WO2016056438A1 - Production method for myocardium-like cells, and composition for production of myocardium-like cells for use in same - Google Patents

Production method for myocardium-like cells, and composition for production of myocardium-like cells for use in same Download PDF

Info

Publication number
WO2016056438A1
WO2016056438A1 PCT/JP2015/077664 JP2015077664W WO2016056438A1 WO 2016056438 A1 WO2016056438 A1 WO 2016056438A1 JP 2015077664 W JP2015077664 W JP 2015077664W WO 2016056438 A1 WO2016056438 A1 WO 2016056438A1
Authority
WO
WIPO (PCT)
Prior art keywords
mef2c
tbx5
gata4
cells
gene
Prior art date
Application number
PCT/JP2015/077664
Other languages
French (fr)
Japanese (ja)
Inventor
真樹 家田
和享 宮本
井上 誠
孝史 弘中
Original Assignee
学校法人 慶應義塾
株式会社Idファーマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 慶應義塾, 株式会社Idファーマ filed Critical 学校法人 慶應義塾
Priority to JP2016553059A priority Critical patent/JPWO2016056438A1/en
Publication of WO2016056438A1 publication Critical patent/WO2016056438A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for efficiently producing myocardial cells and a composition for producing myocardial cells used therefor.
  • Sendai virus vectors can replicate the genome in mononuclear cells, but cannot form infectious virus particles, and are considered to be highly safe.
  • Patent Document 1 and Non-Patent Documents 1 and 2 disclose a technique for inducing differentiation from fibroblasts into which three factors (Gata4, Mef2c, and Tbx5) have been gene-transferred by a retroviral vector into cardiomyocyte-like cells.
  • three factors Ga4, Mef2c, and Tbx5
  • a retroviral vector into cardiomyocyte-like cells.
  • gene transfer using a retroviral vector has been pointed out to be cancerous because the transgene is integrated into the host chromosome (nucleus-derived chromosome).
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method capable of efficiently producing highly safe myocardial cells and a composition for producing myocardial cells used therein. It is to provide.
  • the method for producing cardiomyocyte-like cells of the present invention has at least one reprogramming factor selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptide, and a nucleic acid encoding the reprogramming factor in the genome. It is characterized in that it is introduced into fibroblasts using one or more Sendai virus vectors.
  • the reprogramming factor can be configured to be three of Gata4, Mef2c, and Tbx5.
  • the reprogramming factor can be configured to be five of Gata4, Mef2c, Tbx5, Mesp1, and Myocd.
  • a microRNA can be introduced into the fibroblast.
  • it can be configured such that two or more of the reprogramming factors are inserted in series in the Sendai virus vector.
  • Gata4, Mef2c, and Tbx5 can be configured to be adjacent in the order of Gata4, Mef2c, and Tbx5 from the upstream side toward the downstream side.
  • Mesp1 and Myocd can be configured to be adjacent to each other in the order of Mesp1 and Myocd from the upstream side toward the downstream side.
  • the fibroblast can be configured to be derived from a human.
  • the composition for producing cardiomyocyte-like cells of the present invention is a Sendai virus vector in which one or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptides are retained on the viral genome. It is characterized by including. (10) In (9), the reprogramming factor can be configured to be three of Gata4, Mef2c, and Tbx5. In (11) or (9), the reprogramming factor can be configured to be five of Gata4, Mef2c, Tbx5, Mesp1, and Myocd. (12) Further, in (9) to (11), a microRNA (miRNA) can be included.
  • miRNA microRNA
  • two or more of the reprogramming factors may be configured to be inserted in series in the Sendai virus vector.
  • Gata4, Mef2c, and Tbx5 can be configured to adjoin G4, Mef2c, and Tbx5 in this order from the upstream side toward the downstream side.
  • Mesp1 and Myocd can be configured to be adjacent in the order of Mesp1 and Myocd from the upstream side toward the downstream side.
  • FACS analysis for expression of cardiac troponin T (cTnT). It is the fluorescence-microscope image 4 weeks after gene introduction
  • cardiomyocyte-like cells mean cardiomyocytes directly generated from fibroblasts using the method of the present invention, and are also referred to as “induced cardiomyocytes”.
  • the “cardiomyocyte” means a cell expressing at least cardiac troponin (cTnT) or ⁇ MHC.
  • one or more of Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptides are referred to as “reprogramming factors”.
  • fibroblasts into which one or more reprogramming factors are introduced are directly reprogrammed into differentiated cardiomyocytes without becoming stem cells.
  • the method for producing cardiomyocyte-like cells of this embodiment has one or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptide, and a nucleic acid encoding the reprogramming factor polypeptide in the genome.
  • One or more Sendai virus vectors are introduced into fibroblasts.
  • a factor gene into fibroblasts that is, introduction of a polynucleotide encoding these polypeptides or a polynucleotide having a base sequence complementary to the base sequence is, for example, a retrovirus vector or an adenovirus vector.
  • a retrovirus vector or an adenovirus vector.
  • the reprogramming factor is preferably introduced into fibroblasts by one or more recombinant Sendai virus vectors having a nucleic acid encoding the reprogramming factor polypeptide in the genome.
  • the vector is preferably a viral vector.
  • the viral vector is a vector that has a genomic nucleic acid derived from the virus and can express the gene by incorporating a transgene into the nucleic acid.
  • the Sendai virus vector is a non-chromosomal viral vector, and since the vector is expressed in the cytoplasm, there is no risk that the transgene is integrated into the host chromosome (nucleus-derived chromosome). Therefore, the safety is high, and the vector can be removed from the introduced cell after the purpose is achieved.
  • the Sendai virus vector is an infectious virus particle, a virus core, a complex of virus genome and virus protein, or a complex composed of non-infectious virus particles, which is introduced into a cell.
  • a complex with the ability to express the gene carried by is included.
  • a ribonucleoprotein virus core part
  • NP, P, and L proteins Sendai virus genome
  • NP, P, and L proteins Sendai virus genome
  • the introduction into the cells may be appropriately performed using a transfection reagent or the like.
  • RNP ribonucleoprotein
  • Sendai virus is one of the Mononegavirales viruses belonging to the family of Paramyxoviridae (Paramixoviridae; Paramyxovirus, Morbilillirus, Rubulavirus, and Pneumovirus genus).
  • RNA of antisense strand to sense strand is included as genome.
  • Negative strand RNA is also called negative strand RNA.
  • Paramyxoviridae viruses other than Sendai virus include Newcastle disease virus (Newcastle disease virus), Mumps virus (Measles virus), measles virus (Measles virus), and RS virus (Respiris virus).
  • Sendai virus SeV
  • human parainfluenza virus-1 HPIV-1
  • human parainfluenza virus-3 HPIV-3
  • phocine distemper virus PDV
  • candinvirdin candinvirdin (individualVirdin).
  • Peste-des-petits-luminances virus PDPR
  • measles virus MV
  • renderpest virus RSV
  • Hendra virus Hendra
  • Nipah virus Nipah virus
  • accession number of the base sequence database of each gene of Sendai virus is M29343, M30202, M30203, M30204, M51333, M55563, M69046, X17218 for the NP gene, and M30202, M30203, M30204, M55556, M69046 for the P gene.
  • NP gene also referred to as N gene
  • CDV AF014953; DMV, X75961; HPIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025 Mupera, X85128; Mumps, D86172; MV, K01711; NDV, AF064091; PDPR, X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442; and Tupaia, AF07780, V, X DMV, Z47758; HPIV-1, M74081; HPIV-3, X04721; HPIV-4a, M55975; HPIV-4b, M55976; umps, D86173; MV, M89920; NDV, M20302; PDV, X75960; RPV, X68311; SeV, M
  • HPIV-3 D00047; MV, ABO16162; RPV, X68311; SeV, AB005796; and Tupaia, AF0797780, CDV for the M gene, M12669; DMV Z30087; HPIV-1, S38067; HPIV-2, M62734; HPIV-4a, D10241; HPIV-4b, D10242; Mumps, D86171; MV, AB012948; NDV, AF089819; PDPR, Z47977; PDV, X75717; RPV, M34018; SeV, U31956; and SV5, M32248, F
  • HPIV-3 AB011322; HPIV-4A, M34033; HPIV-4B, AB006954; Mumps, X99040; MV, K01711; NDV, AF204872; PDPR, Z81358; PDV, Z36979; RPV, AF132433; SeV, U06433; -5, S76876.
  • a plurality of strains are known for each virus, and there are genes having sequences other than those exemplified above depending on the strain.
  • a Sendai virus vector having a viral gene derived from any of these genes is useful as the vector of this embodiment.
  • the Sendai virus vector of this embodiment is 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more identical to the coding sequence of any of the above viral genes.
  • the Sendai virus vector of the present embodiment is, for example, 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more with the amino acid sequence encoded by the coding sequence of any of the above viral genes. Or a nucleotide sequence encoding an amino acid sequence having 99% or more identity.
  • the Sendai virus vector of the present embodiment is, for example, within 10 amino acids, preferably within 9, within 8, within 7, within 6 within the amino acid sequence encoded by any of the above viral gene coding sequences. It includes a base sequence encoding an amino acid sequence in which 5 amino acids, 4 amino acids, 3 amino acids, 2 amino acids, 2 amino acids, or 1 amino acid is substituted, inserted, deleted, and / or added.
  • sequences to which database accession numbers such as base sequences and amino acid sequences described in this specification are referred to, for example, the sequences on the filing date and priority date of the present application, and the filing date and priority date of the present application. It is possible to specify as a sequence at any point of time, preferably as a sequence as of the filing date of the present application. The sequence at each time point can be specified by referring to the revision history of the database.
  • the Sendai virus vector used in the present embodiment may be a derivative, and examples of the derivative include a virus whose virus gene has been modified, a virus that has been chemically modified, and the like so as not to impair the gene transfer ability by the virus. included.
  • Sendai virus may also be derived from natural strains, wild strains, mutant strains, laboratory passage strains, and artificially constructed strains.
  • An example is Z strain (disclosed in Medical Journal of Osaka University Vol. 6, No. 1, March 1955 p1-15). That is, as long as the target function can be achieved, the virus may be a virus vector having the same structure as a virus isolated from nature, or a virus artificially modified by genetic recombination. For example, any gene possessed by the wild-type virus may be mutated or defective. It is also possible to use incomplete viruses such as DI particles (disclosed in J. Virol. 68: 8413-8417, 1994).
  • a virus having a mutation or deletion in at least one gene encoding a viral envelope protein or outer shell protein can be preferably used.
  • a viral vector is, for example, a viral vector that can replicate the genome in infected cells but cannot form infectious viral particles.
  • a transmission ability-deficient virus vector is highly safe because there is no concern of spreading infection around it.
  • a viral vector that does not contain at least one gene encoding an envelope protein or spike protein such as F and / or HN, or a combination thereof can be used (International Publication No. WO00 / 70055, International Publication No. WO00). / 70070, Li, H.-O. et al., J. Virol. 74 (14) 6564-6659 (2000)).
  • proteins necessary for genome replication are encoded in genomic RNA
  • the genome can be amplified in infected cells.
  • a defective virus for example, a defective gene product or a protein capable of complementing it is supplied exogenously in virus-producing cells (International Publication WO00 / 70055, International Publication WO00 / 70070, Li, H.-O. et al., J. Virol. 74 (14) 6564-6695 (2000)).
  • VLP non-infectious viral particle
  • the viral vector is recovered as RNP (for example, RNP comprising N, L, P protein, and genomic RNA)
  • the vector can be produced without complementing the envelope protein.
  • Sendai virus vectors in the present embodiment include, for example, mutations of G69E, T116A, and A183S in the M protein, mutations of A262T, G264, and K461G in the HN protein, an L511F mutation in the P protein, and L
  • the protein may be an F gene deletion-type Sendai virus vector (for example, Z strain) having N1197S and K1795E mutations, and a mutation of TS 7, TS 12, TS 13, TS 14, or TS 15 is further introduced into this vector. Vectors are more preferred.
  • SeV18 + / TS ⁇ F (WO 2010/008054, WO 2003/025570) and SeV (PM) / TS ⁇ F, and further, mutations of TS 7, TS 12, TS 13, TS 14, or TS 15 were introduced into these. Examples include, but are not limited to, vectors.
  • T ⁇ F has mutations of G69E, T116A, and A183S in the M protein, mutations of A262T, G264, and K461G in the HN protein, L511F mutation in the P protein, and N1197S and K1795E mutations in the L protein, Deletion of the F gene.
  • reconstitution of a recombinant Sendai virus vector having a reprogramming factor can be performed using a known method. Specifically, (a) a cell encoding Sendai virus genomic RNA (minus strand) or its complementary strand (plus strand) and a virus protein (N, P, and L) necessary for virus particle formation. And (b) a step of recovering the culture supernatant containing the produced virus.
  • the viral protein necessary for particle formation may be expressed from the transcribed viral genomic RNA, or may be supplied to trans from other than the genomic RNA. For example, expression plasmids encoding N, P, and L proteins can be introduced into cells and supplied.
  • the viral gene can be separately expressed in virus-producing cells to complement particle formation.
  • a vector in which DNA encoding the protein or genomic RNA is linked downstream of an appropriate promoter that functions in the host cell is introduced into the host cell.
  • the transcribed genomic RNA is replicated in the presence of viral proteins to form infectious viral particles.
  • the defective virus or another viral protein capable of complementing its function can be expressed in the virus-producing cell.
  • Sendai virus can be produced using the following known methods (International Publication WO97 / 16539; International Publication WO97 / 16538; International Publication WO00 / 70055; International Publication WO00 / 70070). International Publication No. WO01 / 18223; International Publication No. WO03 / 025570; International Publication No. WO2005 / 071092; International Publication No. WO2006 / 137517; International Publication No. WO2007 / 083644; International Publication No. WO2008 / 007581; Hasan, M. K. et. al., J. Gen. Virol.78: 2813-2820, 1997, Kato, A.
  • the Sendai virus genome consists of NP (nucleocapsid) gene, P (phospho) gene, M (matrix) gene, F (fusion) gene, and HN (hemagglutinin / neuraminidase in this order from 3 ′ end to 5 ′ end. ) Gene and L (large) gene.
  • Sendai virus can sufficiently function as a vector if it has the NP gene, P gene, and L gene, and replicates the genome in the cell (in this embodiment, Gata4, Mef2c, Tbx5). , Mesp1, and Myocd) can be expressed. Since Sendai virus has minus-strand RNA in the genome, the 3 'side of the genome is upstream and the 5' side is downstream.
  • the gene mounted on the Sendai virus vector can be inserted between any of the above genes, for example, between the P gene and the M gene. Even when inserted in other places, only the overall expression level changes, and there is a possibility that the induction efficiency of myocardial cells is different, but the target cell induction itself can be performed in the same manner.
  • Gata4, Mef2c, Tbx5, Mesp1, and Myocd are incorporated. That is, only one of Gata4, Mef2c, Tbx5, Mesp1, and Myocd may be inserted between the P gene and the M gene, or two or more may be inserted. Two or more genes may be inserted at positions separated from each other via other genes, or may be inserted adjacent to each other.
  • the Gata4 gene, the Mef2c gene, and the Tbx5 gene are immediately adjacent to the Sendai virus P gene in this order, that is, immediately downstream of the P gene (immediately 5 'to the minus-strand RNA genome). And incorporated.
  • no other transcription unit for example, a transcription unit encoding a gene encoding a protein is included between the P gene and the Gata4 gene.
  • the Gata4 gene, the Mef2c gene, and the Tbx5 gene are arranged in this order on the Sendai virus genome, the Gata4 gene is arranged on the 3 ′ side most among the three genes, and the Tbx5 gene is arranged on the most 5 ′ side. .
  • five genes namely, the Gata4 gene, the Mef2c gene, the Tbx5 gene, the Mesp1 gene, and the Myocd gene are in this order immediately after the Sendai virus P gene, that is, immediately downstream of the P gene (negative strand RNA). It may be incorporated adjacent to the 5 ′ side of the genome).
  • two genes that is, the Mesp1 gene and the Myocd gene are integrated in this order immediately after the Sendai virus P gene, that is, immediately downstream of the P gene (immediately 5 'to the minus-strand RNA genome). May be.
  • the Sendai virus vector containing one or more of Gata4, Mef2c, Tbx5, Mesp1, and Myocd can be used alone for gene transfer in the production of the cardiomyocyte-like cell of this embodiment. It can also be used in reprogramming to further introduce (miRNA).
  • miR133 is used as the microRNA (miRNA)
  • Snail1 which is a cell fate control factor of fibroblasts, suppresses the characteristics of fibroblasts and promotes myocardial induction (Muraoka).
  • N Yamakawa H, Miyamoto K, Ieda M.
  • MiR-133 promotes cardiographic reprogramming by directing repressing Snai1 and silencing firs.
  • the microRNA can be inserted into the Sendai virus vector containing the Gata4, Mef2c, and Tbx5 genes, or the Sendai virus vector containing the Mesp1 and Myocd genes. Also good.
  • a desired vector such as a plasmid, viral vector, non-viral vector (for example, liposome) can be used as the vector.
  • viral vectors include adenovirus vectors and retrovirus vectors, but are not limited thereto. More preferably, the microRNA is inserted into a liposome and introduced into a fibroblast by a lipofection method.
  • micro RNA (miR133) is shown below (Muraoka N, Yamakawa H, Miyamoto K, Ieda M. MiR-133 promoted birefringable bidirective. : 1565-81.214.).
  • the fibroblast into which the gene and / or polypeptide of each factor is introduced may be isolated from humans or non-human vertebrates such as mice, rats, and pigs. It may be a subcultured cell.
  • fibroblasts for example, fetal fibroblasts, tail tip-derived fibroblasts, cardiac fibroblasts, foreskin fibroblasts, skin fibroblasts, lung fibroblasts and the like can be used.
  • the method for producing cardiomyocyte-like cells uses one or more Sendai virus vectors having in their genome a nucleic acid encoding one or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptides. It has the process which introduce
  • the culture of fibroblasts is not particularly limited as long as it is suitable, and is usually performed at a temperature in the range of 25 ° C. to 37 ° C. and under 5% CO 2 .
  • the culture of fibroblasts into which at least one reprogramming factor selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptide in this embodiment has been introduced is 1 to 4 weeks after gene transfer (virus infection), or It is preferable to carry out over this.
  • culturing in a serum-free medium as described later during this period differentiation induction into myocardial cells is efficiently performed, and beating myocardial cells can be efficiently produced.
  • the serum-free medium is preferably added with cytokines as described below.
  • culture may be performed in a medium containing serum for 1 to 2 weeks after gene transfer.
  • the serum is not particularly limited, and for example, fetal bovine serum (FBS), calf serum (NCS), horse serum and the like can be used.
  • Examples of the medium to which serum is added include Dulbecco's modified Eagle medium (DMEM), Iskov modified Dulbecco medium (IMDM), DMEM / M199 medium, and the like, but are not limited thereto. .
  • DMEM Dulbecco's modified Eagle medium
  • IMDM Iskov modified Dulbecco medium
  • M199 medium examples of the medium to which serum is added.
  • the medium used in the method for producing cardiac muscle-like cells of the present embodiment is a medium that does not contain serum, that is, a serum-free medium.
  • a serum-free medium for example, StemPro34 serum-free medium (manufactured by Gibco) can be used, but is not limited thereto.
  • the serum-free medium preferably contains at least either a cytokine or a small molecule compound.
  • VEGF vascular endothelial growth factor
  • FGF2 basic fibroblast growth factor
  • FGF10 fibroblast growth factor-10
  • JAK inhibitor JAK inhibitor
  • IWP4 IWP4
  • the myocardial cells can be confirmed by, for example, confirming whether or not the cells are beating with a microscope, or expressing a myocardial specific marker gene by a known method such as FACS method, RT-PCR method, immunostaining method, microarray assay method, etc. It can be performed by checking whether or not it is done, but is not limited to these methods.
  • myocardial specific marker gene examples include, but are not limited to, Myh6, cTnT, RyR2, HCN4, Actc1, Gja1, Col1a2, and the like.
  • composition for producing myocardial cells of the present embodiment is a Sendai virus vector having a nucleic acid encoding one or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptide in the genome, or Fibroblasts into which one or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptides have been introduced.
  • the composition of this embodiment may further include a salt, a buffer, a stabilizer, a cell membrane and / or cell wall preserving compound, a nutrient medium, a biocide, a medium such as deionized water, and the like.
  • mice Female ICR mice (CLEA Japan, Inc.) 7 to 10 weeks old were mated with ⁇ MHC-GFP transgenic mice (male). The day when fertilization was confirmed was defined as day 0 of pregnancy, and fetuses were removed from ICR mice that became pregnant 12 days after the confirmation of pregnancy.
  • the heart was removed from the fetus, and the heart was projected with fluorescence with an inverted microscope (manufactured by Olympus, IX71) to select a fetus that emits GFP fluorescence. From the selected fetus, extremities and parenchymal organs such as the head 1/2 to 2/3, lung, liver, kidney, intestinal tract and the like were removed.
  • the remaining trunk tissue was washed with PBS (-) (manufactured by WAKO, 045-29795) to sufficiently remove blood cell components, and the tissue was sheared as finely as possible with sterilized surgical scissors.
  • a medium for MEF (10% FBS / DMEM / PSA) shown in Table 1 and seeded in a 10 cm tissue culture dish (Thermo Scientific, 172958). (For 2 to 3 fetuses, one 10cm dish) Thereafter, the cell precipitate was cultured under the conditions of 37 ° C. and 5% CO 2 . The next day, the medium was changed to a new medium for MEF, and thereafter the medium was changed every 3 to 4 days.
  • a medium for MEF 10% FBS / DMEM / PSA
  • Migrated cells were collected with 0.25% trypsin-EDTA (Gibco, 25200-072), and filtered using a 40 ⁇ m cell strainer (BD, REF352340) to obtain mouse embryonic fibroblasts (MEF).
  • BD 40 ⁇ m cell strainer
  • MEF mouse embryonic fibroblasts
  • the MEF isolated in Experiment 1 was seeded (0.5 ⁇ 10 5 cells / well) in a 12-well cell culture multiwell plate (manufactured by FALCON, 353043) and allowed to stand overnight. Thereafter, the medium in the well was removed by aspiration, and the medium was replaced with a retrovirus mixed solution obtained by mixing the same amount of each gene retrovirus solution (Gata4, Mef2c, Tbx5) at 37 ° C. under 5% CO 2 condition. Then, it was left to stand overnight and cultured to infect the virus (infection).
  • a retrovirus mixed solution obtained by mixing the same amount of each gene retrovirus solution (Gata4, Mef2c, Tbx5) at 37 ° C. under 5% CO 2 condition. Then, it was left to stand overnight and cultured to infect the virus (infection).
  • the purified fragment was digested with Not I and separated by agarose gel electrophoresis, and then a band of about 1.4 kbp was cut out and purified with a QIAquick Gel Extraction kit.
  • the pSeV18 + / TS ⁇ F plasmid having a transgene insertion site (NotI site) upstream of the NP gene was digested with NotI and purified with the QIAquick PCR purification kit, then treated with alkaline phosphatase, and again into the QIAquick PCR purification kit. And purified.
  • the purified Gata4 fragment was ligated to the Not I site of the pSeV18 + / TS ⁇ F plasmid, cloned into E. coli and cloned, and a clone with the correct nucleotide sequence was selected by sequencing to obtain the pSeV18 + Gata4 / TS ⁇ F plasmid.
  • the Sendai virus prepared from the transcription product of the pSeV18 + Gata4 / TS ⁇ F plasmid is referred to as SeV18 + Gata4 / TS ⁇ F (hereinafter also referred to as Sendaivirus ⁇ F Gata4 vector, SeV-G).
  • the obtained Sendai virus solution was rapidly frozen in liquid nitrogen and stored at ⁇ 80 ° C.
  • Mef2c_A12G_N (5′-CTATGGGGAGAAAGAAGATTCAGATTACG-3 ′ (SEQ ID NO: 3)
  • Mef2c_A12G_C (5′-CGTAATCTGAATCTTCTTTCTCCCCATAG-3 ′ (SEQ ID NO: 4)) as primers for the 12th mutagenesis, and the 348th mutagenesis
  • Mef2c_A348G_N 5′-GAAGAAAAATACAAGAAAATTAATGAAG-3 ′ (SEQ ID NO: 5)
  • Mef2c_A348G_C (5′-CTTCATTAATTTTCTTGTATTTTTCTTC-3 ′ (SEQ ID NO: 6)) were used as primers.
  • Mef2cmut gene with mutations introduced in two places as described above as a template
  • Mef2c-N (5'-attGCGGCCGCGACGACACTATGGGGAGAAAAAAGATTC-3 '(SEQ ID NO: 7)
  • Mef2c-C (5'-attGCGGCCGCGATGAACTTTCCGCGCTAAGTTTTTCTTGCTCG (SEQ ID NO: 8)) as a primer and KOD-Plus-Ver.
  • the amplified fragment was purified with the QIAquick PCR purification kit.
  • the purified fragment was digested with Not I and separated by agarose gel electrophoresis, and then a band of about 1.4 kbp was cut out and purified with a QIAquick Gel Extraction kit.
  • the pSeV18 + / TS ⁇ F plasmid having a transgene insertion site (NotI site) upstream of the NP gene is digested with Not I and purified with the QIAquick PCR purification kit, then treated with alkaline phosphatase, and again treated with the QIAquick PCR purification kit. It refine
  • the purified Mef2c fragment was ligated to the Not I site of the pSeV18 + / TS ⁇ F plasmid, cloned into E.
  • the Sendai virus prepared from the transcription product of the pSeV18 + Mef2c / TS ⁇ F plasmid is referred to as SeV18 + Mef2c / TS ⁇ F (hereinafter also referred to as Sendaivirus ⁇ F Mef2c vector, SeV-M).
  • the obtained Sendai virus solution was rapidly frozen in liquid nitrogen and stored at ⁇ 80 ° C.
  • the amplified fragment was purified with the QIAquick PCR purification kit.
  • the purified fragment was digested with Not I and separated by agarose gel electrophoresis, and then a band of about 1.6 kbp was cut out and purified with a QIAquick Gel Extraction kit.
  • the pSeV18 + / TS ⁇ F plasmid having a transgene insertion site (NotI site) upstream of the NP gene is digested with NotI and purified with the QIAquick PCR purification kit, then treated with alkaline phosphatase, and again treated with the QIAquick PCR purification kit. It refine
  • the purified Tbx5 fragment was ligated to the Not I site of the pSeV18 + / TS ⁇ F plasmid, cloned into E.
  • SeV18 + Tbx5 / TS ⁇ F A Sendai virus produced from the transcription product of the pSeV18 + Tbx5 / TS ⁇ F plasmid is referred to as SeV18 + Tbx5 / TS ⁇ F (hereinafter also referred to as Sendaivirus ⁇ F Tbx5 vector, SeV-T).
  • SeV18 + Tbx5 / TS ⁇ F Sendaivirus ⁇ F Tbx5 vector, SeV-T.
  • the obtained Sendai virus solution was rapidly frozen in liquid nitrogen and stored at ⁇ 80 ° C.
  • PCR is performed under the conditions of 94 ° C for 2 minutes, 30 cycles of 98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 1.5 minutes), 68 ° C for 5 minutes, 4 ° C ⁇
  • the Gata4 gene fragment (about 1.5 kbp) was purified with the QIAquick PCR purification kit.
  • the Mef2c gene fragment was prepared by PCR using the Mef2c gene mounted on the pSeV18 + Mef2c / TS ⁇ F plasmid as a template.
  • Gata4_Mef2c_N (5′-GAAAAACTTAGGGTGAAAGTTCATCCACGTACACTTGTAATGGGGAGAAAGAAGATTCAG-3 ′ (SEQ ID NO: 13)) and Mef2c_Tbx5_C (5′-CTTTCACCCTAAGTTTTTCTTACTACGGTCATGT TC-TC: V PCR is performed under the conditions of 94 ° C for 2 minutes, 30 cycles of 98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 1.5 minutes), 68 ° C for 5 minutes, 4 ° C ⁇
  • the obtained Mef2c gene fragment (about 1.4 kbp) was purified with the QIAquick PCR purification kit.
  • the Tbx5 gene fragment was prepared by PCR using the Tbx5 gene mounted on pSeV18 + Tbx5 / TS ⁇ F DNA as a template.
  • Gata4-Mef2c gene fragment was prepared by PCR using the Gata4 gene fragment and Mef2c gene fragment prepared by the above-described PCR as templates.
  • SeVF6 and Mef2c_A348G_C (5'-CTTCATTAATTTTCTTGTATTTTTCTTC-3 '(SEQ ID NO: 17)) as primers, KOD-Plus-Ver.
  • PCR was performed under the conditions of 94 ° C for 2 minutes, 98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 2 minutes, 30 cycles, 68 ° C for 5 minutes, 4 ° C ⁇
  • the Gata4-Mef2c gene fragment (about 1.9 kbp) was purified using the QIAquick PCR purification kit.
  • the Mef2c-Tbx5 gene fragment was prepared by PCR using the Mef2c gene fragment and the Tbx5 gene fragment as a template.
  • Mef2c_A348G_N (5'-GAAGAAAAATACAAGAAAATTAATGAAG-3 '(SEQ ID NO: 18)) and SeVR199 as primers
  • KOD-Plus-Ver. 2 was used, and PCR was performed under the conditions of 30 cycles of 94 ° C. for 2 minutes, (98 ° C. for 10 seconds, 55 ° C. for 30 seconds, 68 ° C. for 3 minutes), 68 ° C. for 5 minutes, and 4 ° C. for ⁇
  • the Mef2c-Tbx5 gene fragment (about 2.7 kbp) was purified using the QIAquick PCR purification kit.
  • PCR was performed using the Gata4-Mef2c gene fragment and the Mef2c-Tbx5 gene fragment as a template.
  • SeVF15 (5'-AAAACATGTATGGGATATGT-3 '(SEQ ID NO: 19)
  • SeVR150 5'-AATGTATCGAAGGTGCTCAA-3' (SEQ ID NO: 20)
  • PCR is carried out under the conditions of 94 ° C for 2 minutes, 30 cycles of 98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 4.5 minutes, 68 ° C for 5 minutes, 4 ° C for ⁇
  • the Gata4-Mef2c-Tbx5 gene fragment (about 4.5 kbp) was purified using the QIAquick PCR purification kit.
  • this purified fragment was digested with Not I and separated by agarose gel electrophoresis, and then the Gata4-Mef2c-Tbx5 gene fragment was purified with QIAquick Gel Extraction kit.
  • a pSeV (PM) / TS ⁇ F plasmid having a transgene insertion site (NotI site) between P gene and M gene was digested with Not I and purified with QIAquick PCR purification kit, and then treated with alkaline phosphatase, It was purified again using the QIAquick PCR purification kit.
  • the purified Gata4-Mef2c-Tbx5 gene fragment was ligated to the Not I site of the pSeV (PM) / TS ⁇ F plasmid, transformed into E. coli, cloned, and a clone with the correct nucleotide sequence was selected by sequencing.
  • pSeV (PM) Gata4-Mef2c-Tbx5 / TS ⁇ F plasmid was obtained.
  • the Sendai virus prepared from the transcription product of pSeV (PM) Gata4-Mef2c-Tbx5 / TS ⁇ F plasmid is referred to as SeV (PM) Gata4-Mef2c-Tbx5 / TS ⁇ F (hereinafter referred to as Sendaivirus ⁇ F Gata4-Mef2c-Tbx5 ).
  • the obtained Sendai virus solution was rapidly frozen in liquid nitrogen and stored at ⁇ 80 ° C.
  • the MEF isolated in Experiment 1 was seeded (0.5 ⁇ 10 5 cells / well) in a 12-well cell culture multiwell plate (manufactured by FALCON, 353043) and allowed to stand overnight. Thereafter, the medium in the well was removed by aspiration, and the medium was replaced with a DMEM / Sendai virus mixture. The cells were statically cultured overnight at 37 ° C. and 5% CO 2 to infect the virus (infection). The resulting products are referred to as “SeV-G / M / T-MEF” and “SeV-GMT-MEF”, respectively.
  • [Evaluation 1] FACS analysis method
  • Mouse embryonic fibroblasts (MEF) were cultured in SeV-G / M / T, SeV-GMT Sendai virus solution, and retrovirus solution (mixture of Gata4, Mef2c, Tbx5), and after 1 week, The medium was aspirated. Thereafter, the plate was washed with PBS ( ⁇ ), 0.5 mL of 0.25% trypsin-EDTA was added to each well, and the plate was allowed to stand at 37 ° C. under 5% CO 2 for 5 minutes.
  • the cells were neutralized with 1 mL of a medium for MEF (10% FBS / DMEM / PSA) shown in Table 1, and the cells were collected in a 15 mL tube (Corning, 430791).
  • a medium for MEF 10% FBS / DMEM / PSA
  • the collected cells were centrifuged at 4 ° C. (1500 rpm, 5 minutes). After aspirating the supernatant, 350 ⁇ L of the FACS enforcement solution (5% FBS / PBS) shown in Table 5 was added and mixed thoroughly. This suspension was filtered with a 5 mL polystyrene round tube with a cell strainer cap (FALCON, REF 353335) to obtain a sample for FACS.
  • FACS enforcement solution 5% FBS / PBS
  • GFP positive cells and cTnT positive cells in the above samples were measured using flow cytometry (Nippon Becton Dickinson, FACS Calibur).
  • FIG. 1 is a FACS analysis for the expression of cardiac troponin T (cTnT).
  • A is a figure which shows the result of a control experiment.
  • B shows the results of culturing mouse fetal fibroblasts (MEF) in a Sendai virus solution of SeV-G / M / T (mixture of Gata4, Mef2c, Tbx5).
  • C shows the results of culturing mouse fetal fibroblasts (MEF) in a Sendai virus solution of SeV-GMT.
  • (D) is the result of culturing mouse fetal fibroblasts (MEF) in a retrovirus solution (mixture of Gata4, Mef2c, Tbx5) for comparison. Compared with (b), the number of cTnT positive cells and the cTnT intensity are increased in (c).
  • FIG. 2 (a) shows the results of the control experiment.
  • B is a fluorescence microscope image 4 weeks after virus infection of mouse fetal fibroblasts (MEF) with a Sendi virus solution of SeV-GMT.
  • C is a fluorescence microscopic image 4 weeks after virus infection of mouse fetal fibroblasts (MEF) with a retrovirus solution (mixture of Gata4, Mef2c, Tbx5) for comparison.
  • cardiomyocyte-like cells can be induced by introduction of GMT3 gene with a retroviral vector (WO2011 / 139688), but myocardial protein positive (cTnT, ⁇ -) can also be obtained with Sendai virus vector (SeV-GMT). Actinin), a unique striated structure appeared, and the induction of myocardial cells was confirmed.
  • FIG. 3 is a fluorescence microscope image showing the result of introduction of the reprogramming factor. Gata4 expressing cells (green) and Mef2c expressing cells (red) are shown, respectively. DAPI (blue) indicates the nucleus of all cells. The merge image shows the overlay of each image.
  • A is a fluorescence microscope image showing introduction of each factor of GMT into cells by a retroviral vector for comparison.
  • B is a fluorescence microscope image showing introduction of G, M, and T factors into cells by a Sendi virus solution of SeV-G / M / T.
  • C) and (d) are fluorescence microscopic images showing introduction of G, M, and T factors into cells by a SeV-GMT Sendai virus solution.
  • (c) and (d) confirm the introduction of G, M, and T factors into more cells.
  • the merge image of (b) is compared with the merge images of (c) and (d)
  • the cell and the Mef2c-expressing cell match, and the gene transfer efficiency is improved.
  • the factor introduction efficiency into the cells is improved by changing the cell density and the passage number.
  • FIG. 4 is a fluorescence microscope image one week after mouse embryo fibroblasts (MEF) were infected with SeV-GMT Sendai virus solution. Compared to FIG. 2 (b), it was confirmed that a myocardial protein-positive (cTnT, ⁇ -Actinin), a unique striated structure appeared, and myocardial-like cells were induced within 1 week after GMT3 gene transfer. did it.
  • MEF mouse embryo fibroblasts
  • the GMT3 gene When the GMT3 gene is introduced with a Sendai virus vector, it is not clear why the myocardial cells are induced earlier than when introduced with a retrovirus, but the Sendai virus vector is a non-chromosomal viral vector. In addition, since the vector is expressed in the cytoplasm and the transgene is not integrated into the host chromosome (nucleus-derived chromosome), the time required for myocardial induction is expected to be short.
  • FIG. 5 (a) is a graph showing changes in the number of beating myocardial cells over time.
  • GMT Sendai virus vector
  • (B) is a graph showing the number of beating myocardial cells as of 19 days after infection. Compared with the myocardial cells in which the GMT gene was introduced by the conventional retroviral vector, the number of pulsating cells of the myocardial cells induced by the Sendai virus vector (SeV-GMT) in the present invention increased by 40 to 80 times. I can confirm that.
  • FIG. 6 is a FACS analysis on the expression of cardiac troponin T (cTnT) as a result of in vitro induction from human dermal fibroblasts.
  • A is a figure which shows the result of a control experiment.
  • B shows the result of culturing cells into which Gata4, Mef2c, and Tbx5 were introduced with a Sendi virus solution of SeV-GMT.
  • C shows the result of culturing cells in which miR133 was further introduced in addition to the introduction of Gata4, Mef2c, and Tbx5 by SeV-GMT.
  • (D) shows the result of culturing cells into which Mesp1 and Myocd were further introduced in addition to the introduction of Gata4, Mef2c, and Tbx5 by SeV-GMT.
  • (E) is the result of culturing cells into which miR133 was further introduced in addition to (d).
  • the number of cTnT positive cells and cTnT intensity by introducing Mesp1, Myocd, and miR133 in addition to Gata4, Mef2c, and Tbx5 Can be confirmed to increase.
  • FIG. 7 is a fluorescence microscopic image when cells in which Mesp1, Myocd, and miR133 were further introduced into human skin fibroblasts in vitro in addition to the introduction of Gata4, Mef2c, and Tbx5 by SeV-GMT in vitro.
  • Myocardial protein positive ( ⁇ -actinin) a unique striated structure appeared, and induction of myocardial cells was confirmed.
  • FIG. 8 is a diagram showing a modification of the present invention.
  • MEFs mouse fetal fibroblasts
  • SeV-GMT Sendai virus solution and introducing Gata4, Mef2c, and Tbx5
  • MOI multipleplicity of infection
  • the change in the number of heartbeat-like cells Since it can be confirmed that the number of beating cells increases depending on the seeding density of fibroblasts and the virus infection concentration, the above cells can be cultured while changing the seeding density of fibroblasts or MOI. good.
  • FIG. 9 is a diagram showing a modification of the present invention.
  • MEF mouse fetal fibroblasts
  • FIG. 10 is a diagram showing a modification of the present invention. Beating when using serum-free and serum media when introducing mouse 4, fief, and Tbx5 genes into mouse fetal fibroblasts (MEF) with SeV-GMT Sendai virus solution It is a comparison figure which shows the number of myocardial cells.
  • (A) is the case where FFV medium (serum-free medium) shown in Table 4 is used, and (b) is the case where fetal bovine serum (FBS) is added to Dulbecco's modified Eagle medium (DMEM) (serum) Medium).
  • FFV medium serum-free medium
  • DMEM Dulbecco's modified Eagle medium
  • the use of serum-free medium significantly increased the number of beating myocardial cells as compared to the case of using serum medium.
  • Production of the myocardial cells of the present invention may be performed using a conventional serum medium, but may also be performed using a serum-free medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

