WO2016051895A1 - Wavelength conversion member, light-emission device, lighting device, and front lamp for vehicle - Google Patents

Wavelength conversion member, light-emission device, lighting device, and front lamp for vehicle Download PDF

Info

Publication number
WO2016051895A1
WO2016051895A1 PCT/JP2015/069320 JP2015069320W WO2016051895A1 WO 2016051895 A1 WO2016051895 A1 WO 2016051895A1 JP 2015069320 W JP2015069320 W JP 2015069320W WO 2016051895 A1 WO2016051895 A1 WO 2016051895A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting film
wavelength conversion
conversion member
Prior art date
Application number
PCT/JP2015/069320
Other languages
French (fr)
Japanese (ja)
Inventor
智洋 坂上
高橋 幸司
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016051895A1 publication Critical patent/WO2016051895A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • F21S41/145Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device the main emission direction of the LED being opposite to the main emission direction of the illuminating device

Definitions

  • the present invention relates to a wavelength conversion member containing a fluorescent material.
  • the light is controlled to have a desired shape by covering a part of the light emitted from the light source with a light shielding plate.
  • the utilization efficiency of the light emitted from the light emitting unit is reduced.
  • the shape of the peripheral portion of the light emitting unit greatly affects the light distribution pattern of the light emitting device.
  • the light emitting portion includes a fluorescent material that emits fluorescence upon receiving excitation light
  • the light distribution pattern is strongly influenced by the particle arrangement of the fluorescent material at the peripheral portion of the light emitting portion. Therefore, in order to obtain a desired light distribution pattern, it is necessary to strictly control the particle arrangement of the fluorescent substance at the peripheral portion of the light emitting portion.
  • the inventors of the present invention have found such a problem for the first time.
  • An object of the present invention is to provide a wavelength conversion member for efficiently forming a light distribution pattern that accurately matches a desired shape.
  • a wavelength conversion member is a wavelength conversion member including a fluorescent material, and a surface of a side surface with respect to the upper surface is a wide surface of the wavelength conversion member.
  • An ideal surface of the side surface which is derived from an array of a plurality of particles of the fluorescent material forming the surface, is an ideal surface, and the distance between the ideal surface and each of the particles is less than an allowable value.
  • a desired light distribution pattern reflecting the high shape controllability of the wavelength conversion member can be realized.
  • FIG. It is sectional drawing which shows the structure of the illuminating device of Embodiment 1.
  • FIG. It is sectional drawing which shows the structure of the light-emitting device with which the illuminating device shown by FIG. 1 is provided.
  • It is a top view which shows the structure of the conventional light emitting film with respect to the light emitting film with which the light-emitting device shown by FIG. 2 is provided.
  • FIG. 6 is a top view and a cross-sectional view illustrating a method for manufacturing a light emitting film in a light emitting device according to Embodiment 2. It is sectional drawing which shows the manufacturing method of the light emitting film in the light-emitting device of Embodiment 3.
  • 6 is a cross-sectional view illustrating a method for producing a light emitting film in a light emitting device according to Embodiment 4.
  • FIG. FIG. 10 is a cross-sectional view illustrating a method for producing a light emitting film in a light emitting device according to Embodiment 5.
  • FIG. 10 is a schematic diagram illustrating a configuration of a lighting device according to an eighth embodiment.
  • FIG. 1 is a cross-sectional view illustrating the configuration of the illumination devices 3a and 3b of the present embodiment, where (a) illustrates the illumination device 3a and (b) illustrates the illumination device 3b.
  • the illumination device 3a includes a light emitting device 5 and a light projecting lens 51a (optical element).
  • the light projecting lens 51a projects and refracts the illumination light L emitted from the light emitting device 5 and projects it.
  • the illumination device 3b includes a light emitting device 5 and a light projecting reflector 51b (optical element).
  • the light projecting reflector 51 b reflects and projects the illumination light L emitted from the light emitting device 5.
  • the lighting devices 3a and 3b are not limited to the above-described configuration, and may include an optical system in which a light projecting lens 51a and a light projecting reflector 51b are combined.
  • FIG. 2 is a cross-sectional view showing the configuration of the light emitting device 5 provided in the illumination devices 3a and 3b shown in FIGS.
  • the X axis and the Y axis are axes that extend in a horizontal direction on the wide surface of the substrate 2 (hereinafter referred to as “substrate surface”).
  • the Z axis is an axis extending in a direction perpendicular to the substrate surface. This coordinate axis corresponds to the coordinate axis shown in the figures other than FIG.
  • the light-emitting device 5 includes a light-emitting film 1 (wavelength conversion member) and a substrate 2.
  • the light emitting film 1 is disposed on the substrate 2 and includes particles of a phosphor (fluorescent substance) that emits fluorescence F upon receiving laser light E (excitation light) emitted from the laser light source 3.
  • a phosphor fluorescent substance
  • the fluorescence F is extracted from the surface (upper surface) of the light emitting film 1 opposite to the surface facing the substrate 2. This upper surface is one of the wide surfaces of the light emitting film 1.
  • the material of the substrate 2 is a metal such as aluminum or copper, or a ceramic such as SiC or AlN.
  • the light emitting film 1 emits the fluorescence F
  • the light emitting film 1 emits heat.
  • the temperature of the light emitting film 1 increases, the luminous efficiency of the phosphor contained in the light emitting film decreases.
  • the material of the substrate 2 is a metal or a ceramic having good thermal conductivity, a large amount of heat emitted from the light-emitting film 1 can be dissipated, so that a decrease in the luminous efficiency can be suppressed.
  • the laser light E is incident on the surface of the light emitting film 1 opposite to the surface facing the substrate 2.
  • the fluorescence F is extracted from the side of the light emitting film 1 where the laser beam E is incident. That is, the side on which the laser beam E is incident on the light emitting film 1 and the side on which the fluorescence F is extracted from the light emitting film 1 are the same.
  • the fluorescence F emitted from the light emitting film 1 toward the substrate 2 is reflected by the surface of the substrate 2.
  • the fluorescence F thus reflected can be used for light projection by taking out the laser light E from the side where the laser light E enters the light emitting film 1. For this reason, it is preferable that the reflectance of the surface of the substrate 2 on the light emitting film 1 side is high.
  • the light spot shape of the laser light E is controlled so that the laser light E is irradiated on the entire light emitting film 1. That is, the size of the light spot of the laser beam E is the same as or larger than the size (area S) of the light emitting film 1. For this reason, the light emitted from the entire light emitting film 1 is used for forming a light distribution pattern (light projection pattern) of the light emitted from the light emitting device 5.
  • the light distribution pattern means an image of light formed by irradiating the irradiation target with the fluorescence emitted from the light emitting device 5.
  • the light distribution pattern is not limited to the projection of the shape of the light emitting region of the light emitting film 1 as it is, and a light distribution pattern that is not similar to the shape of the light emitting region is formed by the light projecting lens 51a or the light projecting reflector 51b. Also good.
  • the light distribution pattern reflecting the high shape controllability of the light emitting region can be obtained by using light emitted from the peripheral portion of the light emitting region for light projection to the peripheral portion of the light distribution pattern. it can.
  • the laser light E receives the laser light E of the light emitting film 1 so that no shadow is formed when the fluorescent light F is emitted from the light emitting film 1 (a light source of the laser light E does not block the fluorescent light F). It is preferable to enter from the angle which becomes diagonal with respect to the surface.
  • the light source of the laser beam E is, for example, a semiconductor laser element that emits a laser beam having a wavelength of 450 nm (blue).
  • the light source of the excitation light is a semiconductor laser element, the energy density of the excitation light with respect to the irradiation area of the excitation light can be increased as compared with a configuration using other light sources. That is, the brightness of the light that excites the phosphor included in the light emitting film 1 can be increased.
  • the excitation light source for irradiating the light emitting film 1 with excitation light is not limited to the semiconductor laser element, but may be an LED (light emitting diode).
  • the laser light E is preferably blue or purple.
  • the phosphor included in the light emitting film 1 is a phosphor that emits yellow fluorescence F or green and red fluorescence F, and the laser beam E diffusely reflected on the surface of the light emitting film 1 and the fluorescence By emitting F, the light emitting device 5 can distribute white illumination light in which the laser beam E and the fluorescence F are mixed.
  • the phosphor included in the light emitting film 1 is changed to a phosphor that emits blue, green, and red fluorescence F or blue and yellow fluorescence F. It is possible to distribute white illumination light in which the fluorescent light F is mixed. In this case, it is preferable that the laser light E reflected by the light emitting film 1 or the substrate 2 is not emitted from the light emitting device 5 by the wavelength selection filter.
  • ⁇ Comparison of luminescent film ⁇ (Conventional light emitting film) 3 is a top view showing the configuration of a conventional light-emitting film 101 with respect to the light-emitting film 1 included in the light-emitting device 5 shown in FIG. 2, wherein (a) shows the entire light-emitting film 101, and (b) shows An enlarged view of a part A of the peripheral edge of the light emitting film 101 is shown.
  • the shape of the light-emitting film 101 when viewed from the positive side of the Z-axis has not been controlled so as to follow the ideal shape indicated by the broken line.
  • the phosphor particles P (particles) included in the light emitting film 101 have an ideal shape shown by a broken line. Were not aligned.
  • a phosphor included in the peripheral portion of the region of the light emitting film 101 irradiated with the laser light (hereinafter referred to as “excitation region”). Is adjacent to a phosphor contained outside the excitation region (hereinafter “excitation region phosphor”). At this time, since the laser light is guided inside the light emitting film, the phosphor outside the excitation region also emits fluorescence. Therefore, the shape of the region of the light emitting film 101 that emits fluorescence (hereinafter referred to as “light emitting region”) is broken.
  • the shape controllability of the light distribution pattern of the light-emitting device determined based on the accuracy of the light-emitting region shape is deteriorated, and unevenness that is unacceptable to the projected light. Arise.
  • (Light Emitting Film 1 of this Embodiment) 4 is a top view showing the configuration of the light-emitting film 1 included in the light-emitting device 5 shown in FIG. 2, where (a) shows the entire light-emitting film 1 and (b) shows the periphery of the light-emitting film 1. A part A is enlarged.
  • the film shape of the light-emitting film 1 when viewed from the positive side of the Z-axis matches the ideal shape.
  • the phosphor particles P forming the side surface of the light emitting film 1 move the light emitting film 1 from the Z axis positive direction side.
  • they are aligned with the ideal shape indicated by the dashed line.
  • a line representing a desired shape coincides with a boundary line between the light emitting film 1 and the exposed portion of the substrate 2 (a portion where the light emitting film 1 is not provided).
  • region of an ideal shape the light distribution pattern of the light-emitting device 5 corresponds with a desired shape.
  • FIG. 5 (a) shows the entire light emitting film 1
  • FIGS. 5 (b) to (f) show the peripheral portion of the light emitting film 1.
  • sequence of the fluorescent substance particle P contained in a part A is shown.
  • the light emitting film 1 is arranged in a rectangular parallelepiped shape, for example, on the substrate surface. That is, the upper surface of the light emitting film 1 is rectangular.
  • the following description will be made on the assumption that the phosphor particles P of the light emitting film 1 are only one layer.
  • the phosphor particles P arranged on the outermost side as viewed from above may be analyzed later.
  • the laser light E (see FIG. 2) is applied to the entire light emitting film 1.
  • the reference direction D represents a predetermined direction from the inside of the light emitting film 1 to the outside.
  • sequence of the fluorescent substance particle P in the peripheral part (side surface s) of the light emitting film 1 is demonstrated.
  • the outer edge of a region where each surface of the phosphor particles P forming the side surface of the light emitting film 1 is projected onto the substrate 2 in a part A of the peripheral edge of the light emitting film 1 is shown.
  • the width of the envelope ENV be w.
  • the width w is the distance between two parallel tangent lines drawn with respect to the envelope ENV that draws the curve.
  • the width w is a value equal to or smaller than an allowable value d representing an allowable value of distortion (shape collapse) from the ideal arrangement of the phosphor particles P forming the peripheral edge (side surface s) of the light emitting film 1 (that is, w ⁇ d).
  • the allowable value d can be arbitrarily set from the relationship between the accuracy required for the light distribution pattern and the magnification when the light emitting area is projected.
  • the average value of the phosphor particles P included in the light emitting film 1 By setting the diameter (average value of diameters), a highly accurate light distribution pattern can be obtained in a high-luminance illumination device using laser light as an excitation light source.
  • the light emitting film 1 when each vertex on the surface of the phosphor particle P forming the side surface of the light emitting film 1 closest to the reference direction D is included in the region, as shown in FIG. 5A, the light emitting film
  • the arrangement of the phosphor particles P forming the side surface of the light emitting film 1 in at least a part of the peripheral edge of 1 can be regarded as a desired linear shape.
  • the deviation between the actual light distribution pattern of the light-emitting device 5 and the desired orientation pattern is within the range indicated by the allowable value d. That is, the shape controllability of the light distribution pattern is enhanced.
  • Shape controllability means the degree to which the shape of the object of interest can be brought closer to the reference shape. Therefore, “high shape controllability” means that the shape of the object can be brought close to the reference shape with high accuracy.
  • the distance between the surface on the reference direction D side of the surface of the phosphor particle P1 (particle) and the curve m is the length d1. Further, the distance between the surface on the reference direction D side of the surface of the phosphor particle P2 (particle) and the curve m is the length d2.
  • FIG. 1 When the distance between the surface on the reference direction D side of the surface of the phosphor particle P in the part A of the peripheral portion A of the light emitting film 1 and the curve m is less than or equal to half of the allowable value d, FIG. In the top view of (a), at least a part of the peripheral portion of the light emitting film 1 can be regarded as a curve having a desired shape. At this time, the deviation between the light distribution pattern of the light emitting device 5 and the desired curved shape is reduced. That is, the shape controllability of the light distribution pattern is enhanced.
  • the particle arrangement for improving the shape controllability of the light distribution pattern of the light emitting device 5 is represented by the center c of the phosphor particle P and the line n (straight line and curve) representing the desired shape shown in FIG. Including).
  • the direction a represents the reference direction D.
  • a direction b represents a direction opposite to the reference direction D.
  • the distance between the following (1) and the following (2) in the part A of the peripheral portion of the light emitting film 1 is an allowable value d or less.
  • the allowable value d is, for example, the average particle diameter of the phosphor particles P.
  • the viewpoint described here can be expressed as follows.
  • a line n indicating the position and shape is taken as a basic reference line.
  • a line obtained by moving the basic reference line toward the inside of the light emitting film 1 by a distance corresponding to the radius of each of the plurality of particles is defined as an individual reference line of the particle.
  • the distance between the particle center c and the individual reference line is within a predetermined allowable value. This predetermined allowable value is, for example, the average particle diameter of the plurality of particles.
  • the distance between the ideal surface and each of the particles may be a distance between the ideal surface calculated on each of the plurality of particles and a point on the surface of the particle closest to the ideal surface.
  • the basic reference line can be calculated from the centers and particle sizes of the plurality of phosphor particles P forming the side surface of the light emitting film 1 by the least square method.
  • the basic reference line is the center of the plurality of phosphor particles P that form the side surface of the light emitting film 1.
  • a circle or an ellipse approximately curve (assumed approximate surface) estimated from the particle diameter.
  • This condition is a condition set from a different viewpoint from the first example described above, and is applied independently of the first example.
  • Line n a straight line or a curve (basic reference line) indicating the desired film shape of the light emitting film 1
  • Line Ca outer reference line: Among the line group in which the line n is moved in the direction a or the direction b, the most direction a side (light emitting film) of the tangential group on the direction a side on the surface of the phosphor particle P
  • Tangent / line Cb inner reference line located on the outermost side of 1: tangent / line N on the most direction b side in the tangent line group: intermediate line / line Nb: line N between line Ca and line Cb
  • condition ⁇ is equivalent to the fact that the distance between the center c of P and the line Nb is less than or equal to half the allowable value d (hereinafter “condition ⁇ ”).
  • the condition ⁇ can also be expressed as “the distance between the line Ca and the line Cb is equal to or less than the allowable value d”.
  • This allowable value d is, for example, the average particle diameter of the phosphor particles P.
  • the shape controllability of the light distribution pattern of the light emitting device 5 can be improved on all sides of the light distribution pattern. it can.
  • the present invention is not limited to this configuration, and even if the shape controllability of only a part of the light emitting film corresponding to a part of the light distribution pattern (for example, one of the four sides of the light emitting film 1) is increased. Good.
  • the light emitting device 5 including the light emitting film 1 having a straight side is suitable for a vehicle headlamp.
  • the laser light may be irradiated to a region including at least a part of the peripheral portion having high shape controllability in the light emitting film 1.
  • the light emitting device 5 including the light emitting film 1 is also suitable for a lamp that requires linearity.
  • the particle arrangement of the phosphor particles P (the shape controllability of the light emitting film 1) can be evaluated by an optical microscope or an electron microscope.
  • 6A to 6F are top views showing examples of the film shape of the light emitting film 1 shown in FIG. As indicated by bold lines in FIGS. 6A to 6F, at least a part of the peripheral portion of the light emitting film 1 is linear so as to satisfy the condition ⁇ .
  • the film shape of the light emitting film 1 is, for example, a rectangle.
  • the laser light E (see FIG. 2) is irradiated on the entire light emitting film 1.
  • the film shape of the light emitting film 1 is, for example, a shape in which one side of the light emitting film 1 is linear.
  • the laser beam E is applied to a region including the entire light emitting film 1.
  • the film shape of the light emitting film 1 is, for example, a circle.
  • the laser light E is applied to the entire light emitting film 1.
  • the film shape of the light emitting film 1 is, for example, a shape provided with a hole. On one side where the hole of the light emitting film 1 is formed, the condition ⁇ is satisfied.
  • the above-described “peripheral portion of the light emitting film 1” may include the peripheral portion of the hole.
  • the laser beam E is applied to the periphery B of the one side.
  • the laser light E is irradiated to the periphery B on one side where the condition ⁇ is satisfied.
  • the film shape of the light emitting film 1 is, for example, a shape in which a part of one side of the light emitting film 1 is linear.
  • the laser beam E is applied to the periphery B of the part.
  • the light emitting film 1 can take various shapes.
  • the light-emitting device 5 includes the light-emitting film 1 with high shape controllability at the peripheral edge, and the entire surface of the light-emitting film 1 is irradiated with the laser light E, whereby the light distribution pattern of the light-emitting device 5 is changed to a desired shape. You can get closer.
  • the light emitting device 5 it is not necessary to provide a light shielding plate for controlling the light distribution pattern, and the light emitted from the light emitting film 1 is not blocked by the light shielding plate, so that the light use efficiency can be kept high.
  • the energy density of the laser light E is higher than the energy density of the excitation light emitted from a light source other than the laser element. Therefore, the area of the light emitting film 1 that receives the laser light E and emits fluorescence can be made smaller than the area of the light emitting film that receives other types of excitation light and emits the same amount of fluorescence.
  • the light emitting area of the light emitting film 1 When projecting the light emitting area shape to a specific size, the light emitting area of the light emitting film 1 is enlarged and projected at a higher magnification as the light emitting film 1 is made smaller. Therefore, the influence of the film shape of the light emitting film 1 on the light distribution pattern of the light emitting device 5 is increased. In such a case, the light emitting device 5 is particularly useful.
  • the light distribution pattern of the light emitting device 5 has a clear light / dark boundary line.
  • FIG. 7 is a cross-sectional view showing a method for manufacturing the light emitting film 1 in the light emitting device 5 shown in FIG.
  • the frame material 4 (flow suppressing portion) is brought into close contact (contact) with the substrate 2.
  • the frame member 4 has a shape corresponding to a desired light emitting region shape, and surrounds a region corresponding to the desired light emitting region shape on the surface of the substrate 2.
  • the ink 10 including the above-described phosphor particles P (see FIG. 2) is applied (filled) to a region surrounded by the frame material 4. Then, the frame material 4 is removed, and the applied ink 10 is used as the light emitting film 1 described above.
  • the shape of the frame material 4 is reflected in the shape of the side surface s of the light emitting film 1.
  • the distortion of one side of the frame material 4 from the ideal shape of one side of the light emitting film 1 is equal to or less than a predetermined allowable value (for example, the average particle diameter of the phosphor particles of the light emitting film 1). Therefore, in FIG. 5B, the distance between the ideal surface of the side surface s of the light emitting film 1 and the phosphor particles P can be set to a predetermined allowable value or less.
  • the organic component contained in the ink 10 is removed by a baking process so that it does not volatilize or decompose when irradiated with the laser beam E.
  • Gap 41 between the substrate 2 and the frame member 4 A gap 41 between the substrate 2 and the frame member 4 is processed with resin. Thereby, since resin fills the unevenness
  • the gap 41 between the substrate 2 and the frame member 4 is preferably suppressed to at least the particle size of the phosphor particles P. Thereby, it is possible to prevent the phosphor particles P from flowing into the ink 10 and being carried to the gap 41, and to keep the shape controllability of the light emitting film 1 (see FIG. 2) high.
  • the light emitting device 5 including the light emitting film 1 and the substrate 2 can be manufactured.
  • the light emitting device 5 and the light emitting film 1 manufactured as described above are also included in the technical scope of the present invention.
  • the shape of the peripheral portion of the light emitting film 1 can be accurately controlled by the frame material 4 having a shape corresponding to a desired light distribution pattern. It is not necessary to process the light emitting film 1 after applying the ink 10 to the substrate 2. Thereby, it can prevent that the shape of the peripheral part of the light emitting film 1 collapses in a manufacturing process.
  • FIG. 8A and 8B are diagrams illustrating a method for manufacturing the light emitting film 1 in the light emitting device 5a of the present embodiment, where FIG. 8A is a top view and FIG. 8B is a cross-sectional view.
  • a groove 21 is provided in the substrate 2 to form the substrate 2a.
  • a cutting technique such as dicing is used for the formation.
  • the groove 21 has a shape along a predetermined region of the wide surface (hereinafter referred to as “substrate surface”) of the substrate 2a.
  • Ink 10 containing the above-described phosphor particles P is applied to a region in contact with the groove 21.
  • the ink 10 applied in this way is referred to as the light emitting film 1 described above.
  • the groove 21 may be provided in the substrate 2 after the ink 10 is applied to the substrate 2 to form the light emitting film 1. However, in order to increase the shape controllability of the light emitting film 1, the groove 21 is preferably provided in the substrate 2 before applying the ink 10 to the substrate 2.
  • an electrophoresis method of the phosphor particles P, a sedimentation method, or a coating method of the ink 10 using a dispenser can be used.
  • the light emitting device 5a including the light emitting film 1 and the substrate 2a can be manufactured.
  • the light emitting device 5a and the light emitting film 1 manufactured as described above are also included in the technical scope of the present invention.
  • a member that absorbs the laser light E and the fluorescence emitted from the light emitting film 1 may be provided on the surface of the substrate 2a where the light emitting film 1 is not disposed.
  • the groove 21 is provided in the substrate 2 before the ink 10 is applied to the substrate 2, and the shape controllability of the side in contact with the light emitting film 1 among the sides of contact between the groove 21 and the substrate 2a is increased. It is possible to suppress the collapse of the shape of the light emitting film 1 due to the bleeding of the ink 10 on the substrate 2a.
  • the ink 10 oozes out into the groove 21
  • the phosphor particles P carried together with the ink 10 are stored in the groove 21.
  • sequence collapse of the fluorescent substance particle in the peripheral part of the light emitting film 1 by the bleeding of the ink 10 can be suppressed. This effect also contributes to suppressing the collapse of the shape of the light emitting film 1.
  • FIG. 9 is a cross-sectional view showing a method for manufacturing the light emitting film 1 in the light emitting device 5b of the present embodiment.
  • FIG. 9 only one layer of the phosphor particles P is shown. However, other phosphor particles P may be stacked on the Z axis positive direction side.
  • a coating layer 22 containing a coating agent with high oil repellency is provided on the surface of the substrate 2 facing the light emitting film 1 containing the phosphor particles P described above.
  • the light emitting film 1 is formed by applying an ink containing the phosphor particles P to the surface of the coating layer 22 in the same manner as the manufacturing method described above.
  • the coating agent contains a general fluorine-based material such as polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), and perfluoroethylene propene copolymer (FEP).
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane
  • FEP perfluoroethylene propene copolymer
  • the material of the coating agent is one that deteriorates the wettability between the substrate 2 and the ink.
  • the wettability between the solid and the liquid can be defined by a contact angle that is an angle formed between the solid surface and the liquid surface when the liquid is dropped on the solid.
  • the wettability is low (bad) when the contact angle is large, and high when the contact angle is small.
  • the light emitting device 5b including the light emitting film 1, the substrate 2, and the coating layer 22 can be manufactured.
  • the light emitting device 5b and the light emitting film 1 manufactured as described above are also included in the technical scope of the present invention.
  • the coating layer 22 may be provided only on the substrate 2 other than the region where the light emitting film 1 is to be formed. Thereby, the ink does not ooze out from the region where the light emitting film 1 is to be formed. Therefore, it can further suppress that the shape of the side surface s of the light emitting film 1 collapses.
  • the ink hardly spreads on the surface of the coating layer 22, it is possible to suppress the deformation of the shape after printing (ink application) (so-called sagging). Thereby, the light emitting film 1 with high shape controllability can be easily manufactured.
  • FIG. 10 is a cross-sectional view showing a method for manufacturing the light emitting film 1 in the light emitting device 5c of this embodiment.
  • FIG. 10 only one layer of the phosphor particles P is shown. However, other phosphor particles P may be stacked on the Z axis positive direction side.
  • the light emitting film 1 containing the above-described phosphor particles P is provided on the porous substrate 2c.
  • the light emitting film 1 is formed by applying an ink containing phosphor particles P to the surface of the porous substrate 2c, as in the above-described manufacturing method.
  • the porous substrate 2c has a large number of holes p.
  • the holes p have such a size that the solvent of the ink penetrates but does not allow the phosphor particles P to enter (less than the particle size of the phosphor particles P). Therefore, when ink is applied to the porous substrate 2c, only the ink solvent penetrates into the pores p.
  • the material of the porous substrate 2c is, for example, porous ceramics such as alumina, silica, and zirconia.
  • the light emitting device 5c including the light emitting film 1 and the porous substrate 2c can be manufactured.
  • the light emitting device 5c and the light emitting film 1 manufactured as described above are also included in the technical scope of the present invention.
  • the porous substrate 2c absorbs the ink solvent. For this reason, when forming the light emitting film
  • FIG. 11 is a cross-sectional view showing a method of manufacturing the light emitting film 1d in the light emitting device 5d of this embodiment.
  • a light emitting film 1d (wavelength converting member) including a plurality of different types of light emitting layers 11 to 13 is formed on the surface of the substrate 2.
  • the light emitting layer 11 (wavelength conversion member) is formed by applying ink containing phosphor particles to the surface of the substrate 2 in the same manner as in the above manufacturing method.
  • the light emitting layer 12 (wavelength conversion member) is formed by applying an ink containing phosphor particles different from the phosphor particles of the light emitting layer 11 so as to cover the light emitting layer 11.
  • the light emitting layer 13 (wavelength conversion member) is formed by applying an ink containing phosphor particles different from the phosphor particles of the light emitting layers 11 to 12 so as to cover the light emitting layer 12.
  • At least a part of the peripheral edge shape of the light emitting layer (light emitting layer 13 in the example shown in FIG. 11) on the most surface side (Z-axis positive direction side) of the light emitting film 1d has a straight line or a desired curved shape. . That is, in the light emitting film 1d, the distance between the ideal outer edge of the light emitting film 1d and the phosphor particles is less than the allowable value.
  • the colors of the light emitted from the light emitting layers 11 to 13 are three colors of red, green, and blue (RGB). It may be.
  • the light emitting film 1d can be a white light source.
  • the light emitting film 1d is formed so as to include only the light emitting layers 11 to 12, and the color of the light emitted from the light emitting layers 11 to 12 is green. -Two colors of red may be sufficient.
  • the light emitting film 1d can be a light source with high color rendering properties.
  • the light emitting layer having a longer wavelength of emitted light is preferably disposed closer to the substrate 2.
  • the phosphor particles that emit light of a certain wavelength are difficult to be excited even when irradiated with light longer than the wavelength. Therefore, light emitted from one of the light emitting layers 11 to 13 is difficult to be absorbed by the other light emitting layers.
  • the light emitting device 5d including the light emitting film 1d and the substrate 2 can be manufactured.
  • the light emitting device 5d and the light emitting film 1d manufactured as described above are also included in the technical scope of the present invention.
  • the light emitting film 1d can be a light source with high color rendering properties.
  • the color rendering property is high. Light can be obtained with high shape controllability.
  • the color uniformity of the entire light emitting region of the light emitting film 1d can be increased.
  • FIG. 12A and 12B are diagrams showing a method for manufacturing the light-emitting film 1 in the light-emitting device 5e of the present embodiment, where FIG. 12A shows a top view and FIG. 12B shows a cross-sectional view.
  • the light emitting film 1 and the light shielding member 4 e surrounding the light emitting film 1 are formed on the surface of the substrate 2.
  • the light shielding member 4e has a shape corresponding to a desired light emitting region shape.
  • the material of the light shielding member 4e is a white pigment, ceramics, black pigment, or the like.
  • the light shielding member 4e is manufactured by a printing method or a coating method.
  • the shape of the light shielding member 4e is reflected in the shape of the side surface s of the light emitting film 1.
  • the distortion of one side of the light shielding member 4e from the ideal shape of one side of the light emitting film 1 is equal to or less than a predetermined allowable value (for example, the average particle diameter of the phosphor particles of the light emitting film 1). Therefore, in FIG. 5B, the distance between the ideal surface of the side surface s of the light emitting film 1 and the phosphor particles P can be set to a predetermined allowable value or less.
  • the light emitting device 5e including the light emitting film 1, the substrate 2, and the light shielding member 4e can be manufactured.
  • the light-emitting film 1 including the light-emitting device 5e and the light-shielding member 4e manufactured as described above is also included in the technical scope of the present invention.
  • the light emitting film 1 is manufactured by a technique having low shape controllability such as dispensing. Therefore, the manufacturing cost of the light emitting device 5e can be reduced.
  • FIG. 13 is a schematic diagram illustrating a configuration of the illumination device 3c of the present embodiment, in which (a) illustrates a light distribution pattern of the illumination device 3c, and (b) illustrates the light emitting device 5.
  • the illumination device 3c includes a light emitting device 5 and a light projecting lens 51c (optical element).
  • the light emitted from the light emitting device 5 is projected as the light distribution pattern 6 through the light projection lens 51c.
  • the light distribution pattern 6 is similar to the shape of the light-emitting film 1 when viewed from the Z-axis positive direction side.
  • the light emitting device 5 may be the above-described light emitting devices 5a to 5e.
  • a light distribution pattern having a desired shape can be easily obtained by using a simple light projection system (in the example shown in FIG. 13, the light projection lens 51c) that simply projects the light distribution pattern of the light emitting film 1 as it is. Can be flooded.
  • FIG. 14 is a schematic diagram illustrating the configuration of the illumination device 3d of the present embodiment, where (a) illustrates the illumination device 3d and its light distribution pattern, and (b) illustrates another light distribution pattern.
  • the illumination device 3d includes a light emitting device 5f and a light projecting lens 51d (optical element).
  • the light emitting device 5f includes a rectangular light emitting film 1 as shown in FIG. 5A, a substrate 2, a light guide 31 that guides laser light E, and a laser guided by the light guide 31.
  • the upper structure 32 which has the location (laser beam transmission location) which lets the light E pass, the reflective mirror 33, and the transparent member 35 are provided.
  • the laser light E is applied to the light emitting film 1 through the light guide 31, the laser light transmitting portion of the upper structure 32, and the reflecting mirror 33.
  • the laser beam E reflected by the light emitting film 1 or the substrate 2 and the fluorescence F emitted from the light emitting film 1 are transmitted through the transparent member 35 and then projected as a light distribution pattern 6a through the light projecting lens 51d.
  • the wavelength selective filter 34 is provided on the surface of the transparent member 35 to suppress the laser light E from being emitted from the light emitting device 5f. May be.
  • the light projection lens 51d is a direct projection type light projection optical system.
  • the direct projection method means a method for enlarging and projecting the light source shape.
  • the projection lens 51d enlarges and projects the film shape of the rectangular light-emitting film 1. For this reason, the light distribution pattern 6a is rectangular.
  • the light distribution pattern 6b can be made to coincide with a low beam light distribution pattern for vehicles or the like stipulated by laws and regulations in Japan or the like.
  • the film shape of the light emitting film 1 of the lighting device 3d may be controlled to a shape similar to the low beam light distribution pattern.
  • a light distribution pattern having a straight line can be easily formed by forming the peripheral portion of the light emitting film 1 to be a straight line, and using the straight line portion for projecting light to a portion where linearity is required in the light distribution pattern. Can get to.
  • a light distribution pattern of a low beam is formed by combining enlarged light emitting region shapes. For example, a plurality of rectangular light distribution patterns 6a as shown in FIG. 14A are projected while shifting their projection positions, thereby forming a low beam light distribution pattern 6b.
  • the light distribution member 6d is projected so that the light distribution pattern 6a of the illumination device 3d is projected onto a plurality of different positions and all the projected images are combined to form a desired light distribution pattern.
  • a plurality of illumination devices 3d may be arranged in three dimensions so as to correspond to the light distribution pattern 6b, and the light distribution pattern 6a may be projected from each of the plurality of illumination devices 3d.
  • the energy density of the laser light E is higher than the energy density of the excitation light emitted from a light source other than the laser element. Therefore, the area of the light emitting film 1 that receives the laser light E and emits fluorescence can be made smaller than the area of the light emitting film that receives other types of excitation light and emits the same amount of fluorescence.
  • the light emitting film 1 As the light emitting film 1 is miniaturized, the light emitting region of the light emitting film 1 is enlarged and distributed with high magnification. Therefore, the influence of the shape of the light emitting film 1 on the light distribution patterns 6a and 6b of the lighting device 3d is increased. In such a case, the lighting device 3d is particularly useful.
  • the illuminating device 3d is suitable for a vehicle headlamp.
  • the wavelength conversion member (light-emitting films 1 and 1d) is a wavelength conversion member including a fluorescent material, and the surface of the side surface s with respect to the upper surface is a wide surface of the wavelength conversion member.
  • the ideal surface of the side surface which is derived from an array of a plurality of particles (phosphor particles P, P1, and P2) of the fluorescent material to be formed, is an ideal surface, and the distance between the ideal surface and each of the particles Is less than the allowable value d.
  • the inventors have determined that the light distribution pattern of the wavelength conversion member including the fluorescent material depends on the particle arrangement of the fluorescent material at the peripheral edge (side surface) of the wavelength conversion member. It was found that the particle arrangement of the particles needs to be strictly controlled.
  • the distance between the ideal surface and the particle is less than or equal to the allowable value at the peripheral edge of the wavelength conversion member. Therefore, on the side surface, the particles are arranged within an allowable range from the desired shape. . Therefore, a desired light distribution pattern reflecting the high shape controllability of the wavelength conversion member can be realized.
  • the allowable value may be an average particle diameter of the particles.
  • the distance between the ideal surface and each particle is a distance between the ideal surface and the center of each particle. Good.
  • the distance between the ideal surface and each of the particles is calculated for each of the plurality of particles. It may be the distance between the surface point of the particle closest to the surface.
  • the approximate plane assumed from the envelope ENV formed by the surfaces of the plurality of particles may be the ideal plane.
  • the ideal surface may be a flat surface.
  • the wavelength conversion member of the present invention is a wavelength conversion member (light-emitting film 1 ⁇ 1d) containing a fluorescent material, and a basic reference line (straight line l; curve m; line n) indicating the desired shape of the wavelength conversion member.
  • the wide surface of the wavelength conversion member is the upper surface, and the surface of the side surface s with respect to the upper surface Outer reference line (line Ca) which is the tangent line closest to the reference direction in the reference direction side tangent group on the surface of the plurality of fluorescent substance particles (phosphor particles P, P1, P2) forming
  • the distance between the line group and the inner reference line (line Cb) which is the tangent line on the most opposite side of the tangent group may be equal to or less than a predetermined allowable value d.
  • a light-emitting device includes the wavelength conversion member (light-emitting film 1 or 1d) according to any one of aspects 1 to 6, the light-shielding member 4e in contact with the side surface of the wavelength conversion member, and the wavelength conversion. And a substrate 2 or 2a (porous substrate 2c) on which the light shielding member is disposed.
  • a light-emitting device includes the wavelength conversion member (light-emitting film 1 or 1d) according to any one of the first to sixth aspects and the wavelength conversion member, and a groove 21 along the wavelength conversion member. And a substrate 2 ⁇ 2a (porous substrate 2c).
  • the substrate may include an oil-repellent coating layer 22 on a surface on which the wavelength conversion member is disposed.
  • the substrate in any one of Aspects 7 to 9, may have pores p smaller than the particles on at least the surface thereof.
  • the wavelength conversion member includes a plurality of layers (light emitting layers 11 to 13) each including a different kind of fluorescent material. It's okay.
  • Illumination devices 3a to 3d according to aspect 12 of the present invention include light emitting devices 5 and 5a to 5f according to any one of aspects 7 to 11, and an optical element that projects light emitted from the light emitting device (projection lens). 51a, 51c, 51d; light reflector 51b).
  • a vehicle headlamp according to aspect 13 of the present invention includes the illumination device according to aspect 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 Provided is a wavelength conversion member for efficiently forming a light distribution pattern that precisely matches a desired shape. A light emission film (1) is a wavelength conversion member including a phosphorescent substance, said film (1) having a wide surface as a top face, and having, as an ideal face, the ideal face of a side face (s), which is derived from an array of phosphor particles (P) forming the surface of the side face (s) in relation to the top face. The distance between the ideal surface and the phosphor particles (P) does not exceed the allowable value (d).

