WO2016051477A1 - Service system and method for assisting improvement of air-conditioning of building - Google Patents

Service system and method for assisting improvement of air-conditioning of building Download PDF

Info

Publication number
WO2016051477A1
WO2016051477A1 PCT/JP2014/075947 JP2014075947W WO2016051477A1 WO 2016051477 A1 WO2016051477 A1 WO 2016051477A1 JP 2014075947 W JP2014075947 W JP 2014075947W WO 2016051477 A1 WO2016051477 A1 WO 2016051477A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
renovation
repair
signal
item
Prior art date
Application number
PCT/JP2014/075947
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 勝幸
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/075947 priority Critical patent/WO2016051477A1/en
Publication of WO2016051477A1 publication Critical patent/WO2016051477A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Definitions

  • the present invention relates to a building space improvement support service system and method, and is particularly suitable for application to a building air conditioning improvement support service system that supports building improvement.
  • BEMS Building Energy Management System
  • HEMS Home Energy Management System
  • Patent Document 1 discloses a system that predicts a change pattern of the outside air temperature based on the next day's weather information acquired from an external weather information site or the like, and controls two types of heating devices based on the change pattern. It is disclosed.
  • Patent Document 2 discloses a system that performs air conditioning control by determining the comfort / discomfort of each room based on the temperature and humidity inside the house and also provides power-saving advice to residents.
  • Patent Document 3 discloses a system that measures the temperature inside and outside the house and the electricity consumption of the air conditioning equipment and analyzes the degree of deterioration of the heat insulation performance of the house and the performance of the air conditioning equipment.
  • Non-Patent Document 1 building thermal characteristic models as shown in Non-Patent Document 1 and Non-Patent Document 2 are known. Predictive control using these building thermal characteristic models is also being performed, and in air conditioning control of buildings, air conditioning control considering comfort in addition to cooling / heating efficiency and energy saving characteristics is required.
  • Patent Document 4 discloses a technology for optimizing on / off control of a heat source boiler as control in consideration of such comfort.
  • Non-Patent Document 3 discloses that a power energy consumption tendency of home appliances and the like is grasped by analyzing power consumption characteristics in a building.
  • ISO 13790 ISO ISO 13790: 2008 Energy performance of buildings --Calculation of energy energy Use for space Space heating and cooling Standard Assessment Procedure (SAP): Building Research EstablishmentDomestic Energy Model (BREDEM) Iwafune, et al .: Residential power consumption pattern analysis method based on distribution board measurement: IEEJ Transactions C (Electronics, Information and Systems): Vol. 133 (2013) No. 5 P 1086-1093
  • Patent Document 2 discloses a system that performs air conditioning control by determining whether each room is pleasant or uncomfortable based on the temperature and humidity inside the house, and also provides power saving advice to residents. It has only been encouraged to improve comfort and has not yet shown its impact on thermal efficiency.
  • Patent Document 3 the temperature inside and outside the house and the electricity consumption of the air conditioning equipment are measured and accumulated to analyze the heat insulation performance of the house and the deterioration degree of the performance of the air conditioning equipment. Not reached.
  • Non-Patent Document 3 shows power energy consumption trends of household appliances and the like by analysis of power consumption characteristics in buildings, but analysis of temperature and humidity necessary for building air conditioning control is excluded. Yes.
  • the building model for evaluating the validity of the heat insulation capacity and the heat source capacity that influence the characteristics of the air conditioning control the building heat characteristic model as shown in Non-Patent Document 1 and Non-Patent Document 2 is known.
  • the average fuel consumption such as average or daily average is handled, and thermal efficiency evaluation considering the daily change in air conditioning demand has not been achieved.
  • predictive control using such a building model has been developed, but this is limited to optimization of on / off control of the heat source boiler as shown in Patent Document 4.
  • the air conditioning control is optimization for each room, and it cannot be said that the energy consumption of the entire building is optimized.
  • the measurement of the resident behavior is limited to the presence / absence determination, and it cannot be said that the air conditioning control considering the influence on room temperature and humidity is performed.
  • the conventional technology alone has a problem that it is difficult to determine an optimal improvement method for improving the comfort of a building space in consideration of resident behavior.
  • the present invention has been made in consideration of the above points, and intends to propose a building space improvement support service system and method capable of presenting an optimal improvement method for improving the comfort of a building space in consideration of resident behavior. To do.
  • a process signal including environmental data that affects the comfort of the building space of the building, and resident behavior And a component for each factor that causes variation in the process signal when the predetermined repair item of the building is repaired to a predetermined specification based on the input process signal and the event signal.
  • a renovation simulation execution unit for executing a renovation simulation for each of the specifications of a plurality of predetermined renovation items, and a predetermined renovation item of the building based on a simulation result of each renovation simulation Of the building when changed to the above specifications
  • the change of the environmental data is determined for each of the specifications of the respective repair items, the evaluation value for each of the specifications of the respective repair items is calculated based on the obtained change of the environmental data, and each of the calculated repair items
  • a renovation plan creation unit that creates a renovation plan for the building based on an evaluation value for each of the specifications, and the refurbishment simulation execution unit calculates a fluctuation component of the process signal due to resident behavior in the renovation simulation.
  • a component for each variation occurrence factor of the excluded process signal is obtained.
  • the process includes environmental data that affects the comfort of the building space of the building.
  • the signal and an event signal composed of information related to resident behavior are input, and the process signal changes when the predetermined repair item of the building is repaired to a predetermined specification based on the input process signal and the event signal.
  • Change of the environmental data of the building is determined for each of the specifications of each of the renovation items, and an evaluation value for each of the specifications of each of the renovation items is calculated based on the obtained change of the environmental data.
  • a second step of creating a renovation plan for the building based on an evaluation value for each specification of the refurbishment item.
  • the process signal of the process signal caused by resident behavior in the renovation simulation is provided.
  • a component for each variation occurrence factor of the process signal excluding the variation component is obtained.
  • FIG. 1 indicates a building air conditioning improvement support service system according to this embodiment as a whole.
  • This building air-conditioning improvement support service system 1 includes changes in environmental data such as room temperature and humidity in the building that affect the comfort of the building space, and causes the fluctuations (building insulation characteristics, resident behavior, and air-conditioning characteristics). This is referred to below as the cause of fluctuation), and the information obtained from the analysis is used to improve the comfort of the building space while improving the air conditioning fuel costs (hereinafter referred to as the air conditioning fuel costs). It is equipped with a building air-conditioning improvement support function that presents to the user a renovation plan that can be reduced.
  • the measured values such as the room temperature and humidity in the building and the measured values of the external temperature and humidity are given as process signals to the scenario setting unit 20 of the scenario setting processing unit 2. It is done.
  • information related to the behavior of the resident such as the number of times of opening and closing the windows and doors, the opening / closing time, and on / off of the air conditioning is given to the scenario setting unit 20 as an event signal.
  • the scenario setting unit 20 is also given scenario information indicating the contents of the scenario 25 selected at that time.
  • the scenario 25 in the present specification defines conditions for executing a renovation simulation described later. For example, a scenario in which the external temperature is raised by 5 degrees from the current external temperature, A scenario for reducing the current external temperature by 3 degrees and a scenario for changing the number of times of opening and closing the window and the opening and closing time are prepared.
  • Each scenario 25 includes scenario data that defines how much the value of which process signal or event signal is to be changed.
  • the scenario in which the external temperature is increased by 5 degrees from the current external temperature includes scenario data for increasing the value of the process signal corresponding to the external temperature by 5 degrees.
  • the scenario setting unit 20 adds the scenario data included in the scenario 25 to the process signal or event signal corresponding to the selected scenario 25 among the given process signals and event signals. Apply. In this manner, by adding the scenario data to the corresponding process signal or event signal, a repair simulation can be performed under conditions according to the scenario 25.
  • the scenario setting unit 20 adds the scenario data to the corresponding process signal or event signal, and then processes the process signals such as room temperature and humidity that affect the comfort of the building space (hereinafter referred to as specific process signals as appropriate). ) Are output to the disassembly unit 10 of the repair simulation execution unit 3. Further, the scenario setting unit 20 outputs the event signal and a part of the process signal to the conversion unit 30 of the repair simulation execution unit 3.
  • the conversion unit 30 converts the event signal and a part of the process signal given from the scenario setting unit 20 into a signal of the same physical unit system as the specific process signal by using the building model set by the model setting unit 40. . Specifically, the conversion unit 30 converts, for example, a scenario signal indicating the number of times that a window or door has been opened and closed and an opening and closing time into a signal that indicates a change in room temperature due to the opening and closing of the window or door in time series. In addition, the scenario signal indicating the on / off of the air conditioning is converted into a signal indicating a change in room temperature due to the on / off of the air conditioning in time series. Then, the conversion unit 30 outputs the signal obtained by such conversion processing to the decomposition unit 10 as a conversion event signal and a conversion process signal.
  • the decomposition unit 10 eliminates the fluctuation component of the specific process signal caused by the resident behavior from the specific process signal given from the scenario setting unit 20 based on the conversion event signal and the conversion process signal given from the conversion unit 30. Are decomposed into components for each variation occurrence factor, and the obtained components for each variation occurrence factor are stored in the decomposition signal database 15 of the modification plan creation processing unit 4.
  • the above processing is the renovation simulation.
  • the remodeling simulation is performed for each scenario, and each of the items that can be remodeled in advance for the building (insulation material, air-conditioning equipment, etc., hereinafter referred to as a renovation item).
  • a renovation item material for thermal insulation, capacity for air conditioning equipment, etc.
  • the remodeling simulation for each remodeling item specification is performed by the model setting unit 40 setting the building model in the conversion unit 30 when the remodeling item of the target building is remodeled to the specification.
  • the decomposition signal database 15 also stores some process signals such as the external temperature. A method of using this process signal will be described later.
  • this building air-conditioning improvement support service system 1 has a cost (hereinafter referred to as a refurbishment cost) required for refurbishing the relevant part of the target building with the refurbishment item for each refurbishment item specification.
  • a database (hereinafter referred to as a repair cost database) 65 in which information of the information is stored is held in advance.
  • the cost of this renovation is not limited to the unit price for each specification of the insulation or air conditioning equipment, but also the insulation and air conditioning equipment in the building. It also includes the cost required for renovation and construction to change to the material and air conditioning equipment.
  • the target selection unit 60 of the repair plan creation processing unit 4 refers to the repair cost database 65 and performs the repair specifying one specification of one repair item.
  • a plan creation instruction is given to the repair plan creation unit 50.
  • the repair plan creation unit 50 executes the repair plan for repairing the relevant part of the target building at that time to the specification of the repair item specified in the repair plan creation instruction. And a total cost and an evaluation value of a predetermined evaluation item in that case (in the following, it is assumed that it is the comfort of the building and the subsequent air-conditioning fuel cost when the renovation plan is executed).
  • the target selection unit 60 also performs the process and the total cost when executing the renovation plan for refurbishing the renovation item of the building to the specification for each of the remaining refurbishment item specifications.
  • the renovation plan creation unit 50 calculates the comfort of the building and the subsequent air-conditioning fuel cost. Then, when the above calculation is completed for all specifications of all the repair items, the target selection unit 60 gives a repair plan creation instruction to the repair plan creation unit 50.
  • the refurbishment plan creation unit 50 has a high level of comfort when the renovation plan is executed for each refurbishment plan in which the man-hours and total costs are calculated as described above.
  • the improvement plan 200 arranged in order from the lowest or the lowest air-conditioning fuel cost is created.
  • the modification plan creation unit 50 presents the modification plan 200 created in this way to the user by printout or screen display.
  • FIG. 2 shows the configuration of the scenario setting processing unit 2.
  • the scenario setting processing unit 2 includes at least a scenario setting unit 20.
  • the scenario setting unit 20 includes a signal editing unit 21 corresponding to each of the process signal and the event signal.
  • scenario data included in the scenario at that time is added to the corresponding process signal or event signal. By adding, the process signal or event signal after scenario setting is calculated.
  • the signal editing unit 21 sets S (t) as the value of the target process signal or event signal at time t, and sets the value of scenario data at time t included in the scenario as bias (t). To calculate the process signal SS (t) or the event signal SS (t) after the scenario is set, and convert the calculated process signal SS (t) or the event signal SS (t) to the conversion unit 30 or the disassembly of the repair simulation execution unit 3 To the unit 10.
  • the signal editing unit 21 directly converts the corresponding process unit and event signal into the corresponding conversion unit 30 or decomposition. To the unit 10.
  • the scenario data for increasing the external signal by 5 degrees is added only to the process signal of the measured value of the external temperature.
  • process signals and event signals are output to the corresponding conversion unit 30 or decomposition unit 10 as they are.
  • the scenario data is added only to the event signal indicating the number of windows open / closed, and other process signals and event signals are supported as they are. To the conversion unit 30 or the decomposition unit 10.
  • FIG. 3 shows the configuration of the modification simulation execution unit 3.
  • the modification simulation execution unit 3 includes a model parameter calculation unit 44 and a model parameter database 45 in addition to the model setting unit 40, the conversion unit 30, and the decomposition unit 10 described above.
  • the model parameter calculation unit 44 is based on data (hereinafter referred to as building data) 100 relating to the building, such as the building style, the total floor area, the floor plan, and the resident population of the target building at that time, given in advance.
  • building data data
  • Each parameter of the building model (building model set in the conversion unit) is calculated. In practice, this parameter can be calculated using the least square method or the method disclosed in the above-mentioned Patent Document 4 or the above-mentioned Non-Patent Document 1 or Non-Patent Document 2. Then, the model parameter calculation unit 44 stores the parameters calculated in this way in the model parameter database 45 as model parameters 45D.
  • the model setting unit 40 is notified from the scenario information indicating the contents of the current scenario 25 notified from the scenario setting unit 20 of the scenario setting processing unit 2 and the target selection unit 60 of the modification plan creation processing unit 4 as described later.
  • the corresponding model parameter 45D is acquired from the model parameter database 45 based on the renovation item and its specification.
  • the model setting unit 40 generates a building model for converting the event signal and some process signals into the same physical unit as the specific process signal based on the acquired model parameter 45D, and converts the generated building model into the conversion unit Set to 30.
  • the actual state of the building model is a transfer function, and in this embodiment, a Laplace transform function is applied as the transfer function. Therefore, in the case of this embodiment, the above-described model parameter calculation unit 44 calculates the gain and time constant of the Laplace transform function as the model parameter 45D.
  • the conversion unit 30 uses the building model set by the model setting unit 40 to convert an event signal having a physical unit different from the specific process signal and a part of the process signal into a signal having the same physical unit as the specific process signal. Perform the conversion process. Specifically, the conversion unit 30 uses the event signal and the process signal to be converted as the signal S160, and the building model (Laplace conversion function) set by the model setting unit 40 as M (s). Thus, the signal S160 is converted into a signal S170 having the same physical unit as that of the specific process signal.
  • the event signal S160 indicating the number of opening and closing times and the opening and closing time of the window shown in FIG. 3 is converted into the conversion event signal S170 of FIG. become.
  • the conversion event signal S170 is obtained from the target selection unit 60 of the renovation plan creation processing unit 4 under the conditions specified in the scenario 25 selected at that time, and the corresponding part of the target building is then modeled. It represents a change in room temperature due to opening / closing of the window when the modification item notified to the setting unit 40 and the specification are modified.
  • the disassembling unit 10 Based on the specific process signal S10 provided from the scenario setting unit 20 of the scenario setting processing unit 2 and the above-described conversion scenario signal and conversion process signal S170 provided from the conversion unit 30, the disassembling unit 10 In the case where the relevant part is modified to the modification item notified to the model setting unit 40 from the target selection unit 60 of the modification plan creation processing unit 4 and its specification, the fluctuation component due to the resident behavior is excluded from the specific process signal S10. Then, a decomposition process for decomposing the specific process signal S10 into components for each variation occurrence factor is executed.
  • a general signal decomposition technique such as Fourier transform can be applied to the decomposition process.
  • the specific process signal S10 is converted into a component for each factor of fluctuation using an independent component analysis method. Decompose. For example, when the specific process signal S10 is a measured value of the room temperature in the building, the decomposition unit 10 depends on the temperature change component S10A that depends on the thermal insulation characteristics of the building and an event such as opening / closing of a window. It decomposes into the temperature change component S10B. Then, the decomposition unit 10 stores the components for each variation occurrence factor of the specific process signal S10 obtained in this way in the decomposition signal database 15.
  • FIG. 4 shows a specific configuration example of the modification plan creation processing unit 4.
  • the repair plan creation processing unit is configured to include the target selection unit 60, the repair plan creation unit 50, the decomposition signal database 15, and the repair cost database 65 as described above.
  • “case 1”, “case 2”, “case 3”,... Indicate components for each cause of fluctuation of the specific process signal obtained by the above-described renovation simulation.
  • the target selection unit 60 refers to the repair cost database 65 when the repair simulation is executed by the repair simulation execution unit 3, and selects one repair item from the specifications of each repair item registered in the repair cost database 65. And the specification is selected, and this is notified to the model setting unit 40 of the repair simulation execution unit 3 together with the repair simulation execution instruction.
  • the model setting unit 40 acquires the model parameter 45D corresponding to the specification of the repair item notified at this time from the model parameter database 45 in accordance with the repair simulation execution instruction, and at that time, based on the acquired model parameter 45D as a target.
  • a building model of the existing building is generated, and the generated building model is set in the conversion unit 30.
  • the target selecting unit 60 thereafter gives the model setting unit 40 an instruction to execute the repair simulation while sequentially switching the specification of the repair item notified to the model setting unit 40 to the specification of the other repair item to be notified.
  • the remodeling simulation execution unit 3 performs a remodeling simulation for each specification of each refurbishment item.
  • the target selection unit 60 refers to the repair cost database 65 and specifies a repair plan creation instruction that specifies one specification of one repair item. This is given to the creation unit 50.
  • the renovation plan creation unit 50 requests the model setting unit 40 of the renovation simulation execution unit 3 to set the corresponding building model in response to the renovation plan creation instruction, and thus uses the building model set by the model setting unit 40. Then, a temporal change in room temperature and humidity is calculated when the repair plan for repairing the relevant part of the target building at that time to the specification of the repair item specified in the repair plan creation instruction is executed.
  • the renovation plan creation unit 50 includes a difference calculation unit 53, a signal conversion unit 52, and a separated signal correction unit 54 as shown in FIG.
  • the refurbishment plan creation unit 50 reads the external data from the decomposition signal database 15 (FIG. 1).
  • Thermal insulation characteristics of building of specific process signal obtained in renovation simulation when process model S20 of temperature measurement value and building model corresponding to renovation item and specification specified in renovation plan creation instruction are set in conversion unit 30
  • Temperature change component hereinafter referred to as adiabatic origin component of the specific process signal
  • the difference calculation unit 53 calculates the difference between them. Then, the difference between the external temperature and the room temperature calculated by the difference calculation unit 53 is given to the signal conversion unit 52.
  • the building model corresponding to the specification of the repair item specified in the repair plan creation instruction is set by the model setting unit 40 of the repair simulation execution unit 3 as described above.
  • the signal conversion unit 52 uses this building model to time the temperature difference between the external temperature and the room temperature when the relevant part of the target building is repaired to the specification of the repair item specified in the repair plan creation instruction.
  • a converted signal representing a target change is generated and output to the separated signal correction unit 54.
  • the separation signal correction unit 54 corrects the adiabatic component S10A derived from the specific process signal by adding the converted signal given from the signal conversion unit 52 to the adiabatic component S10A derived from the specific process signal read from the decomposition signal database 15. To do. As a result, a signal (hereinafter referred to as a renovation simulation signal) S21 representing a temporal change in room temperature when the relevant part of the target building is renovated to the specification of the renovation item specified in the renovation plan creation instruction is obtained. It will be.
  • the refurbishment plan creation unit 50 performs a renovation simulation that represents a temporal change in humidity in the building when the relevant part of the target building is renovated to the specification of the refurbishment item specified in the renovation plan creation instruction in the same manner as described above.
  • the signal S21 is also calculated.
  • the renovation plan creation unit 50 calculates the necessary air-conditioning fuel cost and the indoor comfort based on the room temperature and humidity renovation simulation signal S21 calculated in this way.
  • the repair plan creation unit 50 also calculates the man-hours and the total cost when the relevant part of the target building is repaired to the specification of the repair item specified in the repair plan creation instruction.
  • the renovation plan creation unit 50 executes the above processing every time a renovation plan creation instruction is given from the target selection unit 60. Then, the target selection unit 60 changes the repair items specified in the repair plan creation instruction and the specifications for one scenario, and sequentially changes the repair plan creation instructions that specify all the specifications of all the repair items. 50 is given sequentially. As a result, in accordance with these renovation plan creation instructions, the rehabilitation plan creation unit 50 executes the rehabilitation plan for refurbishing the relevant part of the target building to the specification of the renovation item specified in the renovation plan creation instruction, and The total cost, the comfort of the building in the case of the refurbishment, and the subsequent air-conditioning fuel cost are calculated.
  • the target selection unit 60 and the renovation plan creation unit 50 perform the same processing for other scenarios.
  • the renovation plan creation unit 50 the number of man-hours and the total cost when the renovation plan for refurbishing the relevant part of the target building to the specification of each renovation item specified in the renovation cost database, and the renovation are performed. If so, the comfort of the building and the subsequent air fuel costs are calculated.
  • the renovation plan creation unit 50 calculates the man-hours and the total cost, the comfort of the building when the renovation is performed, and the air-conditioning fuel cost thereafter.
  • a repair plan 200 as shown in FIG. 4 in which the repair plans are arranged in descending order of comfort or in order of lower air-conditioning fuel costs is created and printed out or displayed on a screen.
  • the repair cost database 65 corresponds to the scenario 25 for changing the resident behavior such as the number of times of opening and closing the windows and doors and the opening and closing time in addition to the specifications of the respective repair items.
  • the repair simulation conditions (such as the number of times of opening and closing windows and doors and the opening / closing time) defined in the above are also stored as repair items.
  • the target selecting unit 60 for such a scenario 25, as a modification plan creation instruction described above, a modification plan in which the condition of the modification simulation specified in the scenario 25 and one specification of one modification item are specified.
  • a creation instruction is given to the repair plan creation unit 50.
  • the renovation plan creation unit 50 sets the setting of the building model corresponding to the specification of the refurbishment item specified in the renovation plan creation instruction to the model setting unit of the renovation simulation execution unit 3 40 (FIG. 1), and using the building model set by the model setting unit 40, the relevant part of the target building at that time is repaired to the specification of the repair item specified in the repair plan creation instruction. Calculate the change in room temperature and humidity over time when the renovation plan is executed.
  • the renovation plan creation unit 50 for example, the condition of the renovation simulation specified in the renovation plan creation instruction is “door opening / closing frequency and opening / closing time”, and the renovation plan creation instruction
  • the refurbishment item and specification specified in step 1 are “insulation material specifications”
  • the adiabatic origin component S10A of the specific process signal obtained in the repair simulation when the building model corresponding to the repair item and specification specified in the instruction is set in the conversion unit 30 (FIG. 1) is read out.
  • the refurbishment plan creation unit 50 differentiates the “door opening / closing times and opening / closing time” event signal S160 read from the decomposition signal database 15 by the difference calculation unit 53 and then sets the building model set in the signal conversion unit 52. Is converted into an event signal (conversion event signal) S161 having the same physical unit as the adiabatic component S160 of the specific process signal.
  • the refurbishment plan creation unit 50 reads the event signal (conversion event signal) S161 from the decomposition signal database 15 as described above in the separation signal correction unit 54, and the renovation plan specified in the renovation plan creation instruction.
  • the component derived from the heat insulation of the specific process signal is corrected by adding to the heat insulation derived component S10A of the specific process signal obtained in the renovation simulation when the building model corresponding to the item and specification is set in the conversion unit 30.
  • a repair simulation signal S21 representing a temporal change in room temperature when the door is opened and closed with the number of times of opening and closing and the opening and closing time after the update is obtained.
  • repair plan creation unit 50 repairs the corresponding part of the target building to the specification of the repair item specified in the repair plan creation instruction in the same manner as described above, and the “opening and closing times” specified in the repair plan creation instruction.
  • a renewal simulation signal S21 representing a temporal change in humidity in the building when the door is opened and closed with the number of times of opening and closing and the opening and closing time after updating in accordance with the content of "update of opening and closing time".
  • the renovation plan creation unit 50 calculates the air conditioning fuel cost for performing the necessary air conditioning control and the indoor comfort based on the room temperature and humidity renovation simulation signal S21 calculated in this way.
  • the refurbishment plan creation unit 50 executes the above process every time the renovation plan creation instruction is given from the target selection unit 60. Then, the target selection unit 60 changes the repair items specified in the repair plan creation instruction and the specifications of the scenario, and sequentially changes the repair plan creation instructions that specify all the specifications of all the repair items. Sequentially.
  • the refurbishment plan creation unit 50 executes the renovation plan for refurbishing the relevant part of the target building to the specification of the renovation item specified in the renovation plan creation instruction, and
  • the renovation plan creation unit 50 determines the refurbishment plan in which the comfort of the building and the subsequent air-conditioning fuel cost are obtained by the above calculation in the order of higher comfort or the subsequent air-conditioning fuel cost.
  • the repair plans 200 arranged in ascending order are created and printed out or displayed on the screen.
  • FIG. 7 shows an example of the structure of various data and signals in the building air conditioning improvement support service system 1.
  • the modification plan 200 is output data based on scenario data.
  • the building data 100 is data including information such as the building style, total floor area, floor plan, and resident population of the target building at that time.
  • Each of these data and each signal also changes the relationship between the databases to 1: 1 or 1: n depending on whether the target building or the analysis target is room temperature or humidity.
  • FIG. 8 shows a flow of a series of processes executed in relation to the building air conditioning improvement support function described above in the building air conditioning improvement support service system 1.
  • one scenario 25 is first selected (SP 1), and thereafter, the scenario 25 out of process signals and event signals given to the scenario setting unit 20 of the scenario setting processing unit 2 is selected. Scenario data is added to the corresponding process signal or event signal (SP2).
  • the event signal and a part of the process signal are converted into a signal having the same physical unit as the specific process signal and given to the decomposition unit 10 (SP3).
  • the specific process signal is decomposed into components for each variation occurrence factor in the unit 10 (SP4).
  • the components for each variation occurrence factor of the specific process signal obtained in this way are stored in the decomposition signal database 15 (SP5).
  • step SP6 the processing from step SP2 to step SP5 is executed for all scenarios 25. If not (SP7: NO), the same process is repeated for each scenario 25.
  • one scenario 25 is selected by the target selection unit 60 of the modification plan creation processing unit 4 (SP8), and the scenario Under 25, the time change such as room temperature when executing the repair plan to repair the relevant part of the target building to one specification of one repair item registered in the repair cost database 65 creates the repair plan Derived by the unit 50 (SP9). Thereafter, the air conditioning fuel cost and the comfort of the subsequent building when such a renovation is performed are sequentially calculated by the renovation plan preparation unit 50 (SP10, SP11).
  • the repair plan creation unit 50 performs the subsequent air conditioning fuel cost and comfort as described above.
  • the respective renovation plans that have been calculated are ranked in descending order of comfort or in descending order of air-conditioning fuel costs (SP13).
  • steps SP8 to SP13 are not executed for all scenarios 25 (SP14: YES), the same process is repeated for each scenario 25.
  • the modification plan creation unit creates a modification plan 200 for each scenario 25 and outputs it (SP15).
  • FIG. 9 is a flowchart showing specific processing contents of the disassembling process executed by the disassembling unit 10 in step SP4 of FIG.
  • the independent component analysis method is applied as described above as a signal decomposition method for decomposing a specific process signal to be analyzed.
  • the observation data in the independent component analysis method is a process signal and an event signal
  • the number of these process signals and event signals input to the decomposition unit 10 is the number of independent components.
  • a minimization problem of a high-order cumulant derived from a high-order moment as a statistic may be applied.
  • the fourth order is sufficient as a high-order cumulant, and the algorithm required in practical calculation time is, for example, Non-Patent Document 4 (A. Hyvarinen, J. Karhunen, E. Oja: Independent Component Analysis: John Wiley & Sons (2001)).
  • the independent component analysis is to obtain this independent component signal, that is, the decomposed signal S (t). If all the decomposition signals S (t) that are so-called signal sources (sound sources) can be measured, A matrix W that satisfies the above is uniquely obtained, but some observation signals SS (t) are mostly interfering, and independent measurement is difficult.
  • the independent component analysis shown in Non-Patent Document 4 solves this problem.
  • a general technique shown in Non-Patent Document 4 or the like is used as a calculation procedure for independent component analysis.
  • the decomposition unit 10 inputs observation data and the number of independent components (SP20).
  • the observation data includes a process signal and an event signal.
  • the number of independent components is equivalent to the number of decompositions at the time of decomposing room temperature, room humidity, etc. according to the change factors from these observation data. That is, when the room temperature change is decomposed into the outside air temperature, the boiler start / stop as the heat source, and the door opening / closing, the number of independent components is 3.
  • the number of independent components is set in advance by the user.
  • the decomposition unit 10 decorrelates the observation data as data preprocessing for independent component analysis (SP21).
  • the decorrelation means that the average value of observation data is 0 (zero), and can be obtained by principal component analysis, which is one of multivariate analysis techniques. 9 is equivalent to making the average value of the observed data zero by principal component analysis.
  • Non-Patent Document 4 an independent component for observation data can be obtained by minimizing the feature quantity of statistical data called cumulant, and is widely known as an algorithm called FastICA.
  • the cumulant is derived from the statistic moment.
  • the first-order cumulant is the average value of the observed data
  • the second-order cumulant is the variance representing the variation of the observed data
  • the third-order cumulant is the third-order cumulant.
  • Non-Patent Document 4 shows a method of obtaining an independent component by solving the problem of minimizing such a high-order cumulant, and can be obtained in a practical calculation time.
  • the decomposing unit 10 stores the components for each variation occurrence factor of the specific process signal thus obtained in the decomposing signal database in step SP5 of FIG.
  • FIG. 10 shows a specific configuration example of the building air conditioning improvement support service system 1 according to the present embodiment.
  • FIG. 10 is a configuration example when the building air conditioning improvement support service system 1 is applied to HEMS. Only the function of the disassembling unit 10 (FIG. 1) is given to the cloud server 11, and the scenario setting unit 20 and the model parameter calculating unit 44. The functions of the model setting unit 40, the conversion unit 30, the target selection unit 60, and the renovation plan creation unit 50 are provided to a general HEMS 111 that manages and manages the HEMS. In FIG. 10, weather data and the like are given to the overall HEMS 111 via the network 112 as a partial scenario 25.
  • the cloud server 110 is a general-purpose server device having a CPU (Central Processing Unit) and information processing resources such as a memory, and the CPU executes a program stored in the memory, whereby the building air conditioning improvement support service system 1 is decomposed. The function as the part 10 is demonstrated.
  • the overall HEMS 111 is also configured to include information processing resources such as a CPU and a memory, and the CPU executes a program stored in the memory, so that the scenario setting unit 20 and the model parameter calculation unit of the building air conditioning improvement support service system 1 44, the model setting unit 40, the conversion unit 30, the target selection unit 60, and the modification plan creation unit 50 are exhibited.
  • the room temperature and humidity in the building measured by the thermostat 113 and the thermometer (TRV) 114A mounted on the radiator 114 (FIG. 11) of each room in the building are provided.
  • the temperature of the radiator 114 measured from time to time is supplied to the overall HEMS 111 as a process signal.
  • the general HEMS 111 is notified of information about the open / closed state (open or closed) of the window or door detected by the sensor 115 installed on the window or door, and the state (on / off) from the heat source 117.
  • the overall HEMS 111 generates, for example, an event signal indicating the number of times of opening / closing the window or door and the opening / closing time of the window or door detected by the sensor 115, and based on a notification from the heat source 117. Then, an event signal indicating on / off of the heat source 117 is generated.
  • the general HEMS 111 sets the scenario setting unit 20, the model parameter calculation unit 44, the model setting unit 40, the conversion unit 30, the target selection unit 60, and the modification described above with reference to FIGS.
  • Various processes related to the plan creation unit 50 are executed.
  • the decomposition signal database 15 is arranged on the cloud server 110 side as the function of the decomposition unit 10 is also provided on the cloud server 110 side, while the other model parameter database 45 and the repair cost database. 65 and the like are arranged on the overall HEMS 111 side.
  • FIG. 11 shows an example in which the building air-conditioning improvement support service system 1 according to the present embodiment is applied to central heating in the configuration of FIG.
  • the overall HEMS 111 is preliminarily provided with a heat insulation characteristic for each room as a model, and the overall HEMS 111 performs optimal control of air conditioning for each room based on these models.
  • thermometer (TRV) 114A of the radiator 114 in each room it is possible to take into account the interference of room temperature changes between the rooms, and so-called air-conditioning zoning control can be performed.
  • FIG. 11 shows an example in which the sensor 115 is installed in a window or a door, the air-conditioning zoning control can also be performed by installing the human sensor 116 in each room.
  • a specific process signal fluctuates when a predetermined modification item of a building is modified to a predetermined specification.
  • a repair simulation for obtaining a component for each factor is executed for each specification of each repair item, and a repair plan 200 is created based on the simulation results of these repair simulations.
  • the building space improvement support service system 1 obtains a component for each variation occurrence factor of the process signal in which the variation component of the process signal due to the resident behavior is excluded in the repair simulation.
  • the building air-conditioning improvement support service system 1 it is possible to provide an optimal renovation plan 200 (improvement method) that also considers resident behavior for improving the comfort of the building space.
  • process signals and event signals are input and scenario data is added.
  • This scenario is, for example, door opening / closing, boiler ON / OFF, weather condition change, and the like.
  • the conversion unit 30 converts the signal into the same unit system as the process signal using the model parameter.
  • the disassembling unit 10 sets the physical units as input information.
  • the output of the decomposition unit 10 is temporarily stored in the decomposition signal database 15. The processing so far is the same as in FIG.
  • control parameters registered in the control parameter database 85 are compared for each scenario, adjusted by the control parameter adjusting unit 80, and the optimum parameter determined by the control parameter determining unit 70. .
  • a control parameter based on the model characteristics is derived from the model setting unit 40 by referring to the model parameter used in the control parameter adjustment.
  • the derivation calculation procedure is based on, for example, Generic Model Control shown in Non-Patent Document 5 (Suzuki, et al .: Application of Generic Model Control to batch polymerization temperature control: SCEJ 70th Annual Meeting). It is possible to derive a proportional gain and an integral gain as control parameters.
  • y is a control signal, that is, room temperature
  • r is a target value
  • k1 and k2 can be associated with a proportional gain and an integral gain.
  • an objective function can be defined such as minimizing dy / dt.
  • the control parameters are registered as a parameter list 300 and are installed in each BEMS and HEMS controller. For example, room temperature control is applied to the control parameters of thermostat control.
  • FIG. 15 is a flowchart showing the flow of processing in the building air conditioning improvement support service system according to this embodiment. Control parameter adjustment and objective function calculation are as described above. Note that, when the processing is executed online, the model data update determination is omitted, and the procedure up to the control parameter may be repeated every control cycle as time progresses.
  • the control target value generation is to correct a control target value that has been set to a constant value based on the decomposition result.
  • the process drive data is compared and the control parameter is set.
  • the target to be compared with the control target value is compared with the observation signal S10 and the decomposition signal S150 to derive the corrected control value Sr10.
  • the corrected control value r10 eliminates a disturbance factor that deteriorates the performance of Fordback control, and realizes stable automatic control.
  • the fuel consumption is suppressed by suppressing the heat source control.
  • the opening and closing of the window is a short period, a temperature decrease can be suppressed by the inherent heat insulation performance of the building, and a decrease in comfort can also be suppressed.
  • FIG. 18 is a flowchart showing a processing procedure of control parameter adjustment support processing in the building air conditioning improvement support service system according to this embodiment.
  • the comparison of the decomposition signal and the control amount and the generation of the control target value are as described above. Note that, when the processing is executed online, the model data update determination is omitted, and the procedure up to the control parameter may be repeated every control cycle as time progresses.
  • the model setting unit 40 compares the process signal S10 with the addition of the decomposition signal, confirms the decomposition accuracy, and determines the probability of the model used for unifying the physical unit of the decomposition input. In other words, if the temperature change derived from insulation is too large, the gain of the model parameter corresponding to the event signal is increased, and conversely, if the temperature change derived from insulation is too small, the insulation data is considered too large and the building data is reviewed. Judging. These processes are ruled and provided in the model setting unit 40.
  • FIG. 20 shows an example of the data structure related to control parameter adjustment in the building air conditioning improvement support service system according to the present embodiment.
  • the data structure is based on scenario data
  • the control parameter 300 is output data.
  • the building data 100 is data including the floor plan of the building to be controlled and the resident characteristics.
  • the relationship between the databases changes to 1: 1 or 1: n depending on the building to be controlled or whether the signal to be decomposed is room temperature or another signal.
  • the control parameter 300 is assumed to be connected to an automatic control system, and is implemented as a parameter of a BEMS or HEMS controller, for example.
  • the room temperature measurement value S10 is an object to be decomposed, the physical unit is unified at the temperature ° C. It is assumed that the room temperature measurement values shown in FIG. 21 include those due to solar radiation or outside air temperature changes and temperature changes associated with window opening / closing and heating control. According to the scenario setting, the window opening / closing signal and the heating on / off control signal are converted into a temperature signal, and signal separation is performed in the disassembling unit 10, so that one process drive signal and two event drive signals shown in the right diagram of FIG. Decompose.
  • the temperature change due to the heat insulation characteristics of the building, the temperature disturbance accompanying the resident behavior such as windows and doors, and the influence factors of the air conditioning control that operates in response thereto are decomposed and the results are utilized.
  • FIG. 22 shows an example of signal decomposition in the building air-conditioning improvement support service system according to the present embodiment when the control target value is corrected using the decomposition result.
  • the left figure shows the conventional control characteristics to which the method of the present invention is not applied.
  • the boiler control is executed by detecting the temperature disturbance accompanying the opening and closing of the window.
  • the right figure shows the result of the control target value correction of the present invention.
  • FIG. 23 shows an example of the repair plan support in the building air conditioning improvement support service system according to this embodiment.
  • the gain and time constant are uniquely determined from the heat insulation characteristics, heat source dose, window characteristics, and the like defined by the building data.
  • the comparison calculation is executed to derive the renovation plans “PlanA”, “PlanB”, and “PlanC”.
  • model data By associating model data with each other at the time of derivation, it becomes possible to search when updating the model separately.
  • the optimal repair plan is selected from the comparison between the repair plans.
  • the user can select items to be prioritized such as remodeling man-hours, total cost, or comfort.
  • FIG. 24 shows another example of the repair plan support in the building air conditioning improvement support service system according to this embodiment.
  • the gain and time constant are uniquely determined from the heat insulation characteristics, heat source dose, window characteristics, and the like defined by the building data.
  • the comparison calculation is executed to derive the renovation plans “PlanA”, “PlanB”, and “PlanC”.
  • model data By associating model data with each other at the time of derivation, it becomes possible to search when updating the model separately. Record the evaluation items related to the modification of the building body instead of automatic control, such as heat insulation material, construction area, and man-hours, and list the associated fuel costs, comfort, and total costs.
  • ventilation items and hygiene items are added.
  • the ventilation item can be set separately from the scenario item.
  • the presence / absence of the ventilation function or the ventilation amount is described as a modified item.
  • the hygiene item for example, the condition for generating mold is used as an evaluation item, and a rule for determining the possibility of mold generation from a change in temperature and humidity in the room is included in the comparison process.
  • the ventilation function is considered as a so-called dehumidification function, and it is possible to derive the absolute humidity from the humidity signal measured as the process signal and estimate the humidity reduction effect by the ventilation capacity.
  • the ventilation item it is necessary to consider the operation of opening and closing the window, but here it is assumed that ventilation functions as exhausting absolute humidity.
  • FIG. 25 shows an example of the cloud function decomposition unit 10 when the building air-conditioning improvement support service system according to this embodiment is applied to central heating.
  • the processing flow is shown in FIG. 9, but in FIG. 25, room temperature is applied to the inputs of the heat insulation model, the door opening / closing model, the window opening / closing model, and the heat source control model. This is because it can be applied to model parameters that change according to room temperature, and by adding this input, it is possible to eliminate the need to execute a scenario change each time the model parameters are corrected.
  • the measurement signal decomposition process enables building repair plans to control parameter adjustments.
  • the decomposition process is realized as a cloud, thereby reducing the cost and realizing the functions of BEMS and HEMS alone.
  • the present invention can be widely applied to a building air conditioning improvement support service system that supports building improvement.