[Problem] To provide a method and a recombinant vector that can efficiently produce myocardium-like cells. [Solution] A production method for myocardium-like cells, the method being characterized by using one or more Sendai virus vectors to introduce into fibroblasts one or more reprogramming factors selected from among the polypeptides Gata4, Mef2c, Tbx5, Mesp1, and Myocd, the Sendai virus vector(s) having in the genome thereof a nucleic acid that codes for said reprogramming factor(s). A composition for the production of myocardium-like cells, the composition including a Sendai virus vector that has a viral genome that contains one or more reprogramming factors selected from among the polypeptides Gata4, Mef2c, Tbx5, Mesp1, and Myocd.

Description

心筋様細胞の作製方法及びそれに用いる心筋様細胞の作製用組成物Method for producing myocardial cell and composition for producing myocardial cell used therefor
 本発明は、心筋様細胞を効率よく作製することができる方法及びそれに用いる心筋様細胞の作製用組成物に関する。 The present invention relates to a method for efficiently producing myocardial cells and a composition for producing myocardial cells used therefor.
 主に3つの因子(Gata4、Mef2c及びTbx5)を線維芽細胞に遺伝子導入することにより、iPS細胞を介することなく直接心筋様細胞へと分化誘導し、心筋様細胞を作製する方法が提案されている(特許文献1及び非特許文献1~2参照)。これらの技術はいずれも、目的遺伝子の導入に際して、レトロウイルス由来あるいはレンチウイルス由来のRNAベクター等が使用されている。 There has been proposed a method for producing cardiomyocyte-like cells by directly inducing differentiation into myocardial-like cells without going through iPS cells by gene transfer of three factors (Gata4, Mef2c and Tbx5) into fibroblasts. (See Patent Document 1 and Non-Patent Documents 1 and 2). In any of these techniques, a retrovirus-derived or lentivirus-derived RNA vector or the like is used for introduction of a target gene.
 一方で、組換え発現ベクターとしてセンダイウイルスベクターを用いて遺伝子導入する方法が報告されている(例えば非特許文献3)。センダイウイルスベクターは、単核球においてゲノムを複製できるが、感染性ウイルス粒子を形成できないため、安全性が高いとされている。 On the other hand, a method for gene transfer using a Sendai virus vector as a recombinant expression vector has been reported (for example, Non-Patent Document 3). Sendai virus vectors can replicate the genome in mononuclear cells, but cannot form infectious virus particles, and are considered to be highly safe.
特表2013-524837号公報Special table 2013-524837 gazette
 特許文献1及び非特許文献1~2では、主に3つの因子(Gata4、Mef2c及びTbx5)をレトロウイルスベクターにより遺伝子導入した線維芽細胞から心筋様細胞へと分化誘導する技術が開示されているが、十分な作製効率を実現できていないという問題があった。さらに、レトロウイルスベクターによる遺伝子導入は、導入遺伝子が宿主の染色体(核由来染色体)に組み込まれるため、がん化の可能性が指摘されていた。 Patent Document 1 and Non-Patent Documents 1 and 2 disclose a technique for inducing differentiation from fibroblasts into which three factors (Gata4, Mef2c, and Tbx5) have been gene-transferred by a retroviral vector into cardiomyocyte-like cells. However, there was a problem that sufficient production efficiency could not be realized. Furthermore, gene transfer using a retroviral vector has been pointed out to be cancerous because the transgene is integrated into the host chromosome (nucleus-derived chromosome).
 以上のような背景から、従来以上に拍動する心筋誘導の作製効率が良く、さらにがん化等のリスクを低減させた安全性の高い心筋様細胞作製方法の実現が望まれていた。 In view of the above background, it has been desired to realize a highly safe method for producing myocardial cells that has higher efficiency in producing myocardial guidance that beats than before, and further reduces the risk of canceration.
 本発明は、上記課題を解決するためになされたものであって、その目的は、安全性の高い心筋様細胞を効率よく作製することができる方法及びそれに用いる心筋様細胞の作製用組成物を提供することにある。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method capable of efficiently producing highly safe myocardial cells and a composition for producing myocardial cells used therein. It is to provide.
(1)本発明の心筋様細胞の作製方法は、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdポリペプチドから選択されるリプログラミング因子1つ以上を、該リプログラミング因子をコードする核酸をゲノムに有するセンダイウイルスベクター1つ以上を用いて線維芽細胞内に導入することを特徴とする。
(2)(1)において、前記リプログラミング因子が、Gata4、Mef2c、Tbx5の3つであるように構成できる。
(3)あるいは、(1)において、前記リプログラミング因子が、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdの5つであるように構成できる。
(4)さらに、(1)~(3)のいずれかにおいてマイクロRNA(miRNA)を前記線維芽細胞内に導入するように構成できる。
(5)(2)又は(3)において、前記リプログラミング因子の2つ以上が、前記センダイウイルスベクターに直列に挿入されているように構成できる。
(6)(5)において、Gata4、Mef2c、及びTbx5が、上流側から下流側に向けて、Gata4、Mef2c、Tbx5、の順に隣接するように構成できる。
(7)(3)において、Mesp1、及びMyocdが、上流側から下流側に向けて、Mesp1、Myocd、の順に隣接するように構成できる。
(8)(1)~(7)において、前記線維芽細胞がヒト由来であるように構成できる。
(9)本発明の心筋様細胞の作製用組成物は、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdポリペプチドから選択されるリプログラミング因子1つ以上がウイルスゲノム上に保持されているセンダイウイルスベクターを含むことを特徴とする。
(10)(9)において、前記リプログラミング因子が、Gata4、Mef2c、Tbx5の3つであるように構成できる。
(11)或いは(9)において、前記リプログラミング因子が、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdの5つであるように構成できる。
(12)さらに(9)~(11)において、マイクロRNA(miRNA)を含むように構成できる。
(13)(10)又は(11)において、前記リプログラミング因子の2つ以上が、前記センダイウイルスベクターに直列に挿入されているように構成できる。
(14)(13)において、Gata4、Mef2c、及びTbx5が、上流側から下流側に向けて、Gata4、Mef2c、Tbx5、の順に隣接するように構成できる。
(15)(11)において、Mesp1、及びMyocdが、上流側から下流側に向けて、Mesp1、Myocd、の順に隣接するように構成できる。
(1) The method for producing cardiomyocyte-like cells of the present invention has at least one reprogramming factor selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptide, and a nucleic acid encoding the reprogramming factor in the genome. It is characterized in that it is introduced into fibroblasts using one or more Sendai virus vectors.
(2) In (1), the reprogramming factor can be configured to be three of Gata4, Mef2c, and Tbx5.
In (3) or (1), the reprogramming factor can be configured to be five of Gata4, Mef2c, Tbx5, Mesp1, and Myocd.
(4) Furthermore, in any of (1) to (3), a microRNA (miRNA) can be introduced into the fibroblast.
(5) In (2) or (3), it can be configured such that two or more of the reprogramming factors are inserted in series in the Sendai virus vector.
(6) In (5), Gata4, Mef2c, and Tbx5 can be configured to be adjacent in the order of Gata4, Mef2c, and Tbx5 from the upstream side toward the downstream side.
(7) In (3), Mesp1 and Myocd can be configured to be adjacent to each other in the order of Mesp1 and Myocd from the upstream side toward the downstream side.
(8) In (1) to (7), the fibroblast can be configured to be derived from a human.
(9) The composition for producing cardiomyocyte-like cells of the present invention is a Sendai virus vector in which one or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptides are retained on the viral genome. It is characterized by including.
(10) In (9), the reprogramming factor can be configured to be three of Gata4, Mef2c, and Tbx5.
In (11) or (9), the reprogramming factor can be configured to be five of Gata4, Mef2c, Tbx5, Mesp1, and Myocd.
(12) Further, in (9) to (11), a microRNA (miRNA) can be included.
(13) In (10) or (11), two or more of the reprogramming factors may be configured to be inserted in series in the Sendai virus vector.
(14) In (13), Gata4, Mef2c, and Tbx5 can be configured to adjoin G4, Mef2c, and Tbx5 in this order from the upstream side toward the downstream side.
(15) In (11), Mesp1 and Myocd can be configured to be adjacent in the order of Mesp1 and Myocd from the upstream side toward the downstream side.
 本発明によれば、安全性の高い心筋様細胞を効率よく作製することができる方法及び組み換えベクターを提供することができる。 According to the present invention, it is possible to provide a method and a recombinant vector that can efficiently produce highly safe myocardial cells.
心トロポニンT(cTnT)の発現に関するFACS分析である。FACS analysis for expression of cardiac troponin T (cTnT). マウス胎児線維芽細胞(MEF)に遺伝子導入してから4週間後の蛍光顕微鏡画像である。It is the fluorescence-microscope image 4 weeks after gene introduction | transduction to a mouse | mouth fetal fibroblast (MEF). リプログラミング因子導入の結果を示す蛍光顕微鏡画像である。It is a fluorescence-microscope image which shows the result of reprogramming factor introduction | transduction. マウス胎児線維芽細胞(MEF)に遺伝子導入してから1週間後の蛍光顕微鏡画像である。It is a fluorescence-microscope image one week after gene introduction | transduction to a mouse | mouth fetal fibroblast (MEF). SeV-GMT、SeV-G/M/T、レトロウイルスベクターによるGMT遺伝子導入を行った場合の、拍動心筋様細胞数を示す比較図である。It is a comparison figure which shows the number of pulsatile cardiomyocytes when GMT gene introduction | transduction by SeV-GMT, SeV-G / M / T, and a retroviral vector is performed. ヒト皮膚線維芽細胞から誘導した結果における心トロポニンT(cTnT)の発現に関するFACS分析である。FACS analysis on the expression of cardiac troponin T (cTnT) in results derived from human dermal fibroblasts. ヒト皮膚線維芽細胞にSeV-GMTによるGata4、Mef2c、Tbx5、Mesp1、Myocd、及びmiR133を導入した細胞を4週間培養した時点における蛍光顕微鏡画像である。It is a fluorescence-microscope image at the time of culturing the cell which introduce | transduced Gat4, Mef2c, Tbx5, Mesp1, Myocd, and miR133 by SeV-GMT into human skin fibroblasts for 4 weeks. 本発明の変形例を示す図である。It is a figure which shows the modification of this invention. 本発明の変形例を示す図である。It is a figure which shows the modification of this invention. 本発明の変形例を示す図である。It is a figure which shows the modification of this invention.
 以下、本発明に係る心筋様細胞の作製方法、及び組み換えベクターについて、図面を参照しつつ説明する。なお、本発明は以下の実施形態及び実験例に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, a method for producing a myocardial cell and a recombinant vector according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment and an experiment example, It can implement in various deformation | transformation within the range of the summary.
 なお、本明細書においては「心筋様細胞」とは本発明方法を用いて線維芽細胞から直接発生させた心筋細胞を意味し、「誘導心筋細胞」とも称する。本発明において「心筋様細胞」とは、少なくとも心筋トロポニン(cTnT)またはαMHCを発現している細胞を意味する。 In the present specification, “cardiomyocyte-like cells” mean cardiomyocytes directly generated from fibroblasts using the method of the present invention, and are also referred to as “induced cardiomyocytes”. In the present invention, the “cardiomyocyte” means a cell expressing at least cardiac troponin (cTnT) or αMHC.
 また本明細書においては、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdポリペプチドの1つ以上を「リプログラミング因子」と称する。本発明において、リプログラミング因子1つ以上を導入する線維芽細胞は、幹細胞となることなく、分化した心筋細胞に直接リプログラミングされる。 Also, in the present specification, one or more of Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptides are referred to as “reprogramming factors”. In the present invention, fibroblasts into which one or more reprogramming factors are introduced are directly reprogrammed into differentiated cardiomyocytes without becoming stem cells.
 [心筋様細胞の作製方法]
 本実施形態の心筋様細胞の作製方法は、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdポリペプチドから選択されるリプログラミング因子1つ以上を、該リプログラミング因子ポリペプチドをコードする核酸をゲノムに有するセンダイウイルスベクター1つ以上で線維芽細胞内に導入することを特徴とする。
[Method for producing myocardial cells]
The method for producing cardiomyocyte-like cells of this embodiment has one or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptide, and a nucleic acid encoding the reprogramming factor polypeptide in the genome. One or more Sendai virus vectors are introduced into fibroblasts.
(本実施形態のセンダイウイルスベクター)
 線維芽細胞への因子の遺伝子導入、すなわち、これらのポリペプチドをコードするポリヌクレオチド、又はその塩基配列に相補的な塩基配列を有するポリヌクレオチドの導入は、例えば、レトロウイルスベクターやアデノウイルスベクター等のウイルスベクターを用いた方法、リポフェクション法、エレクトロポレーション法、マイクロインジェクション法等の公知の方法により行うことができる。
(Sendai virus vector of this embodiment)
Introduction of a factor gene into fibroblasts, that is, introduction of a polynucleotide encoding these polypeptides or a polynucleotide having a base sequence complementary to the base sequence is, for example, a retrovirus vector or an adenovirus vector. These methods can be performed by a known method such as a method using a viral vector, a lipofection method, an electroporation method, or a microinjection method.
 本実施形態においては、リプログラミング因子は、該リプログラミング因子ポリペプチドをコードする核酸をゲノムに有する組換えセンダイウイルスベクター1つ以上で線維芽細胞内に導入されることが好ましい。 In the present embodiment, the reprogramming factor is preferably introduced into fibroblasts by one or more recombinant Sendai virus vectors having a nucleic acid encoding the reprogramming factor polypeptide in the genome.
 本実施形態においてベクターは、好ましくはウイルスベクターである。また本実施形態においてウイルスベクターは、当該ウイルスに由来するゲノム核酸を有し、該核酸に導入遺伝子を組み込むことにより、該遺伝子を発現させることができるベクターである。センダイウイルスベクターは、染色体非組み込み型ウイルスベクターであって、ベクターは細胞質中で発現されるので、導入遺伝子が宿主の染色体(核由来染色体)に組み込まれる危険性がない。従って安全性が高く、また目的達成後に導入細胞からベクターを除去することが可能である。本実施形態においてセンダイウイルスベクターには、感染性ウイルス粒子の他、ウイルスコア、ウイルスゲノムとウイルス蛋白質との複合体、または非感染性ウイルス粒子などからなる複合体であって、細胞に導入することにより搭載する遺伝子を発現する能力を持つ複合体が含まれる。例えばセンダイウイルスにおいて、センダイウイルスゲノムとそれに結合するセンダイウイルス蛋白質(NP、P、およびL蛋白質)からなるリボヌクレオ蛋白質(ウイルスのコア部分)は、細胞に導入することにより細胞内で導入遺伝子を発現することができる(国際公開公報WO00/70055に開示)。細胞への導入は、適宜トランスフェクション試薬等を用いて行えばよい。このようなリボヌクレオ蛋白質(RNP)も本実施形態においてセンダイウイルスベクターに含まれる。 In the present embodiment, the vector is preferably a viral vector. In this embodiment, the viral vector is a vector that has a genomic nucleic acid derived from the virus and can express the gene by incorporating a transgene into the nucleic acid. The Sendai virus vector is a non-chromosomal viral vector, and since the vector is expressed in the cytoplasm, there is no risk that the transgene is integrated into the host chromosome (nucleus-derived chromosome). Therefore, the safety is high, and the vector can be removed from the introduced cell after the purpose is achieved. In this embodiment, the Sendai virus vector is an infectious virus particle, a virus core, a complex of virus genome and virus protein, or a complex composed of non-infectious virus particles, which is introduced into a cell. A complex with the ability to express the gene carried by is included. For example, in Sendai virus, a ribonucleoprotein (virus core part) consisting of a Sendai virus genome (NP, P, and L proteins) that binds to the Sendai virus genome expresses the transgene in the cell by being introduced into the cell. (Disclosed in International Publication No. WO 00/70055). The introduction into the cells may be appropriately performed using a transfection reagent or the like. Such a ribonucleoprotein (RNP) is also included in the Sendai virus vector in this embodiment.
 センダイウイルスは、モノネガウイルス目(Mononegavirales)ウイルスの1つでパラミクソウイルス科(Paramyxoviridae;Paramyxovirus,Morbillivirus,Rubulavirus,およびPneumovirus属等を含む)に属し、一本のマイナス鎖(ウイルス蛋白質をコードするセンス鎖に対するアンチセンス鎖)のRNAをゲノムとして含んでいる。マイナス鎖RNAはネガティブ鎖RNAとも呼ばれる。 Sendai virus is one of the Mononegavirales viruses belonging to the family of Paramyxoviridae (Paramixoviridae; Paramyxovirus, Morbilillirus, Rubulavirus, and Pneumovirus genus). RNA of antisense strand to sense strand) is included as genome. Negative strand RNA is also called negative strand RNA.
 モノネガウイルス目(Mononegavirales)には、パラミクソウイルス(パラミクソウイルス科(Paramyxoviridae)ウイルス)の他に、ラブドウイルス(Rhabdoviridae;Vesiculovirus,Lyssavirus,およびEphemerovirus属等を含む)、フィロウイルス(Filoviridae)などの科に属するウイルスが含まれる(ウイルス 第57巻 第1号、pp29-36、2007;Annu.Rev.Genet.32,123-162,1998;Fields virology fourth edition,Philadelphia,Lippincott-Raven,1305-1340,2001;Microbiol.Immunol.43,613-624,1999;Field Virology,Third edition pp1205-1241 1996)。センダイウイルス以外のパラミクソウイルス科(Paramyxoviridae)ウイルスの例としては、ニューカッスル病ウイルス(Newcastle disease virus)、おたふくかぜウイルス(Mumps virus)、麻疹ウイルス(Measles virus)、RSウイルス(Respiratory syncytial virus)、牛疫ウイルス(rinderpest virus)、ジステンパーウイルス(distemper virus)、サルパラインフルエンザウイルス(SV5)、ヒトパラインフルエンザウイルス1,2,3型、オルトミクソウイルス科 (Orthomyxoviridae)のインフルエンザウイルス(Influenza virus)、ラブドウイルス科(Rhabdoviridae)の水疱性口内炎ウイルス(Vesicular stomatitis virus)、狂犬病ウイルス(Rabies virus)等が挙げられ、さらに具体的に例示すれば、例えば Sendai virus(SeV)、human parainfluenza virus-1(HPIV-1)、human parainfluenza virus-3(HPIV-3)、phocine distemper virus(PDV)、canine distemper virus(CDV)、dolphin molbillivirus(DMV)、peste-des-petits-ruminants virus(PDPR)、measles virus(MV)、rinderpest virus(RPV)、Hendra virus(Hendra)、Nipah virus(Nipah)、human parainfluenza virus-2(HPIV-2)、simian parainfluenza virus 5(SV5)、human parainfluenza virus-4a(HPIV-4a)、human parainfluenza virus-4b(HPIV-4b)、mumps virus(Mumps)、およびNewcastle disease virus(NDV)などが含まれる。より好ましくは、Sendai virus(SeV)、human parainfluenza virus-1(HPIV-1)、human parainfluenza virus-3(HPIV-3)、phocine distemper virus(PDV)、canine distemper virus(CDV)、dolphin molbillivirus(DMV)、peste-des-petits-ruminants virus(PDPR)、measles virus(MV)、rinderpest virus(RPV)、Hendra virus(Hendra)、および Nipah virus(Nipah)からなる群より選択されるウイルスが挙げられる。 In the order of Mononegavirales, in addition to Paramyxovirus (Paramixoviridae virus), Rhabdoviridae; Viruses belonging to the genus Vesiculovirus, Lysavivirus, Ephemerovirus, etc. Viruses belonging to this family are included (Virus Vol. 57, No. 1, pp29-36, 2007; Annu. Rev. Genet. 32, 123-162, 1998; Fields virology fourth edition, Philadelphia, Lippincott-Raven, 1305- 1340, 2001; Microbiol.Immun l.43,613-624,1999; Field Virology, Third edition pp1205-1241 1996). Examples of Paramyxoviridae viruses other than Sendai virus include Newcastle disease virus (Newcastle disease virus), Mumps virus (Measles virus), measles virus (Measles virus), and RS virus (Respiris virus). (Rinderpes virus), distemper virus, simian parainfluenza virus (SV5), human parainfluenza virus types 1, 2, and 3, orthomyxoviridae (Influenza virus), influenza virus family (Influenza virus) Rhabdoviridae's vesicular stomatitis virus (Vesicular stomatitis virus), rabies virus (Rabies virus), etc., and more specifically, for example, Sendai virus (SeV), human paraflurus-1 (Human paraflurus-1) human parainfluenza virus-3 (HPIV-3), phocine distemper virus (PDV), canine distemper virus (CDV), dolphin mollivirus (DMV), peste-desrivetrs-petsrivetrs-petsrivetrs-petsrivetsr derpest virus (RPV), Hendra virus (Hendra), Nipah virus (Nipah), human parainfluenza virus-2 (HPIV-2), similar parafluenza5 virhu influenzah These include virus-4b (HPIV-4b), mumps virus (Mumps), and Newcastle disease virus (NDV). More preferably, Sendai virus (SeV), human parainfluenza virus-1 (HPIV-1), human parainfluenza virus-3 (HPIV-3), phocine distemper virus (PDV), candinvirdin (individualVirdin). ), Peste-des-petits-luminances virus (PDPR), measles virus (MV), renderpest virus (RPV), Hendra virus (Hendra), and a group consisting of Nipah virus (Nipah).
