of the motors 108a to 108d, performs imaging processing by the imaging device 101, and transmits / receives information to / from other devices via the communication unit 120. The storage and reading of information with respect to the storage unit 140 can be controlled.
 本実施形態では、制御部110は、モータ108a~108dの回転速度を調整しての飛行および撮像装置101に対する静止画像の撮像処理の実行を制御する。 In this embodiment, the control unit 110 controls the flight by adjusting the rotation speeds of the motors 108a to 108d and the execution of the still image capturing process for the image capturing apparatus 101.
 撮像装置101は、レンズやCCDイメージセンサ、CMOSイメージセンサ等の撮像素子、フラッシュ等で構成されている。飛行装置100に備えられる撮像装置101は、制御部110の制御により静止画像または動画像の撮像を実行する。撮像装置101が撮像する画像は、通信部120から外部の装置へ送信される。 The image pickup apparatus 101 includes a lens, an image pickup device such as a CCD image sensor and a CMOS image sensor, a flash, and the like. The imaging device 101 provided in the flying device 100 performs still image or moving image imaging under the control of the control unit 110. An image captured by the imaging apparatus 101 is transmitted from the communication unit 120 to an external apparatus.
 また本実施形態では、撮像装置101は、他の装置から送信された飛行情報に含まれる静止画像の撮像位置の情報に基づいて撮像処理を実行する。撮像装置101の撮像処理によって得られた画像は、記憶部140に記憶されたり、通信部120から外部の装置へ送信されたりし得る。 In the present embodiment, the imaging device 101 executes imaging processing based on information on the imaging position of a still image included in flight information transmitted from another device. An image obtained by the imaging process of the imaging device 101 can be stored in the storage unit 140 or transmitted from the communication unit 120 to an external device.
 撮像装置101は、撮像する方向を、例えば制御部110からの制御によって任意の方向に変更することが出来る。例えばホバリングカメラの水平方向を0度とした時に、上下方向に±90度の範囲で表される撮像方向を撮像可能とすることができる。撮像装置101が、撮像する方向を変更できることで、飛行装置100は所定の方向の画像を撮像することが出来る。 The imaging apparatus 101 can change the imaging direction to an arbitrary direction by control from the control unit 110, for example. For example, when the horizontal direction of the hovering camera is set to 0 degrees, it is possible to capture an imaging direction represented by a range of ± 90 degrees in the vertical direction. Since the imaging device 101 can change the imaging direction, the flying device 100 can capture an image in a predetermined direction.
 ロータ104a~104dは、回転により揚力を生じさせることで飛行装置100を飛行させる。ロータ104a~104dの回転はモータ108a~108dの回転によりなされる。モータ108a~108dは、ロータ104a~104dを回転させる。モータ108a~108dの回転は制御部110によって制御され得る。 The rotors 104a to 104d cause the flying device 100 to fly by generating lift by rotation. The rotors 104a to 104d are rotated by the rotation of the motors 108a to 108d. The motors 108a to 108d rotate the rotors 104a to 104d. The rotation of the motors 108a to 108d can be controlled by the control unit 110.
 通信部120は、他の装置との間で無線通信による情報の送受信処理を行う。通信部120は、例えば送受信処理を実行する通信回路や、無線通信を実行するアンテナなどで構成されうる。飛行装置100は、撮像装置101で撮像されている画像を通信部120から他の装置へ送信してもよい。また飛行装置100は、飛行に関する指示を他の装置から通信部120で受信してもよい。 The communication unit 120 performs information transmission / reception processing by wireless communication with other devices. The communication unit 120 can be configured by, for example, a communication circuit that performs transmission / reception processing, an antenna that performs wireless communication, and the like. The flying device 100 may transmit an image captured by the imaging device 101 from the communication unit 120 to another device. Further, the flying device 100 may receive an instruction relating to flight from another device by the communication unit 120.
 なお、図1では電力供給装置10と飛行装置100とが導線20で接続されている形態を示しているが、電力供給装置10と飛行装置100とは、導線20を含んだケーブルで接続されていても良い。ケーブルは、電力を供給する導線20の他に、有線通信用の導線が含まれていても良い。また、そのケーブルは1本でも良く、複数本でも良い。 Although FIG. 1 shows a form in which the power supply device 10 and the flying device 100 are connected by a conducting wire 20, the power supplying device 10 and the flying device 100 are connected by a cable including the conducting wire 20. May be. The cable may include a wire for wire communication in addition to the wire 20 for supplying power. In addition, the number of cables may be one or a plurality.
 そして通信部120は、他の装置との間で有線通信を行っても良い。飛行装置100と他の装置との間で有線通信が行われる際は、通信部120は、上記ケーブルに含まれる有線通信用の導線によって他の装置との間で有線通信を行う。電力供給装置10と飛行装置100とが、複数の導線で構成されるケーブルで接続されることで、飛行装置100で撮像された画像や、飛行装置100を操作するための操作情報の通信状態が、無線通信の場合と比較して良好になる。 The communication unit 120 may perform wired communication with other devices. When wired communication is performed between the flying device 100 and another device, the communication unit 120 performs wired communication with the other device using a wire for wired communication included in the cable. By connecting the power supply device 10 and the flying device 100 with a cable composed of a plurality of conducting wires, the communication state of the image captured by the flying device 100 and the operation information for operating the flying device 100 can be determined. This is better than in the case of wireless communication.