Abstract

Proposed is a service system and method for assisting improvement of the space within a building, said system and method being capable of offering an optimum improvement method for enhancing the comfort of the space within a building, taking into account the behavior of the residents. A renovation simulation according to the present invention is performed for each of a plurality of predetermined specifications for each of a plurality of given renovation items of a building, wherein the renovation simulation receives at least one process signal representing environmental data that affects the comfort of the space within the building, and at least one event signal representing information relating to the behavior of the residents, and determines, on the basis of these signals, components of the process signal that correspond to variation factors and that occur when each renovation item of the building is renovated to each predetermined specification for the renovation item. Based on these results, an assessment value is calculated for each predetermined specification for each renovation item, and a renovation plan for the building is created on the basis of the calculated assessment value for each specification for each renovation item. In this renovation simulation, the variation components of the process signal that arise due to the behavior of the residents are excluded when determining the components of the process signal that correspond to the variation factors.

Description

建物空調改善支援サービスシステム及び方法Building air conditioning improvement support service system and method
 本発明は建物空間改善支援サービスシステム及び方法に関し、特に、建物の改善を支援する建物空調改善支援サービスシステムに適用して好適なものである。 The present invention relates to a building space improvement support service system and method, and is particularly suitable for application to a building air conditioning improvement support service system that supports building improvement.
 ビルや住宅などの建物では、冷暖房効率及び省エネ特性に加えて、快適性も考慮した空調制御が求められている。以下においては、ビルを対象としたエネルギーマネジメントシステムをBEMS(Building Energy Management System)と呼び、住宅を対象としたエネルギーマネジメントシステムをHEMS(Home Energy Management System)と呼ぶものとする。 Buildings and homes require air conditioning control that takes comfort into consideration in addition to cooling and heating efficiency and energy-saving characteristics. In the following, an energy management system for buildings is called BEMS (Building Energy Management System), and an energy management system for houses is called HEMS (Home Energy Management System).
 近年、空調制御については、計算機処理能力の向上による高度な情報処理機能の実現により、全館暖房や遠隔操作など自動制御の範囲が拡大している。セントラルヒーティングが主な空調手段である地域では、熱源制御に加えて、個別制御、すなわちラジエータやエアコンの部屋ごとのローカル制御が一般的である。 In recent years, with regard to air conditioning control, the realization of advanced information processing functions by improving computer processing capacity has expanded the scope of automatic control such as whole building heating and remote operation. In areas where central heating is the main air conditioning means, in addition to heat source control, individual control, that is, local control for each room of the radiator and air conditioner is common.
 また近年、サーモスタットの高機能化によりボイラーやヒートポンプなどの熱源のスケジュール運転の最適化技術が実現されている。さらに住人行動を計測し、住人不在の際は空調を停止する技術も実現されている。例えば、特許文献1には、外部の気象情報サイト等から取得した翌日の天候情報等に基づいて外気温の変化パターンを予測し、その変化パターンに基づいて2種類の暖房装置を制御するシステムが開示されている。また特許文献2には、住宅内部の温湿度により各部屋の快/不快を判定して空調制御を行うと共に居住者への節電アドバイスを行うシステムが開示されている。さらに特許文献3には、住宅内外の温度と空調設備の電気消費量を計測・蓄積して住宅の断熱性能や空調設備の性能の劣化度を解析するシステムが開示されている。 In recent years, technology for optimizing the schedule operation of heat sources such as boilers and heat pumps has been realized by increasing the functionality of thermostats. In addition, a technology has been realized that measures resident behavior and stops air conditioning when the resident is absent. For example, Patent Document 1 discloses a system that predicts a change pattern of the outside air temperature based on the next day's weather information acquired from an external weather information site or the like, and controls two types of heating devices based on the change pattern. It is disclosed. Patent Document 2 discloses a system that performs air conditioning control by determining the comfort / discomfort of each room based on the temperature and humidity inside the house and also provides power-saving advice to residents. Further, Patent Document 3 discloses a system that measures the temperature inside and outside the house and the electricity consumption of the air conditioning equipment and analyzes the degree of deterioration of the heat insulation performance of the house and the performance of the air conditioning equipment.
 さらに近年では、空調制御の特性を左右する断熱特性や熱源容量の妥当性を評価するための建物モデルの開発が進められており、その標準化の流れも進んでいる。このような建物モデルとして、例えば、非特許文献1及び非特許文献2に示すような建物熱特性モデルが知られている。また、これら建物熱特性モデルを用いた予測制御も行われるようになってきており、建物の空調制御では冷暖房効率及び省エネ特性に加えて、快適性も考慮した空調制御が求められている。このような快適性を考慮した制御として、例えば、特許文献4には、熱源ボイラーのオン/オフ制御の最適化技術が開示されている。さらに非特許文献3には、建物での消費電力特性の分析により、家電品などの電力エネルギー消費傾向を把握することが開示されている。 In recent years, building models have been developed to evaluate the appropriateness of heat insulation characteristics and heat source capacity that influence the characteristics of air conditioning control, and the standardization process is also progressing. As such a building model, for example, building thermal characteristic models as shown in Non-Patent Document 1 and Non-Patent Document 2 are known. Predictive control using these building thermal characteristic models is also being performed, and in air conditioning control of buildings, air conditioning control considering comfort in addition to cooling / heating efficiency and energy saving characteristics is required. For example, Patent Document 4 discloses a technology for optimizing on / off control of a heat source boiler as control in consideration of such comfort. Further, Non-Patent Document 3 discloses that a power energy consumption tendency of home appliances and the like is grasped by analyzing power consumption characteristics in a building.
特開2013-204834号公報JP 2013-204834 A 特開2013-124794号公報JP 2013-124794 A 特開2010-108108号公報JP 2010-108108 A WO2013/171448  PREDICTIVE TEMPERATURE MANAGEMENT CONTROLLERWO2013 / 171448 PREDICTIVE TEMPERATURE MANAGEMENT CONTROLLER
 しかしながら、上述のBEMSやHEMSを導入することで、建物のエネルギー効率及び快適性を向上させるためにはいくつかの工夫が必要となる。例えば、特許文献1に開示された発明では、温度予測に基づいてエアコン及び蓄熱暖房機を制御するだけであり、住人行動による温度変化については考慮されていない。また空調性能すなわち熱効率は、建物断熱特性にも左右される。ところが特許文献1では、室温変化予測の際に、外気温度と供給熱量との関係のみを用いることとしており、建物断熱特性の影響を陽には考慮しているとは言えない。さらに特許文献1に開示された発明は、そもそも2種類の暖房設備を具備していない建物は対象にならない。 However, by introducing the above-described BEMS and HEMS, some ingenuity is required to improve the energy efficiency and comfort of the building. For example, in the invention disclosed in Patent Document 1, only an air conditioner and a regenerative heater are controlled based on temperature prediction, and temperature changes due to resident behavior are not considered. In addition, the air conditioning performance, that is, the thermal efficiency, is also affected by the heat insulation characteristics of the building. However, in Patent Document 1, only the relationship between the outside air temperature and the amount of heat supplied is used in predicting the change in room temperature, and it cannot be said that the influence of the building heat insulation characteristics is explicitly taken into consideration. Furthermore, the invention disclosed in Patent Document 1 does not cover buildings that are not equipped with two types of heating equipment.
 また特許文献2では、住宅内部の温湿度により各室の快・不快を判定して空調制御を行うと共に居住者への節電アドバイスを行うシステムが示されているが、エアコンの自動運転と通気により快適性を改善させるよう促すに留まり、それによる熱効率への影響を提示するまでには至っていない。 Patent Document 2 discloses a system that performs air conditioning control by determining whether each room is pleasant or uncomfortable based on the temperature and humidity inside the house, and also provides power saving advice to residents. It has only been encouraged to improve comfort and has not yet shown its impact on thermal efficiency.
 さらに特許文献3では、住宅内外の温度と空調設備の電気消費量を計測・蓄積して住宅の断熱性能や空調設備の性能の劣化度を解析するが、改修計画において住人行動を考慮するには至っていない。加えて非特許文献3では、建物での消費電力特性の分析により、家電品などの電力エネルギー消費傾向を示しているが、建物空調制御に必要な温度、湿度などの分析は対象外となっている。 Furthermore, in Patent Document 3, the temperature inside and outside the house and the electricity consumption of the air conditioning equipment are measured and accumulated to analyze the heat insulation performance of the house and the deterioration degree of the performance of the air conditioning equipment. Not reached. In addition, Non-Patent Document 3 shows power energy consumption trends of household appliances and the like by analysis of power consumption characteristics in buildings, but analysis of temperature and humidity necessary for building air conditioning control is excluded. Yes.
 空調制御の特性を左右する断熱特性や熱源容量の妥当性を評価するための建物モデルについては、非特許文献1や非特許文献2に示すような建物熱特性モデルが知られているが、月平均又は一日平均といった平均化した燃料消費量を扱っており、空調需要の一日の変化を考慮した熱効率評価には至っていない。さらに、かかる建物モデルを用いた予測制御も開発されているが、これは特許文献4の示すように熱源ボイラーのオンオフ制御の最適化に留まっている。 As for the building model for evaluating the validity of the heat insulation capacity and the heat source capacity that influence the characteristics of the air conditioning control, the building heat characteristic model as shown in Non-Patent Document 1 and Non-Patent Document 2 is known. The average fuel consumption such as average or daily average is handled, and thermal efficiency evaluation considering the daily change in air conditioning demand has not been achieved. Furthermore, predictive control using such a building model has been developed, but this is limited to optimization of on / off control of the heat source boiler as shown in Patent Document 4.
 以上のように従来技術では、空調制御は部屋ごとの最適化であり、建物全体としてのエネルギー消費量が最適化されているとは言えない。また住人行動の計測は在/不在判定に留まり、室温や湿度への影響を考慮した空調制御が行われているとは言えない。さらに空調制御の最適化よりも、建物断熱更新やボイラー容量更新のほうが効果的かどうか判断するのが難しい。このように従来技術だけでは、住人行動をも考慮した、建物空間の快適性を向上させる最適な改善方法を判断することが困難な問題があった。 As described above, in the conventional technology, the air conditioning control is optimization for each room, and it cannot be said that the energy consumption of the entire building is optimized. In addition, the measurement of the resident behavior is limited to the presence / absence determination, and it cannot be said that the air conditioning control considering the influence on room temperature and humidity is performed. Furthermore, it is difficult to determine whether building insulation renewal or boiler capacity renewal is more effective than air conditioning control optimization. As described above, the conventional technology alone has a problem that it is difficult to determine an optimal improvement method for improving the comfort of a building space in consideration of resident behavior.
 本発明は以上の点を考慮してなされたもので、住人行動をも考慮した、建物空間の快適性を向上させる最適な改善方法を提示し得る建物空間改善支援サービスシステム及び方法を提案しようとするものである。 The present invention has been made in consideration of the above points, and intends to propose a building space improvement support service system and method capable of presenting an optimal improvement method for improving the comfort of a building space in consideration of resident behavior. To do.
 かかる課題を解決するため本発明においては、建物の空調改善の支援サービスを提供する建物空調改善支援サービスシステムにおいて、前記建物の建物空間の快適性を左右する環境データでなるプロセス信号と、住人行動に関する情報でなるイベント信号とを入力し、入力した前記プロセス信号及び前記イベント信号に基づいて、前記建物の所定の改修項目を所定の仕様に改修した場合における前記プロセス信号の変動発生要因ごとの成分を求める改修シミュレーションを、予め定められた複数の前記改修項目の前記仕様ごとにそれぞれ実行する改修シミュレーション実行部と、各前記改修シミュレーションのシミュレーション結果に基づいて、前記建物の所定の前記改修項目を所定の前記仕様にそれぞれ変更した場合における前記建物の前記環境データの変化を各前記改修項目の前記仕様ごとにそれぞれ求め、求めた前記環境データの変化に基づいて各前記改修項目の前記仕様ごとの評価値をそれぞれ算出し、算出した各前記改修項目の前記仕様ごとの評価値に基づいて前記建物の改修案を作成する改修案作成部とを設け、前記改修シミュレーション実行部が、前記改修シミュレーションにおいて、住人行動に起因する前記プロセス信号の変動成分を排除した当該プロセス信号の前記変動発生要因ごとの成分を求めるようにした。 In order to solve this problem, in the present invention, in a building air-conditioning improvement support service system that provides a building air-conditioning improvement support service, a process signal including environmental data that affects the comfort of the building space of the building, and resident behavior And a component for each factor that causes variation in the process signal when the predetermined repair item of the building is repaired to a predetermined specification based on the input process signal and the event signal. And a renovation simulation execution unit for executing a renovation simulation for each of the specifications of a plurality of predetermined renovation items, and a predetermined renovation item of the building based on a simulation result of each renovation simulation Of the building when changed to the above specifications The change of the environmental data is determined for each of the specifications of the respective repair items, the evaluation value for each of the specifications of the respective repair items is calculated based on the obtained change of the environmental data, and each of the calculated repair items A renovation plan creation unit that creates a renovation plan for the building based on an evaluation value for each of the specifications, and the refurbishment simulation execution unit calculates a fluctuation component of the process signal due to resident behavior in the renovation simulation. A component for each variation occurrence factor of the excluded process signal is obtained.
 また本発明においては、建物の空調改善の支援サービスを提供する建物空調改善支援サービスシステムにより実行される建物空調改善支援サービス方法において、前記建物の建物空間の快適性を左右する環境データでなるプロセス信号と、住人行動に関する情報でなるイベント信号とを入力し、入力した前記プロセス信号及び前記イベント信号に基づいて、前記建物の所定の改修項目を所定の仕様に改修した場合における前記プロセス信号の変動発生要因ごとの成分を求める改修シミュレーションを、予め定められた複数の前記改修項目の前記仕様ごとにそれぞれ実行する第1のステップと、各前記改修シミュレーションのシミュレーション結果に基づいて、前記建物の所定の前記改修項目を所定の前記仕様にそれぞれ変更した場合における前記建物の前記環境データの変化を各前記改修項目の前記仕様ごとにそれぞれ求め、求めた前記環境データの変化に基づいて各前記改修項目の前記仕様ごとの評価値をそれぞれ算出し、算出した各前記改修項目の前記仕様ごとの評価値に基づいて前記建物の改修案を作成する第2のステップとを設け、前記第1のステップでは、前記改修シミュレーションにおいて、住人行動に起因する前記プロセス信号の変動成分を排除した当該プロセス信号の前記変動発生要因ごとの成分を求めるようにした。 According to the present invention, in the building air-conditioning improvement support service method executed by the building air-conditioning improvement support service system that provides the building air-conditioning improvement support service, the process includes environmental data that affects the comfort of the building space of the building. The signal and an event signal composed of information related to resident behavior are input, and the process signal changes when the predetermined repair item of the building is repaired to a predetermined specification based on the input process signal and the event signal. A first step of executing a renovation simulation for obtaining a component for each occurrence factor for each of the specifications of a plurality of predetermined renovation items, and a predetermined result of the building based on a simulation result of each renovation simulation When the repair items are changed to the specified specifications, respectively. Change of the environmental data of the building is determined for each of the specifications of each of the renovation items, and an evaluation value for each of the specifications of each of the renovation items is calculated based on the obtained change of the environmental data. And a second step of creating a renovation plan for the building based on an evaluation value for each specification of the refurbishment item. In the first step, the process signal of the process signal caused by resident behavior in the renovation simulation is provided. A component for each variation occurrence factor of the process signal excluding the variation component is obtained.
 本発明によれば、住人行動をも考慮した、建物の快適性を向上させる最適な改修方法を提示することができる。 According to the present invention, it is possible to present an optimal renovation method that improves the comfort of a building in consideration of resident behavior.
第1の実施の形態による建物空調改善支援サービスシステムの論理構成を示すブロック図である。It is a block diagram which shows the logic structure of the building air-conditioning improvement assistance service system by 1st Embodiment. シナリオ設定処理部の具体的な処理内容の説明に供するブロック図である。It is a block diagram with which it uses for description of the specific processing content of a scenario setting process part. 改修シミュレーション実行部の具体的な処理内容の説明に供するブロック図である。It is a block diagram with which it uses for description of the specific processing content of a repair simulation execution part. 第1の実施の形態による建物空調改善支援サービスシステムの改修案作成処理部の具体的な処理内容の説明に供するブロック図である。It is a block diagram with which it uses for description of the specific processing content of the repair plan preparation process part of the building air-conditioning improvement assistance service system by 1st Embodiment. 改修案作成部の具体的な処理内容の説明に供するブロック図である。It is a block diagram with which it uses for description of the specific processing content of the repair plan preparation part. 改修案作成部の具体的な処理内容の説明に供するブロック図である。It is a block diagram with which it uses for description of the specific processing content of the repair plan preparation part. 第1の実施の形態による建物空調改善支援サービスシステムにおける各種データ及び信号の構造例を示す概念図である。It is a conceptual diagram which shows the structural example of the various data and signal in the building air-conditioning improvement assistance service system by 1st Embodiment. 建物空調改善支援機能に関連して第1の実施の形態による建物空調改善支援サービスシステムにおいて実行される一連の処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a series of processes performed in the building air-conditioning improvement assistance service system by 1st Embodiment regarding a building air-conditioning improvement assistance function. 分解部により実行される分解処理の具体的な処理手順を示すフローチャートである。It is a flowchart which shows the specific process sequence of the decomposition process performed by the decomposition | disassembly part. 第1の実施の形態による建物空調改善支援サービスシステムの具体的な概略構成を示すブロック図である。It is a block diagram which shows the specific schematic structure of the building air-conditioning improvement assistance service system by 1st Embodiment. 第1の実施の形態による建物空調改善支援サービスシステムをセントラルヒーティングに適用した場合の概略構成を示すブロック図である。It is a block diagram which shows schematic structure at the time of applying the building air-conditioning improvement assistance service system by 1st Embodiment to central heating. 第2の実施の形態による建物空調改善支援サービスシステムの論理構成を示すブロック図である。It is a block diagram which shows the logic structure of the building air-conditioning improvement assistance service system by 2nd Embodiment. 第2の実施の形態による改修案作成処理部の具体的な処理内容の説明に供するブロック図である。It is a block diagram with which it uses for description of the specific processing content of the repair plan preparation process part by 2nd Embodiment. 第2の実施の形態による改修計画作成処理部の具体的な処理内容の説明に供するブロック図である。It is a block diagram with which it uses for description of the specific processing content of the repair plan preparation process part by 2nd Embodiment. 建物空調改善支援機能に関連して第2の実施の形態による建物空調改善支援サービスシステムにおいて実行される一連の処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a series of processes performed in the building air-conditioning improvement assistance service system by 2nd Embodiment regarding a building air-conditioning improvement assistance function. 第2の実施の形態による建物空調改善支援サービスシステムにおける制御目標値生成方法の説明に供するブロック図である。It is a block diagram with which it uses for description of the control target value production | generation method in the building air-conditioning improvement assistance service system by 2nd Embodiment. 第2の実施の形態による建物空調改善支援サービスシステムにおける他の制御目標値生成方法の説明に供するブロック図である。It is a block diagram with which it uses for description of the other control target value production | generation method in the building air-conditioning improvement assistance service system by 2nd Embodiment. 第2の実施の形態による建物空調改善支援サービスシステムにおける制御目標値生成処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the control target value production | generation process in the building air-conditioning improvement assistance service system by 2nd Embodiment. 第2の実施の形態による建物空調改善支援サービスシステムのモデルパラメータ更新方法の説明に供するブロック図である。It is a block diagram with which it uses for description of the model parameter update method of the building air-conditioning improvement assistance service system by 2nd Embodiment. 第2の実施の形態による建物空調改善支援サービスシステムにおける制御パラメータ調整のデータ構造を示す概念図である。It is a conceptual diagram which shows the data structure of the control parameter adjustment in the building air-conditioning improvement assistance service system by 2nd Embodiment. 第2の実施の形態による建物空調改善支援サービスシステムにおける信号分解過程の説明に供する概念図である。It is a conceptual diagram with which it uses for description of the signal decomposition | disassembly process in the building air-conditioning improvement assistance service system by 2nd Embodiment. 第2の実施の形態による建物空調改善支援サービスシステムにおける制御目標値生成方法の効果の説明に供する概念図である。It is a conceptual diagram with which it uses for description of the effect of the control target value production | generation method in the building air-conditioning improvement assistance service system by 2nd Embodiment. 第2の実施の形態による建物空調改善支援サービスシステムにおける改修計画支援の効果の説明に供する概念図である。It is a conceptual diagram with which it uses for description of the effect of the repair plan assistance in the building air-conditioning improvement assistance service system by 2nd Embodiment. 第2の実施の形態による建物空調改善支援サービスシステムにおける改修計画支援の別の効果の説明に供する概念図である。It is a conceptual diagram with which it uses for description of another effect of the repair plan assistance in the building air-conditioning improvement assistance service system by 2nd Embodiment. 第2の実施の形態による建物空調改善支援サービスシステムをセントラルヒーティングに適用した場合の信号分解処理の説明に供するブロック図である。It is a block diagram with which it uses for description of the signal decomposition | disassembly process at the time of applying the building air-conditioning improvement assistance service system by 2nd Embodiment to central heating.