 例えばセンダイウイルスの各遺伝子の塩基配列のデータベースのアクセッション番号は、NP遺伝子については M29343、M30202,M30203,M30204,M51331,M55565,M69046,X17218、P遺伝子については M30202,M30203,M30204,M55565,M69046,X00583,X17007,X17008、M遺伝子については D11446,K02742,M30202,M30203,M30204,M69046,U31956,X00584,X53056、F遺伝子については D00152,D11446,D17334,D17335,M30202,M30203,M30204,M69046,X00152,X02131、HN遺伝子については D26475,M12397,M30202,M30203,M30204,M69046,X00586,X02808,X56131、L遺伝子については D00053,M30202,M30203,M30204,M69040,X00587,X58886を参照することにより特定することができる。またその他のウイルスがコードするウイルス遺伝子を例示すれば、NP遺伝子(N遺伝子とも言う)については、CDV,AF014953;DMV,X75961;HPIV-1,D01070;HPIV-2,M55320;HPIV-3,D10025;Mapuera,X85128;Mumps,D86172;MV,K01711;NDV,AF064091;PDPR,X74443;PDV,X75717;RPV,X68311;SeV,X00087;SV5,M81442;およびTupaia,AF079780、P遺伝子については、CDV,X51869;DMV,Z47758;HPIV-l,M74081;HPIV-3,X04721;HPIV-4a,M55975;HPIV-4b,M55976;Mumps,D86173;MV,M89920;NDV,M20302;PDV,X75960;RPV,X68311;SeV,M30202;SV5,AF052755;およびTupaia, AF079780、C遺伝子についてはCDV,AF014953;DMV,Z47758;HPIV-1.M74081;HPIV-3,D00047;MV,ABO16162;RPV,X68311;SeV,AB005796;およびTupaia, AF079780、M遺伝子についてはCDV,M12669;DMV Z30087;HPIV-1,S38067;HPIV-2,M62734;HPIV-3,D00130;HPIV-4a,D10241;HPIV-4b,D10242;Mumps,D86171;MV,AB012948;NDV,AF089819;PDPR,Z47977;PDV,X75717;RPV,M34018;SeV,U31956;およびSV5,M32248、F遺伝子についてはCDV,M21849;DMV,AJ224704;HPN-1.M22347;HPIV-2,M60182;HPIV-3.X05303,HPIV-4a,D49821;HPIV-4b,D49822;Mumps,D86169;MV,AB003178;NDV,AF048763;PDPR,Z37017;PDV,AJ224706;RPV,M21514;SeV,D17334;およびSV5,AB021962、HN(HまたはG)遺伝子については CDV,AF112189;DMV,AJ224705;HPIV-1,U709498;HPIV-2.D000865;HPIV-3,AB012132;HPIV-4A,M34033;HPIV-4B,AB006954;Mumps,X99040;MV,K01711;NDV,AF204872;PDPR,Z81358;PDV,Z36979;RPV,AF132934;SeV,U06433;および SV-5,S76876 が例示できる。但し、各ウイルスは複数の株が知られており、株の違いにより上記に例示した以外の配列からなる遺伝子も存在する。これらのいずれかの遺伝子に由来するウイルス遺伝子を持つセンダイウイルスベクターは、本実施形態のベクターとして有用である。例えば本実施形態のセンダイウイルスベクターは、上記のいずれかのウイルス遺伝子のコード配列と、90%以上、好ましくは95%以上、96%以上、97%以上、98%以上、または99%以上の同一性を持つ塩基配列を含む。また、本実施形態のセンダイウイルスベクターは、例えば上記のいずれかのウイルス遺伝子のコード配列がコードするアミノ酸配列と、90%以上、好ましくは95%以上、96%以上、97%以上、98%以上、または99%以上の同一性を持つアミノ酸配列をコードする塩基配列を含む。また、本実施形態のセンダイウイルスベクターは、例えば上記のいずれかのウイルス遺伝子のコード配列がコードするアミノ酸配列において、10個以内、好ましくは9個以内、8個以内、7個以内、6個以内、5個以内、4個以内、3個以内、2個以内、または1個のアミノ酸が置換、挿入、欠失、および/または付加されたアミノ酸配列をコードする塩基配列を含む。 For example, the accession number of the base sequence database of each gene of Sendai virus is M29343, M30202, M30203, M30204, M51333, M55563, M69046, X17218 for the NP gene, and M30202, M30203, M30204, M55556, M69046 for the P gene. , X00583, X17007, X17008, M gene D11446, K02742, M30202, M30203, M30204, M69046, U319656, X00584, X53056, and F gene D00152, D11446, D17334, D17335, M30202, M30204, M69046, X00152 , X02131, HN gene Itewa D26475, M12397, M30202, M30203, M30204, M69046, X00586, X02808, the X56131, L genes can be identified by reference to D00053, M30202, M30203, M30204, M69040, X00587, X58886. In addition, as an example of viral genes encoded by other viruses, for NP gene (also referred to as N gene), CDV, AF014953; DMV, X75961; HPIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025 Mupera, X85128; Mumps, D86172; MV, K01711; NDV, AF064091; PDPR, X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442; and Tupaia, AF07780, V, X DMV, Z47758; HPIV-1, M74081; HPIV-3, X04721; HPIV-4a, M55975; HPIV-4b, M55976; umps, D86173; MV, M89920; NDV, M20302; PDV, X75960; RPV, X68311; SeV, M30202; SV5, AF052755; and Tupaia, AF079780, for C gene CDV, AF014953; DMV, Z47758; HPIV-1. HPIV-3, D00047; MV, ABO16162; RPV, X68311; SeV, AB005796; and Tupaia, AF0797780, CDV for the M gene, M12669; DMV Z30087; HPIV-1, S38067; HPIV-2, M62734; HPIV-4a, D10241; HPIV-4b, D10242; Mumps, D86171; MV, AB012948; NDV, AF089819; PDPR, Z47977; PDV, X75717; RPV, M34018; SeV, U31956; and SV5, M32248, F For genes, CDV, M21849; DMV, AJ224704; HPN-1. M22347; HPIV-2, M60182; HPIV-3. X05303, HPIV-4a, D49821; HPIV-4b, D49822; Mumps, D86169; MV, AB003178; NDV, AF048763; PDPR, Z37017; PDV, AJ224706; RPV, M21514; SeV, D17334; and SV5, AB021962 Or G) For genes, CDV, AF112189; DMV, AJ224705; HPIV-1, U709498; HPIV-2. HPIV-3, AB011322; HPIV-4A, M34033; HPIV-4B, AB006954; Mumps, X99040; MV, K01711; NDV, AF204872; PDPR, Z81358; PDV, Z36979; RPV, AF132433; SeV, U06433; -5, S76876. However, a plurality of strains are known for each virus, and there are genes having sequences other than those exemplified above depending on the strain. A Sendai virus vector having a viral gene derived from any of these genes is useful as the vector of this embodiment. For example, the Sendai virus vector of this embodiment is 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more identical to the coding sequence of any of the above viral genes. Includes a nucleotide sequence that has sex. The Sendai virus vector of the present embodiment is, for example, 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more with the amino acid sequence encoded by the coding sequence of any of the above viral genes. Or a nucleotide sequence encoding an amino acid sequence having 99% or more identity. In addition, the Sendai virus vector of the present embodiment is, for example, within 10 amino acids, preferably within 9, within 8, within 7, within 6 within the amino acid sequence encoded by any of the above viral gene coding sequences. It includes a base sequence encoding an amino acid sequence in which 5 amino acids, 4 amino acids, 3 amino acids, 2 amino acids, 2 amino acids, or 1 amino acid is substituted, inserted, deleted, and / or added.
 なお本明細書に記載した塩基配列およびアミノ酸配列などのデータベースアクセッション番号が参照された配列は、例えば本願の出願日および優先日における配列を参照するものであって、本願の出願日および優先日のいずれ時点における配列としても特定することができ、好ましくは本願の出願日における配列として特定される。各時点での配列はデータベースのリビジョンヒストリーを参照することにより特定することができる。 The sequences to which database accession numbers such as base sequences and amino acid sequences described in this specification are referred to, for example, the sequences on the filing date and priority date of the present application, and the filing date and priority date of the present application. It is possible to specify as a sequence at any point of time, preferably as a sequence as of the filing date of the present application. The sequence at each time point can be specified by referring to the revision history of the database.
 なお、本実施形態において用いられるセンダイウイルスベクターは誘導体であってもよく、誘導体には、ウイルスによる遺伝子導入能を損なわないように、ウイルス遺伝子が改変されたウイルス、および化学修飾されたウイルス等が含まれる。 The Sendai virus vector used in the present embodiment may be a derivative, and examples of the derivative include a virus whose virus gene has been modified, a virus that has been chemically modified, and the like so as not to impair the gene transfer ability by the virus. included.
 またセンダイウイルスは、天然株、野生株、変異株、ラボ継代株、および人為的に構築された株などに由来してもよい。例えばZ株が挙げられる(Medical Journal of Osaka University Vol.6,No.1,March 1955 p1-15に開示)。つまり、当該ウイルスは、目的とする機能を達成できる限り、天然から単離されたウイルスと同様の構造を持つウイルスベクターであっても、遺伝子組み換えにより人為的に改変したウイルスであってもよい。例えば、野生型ウイルスが持ついずれかの遺伝子に変異や欠損があるものであってよい。また、DI粒子(J.Virol.68:8413-8417,1994に開示)などの不完全ウイルスを用いることも可能である。例えば、ウイルスのエンベロープ蛋白質または外殻蛋白質をコードする少なくとも1つの遺伝子に変異または欠損を有するウイルスを好適に用いることができる。このようなウイルスベクターは、例えば感染細胞においてはゲノムを複製することはできるが、感染性ウイルス粒子を形成できないウイルスベクターである。このような伝搬能欠損型のウイルスベクターは、周囲に感染を拡大する懸念がないので安全性が高い。例えば、Fおよび/またはHNなどのエンベロープ蛋白質またはスパイク蛋白質をコードする少なくとも1つの遺伝子、あるいはそれらの組み合わせが含まれていないウイルスベクターを用いることができる (国際公開公報WO00/70055、国際公開公報WO00/70070、Li,H.-O.et al.,J.Virol.74(14)6564-6569(2000)に開示)。ゲノム複製に必要な蛋白質(例えばNP、P、およびL蛋白質)をゲノムRNAにコードしていれば、感染細胞においてゲノムを増幅することができる。欠損型ウイルスを製造するには、例えば、欠損している遺伝子産物またはそれを相補できる蛋白質をウイルス産生細胞において外来的に供給する(国際公開公報WO00/70055、国際公開公報WO00/70070、Li, H.-O.et al.,J.Virol.74(14)6564-6569(2000)に開示)。また、欠損するウイルス蛋白質を完全に相補することなく、非感染性のウイルス粒子(VLP)としてウイルスベクターを回収する方法も知られている(国際公開公報WO00/70070に開示)。また、ウイルスベクターをRNP(例えばN、L、P蛋白質、およびゲノムRNAからなるRNP)として回収する場合は、エンベロープ蛋白質を相補することなくベクターを製造することができる。 Sendai virus may also be derived from natural strains, wild strains, mutant strains, laboratory passage strains, and artificially constructed strains. An example is Z strain (disclosed in Medical Journal of Osaka University Vol. 6, No. 1, March 1955 p1-15). That is, as long as the target function can be achieved, the virus may be a virus vector having the same structure as a virus isolated from nature, or a virus artificially modified by genetic recombination. For example, any gene possessed by the wild-type virus may be mutated or defective. It is also possible to use incomplete viruses such as DI particles (disclosed in J. Virol. 68: 8413-8417, 1994). For example, a virus having a mutation or deletion in at least one gene encoding a viral envelope protein or outer shell protein can be preferably used. Such a viral vector is, for example, a viral vector that can replicate the genome in infected cells but cannot form infectious viral particles. Such a transmission ability-deficient virus vector is highly safe because there is no concern of spreading infection around it. For example, a viral vector that does not contain at least one gene encoding an envelope protein or spike protein such as F and / or HN, or a combination thereof can be used (International Publication No. WO00 / 70055, International Publication No. WO00). / 70070, Li, H.-O. et al., J. Virol. 74 (14) 6564-6659 (2000)). If proteins necessary for genome replication (for example, NP, P, and L proteins) are encoded in genomic RNA, the genome can be amplified in infected cells. In order to produce a defective virus, for example, a defective gene product or a protein capable of complementing it is supplied exogenously in virus-producing cells (International Publication WO00 / 70055, International Publication WO00 / 70070, Li, H.-O. et al., J. Virol. 74 (14) 6564-6695 (2000)). There is also known a method for recovering a viral vector as a non-infectious viral particle (VLP) without completely complementing a defective viral protein (disclosed in International Publication No. WO00 / 70070). When the viral vector is recovered as RNP (for example, RNP comprising N, L, P protein, and genomic RNA), the vector can be produced without complementing the envelope protein.
 本実施形態で好適なセンダイウイルスベクターを例示すれば、例えばM蛋白質にG69E,T116A,及びA183Sの変異を、HN蛋白質にA262T,G264,及びK461Gの変異を、P蛋白質にL511F変異を、そしてL蛋白質にN1197S及びK1795E変異を持つF遺伝子欠失型センダイウイルスベクター(例えばZ strain)であってよく、このベクターにさらにTS 7、TS 12、TS 13、TS 14、またはTS 15の変異を導入したベクターはより好ましい。具体的には、SeV18+/TSΔF(WO2010/008054、WO2003/025570)やSeV(PM)/TSΔF、および、これらにさらにTS 7、TS 12、TS 13、TS 14、またはTS 15の変異を導入したベクターなどが挙げられるが、これらに限定されない。 Examples of suitable Sendai virus vectors in the present embodiment include, for example, mutations of G69E, T116A, and A183S in the M protein, mutations of A262T, G264, and K461G in the HN protein, an L511F mutation in the P protein, and L The protein may be an F gene deletion-type Sendai virus vector (for example, Z strain) having N1197S and K1795E mutations, and a mutation of TS 7, TS 12, TS 13, TS 14, or TS 15 is further introduced into this vector. Vectors are more preferred. Specifically, SeV18 + / TSΔF (WO 2010/008054, WO 2003/025570) and SeV (PM) / TSΔF, and further, mutations of TS 7, TS 12, TS 13, TS 14, or TS 15 were introduced into these. Examples include, but are not limited to, vectors.
 なお「TSΔF」は、M蛋白質にG69E,T116A,及びA183Sの変異を、HN蛋白質にA262T,G264,及びK461Gの変異を、P蛋白質にL511F変異を、そしてL蛋白質にN1197S及びK1795E変異を持ち、F遺伝子を欠失することを言う。 “TSΔF” has mutations of G69E, T116A, and A183S in the M protein, mutations of A262T, G264, and K461G in the HN protein, L511F mutation in the P protein, and N1197S and K1795E mutations in the L protein, Deletion of the F gene.
 本実施形態において、リプログラミング因子を持つ組換えセンダイウイルスベクターの再構成は公知の方法を利用して行うことができる。
 具体的には、(a)センダイウイルスゲノムRNA(マイナス鎖)またはその相補鎖(プラス鎖)をコードするcDNAを、ウイルス粒子形成に必要なウイルス蛋白質(N、P、およびL)を発現する細胞で転写させる工程、(b)生成したウイルスを含む培養上清を回収する工程、により製造することができる。粒子形成に必要なウイルス蛋白質は、転写させたウイルスゲノムRNAから発現されてもよいし、ゲノムRNA以外からトランスに供給されてもよい。例えば、N、P、およびL蛋白質をコードする発現プラスミドを細胞に導入して供給することができる。ゲノムRNAにおいて粒子形成に必要なウイルス遺伝子が欠損している場合は、そのウイルス遺伝子をウイルス産生細胞で別途発現させ、粒子形成を相補することもできる。ウイルス蛋白質やRNAゲノムを細胞内で発現させるためには、該蛋白質やゲノムRNAをコードするDNAを宿主細胞で機能する適当なプロモーターの下流に連結したベクターを宿主細胞に導入する。転写されたゲノムRNAは、ウイルス蛋白質の存在下で複製され、感染性ウイルス粒子が形成される。エンベロープ蛋白質などの遺伝子を欠損する欠損型ウイルスを製造する場合は、欠損する蛋白質またはその機能を相補できる他のウイルス蛋白質などをウイルス産生細胞において発現させることもできる。
In this embodiment, reconstitution of a recombinant Sendai virus vector having a reprogramming factor can be performed using a known method.
Specifically, (a) a cell encoding Sendai virus genomic RNA (minus strand) or its complementary strand (plus strand) and a virus protein (N, P, and L) necessary for virus particle formation. And (b) a step of recovering the culture supernatant containing the produced virus. The viral protein necessary for particle formation may be expressed from the transcribed viral genomic RNA, or may be supplied to trans from other than the genomic RNA. For example, expression plasmids encoding N, P, and L proteins can be introduced into cells and supplied. If the genomic RNA lacks a viral gene necessary for particle formation, the viral gene can be separately expressed in virus-producing cells to complement particle formation. In order to express a viral protein or RNA genome in a cell, a vector in which DNA encoding the protein or genomic RNA is linked downstream of an appropriate promoter that functions in the host cell is introduced into the host cell. The transcribed genomic RNA is replicated in the presence of viral proteins to form infectious viral particles. When a defective virus lacking a gene such as an envelope protein is produced, the defective protein or another viral protein capable of complementing its function can be expressed in the virus-producing cell.
 また、センダイウイルスの製造は、以下の公知の方法を利用して実施することができる(国際公開公報WO97/16539;国際公開公報WO97/16538;国際公開公報WO00/70055;国際公開公報WO00/70070;国際公開公報WO01/18223;国際公開公報WO03/025570;国際公開公報WO2005/071092;国際公開公報WO2006/137517;国際公開公報WO2007/083644;国際公開公報WO2008/007581;Hasan,M.K.et al.,J.Gen.Virol.78: 2813-2820,1997、Kato,A.et al.,1997,EMBO J.16: 578-587 及び Yu,D.et al.,1997,Genes Cells 2:457-466;Durbin,A.P.et al.,1997,Virology 235:323-332;Whelan, S. P. et al., 1995, Proc. Natl. Acad. Sci. USA 92: 8388-8392;Schnell.M.J.et al.,1994,EMBO J.13:4195-4203;Radecke,F.et al.,1995,EMBO J.14: 5773-5784;Lawson,N.D.et al.,Proc.Natl.Acad.Sci.USA 92:4477-4481;Garcin,D.et al.,1995,EMBO J.14:6087-6094;Kato,A.et al.,1996,Genes Cells 1:569-579;Baron,M.D.and Barrett,T.,1997,J.Virol.71:1265-1271;Bridgen,A.and Elliott,R.M.,1996,Proc.Natl.Acad.Sci.USA 93:15400-15404;Tokusumi,T.et al.Virus Res.2002:86;33-38、Li,H.-O.et al.,J.Virol.2000:74; 6564-6569)。 In addition, Sendai virus can be produced using the following known methods (International Publication WO97 / 16539; International Publication WO97 / 16538; International Publication WO00 / 70055; International Publication WO00 / 70070). International Publication No. WO01 / 18223; International Publication No. WO03 / 025570; International Publication No. WO2005 / 071092; International Publication No. WO2006 / 137517; International Publication No. WO2007 / 083644; International Publication No. WO2008 / 007581; Hasan, M. K. et. al., J. Gen. Virol.78: 2813-2820, 1997, Kato, A. et al., 1997, EMBO J.16: 578-587 and Yu, D. et al., 1997, Gene. Cells 2: 457-466; Durbin, AP et al., 1997, Virology 235: 323-332; Whelan, SP et al., 1995, Proc. Natl. Acad. Sci. USA 92: 8388 Schnell MJ et al., 1994, EMBO J. 13: 4195-4203; Radecke, F. et al., 1995, EMBO J. 14: 5773-5784; al., Proc. Natl. Acad. Sci. USA 92: 4477-4481; Garcin, D. et al., 1995, EMBO J.14: 6087-6094; Kato, A. et al., 1996, Ge. nes Cells 1: 569-579; Baron, MD and Barrett, T., 1997, J. Virol. 71: 1265-1271; Bridgen, A. and Elliott, RM, 1996, Proc. Natl. Acad.Sci.USA 93: 15400-15404; Tokusumi, T. et al.Virus Res.2002: 86; 33-38, Li, H.-O. et al., J. Virol.2000: 74; 6569).