Description

波長変換部材、発光装置、照明装置、および車両用前照灯Wavelength conversion member, light emitting device, lighting device, and vehicle headlamp
 本発明は、蛍光物質を含む波長変換部材などに関する。 The present invention relates to a wavelength conversion member containing a fluorescent material.
 光源から発せられた光を投光する照明装置のうち、車両用前照灯のように配光パターンが法規により定められている場合には、当該配光パターンを正確に制御する必要が生じる。 Among lighting devices that project light emitted from a light source, when a light distribution pattern is defined by a law like a vehicle headlamp, it is necessary to accurately control the light distribution pattern.
 そのため、特許文献1に記載の車両用前照灯では、光源から出射された光の一部を遮光板で覆うことにより、上記光を所望の形状に制御している。 Therefore, in the vehicle headlamp described in Patent Document 1, the light is controlled to have a desired shape by covering a part of the light emitted from the light source with a light shielding plate.
日本国公開特許公報「特開2004-87435号公報(2004年3月18日公開)」Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2004-87435 (published on March 18, 2004)”
 遮光板を使う場合、発光部が出射する光の利用効率は低下する。一方、遮光板を使わない場合、発光部の周縁部の形状は、発光装置の配光パターンに大きく影響する。特に、発光部が、励起光を受け蛍光を発する蛍光物質を含む場合、上記配光パターンは、発光部の周縁部における蛍光物質の粒子配列に強い影響を受ける。そのため、所望の配光パターンを得るためには、発光部の周縁部における蛍光物質の粒子配列を厳密に制御する必要がある。 When using a light-shielding plate, the utilization efficiency of the light emitted from the light emitting unit is reduced. On the other hand, when the light shielding plate is not used, the shape of the peripheral portion of the light emitting unit greatly affects the light distribution pattern of the light emitting device. In particular, when the light emitting portion includes a fluorescent material that emits fluorescence upon receiving excitation light, the light distribution pattern is strongly influenced by the particle arrangement of the fluorescent material at the peripheral portion of the light emitting portion. Therefore, in order to obtain a desired light distribution pattern, it is necessary to strictly control the particle arrangement of the fluorescent substance at the peripheral portion of the light emitting portion.
 本発明の発明者らは、このような課題を初めて見出した。 The inventors of the present invention have found such a problem for the first time.
 本発明は、所望の形状に精度良く一致した配光パターンを効率よく形成するための波長変換部材を提供することを目的とする。 An object of the present invention is to provide a wavelength conversion member for efficiently forming a light distribution pattern that accurately matches a desired shape.
 上記の課題を解決するために、本発明の一態様に係る波長変換部材は、蛍光物質を含む波長変換部材であって、上記波長変換部材の幅広の面を上面とし、当該上面に対する側面の表面を形成する上記蛍光物質の複数の粒子の配列から導出される、当該側面の理想的な面を理想面とし、上記理想面と各上記粒子との間の距離は、許容値以下である。 In order to solve the above problems, a wavelength conversion member according to one embodiment of the present invention is a wavelength conversion member including a fluorescent material, and a surface of a side surface with respect to the upper surface is a wide surface of the wavelength conversion member. An ideal surface of the side surface, which is derived from an array of a plurality of particles of the fluorescent material forming the surface, is an ideal surface, and the distance between the ideal surface and each of the particles is less than an allowable value.
 本発明の一態様によれば、波長変換部材の形状制御性の高さが反映された所望の配光パターンを実現することができる。 According to one aspect of the present invention, a desired light distribution pattern reflecting the high shape controllability of the wavelength conversion member can be realized.
実施形態1の照明装置の構成を示す断面図である。It is sectional drawing which shows the structure of the illuminating device of Embodiment 1. FIG. 図1に示される照明装置が備える発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device with which the illuminating device shown by FIG. 1 is provided. 図2に示される発光装置が備える発光膜に対する、従来の発光膜の構成を示す上面図である。It is a top view which shows the structure of the conventional light emitting film with respect to the light emitting film with which the light-emitting device shown by FIG. 2 is provided. 図2に示される発光装置が備える発光膜の構成を示す上面図である。It is a top view which shows the structure of the light emitting film with which the light-emitting device shown by FIG. 2 is provided. 図4に示される発光膜の詳細構成を示す上面図である。It is a top view which shows the detailed structure of the light emitting film shown by FIG. 図4に示される発光膜の膜形状の例を示す上面図である。It is a top view which shows the example of the film | membrane shape of the light emitting film shown by FIG. 図2に示される発光装置における発光膜の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the light emitting film in the light-emitting device shown by FIG. 実施形態2の発光装置における発光膜の製造方法を示す上面図および断面図である。FIG. 6 is a top view and a cross-sectional view illustrating a method for manufacturing a light emitting film in a light emitting device according to Embodiment 2. 実施形態3の発光装置における発光膜の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the light emitting film in the light-emitting device of Embodiment 3. 実施形態4の発光装置における発光膜の製造方法を示す断面図である。6 is a cross-sectional view illustrating a method for producing a light emitting film in a light emitting device according to Embodiment 4. FIG. 実施形態5の発光装置における発光膜の製造方法を示す断面図である。FIG. 10 is a cross-sectional view illustrating a method for producing a light emitting film in a light emitting device according to Embodiment 5. 実施形態6の発光装置における発光膜の製造方法を示す上面図および断面図である。It is the top view and sectional drawing which show the manufacturing method of the light emitting film in the light-emitting device of Embodiment 6. 実施形態7の照明装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the illuminating device of Embodiment 7. 実施形態8の照明装置の構成を示す模式図である。FIG. 10 is a schematic diagram illustrating a configuration of a lighting device according to an eighth embodiment.
 〔実施形態1〕
 本発明の第一実施形態を、図1~図7に基づいて説明する。
[Embodiment 1]
A first embodiment of the present invention will be described with reference to FIGS.
 ≪照明装置3a・3bの構成≫
 図1は、本実施形態の照明装置3a・3bの構成を示す断面図であって、(a)は照明装置3aを示し、(b)は照明装置3bを示す。
≪Configuration of lighting devices 3a and 3b≫
FIG. 1 is a cross-sectional view illustrating the configuration of the illumination devices 3a and 3b of the present embodiment, where (a) illustrates the illumination device 3a and (b) illustrates the illumination device 3b.
 図1の(a)に示されるように、照明装置3aは、発光装置5と、投光用レンズ51a(光学素子)とを備える。投光用レンズ51aは、発光装置5が出射した照明光Lを、透過・屈折して投光する。 As shown in FIG. 1A, the illumination device 3a includes a light emitting device 5 and a light projecting lens 51a (optical element). The light projecting lens 51a projects and refracts the illumination light L emitted from the light emitting device 5 and projects it.
 図1の(b)に示されるように、照明装置3bは、発光装置5と、投光用リフレクタ51b(光学素子)とを備える。投光用リフレクタ51bは、発光装置5が出射した照明光Lを、反射して投光する。 As shown in FIG. 1B, the illumination device 3b includes a light emitting device 5 and a light projecting reflector 51b (optical element). The light projecting reflector 51 b reflects and projects the illumination light L emitted from the light emitting device 5.
 なお、上記構成に限定されず、照明装置3a・3bは、それぞれ、投光用レンズ51aと投光用リフレクタ51bとを組み合わせた光学系を備えてよい。 Note that the lighting devices 3a and 3b are not limited to the above-described configuration, and may include an optical system in which a light projecting lens 51a and a light projecting reflector 51b are combined.
 ≪発光装置5の構成≫
 図2は、図1の(a)~(b)に示される照明装置3a・3bが備える発光装置5の構成を示す断面図である。
<< Configuration of Light Emitting Device 5 >>
FIG. 2 is a cross-sectional view showing the configuration of the light emitting device 5 provided in the illumination devices 3a and 3b shown in FIGS.
 X軸およびY軸は、基板2の幅広の面(以下「基板面」)に水平な方向へ延びる軸である。Z軸は、基板面に垂直な方向へ延びる軸である。この座標軸は、図2以外の図に示される座標軸と対応している。 The X axis and the Y axis are axes that extend in a horizontal direction on the wide surface of the substrate 2 (hereinafter referred to as “substrate surface”). The Z axis is an axis extending in a direction perpendicular to the substrate surface. This coordinate axis corresponds to the coordinate axis shown in the figures other than FIG.
 図2に示されるように、発光装置5は、発光膜1(波長変換部材)と、基板2とを備える。 As shown in FIG. 2, the light-emitting device 5 includes a light-emitting film 1 (wavelength conversion member) and a substrate 2.
 (発光膜1)
 発光膜1は、基板2上に配されており、レーザ光源3から出射されたレーザ光E(励起光)を受け蛍光Fを発する蛍光体(蛍光物質)の粒子を含む。
(Light-emitting film 1)
The light emitting film 1 is disposed on the substrate 2 and includes particles of a phosphor (fluorescent substance) that emits fluorescence F upon receiving laser light E (excitation light) emitted from the laser light source 3.
 レーザ光Eが発光膜1に照射されると、蛍光Fは、発光膜1の、基板2に対向する側の面とは反対側の面(上面)から取り出される。この上面とは、発光膜1の幅広の面のひとつである。 When the light emitting film 1 is irradiated with the laser light E, the fluorescence F is extracted from the surface (upper surface) of the light emitting film 1 opposite to the surface facing the substrate 2. This upper surface is one of the wide surfaces of the light emitting film 1.
 (基板2)
 基板2の材料は、アルミニウムや銅などの金属、SiCやAlNなどのセラミックスである。発光膜1が蛍光Fを出射するとき、発光膜1は熱を発する。発光膜1の温度が上昇すると、発光膜に含まれる蛍光体の発光効率は低下する。しかし、基板2の材料が金属や熱伝導性のよいセラミックスであれば、発光膜1が発する熱を多く放熱できるため、上記発光効率の低下を抑制できる。
(Substrate 2)
The material of the substrate 2 is a metal such as aluminum or copper, or a ceramic such as SiC or AlN. When the light emitting film 1 emits the fluorescence F, the light emitting film 1 emits heat. When the temperature of the light emitting film 1 increases, the luminous efficiency of the phosphor contained in the light emitting film decreases. However, if the material of the substrate 2 is a metal or a ceramic having good thermal conductivity, a large amount of heat emitted from the light-emitting film 1 can be dissipated, so that a decrease in the luminous efficiency can be suppressed.
 (レーザ光E)
 レーザ光Eは、発光膜1の、基板2に対向する側の面とは反対側の面へ入射する。蛍光Fは、発光膜1の、レーザ光Eが入射した側から取り出される。つまり、レーザ光Eが発光膜1へ入射する側と、蛍光Fが発光膜1から取り出される側とは、同一である。このとき、発光膜1から基板2の方向に発せられた蛍光Fは、基板2の表面で反射される。このように反射された蛍光Fを、レーザ光Eが発光膜1へ入射する側から取り出すことで、投光に利用できる。このため、基板2の、発光膜1側の面の反射率は、高いことが好ましい。
(Laser beam E)
The laser light E is incident on the surface of the light emitting film 1 opposite to the surface facing the substrate 2. The fluorescence F is extracted from the side of the light emitting film 1 where the laser beam E is incident. That is, the side on which the laser beam E is incident on the light emitting film 1 and the side on which the fluorescence F is extracted from the light emitting film 1 are the same. At this time, the fluorescence F emitted from the light emitting film 1 toward the substrate 2 is reflected by the surface of the substrate 2. The fluorescence F thus reflected can be used for light projection by taking out the laser light E from the side where the laser light E enters the light emitting film 1. For this reason, it is preferable that the reflectance of the surface of the substrate 2 on the light emitting film 1 side is high.
 レーザ光Eは、発光膜1の全体に照射されるように、レーザ光Eの光スポット形状が制御されている。すなわち、レーザ光Eの光スポットのサイズは、発光膜1のサイズ(面積S)と同一またはこのサイズよりも大きい。このため、発光膜1全体から出射する光が、発光装置5から出射した光の配光パターン(投光パターン)の形成に利用される。この配光パターンとは、発光装置5から出射した蛍光が照射対象に照射されることによって形成される光の像を意味する。なお、配光パターンは、発光膜1の発光領域の形状をそのまま投影したものに限らず、投光用レンズ51aや投光用リフレクタ51bにより発光領域形状とは相似でない配光パターンを形成してもよい。この場合、配光パターンの周縁部への投光には、発光領域の周縁部から出射する光を用いることで、発光領域の形状制御性の高さが反映された配光パターンとすることができる。 The light spot shape of the laser light E is controlled so that the laser light E is irradiated on the entire light emitting film 1. That is, the size of the light spot of the laser beam E is the same as or larger than the size (area S) of the light emitting film 1. For this reason, the light emitted from the entire light emitting film 1 is used for forming a light distribution pattern (light projection pattern) of the light emitted from the light emitting device 5. The light distribution pattern means an image of light formed by irradiating the irradiation target with the fluorescence emitted from the light emitting device 5. The light distribution pattern is not limited to the projection of the shape of the light emitting region of the light emitting film 1 as it is, and a light distribution pattern that is not similar to the shape of the light emitting region is formed by the light projecting lens 51a or the light projecting reflector 51b. Also good. In this case, the light distribution pattern reflecting the high shape controllability of the light emitting region can be obtained by using light emitted from the peripheral portion of the light emitting region for light projection to the peripheral portion of the light distribution pattern. it can.
 レーザ光Eは、蛍光Fが発光膜1から出射されるときに、影が形成されない(レーザ光Eの光源などが蛍光Fを遮らない)ように、発光膜1の、レーザ光Eを受光する面、に対し斜めとなる角度から入射することが好ましい。 The laser light E receives the laser light E of the light emitting film 1 so that no shadow is formed when the fluorescent light F is emitted from the light emitting film 1 (a light source of the laser light E does not block the fluorescent light F). It is preferable to enter from the angle which becomes diagonal with respect to the surface.
 (レーザ光Eの光源)
 レーザ光Eの光源は、例えば、波長450nm(青色)のレーザ光を出射する半導体レーザ素子である。励起光の光源を半導体レーザ素子とした場合、励起光の照射面積に対する励起光のエネルギー密度を、他の光源を利用する構成よりも高めることができる。つまり、発光膜1が含む蛍光体を励起する光の輝度を高めることができる。
(Light source of laser beam E)
The light source of the laser beam E is, for example, a semiconductor laser element that emits a laser beam having a wavelength of 450 nm (blue). When the light source of the excitation light is a semiconductor laser element, the energy density of the excitation light with respect to the irradiation area of the excitation light can be increased as compared with a configuration using other light sources. That is, the brightness of the light that excites the phosphor included in the light emitting film 1 can be increased.
 なお、発光膜1に励起光を照射する励起光源は、半導体レーザ素子に限定されず、LED(発光ダイオード)でもよい。 The excitation light source for irradiating the light emitting film 1 with excitation light is not limited to the semiconductor laser element, but may be an LED (light emitting diode).
 (レーザ光Eの波長)
 発光装置5が白色光を出射するためには、レーザ光Eは、青色または紫色であることが好ましい。
(Wavelength of laser beam E)
In order for the light emitting device 5 to emit white light, the laser light E is preferably blue or purple.
 レーザ光Eが青色である場合、発光膜1が含む蛍光体を、黄色の蛍光Fまたは緑色と赤色との蛍光Fを発する蛍光体とし、発光膜1表面で拡散反射したレーザ光Eと、蛍光Fとを出射させることで、発光装置5は、レーザ光Eと蛍光Fとが混色した白色の照明光を配光できる。 When the laser beam E is blue, the phosphor included in the light emitting film 1 is a phosphor that emits yellow fluorescence F or green and red fluorescence F, and the laser beam E diffusely reflected on the surface of the light emitting film 1 and the fluorescence By emitting F, the light emitting device 5 can distribute white illumination light in which the laser beam E and the fluorescence F are mixed.
 レーザ光Eが紫色である場合、発光膜1が含む蛍光体を、青色と緑色と赤色との蛍光Fまたは青色と黄色との蛍光Fを発する蛍光体にすることで、発光装置5は、複数の蛍光Fが混色した白色の照明光を配光できる。この場合、発光膜1または基板2に反射したレーザ光Eは、波長選択フィルタにより発光装置5から出射されないようにすることが好ましい。 When the laser beam E is purple, the phosphor included in the light emitting film 1 is changed to a phosphor that emits blue, green, and red fluorescence F or blue and yellow fluorescence F. It is possible to distribute white illumination light in which the fluorescent light F is mixed. In this case, it is preferable that the laser light E reflected by the light emitting film 1 or the substrate 2 is not emitted from the light emitting device 5 by the wavelength selection filter.
 ≪発光膜の比較≫
 (従来の発光膜)
 図3は、図2に示される発光装置5が備える発光膜1に対する、従来の発光膜101の構成を示す上面図であって、(a)は発光膜101の全体を示し、(b)は発光膜101の周縁部の一部Aを拡大したものを示す。
≪Comparison of luminescent film≫
(Conventional light emitting film)
3 is a top view showing the configuration of a conventional light-emitting film 101 with respect to the light-emitting film 1 included in the light-emitting device 5 shown in FIG. 2, wherein (a) shows the entire light-emitting film 101, and (b) shows An enlarged view of a part A of the peripheral edge of the light emitting film 101 is shown.
 図3の(a)に示されるように、従来では、Z軸正方向側から見たときの発光膜101の形状は、破線で示される理想的な形状に沿うように制御されていなかった。また、図3の(b)に示されるように、発光膜101の周縁部の一部Aでは、発光膜101が含む蛍光体粒子P(粒子)は、破線で示される理想的な形状に対して整列していなかった。 As shown in FIG. 3A, conventionally, the shape of the light-emitting film 101 when viewed from the positive side of the Z-axis has not been controlled so as to follow the ideal shape indicated by the broken line. In addition, as shown in FIG. 3B, in part A of the peripheral portion of the light emitting film 101, the phosphor particles P (particles) included in the light emitting film 101 have an ideal shape shown by a broken line. Were not aligned.
 レーザ光が、発光膜101の全体に照射されなければ、レーザ光が照射される発光膜101の領域(以下「励起領域」)の周縁部に含まれる蛍光体(以下「周縁部蛍光体」)は、励起領域外に含まれる蛍光体(以下「励起領域外蛍光体」)と隣接する。このとき、レーザ光が発光膜の内部で導波されるため、励起領域外蛍光体も蛍光を発する。よって、蛍光を出射する発光膜101の領域(以下「発光領域」)の形状は崩れる。 If the entire light emitting film 101 is not irradiated with the laser light, a phosphor (hereinafter referred to as “peripheral phosphor”) included in the peripheral portion of the region of the light emitting film 101 irradiated with the laser light (hereinafter referred to as “excitation region”). Is adjacent to a phosphor contained outside the excitation region (hereinafter “excitation region phosphor”). At this time, since the laser light is guided inside the light emitting film, the phosphor outside the excitation region also emits fluorescence. Therefore, the shape of the region of the light emitting film 101 that emits fluorescence (hereinafter referred to as “light emitting region”) is broken.
 また、発光膜101の周縁部の一部Aに示されるように、周縁部蛍光体が、励起領域外蛍光体と隣接しない場合でも、図3の(b)に示されるように、周縁部蛍光体の粒子(蛍光体粒子P)の配列が所望の形状からずれている(歪んでいる)と、発光領域の形状は崩れる。 Further, as shown in part A of the peripheral edge of the light emitting film 101, even when the peripheral fluorescent material is not adjacent to the phosphor outside the excitation region, as shown in FIG. If the arrangement of the body particles (phosphor particles P) is deviated (distorted) from the desired shape, the shape of the light emitting region is destroyed.