 以下図面について、本発明の一実施の形態を詳述する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
(1)第1の実施の形態
(1-1)本実施の形態による建物空調改善支援サービスシステムの論理構成
 図1において、1は全体として本実施の形態による建物空調改善支援サービスシステムを示す。この建物空調改善支援サービスシステム1には、建物空間の快適性を左右する建物内の室温及び湿度等の環境データの変動をその変動の発生要因(建物の断熱特性、住人行動及び空調設備の特性などであり、以下、これを変動発生要因と呼ぶ)別に分析し、その分析により得られた情報を用いて、建物空間の快適性を向上させながら空調の燃料費(以下、これを空調燃料費と呼ぶ)を低減させ得る改修案をユーザに提示する建物空調改善支援機能が搭載されている。
(1) First Embodiment (1-1) Logical Configuration of Building Air Conditioning Improvement Support Service System According to this Embodiment In FIG. 1, 1 indicates a building air conditioning improvement support service system according to this embodiment as a whole. This building air-conditioning improvement support service system 1 includes changes in environmental data such as room temperature and humidity in the building that affect the comfort of the building space, and causes the fluctuations (building insulation characteristics, resident behavior, and air-conditioning characteristics). This is referred to below as the cause of fluctuation), and the information obtained from the analysis is used to improve the comfort of the building space while improving the air conditioning fuel costs (hereinafter referred to as the air conditioning fuel costs). It is equipped with a building air-conditioning improvement support function that presents to the user a renovation plan that can be reduced.
 実際上、本建物空調改善支援サービスシステム1では、建物内の室温及び湿度などの計測値と、外部温度や外部湿度の計測値とがプロセス信号としてシナリオ設定処理部2のシナリオ設定部20に与えられる。また本建物空調改善支援サービスシステム1では、窓及びドアの開閉回数及び開閉時間や、空調のオン/オフなどの住人の行動に関する情報がイベント信号としてシナリオ設定部20に与えられる。 In practice, in the building air conditioning improvement support service system 1, the measured values such as the room temperature and humidity in the building and the measured values of the external temperature and humidity are given as process signals to the scenario setting unit 20 of the scenario setting processing unit 2. It is done. In the building air-conditioning improvement support service system 1, information related to the behavior of the resident such as the number of times of opening and closing the windows and doors, the opening / closing time, and on / off of the air conditioning is given to the scenario setting unit 20 as an event signal.
 このときシナリオ設定部20には、そのとき選択されているシナリオ25の内容を表すシナリオ情報も与えられる。ここで、本明細書におけるシナリオ25とは、後述する改修シミュレーションを実行する際の条件を規定したものであり、例えば、外部温度を現在の外部温度よりも5度上昇させるシナリオや、外部温度を現在の外部温度よりも3度低下させるシナリオ、及び窓の開閉回数や開閉時間を変更するシナリオなどが用意される。また各シナリオ25は、どのプロセス信号又はイベント信号の値をどの程度変更するかを規定したシナリオデータを含む。例えば、外部温度を現在の外部温度よりも5度上昇させるシナリオは、外部温度に対応するプロセス信号の値を5度上昇させるためのシナリオデータを含む。 At this time, the scenario setting unit 20 is also given scenario information indicating the contents of the scenario 25 selected at that time. Here, the scenario 25 in the present specification defines conditions for executing a renovation simulation described later. For example, a scenario in which the external temperature is raised by 5 degrees from the current external temperature, A scenario for reducing the current external temperature by 3 degrees and a scenario for changing the number of times of opening and closing the window and the opening and closing time are prepared. Each scenario 25 includes scenario data that defines how much the value of which process signal or event signal is to be changed. For example, the scenario in which the external temperature is increased by 5 degrees from the current external temperature includes scenario data for increasing the value of the process signal corresponding to the external temperature by 5 degrees.
 かくしてシナリオ設定部20は、与えられたプロセス信号及びイベント信号のうち、そのとき選択されているシナリオ25に対応するプロセス信号又はイベント信号に対して、当該シナリオ25に含まれるシナリオデータを加算する加工を施す。このようにシナリオデータを対応するプロセス信号又はイベント信号に加算することにより、そのシナリオ25に応じた条件のもとでの改修シミュレーションを行うことができる。 Thus, the scenario setting unit 20 adds the scenario data included in the scenario 25 to the process signal or event signal corresponding to the selected scenario 25 among the given process signals and event signals. Apply. In this manner, by adding the scenario data to the corresponding process signal or event signal, a repair simulation can be performed under conditions according to the scenario 25.
 そしてシナリオ設定部20は、対応するプロセス信号又はイベント信号にシナリオデータを加算した後に、かかる建物空間の快適性を左右する室温及び湿度等のプロセス信号(以下、適宜、これらを特定プロセス信号と呼ぶ)をそれぞれ改修シミュレーション実行部3の分解部10に出力する。またシナリオ設定部20は、イベント信号と、一部のプロセス信号とについては改修シミュレーション実行部3の変換部30に出力する。 Then, the scenario setting unit 20 adds the scenario data to the corresponding process signal or event signal, and then processes the process signals such as room temperature and humidity that affect the comfort of the building space (hereinafter referred to as specific process signals as appropriate). ) Are output to the disassembly unit 10 of the repair simulation execution unit 3. Further, the scenario setting unit 20 outputs the event signal and a part of the process signal to the conversion unit 30 of the repair simulation execution unit 3.
 変換部30は、シナリオ設定部20から与えられるイベント信号及び一部のプロセス信号を、モデル設定部40により設定された建物モデルを利用して、特定プロセス信号と同じ物理単位系の信号に変換する。具体的に、変換部30は、例えば窓やドアの開閉回数及び開閉時間のシナリオ信号については、窓やドアの開閉に起因する室温の変化を時系列的に示す信号に変換する。また空調のオン/オフを表すシナリオ信号については、空調のオン/オフに起因する室温の変化を時系列的に示す信号に変換する。そして変換部30は、このような変換処理により得られた信号を変換イベント信号及び変換プロセス信号として分解部10に出力する。 The conversion unit 30 converts the event signal and a part of the process signal given from the scenario setting unit 20 into a signal of the same physical unit system as the specific process signal by using the building model set by the model setting unit 40. . Specifically, the conversion unit 30 converts, for example, a scenario signal indicating the number of times that a window or door has been opened and closed and an opening and closing time into a signal that indicates a change in room temperature due to the opening and closing of the window or door in time series. In addition, the scenario signal indicating the on / off of the air conditioning is converted into a signal indicating a change in room temperature due to the on / off of the air conditioning in time series. Then, the conversion unit 30 outputs the signal obtained by such conversion processing to the decomposition unit 10 as a conversion event signal and a conversion process signal.
 分解部10は、変換部30から与えられる変換イベント信号及び変換プロセス信号に基づいて、シナリオ設定部20から与えられる特定プロセス信号を、住人行動に起因する特定プロセス信号の変動成分を排除した上でのその変動発生要因ごとの成分に分解し、得られた各変動発生要因の成分を改修案作成処理部4の分解信号データベース15に格納する。 The decomposition unit 10 eliminates the fluctuation component of the specific process signal caused by the resident behavior from the specific process signal given from the scenario setting unit 20 based on the conversion event signal and the conversion process signal given from the conversion unit 30. Are decomposed into components for each variation occurrence factor, and the obtained components for each variation occurrence factor are stored in the decomposition signal database 15 of the modification plan creation processing unit 4.
 以上の処理が改修シミュレーションである。本建物空調改善支援サービスシステム1では、この改修シミュレーションを、1つのシナリオについて、その建物について予め設定された改修可能な各項目(断熱材や空調設備などであり、以下、これを改修項目と呼ぶ)の仕様(断熱材であれば素材、空調設備であれば容量など)ごとに繰り返し行う。各改修項目の仕様ごとの改修シミュレーションは、対象とする建物のその改修項目をその仕様に改修した場合の建物モデルをモデル設定部40が変換部30に設定することにより行われる。 The above processing is the renovation simulation. In the building air-conditioning improvement support service system 1, the remodeling simulation is performed for each scenario, and each of the items that can be remodeled in advance for the building (insulation material, air-conditioning equipment, etc., hereinafter referred to as a renovation item). ) Repeatedly for each specification (material for thermal insulation, capacity for air conditioning equipment, etc.). The remodeling simulation for each remodeling item specification is performed by the model setting unit 40 setting the building model in the conversion unit 30 when the remodeling item of the target building is remodeled to the specification.
 以上の処理により、例えば、改修項目が「断熱材」の場合、その仕様(素材)を「素材A」、「素材B」、……とした場合における、住人行動に起因する特定プロセス信号の変動成分を排除した上での特定プロセス信号の変動発生要因ごとの成分が求められて分解信号データベース15に格納され、他の改修項目についても、仕様ごとの特定プロセス信号の変動発生要因ごとの成分が求められて分解信号データベース15に格納される。そして、このような改修シミュレーション処理がすべてのシナリオについて同様に実行される。 By the above processing, for example, when the renovation item is “insulation material”, the fluctuation of the specific process signal due to the resident behavior when the specification (material) is “material A”, “material B”,. A component for each factor of occurrence of fluctuations in the specific process signal after the components are excluded is obtained and stored in the decomposed signal database 15. It is obtained and stored in the decomposed signal database 15. Such a repair simulation process is executed in the same manner for all scenarios.
 なお分解信号データベース15には、外部気温等の一部のプロセス信号も格納される。このプロセス信号の利用方法については後述する。 The decomposition signal database 15 also stores some process signals such as the external temperature. A method of using this process signal will be described later.
 一方、本建物空調改善支援サービスシステム1は、各改修項目の仕様ごとに、対象とする建物の該当箇所をその改修項目のその仕様に改修するために必要となるコスト(以下、これを改修コストと呼ぶ)の情報が格納されたデータベース(以下、これを改修コストデータベースと呼ぶ)65を予め保持している。この改修コストは、例えば、その改修項目が「断熱材」や「空調設備」である場合には、その断熱材や空調設備の仕様ごとの単価のみならず、建物内の断熱材や空調設備をその素材や空調設備に変更するための改築や工事に要する費用をも含めたものである。 On the other hand, this building air-conditioning improvement support service system 1 has a cost (hereinafter referred to as a refurbishment cost) required for refurbishing the relevant part of the target building with the refurbishment item for each refurbishment item specification. A database (hereinafter referred to as a repair cost database) 65 in which information of the information is stored is held in advance. For example, if the renovation item is “insulation” or “air conditioning equipment”, the cost of this renovation is not limited to the unit price for each specification of the insulation or air conditioning equipment, but also the insulation and air conditioning equipment in the building. It also includes the cost required for renovation and construction to change to the material and air conditioning equipment.
 そして改修案作成処理部4の対象選定部60は、改修シミュレーション実行部3による上述の改修シミュレーションがすべて完了すると、改修コストデータベース65を参照して、1つの改修項目の1つの仕様を指定した改修プラン作成指示を改修案作成部50に与える。かくして改修案作成部50は、かかる改修プラン作成指示に応じて、そのとき対象としている建物の該当箇所を改修プラン作成指示において指定された改修項目の仕様に改修する改修プランを実行した場合の工数及び総コストと、その場合の所定の評価項目(以下においては、その改修プランを実行した場合におけるその建物の快適性及びその後の空調燃料費であるとする)の評価値とを計算する。 Then, when all the above-described repair simulations by the repair simulation execution unit 3 are completed, the target selection unit 60 of the repair plan creation processing unit 4 refers to the repair cost database 65 and performs the repair specifying one specification of one repair item. A plan creation instruction is given to the repair plan creation unit 50. Thus, in accordance with the repair plan creation instruction, the repair plan creation unit 50 executes the repair plan for repairing the relevant part of the target building at that time to the specification of the repair item specified in the repair plan creation instruction. And a total cost and an evaluation value of a predetermined evaluation item in that case (in the following, it is assumed that it is the comfort of the building and the subsequent air-conditioning fuel cost when the renovation plan is executed).
 また対象選定部60は、これと同様にして、残りの各改修項目の各仕様についても、かかる建物のその改修項目をその仕様に改修する改修プランを実行した場合の工程及び総コストと、その改修プランを実行した場合におけるその建物の快適性及びその後の空調燃料費とをそれぞれ改修案作成部50に計算させる。そして対象選定部60は、すべての改修項目のすべての仕様について、上述の計算が完了すると、改修案作成部50に改修案作成指示を与える。 Similarly, the target selection unit 60 also performs the process and the total cost when executing the renovation plan for refurbishing the renovation item of the building to the specification for each of the remaining refurbishment item specifications. When the refurbishment plan is executed, the renovation plan creation unit 50 calculates the comfort of the building and the subsequent air-conditioning fuel cost. Then, when the above calculation is completed for all specifications of all the repair items, the target selection unit 60 gives a repair plan creation instruction to the repair plan creation unit 50.
 改修案作成部50は、かかる改修案作成指示が与えられると、上述のようにして工数及び総コスト等を計算した各改修プランを、その改修プランを実行した場合におけるその建物の快適性が高い順又はその後の空調燃料費が低い順に並べた改修案200を作成する。そして改修案作成部50は、このようにして作成した改修案200をプリントアウト又は画面表示などによりユーザに提示する。 When such a renovation plan creation instruction is given, the refurbishment plan creation unit 50 has a high level of comfort when the renovation plan is executed for each refurbishment plan in which the man-hours and total costs are calculated as described above. The improvement plan 200 arranged in order from the lowest or the lowest air-conditioning fuel cost is created. Then, the modification plan creation unit 50 presents the modification plan 200 created in this way to the user by printout or screen display.
(1-2)建物空調改善支援サービスシステムの具体的な処理内容
(1-2-1)シナリオ設定処理部の具体的な処理内容
 図2は、シナリオ設定処理部2の構成を示す。シナリオ設定処理部2は、少なくともシナリオ設定部20を備えて構成される。シナリオ設定部20は、プロセス信号及びイベント信号にそれぞれ対応させた信号編集部21を備えており、これら信号編集部21において、対応するプロセス信号又はイベント信号にそのときのシナリオに含まれるシナリオデータを付加することにより、シナリオ設定後のプロセス信号又はイベント信号を算出する。
(1-2) Specific Processing Contents of Building Air Conditioning Improvement Support Service System (1-2-1) Specific Processing Contents of Scenario Setting Processing Unit FIG. 2 shows the configuration of the scenario setting processing unit 2. The scenario setting processing unit 2 includes at least a scenario setting unit 20. The scenario setting unit 20 includes a signal editing unit 21 corresponding to each of the process signal and the event signal. In the signal editing unit 21, scenario data included in the scenario at that time is added to the corresponding process signal or event signal. By adding, the process signal or event signal after scenario setting is calculated.
 具体的に、信号編集部21は、対象とするプロセス信号又はイベント信号の時刻tにおける値をS(t)、シナリオに含まれる時刻tにおけるシナリオデータの値をbias(t)として、次式
Figure JPOXMLDOC01-appb-M000001
により、シナリオ設定後のプロセス信号SS(t)又はイベント信号SS(t)を算出し、算出したプロセス信号SS(t)又はイベント信号SS(t)を改修シミュレーション実行部3の変換部30又は分解部10に出力する。
Specifically, the signal editing unit 21 sets S (t) as the value of the target process signal or event signal at time t, and sets the value of scenario data at time t included in the scenario as bias (t).
Figure JPOXMLDOC01-appb-M000001
To calculate the process signal SS (t) or the event signal SS (t) after the scenario is set, and convert the calculated process signal SS (t) or the event signal SS (t) to the conversion unit 30 or the disassembly of the repair simulation execution unit 3 To the unit 10.
 なおシナリオの内容に応じてシナリオデータを付加する必要がないプロセス信号及びイベント信号が存在するが、信号編集部21は、このようなプロセス信号及びイベント信号については、そのまま対応する変換部30又は分解部10に出力する。 Note that there are process signals and event signals that do not require scenario data to be added depending on the contents of the scenario. However, the signal editing unit 21 directly converts the corresponding process unit and event signal into the corresponding conversion unit 30 or decomposition. To the unit 10.
 例えば、「外部温度を現在の外部温度よりも5度上昇させる」というシナリオの場合、外部温度の計測値のプロセス信号にのみ外部信号を5度上昇させるためのシナリオデータを付加するだけで、他のプロセス信号やイベント信号については、そのまま対応する変換部30又は分解部10に出力される。また「窓の開閉回数や開閉時間を変更する」シナリオの場合、窓の開閉回数及び開閉時間を表すイベント信号にのみシナリオデータを付加するだけで、他のプロセス信号やイベント信号については、そのまま対応する変換部30又は分解部10に出力される。 For example, in the scenario of “increasing the external temperature by 5 degrees from the current external temperature”, the scenario data for increasing the external signal by 5 degrees is added only to the process signal of the measured value of the external temperature. These process signals and event signals are output to the corresponding conversion unit 30 or decomposition unit 10 as they are. In addition, in the case of a scenario that “changes the number of windows open / closed”, the scenario data is added only to the event signal indicating the number of windows open / closed, and other process signals and event signals are supported as they are. To the conversion unit 30 or the decomposition unit 10.
(1-2-2)改修シミュレーション実行部の具体的な処理内容
 図3は、改修シミュレーション実行部3の構成を示す。改修シミュレーション実行部3は、上述のモデル設定部40、変換部30及び分解部10に加えてモデルパラメータ演算部44及びモデルパラメータデータベース45を備えて構成される。
(1-2-2) Specific Processing Contents of the Modification Simulation Execution Unit FIG. 3 shows the configuration of the modification simulation execution unit 3. The modification simulation execution unit 3 includes a model parameter calculation unit 44 and a model parameter database 45 in addition to the model setting unit 40, the conversion unit 30, and the decomposition unit 10 described above.
 モデルパラメータ演算部44は、予め与えられたそのとき対象とする建物の建物様式、延床面積、間取り及び居住人口などの当該建物に関するデータ(以下、これを建物データと呼ぶ)100に基づいて、シナリオ25ごとに、そのシナリオ25のもとで(改修シミュレーションの条件のもとで)その建物の該当箇所を改修コストデータベース65に規定された各改修項目の各仕様にそれぞれ改修した場合における上述の建物モデル(変換部に設定する建物モデル)のパラメータをそれぞれ算出する。実際上、このパラメータは、最小二乗法や、上述の特許文献4又は上述の非特許文献1若しくは非特許文献2に開示された方法を用いて算出することができる。そしてモデルパラメータ演算部44は、このようにして算出したパラメータをモデルパラメータ45Dとしてモデルパラメータデータベース45に格納する。 The model parameter calculation unit 44 is based on data (hereinafter referred to as building data) 100 relating to the building, such as the building style, the total floor area, the floor plan, and the resident population of the target building at that time, given in advance. For each scenario 25, under the scenario 25 (under the condition of the renovation simulation), the above-described case where the relevant part of the building is renovated to each specification of each refurbishment item defined in the refurbishment cost database 65 is described above. Each parameter of the building model (building model set in the conversion unit) is calculated. In practice, this parameter can be calculated using the least square method or the method disclosed in the above-mentioned Patent Document 4 or the above-mentioned Non-Patent Document 1 or Non-Patent Document 2. Then, the model parameter calculation unit 44 stores the parameters calculated in this way in the model parameter database 45 as model parameters 45D.
 モデル設定部40は、シナリオ設定処理部2のシナリオ設定部20から通知される現在のシナリオ25の内容を表すシナリオ情報と、後述のように改修案作成処理部4の対象選定部60から通知される改修項目及びその仕様とに基づいて、対応するモデルパラメータ45Dをモデルパラメータデータベース45から取得する。そしてモデル設定部40は、取得したモデルパラメータ45Dに基づいて、イベント信号及び一部のプロセス信号を特定プロセス信号と同じ物理単位に変換するための建物モデルを生成し、生成した建物モデルを変換部30に設定する。なお、かかる建物モデルの実態は伝達関数であり、本実施の形態においては、かかる伝達関数としてラプラス変換関数を適用する。従って、本実施の形態の場合、上述のモデルパラメータ演算部44は、かかるモデルパラメータ45Dとしてラプラス変換関数のゲイン及び時定数を算出することになる。 The model setting unit 40 is notified from the scenario information indicating the contents of the current scenario 25 notified from the scenario setting unit 20 of the scenario setting processing unit 2 and the target selection unit 60 of the modification plan creation processing unit 4 as described later. The corresponding model parameter 45D is acquired from the model parameter database 45 based on the renovation item and its specification. Then, the model setting unit 40 generates a building model for converting the event signal and some process signals into the same physical unit as the specific process signal based on the acquired model parameter 45D, and converts the generated building model into the conversion unit Set to 30. The actual state of the building model is a transfer function, and in this embodiment, a Laplace transform function is applied as the transfer function. Therefore, in the case of this embodiment, the above-described model parameter calculation unit 44 calculates the gain and time constant of the Laplace transform function as the model parameter 45D.