 センダイウイルスのゲノムは、3’端から5’端に向けて順に、NP(ヌクレオキャプシド)遺伝子、P(ホスホ)遺伝子、M(マトリックス)遺伝子、F(フュージョン)遺伝子、HN(赤血球凝集素/ノイラミニダーゼ)遺伝子、及びL(ラージ)遺伝子が含まれている。このうち、センダイウイルスは、NP遺伝子、P遺伝子、およびL遺伝子があればベクターとして十分機能でき、細胞中でゲノムを複製し、搭載されている遺伝子(本実施形態においては、Gata4、Mef2c、Tbx5、Mesp1、及びMyocd)を発現させることができる。なおセンダイウイルスは、マイナス鎖RNAをゲノムに持つことから、通常とは逆で、ゲノムの3’側が上流にあたり、5’側が下流にあたる。 The Sendai virus genome consists of NP (nucleocapsid) gene, P (phospho) gene, M (matrix) gene, F (fusion) gene, and HN (hemagglutinin / neuraminidase in this order from 3 ′ end to 5 ′ end. ) Gene and L (large) gene. Among these, Sendai virus can sufficiently function as a vector if it has the NP gene, P gene, and L gene, and replicates the genome in the cell (in this embodiment, Gata4, Mef2c, Tbx5). , Mesp1, and Myocd) can be expressed. Since Sendai virus has minus-strand RNA in the genome, the 3 'side of the genome is upstream and the 5' side is downstream.
 本実施形態において、センダイウイルスベクターに搭載される遺伝子は、上記遺伝子のいずれの間でも挿入することができ、例えば、P遺伝子とM遺伝子の間に挿入することができる。他の場所に挿入した場合であっても、全体の発現量が変化するのみで、心筋様細胞の誘導効率に差が生じる可能性はあるが、目的の細胞誘導そのものは同様にできる。 In this embodiment, the gene mounted on the Sendai virus vector can be inserted between any of the above genes, for example, between the P gene and the M gene. Even when inserted in other places, only the overall expression level changes, and there is a possibility that the induction efficiency of myocardial cells is different, but the target cell induction itself can be performed in the same manner.
 本実施形態において使用される組換えセンダイウイルスベクターにおいては、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdのうちの1つ以上が組み込まれる。すなわち、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdのうちのいずれか1つのみがP遺伝子とM遺伝子の間に挿入されていても良いし、2つ以上が挿入されていても良い。2つ以上の遺伝子は、他の遺伝子を介して互いに離れた位置に挿入されていても良いし、隣接して挿入されていても良い。好ましくは、本実施形態においては、Gata4遺伝子、Mef2c遺伝子、およびTbx5遺伝子が、この順番でセンダイウイルスのP遺伝子の直後、すなわちP遺伝子のすぐ下流(マイナス鎖RNAゲノムのすぐ5’側)に隣接して組み込まれる。この場合、P遺伝子とGata4遺伝子の間には、他の転写単位(例えば蛋白質をコードする遺伝子をコードする転写単位)は含まれない。センダイウイルスのゲノム上でGata4遺伝子、Mef2c遺伝子、およびTbx5遺伝子がこの順番で並ぶとき、Gata4遺伝子が3つの遺伝子の中では最も3’側に配置され、Tbx5遺伝子が最も5’側に配置される。 In the recombinant Sendai virus vector used in the present embodiment, one or more of Gata4, Mef2c, Tbx5, Mesp1, and Myocd are incorporated. That is, only one of Gata4, Mef2c, Tbx5, Mesp1, and Myocd may be inserted between the P gene and the M gene, or two or more may be inserted. Two or more genes may be inserted at positions separated from each other via other genes, or may be inserted adjacent to each other. Preferably, in the present embodiment, the Gata4 gene, the Mef2c gene, and the Tbx5 gene are immediately adjacent to the Sendai virus P gene in this order, that is, immediately downstream of the P gene (immediately 5 'to the minus-strand RNA genome). And incorporated. In this case, no other transcription unit (for example, a transcription unit encoding a gene encoding a protein) is included between the P gene and the Gata4 gene. When the Gata4 gene, the Mef2c gene, and the Tbx5 gene are arranged in this order on the Sendai virus genome, the Gata4 gene is arranged on the 3 ′ side most among the three genes, and the Tbx5 gene is arranged on the most 5 ′ side. .
 本実施形態においては、5つの遺伝子、すなわち、Gata4遺伝子、Mef2c遺伝子、Tbx5遺伝子、Mesp1遺伝子、及びMyocd遺伝子が、この順番でセンダイウイルスのP遺伝子の直後、すなわちP遺伝子のすぐ下流(マイナス鎖RNAゲノムのすぐ5’側)に隣接して組み込まれていても良い。 In this embodiment, five genes, namely, the Gata4 gene, the Mef2c gene, the Tbx5 gene, the Mesp1 gene, and the Myocd gene are in this order immediately after the Sendai virus P gene, that is, immediately downstream of the P gene (negative strand RNA). It may be incorporated adjacent to the 5 ′ side of the genome).
 また、2つの遺伝子、すなわち、Mesp1遺伝子とMyocd遺伝子が、この順番でセンダイウイルスのP遺伝子の直後、すなわちP遺伝子のすぐ下流(マイナス鎖RNAゲノムのすぐ5’側)に隣接して組み込まれていても良い。 In addition, two genes, that is, the Mesp1 gene and the Myocd gene are integrated in this order immediately after the Sendai virus P gene, that is, immediately downstream of the P gene (immediately 5 'to the minus-strand RNA genome). May be.
 Gata4、Mef2c、Tbx5、Mesp1、及びMyocdのうちの1つ以上を含む上記センダイウイルスベクターは、それだけを用いて本実施形態の心筋様細胞の作製における遺伝子導入に使用することができるが、マイクロRNA(miRNA)をさらに導入するリプログラミングにおいて使用することも可能である。該マイクロRNA(miRNA)としては、miR133を使用した場合、線維芽細胞の細胞運命制御因子であるSnail1の発現を抑制して線維芽細胞の特性を抑えて心筋誘導を促進するため好ましいが(Muraoka N, Yamakawa H, Miyamoto K, Ieda M. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. 33(14):1565-81.2014.)、これに限られるものではない。 The Sendai virus vector containing one or more of Gata4, Mef2c, Tbx5, Mesp1, and Myocd can be used alone for gene transfer in the production of the cardiomyocyte-like cell of this embodiment. It can also be used in reprogramming to further introduce (miRNA). When miR133 is used as the microRNA (miRNA), it is preferable because it suppresses the expression of Snail1, which is a cell fate control factor of fibroblasts, suppresses the characteristics of fibroblasts and promotes myocardial induction (Muraoka). N, Yamakawa H, Miyamoto K, Ieda M. MiR-133 promotes cardiographic reprogramming by directing repressing Snai1 and silencing firs.
 該マイクロRNAは上記のGata4、Mef2c、およびTbx5遺伝子を含むセンダイウイルスベクター、あるいは、Mesp1とMyocd遺伝子を含むセンダイウイルスベクターの中に挿入することもできるが、別のベクターに挿入して使用してもよい。該マイクロRNAを別のベクターに挿入する場合、ベクターはプラスミド、ウイルスベクター、非ウイルスベクター(例えばリポソーム)など所望のベクターを使用することができる。ウイルスベクターとしてはアデノウイルスベクターやレトロウイルスベクターなどが挙げられるがそれらに限定されない。より好ましくは、該マイクロRNAは、リポソームに挿入され、リポフェクション法により繊維芽細胞に導入される。 The microRNA can be inserted into the Sendai virus vector containing the Gata4, Mef2c, and Tbx5 genes, or the Sendai virus vector containing the Mesp1 and Myocd genes. Also good. When the microRNA is inserted into another vector, a desired vector such as a plasmid, viral vector, non-viral vector (for example, liposome) can be used as the vector. Examples of viral vectors include adenovirus vectors and retrovirus vectors, but are not limited thereto. More preferably, the microRNA is inserted into a liposome and introduced into a fibroblast by a lipofection method.
 なお、マイクロRNA(miR133)の導入については以下に示される(Muraoka N, Yamakawa H, Miyamoto K, Ieda M. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. 33(14):1565-81.2014.)。 The introduction of micro RNA (miR133) is shown below (Muraoka N, Yamakawa H, Miyamoto K, Ieda M. MiR-133 promoted birefringable bidirective. : 1565-81.214.).
 本実施形態において、各因子の遺伝子及び/又はポリペプチドが導入される線維芽細胞は、ヒト、又はマウス、ラット、ブタ等のヒト以外の脊椎動物から単離されたものであっても、その継代培養細胞であってもよい。線維芽細胞としては、例えば、胎児線維芽細胞、尾先端部由来線維芽細胞、心臓線維芽細胞、包皮線維芽細胞、皮膚線維芽細胞、肺線維芽細胞等を用いることができる。 In the present embodiment, the fibroblast into which the gene and / or polypeptide of each factor is introduced may be isolated from humans or non-human vertebrates such as mice, rats, and pigs. It may be a subcultured cell. As fibroblasts, for example, fetal fibroblasts, tail tip-derived fibroblasts, cardiac fibroblasts, foreskin fibroblasts, skin fibroblasts, lung fibroblasts and the like can be used.
 (線維芽細胞の培養)
 本実施形態の心筋様細胞の作製方法は、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdポリペプチドから選択されるリプログラミング因子1つ以上をコードする核酸をゲノムに有するセンダイウイルスベクター1つ以上を線維芽細胞に接触し培養することにより、線維芽細胞内に該リプログラミング因子を導入する行程を有する。
(Fibroblast culture)
The method for producing cardiomyocyte-like cells according to the present embodiment uses one or more Sendai virus vectors having in their genome a nucleic acid encoding one or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptides. It has the process which introduce | transduces this reprogramming factor in a fibroblast by contacting and cultivating a blast.
 線維芽細胞の培養は、適した条件であれば特に制限されるものではなく、通常、25℃~37℃の範囲内の温度で、かつ、5%CO条件下で行われる。 The culture of fibroblasts is not particularly limited as long as it is suitable, and is usually performed at a temperature in the range of 25 ° C. to 37 ° C. and under 5% CO 2 .
 本実施形態におけるGata4、Mef2c、Tbx5、Mesp1、及びMyocdポリペプチドから選択されるリプログラミング因子1つ以上を導入した線維芽細胞の培養は、遺伝子導入(ウイルス感染)から1週間から4週間、あるいはそれ以上かけて行うことが好ましい。この期間、後述するような無血清培地で培養することにより、心筋様細胞への分化誘導が効率よく行われ、拍動する心筋様細胞を効率よく作製することができる。 The culture of fibroblasts into which at least one reprogramming factor selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptide in this embodiment has been introduced is 1 to 4 weeks after gene transfer (virus infection), or It is preferable to carry out over this. By culturing in a serum-free medium as described later during this period, differentiation induction into myocardial cells is efficiently performed, and beating myocardial cells can be efficiently produced.
 該無血清培地には、後述するようなサイトカイン等が添加されることが好ましい。 The serum-free medium is preferably added with cytokines as described below.
 なお、遺伝子導入してから1~2週間は、血清を含む培地で培養しても良い。血清としては、特に制限されるものではないが、例えば、ウシ胎児血清(FBS)、仔牛血清(NCS)、ウマ血清等を用いることができる。 In addition, culture may be performed in a medium containing serum for 1 to 2 weeks after gene transfer. The serum is not particularly limited, and for example, fetal bovine serum (FBS), calf serum (NCS), horse serum and the like can be used.
 また、血清を添加する培地としては、例えば、ダルベッコ変法イーグル培地(DMEM)、イスコフ改変ダルベッコ培地(IMDM)、DMEM/M199培地、等を用いることができるが、これらに制限されるものではない。 Examples of the medium to which serum is added include Dulbecco's modified Eagle medium (DMEM), Iskov modified Dulbecco medium (IMDM), DMEM / M199 medium, and the like, but are not limited thereto. .
 (培地)
 本実施形態の心筋様細胞の作製方法において使用される培地は、血清を含まない培地、すなわち無血清培地である。無血清培地としては、例えば、StemPro34無血清培地(Gibco社製)を用いることができるが、これらに制限されるものではない。
(Culture medium)
The medium used in the method for producing cardiac muscle-like cells of the present embodiment is a medium that does not contain serum, that is, a serum-free medium. As the serum-free medium, for example, StemPro34 serum-free medium (manufactured by Gibco) can be used, but is not limited thereto.
 該無血清培地には、少なくともサイトカイン又は小分子化合物のいずれかが含まれることが好ましい。具体的には、VEGF(血管内皮細胞増殖因子)、FGF2(bFGF:塩基性線維芽細胞増殖因子)、FGF10(線維芽細胞増殖因子-10)、JAK inhibitor(JAK阻害剤)、及びIWP4(Wnt阻害剤)から選択される1又は2種の物質をさらに含むものが好ましいが、これに制限されるものではない。なお、本実施形態の心筋様細胞の作製方法に好適な培地については、本発明者の先の日本特許出願(特願2014-096729号明細書)に記載されており、本実施形態にも適用が可能である。 The serum-free medium preferably contains at least either a cytokine or a small molecule compound. Specifically, VEGF (vascular endothelial growth factor), FGF2 (bFGF: basic fibroblast growth factor), FGF10 (fibroblast growth factor-10), JAK inhibitor (JAK inhibitor), and IWP4 (Wnt) Those further comprising one or two kinds of substances selected from (inhibitors) are preferred, but are not limited thereto. The medium suitable for the method for producing myocardial cells of the present embodiment is described in the earlier Japanese patent application (Japanese Patent Application No. 2014-096729) of the present inventor, and is also applicable to the present embodiment. Is possible.
 (心筋様細胞の確認方法)
 心筋様細胞の確認は、例えば、顕微鏡により拍動するか否かを確認したり、FACS法、RT-PCR法、免疫染色法、マイクロアレイアッセイ法等の公知の方法により心筋特異的マーカー遺伝子が発現しているか否かを確認したりすることにより行うことができるが、これらの方法に制限されるものではない。
(How to check myocardial cells)
The myocardial cells can be confirmed by, for example, confirming whether or not the cells are beating with a microscope, or expressing a myocardial specific marker gene by a known method such as FACS method, RT-PCR method, immunostaining method, microarray assay method, etc. It can be performed by checking whether or not it is done, but is not limited to these methods.
 心筋特異的マーカー遺伝子としては、例えば、Myh6、cTnT、RyR2、HCN4、Actc1、Gja1、Col1a2等を挙げることができるが、これらに制限され
るものではない。
Examples of the myocardial specific marker gene include, but are not limited to, Myh6, cTnT, RyR2, HCN4, Actc1, Gja1, Col1a2, and the like.
 [心筋様細胞の作製用組成物]
 本実施形態の心筋様細胞の作製用組成物は、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdポリペプチドから選択されるリプログラミング因子1つ以上をコードする核酸をゲノムに有するセンダイウイルスベクター、あるいは、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdポリペプチドから選択されるリプログラミング因子1つ以上を導入した線維芽細胞を含む。本実施形態の組成物にはさらに、塩、緩衝剤、安定化剤、細胞膜及び/又は細胞壁保存化合物、栄養培地、殺生物剤、脱イオン水等の媒体、等を包含しても良い。
[Composition for producing myocardial cells]
The composition for producing cardiac muscle-like cells of the present embodiment is a Sendai virus vector having a nucleic acid encoding one or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptide in the genome, or Fibroblasts into which one or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptides have been introduced. The composition of this embodiment may further include a salt, a buffer, a stabilizer, a cell membrane and / or cell wall preserving compound, a nutrient medium, a biocide, a medium such as deionized water, and the like.
 以下の実施例等によって本発明をさらに詳しく説明するが、本発明は以下の実施例によって何ら限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.
 [実験1]
 (マウス胎児線維芽細胞(MEF)の単離)
 生後7週~10週のメスICRマウス(日本クレア社)とαMHC-GFPトランスジェニックマウス(オス)を交配させた。受精を確認した日を妊娠0日として、妊娠確認後12日目に妊娠したICRマウスから胎児を摘出した。
[Experiment 1]
(Isolation of mouse embryo fibroblast (MEF))
Female ICR mice (CLEA Japan, Inc.) 7 to 10 weeks old were mated with αMHC-GFP transgenic mice (male). The day when fertilization was confirmed was defined as day 0 of pregnancy, and fetuses were removed from ICR mice that became pregnant 12 days after the confirmation of pregnancy.
 胎児から心臓を摘出し、倒立顕微鏡(オリンパス社製、IX71)にて心臓を蛍光にて投影し、GFP蛍光が発せられる胎児を選択した。選択した胎児から、四肢および、頭部1/2~2/3、肺、肝臓、腎臓、腸管などの実質臓器を摘出した。 The heart was removed from the fetus, and the heart was projected with fluorescence with an inverted microscope (manufactured by Olympus, IX71) to select a fetus that emits GFP fluorescence. From the selected fetus, extremities and parenchymal organs such as the head 1/2 to 2/3, lung, liver, kidney, intestinal tract and the like were removed.
 残った体幹部の組織をPBS(-)(WAKO社製、045-29795)にて洗浄し、血球成分を十分に取り除き、滅菌した手術用ハサミにて組織をできるだけ細かく剪断した。 The remaining trunk tissue was washed with PBS (-) (manufactured by WAKO, 045-29795) to sufficiently remove blood cell components, and the tissue was sheared as finely as possible with sterilized surgical scissors.
 その後、剪断した組織片に0.25% トリプシン-EDTA(Gibco社製、25200-072)とPBS(-)(WAKO社製、045-29795)を1:1に混合した溶液を加えた(15mL/6~7匹胎児)。そして、37℃、15 分間、ウォーターバスで震盪しながらインキュベートした。 Thereafter, a solution in which 0.25% trypsin-EDTA (Gibco, 25200-072) and PBS (-) (WAKO, 045-29795) were mixed at a ratio of 1: 1 was added to the sheared tissue pieces (15 mL). / 6-7 fetuses). And it incubated, shaking with a water bath for 15 minutes at 37 degreeC.
 インキュベート後、FBS原液(Fetal Bovine Serum;BioWest社製)を15mL添加し、十分縣濁させ、懸濁液を4℃で(1500rpm、5分)遠心分離し、上清を除去した。細胞沈殿物および浮遊物を表1に示す。 After the incubation, 15 mL of an FBS stock solution (Fetal Bovine Serum; manufactured by BioWest) was added and sufficiently suspended, and the suspension was centrifuged at 4 ° C. (1500 rpm, 5 minutes) to remove the supernatant. Cell precipitates and suspensions are shown in Table 1.
 表1に示すMEF用培地(10%FBS/DMEM/PSA)30mLに再懸濁し、10cm組織培養用ディッシュ(Thermo Scientific社、172958)に播種した。(胎児2~3匹分で10cmディッシュ1枚分)
その後、37℃、5%CO条件下で細胞沈殿物を培養した。翌日、新しいMEF用培地に交換し、以後、3~4日ごとに培地交換を行った。
It was resuspended in 30 mL of a medium for MEF (10% FBS / DMEM / PSA) shown in Table 1 and seeded in a 10 cm tissue culture dish (Thermo Scientific, 172958). (For 2 to 3 fetuses, one 10cm dish)
Thereafter, the cell precipitate was cultured under the conditions of 37 ° C. and 5% CO 2 . The next day, the medium was changed to a new medium for MEF, and thereafter the medium was changed every 3 to 4 days.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 遊走した細胞を0.25% トリプシン-EDTA(Gibco社製、25200-072)にて採取し、40μm細胞ストレーナー(BD社製、REF352340)を用いて濾過することによりマウス胎児線維芽細胞(MEF)を単離した。 Migrated cells were collected with 0.25% trypsin-EDTA (Gibco, 25200-072), and filtered using a 40 μm cell strainer (BD, REF352340) to obtain mouse embryonic fibroblasts (MEF). Was isolated.
[実験2(比較例)]
(レトロウイルスによる心臓特異的転写因子(Gata4、Mef2c、Tbx5)の遺伝子導入法)
 ゼラチンコーティングした10cm組織培養用ディッシュ(Thermo Scientific社、172958)に、Plat-Eパッケージング細胞を 3.6×106 cellの濃度で播種し、表2に示すPlat-E用培地を用いて、37℃、5%CO条件下で一晩の間、静置しながら培養した。
[Experiment 2 (Comparative Example)]
(Retroviral heart-specific transcription factor (Gata4, Mef2c, Tbx5) gene transfer method)
Platin-E packaging cells were seeded at a concentration of 3.6 × 10 6 cells in a gelatin-coated 10 cm tissue culture dish (Thermo Scientific, 172958). Using the Plate-E medium shown in Table 2, The culture was performed overnight at 37 ° C. under 5% CO 2 .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 一方、300μL Opti-MEM(Gibco社、31985-070)に27μL FuGENE 6 Transfection Reagent(Promega社、E2691)を混合して5分間静置した。この混合液にpMx-Gata4、pMx-Mef2c、pMx-Tbx5、およびpMx-GFPのレトロウイルスプラスミドを9000ng分それぞれ混合し、強くタッピングし、その後15分間室温で静置した。 On the other hand, 27 μL FuGENE 6 Transfection Reagent (Promega, E2691) was mixed with 300 μL Opti-MEM (Gibco, 31985-070) and allowed to stand for 5 minutes. 9000 ng of retroviral plasmids of pMx-Gata4, pMx-Mef2c, pMx-Tbx5, and pMx-GFP were mixed with this mixed solution, tapped strongly, and then allowed to stand at room temperature for 15 minutes.