 センサ部130は、飛行装置100の状態を取得する装置群であり、例えば加速度センサ、ジャイロセンサ、超音波センサ、気圧センサ、接触センサ、テンションセンサ、オプティカルフローセンサ、レーザーレンジファインダー等で構成され得る。センサ部130は、取得した飛行装置100の状態を所定の信号に変換して、必要に応じて制御部110に提供し得る。 The sensor unit 130 is a device group that acquires the state of the flying device 100, and may be configured by, for example, an acceleration sensor, a gyro sensor, an ultrasonic sensor, an atmospheric pressure sensor, a contact sensor, a tension sensor, an optical flow sensor, a laser range finder, and the like. . The sensor unit 130 may convert the acquired state of the flying device 100 into a predetermined signal and provide it to the control unit 110 as necessary.
 位置情報取得部132は、例えばGPS(Global Positioning System)、GNSS(Global
Navigation Satellite System)、ビジョンセンサ等を用いて飛行装置100の現在位置の情報を取得する。位置情報取得部132は、取得した飛行装置100の現在位置の情報を、必要に応じて制御部110に提供し得る。制御部110は、位置情報取得部132が取得した飛行装置100の現在位置の情報を用いて、他の装置から受信した飛行情報に基づいた飛行装置100の飛行制御を実行する。
The position information acquisition unit 132 is, for example, a GPS (Global Positioning System), a GNSS (Global
Information on the current position of the flying device 100 is acquired using a navigation satellite system), a vision sensor, or the like. The position information acquisition unit 132 can provide the acquired information on the current position of the flying device 100 to the control unit 110 as necessary. The control unit 110 uses the information on the current position of the flying device 100 acquired by the position information acquiring unit 132 to execute flight control of the flying device 100 based on flight information received from another device.
 またセンサ部130は、飛行時に飛行を妨げる可能性のある障害物を検知する。センサ部130が障害物を検知することで、飛行装置100はその検知した障害物に関する情報を他の装置に提供することが出来る。 Also, the sensor unit 130 detects an obstacle that may hinder flight during flight. When the sensor unit 130 detects an obstacle, the flying device 100 can provide information regarding the detected obstacle to other devices.
 またセンサ部130は、導線20の接触の有無や、接触があった場合の接触位置や接触方向等を検知する。またセンサ部130は、導線20の引っ張りの有無や、引っ張りがあった場合の引っ張りの方向や回数等を検知する。 Further, the sensor unit 130 detects the presence / absence of contact of the conductive wire 20, the contact position and the contact direction when there is a contact, and the like. Further, the sensor unit 130 detects the presence / absence of the pulling of the conductive wire 20 and the direction and number of times of pulling when there is a pulling.
 記憶部140は、様々な情報を記憶する。記憶部140は、例えばフラッシュメモリ等の書き換え可能なメモリで構成されうる。記憶部140が記憶する情報としては、例えば他の装置から送信された飛行装置100の飛行情報、撮像装置101で撮像した画像等があり得る。 The storage unit 140 stores various information. The storage unit 140 can be configured by a rewritable memory such as a flash memory. Examples of the information stored in the storage unit 140 include flight information of the flying device 100 transmitted from another device, an image captured by the imaging device 101, and the like.
 バッテリ150は、電力供給装置10からの電力供給が途絶した場合に、一時的に飛行装置100を動作させるための電力を蓄える。バッテリ150は、放電のみが可能な一次電池であってもよく、充電も可能な二次電池であってもよいが、電力供給装置10からの電力供給が、導線20の切断や、電力供給装置10の不具合等の何らかの理由で途絶した場合に、一時的に飛行装置100を動作させるための電力を蓄えるものであるので、数分程度飛行できるだけの容量があれば良い。 The battery 150 stores electric power for temporarily operating the flying device 100 when the power supply from the power supply device 10 is interrupted. The battery 150 may be a primary battery that can only be discharged, or may be a secondary battery that can be charged. However, the power supply from the power supply device 10 may be performed by cutting the conductor 20 or the power supply device. In the case of interruption for some reason such as 10 problems, the power for temporarily operating the flying device 100 is stored, so that it is sufficient to have a capacity capable of flying for about several minutes.
 降圧器160は、電力供給装置10から導線20を通じて供給された直流電力を、飛行装置100における定格電圧に降圧する。例えば、電力供給装置10から導線20を通じて供給された直流電力の電圧が400Vであり、飛行装置100における定格電圧が12Vであった場合、降圧器160は、その400Vの電圧を12Vまで降圧する。降圧された電力は、モータ108a~108dの駆動や、飛行装置100のその他のブロックに供給される。 The step-down device 160 steps down the DC power supplied from the power supply device 10 through the conductor 20 to the rated voltage in the flying device 100. For example, when the voltage of the DC power supplied from the power supply device 10 through the conductor 20 is 400V and the rated voltage in the flying device 100 is 12V, the step-down device 160 steps down the 400V voltage to 12V. The stepped down power is supplied to the motors 108 a to 108 d and other blocks of the flying device 100.
 本開示の一実施形態に係る飛行装置100は、図4に示したような構成を有することで、電力供給装置10から導線20を通じて供給された電力に基づいて動作することができる。 The flying device 100 according to an embodiment of the present disclosure can operate based on the power supplied from the power supply device 10 through the conductor 20 by having the configuration as shown in FIG.