 以上のように、発光膜101の発光領域の形状が崩れると、その発光領域形状の精度に基づいて決まる発光装置の配光パターンの形状制御性が低下し、投影された光に許容できない凹凸が生じる。 As described above, when the shape of the light-emitting region of the light-emitting film 101 is broken, the shape controllability of the light distribution pattern of the light-emitting device determined based on the accuracy of the light-emitting region shape is deteriorated, and unevenness that is unacceptable to the projected light. Arise.
 (本実施形態の発光膜1)
 図4は、図2に示される発光装置5が備える発光膜1の構成を示す上面図であって、(a)は発光膜1の全体を示し、(b)は発光膜1の周縁部の一部Aを拡大したものを示す。
(Light Emitting Film 1 of this Embodiment)
4 is a top view showing the configuration of the light-emitting film 1 included in the light-emitting device 5 shown in FIG. 2, where (a) shows the entire light-emitting film 1 and (b) shows the periphery of the light-emitting film 1. A part A is enlarged.
 なお、図4では、すべての蛍光体粒子Pの粒径が一定であるように示されているが、当該粒径を一定にする必要は必ずしもない。図4以外の図においても同様である。 In FIG. 4, all the phosphor particles P are shown to have a constant particle size, but the particle size is not necessarily constant. The same applies to the drawings other than FIG.
 図4の(a)に示されるように、Z軸正方向側から見たときの発光膜1の膜形状は、理想的な形状と一致している。また、図4の(b)に示されるように、発光膜1の周縁部の一部Aでは、発光膜1の側面を形成する蛍光体粒子Pは、発光膜1をZ軸正方向側から見た場合、破線で示される理想的な形状に対して整列している。換言するならば、所望の形状を表す線は、発光膜1と、基板2の露出部(発光膜1が設けられていない部位)との境界線と一致している。そして、蛍光Fが、理想的な形状の発光領域から出射するため、発光装置5の配光パターンは、所望の形状に一致する。 As shown in FIG. 4A, the film shape of the light-emitting film 1 when viewed from the positive side of the Z-axis matches the ideal shape. Further, as shown in FIG. 4B, in part A of the peripheral portion of the light emitting film 1, the phosphor particles P forming the side surface of the light emitting film 1 move the light emitting film 1 from the Z axis positive direction side. When viewed, they are aligned with the ideal shape indicated by the dashed line. In other words, a line representing a desired shape coincides with a boundary line between the light emitting film 1 and the exposed portion of the substrate 2 (a portion where the light emitting film 1 is not provided). And since the fluorescence F radiate | emits from the light emission area | region of an ideal shape, the light distribution pattern of the light-emitting device 5 corresponds with a desired shape.
 ≪蛍光体粒子Pの粒子配列≫
 図5は、図4に示される発光膜1の詳細構成を示す上面図であって、(a)は発光膜1の全体を示し、(b)~(f)は発光膜1の周縁部の一部Aに含まれる蛍光体粒子Pの粒子配列を示す。
≪Particle arrangement of phosphor particles P≫
5 is a top view showing a detailed configuration of the light emitting film 1 shown in FIG. 4. FIG. 5 (a) shows the entire light emitting film 1, and FIGS. 5 (b) to (f) show the peripheral portion of the light emitting film 1. FIG. The particle arrangement | sequence of the fluorescent substance particle P contained in a part A is shown.
 (蛍光体粒子Pの包絡線)
 図5の(a)に示されるように、発光膜1は、基板面において、例えば直方体形状に配されている。すなわち、発光膜1の上面は長方形である。説明を簡単にするために、以下の説明では、発光膜1の蛍光体粒子Pは1層のみであるという前提で説明する。発光膜1を構成する蛍光体粒子Pの層が複数ある場合には、上面から見て最も外側に配列された蛍光体粒子Pについて後述する解析を行えばよい。
(Envelope of phosphor particle P)
As shown in FIG. 5A, the light emitting film 1 is arranged in a rectangular parallelepiped shape, for example, on the substrate surface. That is, the upper surface of the light emitting film 1 is rectangular. In order to simplify the description, the following description will be made on the assumption that the phosphor particles P of the light emitting film 1 are only one layer. When there are a plurality of layers of the phosphor particles P constituting the light emitting film 1, the phosphor particles P arranged on the outermost side as viewed from above may be analyzed later.
 レーザ光E(図2参照)は、発光膜1の全体に照射されている。ここで、基準方向Dは、発光膜1の内部から外部へ向かう所定の方向を表す。以下では、発光膜1の周縁部(側面s)における、蛍光体粒子Pの配列について説明する。 The laser light E (see FIG. 2) is applied to the entire light emitting film 1. Here, the reference direction D represents a predetermined direction from the inside of the light emitting film 1 to the outside. Below, the arrangement | sequence of the fluorescent substance particle P in the peripheral part (side surface s) of the light emitting film 1 is demonstrated.
 図5の(b)に示されるように、発光膜1の周縁部の一部Aにおいて、発光膜1の側面を形成する蛍光体粒子Pの各表面を基板2へ射影した領域の外縁を示す包絡線ENVの幅をwとする。幅wは、カーブを描く包絡線ENVに対して引いた2本の平行な接線の間の距離である。この幅wは、発光膜1の周縁部(側面s)を形成する蛍光体粒子Pの理想的な配列からの歪み(形状崩れ)の許容値を表す許容値d以下の値である(つまり、w≦d)。許容値dは、配光パターンに求められる精度と、発光領域が投光される際の倍率との関係から任意に設定することができるが、例えば発光膜1が含む蛍光体粒子Pの平均粒径(直径の平均値)とすることで、レーザ光を励起光源とする高輝度照明装置において精度の高い配光パターンが得られる。 As shown in FIG. 5B, the outer edge of a region where each surface of the phosphor particles P forming the side surface of the light emitting film 1 is projected onto the substrate 2 in a part A of the peripheral edge of the light emitting film 1 is shown. Let the width of the envelope ENV be w. The width w is the distance between two parallel tangent lines drawn with respect to the envelope ENV that draws the curve. The width w is a value equal to or smaller than an allowable value d representing an allowable value of distortion (shape collapse) from the ideal arrangement of the phosphor particles P forming the peripheral edge (side surface s) of the light emitting film 1 (that is, w ≦ d). The allowable value d can be arbitrarily set from the relationship between the accuracy required for the light distribution pattern and the magnification when the light emitting area is projected. For example, the average value of the phosphor particles P included in the light emitting film 1 By setting the diameter (average value of diameters), a highly accurate light distribution pattern can be obtained in a high-luminance illumination device using laser light as an excitation light source.
 (所望の直線形状に対する蛍光体粒子Pの配列)
 図5の(c)に示されるように、発光膜1の周縁部の一部Aにおいて、蛍光体粒子Pの理想的な直線配列の基準線を表す直線l(基本基準線)を中心として、蛍光体粒子Pの配置の許容範囲を、基準方向Dおよびその反対方向へ、その幅が許容値dとなるように広げた領域を考える。この許容値dは、例えば発光膜1が含む蛍光体粒子Pの平均粒径である。
(Arrangement of phosphor particles P with respect to desired linear shape)
As shown in (c) of FIG. 5, in a part A of the peripheral portion of the light emitting film 1, with a straight line l (basic reference line) representing a reference line of an ideal linear array of the phosphor particles P as a center, Consider a region in which the allowable range of the arrangement of the phosphor particles P is expanded in the reference direction D and in the opposite direction so that the width becomes the allowable value d. This allowable value d is, for example, the average particle diameter of the phosphor particles P included in the light emitting film 1.
 そして、発光膜1の側面を形成する蛍光体粒子Pの表面の、最も基準方向D側にある各頂点が、上記領域に含まれる場合、図5の(a)に示されるように、発光膜1の周縁部の少なくとも一部において、発光膜1の側面を形成する蛍光体粒子Pの配列は、所望の直線形状であるとみなせる。このとき、発光装置5の実際の配光パターンと、所望の配向パターンとの間のずれは、許容値dが示す範囲内のものになる。つまり、上記配光パターンの形状制御性は高くなる。 And when each vertex on the surface of the phosphor particle P forming the side surface of the light emitting film 1 closest to the reference direction D is included in the region, as shown in FIG. 5A, the light emitting film The arrangement of the phosphor particles P forming the side surface of the light emitting film 1 in at least a part of the peripheral edge of 1 can be regarded as a desired linear shape. At this time, the deviation between the actual light distribution pattern of the light-emitting device 5 and the desired orientation pattern is within the range indicated by the allowable value d. That is, the shape controllability of the light distribution pattern is enhanced.
 「形状制御性」とは、注目する物体の形状を基準となる形状に対し、どれだけ近づけることができるかということの程度を意味する。よって、「形状制御性が高い」とは、上記物体の形状を基準となる形状に対し、高い精度で近づけることができるということを意味する。 “Shape controllability” means the degree to which the shape of the object of interest can be brought closer to the reference shape. Therefore, “high shape controllability” means that the shape of the object can be brought close to the reference shape with high accuracy.
 (所望の曲線形状に対する蛍光体粒子Pの粒子配列)
 図5の(d)に示されるように、発光膜1の周縁部の一部Aにおいて、発光膜1の側面を形成する蛍光体粒子Pの表面のうち基準方向D側にある各表面と、所望の曲線形状を表す曲線m(基本基準線)との距離を考える。上述のように、蛍光体粒子Pの基本基準線(理想的な位置)からの距離の許容値dは、例えば蛍光体粒子Pの平均粒径である。
(Particle arrangement of phosphor particles P with respect to desired curve shape)
As shown in (d) of FIG. 5, in a part A of the peripheral portion of the light emitting film 1, each surface on the reference direction D side among the surfaces of the phosphor particles P forming the side surface of the light emitting film 1, Consider a distance from a curve m (basic reference line) representing a desired curve shape. As described above, the allowable value d of the distance from the basic reference line (ideal position) of the phosphor particles P is, for example, the average particle diameter of the phosphor particles P.
 例えば、蛍光体粒子P1(粒子)の表面のうち基準方向D側にある表面と、曲線mとの距離は、長さd1になる。また、蛍光体粒子P2(粒子)の表面のうち基準方向D側にある表面と、曲線mとの距離は、長さd2になる。 For example, the distance between the surface on the reference direction D side of the surface of the phosphor particle P1 (particle) and the curve m is the length d1. Further, the distance between the surface on the reference direction D side of the surface of the phosphor particle P2 (particle) and the curve m is the length d2.
 そして、発光膜1の周縁部の一部Aにおける蛍光体粒子Pの表面のうち基準方向D側にある表面と、曲線mとの距離が、許容値dの半分以下である場合、図5の(a)の上面図において、発光膜1の周縁部の少なくとも一部は、所望の形状の曲線であるとみなせる。このとき、発光装置5の配光パターンと、所望の曲線形状との間のずれは、小さくなる。つまり、上記配光パターンの形状制御性は高くなる。 When the distance between the surface on the reference direction D side of the surface of the phosphor particle P in the part A of the peripheral portion A of the light emitting film 1 and the curve m is less than or equal to half of the allowable value d, FIG. In the top view of (a), at least a part of the peripheral portion of the light emitting film 1 can be regarded as a curve having a desired shape. At this time, the deviation between the light distribution pattern of the light emitting device 5 and the desired curved shape is reduced. That is, the shape controllability of the light distribution pattern is enhanced.
 (好ましい粒子配列の条件の第一例)
 ここでは、上述した粒子配列の観点とは異なる観点で、好ましい粒子配列について説明する。発光装置5の配光パターンの形状制御性を高めるための粒子配列を、図5の(e)に示される、蛍光体粒子Pの中心cと、所望の形状を表す線n(直線および曲線を含む)とに基づいて説明する。以下において、方向aは、基準方向Dを表す。また、方向bは、基準方向Dの反対方向を表す。
(First example of preferable particle arrangement conditions)
Here, a preferable particle arrangement will be described from a viewpoint different from the viewpoint of the particle arrangement described above. The particle arrangement for improving the shape controllability of the light distribution pattern of the light emitting device 5 is represented by the center c of the phosphor particle P and the line n (straight line and curve) representing the desired shape shown in FIG. Including). In the following, the direction a represents the reference direction D. A direction b represents a direction opposite to the reference direction D.
 上記配光パターンの形状制御性を高めるための条件の一例として、発光膜1の周縁部の一部Aにおいて、下記(1)と下記(2)との間の距離が、許容値d以下であるという条件を設ける。許容値dは、例えば、蛍光体粒子Pの平均粒径である。
(1)蛍光体粒子Pの中心c
(2)所望の発光膜1の膜形状を示す線nから、各蛍光体粒子Pの半径分、方向bへ移動した線nb
 ここで説明した観点は、次のように表現できる。すなわち、発光膜1の幅広の面である上面に対する側面の表面を形成する蛍光物質の複数の粒子の配列から導出される、当該側面の理想面を上面側から見たときの、当該理想面の位置および形状を示す線nを基本基準線とする。この基本基準線を、複数の粒子のそれぞれの半径に相当する距離だけ発光膜1の内部方向へ移動させた線を当該粒子の個別基準線とする。そして、上記複数の粒子のそれぞれに関して、当該粒子の中心cと、個別基準線との間の距離は、所定の許容値以内である。この所定の許容値は、例えば、上記複数の粒子の平均粒径である。
As an example of the condition for improving the shape controllability of the light distribution pattern, the distance between the following (1) and the following (2) in the part A of the peripheral portion of the light emitting film 1 is an allowable value d or less. The condition that there is. The allowable value d is, for example, the average particle diameter of the phosphor particles P.
(1) Center c of phosphor particle P
(2) A line nb that has moved in the direction b by the radius of each phosphor particle P from the line n indicating the film shape of the desired light-emitting film 1
The viewpoint described here can be expressed as follows. That is, when the ideal surface of the side surface is derived from the arrangement of a plurality of particles of the fluorescent material forming the surface of the side surface with respect to the upper surface which is the wide surface of the light emitting film 1, the ideal surface of the side surface is viewed from the upper surface side. A line n indicating the position and shape is taken as a basic reference line. A line obtained by moving the basic reference line toward the inside of the light emitting film 1 by a distance corresponding to the radius of each of the plurality of particles is defined as an individual reference line of the particle. For each of the plurality of particles, the distance between the particle center c and the individual reference line is within a predetermined allowable value. This predetermined allowable value is, for example, the average particle diameter of the plurality of particles.
 ここで、理想面と各上記粒子との間の距離を、上記複数の粒子のそれぞれについて算出される、理想面と当該理想面に最も近い当該粒子の表面の点との間の距離としてもよい。 Here, the distance between the ideal surface and each of the particles may be a distance between the ideal surface calculated on each of the plurality of particles and a point on the surface of the particle closest to the ideal surface. .
 また、発光膜1の側面が平面である場合、基本基準線は、発光膜1の側面を形成する複数の蛍光体粒子Pの中心および粒径から、最小二乗法により算出することができる。 Further, when the side surface of the light emitting film 1 is a plane, the basic reference line can be calculated from the centers and particle sizes of the plurality of phosphor particles P forming the side surface of the light emitting film 1 by the least square method.
 また、発光膜1を上面側から見たときに、発光膜1の側面が円または楕円を描いている場合、基本基準線は、発光膜1の側面を形成する複数の蛍光体粒子Pの中心および粒径から推定される円または楕円(近似曲線(想定される近似面))である。 When the light emitting film 1 is viewed from the upper surface side, if the side surface of the light emitting film 1 is a circle or an ellipse, the basic reference line is the center of the plurality of phosphor particles P that form the side surface of the light emitting film 1. And a circle or an ellipse (approximate curve (assumed approximate surface)) estimated from the particle diameter.
 (好ましい粒子配列の条件の第二例)
 線nを、方向aまたは方向bへ移動させた線群のうち、蛍光体粒子Pの表面における方向a側の接線(例えば、図5の(e)に示される線Ca)を考慮することで、上記配光パターンの形状制御性を高めるための条件を導くことができる。この条件(第二例)は、上述の第一例とは異なる観点から設定された条件であり、第一例とは独立して適用されるものである。
(Second example of preferable particle arrangement conditions)
By considering the tangent on the direction a side on the surface of the phosphor particle P (for example, the line Ca shown in FIG. 5 (e)) among the line group in which the line n is moved in the direction a or the direction b. The conditions for improving the shape controllability of the light distribution pattern can be derived. This condition (second example) is a condition set from a different viewpoint from the first example described above, and is applied independently of the first example.
 ここで、図5の(f)に示される線を説明すると、以下に列挙するとおりである。
・線n:所望の発光膜1の膜形状を示す直線または曲線(基本基準線)
・線Ca(外側基準線):線nを、方向aまたは方向bへ移動させた線群のうち、蛍光体粒子Pの表面における方向a側の接線群のうちの最も方向a側(発光膜1の最も外側)にある接線
・線Cb(内側基準線):上記接線群のうちの最も方向b側にある接線
・線N:線Caと線Cbとの中間線
・線Nb:線Nを方向bへ、蛍光体粒子Pの半径r分、移動させた線
 このとき、上記配光パターンの形状制御性を高めるということは、発光膜1の周縁部の一部Aにおいて、「蛍光体粒子Pの中心cと、線Nbとの距離が、許容値dの半分以下である」ということ(以下「条件α」)に等価である。条件αは、「線Caと、線Cbとの距離が、許容値d以下である」とも表現できる。この許容値dは、例えば、蛍光体粒子Pの平均粒径である。
Here, the lines shown in (f) of FIG. 5 will be described as follows.
Line n: a straight line or a curve (basic reference line) indicating the desired film shape of the light emitting film 1
Line Ca (outer reference line): Among the line group in which the line n is moved in the direction a or the direction b, the most direction a side (light emitting film) of the tangential group on the direction a side on the surface of the phosphor particle P Tangent / line Cb (inner reference line) located on the outermost side of 1: tangent / line N on the most direction b side in the tangent line group: intermediate line / line Nb: line N between line Ca and line Cb A line moved in the direction b by the radius r of the phosphor particle P. At this time, increasing the shape controllability of the light distribution pattern means that the “phosphor particle” This is equivalent to the fact that the distance between the center c of P and the line Nb is less than or equal to half the allowable value d (hereinafter “condition α”). The condition α can also be expressed as “the distance between the line Ca and the line Cb is equal to or less than the allowable value d”. This allowable value d is, for example, the average particle diameter of the phosphor particles P.
 (その他)
 図5の(a)に示されるように、発光膜1の4辺が直線状であるため、発光装置5の配光パターンの形状制御性を、当該配光パターンのすべての辺において高めることができる。しかし、この構成に限定されるわけではなく、上記配光パターンの一部に対応する発光膜の一部(例えば、発光膜1の4辺のうち一辺)のみの形状制御性を高くしてもよい。
(Other)
As shown in FIG. 5A, since the four sides of the light emitting film 1 are linear, the shape controllability of the light distribution pattern of the light emitting device 5 can be improved on all sides of the light distribution pattern. it can. However, the present invention is not limited to this configuration, and even if the shape controllability of only a part of the light emitting film corresponding to a part of the light distribution pattern (for example, one of the four sides of the light emitting film 1) is increased. Good.
 特に、車両用前照灯のロービームの配光パターンの一部は、直線状(明暗境界線)であることが、日本国等における法規により求められている。ゆえに、直線状の辺を有する発光膜1を備えた発光装置5は、車両用前照灯に好適である。 In particular, a part of the low beam distribution pattern of the vehicle headlamp is required to be linear (bright / dark boundary line) according to laws and regulations in Japan. Therefore, the light emitting device 5 including the light emitting film 1 having a straight side is suitable for a vehicle headlamp.
 この場合、レーザ光は、発光膜1のうち、少なくとも形状制御性の高い周縁部の一部を含む領域に照射されればよい。 In this case, the laser light may be irradiated to a region including at least a part of the peripheral portion having high shape controllability in the light emitting film 1.