 その後、上記一晩培養したPlat-E細胞全体に、前記の各種レトロウイルスプラスミド混合溶液を滴下し、37℃、5%CO条件下で静置した(トランスフェクション)。 Thereafter, the above-mentioned various retroviral plasmid mixed solutions were dropped onto the entire Plat-E cells cultured overnight and allowed to stand at 37 ° C. under 5% CO 2 (transfection).
 トランスフェクションしてから24時間後に、表2に示すPlat-E用培地の培地交換を行い、更に37℃、5%CO条件下で24時間静置した。 Twenty-four hours after transfection, the medium for Plat-E shown in Table 2 was changed, and the plate was further allowed to stand at 37 ° C. and 5% CO 2 for 24 hours.
 その後上清を、0.45μm pore size Minisart フィルター(Sartorius Stedim Biotech社、17598)で濾過し、50mL チューブ(Corning社、430829)に回収した。 Thereafter, the supernatant was filtered through a 0.45 μm pore size Minisart filter (Sartorius Stedim Biotech, 17598) and collected in a 50 mL tube (Corning, 43029).
 回収した上清10mLに対し、 Polybrene Transfection Reagent(10mg/mL)(Millipore社、#TR-1003-G)を4μL注入し、各遺伝子(Gata4、Mef2c、Tbx5)のレトロウイルス溶液をそれぞれ調整した。 4 μL of Polybrene Transfection Reagent (10 mg / mL) (Millipore, # TR-1003-G) was injected into 10 mL of the collected supernatant, and a retrovirus solution of each gene (Gata4, Mef2c, Tbx5) was prepared.
 実験1で単離したMEFを、12ウェル細胞培養用マルチウェルプレート(FALCON社製、353043)に播種し(0.5×10個/ウェル)、一晩静置した。その後、ウェル中の培地を吸引除去して、各遺伝子レトロウイルス溶液(Gata4、Mef2c、Tbx5)を同量ずつ混ぜ合わせたレトロウイルス混合溶液にて培地交換し、37℃、5%CO条件下で、一晩の間静置し培養して、ウイルスを感染させた(インフェクション)。 The MEF isolated in Experiment 1 was seeded (0.5 × 10 5 cells / well) in a 12-well cell culture multiwell plate (manufactured by FALCON, 353043) and allowed to stand overnight. Thereafter, the medium in the well was removed by aspiration, and the medium was replaced with a retrovirus mixed solution obtained by mixing the same amount of each gene retrovirus solution (Gata4, Mef2c, Tbx5) at 37 ° C. under 5% CO 2 condition. Then, it was left to stand overnight and cultured to infect the virus (infection).
 結果物を「Retro-GMT-MEF」と称す。 The result is called “Retro-GMT-MEF”.
[実験3]
(SeV18+Gata4/TSΔFの構築)
 plasmid DNA(pMX-Gata4)に搭載されたGata4遺伝子を鋳型にして、Gata4-N(5'-attGCGGCCGCGACGCGATGTACCAAAGCCTGGCCATGG-3'(配列番号:1))及びGata4_EIS_Not1_C(5'-taaGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTTACGCGGTGATTATGTCCCCATGACTGTCAG-3'(配列番号:2))のプライマーを用いて、KOD-Plus-Ver.2を使用し、94℃ 2分、(98℃ 10秒、55℃ 30秒、68℃ 1.5分)のサイクルを30サイクル、68℃ 5分、4℃ ∞の条件でPCRを行い、増幅されたフラグメントをQIAquick PCR purification kitにて精製した。精製したフラグメントをNot Iで消化後にアガロースゲル電気泳動にて分離後、約1.4kbpのバンドを切り出し、QIAquick Gel Extraction kitにて精製した。一方、NP遺伝子の上流に導入遺伝子挿入部位(NotI部位)を有するpSeV18+/TSΔFプラスミドをNot Iで消化してQIAquick PCR purification kitにて精製した後、アルカリフォスファターゼ処理し、再度、QIAquick PCR purification kitにて精製した。次に、精製したGata4フラグメントをpSeV18+/TSΔFプラスミドのNot Iサイトにライゲーションし、大腸菌にトランスフォーメーション後にクローニングを行い、シークエンスにより塩基配列の正しいクローンを選択して、pSeV18+Gata4/TSΔFプラスミドを得た。pSeV18+Gata4/TSΔFプラスミドの転写産物から作製したセンダイウイルスをSeV18+Gata4/TSΔFと称す(以下、SendaivirusΔF Gata4 vector、SeV-Gとも称す)。
[Experiment 3]
(Construction of SeV18 + Gata4 / TSΔF)
Gata4-N (5'-attGCGGCCGCGACGCGATGTACCAAAGCCTGGCCATGG-3 '(SEQ ID NO: 1)) and Gata4_EIS_Not1_C (5'-taaGCGGTCGCTGTGATTAGTTGTCGG 2)) using the primer of KOD-Plus-Ver. PCR is performed under the conditions of 94 ° C for 2 minutes, 30 cycles of 98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 1.5 minutes), 68 ° C for 5 minutes, 4 ° C ∞ The purified fragment was purified with the QIAquick PCR purification kit. The purified fragment was digested with Not I and separated by agarose gel electrophoresis, and then a band of about 1.4 kbp was cut out and purified with a QIAquick Gel Extraction kit. On the other hand, the pSeV18 + / TSΔF plasmid having a transgene insertion site (NotI site) upstream of the NP gene was digested with NotI and purified with the QIAquick PCR purification kit, then treated with alkaline phosphatase, and again into the QIAquick PCR purification kit. And purified. Next, the purified Gata4 fragment was ligated to the Not I site of the pSeV18 + / TSΔF plasmid, cloned into E. coli and cloned, and a clone with the correct nucleotide sequence was selected by sequencing to obtain the pSeV18 + Gata4 / TSΔF plasmid. The Sendai virus prepared from the transcription product of the pSeV18 + Gata4 / TSΔF plasmid is referred to as SeV18 + Gata4 / TSΔF (hereinafter also referred to as SendaivirusΔF Gata4 vector, SeV-G).
 得られたセンダイウイルス液は液体窒素にて急速凍結後、-80℃にて保存した。 The obtained Sendai virus solution was rapidly frozen in liquid nitrogen and stored at −80 ° C.
[実験4]
(SeV18+Mef2c/TSΔFの構築)
 plasmid DNA(pMX-Mef2c)に搭載されたMef2c遺伝子を鋳型にして、Mef2c遺伝子の連続するアデニン(A)のうち、RCRを用いたMutagenesis法により12番目及び348番目のアデニン(A)をグアニン(G)に変換した。12番目の変異導入のプライマーとしてMef2c_A12G_N(5’-CTATGGGGAGAAAGAAGATTCAGATTACG-3’(配列番号:3))及びMef2c_A12G_C(5’-CGTAATCTGAATCTTCTTTCTCCCCATAG-3’(配列番号:4))、また、348番目の変異導入のプライマーとしてMef2c_A348G_N(5’-GAAGAAAAATACAAGAAAATTAATGAAG-3’(配列番号:5))及びMef2c_A348G_C(5’-CTTCATTAATTTTCTTGTATTTTTCTTC-3’(配列番号:6))を用いた。
[Experiment 4]
(Construction of SeV18 + Mef2c / TSΔF)
Using the Mef2c gene loaded on the plasmid DNA (pMX-Mef2c) as a template, the 12th and 348th adenine (A) of the adenine (A) in which the Mef2c gene is continuous by the Mutagenesis method using RCR is converted into guanine (A). Converted to G). Mef2c_A12G_N (5′-CTATGGGGAGAAAGAAGATTCAGATTACG-3 ′ (SEQ ID NO: 3)) and Mef2c_A12G_C (5′-CGTAATCTGAATCTTCTTTCTCCCCATAG-3 ′ (SEQ ID NO: 4)) as primers for the 12th mutagenesis, and the 348th mutagenesis Mef2c_A348G_N (5′-GAAGAAAAATACAAGAAAATTAATGAAG-3 ′ (SEQ ID NO: 5)) and Mef2c_A348G_C (5′-CTTCATTAATTTTCTTGTATTTTTCTTC-3 ′ (SEQ ID NO: 6)) were used as primers.
 更に、上記のように2カ所に変異を導入したMef2cmut遺伝子を鋳型にして、Mef2c-N(5’-attGCGGCCGCGACGACACTATGGGGAGAAAAAAGATTC-3’(配列番号:7))及びMef2c-C(5’-attGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTCATGTTGCCCATCCTTCAGAGAGTCGCATGCGCTTGACTG-3’(配列番号:8))をプライマーとし、KOD-Plus-Ver.2を使用して、94℃ 2分、(98℃ 10秒、55℃ 30秒、68℃ 1.5分)のサイクルを30サイクル、68℃ 5分、4℃ ∞の条件でPCRを行い、増幅されたフラグメントをQIAquick PCR purification kitにて精製した。精製したフラグメントをNot Iで消化後にアガロースゲル電気泳動にて分離後、約1.4kbpのバンドを切り出し、QIAquick Gel Extraction kitにて精製した。一方、NP遺伝子の上流に導入遺伝子挿入部位(NotI部位)を有するpSeV18+/TSΔFプラスミドをNot Iで消化してQIAquick PCR purification kitにて精製した後、アルカリフォスファターゼ処理して、再度、QIAquick PCR purification kitにて精製した。次に、精製したMef2cフラグメントをpSeV18+/TSΔFプラスミドのNot I部位にライゲーションし、大腸菌にトランスフォーメーション後にクローニングを行い、シークエンスにより塩基配列の正しいクローンを選択して、pSeV18+Mef2c/TSΔFプラスミドを得た。pSeV18+Mef2c/TSΔFプラスミドの転写産物から作製したセンダイウイルスをSeV18+Mef2c/TSΔFと称す(以下、SendaivirusΔF Mef2c vector、SeV-Mとも称す)。
 得られたセンダイウイルス液は液体窒素にて急速凍結後、-80℃にて保存した。
Furthermore, using the Mef2cmut gene with mutations introduced in two places as described above as a template, Mef2c-N (5'-attGCGGCCGCGACGACACTATGGGGAGAAAAAAGATTC-3 '(SEQ ID NO: 7)) and Mef2c-C (5'-attGCGGCCGCGATGAACTTTCCGCGCTAAGTTTTTCTTGCTCG (SEQ ID NO: 8)) as a primer and KOD-Plus-Ver. 2 is used for PCR at 94 ° C for 2 minutes (98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 1.5 minutes) under the conditions of 30 cycles, 68 ° C for 5 minutes, 4 ° C ∞, The amplified fragment was purified with the QIAquick PCR purification kit. The purified fragment was digested with Not I and separated by agarose gel electrophoresis, and then a band of about 1.4 kbp was cut out and purified with a QIAquick Gel Extraction kit. On the other hand, the pSeV18 + / TSΔF plasmid having a transgene insertion site (NotI site) upstream of the NP gene is digested with Not I and purified with the QIAquick PCR purification kit, then treated with alkaline phosphatase, and again treated with the QIAquick PCR purification kit. It refine | purified in. Next, the purified Mef2c fragment was ligated to the Not I site of the pSeV18 + / TSΔF plasmid, cloned into E. coli, cloned after selection, and a clone with the correct nucleotide sequence was selected by sequencing to obtain the pSeV18 + Mef2c / TSΔF plasmid. The Sendai virus prepared from the transcription product of the pSeV18 + Mef2c / TSΔF plasmid is referred to as SeV18 + Mef2c / TSΔF (hereinafter also referred to as SendaivirusΔF Mef2c vector, SeV-M).
The obtained Sendai virus solution was rapidly frozen in liquid nitrogen and stored at −80 ° C.
[実験5]
(SeV18+Tbx5/TSΔFの構築)
 plasmid DNA(pMX-Tbx5)に搭載されたTbx5遺伝子を鋳型にして、Tbx5-N(5'-attGCGGCCGCGACGACACCATGGCCGATACAGATGAGG-3'(配列番号:9))及びTbx5-C(5'-attGCGGCCGCGATGAACTTTCACCCTAAGTTTTTCTTACTACGGTTAGCTATTCTCACTCCACTCTGGCACCATGCCGACGCCG-3'(配列番号:10))をプライマーとして用い、KOD-Plus-Ver.2を使用して、94℃ 2分、(98℃ 10秒、55℃ 30秒、68℃ 1.5分)のサイクルを30サイクル、68℃ 5分、4℃ ∞の条件でPCRを行い、増幅されたフラグメントをQIAquick PCR purification kitにて精製した。精製したフラグメントをNot Iで消化後にアガロースゲル電気泳動にて分離後、約1.6kbpのバンドを切り出し、QIAquick Gel Extraction kitにて精製した。一方、NP遺伝子の上流に導入遺伝子挿入部位(NotI部位)を有するpSeV18+/TSΔFプラスミドをNot Iで消化してQIAquick PCR purification kitにて精製した後、アルカリフォスファターゼ処理して、再度、QIAquick PCR purification kitにて精製した。次に、精製したTbx5フラグメントをpSeV18+/TSΔFプラスミドのNot Iサイトにライゲーションし、大腸菌にトランスフォーメーション後にクローニングを行い、シークエンスにより塩基配列の正しいクローンを選択して、pSeV18+Tbx5/TSΔFプラスミドを得た。pSeV18+Tbx5/TSΔFプラスミドの転写産物から作製したセンダイウイルスをSeV18+Tbx5/TSΔFと称す(以下、SendaivirusΔF Tbx5 vector、SeV-Tとも称す)。
 得られたセンダイウイルス液は液体窒素にて急速凍結後、-80℃にて保存した。
[Experiment 5]
(Construction of SeV18 + Tbx5 / TSΔF)
Tbx5-N (5'-attGCGGCCGCGACGACACCATGGCCGATACAGATGAGG-3 '(SEQ ID NO: 9)) and Tbx5-C (5'-attGCGGCCGCTCACTAGTTTTTCTCGTCCTGTTTAGCTCGTCTCGT No. 10)) as a primer and KOD-Plus-Ver. 2 is used for PCR at 94 ° C for 2 minutes (98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 1.5 minutes) under the conditions of 30 cycles, 68 ° C for 5 minutes, 4 ° C ∞, The amplified fragment was purified with the QIAquick PCR purification kit. The purified fragment was digested with Not I and separated by agarose gel electrophoresis, and then a band of about 1.6 kbp was cut out and purified with a QIAquick Gel Extraction kit. On the other hand, the pSeV18 + / TSΔF plasmid having a transgene insertion site (NotI site) upstream of the NP gene is digested with NotI and purified with the QIAquick PCR purification kit, then treated with alkaline phosphatase, and again treated with the QIAquick PCR purification kit. It refine | purified in. Next, the purified Tbx5 fragment was ligated to the Not I site of the pSeV18 + / TSΔF plasmid, cloned into E. coli, cloned after selection, and a clone with the correct nucleotide sequence was selected by sequencing to obtain the pSeV18 + Tbx5 / TSΔF plasmid. A Sendai virus produced from the transcription product of the pSeV18 + Tbx5 / TSΔF plasmid is referred to as SeV18 + Tbx5 / TSΔF (hereinafter also referred to as SendaivirusΔF Tbx5 vector, SeV-T).
The obtained Sendai virus solution was rapidly frozen in liquid nitrogen and stored at −80 ° C.
[実験6]
(SeV(PM)Gata4-Mef2c-Tbx5/TSΔFの構築)
 Gata4遺伝子フラグメントの作製は、pSeV18+Gata4/TSΔF DNAに搭載されたGata4遺伝子を鋳型にしたPCRによって行った。SeVF6(5'-ACAAGAGAAAAAACATGTATGG-3'(配列番号:11))及びGata4_Mef2c_C(5’- CTTTCACCCTAAGTTTTTCTTACTACGGTTACGCGGTGATTATGTCCCC -3’(配列番号:12))をプライマーとして用いて、KOD-Plus-Ver.2を使用し、94℃ 2分、(98℃ 10秒、55℃ 30秒、68℃ 1.5分)のサイクルを30サイクル、68℃ 5分、4℃ ∞の条件でPCRを行い、増幅したGata4遺伝子フラグメント(約1.5kbp)をQIAquick PCR purification kitにて精製した。Mef2c遺伝子フラグメントの作製は、pSeV18+Mef2c/TSΔF プラスミドに搭載されたMef2c遺伝子を鋳型にしたPCRによって行った。Gata4_Mef2c_N(5’- GAAAAACTTAGGGTGAAAGTTCATCCACGTACACTTGTAATGGGGAGAAAGAAGATTCAG -3'(配列番号:13))及びMef2c_Tbx5_C(5’-CTTTCACCCTAAGTTTTTCTTACTACGGTCATGTTGCCCATCCTTC -3’(配列番号:14))をプライマーとして用いて、KOD-Plus-Ver.2を使用し、94℃ 2分、(98℃ 10秒、55℃ 30秒、68℃ 1.5分)のサイクルを30サイクル、68℃ 5分、4℃ ∞の条件でPCRを行い、増幅したMef2c遺伝子フラグメント(約1.4kbp)をQIAquick PCR purification kitにて精製した。また、Tbx5遺伝子フラグメントの作製は、pSeV18+ Tbx5 /TSΔF DNAに搭載されたTbx5遺伝子を鋳型にしたPCRによって行った。
[Experiment 6]
(Construction of SeV (PM) Gata4-Mef2c-Tbx5 / TSΔF)
The Gata4 gene fragment was prepared by PCR using the Gata4 gene mounted on pSeV18 + Gata4 / TSΔF DNA as a template. Using SeVF6 (5′-ACAAGAGAAAAAACATGTATGG-3 ′ (SEQ ID NO: 11)) and Gata4_Mef2c_C (5′-CTTTCACCCTAAGTTTTTCTTACTACGGTTACGCGGTGATTATGTCCCC-3 ′ (SEQ ID NO: 12)) as primers, KOD-Plus-Ver. PCR is performed under the conditions of 94 ° C for 2 minutes, 30 cycles of 98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 1.5 minutes), 68 ° C for 5 minutes, 4 ° C ∞ The Gata4 gene fragment (about 1.5 kbp) was purified with the QIAquick PCR purification kit. The Mef2c gene fragment was prepared by PCR using the Mef2c gene mounted on the pSeV18 + Mef2c / TSΔF plasmid as a template. Gata4_Mef2c_N (5′-GAAAAACTTAGGGTGAAAGTTCATCCACGTACACTTGTAATGGGGAGAAAGAAGATTCAG-3 ′ (SEQ ID NO: 13)) and Mef2c_Tbx5_C (5′-CTTTCACCCTAAGTTTTTCTTACTACGGTCATGT TC-TC: V PCR is performed under the conditions of 94 ° C for 2 minutes, 30 cycles of 98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 1.5 minutes), 68 ° C for 5 minutes, 4 ° C ∞ The obtained Mef2c gene fragment (about 1.4 kbp) was purified with the QIAquick PCR purification kit. The Tbx5 gene fragment was prepared by PCR using the Tbx5 gene mounted on pSeV18 + Tbx5 / TSΔF DNA as a template.
 Mef2c_Tbx5_N(5’-GAAAAACTTAGGGTGAAAGTTCATCCACGTACACTTGTAATGGCCGATACAGATGAGGG -3’(配列番号:15))及びSeVR199(5’-GATAACAGCACCTCCTCCCGACT-3’(配列番号:16))をプライマーとして用いて、KOD-Plus-Ver.2を使用し、94℃ 2分、(98℃ 10秒、55℃ 30秒、68℃ 2分)のサイクルを30サイクル、68℃ 5分、4℃∞の条件でPCRを行い、増幅したTbx5遺伝子フラグメント(約1.7kbp)をQIAquick PCR purification kitにて精製した。 KODP-lu using Mef2c_Tbx5_N (5'-GAAAAACTTAGGGTGAAAGTTCATCCACGTACACTTGTAATGGCCGATACAGATGAGGG-3 '(SEQ ID NO: 15)) and SeVR199 (5'-GATAACAGCACCTCCTCCCGACT-3' (SEQ ID NO: 16)) as primers. 2 and 94 ° C for 2 minutes (98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 2 minutes) for 30 cycles, 68 ° C for 5 minutes, 4 ° C ∞, and amplified Tbx5 The gene fragment (about 1.7 kbp) was purified with the QIAquick PCR purification kit.
 次にGata4-Mef2c遺伝子フラグメントの作製は、前述のPCRによって作製したGata4遺伝子フラグメント及びMef2c遺伝子フラグメントを鋳型にしたPCRによって行った。SeVF6及びMef2c_A348G_C(5’-CTTCATTAATTTTCTTGTATTTTTCTTC-3’(配列番号:17))をプライマーとして用いて、KOD-Plus-Ver.2を使用し、94℃ 2分、(98℃ 10秒、55℃ 30秒、68℃ 2分)のサイクルを30サイクル、68℃ 5分、4℃ ∞の条件でPCRを行い、増幅されたGata4-Mef2c遺伝子フラグメント(約1.9kbp)をQIAquick PCR purification kitにて精製した。また、Mef2c-Tbx5遺伝子フラグメントの作製は、Mef2c遺伝子フラグメント及びTbx5遺伝子フラグメントを鋳型にしたPCRによって行った。Mef2c_A348G_N(5’-GAAGAAAAATACAAGAAAATTAATGAAG-3’(配列番号:18))及びSeVR199をプライマーとして用いて、KOD-Plus-Ver.2を使用し、94℃ 2分、(98℃ 10秒、55℃ 30秒、68℃ 3分)のサイクルを30サイクル、68℃ 5分、4℃ ∞の条件でPCRを行い、増幅されたMef2c-Tbx5遺伝子フラグメント(約2.7kbp)をQIAquick PCR purification kitにて精製した。更に、Gata4-Mef2c-Tbx5遺伝子フラグメントを作製するために、Gata4-Mef2c遺伝子フラグメント及びMef2c-Tbx5遺伝子フラグメントを鋳型にしたPCRを行った。SeVF15(5’-AAAACATGTATGGGATATGT-3’(配列番号:19))及びSeVR150(5’-AATGTATCGAAGGTGCTCAA -3’(配列番号:20))をプライマーとして用いて、KOD-Plus-Ver.2を使用し、94℃ 2分、(98℃ 10秒、55℃ 30秒、68℃ 4.5分)のサイクルを30サイクル、68℃ 5分、4℃ ∞の条件でPCRを行い、増幅されたGata4-Mef2c-Tbx5遺伝子フラグメント(約4.5kbp)をQIAquick PCR purification kitにて精製した。 Next, the Gata4-Mef2c gene fragment was prepared by PCR using the Gata4 gene fragment and Mef2c gene fragment prepared by the above-described PCR as templates. Using SeVF6 and Mef2c_A348G_C (5'-CTTCATTAATTTTCTTGTATTTTTCTTC-3 '(SEQ ID NO: 17)) as primers, KOD-Plus-Ver. PCR was performed under the conditions of 94 ° C for 2 minutes, 98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 2 minutes, 30 cycles, 68 ° C for 5 minutes, 4 ° C ∞ The Gata4-Mef2c gene fragment (about 1.9 kbp) was purified using the QIAquick PCR purification kit. The Mef2c-Tbx5 gene fragment was prepared by PCR using the Mef2c gene fragment and the Tbx5 gene fragment as a template. Using Mef2c_A348G_N (5'-GAAGAAAAATACAAGAAAATTAATGAAG-3 '(SEQ ID NO: 18)) and SeVR199 as primers, KOD-Plus-Ver. 2 was used, and PCR was performed under the conditions of 30 cycles of 94 ° C. for 2 minutes, (98 ° C. for 10 seconds, 55 ° C. for 30 seconds, 68 ° C. for 3 minutes), 68 ° C. for 5 minutes, and 4 ° C. for ∞ The Mef2c-Tbx5 gene fragment (about 2.7 kbp) was purified using the QIAquick PCR purification kit. Furthermore, in order to produce a Gata4-Mef2c-Tbx5 gene fragment, PCR was performed using the Gata4-Mef2c gene fragment and the Mef2c-Tbx5 gene fragment as a template. Using SeVF15 (5'-AAAACATGTATGGGATATGT-3 '(SEQ ID NO: 19)) and SeVR150 (5'-AATGTATCGAAGGTGCTCAA-3' (SEQ ID NO: 20)) as primers, KOD-Plus-Ver. No. 2 is used, PCR is carried out under the conditions of 94 ° C for 2 minutes, 30 cycles of 98 ° C for 10 seconds, 55 ° C for 30 seconds, 68 ° C for 4.5 minutes, 68 ° C for 5 minutes, 4 ° C for ∞ The Gata4-Mef2c-Tbx5 gene fragment (about 4.5 kbp) was purified using the QIAquick PCR purification kit.