 例えば、図4に示したような4つのロータ104a~104dを回転させて飛行する飛行装置100の重量が300gの場合、電圧が11.2V、容量が1300mAh、重量が110gのバッテリを用いると、およそ8分間飛行できることが、本件開示者らの実験により分かっている。 For example, when the weight of the flying device 100 that rotates four rotors 104a to 104d as shown in FIG. 4 is 300 g, a battery with a voltage of 11.2 V, a capacity of 1300 mAh, and a weight of 110 g is used. Experiments by the present disclosure have shown that it is possible to fly for approximately 8 minutes.
 より飛行時間を長くしようとすれば、バッテリの容量を大きくする必要がある。例えば、バッテリの電圧を同じ11.2Vにして、容量を2200mAhに増やした場合、バッテリの重量はおよそ262g程度となる。また例えば、バッテリの電圧を同じ11.2Vにして、5000mAhに増やすと、バッテリの重量はおよそ397gになる。 If the flight time is longer, the battery capacity needs to be increased. For example, when the battery voltage is the same 11.2 V and the capacity is increased to 2200 mAh, the weight of the battery is about 262 g. Also, for example, if the battery voltage is the same 11.2 V and increased to 5000 mAh, the weight of the battery becomes approximately 397 g.
 5000mAhのバッテリの重量は飛行装置100の重量より重くなり、同じ機体で飛行させることが不可能になり、より大型の機体を作成しなければならない。またバッテリの重量が重くなる分、浮力に対してより大きな電力を消費しなければならない。 The weight of the 5000 mAh battery becomes heavier than the weight of the flying device 100, making it impossible to fly with the same aircraft, and a larger aircraft must be created. In addition, as the weight of the battery increases, more power must be consumed for buoyancy.
 一方、上述した8分間飛行可能なバッテリと同じサイズで降圧器160を実現すると、軽量で実現することが可能である。 On the other hand, if the step-down device 160 is realized with the same size as the above-mentioned battery capable of flying for 8 minutes, it can be realized in a light weight.
 例えば、上述したような400Vの電圧を12Vまで降圧するものであっても、降圧器160は50g程度の重量で実現できる。従って、上述したバッテリに替えて降圧器160を設けた場合、上述したバッテリよりも60g軽くなり、飛行装置100は、この軽くなった60g分の余剰浮力を得ることが出来る。 For example, even if the voltage of 400 V as described above is stepped down to 12 V, the step-down device 160 can be realized with a weight of about 50 g. Therefore, when the step-down device 160 is provided in place of the above-described battery, the step-down device 160 is 60 g lighter than the above-described battery, and the flying device 100 can obtain surplus buoyancy for 60 g lightened.
 そして本開示の一実施形態に係る飛行装置100は、一時的に飛行装置100を動作させるための電力を蓄えるバッテリ150を内部に備えていることで、電力供給装置10からの電力供給が何らかの理由で途絶した場合にも、飛行を継続することが出来る。 And the flying device 100 which concerns on one Embodiment of this indication is equipped with the battery 150 which stores the electric power for operating the flying device 100 temporarily, and the electric power supply from the electric power supply apparatus 10 is for some reason Even if it is interrupted, flight can be continued.
 電力供給装置10からの電力供給が何らかの理由で途絶したことを、例えば制御部110で検出した場合、飛行装置100は、例えば、バッテリ150を動力源に切り替えて、所定の位置まで飛行するように制御部110で制御したり、ゆっくりとした速度で下降したりするように制御部110で制御したりしてもよい。このような動作は、例えば制御部110がモータ108a~108dの回転を制御することによって行われても良い。 When the control unit 110 detects that the power supply from the power supply device 10 has been interrupted for some reason, for example, the flying device 100 switches the battery 150 to a power source so as to fly to a predetermined position. You may control by the control part 110, and you may control by the control part 110 so that it may descend | fall at a slow speed. Such an operation may be performed by the control unit 110 controlling the rotation of the motors 108a to 108d, for example.
 上述したように、飛行装置100は導線20と接続されて、導線20から電力の供給を受けて動作する。飛行装置100は、機体中央の重心部分から導線20が伸びるように導線20と接続されていてもよい。図5は、本開示の一実施形態に係る飛行装置100の外観例を示す説明図である。 As described above, the flying device 100 is connected to the conductor 20 and operates by receiving power from the conductor 20. The flying device 100 may be connected to the conductor 20 so that the conductor 20 extends from the center of gravity at the center of the body. FIG. 5 is an explanatory diagram illustrating an appearance example of the flying device 100 according to an embodiment of the present disclosure.