 変換部30は、モデル設定部40により設定された建物モデルを利用して、特定プロセス信号と物理単位が異なるイベント信号及び一部のプロセス信号を特定プロセス信号と物理単位が同じ信号に変換する信号変換処理を行う。具体的に、変換部30は、変換対象のイベント信号及びプロセス信号を信号S160とし、モデル設定部40により設定された建物モデル(ラプラス変換関数)をM(s)として、次式
Figure JPOXMLDOC01-appb-M000002
により、信号S160を特定プロセス信号と同じ物理単位の信号S170に変換する。この信号変換処理により、例えば図3に示す窓の開閉回数及び開閉時間を表すイベント信号S160が窓の開閉に起因する室温の変化を時系列に示す図3の変換イベント信号S170に変換されることになる。ただし、この変換イベント信号S170は、そのとき選択されているシナリオ25に規定された条件の下で、かつ対象とする建物の該当箇所をそのとき改修案作成処理部4の対象選定部60からモデル設定部40に通知された改修項目及びその仕様に改修した場合における、窓の開閉に起因する室温の変化を表す。
The conversion unit 30 uses the building model set by the model setting unit 40 to convert an event signal having a physical unit different from the specific process signal and a part of the process signal into a signal having the same physical unit as the specific process signal. Perform the conversion process. Specifically, the conversion unit 30 uses the event signal and the process signal to be converted as the signal S160, and the building model (Laplace conversion function) set by the model setting unit 40 as M (s).
Figure JPOXMLDOC01-appb-M000002
Thus, the signal S160 is converted into a signal S170 having the same physical unit as that of the specific process signal. By this signal conversion processing, for example, the event signal S160 indicating the number of opening and closing times and the opening and closing time of the window shown in FIG. 3 is converted into the conversion event signal S170 of FIG. become. However, the conversion event signal S170 is obtained from the target selection unit 60 of the renovation plan creation processing unit 4 under the conditions specified in the scenario 25 selected at that time, and the corresponding part of the target building is then modeled. It represents a change in room temperature due to opening / closing of the window when the modification item notified to the setting unit 40 and the specification are modified.
 分解部10は、シナリオ設定処理部2のシナリオ設定部20から与えられる特定プロセス信号S10と、変換部30から与えられる上述の変換シナリオ信号及び変換プロセス信号S170とに基づいて、対象とする建物の該当箇所をそのとき改修案作成処理部4の対象選定部60からモデル設定部40に通知された改修項目及びその仕様に改修した場合における、特定プロセス信号S10から住人行動に起因する変動成分を排除した当該特定プロセス信号S10の変動発生要因ごとの成分に分解する分解処理を実行する。 Based on the specific process signal S10 provided from the scenario setting unit 20 of the scenario setting processing unit 2 and the above-described conversion scenario signal and conversion process signal S170 provided from the conversion unit 30, the disassembling unit 10 In the case where the relevant part is modified to the modification item notified to the model setting unit 40 from the target selection unit 60 of the modification plan creation processing unit 4 and its specification, the fluctuation component due to the resident behavior is excluded from the specific process signal S10. Then, a decomposition process for decomposing the specific process signal S10 into components for each variation occurrence factor is executed.
 この分解処理にはフーリエ変換のような一般的な信号分解技術を適用することができるが、本実施の形態では、独立成分解析方法を用いて特定プロセス信号S10をその変動発生要因ごとの成分に分解する。例えば、特定プロセス信号S10が建物内の室温の計測値である場合、分解部10は、その特定プロセス信号S10を建物の断熱特性に依存する温度変化成分S10Aと、窓の開閉などのイベントに依存する温度変化成分S10Bとに分解する。そして分解部10は、このようにして得られた特定プロセス信号S10の変動発生要因ごとの成分をそれぞれ分解信号データベース15に格納する。 A general signal decomposition technique such as Fourier transform can be applied to the decomposition process. In this embodiment, the specific process signal S10 is converted into a component for each factor of fluctuation using an independent component analysis method. Decompose. For example, when the specific process signal S10 is a measured value of the room temperature in the building, the decomposition unit 10 depends on the temperature change component S10A that depends on the thermal insulation characteristics of the building and an event such as opening / closing of a window. It decomposes into the temperature change component S10B. Then, the decomposition unit 10 stores the components for each variation occurrence factor of the specific process signal S10 obtained in this way in the decomposition signal database 15.
(1-2-3)改修案作成処理部の具体的な処理内容
 図4は、改修案作成処理部4の具体的な構成例を示す。改修案作成処理部は、上述のように対象選定部60、改修案作成部50、分解信号データベース15及び改修コストデータベース65を備えて構成される。なお図4において、「case1」、「case2」、「case3」、……は、上述の各改修シミュレーションにより得られた特定プロセス信号の変動発生要因ごとの成分を示す。
(1-2-3) Specific Processing Contents of the Modification Plan Creation Processing Unit FIG. 4 shows a specific configuration example of the modification plan creation processing unit 4. The repair plan creation processing unit is configured to include the target selection unit 60, the repair plan creation unit 50, the decomposition signal database 15, and the repair cost database 65 as described above. In FIG. 4, “case 1”, “case 2”, “case 3”,... Indicate components for each cause of fluctuation of the specific process signal obtained by the above-described renovation simulation.
 対象選定部60は、改修シミュレーション実行部3による改修シミュレーションの実行時、改修コストデータベース65を参照して、当該改修コストデータベース65に登録されている各改修項目の各仕様の中から1つの改修項目及びその仕様を選択し、これを改修シミュレーション実行指示と共に改修シミュレーション実行部3のモデル設定部40に通知する。かくしてモデル設定部40は、この改修シミュレーション実行指示に従って、このとき通知された改修項目の仕様に応じたモデルパラメータ45Dをモデルパラメータデータベース45から取得し、取得したモデルパラメータ45Dに基づいてそのとき対象としている建物の建物モデルを生成し、生成した建物モデルを変換部30に設定する。 The target selection unit 60 refers to the repair cost database 65 when the repair simulation is executed by the repair simulation execution unit 3, and selects one repair item from the specifications of each repair item registered in the repair cost database 65. And the specification is selected, and this is notified to the model setting unit 40 of the repair simulation execution unit 3 together with the repair simulation execution instruction. Thus, the model setting unit 40 acquires the model parameter 45D corresponding to the specification of the repair item notified at this time from the model parameter database 45 in accordance with the repair simulation execution instruction, and at that time, based on the acquired model parameter 45D as a target. A building model of the existing building is generated, and the generated building model is set in the conversion unit 30.
 また対象選定部60は、この後、モデル設定部40に通知する改修項目の仕様を順次見通知の他の改修項目の仕様に順次切り替えながら、改修シミュレーション実行指示をモデル設定部40に与える。このようにして対象選定部60の制御のもとに、改修シミュレーション実行部3において各改修項目の各仕様についての改修シミュレーションが行われる。 Further, the target selecting unit 60 thereafter gives the model setting unit 40 an instruction to execute the repair simulation while sequentially switching the specification of the repair item notified to the model setting unit 40 to the specification of the other repair item to be notified. In this way, under the control of the object selecting unit 60, the remodeling simulation execution unit 3 performs a remodeling simulation for each specification of each refurbishment item.
 一方、対象選定部60は、改修シミュレーション実行部3による上述の改修シミュレーションがすべて完了すると、改修コストデータベース65を参照して、1つの改修項目の1つの仕様を指定した改修プラン作成指示を改修案作成部50に与える。 On the other hand, when all of the above-described repair simulations by the repair simulation execution unit 3 are completed, the target selection unit 60 refers to the repair cost database 65 and specifies a repair plan creation instruction that specifies one specification of one repair item. This is given to the creation unit 50.
 改修案作成部50は、かかる改修プラン作成指示に応じて、対応する建物モデルの設定を改修シミュレーション実行部3のモデル設定部40に依頼し、かくしてモデル設定部40により設定された建物モデルを利用して、そのとき対象としている建物の該当箇所を改修プラン作成指示において指定された改修項目の仕様に改修する改修プランを実行した場合の室温や湿度の時間的変化を算出する。 The renovation plan creation unit 50 requests the model setting unit 40 of the renovation simulation execution unit 3 to set the corresponding building model in response to the renovation plan creation instruction, and thus uses the building model set by the model setting unit 40. Then, a temporal change in room temperature and humidity is calculated when the repair plan for repairing the relevant part of the target building at that time to the specification of the repair item specified in the repair plan creation instruction is executed.
 具体的に、改修案作成部50は、図5に示すように、差分計算部53、信号変換部52及び分離信号補正部54を備えている。そして改修案作成部50は、例えば改修プラン作成指示において指定された改修項目が「断熱材」であり仕様が「素材A」であった場合には、分解信号データベース15(図1)から、外部温度の計測値のプロセス信号S20と、改修プラン作成指示において指定された改修項目及び仕様に対応する建物モデルを変換部30に設定したときの改修シミュレーションにおいて得られた特定プロセス信号の建物の断熱特性に依存する温度変化成分(以下、これを特定プロセス信号の断熱由来成分と呼ぶ)S10Aとを読み出し、これらの差分を差分計算部53において算出する。そして差分計算部53により算出された外部温度と室内温度との差分は、信号変換部52に与えられる。 Specifically, the renovation plan creation unit 50 includes a difference calculation unit 53, a signal conversion unit 52, and a separated signal correction unit 54 as shown in FIG. For example, when the renovation item specified in the renovation plan creation instruction is “insulation material” and the specification is “material A”, the refurbishment plan creation unit 50 reads the external data from the decomposition signal database 15 (FIG. 1). Thermal insulation characteristics of building of specific process signal obtained in renovation simulation when process model S20 of temperature measurement value and building model corresponding to renovation item and specification specified in renovation plan creation instruction are set in conversion unit 30 Temperature change component (hereinafter referred to as adiabatic origin component of the specific process signal) S10A, and the difference calculation unit 53 calculates the difference between them. Then, the difference between the external temperature and the room temperature calculated by the difference calculation unit 53 is given to the signal conversion unit 52.
 このとき信号変換部52には、上述のように改修シミュレーション実行部3のモデル設定部40により、改修プラン作成指示において指定された改修項目の仕様に対応する建物モデルが設定されている。かくして信号変換部52は、この建物モデルを利用して、対象とする建物の該当箇所を改修プラン作成指示において指定された改修項目の仕様に改修した場合における外部温度と室温との温度差の時間的変化を表す変換信号を生成し、これを分離信号補正部54に出力する。 At this time, in the signal conversion unit 52, the building model corresponding to the specification of the repair item specified in the repair plan creation instruction is set by the model setting unit 40 of the repair simulation execution unit 3 as described above. Thus, the signal conversion unit 52 uses this building model to time the temperature difference between the external temperature and the room temperature when the relevant part of the target building is repaired to the specification of the repair item specified in the repair plan creation instruction. A converted signal representing a target change is generated and output to the separated signal correction unit 54.
 分離信号補正部54は、分解信号データベース15から読み出した特定プロセス信号の断熱由来の成分S10Aに、信号変換部52から与えられる変換信号を加算することにより特定プロセス信号の断熱由来の成分S10Aを補正する。これにより対象とする建物の該当箇所を改修プラン作成指示において指定された改修項目の仕様に改修した場合における室温の時間的変化を表す信号(以下、これを改修シミュレーション信号と呼ぶ)S21が得られることになる。 The separation signal correction unit 54 corrects the adiabatic component S10A derived from the specific process signal by adding the converted signal given from the signal conversion unit 52 to the adiabatic component S10A derived from the specific process signal read from the decomposition signal database 15. To do. As a result, a signal (hereinafter referred to as a renovation simulation signal) S21 representing a temporal change in room temperature when the relevant part of the target building is renovated to the specification of the renovation item specified in the renovation plan creation instruction is obtained. It will be.
 また改修案作成部50は、上述と同様にして対象とする建物の該当箇所を改修プラン作成指示において指定された改修項目の仕様に改修した場合における建物内の湿度の時間的変化を表す改修シミュレーション信号S21をも算出する。 In addition, the refurbishment plan creation unit 50 performs a renovation simulation that represents a temporal change in humidity in the building when the relevant part of the target building is renovated to the specification of the refurbishment item specified in the renovation plan creation instruction in the same manner as described above. The signal S21 is also calculated.
 そして改修案作成部50は、このようにして算出した室温及び湿度の改修シミュレーション信号S21に基づいて、必要な空調燃料費や、室内の快適性を算出する。また改修案作成部50は、これと併せて、そのとき対象としている建物の該当箇所を改修プラン作成指示において指定された改修項目の仕様に改修した場合の工数及び総コストをも算出する。 Then, the renovation plan creation unit 50 calculates the necessary air-conditioning fuel cost and the indoor comfort based on the room temperature and humidity renovation simulation signal S21 calculated in this way. At the same time, the repair plan creation unit 50 also calculates the man-hours and the total cost when the relevant part of the target building is repaired to the specification of the repair item specified in the repair plan creation instruction.
 改修案作成部50は、以上の処理を対象選定部60から改修プラン作成指示が与えられるごとに実行する。そして対象選定部60は、1つのシナリオについて、改修プラン作成指示において指定する改修項目及びその仕様を順次変えながら、すべての改修項目のすべての仕様をそれぞれ指定した改修プラン作成指示を改修案作成部50に順次与える。この結果、これらの改修プラン作成指示に従って、改修案作成部50において、対象とする建物の該当箇所を改修プラン作成指示において指定された改修項目の仕様に改修する改修プランを実行した場合の工数及び総コストと、その改修を行った場合におけるその建物の快適性及びその後の空調燃料費とがそれぞれ計算されることになる。 The renovation plan creation unit 50 executes the above processing every time a renovation plan creation instruction is given from the target selection unit 60. Then, the target selection unit 60 changes the repair items specified in the repair plan creation instruction and the specifications for one scenario, and sequentially changes the repair plan creation instructions that specify all the specifications of all the repair items. 50 is given sequentially. As a result, in accordance with these renovation plan creation instructions, the rehabilitation plan creation unit 50 executes the rehabilitation plan for refurbishing the relevant part of the target building to the specification of the renovation item specified in the renovation plan creation instruction, and The total cost, the comfort of the building in the case of the refurbishment, and the subsequent air-conditioning fuel cost are calculated.
 また対象選定部60及び改修案作成部50は、他のシナリオについても同様の処理を実行する。これにより改修案作成部50において、対象とする建物の該当箇所を改修コストデータベースにおいて規定された個々の改修項目の仕様に改修する改修プランをそれぞれ実行した場合の工数及び総コストと、その改修を行った場合におけるその建物の快適性及びその後の空調燃料費とが計算される。 Also, the target selection unit 60 and the renovation plan creation unit 50 perform the same processing for other scenarios. As a result, in the renovation plan creation unit 50, the number of man-hours and the total cost when the renovation plan for refurbishing the relevant part of the target building to the specification of each renovation item specified in the renovation cost database, and the renovation are performed. If so, the comfort of the building and the subsequent air fuel costs are calculated.
 そして改修案作成部50は、このような処理を完了すると、上述のようにして工数及び総コストと、その改修を行った場合におけるその建物の快適性及びその後の空調燃料費とを計算した各改修プランを、快適性の高い順に又はその後の空調燃料費が低い順に並べた例えば図4のような改修案200を作成し、これをプリントアウト又は画面表示する。 Then, after completing such a process, the renovation plan creation unit 50 calculates the man-hours and the total cost, the comfort of the building when the renovation is performed, and the air-conditioning fuel cost thereafter. For example, a repair plan 200 as shown in FIG. 4 in which the repair plans are arranged in descending order of comfort or in order of lower air-conditioning fuel costs is created and printed out or displayed on a screen.
 なお本実施の形態の場合、改修コストデータベース65には、各改修項目の仕様に加えて、窓やドアの開閉回数及び開閉時間などの住人行動を変更するシナリオ25にそれぞれ対応させて、当該シナリオに規定された改修シミュレーションの条件(窓やドアの開閉回数及び開閉時間など)も改修項目として格納されている。 In the case of the present embodiment, the repair cost database 65 corresponds to the scenario 25 for changing the resident behavior such as the number of times of opening and closing the windows and doors and the opening and closing time in addition to the specifications of the respective repair items. The repair simulation conditions (such as the number of times of opening and closing windows and doors and the opening / closing time) defined in the above are also stored as repair items.
 そして対象選定部60は、このようなシナリオ25については、上述の改修プラン作成指示として、そのシナリオ25に規定された改修シミュレーションの条件と、1つの改修項目の1つの仕様とを指定した改修プラン作成指示を改修案作成部50に与える。 Then, the target selecting unit 60, for such a scenario 25, as a modification plan creation instruction described above, a modification plan in which the condition of the modification simulation specified in the scenario 25 and one specification of one modification item are specified. A creation instruction is given to the repair plan creation unit 50.
 改修案作成部50は、このような改修プラン作成指示が与えられた場合、この改修プラン作成指示において指定された改修項目の仕様に対応する建物モデルの設定を改修シミュレーション実行部3のモデル設定部40(図1)に依頼し、かくしてモデル設定部40により設定された建物モデルを利用して、そのとき対象としている建物の該当箇所を改修プラン作成指示において指定された改修項目の仕様に改修する改修プランを実行した場合の室温や湿度の時間的変化を算出する。 When such a renovation plan creation instruction is given, the renovation plan creation unit 50 sets the setting of the building model corresponding to the specification of the refurbishment item specified in the renovation plan creation instruction to the model setting unit of the renovation simulation execution unit 3 40 (FIG. 1), and using the building model set by the model setting unit 40, the relevant part of the target building at that time is repaired to the specification of the repair item specified in the repair plan creation instruction. Calculate the change in room temperature and humidity over time when the renovation plan is executed.
 具体的に、改修案作成部50は、図6に示すように、例えば改修プラン作成指示において指定された改修シミュレーションの条件が「ドアの開閉回数及び開閉時間」であり、かつ当該改修プラン作成指示において指定された改修項目及び仕様が「断熱材の仕様」であった場合には、分解信号データベース15(図1)から、「ドアの開閉回数及び開閉時間」のイベント信号S160と、改修プラン作成指示において指定された改修項目及び仕様に対応する建物モデルを変換部30(図1)に設定したときの改修シミュレーションにおいて得られた特定プロセス信号の断熱由来成分S10Aとを読み出す。 Specifically, as shown in FIG. 6, the renovation plan creation unit 50, for example, the condition of the renovation simulation specified in the renovation plan creation instruction is “door opening / closing frequency and opening / closing time”, and the renovation plan creation instruction If the refurbishment item and specification specified in step 1 are “insulation material specifications”, an event signal S160 of “door opening / closing time and opening time” from the decomposition signal database 15 (FIG. 1) and a renovation plan creation The adiabatic origin component S10A of the specific process signal obtained in the repair simulation when the building model corresponding to the repair item and specification specified in the instruction is set in the conversion unit 30 (FIG. 1) is read out.
 そして改修案作成部50は、分解信号データベース15から読み出した「ドアの開閉回数及び開閉時間」のイベント信号S160を差分計算部53において微分処理した後に、信号変換部52に設定されている建物モデルを利用して、かかる特定プロセス信号の断熱由来成分S160と同じ物理単位のイベント信号(変換イベント信号)S161に変換する。 The refurbishment plan creation unit 50 differentiates the “door opening / closing times and opening / closing time” event signal S160 read from the decomposition signal database 15 by the difference calculation unit 53 and then sets the building model set in the signal conversion unit 52. Is converted into an event signal (conversion event signal) S161 having the same physical unit as the adiabatic component S160 of the specific process signal.
 また改修案作成部50は、この後、分離信号補正部54において、このイベント信号(変換イベント信号)S161を、上述のように分解信号データベース15から読み出した、改修プラン作成指示において指定された改修項目及び仕様に対応する建物モデルを変換部30に設定したときの改修シミュレーションにおいて得られた特定プロセス信号の断熱由来成分S10Aに加算することにより、特定プロセス信号の断熱由来の成分を補正する。これにより対象とする建物の該当箇所を改修プラン作成指示において指定された改修項目の仕様に改修し、かつ当該改修プラン作成指示において指定された「開閉回数及び開閉時間の更新」の内容に応じて更新した後の開閉回数及び開閉時間でドアが開閉された場合における室温の時間的変化を表す改修シミュレーション信号S21が得られることになる。 After that, the refurbishment plan creation unit 50 reads the event signal (conversion event signal) S161 from the decomposition signal database 15 as described above in the separation signal correction unit 54, and the renovation plan specified in the renovation plan creation instruction. The component derived from the heat insulation of the specific process signal is corrected by adding to the heat insulation derived component S10A of the specific process signal obtained in the renovation simulation when the building model corresponding to the item and specification is set in the conversion unit 30. As a result, the relevant part of the target building is renovated to the specification of the renovation item specified in the renovation plan creation instruction, and according to the contents of the “update of the number of times of opening and closing and opening and closing time” designated in the renovation plan creation instruction A repair simulation signal S21 representing a temporal change in room temperature when the door is opened and closed with the number of times of opening and closing and the opening and closing time after the update is obtained.