 最後に、この精製したフラグメントをNot Iで消化後アガロースゲル電気泳動にて分離後にGata4-Mef2c-Tbx5遺伝子フラグメントをQIAquick Gel Extraction kitにて精製した。一方、P遺伝子およびM遺伝子の間に導入遺伝子挿入部位(NotI部位)を有するpSeV(PM)/TSΔFプラスミドをNot Iで消化してQIAquick PCR purification kitにて精製した後、アルカリフォスファターゼ処理して、再度、QIAquick PCR purification kitにて精製した。次に、精製したGata4-Mef2c-Tbx5遺伝子フラグメントをpSeV(PM)/TSΔFプラスミドのNot Iサイトにライゲーションし、大腸菌にトランスフォーメーションした後にクローニングを行い、シークエンスにより塩基配列の正しいクローンを選択して、pSeV(PM)Gata4-Mef2c-Tbx5/TSΔF プラスミドを得た。pSeV(PM)Gata4-Mef2c-Tbx5/TSΔFプラスミドの転写産物から作製したセンダイウイルスをSeV(PM)Gata4-Mef2c-Tbx5/TSΔFと称す(以下、SendaivirusΔF Gata4-Mef2c-Tbx5 vector、SeV-GMTとも称す)。 Finally, this purified fragment was digested with Not I and separated by agarose gel electrophoresis, and then the Gata4-Mef2c-Tbx5 gene fragment was purified with QIAquick Gel Extraction kit. On the other hand, a pSeV (PM) / TSΔF plasmid having a transgene insertion site (NotI site) between P gene and M gene was digested with Not I and purified with QIAquick PCR purification kit, and then treated with alkaline phosphatase, It was purified again using the QIAquick PCR purification kit. Next, the purified Gata4-Mef2c-Tbx5 gene fragment was ligated to the Not I site of the pSeV (PM) / TSΔF plasmid, transformed into E. coli, cloned, and a clone with the correct nucleotide sequence was selected by sequencing. pSeV (PM) Gata4-Mef2c-Tbx5 / TSΔF plasmid was obtained. The Sendai virus prepared from the transcription product of pSeV (PM) Gata4-Mef2c-Tbx5 / TSΔF plasmid is referred to as SeV (PM) Gata4-Mef2c-Tbx5 / TSΔF (hereinafter referred to as SendaivirusΔF Gata4-Mef2c-Tbx5 ).
 得られたセンダイウイルス液は液体窒素にて急速凍結後、-80℃にて保存した。 The obtained Sendai virus solution was rapidly frozen in liquid nitrogen and stored at −80 ° C.
[実験7]
(センダイウイルスによる心臓特異的転写因子(Gata4、Mef2c、Tbx5)の遺伝子導入法)
 -80℃保存下のSendaivirusΔF Gata4 vector、SendaivirusΔF Mef2c vector、及びSendaivirusΔF Tbx5 vectorの混合物(以下、「SendaivirusΔF Gata4/Mef2c/Tbx5 vector」又は「SeV-G/M/T」と称す)、あるいはSendaivirusΔF Gata4-Mef2c-Tbx5 vector(SeV-GMT)を37℃にて急速融解させ、MOI 20~50相当のセンダイウイルス液をDMEM培養液に加えた。
[Experiment 7]
(Gene transfer method of heart-specific transcription factor (Gata4, Mef2c, Tbx5) by Sendai virus)
A mixture of SendaivirusΔF Gata4 vector, SendaivirusΔF Mef2c vector, and SendaivirusΔF Tbx5 vector under the storage at −80 ° C. (hereinafter referred to as “SendaivirusΔF G / T / G5 / T / G5”). Mef2c-Tbx5 vector (SeV-GMT) was rapidly melted at 37 ° C., and Sendai virus solution corresponding to MOI 20-50 was added to the DMEM culture solution.
 実験1で単離したMEFを、12ウェル細胞培養用マルチウェルプレート(FALCON社製、353043)に播種し(0.5×10個/ウェル)、一晩静置した。その後、ウェル中の培地を吸引除去して、DMEM/センダイウイルス混合液で培地交換した。
37℃、5%CO条件下で一晩静置培養して、ウイルスを感染させた(インフェクション)。結果物をそれぞれ、「SeV-G/M/T-MEF」、及び、「SeV-GMT-MEF」と称する。
The MEF isolated in Experiment 1 was seeded (0.5 × 10 5 cells / well) in a 12-well cell culture multiwell plate (manufactured by FALCON, 353043) and allowed to stand overnight. Thereafter, the medium in the well was removed by aspiration, and the medium was replaced with a DMEM / Sendai virus mixture.
The cells were statically cultured overnight at 37 ° C. and 5% CO 2 to infect the virus (infection). The resulting products are referred to as “SeV-G / M / T-MEF” and “SeV-GMT-MEF”, respectively.
[実験8]
(心筋様細胞への分化誘導)
 実験2により作製したRetro-GMT-MEF、実験4により作製したSeV-G/M/T-MEF、及び、SeV-GMT-MEFは、遺伝子導入翌日、表3又は表4に示す各培地に培地交換し、37℃、5%CO条件下で培養した。なお、培養は、3~4日ごとに培地を交換して行った。
[Experiment 8]
(Induction of differentiation into myocardial cells)
The Retro-GMT-MEF prepared in Experiment 2, SeV-G / M / T-MEF, and SeV-GMT-MEF prepared in Experiment 4 were added to each medium shown in Table 3 or Table 4 on the day after gene introduction. The cells were exchanged and cultured at 37 ° C. under 5% CO 2 conditions. The culture was performed every 3 to 4 days by changing the medium.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[評価1]
(FACS解析方法)
 マウス胎児線維芽細胞(MEF)を、SeV-G/M/T、SeV-GMTの各センダイウイルス溶液、及び、レトロウイルス溶液(Gata4、Mef2c、Tbx5の混合)で培養し、1週間後、それぞれの培地を吸引した。その後、PBS(-)で洗浄を行い、各ウェルに対して、0.25% トリプシン-EDTAを0.5mL加え、37℃、5%CO条件下で5分間静置した。
[Evaluation 1]
(FACS analysis method)
Mouse embryonic fibroblasts (MEF) were cultured in SeV-G / M / T, SeV-GMT Sendai virus solution, and retrovirus solution (mixture of Gata4, Mef2c, Tbx5), and after 1 week, The medium was aspirated. Thereafter, the plate was washed with PBS (−), 0.5 mL of 0.25% trypsin-EDTA was added to each well, and the plate was allowed to stand at 37 ° C. under 5% CO 2 for 5 minutes.
 細胞が培養液に浮き上がることを確認した後、表1に示すMEF用培地(10%FBS/DMEM/PSA)1mLで中和し、15mLチューブ(Corning社、430791)に細胞を回収した。 After confirming that the cells floated in the culture solution, the cells were neutralized with 1 mL of a medium for MEF (10% FBS / DMEM / PSA) shown in Table 1, and the cells were collected in a 15 mL tube (Corning, 430791).
 回収した細胞を、4℃で遠心分離した(1500rpm、5分間)。上清を吸引後、表5に示すFACS施行用溶液(5%FBS/PBS)350μLを加え、十分に混ぜ合わせた。この懸濁液を、セルストレーナー・キャップ付き5mLポリスチレンラウンドチューブ(FALCON社、REF 353335)にてフィルターをかけ、FACS用試料とした。 The collected cells were centrifuged at 4 ° C. (1500 rpm, 5 minutes). After aspirating the supernatant, 350 μL of the FACS enforcement solution (5% FBS / PBS) shown in Table 5 was added and mixed thoroughly. This suspension was filtered with a 5 mL polystyrene round tube with a cell strainer cap (FALCON, REF 353335) to obtain a sample for FACS.
 フローサイトメトリー(日本ベクトン・ディッキンソン、FACS Calibur)を使用し、上記の試料におけるGFP陽性細胞およびcTnT陽性細胞の測定を行った。 GFP positive cells and cTnT positive cells in the above samples were measured using flow cytometry (Nippon Becton Dickinson, FACS Calibur).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[評価2]
(拍動細胞数の確認)
 感染させてから28日後に、HSオールインワン蛍光顕微鏡(キーエンス社製、BIOREVO BZ9000)を用いて明視野4倍で各ウェルの全体を撮影した。また、同顕微鏡を用いて位相差20倍で拍動する心筋様細胞の数を計測し、12ウェルの合計を算出した。
[Evaluation 2]
(Confirmation of the number of beating cells)
28 days after infection, the whole of each well was photographed at a bright field of 4 times using an HS all-in-one fluorescence microscope (manufactured by Keyence Corporation, BIOREVO BZ9000). In addition, the number of myocardial cells pulsating with a phase difference of 20 times was measured using the same microscope, and the total of 12 wells was calculated.
[結果]
 図1は心筋トロポニンT(cTnT)の発現に関するFACS分析である。(a)は対照実験の結果を示す図である。(b)はマウス胎児線維芽細胞(MEF)をSeV-G/M/T(Gata4、Mef2c、Tbx5の混合)のセンダイウイルス溶液で培養した結果である。(c)はマウス胎児線維芽細胞(MEF)をSeV-GMTのセンダイウイルス溶液で培養した結果である。(d)は比較のためマウス胎児線維芽細胞(MEF)をレトロウイルス溶液(Gata4、Mef2c、Tbx5の混合)で培養した結果である。(b)に比べて(c)ではcTnT陽性細胞の数及びcTnT強度が増大している。
[result]
FIG. 1 is a FACS analysis for the expression of cardiac troponin T (cTnT). (A) is a figure which shows the result of a control experiment. (B) shows the results of culturing mouse fetal fibroblasts (MEF) in a Sendai virus solution of SeV-G / M / T (mixture of Gata4, Mef2c, Tbx5). (C) shows the results of culturing mouse fetal fibroblasts (MEF) in a Sendai virus solution of SeV-GMT. (D) is the result of culturing mouse fetal fibroblasts (MEF) in a retrovirus solution (mixture of Gata4, Mef2c, Tbx5) for comparison. Compared with (b), the number of cTnT positive cells and the cTnT intensity are increased in (c).
 図2(a)は対照実験の結果を示す図である。(b)はマウス胎児線維芽細胞(MEF)をSeV-GMTのセンダイウイルス溶液でウイルス感染させてから4週間後の蛍光顕微鏡画像である。(c)は比較のためマウス胎児線維芽細胞(MEF)をレトロウイルス溶液(Gata4、Mef2c、Tbx5の混合)でウイルス感染させてから4週間後の蛍光顕微鏡画像である。 FIG. 2 (a) shows the results of the control experiment. (B) is a fluorescence microscope image 4 weeks after virus infection of mouse fetal fibroblasts (MEF) with a Sendi virus solution of SeV-GMT. (C) is a fluorescence microscopic image 4 weeks after virus infection of mouse fetal fibroblasts (MEF) with a retrovirus solution (mixture of Gata4, Mef2c, Tbx5) for comparison.
 発明者はレトロウイルスベクターによるGMT3遺伝子導入で心筋様細胞を誘導可能であることを開示しているが(WO2011/139688)、センダイウイルスベクター(SeV-GMT)によっても心筋蛋白陽性(cTnT、α-Actinin)、独特の横紋構造が出現し、心筋様細胞の誘導が確認できた。 The inventor has disclosed that cardiomyocyte-like cells can be induced by introduction of GMT3 gene with a retroviral vector (WO2011 / 139688), but myocardial protein positive (cTnT, α-) can also be obtained with Sendai virus vector (SeV-GMT). Actinin), a unique striated structure appeared, and the induction of myocardial cells was confirmed.
 図3はリプログラミング因子導入の結果を示す蛍光顕微鏡画像である。Gata4発現細胞(緑)、Mef2c発現細胞(赤)がそれぞれ示される。DAPI(青)はすべての細胞の核を示す。merge画像は各画像の重ね合わせを示す。
(a)は比較のため、レトロウイルスベクターによりGMTの各因子の細胞への導入を示す蛍光顕微鏡画像である。
(b)はSeV-G/M/Tのセンダイウイルス溶液によりG、M、Tの各因子の細胞への導入を示す蛍光顕微鏡画像である。
(c)、(d)はSeV-GMTのセンダイウイルス溶液によるG、M、Tの各因子の細胞への導入を示す蛍光顕微鏡画像である。
(b)と比較して(c)、(d)はより多くの細胞へのG、M、Tの各因子の導入が確認できる。また、(b)のmerge画像と(c)及び(d)のmerge画像を比較した場合、SeV-G/M/Tにより遺伝子導入するよりはSeV-GMTにより遺伝子導入を行う方が、Gata4発現細胞とMef2c発現細胞が一致しており、遺伝子導入効率が向上することが確認できる。(c)と(d)を比較した場合、細胞密度と継代数を変化させることにより細胞への因子導入効率が向上することが確認できる。
FIG. 3 is a fluorescence microscope image showing the result of introduction of the reprogramming factor. Gata4 expressing cells (green) and Mef2c expressing cells (red) are shown, respectively. DAPI (blue) indicates the nucleus of all cells. The merge image shows the overlay of each image.
(A) is a fluorescence microscope image showing introduction of each factor of GMT into cells by a retroviral vector for comparison.
(B) is a fluorescence microscope image showing introduction of G, M, and T factors into cells by a Sendi virus solution of SeV-G / M / T.
(C) and (d) are fluorescence microscopic images showing introduction of G, M, and T factors into cells by a SeV-GMT Sendai virus solution.
Compared with (b), (c) and (d) confirm the introduction of G, M, and T factors into more cells. In addition, when the merge image of (b) is compared with the merge images of (c) and (d), it is more likely that the gene introduction by SeV-GMT is performed than the gene introduction by SeV-G / M / T. It can be confirmed that the cell and the Mef2c-expressing cell match, and the gene transfer efficiency is improved. When (c) and (d) are compared, it can be confirmed that the factor introduction efficiency into the cells is improved by changing the cell density and the passage number.
 図4はマウス胎児線維芽細胞(MEF)をSeV-GMTのセンダイウイルス溶液でウイルス感染させてから1週間後の蛍光顕微鏡画像である。図2(b)と比較しても、GMT3遺伝子導入からわずか1週間で既に心筋蛋白陽性(cTnT、α-Actinin)、独特の横紋構造が出現し、心筋様細胞が誘導されていること確認できた。 FIG. 4 is a fluorescence microscope image one week after mouse embryo fibroblasts (MEF) were infected with SeV-GMT Sendai virus solution. Compared to FIG. 2 (b), it was confirmed that a myocardial protein-positive (cTnT, α-Actinin), a unique striated structure appeared, and myocardial-like cells were induced within 1 week after GMT3 gene transfer. did it.
 センダイウイルスベクターでGMT3遺伝子の導入を行った場合、レトロウイルスにより導入した場合と比較して早期に心筋様細胞が誘導される理由については明らかではないが、センダイウイルスベクターが染色体非組み込み型ウイルスベクターであって、ベクターが細胞質中で発現され、導入遺伝子が宿主の染色体(核由来染色体)に組み込まれる工程を経ないため、心筋誘導に要する時間も短期間であることが予想される。 When the GMT3 gene is introduced with a Sendai virus vector, it is not clear why the myocardial cells are induced earlier than when introduced with a retrovirus, but the Sendai virus vector is a non-chromosomal viral vector. In addition, since the vector is expressed in the cytoplasm and the transgene is not integrated into the host chromosome (nucleus-derived chromosome), the time required for myocardial induction is expected to be short.
 図5(a)は経時による拍動心筋様細胞の数の変化を示す図である。従来のレトロウイルスベクターによるGMT遺伝子導入を行った心筋様細胞では拍動開始まで約3週間であったが、本発明におけるセンダイウイルスベクター(SeV-GMT)によって誘導した心筋様細胞は、約10日と早期に拍動を開始することが確認できる。 FIG. 5 (a) is a graph showing changes in the number of beating myocardial cells over time. In conventional myocardial cells into which GMT gene was introduced with a retroviral vector, it took about 3 weeks until the start of pulsation, but myocardial cells induced by Sendai virus vector (SeV-GMT) in the present invention were about 10 days. It can be confirmed that pulsation starts early.
 (b)は感染させてから19日時点での拍動する心筋様細胞の数を示すグラフである。従来のレトロウイルスベクターによるGMT遺伝子導入を行った心筋様細胞と比較し、本発明におけるセンダイウイルスベクター(SeV-GMT)によって誘導した心筋様細胞は、拍動細胞数が40~80倍に増加することが確認できる。 (B) is a graph showing the number of beating myocardial cells as of 19 days after infection. Compared with the myocardial cells in which the GMT gene was introduced by the conventional retroviral vector, the number of pulsating cells of the myocardial cells induced by the Sendai virus vector (SeV-GMT) in the present invention increased by 40 to 80 times. I can confirm that.
 図6はヒト皮膚線維芽細胞からインビトロで誘導した結果における心トロポニンT(cTnT)の発現に関するFACS分析である。(a)は対照実験の結果を示す図である。(b)はSeV-GMTのセンダイウイルス溶液によりGata4、Mef2c、Tbx5を導入した細胞を培養した結果である。(c)はSeV-GMTによるGata4、Mef2c、Tbx5の導入に加え、さらにmiR133を導入した細胞を培養した結果である。(d)はSeV-GMTによるGata4、Mef2c、Tbx5の導入に加え、さらにMesp1及びMyocdを導入した細胞を培養した結果である。(e)は、(d)に加えさらにmiR133を導入した細胞を培養した結果である。(a)~(e)に示されるように、ヒト皮膚線維芽細胞から誘導した場合は、Gata4、Mef2c、Tbx5に加えMesp1、Myocd、及びmiR133を導入することによりcTnT陽性細胞の数及びcTnT強度が増大することが確認できる。 FIG. 6 is a FACS analysis on the expression of cardiac troponin T (cTnT) as a result of in vitro induction from human dermal fibroblasts. (A) is a figure which shows the result of a control experiment. (B) shows the result of culturing cells into which Gata4, Mef2c, and Tbx5 were introduced with a Sendi virus solution of SeV-GMT. (C) shows the result of culturing cells in which miR133 was further introduced in addition to the introduction of Gata4, Mef2c, and Tbx5 by SeV-GMT. (D) shows the result of culturing cells into which Mesp1 and Myocd were further introduced in addition to the introduction of Gata4, Mef2c, and Tbx5 by SeV-GMT. (E) is the result of culturing cells into which miR133 was further introduced in addition to (d). As shown in (a) to (e), when derived from human skin fibroblasts, the number of cTnT positive cells and cTnT intensity by introducing Mesp1, Myocd, and miR133 in addition to Gata4, Mef2c, and Tbx5 Can be confirmed to increase.
 図7はヒト皮膚線維芽細胞にインビトロでSeV-GMTによるGata4、Mef2c、Tbx5の導入に加え、さらにMesp1、Myocd、及びmiR133を導入した細胞を4週間培養した時点における蛍光顕微鏡画像である。心筋蛋白陽性(α-Actinin)、独特の横紋構造が出現し、心筋様細胞の誘導が確認できた。 FIG. 7 is a fluorescence microscopic image when cells in which Mesp1, Myocd, and miR133 were further introduced into human skin fibroblasts in vitro in addition to the introduction of Gata4, Mef2c, and Tbx5 by SeV-GMT in vitro. Myocardial protein positive (α-actinin), a unique striated structure appeared, and induction of myocardial cells was confirmed.
 図8は本発明の変形例を示す図である。マウス胎児線維芽細胞(MEF)にSeV-GMTのセンダイウイルス溶液でGata4、Mef2c、及びTbx5の遺伝子導入を行って心筋誘導する際に、MOI(multiplicity of infection)及び播種密度を変化させて培養した場合における、心拍心筋様細胞の数の変化である。拍動細胞数は、線維芽細胞の播種密度、及びウイルス感染濃度に依存して増加することが確認できるので、線維芽細胞の播種密度、またはMOIを変化させながら上記の細胞を培養しても良い。 FIG. 8 is a diagram showing a modification of the present invention. When introducing myocardium into mouse fetal fibroblasts (MEFs) with SeV-GMT Sendai virus solution and introducing Gata4, Mef2c, and Tbx5, the cells were cultured with varying MOI (multiplicity of infection) and seeding density. In some cases, the change in the number of heartbeat-like cells. Since it can be confirmed that the number of beating cells increases depending on the seeding density of fibroblasts and the virus infection concentration, the above cells can be cultured while changing the seeding density of fibroblasts or MOI. good.
 図9は本発明の変形例を示す図である。マウス胎児線維芽細胞(MEF)にSeV-GMTのセンダイウイルス溶液でGata4、Mef2c、及びTbx5の遺伝子導入を行う際に、細胞密度及び継代数を変化させて培養した場合における、心拍心筋様細胞の数の変化である。細胞密度及び継代数の変化により拍動細胞数が増加することが確認できるので、細胞密度、または継代数を変化させながら上記の細胞を培養しても良い。 FIG. 9 is a diagram showing a modification of the present invention. When cultivating mouse fetal fibroblasts (MEF) with varying cell density and passage number when introducing Gata4, Mef2c, and Tbx5 with SeV-GMT Sendai virus solution, It is a change in number. Since it can be confirmed that the number of beating cells increases due to changes in cell density and passage number, the above cells may be cultured while changing the cell density or passage number.
 図10は本発明の変形例を示す図である。マウス胎児線維芽細胞(MEF)にSeV-GMTのセンダイウイルス溶液でGata4、Mef2c、及びTbx5の遺伝子導入を行って心筋誘導する際に、無血清培地と血清培地を使用した場合の、拍動する心筋様細胞の数を示す比較図である。(a)は表4に示すFFV培地(無血清培地)を使用した場合であり、(b)はダルベッコ変法イーグル培地(DMEM)にウシ胎児血清(FBS)を添加して使用した場合(血清培地)を示す。本発明の心筋様細胞の作製においては、無血清培地を使用すると、血清培地を使用した場合に比べ拍動する心筋様細胞の数が格段に増加したことが確認できる。本発明の心筋様細胞の作製は、従来の血清培地を使用して行っても良いが、無血清培地を使用して行っても良い。 FIG. 10 is a diagram showing a modification of the present invention. Beating when using serum-free and serum media when introducing mouse 4, fief, and Tbx5 genes into mouse fetal fibroblasts (MEF) with SeV-GMT Sendai virus solution It is a comparison figure which shows the number of myocardial cells. (A) is the case where FFV medium (serum-free medium) shown in Table 4 is used, and (b) is the case where fetal bovine serum (FBS) is added to Dulbecco's modified Eagle medium (DMEM) (serum) Medium). In the production of the myocardial cells of the present invention, it can be confirmed that the use of serum-free medium significantly increased the number of beating myocardial cells as compared to the case of using serum medium. Production of the myocardial cells of the present invention may be performed using a conventional serum medium, but may also be performed using a serum-free medium.