 図5に示したように、機体中央の重心部分から機体の下方に向けて導線20が伸びるように導線20と接続されていることで、飛行装置100は導線20の影響を受けずに安定した飛行を行なうことが出来る。また機体中央の重心部分から機体の下方に向けて導線20が伸びるように導線20と接続されていることで、飛行装置100は、ロータ104a~104dに導線20が絡まらないように飛行することが出来る。なお、図5では、機体中央の重心部分から機体の下方に向けて導線20が伸びるように導線20と接続されている状態が示されているが、本開示は係る例に限定されるものではなく、機体中央の重心部分から機体の上方に向けて導線20が伸びるように導線20と接続されていてもよい。機体中央の重心部分から機体の上方に向けて導線20が伸びるように導線20と接続されていることで、例えば橋梁の様子を飛行装置100に撮像させる際に、橋の上から飛行装置100を飛行させる際の機体の安定性を高めることが可能になる。 As shown in FIG. 5, the flying device 100 is stabilized without being affected by the lead wire 20 by being connected to the lead wire 20 so that the lead wire 20 extends from the center of gravity at the center of the fuselage toward the bottom of the fuselage. You can fly. Further, since the conductor 20 is connected to the conductor 20 so that the conductor 20 extends from the center of gravity of the aircraft toward the lower part of the aircraft, the flying device 100 can fly so that the conductor 20 does not get entangled with the rotors 104a to 104d. I can do it. In FIG. 5, a state is shown in which the conductor 20 is connected to the conductor 20 so that the conductor 20 extends from the center of gravity at the center of the aircraft toward the lower side of the aircraft, but the present disclosure is not limited to such an example. Instead, the conductor 20 may be connected to the conductor 20 so that the conductor 20 extends from the center of gravity at the center of the aircraft toward the upper side of the aircraft. By connecting the conductor 20 to the conductor 20 so that the conductor 20 extends from the center of gravity at the center of the aircraft toward the top of the aircraft, for example, when the flying device 100 images the state of the bridge, the flying device 100 is It is possible to increase the stability of the aircraft when flying.
 なお、飛行装置100は、その表面において導線20と導電可能である回転コネクタによって接続されていても良い。表面において導線20と導電可能である回転コネクタによって接続されることで、飛行装置100の飛行によって導線20がねじれることを防ぐことが出来る。また本実施形態では、電力供給装置10において非常に高い電圧に昇圧されることで、飛行装置100が導線20と導電可能である回転コネクタによって接続されていても、導電可能である回転コネクタによる電力損失の影響をほとんど受けることがない。なお、導電可能である回転コネクタとして、例えばロータリーコネクタやスリップリング等が用いられ得る。 Note that the flying device 100 may be connected to the conductive wire 20 on its surface by a rotating connector that can conduct electricity. By being connected to the lead wire 20 on the surface by a rotary connector that can conduct electricity, the lead wire 20 can be prevented from being twisted by the flight of the flying device 100. Moreover, in this embodiment, even if the flying device 100 is connected to the conducting wire 20 by a rotary connector that can conduct electricity by being boosted to a very high voltage in the power supply device 10, the electric power by the rotary connector that can conduct electricity. Little affected by loss. For example, a rotary connector or a slip ring can be used as the rotary connector that can conduct electricity.
 飛行装置100は、接続されている導線20の位置を用いた姿勢の判別を行っても良い。図6は、飛行装置100による、導線20の位置を用いた姿勢の判別について示す説明図である。図6には、図4のセンサ部130を構成する接触センサ131a、131bが飛行装置100から出ている状態が示されている。 The flying device 100 may perform posture determination using the position of the connected conductor 20. FIG. 6 is an explanatory diagram showing the posture determination using the position of the conducting wire 20 by the flying device 100. FIG. 6 shows a state in which the contact sensors 131a and 131b constituting the sensor unit 130 of FIG.
 接触センサ131a、131bは、導線20の接触を検知するためのセンサである。導線20が接触センサ131a、131bに触れていなければ、飛行装置100は、水平状態にあることを判別することができる。一方、導線20が接触センサ131a、131bのどちらかに触れていれば、飛行装置100は、傾いた状態にあることを判別することができる。 Contact sensors 131a and 131b are sensors for detecting the contact of the conductive wire 20. If the conducting wire 20 does not touch the contact sensors 131a and 131b, the flying device 100 can determine that it is in a horizontal state. On the other hand, if the conducting wire 20 touches one of the contact sensors 131a and 131b, the flying device 100 can determine that it is tilted.
 もちろん、導線20の接触を検知するための接触センサの数や位置、大きさは、図6に示したものに限定されるものではない。 Of course, the number, position, and size of the contact sensors for detecting the contact of the conductive wire 20 are not limited to those shown in FIG.
 本実施形態に係る電力供給システム1は、例えば、電力供給装置10から伸ばした、または電力供給装置10の近傍に設置したポールの頂点から導線20を伸ばすようにしても良い。図7は、本開示の一実施形態に係る電力供給システム1の構成例を示す説明図である。図7には、電力供給装置10から所定の長さのポール30が伸びており、そのポール30の頂点付近から導線20が伸びている様子が示されている。 For example, the power supply system 1 according to the present embodiment may extend the conductive wire 20 from the apex of a pole extended from the power supply device 10 or installed in the vicinity of the power supply device 10. FIG. 7 is an explanatory diagram illustrating a configuration example of the power supply system 1 according to an embodiment of the present disclosure. FIG. 7 shows a state in which a pole 30 having a predetermined length extends from the power supply device 10, and the conductor 20 extends from the vicinity of the apex of the pole 30.
 飛行装置100は、電力供給装置10と導線20で接続されていることで、飛行範囲は導線20によって制約される。しかし、電力供給装置10を移動させることで、飛行装置100の飛行範囲の制約は解消される。例えば、電力供給装置10を乗用車やトラックなどの車体に載せて、電力供給装置10の移動と飛行装置100の飛行とを繰り返すことで、飛行装置100の飛行範囲の制約を解消することが出来る。 The flying device 100 is connected to the power supply device 10 by the conducting wire 20, so that the flight range is restricted by the conducting wire 20. However, the limitation of the flight range of the flying device 100 is eliminated by moving the power supply device 10. For example, by placing the power supply device 10 on a vehicle body such as a passenger car or a truck and repeating the movement of the power supply device 10 and the flight of the flying device 100, the restriction on the flight range of the flying device 100 can be eliminated.