 また改修案作成部50は、上述と同様にして対象とする建物の該当箇所を改修プラン作成指示において指定された改修項目の仕様に改修し、かつ当該改修プラン作成指示において指定された「開閉回数及び開閉時間の更新」の内容に応じて更新した後の開閉回数及び開閉時間でドアが開閉された場合における建物内の湿度の時間的変化を表す改修シミュレーション信号S21をも算出する。 In addition, the repair plan creation unit 50 repairs the corresponding part of the target building to the specification of the repair item specified in the repair plan creation instruction in the same manner as described above, and the “opening and closing times” specified in the repair plan creation instruction. And a renewal simulation signal S21 representing a temporal change in humidity in the building when the door is opened and closed with the number of times of opening and closing and the opening and closing time after updating in accordance with the content of "update of opening and closing time".
 そして改修案作成部50は、このようにして算出した室温及び湿度の改修シミュレーション信号S21に基づいて必要な空調制御を行うための空調燃料費や、室内の快適性を算出する。 Then, the renovation plan creation unit 50 calculates the air conditioning fuel cost for performing the necessary air conditioning control and the indoor comfort based on the room temperature and humidity renovation simulation signal S21 calculated in this way.
 改修案作成部50は、対象選定部60からかかる改修プラン作成指示が与えられるごとに以上の処理を実行する。そして対象選定部60は、そのシナリオについて、改修プラン作成指示において指定する改修項目及びその仕様を順次変えながら、すべての改修項目のすべての仕様をそれぞれ指定した改修プラン作成指示を改修案作成部50に順次与える。この結果、これらの改修プラン作成指示に従って、改修案作成部50において、対象とする建物の該当箇所を改修プラン作成指示において指定された改修項目の仕様に改修する改修プランを実行し、かつ当該改修プラン作成指示において指定された「開閉回数及び開閉時間の更新」の内容に応じて更新した後の開閉回数及び開閉時間でドアを開閉した場合におけるその建物の快適性及びその後の空調燃料費とがそれぞれ計算されることになる。 The refurbishment plan creation unit 50 executes the above process every time the renovation plan creation instruction is given from the target selection unit 60. Then, the target selection unit 60 changes the repair items specified in the repair plan creation instruction and the specifications of the scenario, and sequentially changes the repair plan creation instructions that specify all the specifications of all the repair items. Sequentially. As a result, in accordance with these renovation plan creation instructions, the refurbishment plan creation unit 50 executes the renovation plan for refurbishing the relevant part of the target building to the specification of the renovation item specified in the renovation plan creation instruction, and The comfort of the building and the subsequent air-conditioning fuel cost when the door is opened and closed with the number of times of opening and closing and the opening and closing time after updating according to the content of “Number of times of opening and closing and opening and closing time” specified in the plan creation instruction Each will be calculated.
 そして改修案作成部50は、このような処理を完了すると、上述の計算により建物の快適性及びその後の空調燃料費が得られた改修プランを、快適性の高い順に又はその後の空調燃料費が低い順に並べた改修案200を作成し、これをプリントアウト又は画面表示する。 Then, after completing such a process, the renovation plan creation unit 50 determines the refurbishment plan in which the comfort of the building and the subsequent air-conditioning fuel cost are obtained by the above calculation in the order of higher comfort or the subsequent air-conditioning fuel cost. The repair plans 200 arranged in ascending order are created and printed out or displayed on the screen.
(1-3)建物空調改善支援サービスシステムにおける各種データ及び信号の構造
 図7は、本建物空調改善支援サービスシステム1における各種データ及び信号の構造例を示す。本実施の形態の建物空調改善支援サービスシステム1においては、シナリオデータを基点として、改修案200が出力データとなる。建物データ100は、上述のようにそのとき対象としている建物の建物様式、延床面積、間取り及び居住人口等の情報を包含するデータである。これら各データ及び各信号は、対象とする建物や、分析対象が室温及び湿度のいずれであるかにより、データベース同士の関係も1:1又は1:nに変化する。
(1-3) Structure of Various Data and Signals in Building Air Conditioning Improvement Support Service System FIG. 7 shows an example of the structure of various data and signals in the building air conditioning improvement support service system 1. In the building air-conditioning improvement support service system 1 according to the present embodiment, the modification plan 200 is output data based on scenario data. As described above, the building data 100 is data including information such as the building style, total floor area, floor plan, and resident population of the target building at that time. Each of these data and each signal also changes the relationship between the databases to 1: 1 or 1: n depending on whether the target building or the analysis target is room temperature or humidity.
(1-4)建物空調改善支援機能に関する処理の流れ
 図8は、建物空調改善支援サービスシステム1において、上述した建物空調改善支援機能に関連して実行される一連の処理の流れを示す。
(1-4) Process Flow for Building Air Conditioning Improvement Support Function FIG. 8 shows a flow of a series of processes executed in relation to the building air conditioning improvement support function described above in the building air conditioning improvement support service system 1.
 本建物空調改善支援サービスシステム1では、まずシナリオ25が1つ選択され(SP1)、この後、シナリオ設定処理部2のシナリオ設定部20に与えられるプロセス信号及びイベント信号のうちのかかるシナリオ25に応じたプロセス信号又はイベント信号にシナリオデータが付加される(SP2)。 In the building air-conditioning improvement support service system 1, one scenario 25 is first selected (SP 1), and thereafter, the scenario 25 out of process signals and event signals given to the scenario setting unit 20 of the scenario setting processing unit 2 is selected. Scenario data is added to the corresponding process signal or event signal (SP2).
 続いて、改修シミュレーション実行部3の変換部30において、イベント信号及び一部のプロセス信号が特定プロセス信号と同じ物理単位の信号に変換されて分解部10に与えられ(SP3)、この後、分解部10において特定プロセス信号がその変動発生要因ごとの成分に分解される(SP4)。そしてこのようにして得られた特定プロセス信号の変動発生要因ごとの成分が分解信号データベース15に格納される(SP5)。 Subsequently, in the conversion unit 30 of the remodeling simulation execution unit 3, the event signal and a part of the process signal are converted into a signal having the same physical unit as the specific process signal and given to the decomposition unit 10 (SP3). The specific process signal is decomposed into components for each variation occurrence factor in the unit 10 (SP4). Then, the components for each variation occurrence factor of the specific process signal obtained in this way are stored in the decomposition signal database 15 (SP5).
 以上の改修シミュレーションが改修コストデータベース65に登録されたすべての改修項目のすべての仕様について実行されていない場合には(SP6:NO)、残りの各改修項目の各仕様について同様の改修シミュレーションが実行される。 If the above-described repair simulation has not been executed for all specifications of all the repair items registered in the repair cost database 65 (SP6: NO), the same repair simulation is executed for each specification of the remaining repair items. Is done.
 そして改修コストデータベース65に登録されたすべての改修項目のすべての仕様についての改修シミュレーションが完了した場合であって(SP6:YES)、すべてのシナリオ25についてステップSP2~ステップSP5の処理が実行されていない場合には(SP7:NO)、個々のシナリオ25についてさらに同様の処理が繰り返される。 In the case where the repair simulation for all the specifications of all the repair items registered in the repair cost database 65 is completed (SP6: YES), the processing from step SP2 to step SP5 is executed for all scenarios 25. If not (SP7: NO), the same process is repeated for each scenario 25.
 やがて、すべてのシナリオ25について上述のステップSP2~ステップSP5の処理が完了すると(SP7:YES)、改修案作成処理部4の対象選定部60により1つのシナリオ25が選択され(SP8)、そのシナリオ25のもとで、対象とする建物の該当箇所を改修コストデータベース65に登録された1つの改修項目の1つの仕様に改修する改修プランを実行した場合の室温等の時間的変化が改修案作成部50により導出される(SP9)。またこの後、そのような改修を行った場合のその後の建物の空調燃料費と快適性とが改修案作成部50において順次計算される(SP10,SP11)。 Eventually, when the processing of steps SP2 to SP5 is completed for all scenarios 25 (SP7: YES), one scenario 25 is selected by the target selection unit 60 of the modification plan creation processing unit 4 (SP8), and the scenario Under 25, the time change such as room temperature when executing the repair plan to repair the relevant part of the target building to one specification of one repair item registered in the repair cost database 65 creates the repair plan Derived by the unit 50 (SP9). Thereafter, the air conditioning fuel cost and the comfort of the subsequent building when such a renovation is performed are sequentially calculated by the renovation plan preparation unit 50 (SP10, SP11).
 以上のステップSP9~ステップSP11の処理が改修コストデータベース65に登録されたすべての改修項目のすべての仕様について実行されていない場合には(SP12:NO)、残りの各改修項目の各仕様について同様の処理が実行される。 When the processing in steps SP9 to SP11 is not executed for all specifications of all the repair items registered in the repair cost database 65 (SP12: NO), the same applies to the specifications of the remaining repair items. The process is executed.
 そして、改修コストデータベース65に登録されたすべての改修項目のすべての仕様についてステップSP9~ステップSP11の処理が完了すると、改修案作成部50が、上述のようにしてその後の空調燃料費及び快適性等を算出した各改修プランを快適性の高い順又はその後の空調燃料費が低い順に順位付けする(SP13)。 When the processing of steps SP9 to SP11 is completed for all the specifications of all the repair items registered in the repair cost database 65, the repair plan creation unit 50 performs the subsequent air conditioning fuel cost and comfort as described above. The respective renovation plans that have been calculated are ranked in descending order of comfort or in descending order of air-conditioning fuel costs (SP13).
 以上のステップSP8~ステップSP13の処理がすべてのシナリオ25について実行されていない場合には(SP14:YES)、個々のシナリオ25についてさらに同様の処理が繰り返される。 If the processes in steps SP8 to SP13 are not executed for all scenarios 25 (SP14: YES), the same process is repeated for each scenario 25.
 そして改修案作成部は、やがてすべてのシナリオ25についてステップSP9~ステップSP13の処理を実行し終えると、シナリオ25ごとの改修案200をそれぞれ作成し、これを出力する(SP15)。 Then, after the execution of the processing from step SP9 to step SP13 for all scenarios 25 is completed, the modification plan creation unit creates a modification plan 200 for each scenario 25 and outputs it (SP15).
 図9は、図8のステップSP4において分解部10により実行される分解処理の具体的な処理内容を示すフローチャートである。本実施の形態においては、分析対象である特定プロセス信号を分解する信号分解方式として、上述のように独立成分解析方式を適用する。 FIG. 9 is a flowchart showing specific processing contents of the disassembling process executed by the disassembling unit 10 in step SP4 of FIG. In the present embodiment, the independent component analysis method is applied as described above as a signal decomposition method for decomposing a specific process signal to be analyzed.
 本実施の形態の場合、独立成分解析方式における観測データは、プロセス信号及びイベント信号であり、分解部10に入力するこれらプロセス信号及びイベント信号の信号数が独立成分数となる。独立性を満たす目的関数としては、統計量として高次モーメントから導出する高次キュムラントの最小化問題を適用すれば良い。高次キュムラントとしては4次程度で十分であり、実用的な計算時間で求められるアルゴリズムが、例えば非特許文献4(A. Hyvarinen, J. Karhunen, E. Oja : Independent Component Analysis :John Wiley & Sons.(2001))に開示されている。 In the case of the present embodiment, the observation data in the independent component analysis method is a process signal and an event signal, and the number of these process signals and event signals input to the decomposition unit 10 is the number of independent components. As an objective function that satisfies independence, a minimization problem of a high-order cumulant derived from a high-order moment as a statistic may be applied. The fourth order is sufficient as a high-order cumulant, and the algorithm required in practical calculation time is, for example, Non-Patent Document 4 (A. Hyvarinen, J. Karhunen, E. Oja: Independent Component Analysis: John Wiley & Sons (2001)).
 すなわち、観測信号SS(t)と、独立成分信号S(t)とを対応付ける行列Aを用いると、次式
Figure JPOXMLDOC01-appb-M000003
が成り立ち、この独立成分信号すなわち分解信号S(t)を求めるのが独立成分解析である。いわゆる信号源(音源)である分解信号S(t)がすべて計測できれば、次式
Figure JPOXMLDOC01-appb-M000004
を満たす行列Wは一意に求められるが、いくつかの観測信号SS(t)は干渉している場合がほとんどであり、独立した計測は困難である。この問題を解くのが、例えば非特許文献4に示された独立成分解析である。本実施の形態では、独立成分解析の計算手順として、非特許文献4などに示された一般的な手法を用いる。これら処理手順を以下に説明する。
That is, when the matrix A that associates the observation signal SS (t) with the independent component signal S (t) is used,
Figure JPOXMLDOC01-appb-M000003
The independent component analysis is to obtain this independent component signal, that is, the decomposed signal S (t). If all the decomposition signals S (t) that are so-called signal sources (sound sources) can be measured,
Figure JPOXMLDOC01-appb-M000004
A matrix W that satisfies the above is uniquely obtained, but some observation signals SS (t) are mostly interfering, and independent measurement is difficult. For example, the independent component analysis shown in Non-Patent Document 4 solves this problem. In the present embodiment, a general technique shown in Non-Patent Document 4 or the like is used as a calculation procedure for independent component analysis. These processing procedures will be described below.
 まず分解部10は、観測データ及び独立成分数を入力する(SP20)。本実施の形態の場合、上述のように観測データは、プロセス信号及びイベント信号からなる。また独立成分数はこれら観測データから、室温や室内湿度などを変化要因別に分解させる際の分解数に相当する。すなわち、室温変化を、外気温度、熱源としてボイラー起動停止、ドア開閉に分解する場合は、独立成分数としては3となる。この独立成分数は、予めユーザにより設定される。 First, the decomposition unit 10 inputs observation data and the number of independent components (SP20). In the case of the present embodiment, as described above, the observation data includes a process signal and an event signal. The number of independent components is equivalent to the number of decompositions at the time of decomposing room temperature, room humidity, etc. according to the change factors from these observation data. That is, when the room temperature change is decomposed into the outside air temperature, the boiler start / stop as the heat source, and the door opening / closing, the number of independent components is 3. The number of independent components is set in advance by the user.
 続いて、分解部10は、独立成分解析のためのデータ前処理として観測データを無相関化する(SP21)。無相関化とは、観測データの平均値を0(零)とすることをいい、多変量解析の手法の一つである主成分分析により求めることができる。図9の観測データの無相関化は、すなわち主成分分析により前記観測データの平均値を零にすることに相当する。 Subsequently, the decomposition unit 10 decorrelates the observation data as data preprocessing for independent component analysis (SP21). The decorrelation means that the average value of observation data is 0 (zero), and can be obtained by principal component analysis, which is one of multivariate analysis techniques. 9 is equivalent to making the average value of the observed data zero by principal component analysis.
 次いで、分解部10は、独立成分解析の目的関数を設定し(SP22)、この後、独立成分を計算する(SP23)。上述の無相関化により、観測データを平均値零の時系列データに変換した。この特性に基づき、キュムラントという統計データの特徴量を最小化することで、観測データに対する独立成分が得られることが上記非特許文献4に示されており、FastICAというアルゴリズムとして広く知られている。ここで、キュムラントとは、統計量のモーメントから導出されるものであり、例えば1次のキュムラントは観測データの平均値、2次キュムラントは、観測データのばらつきを表わす分散、3次キュムラントは3次モーメントに対応する。非特許文献4では、こうした高次のキュムラントを最小化する問題を解くことで、独立成分を得る方法を示しており、実用的な計算時間で求められる。 Next, the decomposition unit 10 sets an objective function for independent component analysis (SP22), and thereafter calculates the independent component (SP23). The observation data was converted to time-series data with an average value of zero by the above-described decorrelation. Based on this characteristic, it is shown in Non-Patent Document 4 that an independent component for observation data can be obtained by minimizing the feature quantity of statistical data called cumulant, and is widely known as an algorithm called FastICA. Here, the cumulant is derived from the statistic moment. For example, the first-order cumulant is the average value of the observed data, the second-order cumulant is the variance representing the variation of the observed data, and the third-order cumulant is the third-order cumulant. Corresponds to the moment. Non-Patent Document 4 shows a method of obtaining an independent component by solving the problem of minimizing such a high-order cumulant, and can be obtained in a practical calculation time.
 以上までの処理により、特定プロセス信号の変動発生要因ごとの成分が求められる。そして分解部10は、このようにして求めた特定プロセス信号の変動発生要因ごとの成分を図8のステップSP5において分解信号データベースに格納することになる。 Through the above processing, the components for each factor of fluctuation of the specific process signal are obtained. Then, the decomposing unit 10 stores the components for each variation occurrence factor of the specific process signal thus obtained in the decomposing signal database in step SP5 of FIG.
(1-5)本実施の形態による建物空調改善支援サービスシステムの具体的な構成例
 図10は、本実施の形態による建物空調改善支援サービスシステム1の具体的な構成例を示す。この図10は、建物空調改善支援サービスシステム1をHEMSに適用した場合の構成例であり、分解部10(図1)の機能のみをクラウドサーバ11にもたせ、シナリオ設定部20、モデルパラメータ演算部44、モデル設定部40、変換部30、対象選定部60及び改修案作成部50の機能をHEMSを統括管理する統括HEMS111にもたせたている。また図10では、気象データなどが一部のシナリオ25としてネットワーク112を介して統括HEMS111に与えられる。
(1-5) Specific Configuration Example of Building Air Conditioning Improvement Support Service System According to the Present Embodiment FIG. 10 shows a specific configuration example of the building air conditioning improvement support service system 1 according to the present embodiment. FIG. 10 is a configuration example when the building air conditioning improvement support service system 1 is applied to HEMS. Only the function of the disassembling unit 10 (FIG. 1) is given to the cloud server 11, and the scenario setting unit 20 and the model parameter calculating unit 44. The functions of the model setting unit 40, the conversion unit 30, the target selection unit 60, and the renovation plan creation unit 50 are provided to a general HEMS 111 that manages and manages the HEMS. In FIG. 10, weather data and the like are given to the overall HEMS 111 via the network 112 as a partial scenario 25.
 クラウドサーバ110は、CPU(Central Processing Unit)及びメモリ等の情報処理資源を備える汎用のサーバ装置であり、メモリに格納されたプログラムをCPUが実行することにより、建物空調改善支援サービスシステム1の分解部10としての機能を発揮する。また統括HEMS111も、CPU及びメモリ等の情報処理資源を備えて構成され、メモリに格納されたプログラムをCPUが実行することにより、建物空調改善支援サービスシステム1のシナリオ設定部20、モデルパラメータ演算部44、モデル設定部40、変換部30、対象選定部60及び改修案作成部50としての機能を発揮する。 The cloud server 110 is a general-purpose server device having a CPU (Central Processing Unit) and information processing resources such as a memory, and the CPU executes a program stored in the memory, whereby the building air conditioning improvement support service system 1 is decomposed. The function as the part 10 is demonstrated. The overall HEMS 111 is also configured to include information processing resources such as a CPU and a memory, and the CPU executes a program stored in the memory, so that the scenario setting unit 20 and the model parameter calculation unit of the building air conditioning improvement support service system 1 44, the model setting unit 40, the conversion unit 30, the target selection unit 60, and the modification plan creation unit 50 are exhibited.
 本建物空調改善支援サービスシステム1では、サーモスタット113により計測された時々刻々の建物内の室温及び湿度と、建物内の各部屋のラジエータ114(図11)にそれぞれ搭載された温度計(TRV)114Aにより計測された時々刻々のそのラジエータ114の温度とがそれぞれプロセス信号として統括HEMS111に与えられる。 In the building air conditioning improvement support service system 1, the room temperature and humidity in the building measured by the thermostat 113 and the thermometer (TRV) 114A mounted on the radiator 114 (FIG. 11) of each room in the building are provided. The temperature of the radiator 114 measured from time to time is supplied to the overall HEMS 111 as a process signal.
 また統括HEMS111には、窓やドアに設置されたセンサ115により検出されたその窓又はドアの開閉状態(開又は閉)に関する情報と、熱源117からその状態(オン/オフ)も通知される。かくして統括HEMS111は、例えばセンサ115により検出されたその窓又はドアの開閉状態に基づいて、その窓やドアの開閉回数及び開閉時間を表すイベント信号を生成すると共に、熱源117からの通知に基づいて、その熱源117のオン/オフを表すイベント信号を生成する。 Also, the general HEMS 111 is notified of information about the open / closed state (open or closed) of the window or door detected by the sensor 115 installed on the window or door, and the state (on / off) from the heat source 117. Thus, the overall HEMS 111 generates, for example, an event signal indicating the number of times of opening / closing the window or door and the opening / closing time of the window or door detected by the sensor 115, and based on a notification from the heat source 117. Then, an event signal indicating on / off of the heat source 117 is generated.
 そして統括HEMS111は、これらのプロセス信号及びイベント信号に基づいて、図1~図9について上述したシナリオ設定部20、モデルパラメータ演算部44、モデル設定部40、変換部30、対象選定部60及び改修案作成部50に関する各種処理を実行する。 Based on these process signals and event signals, the general HEMS 111 then sets the scenario setting unit 20, the model parameter calculation unit 44, the model setting unit 40, the conversion unit 30, the target selection unit 60, and the modification described above with reference to FIGS. Various processes related to the plan creation unit 50 are executed.
 なお、この図10の例の場合、分解部10の機能をクラウドサーバ110側にもたせることに伴い、分解信号データベース15はクラウドサーバ110側に配置する一方、他のモデルパラメータデータベース45や改修コストデータベース65などは統括HEMS111側に配置する。 In the case of the example of FIG. 10, the decomposition signal database 15 is arranged on the cloud server 110 side as the function of the decomposition unit 10 is also provided on the cloud server 110 side, while the other model parameter database 45 and the repair cost database. 65 and the like are arranged on the overall HEMS 111 side.