Claims (15)

  1.  Gata4、Mef2c、Tbx5、Mesp1、及びMyocdポリペプチドから選択されるリプログラミング因子1つ以上を、該リプログラミング因子をコードする核酸をゲノムに有するセンダイウイルスベクター1つ以上を用いて線維芽細胞内に導入することを特徴とする心筋様細胞の作製方法。 One or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptides are transferred into fibroblasts using one or more Sendai virus vectors having a nucleic acid encoding the reprogramming factor in the genome. A method for producing a myocardial cell, characterized by introducing the cardiomyocyte.
  2.  前記リプログラミング因子が、Gata4、Mef2c、Tbx5の3つであることを特徴とする、請求項1に記載の心筋様細胞の作製方法。 The method for producing myocardial-like cells according to claim 1, wherein the reprogramming factors are Gata4, Mef2c, and Tbx5.
  3.  前記リプログラミング因子が、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdの5つであることを特徴とする、請求項1に記載の心筋様細胞の作製方法。 2. The method for producing a myocardial cell according to claim 1, wherein the reprogramming factors are Gata4, Mef2c, Tbx5, Mesp1, and Myocd.
  4.  さらにマイクロRNA(miRNA)を前記線維芽細胞内に導入することを特徴とする、請求項1~3のいずれか一項に記載の心筋様細胞の作製方法。 The method for producing cardiomyocyte-like cells according to any one of claims 1 to 3, further comprising introducing microRNA (miRNA) into the fibroblasts.
  5.  前記リプログラミング因子の2つ以上が、前記センダイウイルスベクターに直列に挿入されていることを特徴とする、請求項2又は3に記載の心筋様細胞の作製方法。 The method for producing cardiomyocyte-like cells according to claim 2 or 3, wherein two or more of the reprogramming factors are inserted in series in the Sendai virus vector.
  6.  Gata4、Mef2c、及びTbx5が、上流側から下流側に向けて、Gata4、Mef2c、Tbx5、の順に隣接することを特徴とする、請求項5に記載の心筋様細胞の作製方法。 The method for producing myocardial-like cells according to claim 5, wherein Gata4, Mef2c, and Tbx5 are adjacent to each other in the order of Gata4, Mef2c, Tbx5 from the upstream side toward the downstream side.
  7.  Mesp1、及びMyocdが、上流側から下流側に向けて、Mesp1、Myocd、の順に隣接することを特徴とする、請求項3に記載の心筋様細胞の作製方法。 The method for producing myocardial-like cells according to claim 3, wherein Mesp1 and Myocd are adjacent to each other in the order of Mesp1 and Myocd from the upstream side toward the downstream side.
  8.  前記線維芽細胞がヒト由来であることを特徴とする、請求項1~7のいずれか一項に記載の心筋様細胞の作製方法。 The method for producing cardiomyocyte-like cells according to any one of claims 1 to 7, wherein the fibroblasts are derived from human.
  9.  Gata4、Mef2c、Tbx5、Mesp1、及びMyocdポリペプチドから選択されるリプログラミング因子1つ以上がウイルスゲノム上に保持されているセンダイウイルスベクターを含む心筋様細胞の作製用組成物。 A composition for producing cardiomyocyte-like cells comprising a Sendai virus vector in which one or more reprogramming factors selected from Gata4, Mef2c, Tbx5, Mesp1, and Myocd polypeptide are retained on the viral genome.
  10.  前記リプログラミング因子が、Gata4、Mef2c、Tbx5の3つであることを特徴とする、請求項9に記載の心筋様細胞の作製用組成物。 10. The composition for producing cardiomyocyte-like cells according to claim 9, wherein the reprogramming factors are Gata4, Mef2c, and Tbx5.
  11.  前記リプログラミング因子が、Gata4、Mef2c、Tbx5、Mesp1、及びMyocdの5つであることを特徴とする、請求項9に記載の心筋様細胞の作製用組成物。 10. The composition for producing cardiomyocyte-like cells according to claim 9, wherein the reprogramming factors are five of Gata4, Mef2c, Tbx5, Mesp1, and Myocd.
  12.  さらにマイクロRNA(miRNA)を含むことを特徴とする、請求項9~11いずれか一項に記載の心筋様細胞の作製用組成物。 The composition for producing cardiomyocyte-like cells according to any one of claims 9 to 11, further comprising microRNA (miRNA).
  13.  前記リプログラミング因子の2つ以上が、前記センダイウイルスベクターに直列に挿入されていることを特徴とする、請求項10又は11に記載の心筋様細胞の作製用組成物。 The composition for producing cardiomyocyte-like cells according to claim 10 or 11, wherein two or more of the reprogramming factors are inserted in series in the Sendai virus vector.
  14.  Gata4、Mef2c、及びTbx5が、上流側から下流側に向けて、Gata4、Mef2c、Tbx5、の順に隣接することを特徴とする、請求項13に記載の心筋様細胞の作製用組成物。 The composition for producing myocardial-like cells according to claim 13, wherein Gata4, Mef2c, and Tbx5 are adjacent to each other in the order of Gata4, Mef2c, and Tbx5 from the upstream side toward the downstream side.
  15.  Mesp1、及びMyocdが、上流側から下流側に向けて、Mesp1、Myocd、の順に隣接することを特徴とする、請求項11に記載の心筋様細胞の作製用組成物。
     
    The composition for producing myocardial-like cells according to claim 11, wherein Mesp1 and Myocd are adjacent to each other in the order of Mesp1 and Myocd from the upstream side toward the downstream side.
PCT/JP2015/077664 2014-10-06 2015-09-30 Production method for myocardium-like cells, and composition for production of myocardium-like cells for use in same WO2016056438A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016553059A JPWO2016056438A1 (en) 2014-10-06 2015-09-30 Method for producing myocardial cell and composition for producing myocardial cell used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-205988 2014-10-06
JP2014205988 2014-10-06

Publications (1)

Publication Number Publication Date
WO2016056438A1 true WO2016056438A1 (en) 2016-04-14

Family

ID=55653053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077664 WO2016056438A1 (en) 2014-10-06 2015-09-30 Production method for myocardium-like cells, and composition for production of myocardium-like cells for use in same

Country Status (2)

Country Link
JP (1) JPWO2016056438A1 (en)
WO (1) WO2016056438A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151097A1 (en) * 2018-01-30 2019-08-08 株式会社片岡製作所 Method for producing cardiomyocytes
JP2020524518A (en) * 2017-06-21 2020-08-20 モグリファイ リミテッド Cell reprogramming into cardiomyocytes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029770A1 (en) * 2010-08-30 2012-03-08 ディナベック株式会社 Composition for inducing pluripotent stem cell, and use thereof
JP2013524837A (en) * 2010-04-28 2013-06-20 ザ ジェイ. デヴィッド グラッドストーン インスティテューツ Methods for generating cardiomyocytes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524837A (en) * 2010-04-28 2013-06-20 ザ ジェイ. デヴィッド グラッドストーン インスティテューツ Methods for generating cardiomyocytes
WO2012029770A1 (en) * 2010-08-30 2012-03-08 ディナベック株式会社 Composition for inducing pluripotent stem cell, and use thereof

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
FUSAKI, N. ET AL.: "Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome", PROCEEDINGS OF THE JAPAN ACADEMY, SERIES B, vol. 85, no. 8, 2009, pages 348 - 362, XP002663242, ISSN: 1349-2896, DOI: doi:DOI:10.2183/PJAB.85.348 *
IEDA, M.: "Direct cardiac reprogramming by defined factors", INFLAMMATION AND REGENERATION, vol. 3 3, no. 4, September 2013 (2013-09-01), pages 190 - 196, ISSN: 1880-8190 *
MIKI, K. ET AL.: "Making Steady Progress on Direct Cardiac Reprogramming Toward Clinical Application", CIRCULATION RESEARCH, vol. 113, 21 June 2013 (2013-06-21), pages 13 - 15, ISSN: 1524-4571 *
MIYAMOTO, K. ET AL.: "Direct Reprogramming of Fibroblasts into Functional Cardiomyocyte-like Cells without Viral Integration", JOURNAL OF CARDIAC FAILURE, vol. 20, no. Issue 10, 10 October 2014 (2014-10-10), pages S145, ISSN: 1071-9164 *
MIYAMOTO, K. ET AL.: "Induction of safe and high efficient Cardiomyocyte-like Cells from Fibroblasts using non-integration vectors", THE 30TH ANNUAL MEETING OF THE INTERNATIONAL SOCIETY FOR HEART RESEARCH JAPANESE SECTION ISHR SCIENTIFIC PROGRAM & CONTENT, vol. 65, 29 June 2013 (2013-06-29), pages FRS1 *
MURAOKA, N. ET AL.: "Direct Reprogramming of Fibroblasts into Myocytes to Reverse Fibrosis", ANNUAL REVIEW OF PHYSIOLOGY, vol. 76, 28 April 2014 (2014-04-28), pages 21 - 37, XP055138589, ISSN: 0066-4278, DOI: doi:10.1146/annurev-physiol-021113-170301 *
NAM, Y. J. ET AL.: "Reprogramming of human fibroblasts toward a cardiac fate", PNAS, vol. 110, no. 14, 2 April 2013 (2013-04-02), pages 5588 - 5593, XP055210948, ISSN: 1091-6490, DOI: doi:10.1073/pnas.1301019110 *
WADA, R. ET AL.: "Induction of human cardiomyocyte-like cells from fibroblasts by defined factors", PNAS, vol. 110, no. 31, 30 July 2013 (2013-07-30), pages 12667 - 12672, ISSN: 1091-6490 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524518A (en) * 2017-06-21 2020-08-20 モグリファイ リミテッド Cell reprogramming into cardiomyocytes
WO2019151097A1 (en) * 2018-01-30 2019-08-08 株式会社片岡製作所 Method for producing cardiomyocytes
JPWO2019151097A1 (en) * 2018-01-30 2021-01-14 株式会社片岡製作所 Method for producing cardiomyocytes
US11834679B2 (en) 2018-01-30 2023-12-05 Kataoka Corporation Method for producing cardiomyocytes

Also Published As

Publication number Publication date
JPWO2016056438A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6402129B2 (en) Method for producing reprogrammed cells using a non-chromosomal viral vector
KR101279677B1 (en) Methods for producing minus-strand RNA viral vectors using hybrid promoter comprising cytomegalovirus enhancer and chicken β-actin promoter
US20150133531A1 (en) Method for expression of heterologous proteins using a recombinant negative-strand rna virus vector
CN1281276C (en) Virus vector for transferring gene into renal cells
EP3375874B1 (en) Improved paramyxovirus vector
US20180195085A1 (en) Improved negative-strand rna viral vector
CN101517079A (en) Non-replicating paramyxoviridae virus vector
ES2358315T3 (en) NEW PROCEDURES TO RESCUE RNA VIRUSES.
WO2016056438A1 (en) Production method for myocardium-like cells, and composition for production of myocardium-like cells for use in same
JPWO2008096811A1 (en) Attenuated minus-strand RNA virus
Iida et al. Concept and technology underlying Sendai virus (SeV) vector development
EP3656858A1 (en) Polynucleotide for modifying target sequence and use thereof
JP2004344001A (en) Method for transducing gene into embryonic stem (es) cell
WO2005087936A1 (en) Method of transferring gene into embryonic stem cell
JP5763340B6 (en) Method for producing reprogrammed cells using a non-chromosomal viral vector
JP2021176265A (en) System for highly efficient modification of target sequences

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848855

Country of ref document: EP

Kind code of ref document: A1