 もちろん、周囲に障害物が無かったり、電力供給装置10の移動と飛行装置100の飛行とを並行して行なうことに支障が無かったりする等の場合は、電力供給装置10の移動と飛行装置100の飛行とを並行して行うようにしてもよい。 Of course, when there are no obstacles in the surrounding area, or when there is no obstacle to performing the movement of the power supply device 10 and the flight of the flying device 100 in parallel, the movement of the power supply device 10 and the flying device 100 are performed. The flight may be performed in parallel.
 飛行装置100は、センサ部130からのセンシングデータに基づいて、導線20が引っ張られたことを制御部110で検知し、その検知に基づいた飛行を行っても良い。例えば飛行装置100は、ユーザによって導線20が引っ張られた方向をセンサ部130によって検知し、そのユーザによって引っ張られた方向に飛行するように制御部110で制御してもよい。 The flying device 100 may detect that the conducting wire 20 has been pulled based on the sensing data from the sensor unit 130 by the control unit 110 and perform a flight based on the detection. For example, the flying device 100 may be detected by the sensor unit 130 in the direction in which the conductor 20 is pulled by the user, and may be controlled by the control unit 110 so as to fly in the direction pulled by the user.
 また飛行装置100は、センサ部130からのセンシングデータに基づいて、導線20がユーザによって引っ張られた回数を制御部110で検知し、その検知に基づいた飛行を行っても良い。 Further, the flying device 100 may detect the number of times that the conducting wire 20 has been pulled by the user based on the sensing data from the sensor unit 130 by the control unit 110 and perform a flight based on the detection.
 例えば飛行装置100は、導線20が1回だけ引っ張られたことを制御部110で検知した場合は、その引っ張られた方向に飛行するように制御部110で制御し、導線20が短時間で2回引っ張られた場合を制御部110で検知した場合は、その引っ張りに応じて、予め定められた所定の位置まで飛行するように制御部110で制御しても良い。もちろん上述した引っ張りの回数と飛行制御の関係は一例に過ぎないものであり、引っ張りの回数と飛行制御の関係は適宜設定可能であることは言うまでもない。 For example, when the control unit 110 detects that the conducting wire 20 has been pulled only once, the flying device 100 controls the controlling unit 110 to fly in the direction in which the conducting wire 20 is pulled. When the control unit 110 detects the case of being pulled twice, the control unit 110 may control to fly to a predetermined position according to the pull. Of course, the above-described relationship between the number of pulls and flight control is merely an example, and it goes without saying that the relationship between the number of pulls and flight control can be set as appropriate.
 導線20に、電力を供給する機能に加え、情報を通信する機能を持たせても良い。すなわち、本実施形態に係る電力供給システム1は、電力供給装置10において、直流電力に所定の情報を重畳させて、導線20を通じて情報が情報された電力を飛行装置100へ送電するようにしてもよい。 The conducting wire 20 may have a function of communicating information in addition to a function of supplying power. That is, the power supply system 1 according to the present embodiment causes the power supply device 10 to superimpose predetermined information on the DC power and transmit the power with the information to the flying device 100 through the conductor 20. Good.
 飛行装置100が飛行している最中において、例えば突風が吹くなどして飛行装置100の姿勢に急激な変化が生じると、導線20が切れてしまうおそれがある。飛行装置100は、センサ部130を用いて、姿勢に急激な変化が生じたことを検知してもよい。 During the flight of the flying device 100, if the attitude of the flying device 100 changes suddenly due to, for example, a gust of wind, the conductor 20 may be cut off. The flying device 100 may use the sensor unit 130 to detect that a sudden change has occurred in the posture.
 そして飛行装置100は、その急激な姿勢の変化の発生を検知すると、他の装置、例えば電力供給装置10に、姿勢に急激な変化が発生したことを通知してもよい。なお、姿勢に急激な変化が発生したかどうかは、センサ部130でセンシングされたデータに、単位時間あたり所定の閾値以上の変化があったかどうかで判断されても良い。 Then, when the flying device 100 detects the occurrence of the rapid posture change, the flying device 100 may notify other devices, for example, the power supply device 10, that the posture has suddenly changed. Note that whether or not a sudden change has occurred in the posture may be determined by whether or not the data sensed by the sensor unit 130 has changed by a predetermined threshold or more per unit time.
 そして電力供給装置10は、飛行装置100の姿勢に急激な変化が生じた旨の通知を飛行装置100から受信すると、飛行装置100の姿勢を安定させるために、例えば、導線20を自動で巻き取るような動作を実行してもよい。導線20が、飛行装置100の自由飛行を妨げないような、細くて軽いものであることによって、電力供給装置10による巻き取りが容易となる。もちろん、導線20の巻取りは人間が行っても良い。 When the power supply device 10 receives a notification from the flying device 100 that a sudden change has occurred in the attitude of the flying device 100, for example, the power supply device 10 automatically winds up the conductor 20 to stabilize the attitude of the flying device 100. Such an operation may be executed. When the conducting wire 20 is thin and light so as not to prevent free flight of the flying device 100, winding by the power supply device 10 is facilitated. Of course, the winding of the conducting wire 20 may be performed by a human.