 図11は、図10の構成において、本実施の形態による建物空調改善支援サービスシステム1をセントラルヒーティングに適用した場合の一例を示す。統括HEMS111には、部屋ごとの断熱特性が予めモデルとして与えられており、これらのモデルに基づいて統括HEMS111が部屋ごとに空調の最適制御を行う。このように各部屋のラジエータ114の温度計(TRV)114Aを統括制御することにより、部屋同士の室温変化の干渉を考慮することができ、いわゆる空調のゾーニング制御を行うことができる。なお図11では、窓やドアにセンサ115を設置する場合の例を示しているが、各部屋に人感センサ116を設置することでも、かかる空調のゾーニング制御を行うことができる。 FIG. 11 shows an example in which the building air-conditioning improvement support service system 1 according to the present embodiment is applied to central heating in the configuration of FIG. The overall HEMS 111 is preliminarily provided with a heat insulation characteristic for each room as a model, and the overall HEMS 111 performs optimal control of air conditioning for each room based on these models. In this way, by collectively controlling the thermometer (TRV) 114A of the radiator 114 in each room, it is possible to take into account the interference of room temperature changes between the rooms, and so-called air-conditioning zoning control can be performed. Although FIG. 11 shows an example in which the sensor 115 is installed in a window or a door, the air-conditioning zoning control can also be performed by installing the human sensor 116 in each room.
(1-6)本実施の形態の効果
 以上のように本実施の形態の建物空調改善支援サービスシステム1では、建物の所定の改修項目を所定の仕様に改修した場合における特定プロセス信号の変動発生要因ごとの成分を求める改修シミュレーションを各改修項目の仕様ごとにそれぞれ実行し、これら改修シミュレーションのシミュレーション結果に基づいて改修案200を作成する。この際、本建物空間改善支援サービスシステム1では、かかる改修シミュレーションにおいて、住人行動に起因する前記プロセス信号の変動成分を排除した当該プロセス信号の前記変動発生要因ごとの成分を求める。
(1-6) Effects of the present embodiment As described above, in the building air conditioning improvement support service system 1 of the present embodiment, a specific process signal fluctuates when a predetermined modification item of a building is modified to a predetermined specification. A repair simulation for obtaining a component for each factor is executed for each specification of each repair item, and a repair plan 200 is created based on the simulation results of these repair simulations. At this time, the building space improvement support service system 1 obtains a component for each variation occurrence factor of the process signal in which the variation component of the process signal due to the resident behavior is excluded in the repair simulation.
 従って、本建物空調改善支援サービスシステム1によれば、建物空間の快適性を向上させるための住人行動をも考慮した最適な改修案200(改善方法)を提供することができる。 Therefore, according to the building air-conditioning improvement support service system 1, it is possible to provide an optimal renovation plan 200 (improvement method) that also considers resident behavior for improving the comfort of the building space.
(2)第2の実施の形態
 次に第2の実施の形態の建物空調改善支援サービスシステムについて、図12~図14を用いて以下に説明する。本建物空調改善支援サービスシステムでは、プロセス信号及びイベント信号を入力し、シナリオデータを付加する。このシナリオとは、例えばドア開閉、ボイラーON/OFF、気象条件変更、等である。イベント信号、及び一部のプロセス信号については、モデルパラメータを用いて信号をプロセス信号と同じ単位系に変換部30により変換する。すなわち、分解部10では、物理単位を揃えた上で入力情報とする。分解部10の出力はいったん分解信号データベース15に保存する。ここまでの処理は、図1と同じである。次に、分解データの保存結果を用いて、制御パラメータデータベース85に登録されている制御パラメータをシナリオごとに比較し制御パラメータ調整部80で調整し、制御パラメータ決定部70にて最適パラメータを決定する。このとき、モデル設定部40より、制御パラメータ調整で用いたモデルパラメータを参照することで、モデル特性に基づく制御パラメータを導出する。導出計算手順としては、例えば、非特許文献5(鈴木、他:バッチ重合温度制御へのGeneric Model Controlの適用:SCEJ 70th Annual Meeting)に示されているGeneric Model Controlに基づくことで、一般的な制御パラメータである比例ゲイン、積分ゲインを導出することが可能である。
(2) Second Embodiment Next, a building air conditioning improvement support service system according to a second embodiment will be described below with reference to FIGS. In the building air conditioning improvement support service system, process signals and event signals are input and scenario data is added. This scenario is, for example, door opening / closing, boiler ON / OFF, weather condition change, and the like. For the event signal and part of the process signal, the conversion unit 30 converts the signal into the same unit system as the process signal using the model parameter. In other words, the disassembling unit 10 sets the physical units as input information. The output of the decomposition unit 10 is temporarily stored in the decomposition signal database 15. The processing so far is the same as in FIG. Next, using the decomposition data storage result, the control parameters registered in the control parameter database 85 are compared for each scenario, adjusted by the control parameter adjusting unit 80, and the optimum parameter determined by the control parameter determining unit 70. . At this time, a control parameter based on the model characteristics is derived from the model setting unit 40 by referring to the model parameter used in the control parameter adjustment. The derivation calculation procedure is based on, for example, Generic Model Control shown in Non-Patent Document 5 (Suzuki, et al .: Application of Generic Model Control to batch polymerization temperature control: SCEJ 70th Annual Meeting). It is possible to derive a proportional gain and an integral gain as control parameters.
 この制御則を導出する目的関数86として、次式
Figure JPOXMLDOC01-appb-M000005
を適用する。(5)式において、yは制御信号すなわち室温など、rはその目標値であり、k1、k2は比例ゲイン、積分ゲインに対応付けることができる。室温制御を最適に行うには、例えばdy/dtを最小化するなど目的関数を定義することができる。制御パラメータは、パラメータリスト300として登録し、各BEMS、HEMSコントローラに実装される。例えば、室温制御についてはサーモスタットコントロールの制御パラメータに適用する。
As an objective function 86 for deriving this control law,
Figure JPOXMLDOC01-appb-M000005
Apply. In Expression (5), y is a control signal, that is, room temperature, r is a target value, and k1 and k2 can be associated with a proportional gain and an integral gain. In order to optimally control the room temperature, an objective function can be defined such as minimizing dy / dt. The control parameters are registered as a parameter list 300 and are installed in each BEMS and HEMS controller. For example, room temperature control is applied to the control parameters of thermostat control.
 図15は、本実施の形態による建物空調改善支援サービスシステムにおける処理の流れを示すフローチャートである。制御パラメータ調整及び目的関数計算は、前述の通りである。なお、当該処理はオンラインで実行する場合はモデルデータ更新判定が省略され、時間進行に伴い、制御パラメータまでの手続きが制御周期ごとに繰り返す場合がある。 FIG. 15 is a flowchart showing the flow of processing in the building air conditioning improvement support service system according to this embodiment. Control parameter adjustment and objective function calculation are as described above. Note that, when the processing is executed online, the model data update determination is omitted, and the procedure up to the control parameter may be repeated every control cycle as time progresses.
 次に、本実施の形態の建物空調改善支援サービスシステムにおける制御目標値生成支援についての一例を図16及び図17を用いて以下に説明する。制御目標値生成とは、従来は一定値に設定された制御目標値を、分解結果に基づき修正するものである。プロセス信号S10と分解結果のうち、プロセス駆動データを比較し、制御パラメータ設定を行う。具体的には、制御目標値そのものの修正ではなく、制御目標値と比較する対象を、観測信号S10と分解信号S150とを比較し、修正制御値Sr10を導出する。修正制御値r10は、フォードバック制御の性能を悪化させる外乱要因を除外し、安定した自動制御を実現する。例えば、窓の開閉による室温変化が短期間に生じたとしても、熱源制御を抑制することで、燃料消費量を抑える。この場合、窓の開閉が短期間であるので、建物本来の断熱性能で温度低下を抑制でき、快適性の低下をも抑える。 Next, an example of control target value generation support in the building air conditioning improvement support service system of the present embodiment will be described below with reference to FIGS. The control target value generation is to correct a control target value that has been set to a constant value based on the decomposition result. Of the process signal S10 and the decomposition result, the process drive data is compared and the control parameter is set. Specifically, instead of correcting the control target value itself, the target to be compared with the control target value is compared with the observation signal S10 and the decomposition signal S150 to derive the corrected control value Sr10. The corrected control value r10 eliminates a disturbance factor that deteriorates the performance of Fordback control, and realizes stable automatic control. For example, even if a change in room temperature due to opening and closing of the window occurs in a short time, the fuel consumption is suppressed by suppressing the heat source control. In this case, since the opening and closing of the window is a short period, a temperature decrease can be suppressed by the inherent heat insulation performance of the building, and a decrease in comfort can also be suppressed.
 図18は、本実施の形態による建物空調改善支援サービスシステムにおける制御パラメータ調整支援処理の処理手順を示すフローチャートである。分解信号と制御量の比較、及び制御目標値生成は、前述のとおりである。なお、当該処理はオンラインで実行する場合はモデルデータ更新判定が省略され、時間進行に伴い、制御パラメータまでの手続きが制御周期ごとに繰り返す場合がある。 FIG. 18 is a flowchart showing a processing procedure of control parameter adjustment support processing in the building air conditioning improvement support service system according to this embodiment. The comparison of the decomposition signal and the control amount and the generation of the control target value are as described above. Note that, when the processing is executed online, the model data update determination is omitted, and the procedure up to the control parameter may be repeated every control cycle as time progresses.
 次に、第2の実施の形態例の建物空調改善支援サービスシステムにおけるモデルパラメータ更新について、その一実施例を、図19を用いて以下に説明する。モデル設定部40では、プロセス信号S10と、分解信号を加算したものを比較し、分解精度を確認したうえで、分解入力の物理単位統一に用いたモデルの確からしさを判定する。すなわち、断熱由来の温度変化が大きすぎる場合は、イベント信号に対応したモデルパラメータのゲインを大きくし、逆に断熱由来の温度変化が小さすぎる場合は、断熱特性が大きすぎるとして、建物データの見直しを判断する。これらの処理はルール化してモデル設定部40に具備させる。 Next, one example of the model parameter update in the building air conditioning improvement support service system of the second embodiment will be described below with reference to FIG. The model setting unit 40 compares the process signal S10 with the addition of the decomposition signal, confirms the decomposition accuracy, and determines the probability of the model used for unifying the physical unit of the decomposition input. In other words, if the temperature change derived from insulation is too large, the gain of the model parameter corresponding to the event signal is increased, and conversely, if the temperature change derived from insulation is too small, the insulation data is considered too large and the building data is reviewed. Judging. These processes are ruled and provided in the model setting unit 40.
 本実施の形態による建物空調改善支援サービスシステムにおける制御パラメータ調整に関するデータ構造について、その一例を、図20に示す。本実施の形態においてデータ構造は、シナリオデータを基点とし、制御パラメータ300が出力データとなる。また建物データ100は、制御対象となる建物の間取り、住人特性を包含したデータである。これらは制御対象の建物、または分解対象の信号が室温か別の信号かにより、データベースどうしの関係も1;1または1:nか変化する。制御パラメータ300は、自動制御系との接続するものとし、例えばBEMSやHEMSのコントローラのパラメータとして実装される。 FIG. 20 shows an example of the data structure related to control parameter adjustment in the building air conditioning improvement support service system according to the present embodiment. In the present embodiment, the data structure is based on scenario data, and the control parameter 300 is output data. Further, the building data 100 is data including the floor plan of the building to be controlled and the resident characteristics. The relationship between the databases changes to 1: 1 or 1: n depending on the building to be controlled or whether the signal to be decomposed is room temperature or another signal. The control parameter 300 is assumed to be connected to an automatic control system, and is implemented as a parameter of a BEMS or HEMS controller, for example.
 本実施の形態による建物空調改善支援サービスシステムにおける信号分解について、その分解結果の一例を図21を用いて以下に説明する。室温測定値S10が分解対象となるので、物理単位は温度℃に統一する。図21の示す室温測定値は、日射あるいは外気温変化によるものと、窓開閉及び暖房制御に伴う温度変化が含まれると仮定する。シナリオ設定により、窓開閉信号と暖房オンオフ制御信号を温度信号に変換し、分解部10にて信号分離を施すことで、図21右図に示したプロセス駆動信号1つと、イベント駆動信号2つに分解する。本発明の支援サービス方法では、建物断熱特性による温度変化と、窓やドアなど住人行動に伴う温度外乱、及びそれらを受けて動作する空調制御の影響因子を分解し、その結果を活用する。 An example of signal decomposition in the building air conditioning improvement support service system according to the present embodiment will be described below with reference to FIG. Since the room temperature measurement value S10 is an object to be decomposed, the physical unit is unified at the temperature ° C. It is assumed that the room temperature measurement values shown in FIG. 21 include those due to solar radiation or outside air temperature changes and temperature changes associated with window opening / closing and heating control. According to the scenario setting, the window opening / closing signal and the heating on / off control signal are converted into a temperature signal, and signal separation is performed in the disassembling unit 10, so that one process drive signal and two event drive signals shown in the right diagram of FIG. Decompose. In the support service method of the present invention, the temperature change due to the heat insulation characteristics of the building, the temperature disturbance accompanying the resident behavior such as windows and doors, and the influence factors of the air conditioning control that operates in response thereto are decomposed and the results are utilized.
 本実施の形態による建物空調改善支援サービスシステムにおける信号分解について、その分解結果を用いて制御目標値の修正を行った場合の一例を図22に示す。左図は本発明の方法を適用していない従来の制御特性であり、窓開閉に伴う温度外乱を検知してボイラー制御を実行している。一方、右図は本発明の制御目標値修正による結果であるが、点線で示した断熱由来の室温変化と室温設定値を比較することで、窓開閉による一時的な室温低下の影響によるボイラー起動を抑制し、燃料消費を抑制している。またボイラー制御による室温上昇を抑えた結果となっている。 FIG. 22 shows an example of signal decomposition in the building air-conditioning improvement support service system according to the present embodiment when the control target value is corrected using the decomposition result. The left figure shows the conventional control characteristics to which the method of the present invention is not applied. The boiler control is executed by detecting the temperature disturbance accompanying the opening and closing of the window. On the other hand, the right figure shows the result of the control target value correction of the present invention. By comparing the room temperature change derived from insulation with the room temperature setting value indicated by the dotted line, boiler activation due to the effect of temporary room temperature drop due to window opening and closing To suppress fuel consumption. Moreover, it is the result of suppressing the room temperature rise by boiler control.
 本実施の形態による建物空調改善支援サービスシステムにおける改修計画支援についての一例を図23に示す。モデルパラメータとしてゲインと時定数を設定したモデルを準備する。前記ゲインと時定数は、建物データが定義する断熱特性や熱源用量、窓特性などから一意に求める。これらモデル特性を、「Model0」から「Model2」まで有限個用意した上で、比較計算を実行し、改修計画「PlanA」、「PlanB」、及び「PlanC」を導出する。導出の際にはモデルデータを対応づけることで、別途モデル更新の際に検索が可能となる。得られた改修計画から、断熱素材、施工面積、及び工数など、自動制御ではなく建物本体の改造に関する評価項目を記録し、それに伴う燃料費、快適性、及び総コストを列記する。そして改修計画どうしで比較したなかから、最適な改修計画を選択する。この場合、改造工数あるいは総コスト、もしくは快適性など、優先したい項目をユーザが選択できるようにする。 FIG. 23 shows an example of the repair plan support in the building air conditioning improvement support service system according to this embodiment. Prepare a model with gain and time constant as model parameters. The gain and time constant are uniquely determined from the heat insulation characteristics, heat source dose, window characteristics, and the like defined by the building data. After preparing a finite number of these model characteristics from “Model0” to “Model2”, the comparison calculation is executed to derive the renovation plans “PlanA”, “PlanB”, and “PlanC”. By associating model data with each other at the time of derivation, it becomes possible to search when updating the model separately. Record the evaluation items related to the modification of the building body instead of automatic control, such as heat insulation material, construction area, and man-hours, and list the associated fuel costs, comfort, and total costs. Then, the optimal repair plan is selected from the comparison between the repair plans. In this case, the user can select items to be prioritized such as remodeling man-hours, total cost, or comfort.
 本実施の形態による建物空調改善支援サービスシステムにおける改修計画支援の、別の実施例を図24に示す。モデルパラメータとしてゲインと時定数を設定したモデルを準備する。前記ゲインと時定数は、建物データが定義する断熱特性や熱源用量、窓特性などから一意に求める。これらモデル特性を、「Model0」から「Model2」まで有限個用意した上で、比較計算を実行し、改修計画「PlanA」、「PlanB」、及び「PlanC」を導出する。導出の際にはモデルデータを対応づけることで、別途モデル更新の際に検索が可能となる。得られた改修計画から、断熱素材、施工面積、及び工数など、自動制御ではなく建物本体の改造に関する評価項目を記録し、それに伴う燃料費、快適性、及び総コストを列記する。さらに、本実施例では、換気項目及び衛生項目を追加する。換気項目は、シナリオ項目とは別に設定することが可能であり、ここでは換気機能の有無、もしくは換気量を改修項目として記載する。衛生項目については、例えばカビの発生条件を評価項目とし、室内の温度変化、湿度変化より、カビ発生の可能性を判定するルールを、比較処理に具備する。前記換気機能は、いわゆる除湿機能として考慮し、プロセス信号として計測した湿度信号から、絶対湿度を導出し、換気能力による湿度低減効果を見積もることが可能となる。なお、換気項目については、窓開閉との動作を考慮する必要があるが、ここでは絶対湿度の排出として換気が機能すると考える。 FIG. 24 shows another example of the repair plan support in the building air conditioning improvement support service system according to this embodiment. Prepare a model with gain and time constant as model parameters. The gain and time constant are uniquely determined from the heat insulation characteristics, heat source dose, window characteristics, and the like defined by the building data. After preparing a finite number of these model characteristics from “Model0” to “Model2”, the comparison calculation is executed to derive the renovation plans “PlanA”, “PlanB”, and “PlanC”. By associating model data with each other at the time of derivation, it becomes possible to search when updating the model separately. Record the evaluation items related to the modification of the building body instead of automatic control, such as heat insulation material, construction area, and man-hours, and list the associated fuel costs, comfort, and total costs. Furthermore, in this embodiment, ventilation items and hygiene items are added. The ventilation item can be set separately from the scenario item. Here, the presence / absence of the ventilation function or the ventilation amount is described as a modified item. For the hygiene item, for example, the condition for generating mold is used as an evaluation item, and a rule for determining the possibility of mold generation from a change in temperature and humidity in the room is included in the comparison process. The ventilation function is considered as a so-called dehumidification function, and it is possible to derive the absolute humidity from the humidity signal measured as the process signal and estimate the humidity reduction effect by the ventilation capacity. As for the ventilation item, it is necessary to consider the operation of opening and closing the window, but here it is assumed that ventilation functions as exhausting absolute humidity.
 本実施の形態による建物空調改善支援サービスシステムを、セントラルヒーティングに適用した場合における、クラウド機能の分解部10の一例を図25に示す。信号分離については図9において処理の流れを記したが、図25では、断熱モデル、ドア開閉モデル、窓開閉モデル、及び熱源制御モデル各々の入力に室温を適用する。室温に応じて変化するモデルパラメータに適用可能とするためであり、この入力を追加することにより、モデルパラメータ修正のたびにシナリオ変更を実行する必要をなくすことができる。 FIG. 25 shows an example of the cloud function decomposition unit 10 when the building air-conditioning improvement support service system according to this embodiment is applied to central heating. For the signal separation, the processing flow is shown in FIG. 9, but in FIG. 25, room temperature is applied to the inputs of the heat insulation model, the door opening / closing model, the window opening / closing model, and the heat source control model. This is because it can be applied to model parameters that change according to room temperature, and by adding this input, it is possible to eliminate the need to execute a scenario change each time the model parameters are corrected.
 以上、本発明の第1及び第2の実施の形態を図1~図25を用いて説明した。計測信号の分解処理により、建物改修計画から制御パラメータ調整まで可能となり、また計算負荷が高い場合はクラウドとして分解処理を実現することで、BEMS、HEMS単体でのコスト抑制、機能実現が図れる。 The first and second embodiments of the present invention have been described above with reference to FIGS. The measurement signal decomposition process enables building repair plans to control parameter adjustments. When the calculation load is high, the decomposition process is realized as a cloud, thereby reducing the cost and realizing the functions of BEMS and HEMS alone.
(3)他の実施の形態
 なお上述の第1及び第2の実施の形態においては、建物空調改善支援サービスシステムの論理構成を図1又は図12のように構成し、具体的な構成を図10及び図11とするようにした場合について述べたが、本発明はこれに限らず、この他種々の構成を広く適用することができる。
(3) Other Embodiments In the first and second embodiments described above, the logical configuration of the building air conditioning improvement support service system is configured as shown in FIG. 1 or FIG. 10 and FIG. 11 have been described. However, the present invention is not limited to this, and various other configurations can be widely applied.
 本発明は、建物の改善を支援する建物空調改善支援サービスシステムに広く適用することができる。 The present invention can be widely applied to a building air conditioning improvement support service system that supports building improvement.
 1……建物空調改善支援サービスシステム、2……シナリオ設定処理部、3……改修シミュレーション実行部、4……改修案作成処理部、10……分解部、15……分解信号データベース、20……シナリオ設定部、25……シナリオ、30……変換部、40……モデル設定部、44……モデルパラメータ演算部、45……モデルパラメータデータベース、45D……モデルパラメータ、50……改修案作成部、60……対象選定部、65……改修コストデータベース、100……建物データ、200……改修案。 DESCRIPTION OF SYMBOLS 1 ... Building air-conditioning improvement support service system, 2 ... Scenario setting process part, 3 ... Renovation simulation execution part, 4 ... Renovation plan preparation process part, 10 ... Decomposition part, 15 ... Decomposition signal database, 20 ... ... scenario setting unit, 25 ... scenario, 30 ... conversion unit, 40 ... model setting unit, 44 ... model parameter calculation unit, 45 ... model parameter database, 45D ... model parameter, 50 ... creation of renovation plan Department, 60 ... target selection department, 65 ... repair cost database, 100 ... building data, 200 ... repair plan.