 図5の(b)~(e)に示されるように、蛍光体粒子Pが互いに接していれば、発光膜1の形状制御性を高めることができる。この発光膜1を備えた発光装置5は、直線性が要求される灯具にも好適である。 As shown in FIGS. 5B to 5E, if the phosphor particles P are in contact with each other, the shape controllability of the light emitting film 1 can be improved. The light emitting device 5 including the light emitting film 1 is also suitable for a lamp that requires linearity.
 なお、蛍光体粒子Pの粒子配列(発光膜1の形状制御性)は、光学顕微鏡または電子顕微鏡により評価できる。 Note that the particle arrangement of the phosphor particles P (the shape controllability of the light emitting film 1) can be evaluated by an optical microscope or an electron microscope.
 ≪発光膜1の形状≫
 図6の(a)~(f)は、図4に示される発光膜1の膜形状の例を示す上面図である。図6の(a)~(f)において太線で示されるように、発光膜1の周縁部の少なくとも一部は、上記条件αが満たされる直線状になっている。
<< Shape of Light-Emitting Film 1 >>
6A to 6F are top views showing examples of the film shape of the light emitting film 1 shown in FIG. As indicated by bold lines in FIGS. 6A to 6F, at least a part of the peripheral portion of the light emitting film 1 is linear so as to satisfy the condition α.
 図6の(a)に示されるように、発光膜1の膜形状は、例えば、長方形である。レーザ光E(図2参照)は、発光膜1の全体に照射される。 6A, the film shape of the light emitting film 1 is, for example, a rectangle. The laser light E (see FIG. 2) is irradiated on the entire light emitting film 1.
 図6の(b)に示されるように、発光膜1の膜形状は、例えば、発光膜1の一辺が直線状である形状である。レーザ光Eは、発光膜1の全体を含む領域に照射される。 As shown in FIG. 6B, the film shape of the light emitting film 1 is, for example, a shape in which one side of the light emitting film 1 is linear. The laser beam E is applied to a region including the entire light emitting film 1.
 図6の(c)に示されるように、発光膜1の膜形状は、例えば、円形である。レーザ光Eは、発光膜1の全体に照射される。 As shown in FIG. 6C, the film shape of the light emitting film 1 is, for example, a circle. The laser light E is applied to the entire light emitting film 1.
 図6の(d)に示されるように、発光膜1の膜形状は、例えば、穴が設けられた形状である。発光膜1の穴を形成する一辺では、上記条件αが満たされる。上述の「発光膜1の周縁部」は、この穴の周縁部を含んでよい。レーザ光Eは、上記一辺の周囲Bに照射される。 As shown in FIG. 6D, the film shape of the light emitting film 1 is, for example, a shape provided with a hole. On one side where the hole of the light emitting film 1 is formed, the condition α is satisfied. The above-described “peripheral portion of the light emitting film 1” may include the peripheral portion of the hole. The laser beam E is applied to the periphery B of the one side.
 図6の(e)に示されるように、図6の(b)に示される発光膜1の膜形状において、レーザ光Eは、上記条件αが満たされる一辺の周囲Bに照射される。 As shown in FIG. 6 (e), in the film shape of the light emitting film 1 shown in FIG. 6 (b), the laser light E is irradiated to the periphery B on one side where the condition α is satisfied.
 図6の(f)に示されるように、発光膜1の膜形状は、例えば、発光膜1の一辺のさらに一部が直線状である形状である。レーザ光Eは、当該一部の周囲Bに照射される。 As shown in FIG. 6F, the film shape of the light emitting film 1 is, for example, a shape in which a part of one side of the light emitting film 1 is linear. The laser beam E is applied to the periphery B of the part.
 以上のように、発光膜1は、種々の形状を取り得る。 As described above, the light emitting film 1 can take various shapes.
 ≪発光装置5(特に、発光膜1)の効果≫
 発光装置5が、周縁部の形状制御性が高い発光膜1を備え、かつ、発光膜1の表面全体にレーザ光Eを照射することで、発光装置5の配光パターンを、所望の形状に近づけることができる。
<< Effect of Light-Emitting Device 5 (Especially Light-Emitting Film 1) >>
The light-emitting device 5 includes the light-emitting film 1 with high shape controllability at the peripheral edge, and the entire surface of the light-emitting film 1 is irradiated with the laser light E, whereby the light distribution pattern of the light-emitting device 5 is changed to a desired shape. You can get closer.
 発光装置5では、配光パターンを制御するために遮光板を設ける必要がなく、遮光板により発光膜1が出射する光を遮らないため、光の利用効率を高く保つことができる。 In the light emitting device 5, it is not necessary to provide a light shielding plate for controlling the light distribution pattern, and the light emitted from the light emitting film 1 is not blocked by the light shielding plate, so that the light use efficiency can be kept high.
 レーザ光Eのエネルギー密度は、レーザ素子以外の光源から出射される励起光のエネルギー密度よりも高い。よって、レーザ光Eを受け蛍光を出射する発光膜1の面積は、他の種類の励起光を受け同じ光量の蛍光を発する発光膜の面積よりも小さくできる。 The energy density of the laser light E is higher than the energy density of the excitation light emitted from a light source other than the laser element. Therefore, the area of the light emitting film 1 that receives the laser light E and emits fluorescence can be made smaller than the area of the light emitting film that receives other types of excitation light and emits the same amount of fluorescence.
 発光領域形状を特定の大きさまで拡大して投影する場合、発光膜1が小型化されるほど、発光膜1の発光領域は、高い倍率で拡大されて投影される。ゆえに、発光膜1の膜形状が発光装置5の配光パターンに与える影響は大きくなる。このような場合に、発光装置5は、特に有用である。 When projecting the light emitting area shape to a specific size, the light emitting area of the light emitting film 1 is enlarged and projected at a higher magnification as the light emitting film 1 is made smaller. Therefore, the influence of the film shape of the light emitting film 1 on the light distribution pattern of the light emitting device 5 is increased. In such a case, the light emitting device 5 is particularly useful.
 さらに、発光膜1の外側には蛍光体が存在していないため、発光膜1の発光領域の周縁部と、その外側とで、明暗のコントラスト比は高くなる。よって、発光装置5の配光パターンは、明瞭な明暗境界線を有する。 Furthermore, since no phosphor is present outside the light emitting film 1, the contrast ratio between light and dark is high between the peripheral edge of the light emitting region of the light emitting film 1 and the outside thereof. Therefore, the light distribution pattern of the light emitting device 5 has a clear light / dark boundary line.
 ≪発光装置5における発光膜1の製造方法≫
 図7は、図2に示される発光装置5における発光膜1の製造方法を示す断面図である。
<< Method for Manufacturing Light-Emitting Film 1 in Light-Emitting Device 5 >>
FIG. 7 is a cross-sectional view showing a method for manufacturing the light emitting film 1 in the light emitting device 5 shown in FIG.
 図7に示されるように、基板2に枠材4(流動抑止部)を密着(コンタクト)させる。枠材4は、所望の発光領域形状に対応する形状を有しており、基板2の表面において所望の発光領域形状に対応する領域を囲む。上述の蛍光体粒子P(図2参照)を含むインク10を、枠材4によって囲まれた領域に塗布(充填)する。そして、枠材4を除去し、塗布したインク10を上述の発光膜1とする。 As shown in FIG. 7, the frame material 4 (flow suppressing portion) is brought into close contact (contact) with the substrate 2. The frame member 4 has a shape corresponding to a desired light emitting region shape, and surrounds a region corresponding to the desired light emitting region shape on the surface of the substrate 2. The ink 10 including the above-described phosphor particles P (see FIG. 2) is applied (filled) to a region surrounded by the frame material 4. Then, the frame material 4 is removed, and the applied ink 10 is used as the light emitting film 1 described above.
 発光膜1の側面sの形状には、枠材4の形状が反映される。そして、枠材4の1辺の、発光膜1の理想的な1辺の形状からの歪みは、所定の許容値(例えば、発光膜1の蛍光体粒子の平均粒径)以下である。ゆえに、図5の(b)において、発光膜1の側面sの理想的な面と蛍光体粒子Pとの間の距離を、所定の許容値以下にすることができる。 The shape of the frame material 4 is reflected in the shape of the side surface s of the light emitting film 1. The distortion of one side of the frame material 4 from the ideal shape of one side of the light emitting film 1 is equal to or less than a predetermined allowable value (for example, the average particle diameter of the phosphor particles of the light emitting film 1). Therefore, in FIG. 5B, the distance between the ideal surface of the side surface s of the light emitting film 1 and the phosphor particles P can be set to a predetermined allowable value or less.
 なお、インク10が含む有機成分は、レーザ光Eを照射されたときに揮発・分解することがないように、焼成工程により除去される。 The organic component contained in the ink 10 is removed by a baking process so that it does not volatilize or decompose when irradiated with the laser beam E.
 (インク10の塗布)
 インク10の塗布には、粘度の高いインクを利用できる印刷手法を用いることが好ましい。これにより、上記塗布形状を容易に制御できる。具体的には、印刷手法では、スキージによりインク10を押し込むため、インク10の厚さを均一にできる。また、インク10が粒径の大きい蛍光体粒子を含む場合においても、形状制御性の高い発光膜を形成することができる。
(Application of ink 10)
For the application of the ink 10, it is preferable to use a printing technique that can use an ink having a high viscosity. Thereby, the said application | coating shape can be controlled easily. Specifically, in the printing method, since the ink 10 is pushed in by a squeegee, the thickness of the ink 10 can be made uniform. Further, even when the ink 10 includes phosphor particles having a large particle diameter, a light emitting film with high shape controllability can be formed.
 さらに、インク10の塗布には、メタルマスクを利用した印刷工程を用いることがより好ましい。メタルマスクを利用した印刷工程では、メッシュを用いない。よって、インク10にメッシュの痕が残らないため、インク10の厚さを、より均一にできる。 Furthermore, it is more preferable to use a printing process using a metal mask for applying the ink 10. In the printing process using a metal mask, no mesh is used. Therefore, no mesh marks remain on the ink 10, so that the thickness of the ink 10 can be made more uniform.
 (基板2と枠材4との隙間41)
 基板2と枠材4との隙間41には、樹脂による加工が施されている。これにより、樹脂が基板2および枠材4の表面の凹凸を埋めるため、隙間41へのインク10の浸入を防ぐことができる。
(Gap 41 between the substrate 2 and the frame member 4)
A gap 41 between the substrate 2 and the frame member 4 is processed with resin. Thereby, since resin fills the unevenness | corrugation of the surface of the board | substrate 2 and the frame material 4, the penetration | invasion of the ink 10 to the clearance gap 41 can be prevented.
 基板2と枠材4との隙間41は、少なくとも蛍光体粒子Pの粒径以下に抑えることが好ましい。これにより、蛍光体粒子Pがインク10に流され隙間41に運ばれることを防ぎ、発光膜1(図2参照)の形状制御性を高く保つことができる。 The gap 41 between the substrate 2 and the frame member 4 is preferably suppressed to at least the particle size of the phosphor particles P. Thereby, it is possible to prevent the phosphor particles P from flowing into the ink 10 and being carried to the gap 41, and to keep the shape controllability of the light emitting film 1 (see FIG. 2) high.
 以上のように、発光膜1と、基板2とを備えた発光装置5を製造できる。なお、以上のように製造された発光装置5および発光膜1も、本発明の技術的範囲に含まれる。 As described above, the light emitting device 5 including the light emitting film 1 and the substrate 2 can be manufactured. The light emitting device 5 and the light emitting film 1 manufactured as described above are also included in the technical scope of the present invention.
 ≪本実施形態の製造方法の効果≫
 発光装置5の製造方法では、発光膜1の周縁部の形状を、所望の配光パターンに対応する形状の枠材4によって精度高く制御することができる。インク10を基板2に塗布した後に、発光膜1を加工する必要がない。これにより、加工工程において、発光膜1の周縁部の形状が崩れることを防止できる。
<< Effect of the manufacturing method of the present embodiment >>
In the method for manufacturing the light emitting device 5, the shape of the peripheral portion of the light emitting film 1 can be accurately controlled by the frame material 4 having a shape corresponding to a desired light distribution pattern. It is not necessary to process the light emitting film 1 after applying the ink 10 to the substrate 2. Thereby, it can prevent that the shape of the peripheral part of the light emitting film 1 collapses in a manufacturing process.
 〔実施形態2〕
 本発明の第二実施形態について、図8に基づき説明する。なお、説明の便宜上、上述の実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
A second embodiment of the present invention will be described with reference to FIG. For convenience of explanation, members having the same functions as those described in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
 ≪発光装置5aにおける発光膜1の製造方法≫
 ここでは、実施形態1における製造方法とは異なる、発光膜1の製造方法について説明する。本実施形態の製造方法でも、実施形態1における発光膜1と同様に形状制御された発光膜1を製造できる。
<< Method for Manufacturing Light-Emitting Film 1 in Light-Emitting Device 5a >>
Here, a manufacturing method of the light emitting film 1 different from the manufacturing method in the first embodiment will be described. Also in the manufacturing method of the present embodiment, the light-emitting film 1 whose shape is controlled similarly to the light-emitting film 1 in the first embodiment can be manufactured.
 図8は、本実施形態の発光装置5aにおける発光膜1の製造方法を示す図であって、(a)は上面図を示し、(b)は断面図を示す。 8A and 8B are diagrams illustrating a method for manufacturing the light emitting film 1 in the light emitting device 5a of the present embodiment, where FIG. 8A is a top view and FIG. 8B is a cross-sectional view.
 図8の(a)~(b)に示されるように、上述の基板2に溝21を設け基板2aを形成する。当該形成には、ダイシングなどの切削手法が用いられる。溝21は、基板2aの幅広の面(以下「基板面」)の所定の領域に沿った形状を有する。上述の蛍光体粒子P(図2参照)を含むインク10を、溝21に接している領域に塗布する。このように塗布したインク10を上述の発光膜1とする。 As shown in FIGS. 8A to 8B, a groove 21 is provided in the substrate 2 to form the substrate 2a. A cutting technique such as dicing is used for the formation. The groove 21 has a shape along a predetermined region of the wide surface (hereinafter referred to as “substrate surface”) of the substrate 2a. Ink 10 containing the above-described phosphor particles P (see FIG. 2) is applied to a region in contact with the groove 21. The ink 10 applied in this way is referred to as the light emitting film 1 described above.
 溝21は、基板2にインク10を塗布し発光膜1を形成した後に、基板2に設けられてもよい。しかし、発光膜1の形状制御性を高くするためには、溝21は、基板2にインク10を塗布する前に、基板2に設けられることが好ましい。 The groove 21 may be provided in the substrate 2 after the ink 10 is applied to the substrate 2 to form the light emitting film 1. However, in order to increase the shape controllability of the light emitting film 1, the groove 21 is preferably provided in the substrate 2 before applying the ink 10 to the substrate 2.
 基板2に溝21を形成した後に、発光膜1を形成する方法は、例えば、蛍光体粒子Pの電気泳動法、沈降法、ディスペンサによるインク10の塗布法を利用できる。 As a method of forming the light emitting film 1 after forming the groove 21 in the substrate 2, for example, an electrophoresis method of the phosphor particles P, a sedimentation method, or a coating method of the ink 10 using a dispenser can be used.
 以上のように、発光膜1と、基板2aとを備えた発光装置5aを製造できる。なお、以上のように製造された発光装置5aおよび発光膜1も、本発明の技術的範囲に含まれる。 As described above, the light emitting device 5a including the light emitting film 1 and the substrate 2a can be manufactured. The light emitting device 5a and the light emitting film 1 manufactured as described above are also included in the technical scope of the present invention.
 ≪本実施形態の効果≫
 基板2aとして、光を反射する性質を有する基板(以下「反射性基板」)を用いる場合、発光膜1の側面sから基板2a側に出射した光は、発光膜1の外側の基板面で反射して投光される。このため、発光膜1の配光パターンの周縁部のコントラストは、低下する(ぼやける)。しかし、発光膜1の周囲に溝21が設けられることで、発光膜1の周囲の基板面での光の反射を抑制できる。よって、発光膜1の配光パターンのコントラストを高く保つことができる。レーザ光Eの照射範囲が溝21の外側の基板2aを含む場合や、溝21の幅が狭く、発光膜1の側面sからの光が溝21の外側の基板2aで反射される場合は、基板2aのうち発光膜1が配されていない領域の表面にレーザ光Eおよび発光膜1が発する蛍光を吸収する部材を設けてもよい。
<< Effects of this embodiment >>
When a substrate having a property of reflecting light (hereinafter referred to as “reflective substrate”) is used as the substrate 2 a, the light emitted from the side surface s of the light emitting film 1 toward the substrate 2 a is reflected by the substrate surface outside the light emitting film 1. And then flooded. For this reason, the contrast of the peripheral part of the light distribution pattern of the light emitting film 1 is lowered (blurred). However, by providing the groove 21 around the light emitting film 1, it is possible to suppress light reflection on the substrate surface around the light emitting film 1. Therefore, the contrast of the light distribution pattern of the light emitting film 1 can be kept high. When the irradiation range of the laser beam E includes the substrate 2a outside the groove 21, or when the width of the groove 21 is narrow and the light from the side surface s of the light emitting film 1 is reflected by the substrate 2a outside the groove 21, A member that absorbs the laser light E and the fluorescence emitted from the light emitting film 1 may be provided on the surface of the substrate 2a where the light emitting film 1 is not disposed.
 また、基板2にインク10を塗布する前に溝21を基板2に設ける、かつ、溝21と基板2a表面との接辺のうち発光膜1に接する辺の形状制御性を高くすることで、基板2a上でのインク10のにじみなどに起因する、発光膜1の形状の崩れを抑制することができる。 Further, the groove 21 is provided in the substrate 2 before the ink 10 is applied to the substrate 2, and the shape controllability of the side in contact with the light emitting film 1 among the sides of contact between the groove 21 and the substrate 2a is increased. It is possible to suppress the collapse of the shape of the light emitting film 1 due to the bleeding of the ink 10 on the substrate 2a.
 さらに、インク10が溝21ににじみ出た場合、インク10とともに運ばれた蛍光体粒子Pは、溝21内に貯留される。これにより、インク10のにじみによる発光膜1の周縁部における蛍光体粒子の配列崩れを抑制することができる。この効果も、発光膜1の形状の崩れの抑制に寄与する。 Further, when the ink 10 oozes out into the groove 21, the phosphor particles P carried together with the ink 10 are stored in the groove 21. Thereby, the arrangement | sequence collapse of the fluorescent substance particle in the peripheral part of the light emitting film 1 by the bleeding of the ink 10 can be suppressed. This effect also contributes to suppressing the collapse of the shape of the light emitting film 1.
 〔実施形態3〕
 本発明の第三実施形態について、図9に基づき説明する。なお、説明の便宜上、上述の実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
A third embodiment of the present invention will be described with reference to FIG. For convenience of explanation, members having the same functions as those described in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
 ≪発光装置5bにおける発光膜1の製造方法≫
 ここでは、実施形態1・2における製造方法とは異なる、発光膜1の製造方法について説明する。本実施形態の製造方法でも、実施形態1における発光膜1と同様に形状制御された発光膜1を製造できる。
<< Method for Manufacturing Light-Emitting Film 1 in Light-Emitting Device 5b >>
Here, a manufacturing method of the light emitting film 1 different from the manufacturing method in the first and second embodiments will be described. Also in the manufacturing method of the present embodiment, the light-emitting film 1 whose shape is controlled similarly to the light-emitting film 1 in the first embodiment can be manufactured.
 図9は、本実施形態の発光装置5bにおける発光膜1の製造方法を示す断面図である。 FIG. 9 is a cross-sectional view showing a method for manufacturing the light emitting film 1 in the light emitting device 5b of the present embodiment.
 なお、図9では、蛍光体粒子Pは、1層のみ示されている。しかし、他の蛍光体粒子Pが、Z軸正方向側に積み重ねられてもよい。 In FIG. 9, only one layer of the phosphor particles P is shown. However, other phosphor particles P may be stacked on the Z axis positive direction side.
 図9に示されるように、上述の蛍光体粒子Pを含む発光膜1に対向する基板2の表面に、撥油性の高いコーティング剤を含むコーティング層22を設ける。発光膜1は、上述の製造方法と同様に、蛍光体粒子Pを含むインクを、コーティング層22の表面に塗布して形成される。 As shown in FIG. 9, a coating layer 22 containing a coating agent with high oil repellency is provided on the surface of the substrate 2 facing the light emitting film 1 containing the phosphor particles P described above. The light emitting film 1 is formed by applying an ink containing the phosphor particles P to the surface of the coating layer 22 in the same manner as the manufacturing method described above.
 上記コーティング剤は、例えば、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)といった、一般的なフッ素系材料を含むものである。 The coating agent contains a general fluorine-based material such as polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), and perfluoroethylene propene copolymer (FEP).
 基板2にコーティング層22を設けることで、上述のインクの充填(塗布)による製膜において、基板2とインクとの濡れ性が悪化し、広がりにくくなる。よって、コーティング剤の材料は、基板2とインクとの濡れ性が悪くなるものであることが好ましい。 By providing the coating layer 22 on the substrate 2, the wettability between the substrate 2 and the ink is deteriorated in the film formation by the above-described filling (application) of the ink, and it becomes difficult to spread. Therefore, it is preferable that the material of the coating agent is one that deteriorates the wettability between the substrate 2 and the ink.
 なお、固体と液体との濡れ性は、固体に液体を滴下したときに、固体表面と、液体表面とがなす角度である接触角によって定義できる。濡れ性は、接触角が大きければ低く(悪く)、接触角が小さければ高い。 The wettability between the solid and the liquid can be defined by a contact angle that is an angle formed between the solid surface and the liquid surface when the liquid is dropped on the solid. The wettability is low (bad) when the contact angle is large, and high when the contact angle is small.
 以上のように、発光膜1と、基板2と、コーティング層22とを備える発光装置5bを製造できる。なお、以上のように製造された発光装置5bおよび発光膜1も、本発明の技術的範囲に含まれる。 As described above, the light emitting device 5b including the light emitting film 1, the substrate 2, and the coating layer 22 can be manufactured. The light emitting device 5b and the light emitting film 1 manufactured as described above are also included in the technical scope of the present invention.
 ≪本実施形態の効果≫
 インクを塗布した後に枠材4(図7参照)を基板2から除去すると、インクは、基板2の表面に広がることがある。この場合、蛍光体粒子Pも、インクとともに広がり、発光膜1の側面sの形状が崩れる。しかし、基板2の表面に濡れ性が低いコーティング層22を設けることで、蛍光体粒子Pがインクとともに広がって発光膜1の側面sの形状が崩れることを抑制できる。
<< Effects of this embodiment >>
If the frame material 4 (see FIG. 7) is removed from the substrate 2 after applying the ink, the ink may spread on the surface of the substrate 2. In this case, the phosphor particles P also spread with the ink, and the shape of the side surface s of the light emitting film 1 is broken. However, by providing the coating layer 22 with low wettability on the surface of the substrate 2, it is possible to suppress the phosphor particles P from spreading together with the ink and the shape of the side surface s of the light emitting film 1 from collapsing.
 また、発光膜1を形成したい領域以外の基板2上にのみコーティング層22を設けてもよい。これにより、インクは、発光膜1を形成したい領域から染み出さなくなる。よって、発光膜1の側面sの形状が崩れることをさらに抑制できる。 Further, the coating layer 22 may be provided only on the substrate 2 other than the region where the light emitting film 1 is to be formed. Thereby, the ink does not ooze out from the region where the light emitting film 1 is to be formed. Therefore, it can further suppress that the shape of the side surface s of the light emitting film 1 collapses.
 以上のように、インクがコーティング層22の表面に広がりにくいため、印刷(インクの塗布)後の形状の崩れ(いわゆるダレ)を抑制することができる。これにより、形状制御性の高い発光膜1を容易に製造することができる。 As described above, since the ink hardly spreads on the surface of the coating layer 22, it is possible to suppress the deformation of the shape after printing (ink application) (so-called sagging). Thereby, the light emitting film 1 with high shape controllability can be easily manufactured.
 〔実施形態4〕
 本発明の第四実施形態について、図10に基づき説明する。なお、説明の便宜上、上述の実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
A fourth embodiment of the present invention will be described with reference to FIG. For convenience of explanation, members having the same functions as those described in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
 ≪発光装置5cにおける発光膜1の製造方法≫
 ここでは、実施形態1~3における製造方法とは異なる、発光膜1の製造方法について説明する。本実施形態の製造方法でも、実施形態1における発光膜1と同様に形状制御された発光膜1を製造できる。
<< Method for Manufacturing Light-Emitting Film 1 in Light-Emitting Device 5c >>
Here, a manufacturing method of the light emitting film 1 different from the manufacturing method in the first to third embodiments will be described. Also in the manufacturing method of the present embodiment, the light-emitting film 1 whose shape is controlled similarly to the light-emitting film 1 in the first embodiment can be manufactured.
 図10は、本実施形態の発光装置5cにおける発光膜1の製造方法を示す断面図である。 FIG. 10 is a cross-sectional view showing a method for manufacturing the light emitting film 1 in the light emitting device 5c of this embodiment.
 なお、図10では、蛍光体粒子Pは、1層のみ示されている。しかし、他の蛍光体粒子Pが、Z軸正方向側に積み重ねられてもよい。 In FIG. 10, only one layer of the phosphor particles P is shown. However, other phosphor particles P may be stacked on the Z axis positive direction side.
 図10に示されるように、多孔質基板2cの上に、上述の蛍光体粒子Pを含む発光膜1を設ける。発光膜1は、上述の製造方法と同様に、蛍光体粒子Pを含むインクを、多孔質基板2cの表面に塗布して形成される。 As shown in FIG. 10, the light emitting film 1 containing the above-described phosphor particles P is provided on the porous substrate 2c. The light emitting film 1 is formed by applying an ink containing phosphor particles P to the surface of the porous substrate 2c, as in the above-described manufacturing method.
 多孔質基板2cは、多数の空孔pを有する。空孔pは、インクの溶剤が浸透する大きさであるものの、蛍光体粒子Pが入り込まない大きさ(蛍光体粒子Pの粒径未満)である。ゆえに、インクを多孔質基板2cに塗布したとき、インクの溶剤のみが空孔pに染み込む。 The porous substrate 2c has a large number of holes p. The holes p have such a size that the solvent of the ink penetrates but does not allow the phosphor particles P to enter (less than the particle size of the phosphor particles P). Therefore, when ink is applied to the porous substrate 2c, only the ink solvent penetrates into the pores p.
 多孔質基板2cの材料は、例えば、アルミナ、シリカ、ジルコニアといった多孔質セラミックスである。 The material of the porous substrate 2c is, for example, porous ceramics such as alumina, silica, and zirconia.
 以上のように、発光膜1と、多孔質基板2cとを備える発光装置5cを製造できる。なお、以上のように製造された発光装置5cおよび発光膜1も、本発明の技術的範囲に含まれる。 As described above, the light emitting device 5c including the light emitting film 1 and the porous substrate 2c can be manufactured. The light emitting device 5c and the light emitting film 1 manufactured as described above are also included in the technical scope of the present invention.
 ≪本実施形態の効果≫
 多孔質基板2cは、インクの溶剤を吸収する。このため、インクの塗布により発光膜1を製膜するときに、インクは、多孔質基板2c上で広がり難くなる。よって、蛍光体粒子Pがインクとともに広がることによる、発光膜1の側面sの形状崩れを抑制できる。加えて、空孔pを、蛍光体粒子Pが入り込まない大きさとすることで、蛍光体粒子Pが、多孔質基板2cの表面の空孔pに入り込んで、予期せぬ位置に配される可能性が排除される。これにより、形状制御性の高い発光膜1を形成できる。
<< Effects of this embodiment >>
The porous substrate 2c absorbs the ink solvent. For this reason, when forming the light emitting film | membrane 1 by application | coating of an ink, an ink becomes difficult to spread on the porous substrate 2c. Therefore, the shape collapse of the side surface s of the light emitting film 1 due to the spreading of the phosphor particles P together with the ink can be suppressed. In addition, by setting the size of the holes p so that the phosphor particles P do not enter, the phosphor particles P can enter the holes p on the surface of the porous substrate 2c and be arranged at an unexpected position. Sex is excluded. Thereby, the light emitting film 1 with high shape controllability can be formed.
 〔実施形態5〕
 本発明の第五実施形態について、図11に基づき説明する。なお、説明の便宜上、上述の実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 5]
A fifth embodiment of the present invention will be described with reference to FIG. For convenience of explanation, members having the same functions as those described in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
 ≪発光装置5dにおける発光膜1dの製造方法≫
 ここでは、実施形態1~4における製造方法とは異なる、発光膜1dの製造方法について説明する。本実施形態の製造方法でも、実施形態1における発光膜1と同様に形状制御された発光膜1dを製造できる。
<< Method for Producing Light-Emitting Film 1d in Light-Emitting Device 5d >>
Here, a manufacturing method of the light emitting film 1d, which is different from the manufacturing methods in the first to fourth embodiments, will be described. Also in the manufacturing method of the present embodiment, the light-emitting film 1d whose shape is controlled similarly to the light-emitting film 1 in the first embodiment can be manufactured.
 図11は、本実施形態の発光装置5dにおける発光膜1dの製造方法を示す断面図である。 FIG. 11 is a cross-sectional view showing a method of manufacturing the light emitting film 1d in the light emitting device 5d of this embodiment.
 図11に示されるように、基板2の表面に、複数の異なる種類の発光層11~13を含む発光膜1d(波長変換部材)が形成される。発光層11(波長変換部材)は、上述の製造方法と同様に、蛍光体粒子を含むインクを、基板2の表面に塗布して形成される。発光層12(波長変換部材)は、発光層11の蛍光体粒子とは異なる蛍光体粒子を含むインクを、発光層11を覆うように塗布して形成される。発光層13(波長変換部材)は、発光層11~12の蛍光体粒子とは異なる蛍光体粒子を含むインクを、発光層12を覆うように塗布して形成される。このように、複数色の蛍光を発する発光膜1dが構成される。 As shown in FIG. 11, a light emitting film 1d (wavelength converting member) including a plurality of different types of light emitting layers 11 to 13 is formed on the surface of the substrate 2. The light emitting layer 11 (wavelength conversion member) is formed by applying ink containing phosphor particles to the surface of the substrate 2 in the same manner as in the above manufacturing method. The light emitting layer 12 (wavelength conversion member) is formed by applying an ink containing phosphor particles different from the phosphor particles of the light emitting layer 11 so as to cover the light emitting layer 11. The light emitting layer 13 (wavelength conversion member) is formed by applying an ink containing phosphor particles different from the phosphor particles of the light emitting layers 11 to 12 so as to cover the light emitting layer 12. Thus, the light emitting film 1d that emits fluorescence of a plurality of colors is configured.
 発光膜1dの最も表面側(Z軸正方向側)の発光層(図11に示される例では発光層13)の周縁部形状の少なくとも一部は、直線または所望の曲線形状を有している。すなわち、発光膜1dにおいて、発光膜1dの理想的な外縁と蛍光体粒子との間の距離は、許容値以下である。 At least a part of the peripheral edge shape of the light emitting layer (light emitting layer 13 in the example shown in FIG. 11) on the most surface side (Z-axis positive direction side) of the light emitting film 1d has a straight line or a desired curved shape. . That is, in the light emitting film 1d, the distance between the ideal outer edge of the light emitting film 1d and the phosphor particles is less than the allowable value.
 (発光膜1dが発する光の演色性)
 発光層11~13の蛍光体粒子を励起する励起光の色が、例えば紫色(405nm)の場合、発光層11~13が発する光の色は、赤色・緑色・青色(RGB)の3色であってよい。この場合、発光層11~13が発する光が混色されるため、発光膜1dを白色光源とすることができる。
(Color rendering properties of light emitted from the light emitting film 1d)
When the color of the excitation light that excites the phosphor particles of the light emitting layers 11 to 13 is, for example, purple (405 nm), the colors of the light emitted from the light emitting layers 11 to 13 are three colors of red, green, and blue (RGB). It may be. In this case, since the light emitted from the light emitting layers 11 to 13 is mixed, the light emitting film 1d can be a white light source.
 また、上記励起光の色が、例えば青色(450nm)の場合、発光膜1dは、発光層11~12のみを含むように形成され、かつ、発光層11~12が発する光の色は、緑色・赤色の2色であってもよい。この場合、発光膜1dを演色性の高い光源とすることができる。 When the color of the excitation light is, for example, blue (450 nm), the light emitting film 1d is formed so as to include only the light emitting layers 11 to 12, and the color of the light emitted from the light emitting layers 11 to 12 is green. -Two colors of red may be sufficient. In this case, the light emitting film 1d can be a light source with high color rendering properties.
 発光層11~13のうち、発する光の波長がより長い発光層は、基板2のより近くに配されることが好ましい。ある波長の光を発する蛍光体粒子は、当該波長よりも長い光を照射されても、励起され難い。ゆえに、発光層11~13のうちの一つの発光層から出射した光は、他の発光層に吸収され難くなる。 Of the light emitting layers 11 to 13, the light emitting layer having a longer wavelength of emitted light is preferably disposed closer to the substrate 2. The phosphor particles that emit light of a certain wavelength are difficult to be excited even when irradiated with light longer than the wavelength. Therefore, light emitted from one of the light emitting layers 11 to 13 is difficult to be absorbed by the other light emitting layers.
 以上のように、発光膜1dと、基板2とを備える発光装置5dを製造できる。なお、以上のように製造された発光装置5dおよび発光膜1dも、本発明の技術的範囲に含まれる。 As described above, the light emitting device 5d including the light emitting film 1d and the substrate 2 can be manufactured. The light emitting device 5d and the light emitting film 1d manufactured as described above are also included in the technical scope of the present invention.
 ≪本実施形態の効果≫
 複数の異なる色の蛍光を発する蛍光体粒子を含む発光層(図11に示される例では発光層11~13)を用いることで、発光膜1dを、演色性の高い光源とすることができる。特に、発光膜1dの上面から見て最も外側に配列された蛍光体粒子Pの発光層の周縁部形状の少なくとも一部は、直線または所望の曲線形状を有しているため、演色性の高い光を、形状制御性高く得ることができる。
<< Effects of this embodiment >>
By using a light emitting layer including phosphor particles that emit fluorescence of different colors (light emitting layers 11 to 13 in the example shown in FIG. 11), the light emitting film 1d can be a light source with high color rendering properties. In particular, since at least a part of the peripheral portion shape of the light emitting layer of the phosphor particles P arranged on the outermost side as viewed from the upper surface of the light emitting film 1d has a straight line or a desired curved shape, the color rendering property is high. Light can be obtained with high shape controllability.
 また、発光膜1dの最も表面側の発光層が含む蛍光体粒子を同一種類にする(発光層が発する光の色を同一色にする)ことで、発光膜1dの発光領域全体の色均一性を高めることができる。 Further, by making the phosphor particles included in the light emitting layer on the most surface side of the light emitting film 1d the same type (the light color emitted from the light emitting layer is the same color), the color uniformity of the entire light emitting region of the light emitting film 1d. Can be increased.
 〔実施形態6〕
 本発明の第六実施形態について、図12に基づき説明する。なお、説明の便宜上、上述の実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 6]
A sixth embodiment of the present invention will be described with reference to FIG. For convenience of explanation, members having the same functions as those described in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
 ≪発光装置5eにおける発光膜1の製造方法≫
 ここでは、上述の実施形態における製造方法とは異なる、発光膜1の製造方法について説明する。本実施形態の製造方法でも、実施形態1における発光膜1と同様に形状制御された発光膜1を製造できる。
<< Method for Manufacturing Light-Emitting Film 1 in Light-Emitting Device 5e >>
Here, a manufacturing method of the light emitting film 1 different from the manufacturing method in the above-described embodiment will be described. Also in the manufacturing method of the present embodiment, the light-emitting film 1 whose shape is controlled similarly to the light-emitting film 1 in the first embodiment can be manufactured.
 図12は、本実施形態の発光装置5eにおける発光膜1の製造方法を示す図であって、(a)は上面図を示し、(b)は断面図を示す。 12A and 12B are diagrams showing a method for manufacturing the light-emitting film 1 in the light-emitting device 5e of the present embodiment, where FIG. 12A shows a top view and FIG. 12B shows a cross-sectional view.
 図12に示されるように、基板2の表面に、発光膜1と発光膜1を囲む遮光部材4eとが形成される。 As shown in FIG. 12, the light emitting film 1 and the light shielding member 4 e surrounding the light emitting film 1 are formed on the surface of the substrate 2.
 遮光部材4eは、所望の発光領域形状に対応する形状を有している。この遮光部材4eの材料は、白色顔料もしくはセラミックスまたは黒色顔料などである。遮光部材4eは、印刷法や塗布法により製造される。 The light shielding member 4e has a shape corresponding to a desired light emitting region shape. The material of the light shielding member 4e is a white pigment, ceramics, black pigment, or the like. The light shielding member 4e is manufactured by a printing method or a coating method.
 そして、遮光部材4eが発光膜1の側面sに接しているため、発光膜1の側面sの形状には、遮光部材4eの形状が反映される。そして、遮光部材4eの1辺の、発光膜1の理想的な1辺の形状からの歪みは、所定の許容値(例えば、発光膜1の蛍光体粒子の平均粒径)以下である。ゆえに、図5の(b)において、発光膜1の側面sの理想的な面と蛍光体粒子Pとの間の距離を、所定の許容値以下にすることができる。 Since the light shielding member 4e is in contact with the side surface s of the light emitting film 1, the shape of the light shielding member 4e is reflected in the shape of the side surface s of the light emitting film 1. The distortion of one side of the light shielding member 4e from the ideal shape of one side of the light emitting film 1 is equal to or less than a predetermined allowable value (for example, the average particle diameter of the phosphor particles of the light emitting film 1). Therefore, in FIG. 5B, the distance between the ideal surface of the side surface s of the light emitting film 1 and the phosphor particles P can be set to a predetermined allowable value or less.
 以上のように、発光膜1と、基板2と、遮光部材4eとを備える発光装置5eを製造できる。なお、以上のように製造された発光装置5eおよび遮光部材4e備える発光膜1も、本発明の技術的範囲に含まれる。 As described above, the light emitting device 5e including the light emitting film 1, the substrate 2, and the light shielding member 4e can be manufactured. Note that the light-emitting film 1 including the light-emitting device 5e and the light-shielding member 4e manufactured as described above is also included in the technical scope of the present invention.
 ≪本実施形態の効果≫
 基板2として、反射性基板を用いる場合、発光膜1の側面sから基板2側に出射した光は、発光膜1の外側の基板面で反射して投光される。このため、発光膜1の配光パターンの周縁部のコントラストは、低下する(ぼやける)。しかし、発光膜1の周囲の基板面に遮光部材4eを設けることで、発光膜1の周囲の基板面での光の反射を抑制できる。よって、発光膜1の配光パターンのコントラストを高く保つことができる。
<< Effects of this embodiment >>
When a reflective substrate is used as the substrate 2, the light emitted from the side surface s of the light emitting film 1 toward the substrate 2 is reflected by the substrate surface outside the light emitting film 1 and projected. For this reason, the contrast of the peripheral part of the light distribution pattern of the light emitting film 1 is lowered (blurred). However, by providing the light shielding member 4 e on the substrate surface around the light emitting film 1, reflection of light on the substrate surface around the light emitting film 1 can be suppressed. Therefore, the contrast of the light distribution pattern of the light emitting film 1 can be kept high.
 また、基板2にインクを塗布する前に遮光部材4eを基板面に設ける、かつ、遮光部材4eの形状制御性を高くすることで、ディスペンスなどの形状制御性の低い手法で発光膜1を製造できるため、発光装置5eの製造コストを削減できる。 Further, by providing the light shielding member 4e on the substrate surface before applying the ink to the substrate 2, and increasing the shape controllability of the light shielding member 4e, the light emitting film 1 is manufactured by a technique having low shape controllability such as dispensing. Therefore, the manufacturing cost of the light emitting device 5e can be reduced.