 <3.まとめ>
 以上説明したように本開示の一実施形態によれば、電力供給装置10から飛行装置100へ導線20によって電力を供給する電力供給システム1が提供される。本発明の一実施形態に係る電力供給システム1は、電力供給装置10において、飛行装置100の定格電圧に比べて大きく昇圧させた電力を、導線20を通じて電力供給装置10から飛行装置100へ供給する。
<3. Summary>
As described above, according to an embodiment of the present disclosure, the power supply system 1 that supplies power from the power supply device 10 to the flying device 100 through the conductor 20 is provided. The power supply system 1 according to the embodiment of the present invention supplies the power supply device 10 to the flight device 100 from the power supply device 10 through the lead wire 20 with the power supply device 10 having a voltage that is significantly higher than the rated voltage of the flight device 100. .
 本開示の一実施形態に係る電力供給システム1は、電力供給装置10において電力が途絶しなかったり、導線20が切断しなかったりする限り、飛行装置100へ永続的に電力を供給することが可能になる。飛行装置100へ永続的に電力を供給することで、本開示の一実施形態に係る電力供給システム1は、バッテリしか備えていない場合と比較して、飛行装置100の飛行持続時間を飛躍的に向上させることが出来る。 The power supply system 1 according to an embodiment of the present disclosure can permanently supply power to the flying device 100 as long as power is not interrupted in the power supply device 10 or the conductor 20 is not disconnected. become. By supplying power to the flying device 100 permanently, the power supply system 1 according to an embodiment of the present disclosure dramatically increases the flight duration of the flying device 100 compared to a case where only the battery is provided. Can be improved.
 また本開示の一実施形態に係る電力供給システム1は、導線20を通じて電力供給装置10から飛行装置100へ供給することで、飛行装置100のバッテリの充電や交換の手間を省くことが出来る。 In addition, the power supply system 1 according to an embodiment of the present disclosure can save the trouble of charging and replacing the battery of the flying device 100 by supplying the flying device 100 from the power supply device 10 to the flying device 100 through the conductor 20.
 本実施形態では、電力供給装置10から飛行装置100へ電力を供給する形態を示したが、電力供給装置10から電力の供給を受ける移動体は、飛行装置100に限定されるものではなく、例えば電力の供給を受けて動作するロボットのような装置であってもよい。 In this embodiment, although the form which supplies electric power from the power supply apparatus 10 to the flying apparatus 100 was shown, the mobile body which receives supply of electric power from the power supply apparatus 10 is not limited to the flying apparatus 100, for example, It may be a device such as a robot that operates by receiving power.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 移動体と、
 前記移動体における定格より大きな電圧に昇圧する昇圧部と、
 前記昇圧部で昇圧した電圧による電力を前記移動体に伝送する導線と、
 を備え、
 前記移動体は、
 前記導線で伝送された電力の電圧を前記移動体における定格に降圧する降圧部を含む、電力供給システム。
(2)
 前記導線で伝送される電力は直流の電力である、前記(1)に記載の電力供給システム。
(3)
 前記移動体は、前記導線の引っ張りを検出する制御部を備える、前記(1)または(2)に記載の電力供給システム。
(4)
 前記制御部は、検出した前記導線の引っ張りの方向に飛行するよう前記移動体を制御する、前記(3)に記載の電力供給システム。
(5)
 前記制御部は、検出した前記導線の引っ張りの回数に応じて前記移動体の飛行を制御する、前記(3)または(4)に記載の電力供給システム。
(6)
 前記移動体は、前記導線からの電力供給が途絶した場合に前記移動体の飛行を継続するためのバッテリを備える、前記(1)に記載の電力供給システム。
(7)
 前記移動体は、
 前記導線からの電力供給が途絶したことを検出する電力検出部と、
 前記電力検出部が前記導線からの電力供給が途絶したことを検出すると、前記バッテリの電力により所定の飛行を行なうよう前記移動体の飛行を制御する飛行制御部と、
を備える、前記(6)に記載の電力供給システム。
(8)
 前記飛行制御部は、所定の位置に飛行するよう前記移動体の飛行を制御する、前記(7)に記載の電力供給システム。
(9)
 前記飛行制御部は、所定の速度で下降するよう前記移動体の飛行を制御する、前記(7)に記載の電力供給システム。
(10)
 前記移動体は、前記導線を前記移動体の重心位置で接続する接続部を備える、前記(1)~(9)のいずれかに記載の電力供給システム。
(11)
 前記昇圧部は、前記移動体における定格の30倍以上の電圧に昇圧する、前記(1)~(10)のいずれかに記載の電力供給システム。
(12)
 前記導線の断面積は0.13mm以下である、前記(1)~(11)のいずれかに記載の電力供給システム。
(13)
 前記導線は、前記移動体への通信にも用いられる、前記(1)~(12)のいずれかに記載の電力供給システム。
(14)
 前記移動体は、飛行装置である、前記(1)~(13)のいずれかに記載の電力供給システム。
(15)
 前記移動体は、ロボットである、前記(1)~(13)のいずれかに記載の電力供給システム。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A moving object,
A booster that boosts the voltage to a voltage greater than the rating of the mobile body;
A conducting wire that transmits electric power generated by the voltage boosted by the boosting unit to the moving body;
With
The moving body is
A power supply system including a step-down unit for stepping down a voltage of electric power transmitted through the conducting wire to a rating in the moving body.
(2)
The power supply system according to (1), wherein the power transmitted through the conducting wire is DC power.
(3)
The power supply system according to (1) or (2), wherein the moving body includes a control unit that detects pulling of the conducting wire.