Claims (8)

  1.  建物の空調改善の支援サービスを提供する建物空調改善支援サービスシステムにおいて、
     前記建物の建物空間の快適性を左右する環境データでなるプロセス信号と、住人行動に関する情報でなるイベント信号とを入力し、入力した前記プロセス信号及び前記イベント信号に基づいて、前記建物の所定の改修項目を所定の仕様に改修した場合における前記プロセス信号の変動発生要因ごとの成分を求める改修シミュレーションを、予め定められた複数の前記改修項目の前記仕様ごとにそれぞれ実行する改修シミュレーション実行部と、
     各前記改修シミュレーションのシミュレーション結果に基づいて、前記建物の所定の前記改修項目を所定の前記仕様にそれぞれ変更した場合における前記建物の前記環境データの変化を各前記改修項目の前記仕様ごとにそれぞれ求め、求めた前記環境データの変化に基づいて各前記改修項目の前記仕様ごとの評価値をそれぞれ算出し、算出した各前記改修項目の前記仕様ごとの評価値に基づいて前記建物の改修案を作成する改修案作成部と
     を備え、
     前記改修シミュレーション実行部は、
     前記改修シミュレーションにおいて、住人行動に起因する前記プロセス信号の変動成分を排除した当該プロセス信号の前記変動発生要因ごとの成分を求める
     ことを特徴とする建物空調改善支援サービスシステム。
    In the building air conditioning improvement support service system that provides the building air conditioning improvement support service,
    A process signal that is environmental data that affects the comfort of the building space of the building and an event signal that is information related to resident behavior are input. Based on the input process signal and the event signal, a predetermined signal of the building is input. A repair simulation execution unit that executes a repair simulation for obtaining a component for each variation occurrence factor of the process signal when the repair item is repaired to a predetermined specification, for each of the specifications of the plurality of predetermined repair items;
    Based on the simulation result of each of the renovation simulations, a change in the environmental data of the building when the predetermined renovation item of the building is changed to the predetermined specification is obtained for each of the specifications of each renovation item. The evaluation value for each specification of each renovation item is calculated based on the obtained change in the environmental data, and the building renovation plan is created based on the calculated evaluation value for each specification of each renovation item And a renovation plan creation department
    The repair simulation execution unit
    The building air-conditioning improvement support service system characterized in that, in the renovation simulation, a component for each variation occurrence factor of the process signal excluding a variation component of the process signal due to resident behavior is obtained.
  2.  前記環境データは、
     前記建物内の室温及び湿度の計測値である
     ことを特徴とする請求項1に記載の建物改善支援サービスシステム。
    The environmental data is
    The building improvement support service system according to claim 1, wherein the building improvement support service system is a measurement value of room temperature and humidity in the building.
  3.  前記改修シミュレーション実行部は、
     独立成分解析方式により前記プロセス信号を分解するようにして、当該プロセス信号の変動発生要因ごとの成分を求める
     ことを特徴とする請求項2に記載の建物改善支援サービスシステム。
    The repair simulation execution unit
    The building improvement support service system according to claim 2, wherein the process signal is decomposed by an independent component analysis method to obtain a component for each factor of fluctuation of the process signal.
  4.  前記改修シミュレーション実行部の前段に設けられ、予め定められた前記改修シミュレーションの条件であるシナリオに応じて対応する前記プロセス信号又はイベント信号を加工するシナリオ設定処理部を備え、
     前記改修シミュレーション実行部は、
     各前記改修項目の前記仕様ごとの前記改修シミュレーションを前記シナリオごとにそれぞれ実行し、
     前記改修案作成処理部は、
     前記改修案を前記シナリオごとにそれぞれ作成する
     ことを特徴とする請求項1に記載の建物空調改善支援サービスシステム。
    Provided in the previous stage of the renovation simulation execution unit, comprising a scenario setting processing unit that processes the process signal or event signal corresponding to a scenario that is a predetermined condition of the renovation simulation,
    The repair simulation execution unit
    The repair simulation for each of the specifications of each of the repair items is executed for each scenario,
    The repair plan creation processing unit
    The building air conditioning improvement support service system according to claim 1, wherein the renovation plan is created for each scenario.
  5.  建物の空調改善の支援サービスを提供する建物空調改善支援サービスシステムにより実行される建物空調改善支援サービス方法において、
     前記建物の建物空間の快適性を左右する環境データでなるプロセス信号と、住人行動に関する情報でなるイベント信号とを入力し、入力した前記プロセス信号及び前記イベント信号に基づいて、前記建物の所定の改修項目を所定の仕様に改修した場合における前記プロセス信号の変動発生要因ごとの成分を求める改修シミュレーションを、予め定められた複数の前記改修項目の前記仕様ごとにそれぞれ実行する第1のステップと、
     各前記改修シミュレーションのシミュレーション結果に基づいて、前記建物の所定の前記改修項目を所定の前記仕様にそれぞれ変更した場合における前記建物の前記環境データの変化を各前記改修項目の前記仕様ごとにそれぞれ求め、求めた前記環境データの変化に基づいて各前記改修項目の前記仕様ごとの評価値をそれぞれ算出し、算出した各前記改修項目の前記仕様ごとの評価値に基づいて前記建物の改修案を作成する第2のステップと
     を備え、
     前記第1のステップでは、
     前記改修シミュレーションにおいて、住人行動に起因する前記プロセス信号の変動成分を排除した当該プロセス信号の前記変動発生要因ごとの成分を求める
     ことを特徴とする建物空調改善支援サービス方法。
    In the building air-conditioning improvement support service method executed by the building air-conditioning improvement support service system that provides the building air-conditioning improvement support service,
    A process signal that is environmental data that affects the comfort of the building space of the building and an event signal that is information related to resident behavior are input. Based on the input process signal and the event signal, a predetermined signal of the building is input. A first step of executing, for each of the specifications of a plurality of predetermined repair items, a repair simulation for obtaining a component for each variation occurrence factor of the process signal when the repair item is repaired to a predetermined specification;
    Based on the simulation result of each of the renovation simulations, a change in the environmental data of the building when the predetermined renovation item of the building is changed to the predetermined specification is obtained for each of the specifications of each renovation item. The evaluation value for each specification of each renovation item is calculated based on the obtained change in the environmental data, and the building renovation plan is created based on the calculated evaluation value for each specification of each renovation item And a second step of
    In the first step,
    The building air-conditioning improvement support service method characterized in that, in the repair simulation, a component for each variation occurrence factor of the process signal is obtained by excluding a variation component of the process signal due to resident behavior.
  6.  前記環境データは、
     前記建物内の室温及び湿度の計測値である
     ことを特徴とする請求項5に記載の建物改善支援サービス方法。
    The environmental data is
    The building improvement support service method according to claim 5, wherein the building improvement support service method is a measurement value of room temperature and humidity in the building.
  7.  前記第1のステップでは、
     独立成分解析方式により前記プロセス信号を分解するようにして、当該プロセス信号の変動発生要因ごとの成分を求める
     ことを特徴とする請求項6に記載の建物改善支援サービス方法。
    In the first step,
    The building improvement support service method according to claim 6, wherein the process signal is decomposed by an independent component analysis method to obtain a component for each factor of fluctuation of the process signal.
  8.  前記第1のステップの前に実行され、予め定められた前記改修シミュレーションの条件であるシナリオに応じて対応する前記プロセス信号又はイベント信号を加工するシナリオ設定処理ステップを備え、
     前記第1のステップでは、
     各前記改修項目の前記仕様ごとの前記改修シミュレーションを前記シナリオごとにそれぞれ実行し、
     前記第2のステップでは、
     前記改修案を前記シナリオごとにそれぞれ作成する
     ことを特徴とする請求項5に記載の建物空調改善支援サービス方法。
    A scenario setting processing step that is executed before the first step and processes the process signal or event signal corresponding to a scenario that is a predetermined condition of the repair simulation;
    In the first step,
    The repair simulation for each of the specifications of each of the repair items is executed for each scenario,
    In the second step,
    6. The building air-conditioning improvement support service method according to claim 5, wherein the repair plan is created for each scenario.
PCT/JP2014/075947 2014-09-29 2014-09-29 Service system and method for assisting improvement of air-conditioning of building WO2016051477A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075947 WO2016051477A1 (en) 2014-09-29 2014-09-29 Service system and method for assisting improvement of air-conditioning of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075947 WO2016051477A1 (en) 2014-09-29 2014-09-29 Service system and method for assisting improvement of air-conditioning of building