 〔実施形態7〕
 本発明の第七実施形態について、図13に基づき説明する。なお、説明の便宜上、上述の実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 7]
A seventh embodiment of the present invention will be described with reference to FIG. For convenience of explanation, members having the same functions as those described in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
 ≪照明装置3cの構成およびその効果≫
 図13は、本実施形態の照明装置3cの構成を示す模式図であって、(a)は照明装置3cの配光パターンを示し、(b)は発光装置5を示す。
<< Configuration of lighting device 3c and effects thereof >>
FIG. 13 is a schematic diagram illustrating a configuration of the illumination device 3c of the present embodiment, in which (a) illustrates a light distribution pattern of the illumination device 3c, and (b) illustrates the light emitting device 5.
 図13の(a)に示されるように、照明装置3cは、発光装置5と、投光用レンズ51c(光学素子)とを備える。発光装置5が出射した光は、投光用レンズ51cを介し配光パターン6として投影される。図13の(b)に示されるように、配光パターン6と、Z軸正方向側から見たときの発光膜1の形状とは、相似する。 As shown in FIG. 13A, the illumination device 3c includes a light emitting device 5 and a light projecting lens 51c (optical element). The light emitted from the light emitting device 5 is projected as the light distribution pattern 6 through the light projection lens 51c. As shown in FIG. 13B, the light distribution pattern 6 is similar to the shape of the light-emitting film 1 when viewed from the Z-axis positive direction side.
 なお、発光装置5は、上述の発光装置5a~5eであってもよい。 The light emitting device 5 may be the above-described light emitting devices 5a to 5e.
 以上のように、単に発光膜1の配光パターンをそのまま投影する簡易な投光系(図13に示される例では投光用レンズ51c)を用いて、所望の形状の配光パターンを容易に投光できる。 As described above, a light distribution pattern having a desired shape can be easily obtained by using a simple light projection system (in the example shown in FIG. 13, the light projection lens 51c) that simply projects the light distribution pattern of the light emitting film 1 as it is. Can be flooded.
 〔実施形態8〕
 本発明の第八実施形態について、図14に基づき説明する。なお、説明の便宜上、上述の実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 8]
An eighth embodiment of the present invention will be described with reference to FIG. For convenience of explanation, members having the same functions as those described in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
 ≪照明装置3dの構成≫
 図14は、本実施形態の照明装置3dの構成を示す模式図であって、(a)は照明装置3dおよびその配光パターンを示し、(b)は他の配光パターンを示す。
<< Configuration of Lighting Device 3d >>
FIG. 14 is a schematic diagram illustrating the configuration of the illumination device 3d of the present embodiment, where (a) illustrates the illumination device 3d and its light distribution pattern, and (b) illustrates another light distribution pattern.
 図14の(a)に示されるように、照明装置3dは、発光装置5fと、投光用レンズ51d(光学素子)とを備える。 As shown in FIG. 14A, the illumination device 3d includes a light emitting device 5f and a light projecting lens 51d (optical element).
 発光装置5fは、図5の(a)に示されるような長方形の発光膜1と、基板2と、レーザ光Eを導光する導光部31と、導光部31によって導光されたレーザ光Eを通す箇所(レーザ光透過箇所)を有する上部構造32と、反射鏡33と、透明部材35とを備える。 The light emitting device 5f includes a rectangular light emitting film 1 as shown in FIG. 5A, a substrate 2, a light guide 31 that guides laser light E, and a laser guided by the light guide 31. The upper structure 32 which has the location (laser beam transmission location) which lets the light E pass, the reflective mirror 33, and the transparent member 35 are provided.
 レーザ光Eは、導光部31と、上部構造32のレーザ光透過箇所と、反射鏡33とを介し、発光膜1に照射される。発光膜1または基板2で反射したレーザ光Eおよび発光膜1から出射する蛍光Fは、透明部材35を透過したのち、投光用レンズ51dを介し配光パターン6aとして投光される。なお、発光装置5fの照明光の一部としてレーザ光Eを利用しない場合、透明部材35の表面に波長選択フィルタ34を設けることで、発光装置5fからレーザ光Eが出射されるのを抑制してもよい。 The laser light E is applied to the light emitting film 1 through the light guide 31, the laser light transmitting portion of the upper structure 32, and the reflecting mirror 33. The laser beam E reflected by the light emitting film 1 or the substrate 2 and the fluorescence F emitted from the light emitting film 1 are transmitted through the transparent member 35 and then projected as a light distribution pattern 6a through the light projecting lens 51d. When the laser light E is not used as part of the illumination light of the light emitting device 5f, the wavelength selective filter 34 is provided on the surface of the transparent member 35 to suppress the laser light E from being emitted from the light emitting device 5f. May be.
 ここで、投光用レンズ51dは、ダイレクトプロジェクション方式の投光光学系である。ダイレクトプロジェクション方式とは、光源形状を拡大投影する方式を意味する。そして、投光用レンズ51dは、長方形の発光膜1の膜形状を拡大投影する。このため、配光パターン6aは長方形になる。 Here, the light projection lens 51d is a direct projection type light projection optical system. The direct projection method means a method for enlarging and projecting the light source shape. The projection lens 51d enlarges and projects the film shape of the rectangular light-emitting film 1. For this reason, the light distribution pattern 6a is rectangular.
 (車両用前照灯への応用)
 図14の(b)に示されるように、配光パターン6bは、例えば、日本国等における法規に定められた車両用などのロービームの配光パターンに一致させることができる。具体的には、照明装置3dの発光膜1の膜形状を、上記ロービームの配光パターンと相似した形状に制御すればよい。
(Application to vehicle headlamps)
As shown in FIG. 14B, the light distribution pattern 6b can be made to coincide with a low beam light distribution pattern for vehicles or the like stipulated by laws and regulations in Japan or the like. Specifically, the film shape of the light emitting film 1 of the lighting device 3d may be controlled to a shape similar to the low beam light distribution pattern.
 あるいは、例えば発光膜1の周縁部を直線となるように成形し、その直線部を、配光パターンにおいて直線性が求められる部分への投光に用いることで、直線を有する配光パターンを容易に得ることができる。この場合、拡大投影した発光領域形状を組み合わせて、ロービームの配光パターンを形成する。例えば、図14の(a)に示されるような長方形の配光パターン6aを、その投影位置をずらしながら複数投影することで、ロービームの配光パターン6bを形成する。この配光パターン6bを形成するために、照明装置3dの配光パターン6aを複数の異なる位置に投影し、その全ての投影像を合成すると所望の配光パターンになるように投光部材51dを設計する。または、複数の照明装置3dを配光パターン6bに対応するように立体的に配置し、複数の照明装置3dのそれぞれから配光パターン6aを投影してもよい。 Alternatively, for example, a light distribution pattern having a straight line can be easily formed by forming the peripheral portion of the light emitting film 1 to be a straight line, and using the straight line portion for projecting light to a portion where linearity is required in the light distribution pattern. Can get to. In this case, a light distribution pattern of a low beam is formed by combining enlarged light emitting region shapes. For example, a plurality of rectangular light distribution patterns 6a as shown in FIG. 14A are projected while shifting their projection positions, thereby forming a low beam light distribution pattern 6b. In order to form this light distribution pattern 6b, the light distribution member 6d is projected so that the light distribution pattern 6a of the illumination device 3d is projected onto a plurality of different positions and all the projected images are combined to form a desired light distribution pattern. design. Alternatively, a plurality of illumination devices 3d may be arranged in three dimensions so as to correspond to the light distribution pattern 6b, and the light distribution pattern 6a may be projected from each of the plurality of illumination devices 3d.
 ≪照明装置3dの効果≫
 ダイレクトプロジェクション方式では、光源形状が拡大投影されるため、所望の形状の配光パターンを得るためには、光源形状が厳密に制御される必要がある。発光膜1は、上述のように周縁部の形状制御性が高いため、例えば周縁部を直線となるように形成することができる。その直線部を、配光パターンにおいて直線性が求められる部分(境界部)への投光に用いることで、形状制御性が高い配光パターンを得ることができる。
<< Effect of lighting device 3d >>
In the direct projection method, since the light source shape is enlarged and projected, it is necessary to strictly control the light source shape in order to obtain a light distribution pattern having a desired shape. Since the light emitting film 1 has high shape controllability at the peripheral edge as described above, it can be formed, for example, so that the peripheral edge is a straight line. By using the straight line portion for light projection to a portion (boundary portion) where linearity is required in the light distribution pattern, a light distribution pattern with high shape controllability can be obtained.
 上述のように、レーザ光Eのエネルギー密度は、レーザ素子以外の光源から出射される励起光のエネルギー密度よりも高い。よって、レーザ光Eを受け蛍光を出射する発光膜1の面積は、他の種類の励起光を受け同じ光量の蛍光を発する発光膜の面積よりも小さくできる。 As described above, the energy density of the laser light E is higher than the energy density of the excitation light emitted from a light source other than the laser element. Therefore, the area of the light emitting film 1 that receives the laser light E and emits fluorescence can be made smaller than the area of the light emitting film that receives other types of excitation light and emits the same amount of fluorescence.
 発光膜1が小型化されるほど、発光膜1の発光領域は、高い倍率で拡大されて配光される。ゆえに、発光膜1の形状が照明装置3dの配光パターン6a・6bに与える影響は大きくなる。このような場合に、照明装置3dは、特に有用である。 As the light emitting film 1 is miniaturized, the light emitting region of the light emitting film 1 is enlarged and distributed with high magnification. Therefore, the influence of the shape of the light emitting film 1 on the light distribution patterns 6a and 6b of the lighting device 3d is increased. In such a case, the lighting device 3d is particularly useful.
 また、照明装置3dからの投光は、その形状が精度高く制御されているため、遮光板を用いずに、法規によって規定された配光パターンを効率よく実現することができる。従って、照明装置3dは、車両用前照灯に好適である。 Further, since the shape of the light projected from the illumination device 3d is controlled with high accuracy, the light distribution pattern defined by the regulations can be efficiently realized without using the light shielding plate. Therefore, the illuminating device 3d is suitable for a vehicle headlamp.
 〔まとめ〕
 本発明の態様1に係る波長変換部材(発光膜1・1d)は、蛍光物質を含む波長変換部材であって、上記波長変換部材の幅広の面を上面とし、当該上面に対する側面sの表面を形成する上記蛍光物質の複数の粒子(蛍光体粒子P・P1・P2)の配列から導出される、当該側面の理想的な面を理想面とし、上記理想面と各上記粒子との間の距離は、許容値d以下である。
[Summary]
The wavelength conversion member (light-emitting films 1 and 1d) according to the first aspect of the present invention is a wavelength conversion member including a fluorescent material, and the surface of the side surface s with respect to the upper surface is a wide surface of the wavelength conversion member. The ideal surface of the side surface, which is derived from an array of a plurality of particles (phosphor particles P, P1, and P2) of the fluorescent material to be formed, is an ideal surface, and the distance between the ideal surface and each of the particles Is less than the allowable value d.
 発明者らは、蛍光物質を含む波長変換部材の配光パターンは、波長変換部材の周縁部(側面)における蛍光物質の粒子配列に依存し、所望の配光パターンを得るためには、蛍光物質の粒子配列を厳密に制御する必要があることを発見した。 The inventors have determined that the light distribution pattern of the wavelength conversion member including the fluorescent material depends on the particle arrangement of the fluorescent material at the peripheral edge (side surface) of the wavelength conversion member. It was found that the particle arrangement of the particles needs to be strictly controlled.
 上記構成によれば、波長変換部材の周縁部において、理想的な面と粒子との距離が、許容値以下になるため、側面において、粒子は、所望の形状から許容できる範囲内に配列される。そのため、波長変換部材の形状制御性の高さが反映された所望の配光パターンを実現することができる。 According to the above configuration, the distance between the ideal surface and the particle is less than or equal to the allowable value at the peripheral edge of the wavelength conversion member. Therefore, on the side surface, the particles are arranged within an allowable range from the desired shape. . Therefore, a desired light distribution pattern reflecting the high shape controllability of the wavelength conversion member can be realized.
 本発明の態様2に係る波長変換部材では、上記態様1において、上記許容値は、上記粒子の平均粒径であってよい。 In the wavelength conversion member according to aspect 2 of the present invention, in the aspect 1, the allowable value may be an average particle diameter of the particles.
 本発明の態様3に係る波長変換部材では、上記態様1または2において、上記理想面と各上記粒子との間の距離は、上記理想面と各上記粒子の中心との間の距離であってよい。 In the wavelength conversion member according to aspect 3 of the present invention, in the above aspect 1 or 2, the distance between the ideal surface and each particle is a distance between the ideal surface and the center of each particle. Good.
 本発明の態様4に係る波長変換部材では、上記態様1または2において、上記理想面と各上記粒子との間の距離は、上記複数の粒子のそれぞれについて算出される、上記理想面と当該理想面に最も近い当該粒子の表面の点との間の距離であってよい。 In the wavelength conversion member according to aspect 4 of the present invention, in the above aspect 1 or 2, the distance between the ideal surface and each of the particles is calculated for each of the plurality of particles. It may be the distance between the surface point of the particle closest to the surface.
 本発明の態様5に係る波長変換部材では、上記態様1から4のいずれか一態様において、上記複数の粒子の表面が形成する包絡線ENVから想定される近似面を、上記理想面としてよい。 In the wavelength conversion member according to Aspect 5 of the present invention, in any one of Aspects 1 to 4, the approximate plane assumed from the envelope ENV formed by the surfaces of the plurality of particles may be the ideal plane.
 本発明の態様6に係る波長変換部材では、上記態様1から5のいずれか一態様において、上記理想面は平面であってよい。 In the wavelength conversion member according to aspect 6 of the present invention, in any one aspect of the above aspects 1 to 5, the ideal surface may be a flat surface.
 なお、本発明の波長変換部材は、蛍光物質を含む波長変換部材(発光膜1・1d)であって、上記波長変換部材の所望形状を示す基本基準線(直線l;曲線m;線n)を、上記波長変換部材の内部から外部へと向かう所定の基準方向Dまたはその反対方向へ移動させた線群のうち、上記波長変換部材の幅広の面を上面とし、当該上面に対する側面sの表面を形成する上記蛍光物質の複数の粒子(蛍光体粒子P・P1・P2)の表面における上記基準方向側の接線群のうちの最も上記基準方向側にある接線である外側基準線(線Ca)と、上記線群のうち、上記接線群のうちの最も上記反対方向側にある接線である内側基準線(線Cb)との距離は、所定の許容値d以下であってよい。 The wavelength conversion member of the present invention is a wavelength conversion member (light-emitting film 1 · 1d) containing a fluorescent material, and a basic reference line (straight line l; curve m; line n) indicating the desired shape of the wavelength conversion member. Of the wavelength conversion member in the predetermined reference direction D from the inside to the outside of the wavelength conversion member or the opposite direction thereof, the wide surface of the wavelength conversion member is the upper surface, and the surface of the side surface s with respect to the upper surface Outer reference line (line Ca) which is the tangent line closest to the reference direction in the reference direction side tangent group on the surface of the plurality of fluorescent substance particles (phosphor particles P, P1, P2) forming The distance between the line group and the inner reference line (line Cb) which is the tangent line on the most opposite side of the tangent group may be equal to or less than a predetermined allowable value d.
 本発明の態様7に係る発光装置は、態様1から6のいずれか一態様における波長変換部材(発光膜1・1d)と、上記波長変換部材の側面に接した遮光部材4eと、上記波長変換部材および上記遮光部材が配された基板2・2a(多孔質基板2c)とを備える。 A light-emitting device according to aspect 7 of the present invention includes the wavelength conversion member (light-emitting film 1 or 1d) according to any one of aspects 1 to 6, the light-shielding member 4e in contact with the side surface of the wavelength conversion member, and the wavelength conversion. And a substrate 2 or 2a (porous substrate 2c) on which the light shielding member is disposed.
 本発明の態様8に係る発光装置は、態様1から6のいずれか一態様における波長変換部材(発光膜1・1d)と、上記波長変換部材が配され、上記波長変換部材に沿った溝21を有する基板2・2a(多孔質基板2c)とを備える。 A light-emitting device according to an eighth aspect of the present invention includes the wavelength conversion member (light-emitting film 1 or 1d) according to any one of the first to sixth aspects and the wavelength conversion member, and a groove 21 along the wavelength conversion member. And a substrate 2 · 2a (porous substrate 2c).
 本発明の態様9に係る発光装置では、上記態様7または8において、上記基板は、上記波長変換部材が配される表面に撥油性のコーティング層22を備えてよい。 In the light emitting device according to aspect 9 of the present invention, in the aspect 7 or 8, the substrate may include an oil-repellent coating layer 22 on a surface on which the wavelength conversion member is disposed.
 本発明の態様10に係る発光装置では、上記態様7から9のいずれか一態様において、上記基板は、少なくともその表面に、上記粒子よりも小さい空孔pを有してよい。 In the light emitting device according to Aspect 10 of the present invention, in any one of Aspects 7 to 9, the substrate may have pores p smaller than the particles on at least the surface thereof.
 本発明の態様11に係る発光装置は、上記態様7から10のいずれか一態様において、上記波長変換部材は、互いに異なる種類の蛍光物質をそれぞれ含む複数の層(発光層11~13)を含んでよい。 In the light emitting device according to aspect 11 of the present invention, in any one of the above aspects 7 to 10, the wavelength conversion member includes a plurality of layers (light emitting layers 11 to 13) each including a different kind of fluorescent material. It's okay.
 本発明の態様12に係る照明装置3a~3dは、態様7から11のいずれか一態様における発光装置5、5a~5fと、上記発光装置が発する光を投光する光学素子(投光用レンズ51a、51c、51d;投光用リフレクタ51b)とを備える。 Illumination devices 3a to 3d according to aspect 12 of the present invention include light emitting devices 5 and 5a to 5f according to any one of aspects 7 to 11, and an optical element that projects light emitted from the light emitting device (projection lens). 51a, 51c, 51d; light reflector 51b).
 本発明の態様13に係る車両用前照灯は、態様12における照明装置を備える。 A vehicle headlamp according to aspect 13 of the present invention includes the illumination device according to aspect 12.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
1、1d 発光膜(波長変換部材)
2、2a 基板
2c 多孔質基板
3a~3d 照明装置
4 枠材
4e 遮光部材
5、5a~5f 発光装置
10 インク
11~13 発光層(波長変換部材)
21 溝
22 コーティング層
41 隙間
51a、51c、51d 投光用レンズ(光学素子)
51b 投光用リフレクタ(光学素子)
Ca 線(外側基準線)
Cb 線(内側基準線)
D 基準方向
ENV 包絡線
P、P1、P2 蛍光体粒子(粒子)
d 許容値
l 直線(基本基準線)
m 曲線(基本基準線)
n 線(基本基準線)
p 空孔
s 側面
1, 1d Light emitting film (wavelength conversion member)
2, 2a Substrate 2c Porous substrates 3a to 3d Illuminating device 4 Frame member 4e Light shielding member 5, 5a to 5f Light emitting device 10 Ink 11 to 13 Light emitting layer (wavelength converting member)
21 Groove 22 Coating layer 41 Gap 51a, 51c, 51d Light projection lens (optical element)
51b Reflector for light projection (optical element)
Ca wire (outside reference line)
Cb line (inner reference line)
D Reference direction ENV Envelopes P, P1, P2 Phosphor particles (particles)
d Tolerance l Straight line (basic reference line)
m Curve (basic reference line)
n-line (basic reference line)
p Holes side

Claims (13)

  1.  蛍光物質を含む波長変換部材であって、
     上記波長変換部材の幅広の面を上面とし、当該上面に対する側面の表面を形成する上記蛍光物質の複数の粒子の配列から導出される、当該側面の理想的な面を理想面とし、
     上記理想面と各上記粒子との間の距離は、許容値以下であることを特徴とする波長変換部材。
    A wavelength conversion member containing a fluorescent material,
    With the wide surface of the wavelength conversion member as an upper surface, the ideal surface of the side surface derived from an array of a plurality of particles of the fluorescent material that forms the surface of the side surface with respect to the upper surface is an ideal surface,
    The wavelength conversion member, wherein a distance between the ideal surface and each of the particles is an allowable value or less.
  2.  上記許容値は、上記粒子の平均粒径であることを特徴とする請求項1に記載の波長変換部材。 2. The wavelength conversion member according to claim 1, wherein the allowable value is an average particle diameter of the particles.
  3.  上記理想面と各上記粒子との間の距離は、上記理想面と各上記粒子の中心との間の距離であることを特徴とする請求項1または2に記載の波長変換部材。 The wavelength conversion member according to claim 1 or 2, wherein the distance between the ideal surface and each particle is a distance between the ideal surface and the center of each particle.
  4.  上記理想面と各上記粒子との間の距離は、上記複数の粒子のそれぞれについて算出される、上記理想面と当該理想面に最も近い当該粒子の表面の点との間の距離であることを特徴とする請求項1または2に記載の波長変換部材。 The distance between the ideal surface and each of the particles is a distance between the ideal surface and a point on the surface of the particle closest to the ideal surface, calculated for each of the plurality of particles. The wavelength conversion member according to claim 1 or 2, characterized by the above.
  5.  上記複数の粒子の表面が形成する包絡線から想定される近似面を、上記理想面とすることを特徴とする請求項1から4のいずれか一項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 4, wherein an approximate surface assumed from an envelope formed by the surfaces of the plurality of particles is the ideal surface.
  6.  上記理想面は平面であることを特徴とする請求項1から5のいずれか一項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 5, wherein the ideal surface is a flat surface.
  7.  請求項1から6のいずれか一項に記載の波長変換部材と、
     上記波長変換部材の側面に接した遮光部材と、
     上記波長変換部材および上記遮光部材が配された基板と、
    を備えることを特徴とする発光装置。
    The wavelength conversion member according to any one of claims 1 to 6,
    A light shielding member in contact with the side surface of the wavelength conversion member;
    A substrate on which the wavelength conversion member and the light shielding member are disposed;
    A light emitting device comprising:
  8.  請求項1から6のいずれか一項に記載の波長変換部材と、
     上記波長変換部材が配され、上記波長変換部材に沿った溝を有する基板と、
    を備えることを特徴とする発光装置。
    The wavelength conversion member according to any one of claims 1 to 6,
    A substrate on which the wavelength converting member is arranged and having a groove along the wavelength converting member;
    A light emitting device comprising:
  9.  上記基板は、上記波長変換部材が配される表面に撥油性のコーティング層を備えることを特徴とする請求項7または8に記載の発光装置。 The light-emitting device according to claim 7 or 8, wherein the substrate includes an oil-repellent coating layer on a surface on which the wavelength conversion member is disposed.
  10.  上記基板は、少なくともその表面に、上記粒子よりも小さい空孔を有することを特徴とする請求項7から9のいずれか一項に記載の発光装置。 10. The light emitting device according to claim 7, wherein the substrate has pores smaller than the particles on at least a surface thereof.
  11.  上記波長変換部材は、互いに異なる種類の蛍光物質をそれぞれ含む複数の層を含むことを特徴とする請求項7から10のいずれか一項に記載の発光装置。 The light emitting device according to any one of claims 7 to 10, wherein the wavelength conversion member includes a plurality of layers each including different types of fluorescent substances.
  12.  請求項7から11のいずれか一項に記載の発光装置と、
     上記発光装置が発する光を投光する光学素子とを備えることを特徴とする照明装置。
    A light emitting device according to any one of claims 7 to 11,
    An illumination device comprising: an optical element that projects light emitted from the light emitting device.
  13.  請求項12に記載の照明装置を備えた車両用前照灯。 A vehicle headlamp provided with the illumination device according to claim 12.
PCT/JP2015/069320 2014-09-30 2015-07-03 Wavelength conversion member, light-emission device, lighting device, and front lamp for vehicle WO2016051895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014202216 2014-09-30
JP2014-202216 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051895A1 true WO2016051895A1 (en) 2016-04-07

Family

ID=55629948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069320 WO2016051895A1 (en) 2014-09-30 2015-07-03 Wavelength conversion member, light-emission device, lighting device, and front lamp for vehicle

Country Status (1)

Country Link
WO (1) WO2016051895A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169189A (en) * 2011-02-15 2012-09-06 Koito Mfg Co Ltd Light-emitting module and vehicular lamp
JP2012226986A (en) * 2011-04-20 2012-11-15 Stanley Electric Co Ltd Light source device and lighting system
JP2012243618A (en) * 2011-05-20 2012-12-10 Stanley Electric Co Ltd Light source device and lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169189A (en) * 2011-02-15 2012-09-06 Koito Mfg Co Ltd Light-emitting module and vehicular lamp
JP2012226986A (en) * 2011-04-20 2012-11-15 Stanley Electric Co Ltd Light source device and lighting system
JP2012243618A (en) * 2011-05-20 2012-12-10 Stanley Electric Co Ltd Light source device and lighting device

Similar Documents

Publication Publication Date Title
US10054798B2 (en) Light-emitting device
WO2012014360A1 (en) Light-emitting module
JP5572038B2 (en) Semiconductor light emitting device and vehicular lamp using the same
JP5850570B2 (en) Illumination system comprising a remote phosphor layer and / or a scattering layer
JP6697225B2 (en) Lighting equipment
US8277064B2 (en) Light source and illumination system having a predefined external appearance
KR102510808B1 (en) Light source assembly with improved color uniformity
KR101945544B1 (en) Semiconductor light emitting device and vehicle lamp
JP2012099362A (en) Light emitting device
JP4739805B2 (en) Optical property control LED device and manufacturing method thereof
JP2010118531A (en) White lighting system and lighting fixture for vehicle
JP2007103937A (en) Casing for electromagnetic beam emission optoelectronics constituent element, electromagnetic beam emission optoelectronics constituent element, and method of manufacturing casing for electromagnetic beam emission optoelectronics constituent element or electromagnetic beam emission constituent element having such casing
JP6681882B2 (en) Lighting system
JP2009087681A (en) Vehicle headlight light source and vehicle headlight
CN109564308B (en) Wavelength conversion member and method for manufacturing same
WO2016051895A1 (en) Wavelength conversion member, light-emission device, lighting device, and front lamp for vehicle
JP2011165548A (en) Light source device and projector
JP2018077286A (en) Phosphor panel, light source device and luminaire
JP2023058756A (en) Optical element and light emission system
JP6596348B2 (en) Light emitting unit and lighting device
JP2018077961A (en) Fluorescent body panel, light source device and luminaire
JP2018147702A (en) Lighting device
JP2017098095A (en) Light emitting device, vehicular lighting fixture, display device and wavelength conversion device
WO2018212050A1 (en) Backlight unit, display device, manufacturing method for backlight unit, manufacturing apparatus of backlight unit
JP2022086688A (en) Light source, light source device, and manufacturing method of light source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15845901

Country of ref document: EP

Kind code of ref document: A1