(4)
The said control part is an electric power supply system as described in said (3) which controls the said mobile body to fly in the direction of the pull of the detected said conducting wire.
(5)
The said control part is an electric power supply system as described in said (3) or (4) which controls the flight of the said mobile body according to the frequency | count of the detected pulling of the said conducting wire.
(6)
The said mobile body is a power supply system as described in said (1) provided with the battery for continuing the flight of the said mobile body when the electric power supply from the said conducting wire stops.
(7)
The moving body is
A power detection unit for detecting that power supply from the conducting wire has been interrupted;
When the power detection unit detects that the power supply from the conducting wire has been interrupted, a flight control unit that controls the flight of the mobile body to perform a predetermined flight with the power of the battery;
The power supply system according to (6), comprising:
(8)
The said flight control part is an electric power supply system as described in said (7) which controls flight of the said mobile body so that it may fly to a predetermined position.
(9)
The power supply system according to (7), wherein the flight control unit controls the flight of the moving body so as to descend at a predetermined speed.
(10)
The power supply system according to any one of (1) to (9), wherein the moving body includes a connection portion that connects the conductive wire at a center of gravity of the moving body.
(11)
The power supply system according to any one of (1) to (10), wherein the boosting unit boosts the voltage to a voltage of 30 times or more of a rating of the moving body.
(12)
The power supply system according to any one of (1) to (11), wherein a cross-sectional area of the conducting wire is 0.13 mm 2 or less.
(13)
The power supply system according to any one of (1) to (12), wherein the conductive wire is also used for communication with the mobile object.
(14)
The power supply system according to any one of (1) to (13), wherein the moving body is a flying device.
(15)
The power supply system according to any one of (1) to (13), wherein the moving body is a robot.
 1  電力供給システム
 10  電力供給装置
 20  導線
 100  飛行装置
 
DESCRIPTION OF SYMBOLS 1 Electric power supply system 10 Electric power supply apparatus 20 Conductor 100 Flight apparatus

Claims (15)

  1.  移動体と、
     前記移動体における定格より大きな電圧に昇圧する昇圧部と、
     前記昇圧部で昇圧した電圧による電力を前記移動体に伝送する導線と、
     を備え、
     前記移動体は、
     前記導線で伝送された電力の電圧を前記移動体における定格に降圧する降圧部を含む、電力供給システム。
    A moving object,
    A booster that boosts the voltage to a voltage greater than the rating of the mobile body;
    A conducting wire that transmits electric power generated by the voltage boosted by the boosting unit to the moving body;
    With
    The moving body is
    A power supply system including a step-down unit for stepping down a voltage of electric power transmitted through the conducting wire to a rating in the moving body.
  2.  前記導線で伝送される電力は直流の電力である、請求項1に記載の電力供給システム。 The power supply system according to claim 1, wherein the power transmitted through the conducting wire is DC power.
  3.  前記移動体は、前記導線の引っ張りを検出する制御部を備える、請求項1に記載の電力供給システム。 The power supply system according to claim 1, wherein the moving body includes a control unit that detects pulling of the conducting wire.
  4.  前記制御部は、検出した前記導線の引っ張りの方向に飛行するよう前記移動体を制御する、請求項3に記載の電力供給システム。 The power supply system according to claim 3, wherein the control unit controls the moving body so as to fly in the direction of the detected pulling of the conducting wire.
  5.  前記制御部は、検出した前記導線の引っ張りの回数に応じて前記移動体の飛行を制御する、請求項3に記載の電力供給システム。 The power supply system according to claim 3, wherein the control unit controls the flight of the moving body according to the detected number of pulls of the conducting wire.
  6.  前記移動体は、前記導線からの電力供給が途絶した場合に前記移動体の飛行を継続するためのバッテリを備える、請求項1に記載の電力供給システム。 The power supply system according to claim 1, wherein the mobile body includes a battery for continuing flight of the mobile body when power supply from the conductor is interrupted.
  7.  前記移動体は、
     前記導線からの電力供給が途絶したことを検出する電力検出部と、
     前記電力検出部が前記導線からの電力供給が途絶したことを検出すると、前記バッテリの電力により所定の飛行を行なうよう前記移動体の飛行を制御する飛行制御部と、
    を備える、請求項6に記載の電力供給システム。
    The moving body is
    A power detection unit for detecting that power supply from the conducting wire has been interrupted;
    When the power detection unit detects that the power supply from the conducting wire has been interrupted, a flight control unit that controls the flight of the moving body to perform a predetermined flight with the power of the battery;
    The power supply system according to claim 6, comprising:
  8.  前記飛行制御部は、所定の位置に飛行するよう前記移動体の飛行を制御する、請求項7に記載の電力供給システム。 The power supply system according to claim 7, wherein the flight control unit controls the flight of the moving body so as to fly to a predetermined position.
  9.  前記飛行制御部は、所定の速度で下降するよう前記移動体の飛行を制御する、請求項7に記載の電力供給システム。 The power supply system according to claim 7, wherein the flight control unit controls the flight of the moving body so as to descend at a predetermined speed.
  10.  前記移動体は、前記導線を前記移動体の重心位置で接続する接続部を備える、請求項1に記載の電力供給システム。 The power supply system according to claim 1, wherein the moving body includes a connection portion that connects the conductive wire at a center of gravity of the moving body.
  11.  前記昇圧部は、前記移動体における定格の30倍以上の電圧に昇圧する、請求項1に記載の電力供給システム。 The power supply system according to claim 1, wherein the boosting unit boosts the voltage to a voltage that is 30 times or more of the rating of the mobile object.
  12.  前記導線の断面積は0.13mm以下である、請求項1に記載の電力供給システム。 The power supply system according to claim 1, wherein a cross-sectional area of the conducting wire is 0.13 mm 2 or less.
  13.  前記導線は、前記移動体への通信にも用いられる、請求項1に記載の電力供給システム。 The power supply system according to claim 1, wherein the conducting wire is also used for communication to the mobile body.
  14.  前記移動体は、飛行装置である、請求項1に記載の電力供給システム。 The power supply system according to claim 1, wherein the moving body is a flying device.
  15.  前記移動体は、ロボットである、請求項1に記載の電力供給システム。
     
    The power supply system according to claim 1, wherein the moving body is a robot.
PCT/JP2015/076989 2014-10-17 2015-09-24 Electric power supply system WO2016059953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014212952 2014-10-17
JP2014-212952 2014-10-17

Publications (1)

Publication Number Publication Date
WO2016059953A1 true WO2016059953A1 (en) 2016-04-21

Family

ID=55746501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076989 WO2016059953A1 (en) 2014-10-17 2015-09-24 Electric power supply system

Country Status (1)

Country Link
WO (1) WO2016059953A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002775A1 (en) * 2016-07-01 2018-01-04 Elistair Device for supplying power to a wired drone
CN108725768A (en) * 2018-05-30 2018-11-02 同济大学 One kind being tethered at unmanned plane device
WO2019090865A1 (en) * 2017-11-08 2019-05-16 珠海市双捷科技有限公司 Tethered ground station and tethered drone system
JP2019182228A (en) * 2018-04-11 2019-10-24 株式会社荏原製作所 Wired drone system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070200027A1 (en) * 2006-02-24 2007-08-30 Johnson Samuel A Aerial robot
WO2014027097A2 (en) * 2012-08-17 2014-02-20 Markus Waibel Flying camera with string assembly for localization and interaction
JP2014031118A (en) * 2012-08-03 2014-02-20 Tsubakimoto Chain Co Flying body and flying body system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070200027A1 (en) * 2006-02-24 2007-08-30 Johnson Samuel A Aerial robot
JP2014031118A (en) * 2012-08-03 2014-02-20 Tsubakimoto Chain Co Flying body and flying body system
WO2014027097A2 (en) * 2012-08-17 2014-02-20 Markus Waibel Flying camera with string assembly for localization and interaction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002775A1 (en) * 2016-07-01 2018-01-04 Elistair Device for supplying power to a wired drone
FR3053259A1 (en) * 2016-07-01 2018-01-05 Elistair FEEDING DEVICE FOR WIRED DRONE
US11059580B2 (en) 2016-07-01 2021-07-13 Elistair Device for supplying power to a wired drone
WO2019090865A1 (en) * 2017-11-08 2019-05-16 珠海市双捷科技有限公司 Tethered ground station and tethered drone system
JP2019182228A (en) * 2018-04-11 2019-10-24 株式会社荏原製作所 Wired drone system
JP7085880B2 (en) 2018-04-11 2022-06-17 株式会社荏原製作所 Wired drone system
CN108725768A (en) * 2018-05-30 2018-11-02 同济大学 One kind being tethered at unmanned plane device

Similar Documents

Publication Publication Date Title
AU2021221455B2 (en) Suspended load stability systems and methods
JP7157116B2 (en) Battery and drone with battery
JP6239619B2 (en) Flying camera with a string assembly for positioning and interaction
EP3285130A2 (en) Tethered unmanned aerial vehicle
KR101116831B1 (en) Intelligent Unmaned and Small-Sized Flying Body Robot Steering System
US20160221683A1 (en) Hybrid Power Systems for Vehicle with Hybrid Flight Modes
JP7052299B2 (en) How to control unmanned aircraft and unmanned aircraft
US10935002B2 (en) Method and system for testing a lighting protection system of a wind turbine
WO2016059953A1 (en) Electric power supply system
JP5887641B1 (en) Unmanned aerial vehicle
JP6954044B2 (en) How to control an unmanned aircraft
JP2017217942A (en) Unmanned aircraft system, unmanned aircraft, mooring device
JP2017501075A (en) Method and system for reusing motor power of moving objects
WO2018109903A1 (en) Flight control method, unmanned aircraft, flight system, program, and recording medium
JP6394833B1 (en) Method for controlling unmanned air vehicle and unmanned air vehicle
WO2018156991A1 (en) Control systems for unmanned aerial vehicles
KR102117111B1 (en) Terrestrial station that supporting the tethered-drone and tethered-drone system that containing it
CN107344627B (en) Cloud deck mounted on unmanned aerial vehicle and control method
KR102231048B1 (en) Tethered Drone System Using tether Power Supply
JP6954021B2 (en) How to control an unmanned aircraft
WO2020000384A1 (en) Aircraft night flight control method and apparatus, control apparatus, and aircraft
JP5999537B1 (en) Unmanned aerial vehicle
JP6202407B2 (en) Unmanned aerial vehicle
JP7275612B2 (en) Aircraft landing port and aircraft landing method
CN114845934A (en) System and method for stopping movement of an operating member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15850635

Country of ref document: EP

Kind code of ref document: A1