Publications (1)

Publication Number Publication Date
WO2016051477A1 true WO2016051477A1 (en) 2016-04-07

Family

ID=55629576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075947 WO2016051477A1 (en) 2014-09-29 2014-09-29 Service system and method for assisting improvement of air-conditioning of building

Country Status (1)

Country Link
WO (1) WO2016051477A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085035A1 (en) * 2021-11-12 2023-05-19 パナソニックIpマネジメント株式会社 Environment estimation method and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514694A (en) * 2001-12-28 2005-05-19 ファニー メイ Measurement and validation protocol for reducing tradeable residential emissions
WO2005083531A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Device control method and device control apparatus
JP2014109809A (en) * 2012-11-30 2014-06-12 Lixil Corp Information processor, and room temperature estimation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514694A (en) * 2001-12-28 2005-05-19 ファニー メイ Measurement and validation protocol for reducing tradeable residential emissions
WO2005083531A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Device control method and device control apparatus
JP2014109809A (en) * 2012-11-30 2014-06-12 Lixil Corp Information processor, and room temperature estimation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOJI NAKAHAMA ET AL.: "Performance Evaluation of Mobility-Based Energy-Saving to Control Air- conditioning and Lighting Equipments", TECHNICAL REPORT OF IEICE, 2012, MOMUC2011-58, March 2012 (2012-03-01) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085035A1 (en) * 2021-11-12 2023-05-19 パナソニックIpマネジメント株式会社 Environment estimation method and program

Similar Documents

Publication Publication Date Title
Zhang et al. A systematic feature selection procedure for short-term data-driven building energy forecasting model development
Harish et al. A review on modeling and simulation of building energy systems
Chen et al. Developing a meta-model for sensitivity analyses and prediction of building performance for passively designed high-rise residential buildings
Karaguzel et al. Coupling of whole-building energy simulation and multi-dimensional numerical optimization for minimizing the life cycle costs of office buildings
JP5663596B2 (en) HVAC control system and method
JP5572799B2 (en) Air conditioning system controller
Melo et al. Development and analysis of a metamodel to represent the thermal behavior of naturally ventilated and artificially air-conditioned residential buildings
Acosta et al. Energy savings and guaranteed thermal comfort in hotel rooms through nonlinear model predictive controllers
Ahn et al. Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments
US20210055750A1 (en) Method for optimising the energy expenditure and comfort of a building
Lindner et al. Determination of requirements on occupant behavior models for the use in building performance simulations
CN103513632A (en) Energy management system
Batista et al. Evaluation and improvement of the energy performance of a building's equipment and subsystems through continuous monitoring
Fang et al. Identification of the optimal control strategies for the energy-efficient ventilation under the model predictive control
Lara et al. Modeling and identification of the cooling dynamics of a tropical island hotel
Qiu et al. Stochastic optimized chiller operation strategy based on multi-objective optimization considering measurement uncertainty
Corrado et al. Steady-state and dynamic codes, critical review, advantages and disadvantages, accuracy, and reliability
Spencer et al. Temperature forecasts with stable accuracy in a smart home
Seeam et al. Evaluating the potential of simulation assisted energy management systems: A case for electrical heating optimisation
Bursill et al. Multi-zone field study of rule extraction control to simplify implementation of predictive control to reduce building energy use
Luo et al. Quantifying the effect of multiple load flexibility strategies on commercial building electricity demand and services via surrogate modeling
An et al. An inverse PDE-ODE model for studying building energy demand
Song et al. Implementation of meta-modelling for sensitivity analysis in building energy analysis
Bertagnolio et al. Evidence-based calibration of a building energy simulation model: Application to an office building in Belgium
Zhao et al. Data-driven online energy management framework for HVAC systems: An experimental study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP