WO2016046997A1 - Method for manufacturing element-laminated film, element-laminated film, and display device - Google Patents

Method for manufacturing element-laminated film, element-laminated film, and display device Download PDF

Info

Publication number
WO2016046997A1
WO2016046997A1 PCT/JP2014/081449 JP2014081449W WO2016046997A1 WO 2016046997 A1 WO2016046997 A1 WO 2016046997A1 JP 2014081449 W JP2014081449 W JP 2014081449W WO 2016046997 A1 WO2016046997 A1 WO 2016046997A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin film
group
display device
laminated film
Prior art date
Application number
PCT/JP2014/081449
Other languages
French (fr)
Japanese (ja)
Inventor
英雄 楳田
岡田 潤
片山 敏彦
律也 川崎
大輔 磯部
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2016549894A priority Critical patent/JP6137416B2/en
Publication of WO2016046997A1 publication Critical patent/WO2016046997A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a method for producing an element laminated film, an element laminated film, and a display device.
  • a substrate used for the display device needs to have transparency. For this reason, a substrate using a transparent resin film has been proposed as the substrate.
  • Patent Document 1 a liquid resin composition is applied on a carrier substrate to form a solid resin film, a circuit is formed on the resin film, and the resin film is peeled from the carrier substrate. And a method for manufacturing a flexible device that is a display device.
  • a circuit including a thin film transistor necessary for a display device can be manufactured by forming a semiconductor layer, an electrode layer, or the like on a resin film (transparent resin film). Moreover, since the thickness of the resin film (transparent resin film) to be formed can be easily reduced, the display device can be made thinner and lighter.
  • Patent Document 1 proposes a method of irradiating the resin film with laser from the carrier substrate side. By irradiating the resin film with a laser, the resin film can be smoothly peeled from the carrier substrate at the interface between them.
  • the laser irradiation apparatus is large and expensive, leading to an increase in manufacturing process costs. Further, when a semiconductor layer is irradiated with a laser, the semiconductor layer may be altered or deteriorated depending on the wavelength of the laser.
  • the adhesion force of the resin film to the carrier substrate is easily affected by the combination of the constituent materials. For this reason, depending on the combination, the adhesion may be significantly reduced. In such a case, in the manufacturing process of the flexible device, for example, there is a concern that the resin film may be peeled off from the carrier substrate simply by spraying the cleaning liquid onto the resin film.
  • An object of the present invention is to provide an element laminated film manufacturing method capable of efficiently producing an element laminated film without using a special device, an element laminated film produced by the element laminated film producing method, and the element laminated film It is in providing a display apparatus provided with a film.
  • the substrate having a main surface including a first portion and a second portion, and the main force such that the adhesion force of the film to the first portion is greater than the adhesion force of the film to the second portion.
  • a process for producing an element laminated film comprising:
  • the step of preparing the substrate with film includes Applying a surface treatment to the first portion of the main surface; Applying a resin solution on the main surface to form the film; The manufacturing method of the element laminated
  • a display device comprising the element laminated film according to (9).
  • a film can be peeled off when necessary without using a special device such as a laser irradiation device, an element laminated film having a film and an element formed thereon can be efficiently used. Can be manufactured well.
  • the element laminated film which does not have the bad influence by a laser is obtained.
  • a display apparatus provided with the said element laminated film is obtained.
  • FIG. 1 is a longitudinal sectional view showing an organic EL display device which is an embodiment of the display device of the present invention.
  • FIG. 2 is a block diagram showing a configuration of an active matrix device included in an organic EL display device which is an embodiment of the display device of the present invention.
  • FIG. 3 is a longitudinal sectional view for explaining the method for manufacturing the organic EL display device shown in FIG. 1 (first embodiment of the method for manufacturing an element laminated film of the present invention).
  • FIG. 4 is a longitudinal sectional view for explaining the method for manufacturing the organic EL display device shown in FIG. 1 (first embodiment of the method for manufacturing an element laminated film of the present invention).
  • FIG. 5 is a longitudinal sectional view for explaining a method for manufacturing the organic EL display device shown in FIG.
  • FIG. 6 is a plan view of the organic EL display device shown in FIG.
  • FIG. 7 is a longitudinal sectional view for explaining another method for manufacturing the organic EL display device shown in FIG. 1 (second embodiment of the method for manufacturing an element laminated film of the present invention).
  • organic electroluminescence display device organic EL display device
  • organic EL display device which is an embodiment of a display device including the element laminated film
  • FIG. 1 is a longitudinal sectional view showing an organic EL display device which is an embodiment of the display device of the present invention.
  • the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
  • the organic EL display device 1 shown in FIG. 1 includes a resin film A, a plurality of light emitting elements C provided corresponding to each pixel, and a plurality of thin film transistors B that drive the corresponding light emitting elements C. is doing.
  • the organic EL display device 1 is a bottom emission structure display panel that extracts (transmits) the light emitted from the light emitting element C from the resin film A side.
  • a plurality of thin film transistors B are provided corresponding to the plurality of light emitting elements C, and a planarization layer 301 made of an insulating material is formed so as to cover the thin film transistors B. .
  • Each thin film transistor B includes a gate electrode 200 formed on the resin film A, a gate insulating layer 201 provided so as to cover the gate electrode 200, and a source electrode 202 and a drain provided on the gate insulating layer 201, respectively.
  • the electrode 204 includes a semiconductor layer 203 formed of a semiconductor material and corresponding to a channel region between the source electrode 202 and the drain electrode 204.
  • an oxide semiconductor material for example, an organic semiconductor material, or the like can be used in addition to a silicon-based material such as single crystal silicon, polysilicon, or amorphous silicon.
  • oxide semiconductor material examples include at least oxygen (O) among nitrogen (N) and oxygen (O) which are nonmetallic elements, and boron (B), silicon (Si), and germanium (metalloid elements). Ge), arsenic (As), antimony (Sb), tellurium (Te), and polonium (Po), or metal elements such as aluminum (Al), zinc (Zn), gallium (Ga), zirconium Including at least one of (Zr), cadmium (Cd), indium (In), tin (Sn), hafnium (Hf), mercury (Hg), thallium (Tl), terbium (Pb) and bismuth (Bi) A semiconductor material is mentioned.
  • In—Ga—Zn—O (IGZO) materials Zr—In—Zn—O materials, Hf—In—Zn—O materials, In—Si—O materials, In—Ga—O materials
  • a material, an In—Sn—Zn—O-based material, an In—Al—Sn—Zn—O-based material, or the like is preferably used as the oxide semiconductor material.
  • organic semiconductor material examples include low molecular organic semiconductor materials such as anthracene, tetracene or derivatives thereof, and polymers such as fluorene-bithiophene copolymer, fluorene-allylamine copolymer, or derivatives thereof. These organic semiconductor materials can be used, and one or more of these can be used in combination.
  • a light emitting element (organic EL element) C is provided on the planarizing layer 301 corresponding to each thin film transistor B.
  • the sealing layer 400 is formed so as to cover these light emitting elements C. Thereby, the airtightness of the light emitting element C is ensured, and intrusion of oxygen and moisture into the organic EL display device 1 can be prevented.
  • the light-emitting element C includes an anode 302 and a cathode 306, and a hole transport layer 303, a light-emitting layer 304, and an electron transport layer 305, which are sequentially stacked between the anode 302 and the cathode 306.
  • each light emitting element C is electrically connected to the drain electrode 204 of each thin film transistor B through the conductive portion 300.
  • the plurality of light emitting elements C include a red light emitting element, a green light emitting element, and a blue light emitting element, and each light emitting element C using each thin film transistor B. If the amount of light emitted from each light emitting element C (light emission luminance) is adjusted by controlling the voltage applied to the organic EL display device 1, the organic EL display device 1 can perform full color display. Moreover, the organic EL display device 1 can also display in a single color by causing the light emitting elements C to emit light simultaneously.
  • a desired image can be displayed on the organic EL display device 1 by individually driving the plurality of pixel circuits 10 each having the thin film transistor B and the light emitting element C.
  • the thin film transistor B according to the present embodiment is provided in the vicinity of intersections of a plurality of data lines and a plurality of selection lines that are orthogonal to each other.
  • FIG. 2 is a block diagram showing a configuration of an active matrix device included in an organic EL display device which is an embodiment of the display device of the present invention.
  • FIG. 1 corresponds to a vertical sectional view of the single pixel circuit 10 shown in FIG. 2 and the vicinity thereof.
  • the active matrix device 50 shown in FIG. 2 includes a plurality of data lines 51 and a plurality of selection lines 52 that are orthogonal to each other, and a plurality of pixel circuits 10 provided in the vicinity of their intersections.
  • the gate electrode 200 included in each thin film transistor B is connected to the selection line 52, and the source electrode 202 is connected to the data line 51.
  • the organic EL display device 1 includes a signal processing circuit 55, a data driving circuit 53, and a row selection circuit 54 as shown in FIG.
  • a video signal based on the image to be displayed is generated in a video signal generation circuit (not shown). Then, the generated video signal is input to the signal processing circuit 55.
  • the signal processing circuit 55 generates a data signal and a selection signal based on the video signal, inputs the data signal to the data driving circuit 53, and inputs the selection signal to the row selection circuit 54.
  • the data drive circuit 53 sends a data signal to each data line 51 and the row selection circuit 54 sends a selection signal to each selection line 52.
  • the driving of each thin film transistor B is controlled based on these data signals and selection signals, and the light emission of the corresponding light emitting element C is controlled. Thereby, a desired image is displayed on the organic EL display device 1.
  • Each pixel circuit 10 is placed on a resin film A that is rectangular in plan view, as shown in FIG.
  • the signal processing circuit 55, the data driving circuit 53 and the row selection circuit 54 are arranged outside the resin film A.
  • positioning is not specifically limited, Each circuit may also be arrange
  • constituent material of the resin film A examples include various polymers such as polyimide resins, polyamide resins, polyamideimide resins, epoxy resins, acrylic resins, methacrylic resins, polyester resins, and polycarbonate resins. .
  • polymers such as polyimide resins, polyamide resins, polyamideimide resins, epoxy resins, acrylic resins, methacrylic resins, polyester resins, and polycarbonate resins.
  • a polyamide resin is particularly preferably used as a constituent material of the resin film A.
  • the polyamide resin will be described in detail.
  • Polyamide resin By using a polyamide-based resin, a resin film A having excellent chemical resistance can be obtained. Such a resin film A can suppress deterioration or deterioration due to an organic solvent or a processing gas when the pixel circuit 10 is formed thereon.
  • the polyamide-based resin preferably includes a structure derived from a diamine containing a carboxyl group.
  • the amount contained in the polyamide resin having a structure derived from a diamine containing a carboxyl group is preferably 30 mol% or less, more preferably 1 to 20 mol%, and more preferably 1 to 10 mol%. Is more preferable.
  • the polyamide-based resin is preferably a resin containing one or more of aromatic polyamide, semi-aromatic polyamide and alicyclic polyamide, and more preferably a resin containing aromatic polyamide.
  • a polyamide-based resin can impart properties suitable for use in the organic EL display device 1 to the resin film A. That is, the polyamide-based resin provides the resin film A with sufficient chemical resistance that can withstand the manufacture of the pixel circuit 10 and optical characteristics that can realize excellent image quality in the organic EL display device 1. Can do.
  • the aromatic polyamide is preferably an aromatic polyamide containing one or more functional groups capable of reacting with an epoxy group. Further, the aromatic polyamide containing one or more functional groups capable of reacting with an epoxy group is more preferably an aromatic polyamide containing a carboxyl group. Since such an aromatic polyamide contains a carboxyl group, the solvent resistance of the formed resin film A can be improved. By improving the solvent resistance of the resin film A, the selection range of the liquid material used when forming the light emitting element C on the resin film A can be expanded.
  • the aromatic polyamide is preferably a wholly aromatic polyamide.
  • the amide bonds contained in the main skeleton are not connected by an aliphatic compound that is linear or cyclic, but are all connected by an aromatic compound (aromatic ring). Refers to polyamide.
  • Such an aromatic polyamide preferably has at least one of repeating units (monomer components) represented by the following general formulas (I) and (II), but more preferably has both.
  • x represents mol% of the repeating structure (I)
  • n represents an integer of 1 to 4
  • y represents mol% of the repeating structure (II)
  • Ar 1 represents the following general formula Represented by formula (III) or (III ′)
  • [P 4
  • R 1 , R 4 and R 5 are each independently hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro, cyano , Thioalkyl, alkoxy, substituted alkoxy such as halogenated alkoxy, substituted aryl such as aryl or aryl halide, alkyl ester, and substituted alkyl ester, and combinations thereof
  • G 1 is a covalent bond, CH 2
  • the general formulas (I) and (II) are those in which the aromatic polyamide includes a polar solvent or one or more polar solvents. Selected to be soluble.
  • x in the general formula (I) varies from 90.0 to 99.99 mol%
  • y in the general formula (II) is from 10.0 to 0.01 mol%. It varies in the range.
  • x in the general formula (I) varies from 90.1 to 99.9 mol%
  • y in the general formula (II) ranges from 9.9 to 0.1 mol%.
  • x in the general formula (I) varies from 90.0 to 99.0 mol%, and y in the general formula (II) is from 10.0 to 1.0 mol. It varies in the range of%. In one or more embodiments of the present invention, x in the general formula (I) varies from 92.0 to 98.0 mol%, and y in the general formula (II) is from 8.0 to 2.0 mol%. It varies in the range.
  • Ar 1 , Ar 2 , Ar 3 in the plurality of repeating units represented by the general formulas (I) and (II) may be the same as or different from each other. It may be.
  • the aromatic polyamide preferably contains a rigid structure (rigid component) in an amount of 50 mol% or more, more preferably in an amount of 65 mol% or more, further preferably in an amount of 80 mol% or more, and 95 mol. It is particularly preferable to include it in an amount of% or more.
  • the rigid structure refers to a monomer component (repeating unit) constituting an aromatic polyamide and having a linearity in its main skeleton.
  • Ar 3 is a repeating unit represented by the following general formula (E) or (F).
  • [T 1 to 3
  • R 9 , R 10 and R 11 are each independently hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro , Cyano, thioalkyl, alkoxy, substituted alkoxy such as halogenated alkoxy, aryl, substituted aryl such as aryl halide, alkyl ester, and substituted alkyl ester, and combinations thereof
  • G 3 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3) 2 group, 9,9-fluorene group is selected from the group consisting of substituted 9,9-fluorene,
  • Ar 1 examples include, for example, a structure derived from terephthaloyl dichloride (TPC), and specific examples of Ar 2 include, for example, 4,4′-diamino-2,2 ′.
  • -A structure derived from bistrifluoromethylbenzidine (PFMB: 4, 4'-Diamino-2, 2'-bistrifluoromethylbenzidine) is exemplified
  • Ar 3 examples include, for example, 4,4'-diaminodiphenic acid (DADP).
  • DADP 4,4'-diaminodiphenic acid
  • the aromatic polyamide has a number average molecular weight (Mn) of preferably 6.0 ⁇ 10 4 or more, more preferably 6.5 ⁇ 10 4 or more, and 7.0 ⁇ 10 4 or more. Is more preferably 7.5 ⁇ 10 4 or more, and further preferably 8.0 ⁇ 10 4 or more.
  • the number average molecular weight is preferably 1.0 ⁇ 10 6 or less, more preferably 8.0 ⁇ 10 5 or less, and even more preferably 6.0 ⁇ 10 5 or less. More preferably, it is 0 ⁇ 10 5 or less.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the polyamide are measured by gel permeation chromatography (Gel Permeation Chromatography).
  • the aromatic polyamide is preferably obtained by synthesizing the aromatic polyamide and then undergoing a reprecipitation step.
  • the resin film A can surely exhibit the function as the base layer in the organic EL display device 1.
  • the above-described polyamide-based resin can be produced, for example, using a production method including the following steps (a) to (e).
  • a production method including the following steps (a) to (e).
  • an aromatic polyamide containing one or more functional groups capable of reacting with an epoxy group is used as the polyamide resin and an inorganic filler is contained in the polyamide resin will be described.
  • the polyamide-based resin is not limited to a polymer manufactured by the following manufacturing method.
  • Step (a) is performed to obtain a mixture by dissolving at least one aromatic diamine in a solvent.
  • Step (b) is carried out in order to obtain free hydrochloric acid and a polyamide solution by reacting at least one aromatic diamine with at least one aromatic dicarboxylic acid dichloride in a solvent.
  • Step (c) is performed to remove free hydrochloric acid from the mixture by reaction with a capture reagent.
  • Step (d) is performed to add an inorganic filler into the mixture.
  • Step (e) is an optional (optional) step that is performed to add the polyfunctional epoxide.
  • Examples of the aromatic dicarboxylic acid dichloride used in this production method include those containing a compound represented by the following general formula.
  • R 1 , R 4 , R 5 are each independently hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro, cyano, Selected from the group consisting of substituted alkoxy such as thioalkyl, alkoxy, halogenated alkoxy, substituted aryl such as aryl or aryl halide, alkyl ester, and substituted alkyl ester, and combinations thereof, G 1 is a covalent bond, CH 2 group , C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3 ) 2 Selected from the group consisting of a group, 9,9-fluorene group, substituted 9,9-fluorene, and OZO group, wherein Z is a pheny
  • aromatic dicarboxylic acid dichloride as described above include the following.
  • Terephthaloyl dichloride (TPC) Terephthaloyl dichloride
  • IPC Isophthaloyl dichloride
  • the aromatic diamine includes, for example, those containing a compound represented by the following general formula.
  • R 6 , R 7 , R 8 , R 9 , R 10 , R 11 are each independently hydrogen, halogen (fluoride, Chlorides, bromides, and iodides), substituted alkyls such as alkyls, alkyl halides, substituted alkoxys such as nitro, cyano, thioalkyls, alkoxy, halogenated alkoxys, substituted aryls such as aryl or aryl halides, alkyl esters, and Selected from the group consisting of substituted alkyl esters, and combinations thereof, each R 6 may be the same or different, R 7 may be the same or different, and R 8 is each They may be the same or different, R 9 may be the same or different, and R 10 may be
  • R 11 may be the same or different, and G 2 and G 3 may be a covalent bond, a CH 2 group, a C (CH 3 ) 2 group, or a C (CF 3 ) 2.
  • Group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3 ) 2 group, 9,9-fluorene group, substituted 9,9-fluorene
  • Z is an aryl group or substituted aryl such as phenyl group, biphenyl group, perfluorobiphenyl group, 9,9-bisphenylfluorene group, and substituted 9,9-bisphenylfluorene It is a group.
  • aromatic diamine as described above include the following. 4,4'-Diamino-2,2'-bistrifluoromethylbenzidine (PFMB)
  • PFMB 4,4'-Diamino-2,2'-bistrifluoromethylbenzidine
  • DAB 3,5-Diaminobenzoic acid
  • the diaminodiphenyl sulfone may be 4,4′-diaminodiphenyl sulfone as shown in the above formula, or 3,3′-diaminodiphenyl sulfone (3,3′- Diaminodiphenyl sulfone) or 2,2′-diaminodiphenyl sulfone may be used.
  • the functional group of the aromatic diamine containing a functional group capable of reacting with an epoxy group is greater than about 1 mol% and less than about 10 mol% of the diamine mixture. In one or more embodiments of the method for producing the polyamide solution, the functional group of the aromatic diamine containing a functional group capable of reacting with an epoxy group is a carboxyl group. In one or more embodiments of the method of making the polyamide solution, any one of the diamines is 4,4′-diaminodiphenic acid or 3,5-diaminobenzoic acid. In one or more embodiments of the method for producing the polyamide solution, the functional group of the aromatic diamine containing a functional group capable of reacting with an epoxy group is a hydroxyl group.
  • the aromatic polyamide is purified via condensation polymerization in a solvent.
  • hydrochloric acid generated during the reaction is captured by a capture reagent such as propylene oxide (PrO). Note that a volatile product is produced from the reaction between hydrochloric acid and the capture reagent.
  • the capture reagent is propylene oxide.
  • the capture reagent is added before or during step (c).
  • the occurrence of condensation and viscosity in the mixture after step (c) can be reduced, thereby increasing the productivity of the polyamide solution.
  • the method further includes a step of end-capping one or both of the terminal —COOH group and the terminal —NH 2 group of the aromatic polyamide.
  • the end of the aromatic polyamide can be end-capped by a reaction using benzoyl chloride when each end is —NH 2 , and the end can be capped by a reaction using aniline when each end is —COOH. can do.
  • the end sealing method is not limited to this.
  • the polyfunctional epoxide is selected from the group consisting of phenol epoxides and cycloaliphatic epoxides.
  • the polyfunctional epoxide includes diglycidyl 1,2-cyclohexanecarboxylate, triglycidyl isocyanur, tetraglycidyl 4,4′-diaminophenylmethane, 2,2-bis (4-glycidyloxylphenyl) propane, and these Selected from the group comprising high molecular weight homologues, novolak epoxides, 7H- [1,2-b: 5,6-b ′] bisoxylene octahydro, and epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate.
  • the amount of polyfunctional epoxide is about 2-10% of the weight of the aromatic polyamide.
  • the aromatic polyamide is first separated from the polyamide solution by precipitation and re-dissolution in a solvent before adding at least one of the inorganic filler and the polyfunctional epoxide.
  • Reprecipitation can be performed by a usual method.
  • the reprecipitation is performed by, for example, precipitating the aromatic polyamide by adding it to methanol, ethanol, isopropyl alcohol or the like, washing the aromatic polyamide, and dissolving it in a solvent.
  • the solvent those described later can be used.
  • the polyamide solution is produced so as not to contain inorganic salts.
  • a polyamide-based resin can be produced through the above steps.
  • the total light transmittance in the sodium wire (D line) of the resin film A is preferably 40% or more, more preferably 45% or more, still more preferably 50% or more, and particularly preferably 60%. It is said above.
  • the resin film A can be suitably used for manufacturing a display element, an optical element, an illumination element, or a sensor element.
  • the retardation (Rth) at a wavelength of 400 nm in the thickness direction of the resin film A is preferably 200.0 nm or less, more preferably 190.0 nm or less, and more preferably 180.0 nm or less, It is more preferably 175.0 nm or less, and further preferably 173.0 nm or less.
  • the Rth of the resin film A can be calculated with a phase difference measuring device.
  • the resin film A preferably has a coefficient of thermal expansion (CTE) of 100.0 ppm / K or less, more preferably 80 ppm / K or less, more preferably 60 ppm / K or less, and 40 ppm. More preferably, it is / K or less.
  • CTE of the resin film A can be measured with a thermomechanical analyzer (TMA).
  • the average thickness of the resin film A is not particularly limited, but is preferably about 1 to 50 ⁇ m, and more preferably about 5 to 30 ⁇ m. By setting the average thickness of the resin film A within the above range, the mechanical strength necessary and sufficient to support the pixel circuit 10 can be imparted to the resin film A. In addition, good flexibility can be imparted to the resin film A.
  • Filler Various fillers may be added to the resin film A as necessary. Thereby, the thermal expansion coefficient of the resin film A can be reduced.
  • the constituent material of the filler include silica, alumina, metal oxides such as titanium oxide, minerals such as mica, glass, or a mixture thereof, and one or more of these may be combined.
  • the glass include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, low dielectric constant glass, and high dielectric constant glass.
  • an inorganic filler is particularly preferably used. Examples of the shape of the inorganic filler include particles and fibers.
  • the average fiber diameter of the fiber is preferably 1 to 1000 nm.
  • the fiber may be composed of a plurality of single fibers.
  • the plurality of single fibers are sufficiently separated so that the liquid precursor of the matrix resin enters between them without being aligned.
  • the average fiber diameter is the average diameter of a plurality of single fibers.
  • the fiber may be one in which a plurality of single fibers are gathered in a bundle to constitute one yarn, and in this case, the average fiber diameter is the diameter of one yarn. Defined as an average value.
  • the average fiber diameter of the fiber is preferably as small as possible, and the refractive index of the polymer (polyamide or the like) contained in the resin composition used for the production of the resin film A and the refraction of the fiber The closer the rate, the better.
  • the difference in refractive index at 589 nm between the material used for the fiber and the polymer is 0.01 or less, a highly transparent film can be formed regardless of the fiber diameter.
  • observation with an electron microscope etc. are mentioned, for example.
  • the average particle diameter of the particle is preferably 1 to 1000 nm.
  • the thermal linear expansion coefficient of the resin film A can be reduced without impairing optical properties and flexibility.
  • the average particle diameter of the particles refers to an average projected circle equivalent diameter.
  • the shape of the particles is not particularly limited, and examples thereof include a spherical shape or a true spherical shape, a rod shape, a flat plate shape, or a combined shape thereof.
  • the proportion of the inorganic filler in the solid content in the resin composition is not particularly limited, but is preferably 1% by volume to 50% by volume, more preferably 2% by volume to 40% by volume. More preferably, the volume is 30% by volume. Further, the ratio of the polymer in the solid content in the resin composition is not particularly limited, but is preferably 50% by volume to 99% by volume, more preferably 60% to 98% by volume, and 70% to 97% by volume. More preferably.
  • solid content refers to components other than the solvent in the resin composition.
  • the volume conversion of the solid content, the volume conversion of the inorganic filler, and / or the volume conversion of the polymer can be calculated from the input amounts of the components when preparing the polymer solution. Alternatively, it can be calculated by removing the solvent from the polymer solution.
  • the resin composition can be made into a polyamide-based resin from the viewpoint of reducing the curing temperature of the resin composition as needed and improving the resistance of the resin film A obtained from the resin composition to an organic solvent.
  • an epoxy reagent may be included.
  • the epoxy reagent contained in the resin composition is preferably a polyfunctional epoxide.
  • the polyfunctional epoxide is an epoxide containing two or more glycidyl epoxy groups, or an epoxide containing two or more alicyclic groups.
  • the content of the polyfunctional epoxide is, in one or more embodiments of the present invention, about 0.1 to 10% by weight based on the weight of the polyamide-based resin. preferable.
  • the resin composition containing the polyfunctional epoxide can lower the curing temperature of the resin film A in one or more embodiments of the present invention, and in one or more embodiments without limitation, the resin film A
  • the curing temperature of can be about 200 ° C. to about 300 ° C.
  • the resin composition containing a polyfunctional epoxide can impart resistance to an organic solvent to the resin film A produced from the resin composition in one or more embodiments of the present invention.
  • the organic solvent include polar solvents such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), and ⁇ -butyrolactone (GBL).
  • the polyamide-based resin contained in such a resin composition has, in one or more embodiments of the present invention, a free pendant carboxyl group in its main chain, or It is preferably synthesized using a diamine monomer having a carboxyl group.
  • the cyclic structure is and [R 15 is an alkyl chain having 2 to 18 carbon atoms, the alkyl chain is a chain having a straight chain, a branched chain, or a cyclic skeleton, and m and n are each Independently, it is an integer of 1 to 30, and a, b, c, d, e and f are each independently an integer of 0 to 30. ].
  • the multifunctional epoxide is (R 16 is an alkyl chain having 2 to 18 carbon atoms, and the alkyl chain is a chain having a straight chain, a branched chain or a cyclic skeleton, and t and u are each represented by Independently, an integer from 1 to 30).
  • the polyfunctional epoxide specifically includes: Diglycidyl 1,2-cyclohexanedicarboxylate (DG) Triglycidyl isocyanurate (TG) Tetraglycidyl 4, 4'-diaminophenyl methane (TTG) (3,3 ', 4,4'-diepoxy) bicyclohexyl In addition, Etc.
  • DG Diglycidyl 1,2-cyclohexanedicarboxylate
  • TG Triglycidyl isocyanurate
  • TTG Tetraglycidyl 4, 4'-diaminophenyl methane
  • the resin film A may contain other components.
  • other components include an antioxidant, an ultraviolet absorber, and a dye / pigment.
  • the resin film A is manufactured using the polymer solution (resin composition) obtained by mixing the above-described polymer, filler, other components, and the like with the solvent described above.
  • Examples of the solvent for producing the polymer solution include cresol; N, N-dimethylacetamide (DMAc); N-methyl-2-pyrrolidinone (NMP); dimethyl sulfoxide (DMSO); 1,3-dimethyl-imidazolide.
  • a mixed solvent containing at least one is preferable.
  • the display device of the present invention is not limited to the application to the organic EL display device, and is also applicable to a display device such as an inorganic EL display device, a liquid crystal display device, and electronic paper. Is possible.
  • the element laminated film of the present invention is not limited to application to a display device, and can be applied to various devices other than a display device such as an arithmetic device, a drive device, a control device, a photoelectric conversion device, a lighting device, and a sensor device.
  • the above-described active matrix device is not limited to the above configuration, and may have another configuration.
  • FIGS. 3 to 5 are longitudinal sectional views for explaining a method for manufacturing the organic EL display device shown in FIG. 1 (first embodiment of the method for manufacturing an element laminated film of the present invention).
  • FIG. 6 is a plan view of the organic EL display device shown in FIG.
  • the upper side in FIGS. 3 to 5 is referred to as “upper” and the lower side is referred to as “lower”.
  • the method of manufacturing the organic EL display device 1 includes: [1] a surface treatment step of preparing the carrier substrate 7 and forming the inorganic coating 72 along the edge 711 (first portion) of the upper surface 71 (main surface) thereof. [2] A film forming step of applying the resin solution A0 (resin composition) on the upper surface 71 to form the resin film A, thereby obtaining the laminate 8 (substrate with film); [3] Resin film A Forming the pixel circuit 10 (element) and forming the sealing layer 400, and [4] thickness of the stacked body 8 so as to remove a portion corresponding to the edge 711 of the stacked body 8. A cutting step of cutting in the direction, and [5] a peeling step of peeling the resin film A from the carrier substrate 7 (separating the resin film A and the carrier substrate 7).
  • the carrier substrate 7 may be any substrate as long as it has sufficient rigidity to support the resin film A.
  • a substrate having heat resistance is preferably used.
  • the shape of the carrier substrate 7 in plan view is not particularly limited, but is rectangular as an example in this embodiment.
  • the constituent material of the carrier substrate 7 examples include various glass materials such as soda glass, borosilicate glass, alkali-free glass, and quartz glass, various silicon materials such as single crystal silicon and polycrystalline silicon, sapphire, and alumina. Various ceramic materials, various metal materials such as stainless steel and aluminum, various resin materials such as polyimide and polyethylene naphthalate, and the like.
  • a constituent material of the carrier substrate 7 a light-transmitting material is particularly preferably used, and a glass material is more preferably used. Since the glass material has translucency, it is useful in that exposure from the carrier substrate 7 side is possible when the resin solution A0 is cured. In addition, since glass materials are relatively inexpensive and have high wear resistance, they are also useful from the viewpoint of cost reduction in the manufacturing process.
  • soda glass or non-alkali glass is particularly preferably used, and soda glass is more preferably used. Since these are widely distributed as glass materials, they are easily available and the quality is relatively stable. For this reason, since the flatness is high even with a substrate having a large area, by using such a substrate as the carrier substrate 7, it is possible to finally manufacture the organic EL display device 1 having excellent flatness.
  • the carrier substrate 7 since the carrier substrate 7 has a small surface roughness, the resin film A can be easily peeled from the carrier substrate 7 while suppressing a burden on the resin film A in a peeling step described later.
  • soda glass has a feature that its adhesion to the resin film A is relatively small. For this reason, by using the carrier substrate 7 made of soda glass, the resin film A can be peeled from the carrier substrate 7 while particularly suppressing the burden on the resin film A in the peeling step described later.
  • the carrier substrate 7 does not have to be formed of a single layer (single plate), and may be formed of a plurality of layers. In that case, what is necessary is just to use the glass material mentioned above as a constituent material of the layer located closest to the resin film A in the film formation process mentioned later.
  • the upper surface 71 of the carrier substrate 7 may be subjected to various polishing treatments, various surface roughening treatments, and the like as necessary.
  • an inorganic coating 72 is formed along the edge 711 (first portion) of the upper surface 71 (main surface) of the carrier substrate 7.
  • the adhesiveness with respect to the resin film A of the edge 711 of the upper surface 71 can be improved relatively. That is, when the upper surface 71 is defined by dividing into an edge portion 711 (first portion) and a central portion 712 (second portion), the resin film A for the edge portion 711 is formed by forming the inorganic coating 72 on the edge portion 711. Can be made larger than the adhesive force of the resin film A to the central portion 712. Thereby, the resin film A becomes difficult to peel from the carrier substrate 7, and the resin film A can be more reliably supported by the carrier substrate 7 during the manufacturing process of the organic EL display device 1.
  • Examples of the constituent material of the inorganic coating 72 include silicon oxide, zinc oxide, indium oxide (IO), indium tin oxide (ITO), various oxide materials such as fluorine-doped tin oxide (FTO), silicon nitride, Examples thereof include various nitride materials such as titanium nitride and aluminum nitride, and various carbide materials such as silicon carbide and titanium carbide.
  • an oxide material is particularly preferably used. According to the oxide material, the adhesion of the resin film A to the inorganic coating 72 can be particularly increased, so that the resin film A can be more reliably supported even if the area of the inorganic coating 72 is small.
  • the area of the part which the laminated body 8 removes can be made small enough, and the quantity of waste, ie, the waste on a manufacturing process, can be suppressed.
  • a larger organic EL display device 1 can be manufactured without changing the size of the carrier substrate 7.
  • the inorganic coating 72 is formed on the edge 711 of the upper surface 71 of the carrier substrate 7.
  • the carrier substrate 7 according to this embodiment has a rectangular shape in plan view, and the shape in plan view of the edge portion 711 of the upper surface 71 is on the outer edge of the carrier substrate 7. Along with this, a rectangular frame is formed.
  • the inorganic coating 72 on the edge portion 711 set along the outer edge of the upper surface 71 in this way, even when an external force is applied to the stacked body 8 during the manufacturing process, for example, the stacked body 8 It is difficult for the resin film A to peel off from the carrier substrate 7 at the outer edge. For this reason, it can prevent that the peeling
  • the inorganic coating 72 is formed so as to surround the central portion 712 (the first portion is provided). For this reason, an external force is applied to the laminate 8 during the manufacturing process, and even if the resin film A is peeled off from the carrier substrate 7 at the central portion 712, the resin film A may drop off or bend from the carrier substrate 7. The position of the carrier substrate 7 can be prevented from shifting. As a result, the pixel circuit 10 (element) can be formed with high positional accuracy in the element formation process described later, and the high-definition organic EL display device 1 can be manufactured.
  • the organic EL display device 1 is manufactured by finally peeling the resin film A from the carrier substrate 7. Therefore, by removing a portion corresponding to the edge 711 (first portion) on which the inorganic coating 72 of the laminated body 8 is formed in the cutting step described later, the peeling operation in the subsequent peeling step is facilitated. For this reason, the adhesive force of the resin film A with respect to the edge portion 711 is as large as possible from the viewpoint of making the resin film A difficult to peel from the carrier substrate 7 before the peeling step (making the resin film A difficult to drop off). preferable.
  • the adhesive force of the resin film A to the central portion 712 is preferably as small as possible from the viewpoint of easily peeling the resin film A from the carrier substrate 7 in the peeling step.
  • the adhesive force of the resin film A with respect to the center part 712 is a grade which does not peel without any trigger from a viewpoint of the handleability of the laminated body 8 in the manufacturing process after a cutting process.
  • adhesion strength in the present specification refers to adhesion strength per unit area, and the value can be expressed using, for example, MPa or the like as a unit.
  • the region where the inorganic coating 72 is formed is not limited to the edge 711 of the upper surface 71.
  • a region for forming the inorganic coating 72 may be set accordingly.
  • a plurality of organic EL display devices 1 are manufactured on the carrier substrate 7, then cut and divided into individual organic EL display devices 1, and finally the organic EL display device 1 is peeled from the carrier substrate 7. Even in such a case, the region where the inorganic coating 72 is formed may be appropriately set in a region other than the edge portion 711 according to the pattern of the dividing line.
  • the inorganic coating 72 is preferably continuous, but may be partially interrupted (intermittent).
  • an inorganic coating 72 having a predetermined area may also be formed on the central portion 712.
  • the adhesive force of the resin film A to the carrier substrate 7 in the central portion 712 may be increased (adjusted) by forming a small area inorganic coating 72 in the central portion 712 in a dot shape.
  • the average thickness of the inorganic coating 72 is not particularly limited, but is preferably about 0.01 to 20 ⁇ m, and more preferably about 0.05 to 10 ⁇ m. By setting the average thickness of the inorganic coating 72 within the above range, the adhesion of the resin film A to the edge portion 711 can be sufficiently increased, and a large height difference between the edge portion 711 and the central portion 712 is obtained. Can be prevented from occurring. Thereby, it can avoid that the shape of the resin film A becomes defective.
  • the edge portion 711 (first portion) may be subjected to a coupling agent treatment. Also by the coupling agent treatment, the adhesive force of the resin film A to the edge portion 711 can be made larger than the adhesive force of the resin film A to the central portion 712 as in the inorganic coating 72. For this reason, like the inorganic coating 72, the resin film A is prevented from falling off, dripping, or being displaced from the carrier substrate 7 during the manufacturing process.
  • the EL display device 1 can be manufactured.
  • the coupling agent is not particularly limited as long as it can enhance the adhesion of the resin film A to the carrier substrate 7.
  • a coupling agent a silane coupling agent or a titanium coupling agent having a hydrolyzable group capable of reacting with a hydroxyl group by dehydration condensation and a reactive functional group capable of reacting with the resin film A and bonding, a modified agent Silicone oil etc. are mentioned as an example.
  • reactive functional groups include amino groups, epoxy groups, alkyl groups, phenyl groups, carboxyl groups, hydroxyl groups, mercapto groups, isocyanate groups, carbinol groups, and acid chlorides.
  • the reactive functional group may contain a plurality of these.
  • the reactive functional group is preferably an amino group.
  • Examples of the coupling agent having an amino group as a reactive functional group include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane and N-2- (aminoethyl) -3-aminopropyltrimethoxysilane.
  • the concentration of the coupling agent is preferably about 0.05 to 10% by mass, and more preferably about 0.1 to 5% by mass.
  • edge portion 711 (first portion) may be subjected to various surface treatments in place of the formation of the inorganic coating 72 and the coupling agent treatment.
  • Examples of such surface treatment include electron beam irradiation treatment, corona discharge treatment, arc discharge treatment, excimer light irradiation treatment, plasma treatment, and etching treatment.
  • prescribed water repellency is provided to the edge part 711 by these surface treatments.
  • the contact angle of water with the edge 711 after the surface treatment is preferably about 8 to 40 °, more preferably about 10 to 35 °, and about 12 to 30 °. Is more preferable.
  • the contact angle of water is less than the lower limit, the hydrophilicity of the edge portion 711 is increased, but the affinity for the edge portion 711 of the resin solution is reduced, and the adhesion force of the resin film A may be reduced.
  • the contact angle of water exceeds the upper limit, the oleophilicity of the edge portion 711 is increased, but, for example, the binding property to the edge portion 711 of the hydrolyzable group of the coupling agent is lowered, and the resin film A Adhesion may be reduced.
  • the water contact angle of the edge 711 is a value measured by a method set at a temperature of 25 ° C. in accordance with the JIS R 3257 (1999) sessile drop method.
  • the resin solution A0 is applied to the upper surface 71 (main surface) of the carrier substrate 7. Thereby, a coating film is formed.
  • the coating film is formed so as to cover the entire upper surface 71 of the carrier substrate 7, but the formation region of the coating film is not limited to this, and the upper surface including a part of the edge 711. You may form so that 71 may be covered partially.
  • various liquid phase film forming methods such as a die coating method, an ink jet method, a spin coating method, a bar coating method, a roll coating method, a wire bar coating method, and a dip coating method are used.
  • Examples of the solvent used for preparing the resin solution A0 include toluene, xylene, benzene, dimethylformamide, tetrahydrofuran, ethyl cellosolve, ethyl acetate, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylacetamide, Dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl ethyl ketone, cyclohexanone, tetrahydrofuran, methyl-1, 3-butylene glycol acetate, 1,3-butylene glycol 3-monomethyl ether, methyl pyruvate, eth
  • the coating film is dried and cured to obtain a resin film A.
  • the laminated body 8 is obtained (refer FIG.4 (d)).
  • the heating temperature for curing the coating film is appropriately set according to the composition of the resin solution A0, but is preferably about 220 to 420 ° C., more preferably about 280 to 400 ° C., 330 More preferably, it is about 370 ° C.
  • the heating time for curing the coating film is appropriately set according to the heating temperature, but is preferably about 5 to 300 minutes, and more preferably about 30 to 240 minutes.
  • the width of the edge 711 is appropriately set according to the adhesion of the resin film A to the edge 711.
  • the adhesion force is such that the resin film A does not peel from the edge 711 even when the external force is applied.
  • the width of the edge part 711 should just be set.
  • the width of the edge portion 711 varies depending on the size of the carrier substrate 7, but is set to about 2 to 50 mm as an example. If the width of the edge portion 711 is less than the lower limit value, the resin film A may be easily peeled even at the edge portion 711 depending on the magnitude of the adhesion strength per unit area. On the other hand, if the width of the edge portion 711 exceeds the upper limit value, the proportion of the portion of the laminated body 8 to be removed in the cutting step described later increases, and the amount of waste may increase.
  • adhesion strength of the region subjected to the surface treatment such as the formation of the inorganic coating 72 described above can be evaluated by a method based on a tape adhesion test defined in ASTM D3359-B, for example.
  • a cut is made in a portion corresponding to the edge 711 on the upper surface of the laminate 8 (the upper surface of the resin film A). This notch is formed so as to penetrate the resin film A and reach the carrier substrate 7.
  • the incision is formed by using a cutting jig having multiple blades with a blade pitch of 1 mm.
  • an adhesive tape for example, cello tape (registered trademark) manufactured by Nichiban Co., Ltd.
  • cello tape registered trademark
  • one end of the adhesive tape is gripped and pulled at an angle of 45 ° with respect to the upper surface (attachment surface) of the laminate 8, and the adhesive tape is peeled off from the laminate 8.
  • the adhesive force of the resin film A to the edge 711 is evaluated by observing the upper surface (peeling surface) of the laminate 8 and applying the area where the resin film A is peeled to the following evaluation criteria.
  • 5B No peeling (peeled area is 0%). 4B: The peeled area is less than 5%. 3B: The peeled area is 5% or more and less than 15%. 2B: The peeled area is 15% or more and less than 35%. 1B: The peeled area is 35% or more and less than 65%. 0B: The peeled area is 65% or more.
  • the adhesion of the resin film A to the carrier substrate 7 can be quantitatively evaluated.
  • the adhesion strength of the resin film A to the edge 711 preferably corresponds to the above-described evaluation of 2B to 5B, and more preferably corresponds to the evaluation of 4B or 5B.
  • the adhesion force corresponds to such an evaluation, it is possible to prevent the resin film A from being peeled from the carrier substrate 7 during the manufacturing process even when the area of the edge portion 711 is small.
  • the adhesive force of the resin film A to the central portion 712 is not particularly limited as long as the adhesive force of the resin film A to the edge portion 711 is smaller.
  • the difference between the adhesion force of the resin film A to the central portion 712 and the adhesion force of the resin film A to the edge portion 711 is preferably 5% or more based on the area peeled in the evaluation test. More preferred is the degree.
  • the resin film A can finally be peeled relatively easily from the carrier substrate 7 while preventing the resin film A from being peeled from the carrier substrate 7 without any trigger.
  • Element formation step [3-1] Next, as shown in FIG. 4E, the pixel circuit 10 (element) is formed on the resin film A (on the side opposite to the carrier substrate 7 of the resin film A). To do.
  • the conductive film is patterned to form the gate electrode 200.
  • the formation of the conductive film on the resin film A can be performed, for example, by supplying a metal material such as aluminum, tantalum, molybdenum, titanium, or tungsten by various vapor deposition methods such as sputtering.
  • a gate insulating layer 201 is formed so as to cover each gate electrode 200.
  • the gate insulating layer 201 is composed of, for example, silicon oxide or silicon nitride as a main material.
  • the gate insulating layer 201 can be formed by performing a plasma CVD method or the like using TEOS (tetraethoxysilane), oxygen gas, nitrogen gas, or the like as a source gas.
  • the source electrode 202 and the drain electrode 204 are formed by patterning the conductive film.
  • the formation of the conductive film over the gate insulating layer 201 can be performed using a method similar to that for forming the gate electrode 200.
  • the semiconductor layer 203 is formed corresponding to the channel region between each source electrode 202 and each drain electrode 204.
  • a sputtering method is performed in an atmosphere containing oxygen and / or nitrogen using a metal target containing a metalloid element and / or a metal element which is a part of the constituent elements of the semiconductor material described above.
  • a metal target containing a metalloid element and / or a metal element which is a part of the constituent elements of the semiconductor material described above.
  • it can be formed by various other vapor deposition methods or various liquid deposition methods.
  • the thin film transistor B is formed.
  • a planarization layer 301 is formed so as to cover the resin film A and the thin film transistor B formed on the resin film A.
  • a contact hole is formed so as to penetrate the planarizing layer 301 in the thickness direction, and then a conductive portion 300 is formed in the contact hole.
  • An anode (individual electrode) 302 is formed on the planarizing layer 301 so as to correspond to each conductive part 300.
  • a hole transport layer 303 is formed so as to cover each anode 302.
  • a light emitting layer 304 is formed so as to cover each hole transport layer 303.
  • an electron transport layer 305 is formed so as to cover each light emitting layer 304.
  • a cathode 306 is formed so as to cover each electron transport layer 305.
  • Each of these layers can be formed using, for example, a vapor phase film formation method such as a sputtering method, a vacuum evaporation method, or a CVD method, or a liquid phase film formation method such as an ink jet method, a spin coating method, or a casting method. it can.
  • a vapor phase film formation method such as a sputtering method, a vacuum evaporation method, or a CVD method
  • a liquid phase film formation method such as an ink jet method, a spin coating method, or a casting method. it can.
  • the light emitting element C is formed as described above, and the pixel circuit 10 including the thin film transistor B and the light emitting element C is formed.
  • a sealing layer 400 is formed so as to cover the pixel circuit 10.
  • the stacked body 8 is cut in the thickness direction so as to remove (cut off) a portion corresponding to the edge 711 of the stacked body 8 (see FIG. 5G). That is, the laminate 8 is cut in the thickness direction so as to remove the carrier substrate 7, the resin film A, and the sealing layer 400 corresponding to the edge 711.
  • This cutting can be performed by, for example, a mechanical method using a dicer, a laser processing method, an electron beam processing method, a water jet processing method, or the like.
  • a mechanical method using a dicer a laser processing method, an electron beam processing method, a water jet processing method, or the like.
  • FIG.5 (g) the cutting method by the diamond cutter 9 is illustrated as an example.
  • the edge 711 according to the present embodiment has a rectangular frame shape as shown in FIG. Therefore, in this step, a portion corresponding to the edge portion 711 forming the frame shape of the stacked body 8 is removed.
  • a rectangular frame-shaped portion (removal portion 81) in the plan view is removed from the stacked body 8.
  • a portion (remaining portion 82) of the stacked body 8 that is located inside the removed portion 81 and that corresponds to the central portion 712 having a rectangular shape in plan view remains.
  • the resin film A is in close contact with the carrier substrate 7 with a relatively small adhesive force as compared with the removed portion 81.
  • the resin film A is in close contact with the carrier substrate 7 with a relatively small adhesive force as compared with the removed portion 81. For this reason, the operation
  • the load added to the resin film A when peeling will be reduced.
  • the load applied to the resin film A is suppressed from adversely affecting the pixel circuit 10 formed on the resin film A, thereby deteriorating the characteristics of the pixel circuit 10. Can be reduced.
  • the resin film A can be peeled relatively easily from the carrier substrate 7 as described above. For this reason, when the resin film A is peeled from the carrier substrate 7, a peeling process using laser irradiation or the like can be omitted, or the energy to be irradiated can be reduced. For this reason, the malfunction by laser irradiation, for example, the quality change by the heat_generation
  • Second Embodiment the manufacturing method of the organic electroluminescence display 1 including 2nd Embodiment of the manufacturing method of the element laminated film of this invention is demonstrated.
  • FIG. 7 is a longitudinal sectional view for explaining another method for manufacturing the organic EL display device shown in FIG. 1 (second embodiment of the method for manufacturing an element laminated film of the present invention).
  • the upper side in FIG. 7 is referred to as “upper” and the lower side is referred to as “lower”.
  • the manufacturing method of the organic EL display device 1 including the method for manufacturing the element laminated film according to the second embodiment is different from the cutting position in the cutting step, and includes the method for manufacturing the element laminated film according to the first embodiment. This is the same as the manufacturing method of the device 1.
  • the lamination is performed so as to remove all of the portion of the laminate 8 corresponding to the inorganic coating 72 provided on the edge 711 (first portion) of the upper surface 71 of the carrier substrate 7.
  • the laminate 8 is moved in the thickness direction so that only a part of the laminate 8 corresponding to the inorganic coating 72 is removed. Disconnect.
  • a part of part corresponding to the inorganic coating 72 of the laminated body 8 remains without being removed.
  • the adhesion of the resin film A to the carrier substrate 7 is relatively small.
  • the adhesive force of the resin film A to the carrier substrate 7 is relatively large due to the action of the inorganic coating 72 in the remaining portion 82 where the inorganic coating 72 remains.
  • the laminate 8 corresponding to the inorganic coating 72 remaining in the cutting step by appropriately adjusting the area of the portion of the laminate 8 corresponding to the inorganic coating 72 to be removed in the cutting step, in other words, the laminate 8 corresponding to the inorganic coating 72 remaining in the cutting step.
  • the ease of peeling of the resin film A from the carrier substrate 7 in the remaining part 82 can be freely controlled. Therefore, for example, when the adhesive force of the resin film A to the carrier substrate 7 at the central portion 712 is too small, the resin film A may be peeled from the carrier substrate 7 during the cutting operation. For this reason, what is necessary is just to leave the part of the laminated body 8 corresponding to the inorganic coating 72 of a predetermined area so that the adhesive force of the grade which can prevent this peeling is ensured.
  • the area of the inorganic coating 72 that remains on the remaining portion 82 side depends on the adhesion strength of the resin film A to the carrier substrate 7 required in the remaining portion 82 and the adhesion strength per unit area of the resin film A to the inorganic coating 72.
  • the laminate 8 is more preferably cut so that about 3 to 30% remains. Accordingly, the resin film A is prevented from peeling from the carrier substrate 7 at the remaining portion 82 during the cutting operation, and the resin film A is easily removed from the carrier substrate 7 by giving a simple trigger after the cutting operation is completed. Can be peeled off.
  • the organic EL display device 1 shown in FIG. 7C is obtained by peeling the resin film A from the carrier substrate 7.
  • the area of the inorganic coating 72 to remain it is possible to minimize the load applied to the resin film A along with the peeling operation, and to minimize the adverse effect applied to the resin film A and the pixel circuit 10. it can.
  • laser irradiation may be used for the peeling operation of the resin film A from the inorganic coating 72.
  • the adverse effect of the laser irradiation on the resin film A and the pixel circuit 10 can be minimized.
  • Examples of the laser light used for the laser irradiation include a pulse oscillation type or a continuous emission type excimer laser, a carbon dioxide gas laser, a YAG laser, and a YVO 4 laser.
  • FIG. 7C shows a state where the inorganic coating 72 is attached to the resin film A, but the inorganic coating 72 may remain on the carrier substrate 7.
  • the inorganic coating 72 can be prevented from adversely affecting the optical characteristics of the organic EL display device 1.
  • the manufacturing method of the organic EL display device 1 including the second embodiment of the method for manufacturing the element laminated film of the present invention as described above the manufacturing method of the organic EL display device 1 including the first embodiment described above is the same. There is an effect.
  • this invention is not limited to this.
  • the process for arbitrary purposes may be added to the manufacturing method of an element laminated film.
  • test piece for evaluation (Sample No. 1) [Preparation of resin composition]
  • PFMB 3.2024 g, 0.01 mol
  • DMAc 30 ml
  • a carrier substrate (diameter 125 mm) made of soda glass was prepared, and a coupling agent treatment was performed on one surface.
  • a coupling agent an isopropyl alcohol solution (concentration 1% by mass) of 3-aminopropyltrimethoxysilane was used.
  • a resin film was formed on a carrier substrate using the prepared resin composition.
  • the resin composition was applied on a flat carrier substrate by spin coating.
  • the film was cured by maintaining at 350 ° C. for 30 minutes in an inert atmosphere. Thereby, the test piece for evaluation formed by forming a resin film on the carrier substrate was obtained. In addition, the average thickness of the obtained resin film was 10 micrometers.
  • sample no In the same manner as in Example 1, a surface treatment was performed and a resin film was formed to obtain a test piece for evaluation.
  • Example No. 3 Sample No. 1 was changed except that the coupling agent was changed to 3-aminopropyltriethoxysilane. In the same manner as in Example 1, an evaluation test piece was obtained.
  • Example No. 4 Sample No. 5 was changed except that the coupling agent was changed to N-2- (aminoethyl) -3-aminopropyltrimethoxysilane. In the same manner as in Example 1, an evaluation test piece was obtained.
  • sample No. 5 In place of the coupling agent treatment, sample No. 1 was used except that an inorganic coating treatment by vapor deposition of silicon oxide was performed. In the same manner as in Example 1, an evaluation test piece was obtained.
  • Sample No. 6 Sample No. 1 was used except that an inorganic alkali glass substrate was used as the carrier substrate. In the same manner as in Example 1, an evaluation test piece was obtained.
  • Sample No. 7 Sample No. 1 was used except that an inorganic alkali glass substrate was used as the carrier substrate. In the same manner as in Example 5, an evaluation test piece was obtained.
  • Example No. 8 Except for omitting the surface treatment, sample no. In the same manner as in Example 1, an evaluation test piece was obtained.
  • Example No. 9 Except for omitting the surface treatment, sample no. In the same manner as in Example 6, an evaluation test piece was obtained.
  • test piece for evaluation Each sample No. The evaluation test pieces were evaluated by the following method.
  • each sample No. All of the test pieces for evaluation had good total light transmittance of 60% or more.
  • the evaluation of the adhesion was 4B or 5B, and the adhesion was good.
  • the evaluation of the adhesion was 0B or 1B, and the adhesion was low.
  • the resin film from the carrier substrate during the manufacturing process of the display device is obtained by partially increasing the adhesion force of at least a part of the plate surface (main surface) of the carrier substrate. Peeling can be suppressed. Moreover, after that, the resin film can be easily peeled from the carrier substrate by removing the portion having a high adhesion.
  • each sample No. mentioned above was replaced with a polyimide resin instead of a polyamide resin.
  • a test piece for evaluation was produced in the same manner as described above.
  • a substrate having a main surface including a first portion and a second portion, and an adhesion force of the film to the first portion is greater than an adhesion force of the film to the second portion.
  • a film provided in close contact with the main surface, a step of preparing a substrate with a film, a step of forming an element on the opposite side of the film from the substrate, and with the film A step of cutting the substrate with a film in a thickness direction so as to remove at least a part of a portion corresponding to the first portion of the substrate, and a step of separating the substrate and the film to obtain an element laminated film And have.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Disclosed is a method for manufacturing an organic EL display device 1, said method having: a surface processing step, wherein a carrier substrate 7 is prepared, and an inorganic coating 72 is applied to an end portion 711 (first portion) of an upper surface 71 (main surface); a film-forming step, wherein a resin film A is formed by applying a resin solution to the upper surface 71, thereby obtaining a laminated body 8 (film-attached substrate); an element-forming step, wherein a pixel circuit 10 (element) is formed with respect to the resin film A, and a sealing layer 400 is formed; a cutting step, wherein the laminated body 8 is cut in the thickness direction such that a laminated body 8 portion corresponding to the end portion 711 is removed; and a peeling step wherein the carrier substrate 7 and the resin film A are separated from each other.

Description

素子積層フィルムの製造方法、素子積層フィルムおよび表示装置Element laminated film manufacturing method, element laminated film, and display device
 本発明は、素子積層フィルムの製造方法、素子積層フィルムおよび表示装置に関するものである。 The present invention relates to a method for producing an element laminated film, an element laminated film, and a display device.
 有機EL表示装置や液晶表示装置のような表示装置(電子装置)において、それに用いられる基板は、透明性を有することが必要である。このため、この基板として、透明樹脂フィルムを用いた基板が提案されている。 In a display device (electronic device) such as an organic EL display device or a liquid crystal display device, a substrate used for the display device needs to have transparency. For this reason, a substrate using a transparent resin film has been proposed as the substrate.
 例えば、特許文献1には、液状の樹脂組成物をキャリア基板上に塗布して固体状の樹脂膜を形成する工程と、樹脂膜上に回路を形成する工程と、樹脂膜をキャリア基板から剥離する工程と、を含む表示デバイスであるフレキシブルデバイスの製造方法が開示されている。 For example, in Patent Document 1, a liquid resin composition is applied on a carrier substrate to form a solid resin film, a circuit is formed on the resin film, and the resin film is peeled from the carrier substrate. And a method for manufacturing a flexible device that is a display device.
 このようなフレキシブルデバイスの製造方法によれば、樹脂膜(透明樹脂フィルム)上に半導体層や電極層等を形成することにより、表示デバイスに必要な薄膜トランジスター等を含む回路を作製することができる。また、形成する樹脂膜(透明樹脂フィルム)の厚さを薄くし易いので、表示デバイスの薄型化、軽量化を図ることができる。 According to such a manufacturing method of a flexible device, a circuit including a thin film transistor necessary for a display device can be manufactured by forming a semiconductor layer, an electrode layer, or the like on a resin film (transparent resin film). . Moreover, since the thickness of the resin film (transparent resin film) to be formed can be easily reduced, the display device can be made thinner and lighter.
 ところで、回路が形成された樹脂膜をキャリア基板から剥離する方法として、特許文献1には、キャリア基板側から樹脂膜にレーザーを照射する方法が提案されている。レーザーを樹脂膜に照射することにより、樹脂膜をキャリア基板から、それらの界面で円滑に剥離することができる。 Incidentally, as a method for peeling the resin film on which the circuit is formed from the carrier substrate, Patent Document 1 proposes a method of irradiating the resin film with laser from the carrier substrate side. By irradiating the resin film with a laser, the resin film can be smoothly peeled from the carrier substrate at the interface between them.
特開2010-202729号公報JP 2010-202729 A
 しかしながら、レーザーを照射する装置は、大型かつ高価であるため、製造プロセスの高コスト化を招いている。また、レーザーが半導体層に照射されたとき、レーザーの波長によっては、半導体層が変質、劣化するおそれがある。 However, the laser irradiation apparatus is large and expensive, leading to an increase in manufacturing process costs. Further, when a semiconductor layer is irradiated with a laser, the semiconductor layer may be altered or deteriorated depending on the wavelength of the laser.
 さらに、樹脂膜のキャリア基板に対する密着力は、それらの構成材料の組み合わせに左右され易い。このため、組み合わせによっては密着力が著しく小さくなる場合がある。このような場合、フレキシブルデバイスの製造過程において、例えば洗浄液が樹脂膜に吹き付けられただけで、樹脂膜がキャリア基板から剥離してしまうことが懸念される。 Furthermore, the adhesion force of the resin film to the carrier substrate is easily affected by the combination of the constituent materials. For this reason, depending on the combination, the adhesion may be significantly reduced. In such a case, in the manufacturing process of the flexible device, for example, there is a concern that the resin film may be peeled off from the carrier substrate simply by spraying the cleaning liquid onto the resin film.
 本発明の目的は、特殊な装置を用いることなく、素子積層フィルムを効率よく製造可能な素子積層フィルムの製造方法、かかる素子積層フィルムの製造方法により製造された素子積層フィルム、および、前記素子積層フィルムを備える表示装置を提供することにある。 An object of the present invention is to provide an element laminated film manufacturing method capable of efficiently producing an element laminated film without using a special device, an element laminated film produced by the element laminated film producing method, and the element laminated film It is in providing a display apparatus provided with a film.
 このような目的は、下記(1)~(10)の本発明により達成される。
 (1) 第1部分と第2部分とを含む主面を有する基板と、前記第1部分に対する前記フィルムの密着力が前記第2部分に対する前記フィルムの密着力よりも大きくなるように、前記主面に密着して設けられたフィルムと、を備えるフィルム付き基板を用意する工程と、
 前記フィルムの前記基板とは反対側に素子を形成する工程と、
 前記フィルム付き基板の前記第1部分に対応する部分の少なくとも一部を除去するように前記フィルム付き基板を厚さ方向に切断する工程と、
 前記基板と前記フィルムとを互いに分離して、素子積層フィルムを得る工程と、
を有することを特徴とする素子積層フィルムの製造方法。
Such an object is achieved by the present inventions (1) to (10) below.
(1) The substrate having a main surface including a first portion and a second portion, and the main force such that the adhesion force of the film to the first portion is greater than the adhesion force of the film to the second portion. A step of preparing a substrate with a film comprising a film provided in close contact with the surface;
Forming an element on the opposite side of the film from the substrate;
Cutting the substrate with film in the thickness direction so as to remove at least a part of the portion corresponding to the first portion of the substrate with film;
Separating the substrate and the film from each other to obtain an element laminated film;
A process for producing an element laminated film, comprising:
 (2) 前記フィルム付き基板を用意する工程は、
 前記主面の前記第1部分に対して表面処理を施す工程と、
 前記主面上に樹脂溶液を塗布して前記フィルムを形成する工程と、
を有する上記(1)に記載の素子積層フィルムの製造方法。
(2) The step of preparing the substrate with film includes
Applying a surface treatment to the first portion of the main surface;
Applying a resin solution on the main surface to form the film;
The manufacturing method of the element laminated | multilayer film as described in said (1) which has these.
 (3) 前記表面処理は、無機コーティング処理またはカップリング剤処理である上記(2)に記載の素子積層フィルムの製造方法。 (3) The method for producing an element laminated film according to (2), wherein the surface treatment is an inorganic coating treatment or a coupling agent treatment.
 (4) 前記基板の構成材料は、ガラスである上記(2)または(3)に記載の素子積層フィルムの製造方法。 (4) The method for producing an element laminated film according to (2) or (3), wherein the constituent material of the substrate is glass.
 (5) 前記ガラスは、ソーダガラスまたは無アルカリガラスである上記(4)に記載の素子積層フィルムの製造方法。 (5) The method for producing an element laminated film according to (4), wherein the glass is soda glass or non-alkali glass.
 (6) 前記第1部分は、前記主面の外縁に沿って設けられている上記(1)ないし(5)のいずれかに記載の素子積層フィルムの製造方法。 (6) The method for manufacturing an element laminated film according to any one of (1) to (5), wherein the first portion is provided along an outer edge of the main surface.
 (7) 前記第1部分は、前記第2部分を取り囲むように設けられている上記(1)ないし(6)のいずれかに記載の素子積層フィルムの製造方法。 (7) The method for manufacturing an element laminated film according to any one of (1) to (6), wherein the first part is provided so as to surround the second part.
 (8) 前記フィルムの構成材料は、ポリアミド系樹脂である上記(1)ないし(7)のいずれかに記載の素子積層フィルムの製造方法。 (8) The element laminate film manufacturing method according to any one of (1) to (7), wherein the constituent material of the film is a polyamide-based resin.
 (9) 上記(1)ないし(8)のいずれかに記載の素子積層フィルムの製造方法により製造されたことを特徴とする素子積層フィルム。
 (10) 上記(9)に記載の素子積層フィルムを備えることを特徴とする表示装置。
(9) An element laminated film manufactured by the method for producing an element laminated film according to any one of (1) to (8).
(10) A display device comprising the element laminated film according to (9).
 本発明によれば、レーザー照射装置のような特殊な装置を用いることなく、必要なときにフィルムを剥離することができるので、フィルムとその上に形成された素子とを有する素子積層フィルムを効率よく製造することができる。 According to the present invention, since a film can be peeled off when necessary without using a special device such as a laser irradiation device, an element laminated film having a film and an element formed thereon can be efficiently used. Can be manufactured well.
 また、本発明によれば、レーザーによる悪影響がない素子積層フィルムが得られる。
 また、本発明によれば、上記素子積層フィルムを備える表示装置が得られる。
Moreover, according to this invention, the element laminated film which does not have the bad influence by a laser is obtained.
Moreover, according to this invention, a display apparatus provided with the said element laminated film is obtained.
図1は、本発明の表示装置の一実施形態である有機EL表示装置を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an organic EL display device which is an embodiment of the display device of the present invention. 図2は、本発明の表示装置の一実施形態である有機EL表示装置が備えるアクティブマトリクス装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of an active matrix device included in an organic EL display device which is an embodiment of the display device of the present invention. 図3は、図1に示す有機EL表示装置を製造する方法(本発明の素子積層フィルムの製造方法の第1実施形態)を説明するための縦断面図である。FIG. 3 is a longitudinal sectional view for explaining the method for manufacturing the organic EL display device shown in FIG. 1 (first embodiment of the method for manufacturing an element laminated film of the present invention). 図4は、図1に示す有機EL表示装置を製造する方法(本発明の素子積層フィルムの製造方法の第1実施形態)を説明するための縦断面図である。FIG. 4 is a longitudinal sectional view for explaining the method for manufacturing the organic EL display device shown in FIG. 1 (first embodiment of the method for manufacturing an element laminated film of the present invention). 図5は、図1に示す有機EL表示装置を製造する方法(本発明の素子積層フィルムの製造方法の第1実施形態)を説明するための縦断面図である。FIG. 5 is a longitudinal sectional view for explaining a method for manufacturing the organic EL display device shown in FIG. 1 (first embodiment of the method for manufacturing an element laminated film of the present invention). 図6は、図3(b)に示す有機EL表示装置の平面図である。FIG. 6 is a plan view of the organic EL display device shown in FIG. 図7は、図1に示す有機EL表示装置を製造する他の方法(本発明の素子積層フィルムの製造方法の第2実施形態)を説明するための縦断面図である。FIG. 7 is a longitudinal sectional view for explaining another method for manufacturing the organic EL display device shown in FIG. 1 (second embodiment of the method for manufacturing an element laminated film of the present invention).
 以下、本発明の素子積層フィルムの製造方法、素子積層フィルムおよび表示装置について、添付図面に示す好適な実施形態に基づいて詳細に説明する。 Hereinafter, a method for manufacturing an element laminated film, an element laminated film, and a display device of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
 まず、本発明の素子積層フィルムの製造方法の説明に先立って、素子積層フィルムを含む表示装置の一実施形態である有機エレクトロルミネッセンス表示装置(有機EL表示装置)について説明する。 First, prior to the description of the method for producing an element laminated film of the present invention, an organic electroluminescence display device (organic EL display device), which is an embodiment of a display device including the element laminated film, will be described.
 <有機EL表示装置>
 図1は、本発明の表示装置の一実施形態である有機EL表示装置を示す縦断面図である。なお、以下の説明では、図1中の上側を「上」、下側を「下」という。
<Organic EL display device>
FIG. 1 is a longitudinal sectional view showing an organic EL display device which is an embodiment of the display device of the present invention. In the following description, the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
 図1に示す有機EL表示装置1は、樹脂フィルムAと、画素毎に対応してそれぞれ設けられた複数の発光素子Cと、対応する発光素子Cを駆動する複数の薄膜トランジスターBと、を有している。 The organic EL display device 1 shown in FIG. 1 includes a resin film A, a plurality of light emitting elements C provided corresponding to each pixel, and a plurality of thin film transistors B that drive the corresponding light emitting elements C. is doing.
 なお、本実施形態において、有機EL表示装置1は、発光素子Cが発した光を樹脂フィルムA側から取り出す(透過させる)ボトムエミッション構造のディスプレイパネルである。 In the present embodiment, the organic EL display device 1 is a bottom emission structure display panel that extracts (transmits) the light emitted from the light emitting element C from the resin film A side.
 樹脂フィルムA上には、複数の発光素子Cに対応して複数の薄膜トランジスターBが設けられ、これらの薄膜トランジスターBを覆うように、絶縁材料で構成された平坦化層301が形成されている。 On the resin film A, a plurality of thin film transistors B are provided corresponding to the plurality of light emitting elements C, and a planarization layer 301 made of an insulating material is formed so as to cover the thin film transistors B. .
 各薄膜トランジスターBは、樹脂フィルムA上に形成されたゲート電極200と、ゲート電極200を覆うように設けられたゲート絶縁層201と、ゲート絶縁層201上にそれぞれ設けられたソース電極202およびドレイン電極204と、ソース電極202とドレイン電極204との間のチャネル領域に対応して形成され、半導体材料で構成された半導体層203と、を有している。 Each thin film transistor B includes a gate electrode 200 formed on the resin film A, a gate insulating layer 201 provided so as to cover the gate electrode 200, and a source electrode 202 and a drain provided on the gate insulating layer 201, respectively. The electrode 204 includes a semiconductor layer 203 formed of a semiconductor material and corresponding to a channel region between the source electrode 202 and the drain electrode 204.
 なお、半導体材料としては、例えば、単結晶シリコン、ポリシリコン、アモルファスシリコンのようなシリコン系材料の他、酸化物半導体材料、有機半導体材料等を用いることができる。 As the semiconductor material, for example, an oxide semiconductor material, an organic semiconductor material, or the like can be used in addition to a silicon-based material such as single crystal silicon, polysilicon, or amorphous silicon.
 酸化物半導体材料としては、例えば、非金属元素である窒素(N)、酸素(O)のうち少なくとも酸素(O)を含み、半金属元素であるホウ素(B)、シリコン(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)、テルル(Te)およびポロニウム(Po)のうち少なくとも1種、または、金属元素であるアルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、ジルコニウム(Zr)、カドミウム(Cd)、インジウム(In)、錫(Sn)、ハフニウム(Hf)、水銀(Hg)、タリウム(Tl)、テルビウム(Pb)およびビスマス(Bi)のうち少なくとも1種を含む半導体材料が挙げられる。 Examples of the oxide semiconductor material include at least oxygen (O) among nitrogen (N) and oxygen (O) which are nonmetallic elements, and boron (B), silicon (Si), and germanium (metalloid elements). Ge), arsenic (As), antimony (Sb), tellurium (Te), and polonium (Po), or metal elements such as aluminum (Al), zinc (Zn), gallium (Ga), zirconium Including at least one of (Zr), cadmium (Cd), indium (In), tin (Sn), hafnium (Hf), mercury (Hg), thallium (Tl), terbium (Pb) and bismuth (Bi) A semiconductor material is mentioned.
 このうち、In-Ga-Zn-O(IGZO)系材料、Zr-In-Zn-O系材料、Hf-In-Zn-O系材料、In-Si-O系材料、In-Ga-O系材料、In-Sn-Zn-O系材料、In-Al-Sn-Zn-O系材料等が酸化物半導体材料として好ましく用いられる。 Of these, In—Ga—Zn—O (IGZO) materials, Zr—In—Zn—O materials, Hf—In—Zn—O materials, In—Si—O materials, In—Ga—O materials A material, an In—Sn—Zn—O-based material, an In—Al—Sn—Zn—O-based material, or the like is preferably used as the oxide semiconductor material.
 また、有機半導体材料としては、例えば、アントラセン、テトラセンまたはこれらの誘導体のような低分子の有機半導体材料や、フルオレン-ビチオフェン共重合体、フルオレン-アリルアミン共重合体またはこれらの誘導体のような高分子の有機半導体材料が挙げられ、これらのうちの1種または2種以上を組み合せて用いることができる。 Examples of the organic semiconductor material include low molecular organic semiconductor materials such as anthracene, tetracene or derivatives thereof, and polymers such as fluorene-bithiophene copolymer, fluorene-allylamine copolymer, or derivatives thereof. These organic semiconductor materials can be used, and one or more of these can be used in combination.
 また、平坦化層301上には、各薄膜トランジスターBに対応して、発光素子(有機EL素子)Cが設けられている。 Further, a light emitting element (organic EL element) C is provided on the planarizing layer 301 corresponding to each thin film transistor B.
 さらに、本実施形態では、これらの発光素子Cを覆うように封止層400が形成されている。これにより、発光素子Cの気密性が確保され、有機EL表示装置1の内部への酸素や水分の浸入を防止することができる。 Furthermore, in this embodiment, the sealing layer 400 is formed so as to cover these light emitting elements C. Thereby, the airtightness of the light emitting element C is ensured, and intrusion of oxygen and moisture into the organic EL display device 1 can be prevented.
 なお、本実施形態に係る発光素子Cは、それぞれ、陽極302および陰極306と、これらの間に陽極302側から順に積層された、正孔輸送層303と、発光層304と、電子輸送層305とを備える。 Note that the light-emitting element C according to this embodiment includes an anode 302 and a cathode 306, and a hole transport layer 303, a light-emitting layer 304, and an electron transport layer 305, which are sequentially stacked between the anode 302 and the cathode 306. With.
 また、各発光素子Cの陽極302は、各薄膜トランジスターBのドレイン電極204に導電部300を介して電気的に接続されている。 In addition, the anode 302 of each light emitting element C is electrically connected to the drain electrode 204 of each thin film transistor B through the conductive portion 300.
 かかる構成の有機EL表示装置1において、複数の発光素子Cが赤色用の発光素子と、緑色用の発光素子と、青色用の発光素子とを含み、各薄膜トランジスターBを用いて各発光素子Cへ印加する電圧を制御することにより、各発光素子Cから射出される光の量(発光輝度)を調整すれば、有機EL表示装置1は、フルカラー表示が可能となる。また、複数の発光素子Cを同時に発光させることにより、有機EL表示装置1は、単色での表示も可能である。 In the organic EL display device 1 having such a configuration, the plurality of light emitting elements C include a red light emitting element, a green light emitting element, and a blue light emitting element, and each light emitting element C using each thin film transistor B. If the amount of light emitted from each light emitting element C (light emission luminance) is adjusted by controlling the voltage applied to the organic EL display device 1, the organic EL display device 1 can perform full color display. Moreover, the organic EL display device 1 can also display in a single color by causing the light emitting elements C to emit light simultaneously.
 したがって、それぞれ薄膜トランジスターBと発光素子Cとを有する複数の画素回路10を個別に駆動することで、有機EL表示装置1に所望の画像を表示することができる。 Therefore, a desired image can be displayed on the organic EL display device 1 by individually driving the plurality of pixel circuits 10 each having the thin film transistor B and the light emitting element C.
 ここで、本実施形態に係る薄膜トランジスターBは、それぞれ互いに直交する複数のデータラインと複数の選択ラインとの交点付近に設けられている。 Here, the thin film transistor B according to the present embodiment is provided in the vicinity of intersections of a plurality of data lines and a plurality of selection lines that are orthogonal to each other.
 図2は、本発明の表示装置の一実施形態である有機EL表示装置が備えるアクティブマトリクス装置の構成を示すブロック図である。なお、図1は、図2に示す単一の画素回路10およびその近傍の縦断面図に相当する。 FIG. 2 is a block diagram showing a configuration of an active matrix device included in an organic EL display device which is an embodiment of the display device of the present invention. FIG. 1 corresponds to a vertical sectional view of the single pixel circuit 10 shown in FIG. 2 and the vicinity thereof.
 図2に示すアクティブマトリクス装置50は、互いに直交する複数のデータライン51および複数の選択ライン52と、これらの交点付近にそれぞれ設けられた複数の画素回路10と、を備えている。そして、図示しないものの、各薄膜トランジスターBが備えるゲート電極200は、選択ライン52に接続され、ソース電極202は、データライン51に接続されている。 The active matrix device 50 shown in FIG. 2 includes a plurality of data lines 51 and a plurality of selection lines 52 that are orthogonal to each other, and a plurality of pixel circuits 10 provided in the vicinity of their intersections. Although not shown, the gate electrode 200 included in each thin film transistor B is connected to the selection line 52, and the source electrode 202 is connected to the data line 51.
 一方、有機EL表示装置1は、図2に示すように、信号処理回路55と、データ駆動回路53と、行選択回路54と、を備えている。 On the other hand, the organic EL display device 1 includes a signal processing circuit 55, a data driving circuit 53, and a row selection circuit 54 as shown in FIG.
 有機EL表示装置1に画像を表示するときは、まず、表示する画像に基づく映像信号が図示しない映像信号生成回路において生成される。そして、生成された映像信号は、信号処理回路55に入力される。信号処理回路55では、映像信号に基づいてデータ信号と選択信号とをそれぞれ生成し、データ信号をデータ駆動回路53に入力するとともに、選択信号を行選択回路54に入力する。 When displaying an image on the organic EL display device 1, first, a video signal based on the image to be displayed is generated in a video signal generation circuit (not shown). Then, the generated video signal is input to the signal processing circuit 55. The signal processing circuit 55 generates a data signal and a selection signal based on the video signal, inputs the data signal to the data driving circuit 53, and inputs the selection signal to the row selection circuit 54.
 その後、データ駆動回路53からは、各データライン51にデータ信号が送出されるとともに、行選択回路54からは、各選択ライン52に選択信号が送出される。各画素回路10では、これらのデータ信号および選択信号に基づいて各薄膜トランジスターBの駆動が制御され、それに対応する発光素子Cの発光が制御される。これにより、有機EL表示装置1において所望の画像が表示されることとなる。 Thereafter, the data drive circuit 53 sends a data signal to each data line 51 and the row selection circuit 54 sends a selection signal to each selection line 52. In each pixel circuit 10, the driving of each thin film transistor B is controlled based on these data signals and selection signals, and the light emission of the corresponding light emitting element C is controlled. Thereby, a desired image is displayed on the organic EL display device 1.
 なお、各画素回路10は、図2に示すように、平面視で長方形をなす樹脂フィルムA上に載置されている。一方、信号処理回路55、データ駆動回路53および行選択回路54は、樹脂フィルムAの外部に配置されている。なお、これらの配置は、特に限定されず、各回路も樹脂フィルムA上に配置されていてもよい。 Each pixel circuit 10 is placed on a resin film A that is rectangular in plan view, as shown in FIG. On the other hand, the signal processing circuit 55, the data driving circuit 53 and the row selection circuit 54 are arranged outside the resin film A. In addition, these arrangement | positioning is not specifically limited, Each circuit may also be arrange | positioned on the resin film A.
 樹脂フィルムAの構成材料としては、例えば、ポリイミド系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、エポキシ系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂等の各種ポリマーが挙げられる。これらのポリマーの中でも、樹脂フィルムAの構成材料としては、特にポリアミド系樹脂が好ましく用いられる。以下、ポリアミド系樹脂について詳述する。
Examples of the constituent material of the resin film A include various polymers such as polyimide resins, polyamide resins, polyamideimide resins, epoxy resins, acrylic resins, methacrylic resins, polyester resins, and polycarbonate resins. . Among these polymers, a polyamide resin is particularly preferably used as a constituent material of the resin film A. Hereinafter, the polyamide resin will be described in detail.
 (ポリアミド系樹脂)
 ポリアミド系樹脂を用いることにより、耐薬品性に優れた樹脂フィルムAを得ることができる。このような樹脂フィルムAは、その上に画素回路10を形成するとき、有機溶剤や処理ガスによる変質、劣化等を抑制し得る。
(Polyamide resin)
By using a polyamide-based resin, a resin film A having excellent chemical resistance can be obtained. Such a resin film A can suppress deterioration or deterioration due to an organic solvent or a processing gas when the pixel circuit 10 is formed thereon.
 また、ポリアミド系樹脂は、カルボキシル基を含有するジアミン由来の構造を含んでいることが好ましい。そして、このカルボキシル基を含有するジアミン由来の構造のポリアミド系樹脂中に含まれる量は、30mol%以下であることが好ましく、1~20mol%であることがより好ましく、1~10mol%であることがさらに好ましい。カルボキシル基を含有するジアミン由来の構造の量をこのように設定することで、ポリアミド系樹脂を含む樹脂フィルムAは、優れた耐薬品性と優れた光学特性とを両立することができる。 Further, the polyamide-based resin preferably includes a structure derived from a diamine containing a carboxyl group. The amount contained in the polyamide resin having a structure derived from a diamine containing a carboxyl group is preferably 30 mol% or less, more preferably 1 to 20 mol%, and more preferably 1 to 10 mol%. Is more preferable. By setting the amount of the structure derived from a diamine containing a carboxyl group in this way, the resin film A containing a polyamide-based resin can achieve both excellent chemical resistance and excellent optical properties.
 また、ポリアミド系樹脂は、芳香族ポリアミド、半芳香族ポリアミドおよび脂環式ポリアミドのうちの1種または2種以上を含む樹脂であるのが好ましく、芳香族ポリアミドを含む樹脂がより好ましい。このようなポリアミド系樹脂は、樹脂フィルムAに対し、有機EL表示装置1での使用に適した特性を付与することができる。すなわち、ポリアミド系樹脂は、樹脂フィルムAに対し、画素回路10の製造に耐え得る十分な耐薬品性を付与するとともに、有機EL表示装置1において優れた画質を実現可能な光学特性を付与することができる。 Further, the polyamide-based resin is preferably a resin containing one or more of aromatic polyamide, semi-aromatic polyamide and alicyclic polyamide, and more preferably a resin containing aromatic polyamide. Such a polyamide-based resin can impart properties suitable for use in the organic EL display device 1 to the resin film A. That is, the polyamide-based resin provides the resin film A with sufficient chemical resistance that can withstand the manufacture of the pixel circuit 10 and optical characteristics that can realize excellent image quality in the organic EL display device 1. Can do.
 また、芳香族ポリアミドは、エポキシ基と反応可能な1つ以上の官能基を含む芳香族ポリアミドであることが好ましい。さらに、エポキシ基と反応可能な1つ以上の官能基を含む芳香族ポリアミドは、カルボキシル基を含む芳香族ポリアミドであることがより好ましい。このような芳香族ポリアミドは、カルボキシル基を含んでいるので、形成される樹脂フィルムAの耐溶剤性を向上させることができる。樹脂フィルムAの耐溶剤性を向上させることにより、樹脂フィルムA上に、発光素子Cを形成する際に用いる液状材料の選択の幅を広げることができる。 The aromatic polyamide is preferably an aromatic polyamide containing one or more functional groups capable of reacting with an epoxy group. Further, the aromatic polyamide containing one or more functional groups capable of reacting with an epoxy group is more preferably an aromatic polyamide containing a carboxyl group. Since such an aromatic polyamide contains a carboxyl group, the solvent resistance of the formed resin film A can be improved. By improving the solvent resistance of the resin film A, the selection range of the liquid material used when forming the light emitting element C on the resin film A can be expanded.
 さらに、芳香族ポリアミドは、全芳香族ポリアミドであることが好ましい。これにより、形成される樹脂フィルムAの耐薬品性と光学特性とをより高めることができる。なお、全芳香族ポリアミドとは、その主骨格に含まれるアミド結合同士が直鎖状または環状をなす脂肪族化合物で連結されることなく、全て芳香族化合物(芳香族環)で連結されているポリアミドをいう。 Furthermore, the aromatic polyamide is preferably a wholly aromatic polyamide. Thereby, the chemical resistance and optical characteristic of the resin film A to be formed can be further enhanced. In addition, with the wholly aromatic polyamide, the amide bonds contained in the main skeleton are not connected by an aliphatic compound that is linear or cyclic, but are all connected by an aromatic compound (aromatic ring). Refers to polyamide.
 このような芳香族ポリアミドは、下記一般式(I)および(II)で表される繰り返し単位(モノマー成分)のうち少なくとも一方を有することが好ましいが、双方を有することがより好ましい。
Figure JPOXMLDOC01-appb-I000001
(ただし、xは、前記繰り返し構造(I)のモル%を示し、nは、1~4の整数を表し、yは、前記繰り返し構造(II)のモル%を示し、Arは、下記一般式(III)または(III’)で表され、
Figure JPOXMLDOC01-appb-I000002
[p=4、R、R、Rは、それぞれ独立して、水素、ハロゲン(フッ化物、塩化物、臭化物、およびヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール又はハロゲン化アリール等の置換アリール、アルキルエステル、および置換アルキルエステル、並びにその組み合せからなる群から選択され、Gは、共有結合、CH基、C(CH基、C(CF基、C(CX基(但しXはハロゲン)、CO基、O原子、S原子、SO基、Si(CH基、9,9-フルオレン基、置換9,9-フルオレン、およびOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、および置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。]、
 Arは、下記一般式(IV)または(V)で表され、

Figure JPOXMLDOC01-appb-I000003

[p=4、R、R、Rは、それぞれ独立して、水素、ハロゲン(フッ化物、塩化物、臭化物、およびヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール又はハロゲン化アリール等の置換アリール、アルキルエステル、および置換アルキルエステル、並びにその組み合せからなる群から選択され、Gは、共有結合、CH基、C(CH基、C(CF基、C(CX基(但しXはハロゲン)、CO基、O原子、S原子、SO基、Si(CH基、9,9-フルオレン基、置換9,9-フルオレン、およびOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、および置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。]、
 Arは、、下記一般式(VI)または(VII)で表され、

Figure JPOXMLDOC01-appb-I000004

[t=1~3、R、R10、R11は、それぞれ独立して、水素、ハロゲン(フッ化物、塩化物、臭化物、およびヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、および置換アルキルエステル、並びにその組み合せからなる群から選択され、Gは、共有結合、CH基、C(CH基、C(CF基、C(CX基(但しXはハロゲン)、CO基、O原子、S原子、SO基、Si(CH基、9,9-フルオレン基、置換9,9-フルオレン、およびOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、および置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。])。
Such an aromatic polyamide preferably has at least one of repeating units (monomer components) represented by the following general formulas (I) and (II), but more preferably has both.
Figure JPOXMLDOC01-appb-I000001
(Wherein x represents mol% of the repeating structure (I), n represents an integer of 1 to 4, y represents mol% of the repeating structure (II), and Ar 1 represents the following general formula Represented by formula (III) or (III ′),
Figure JPOXMLDOC01-appb-I000002
[P = 4, R 1 , R 4 and R 5 are each independently hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro, cyano , Thioalkyl, alkoxy, substituted alkoxy such as halogenated alkoxy, substituted aryl such as aryl or aryl halide, alkyl ester, and substituted alkyl ester, and combinations thereof, G 1 is a covalent bond, CH 2 Group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3 ) 2 group, 9,9-fluorene group is selected from the group consisting of substituted 9,9-fluorene, and OZO group, Z is a phenyl group, a biphenyl group, Pafuru B biphenyl group, an aryl group or a substituted aryl group such as 9,9-bisphenyl fluorene groups and substituted 9,9-bisphenyl fluorene. ],
Ar 2 is represented by the following general formula (IV) or (V),

Figure JPOXMLDOC01-appb-I000003

[P = 4, R 1 , R 4 and R 5 are each independently hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro, cyano , Thioalkyl, alkoxy, substituted alkoxy such as halogenated alkoxy, substituted aryl such as aryl or aryl halide, alkyl ester, and substituted alkyl ester, and combinations thereof, G 1 is a covalent bond, CH 2 Group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3 ) 2 group, 9,9-fluorene group is selected from the group consisting of substituted 9,9-fluorene, and OZO group, Z is a phenyl group, a biphenyl group, Pafuru B biphenyl group, an aryl group or a substituted aryl group such as 9,9-bisphenyl fluorene groups and substituted 9,9-bisphenyl fluorene. ],
Ar 3 is represented by the following general formula (VI) or (VII),

Figure JPOXMLDOC01-appb-I000004

[T = 1 to 3, R 9 , R 10 and R 11 are each independently hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro , Cyano, thioalkyl, alkoxy, substituted alkoxy such as halogenated alkoxy, aryl, substituted aryl such as aryl halide, alkyl ester, and substituted alkyl ester, and combinations thereof, G 3 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3) 2 group, 9,9-fluorene group is selected from the group consisting of substituted 9,9-fluorene, and OZO group, Z is a phenyl group, a biphenyl group, Pas Fluoro-biphenyl group, an aryl group or a substituted aryl group such as 9,9-bisphenyl fluorene groups and substituted 9,9-bisphenyl fluorene. ]).
 また、上述の芳香族ポリアミドに関し、本発明の1つまたは複数の実施形態において、上記一般式(I)および(II)は、芳香族ポリアミドが極性溶剤または1つ以上の極性溶剤を含む混合溶剤に対して可溶性を有するよう選択される。本発明の1つまたは複数の実施形態において、一般式(I)のxは90.0~99.99mol%の範囲で変化し、一般式(II)のyは10.0~0.01mol%の範囲で変化する。本発明の1つまたは複数の実施形態において、一般式(I)のxは90.1~99.9mol%の範囲で変化し、一般式(II)のyは9.9~0.1mol%の範囲で変化する。本発明の1つまたは複数の実施形態において、一般式(I)のxは90.0~99.0mol%の範囲で変化し、一般式(II)のyは10.0~1.0モル%の範囲で変化する。本発明の1つまたは複数の実施形態において、一般式(I)のxは92.0~98.0mol%の範囲で変化し、一般式(II)のyは8.0~2.0mol%の範囲で変化する。本発明の1つまたは複数の実施形態において、一般式(I)および(II)で表される複数の繰り返し単位中のAr、Ar、Arは互いに同一であってもよいし、異なっていてもよい。
In addition, with respect to the above-mentioned aromatic polyamide, in one or more embodiments of the present invention, the general formulas (I) and (II) are those in which the aromatic polyamide includes a polar solvent or one or more polar solvents. Selected to be soluble. In one or more embodiments of the present invention, x in the general formula (I) varies from 90.0 to 99.99 mol%, and y in the general formula (II) is from 10.0 to 0.01 mol%. It varies in the range. In one or more embodiments of the present invention, x in the general formula (I) varies from 90.1 to 99.9 mol%, and y in the general formula (II) ranges from 9.9 to 0.1 mol%. It varies in the range. In one or more embodiments of the present invention, x in the general formula (I) varies from 90.0 to 99.0 mol%, and y in the general formula (II) is from 10.0 to 1.0 mol. It varies in the range of%. In one or more embodiments of the present invention, x in the general formula (I) varies from 92.0 to 98.0 mol%, and y in the general formula (II) is from 8.0 to 2.0 mol%. It varies in the range. In one or more embodiments of the present invention, Ar 1 , Ar 2 , Ar 3 in the plurality of repeating units represented by the general formulas (I) and (II) may be the same as or different from each other. It may be.
 また、芳香族ポリアミドは、剛直構造(剛直成分)を50mol%以上の量で含むことが好ましく、65mol%以上の量で含むことがより好ましく、80mol%以上の量で含むことがさらに好ましく、95mol%以上の量で含むことが特に好ましい。芳香族ポリアミドの剛直構造の量をかかる範囲に設定することにより、芳香族ポリアミドの結晶性がより向上する。このため、樹脂フィルムAの耐薬品性をより高めることができる。 The aromatic polyamide preferably contains a rigid structure (rigid component) in an amount of 50 mol% or more, more preferably in an amount of 65 mol% or more, further preferably in an amount of 80 mol% or more, and 95 mol. It is particularly preferable to include it in an amount of% or more. By setting the amount of the rigid structure of the aromatic polyamide within such a range, the crystallinity of the aromatic polyamide is further improved. For this reason, the chemical resistance of the resin film A can be further improved.
 なお、本明細書中において、剛直構造とは、芳香族ポリアミドを構成するモノマー成分(繰り返し単位)であって、その主骨格に直線性を有するモノマー成分を言う。具体的には、剛直構造としては、例えば、上記一般式(I)で表される繰り返し単位および上記一般式(II)で表される繰り返し単位であって、Arが、下記一般式(A)または(B)で表され、
 
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
[p=4、R、R、Rは、それぞれ独立して、水素、ハロゲン(フッ化物、塩化物、臭化物、およびヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール又はハロゲン化アリール等の置換アリール、アルキルエステル、および置換アルキルエステル、並びにその組み合せからなる群から選択され、Gは、共有結合、CH基、C(CH基、C(CF基、C(CX基(但しXはハロゲン)、CO基、O原子、S原子、SO基、Si(CH基、9,9-フルオレン基、置換9,9-フルオレン、およびOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、および置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。]、
 Arが、下記一般式(C)または(D)で表され、
 
Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
[p=4、R、R、Rは、それぞれ独立して、水素、ハロゲン(フッ化物、塩化物、臭化物、およびヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、および置換アルキルエステル、並びにその組み合せからなる群から選択され、Gは、共有結合、CH基、C(CH基、C(CF基、C(CX基(但しXはハロゲン)、CO基、O原子、S原子、SO基、Si(CH基、9,9-フルオレン基、置換9,9-フルオレン、およびOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、および置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。]、
 Arが、下記一般式(E)または(F)で表される繰り返し単位である。
 
Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010
[t=1~3、R、R10、R11は、それぞれ独立して、水素、ハロゲン(フッ化物、塩化物、臭化物、およびヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、および置換アルキルエステル、並びにその組み合せからなる群から選択され、Gは、共有結合、CH基、C(CH基、C(CF基、C(CX基(但しXはハロゲン)、CO基、O原子、S原子、SO基、Si(CH基、9,9-フルオレン基、置換9,9-フルオレン、およびOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、および置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。]。
In the present specification, the rigid structure refers to a monomer component (repeating unit) constituting an aromatic polyamide and having a linearity in its main skeleton. Specifically, examples of the rigid structure include a repeating unit represented by the above general formula (I) and a repeating unit represented by the above general formula (II), wherein Ar 1 is represented by the following general formula (A ) Or (B),

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
[P = 4, R 1 , R 4 and R 5 are each independently hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro, cyano , Thioalkyl, alkoxy, substituted alkoxy such as halogenated alkoxy, substituted aryl such as aryl or aryl halide, alkyl ester, and substituted alkyl ester, and combinations thereof, G 1 is a covalent bond, CH 2 Group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3 ) 2 group, 9,9-fluorene group is selected from the group consisting of substituted 9,9-fluorene, and OZO group, Z is a phenyl group, a biphenyl group, Pafuru B biphenyl group, an aryl group or a substituted aryl group such as 9,9-bisphenyl fluorene groups and substituted 9,9-bisphenyl fluorene. ],
Ar 2 is represented by the following general formula (C) or (D),

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
[P = 4, R 6 , R 7 and R 8 are each independently hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro, cyano , Thioalkyl, alkoxy, substituted alkoxy such as halogenated alkoxy, aryl, substituted aryl such as aryl halide, alkyl ester, substituted alkyl ester, and combinations thereof, G 2 is a covalent bond, CH 2 Group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3 ) 2 group, 9,9-fluorene group is selected from the group consisting of substituted 9,9-fluorene, and OZO group, Z is a phenyl group, a biphenyl group, perfluoro Biphenyl group, an aryl group or a substituted aryl group such as 9,9-bisphenyl fluorene groups and substituted 9,9-bisphenyl fluorene. ],
Ar 3 is a repeating unit represented by the following general formula (E) or (F).

Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010
[T = 1 to 3, R 9 , R 10 and R 11 are each independently hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro , Cyano, thioalkyl, alkoxy, substituted alkoxy such as halogenated alkoxy, aryl, substituted aryl such as aryl halide, alkyl ester, and substituted alkyl ester, and combinations thereof, G 3 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3) 2 group, 9,9-fluorene group is selected from the group consisting of substituted 9,9-fluorene, and OZO group, Z is a phenyl group, a biphenyl group, Pas Fluoro-biphenyl group, an aryl group or a substituted aryl group such as 9,9-bisphenyl fluorene groups and substituted 9,9-bisphenyl fluorene. ].
 さらに、Arの具体例としては、例えば、テレフタロイルジクロライド(TPC:Terephthaloyl dichloride)由来の構造が挙げられ、Arの具体例としては、例えば、4,4’-ジアミノ-2,2’-ビストリフルオロメチルベンジジン(PFMB:4, 4’-Diamino-2, 2’-bistrifluoromethylbenzidine)由来の構造が挙げられ、Arの具体例としては、例えば、4,4’-ジアミノジフェン酸(DADP:4, 4’-Diaminodiphenic acid)由来の構造、4,4’-ジアミノジフェニルスルホン(DDS:4,4’-diaminodiphenyl sulfone)由来の構造、および3,5-ジアミノベンゾイン酸(DAB:3, 5-Diaminobenzoic acid)由来の構造が挙げられる。
Further, specific examples of Ar 1 include, for example, a structure derived from terephthaloyl dichloride (TPC), and specific examples of Ar 2 include, for example, 4,4′-diamino-2,2 ′. -A structure derived from bistrifluoromethylbenzidine (PFMB: 4, 4'-Diamino-2, 2'-bistrifluoromethylbenzidine) is exemplified, and specific examples of Ar 3 include, for example, 4,4'-diaminodiphenic acid (DADP). : 4,4'-diaminodiphenic acid), 4,4'-diaminodiphenyl sulfone (DDS), and 3,5-diaminobenzoic acid (DAB: 3, 5) -Diaminobenzoic acid).
 また、芳香族ポリアミドは、その数平均分子量(Mn)が、6.0×10以上であることが好ましく、6.5×10以上であることがより好ましく、7.0×10以上であることがより好ましく、7.5×10以上であることがより好ましく、8.0×10以上であることがさらに好ましい。また、数平均分子量が、1.0×10以下であることが好ましく、8.0×10以下であることがより好ましく、6.0×10以下であることがより好ましく、4.0×10以下であることがさらに好ましい。上述の条件を満足する芳香族ポリアミドを用いることにより、有機EL表示装置1における下地層としての機能を樹脂フィルムAに確実に発揮させることができる。 The aromatic polyamide has a number average molecular weight (Mn) of preferably 6.0 × 10 4 or more, more preferably 6.5 × 10 4 or more, and 7.0 × 10 4 or more. Is more preferably 7.5 × 10 4 or more, and further preferably 8.0 × 10 4 or more. In addition, the number average molecular weight is preferably 1.0 × 10 6 or less, more preferably 8.0 × 10 5 or less, and even more preferably 6.0 × 10 5 or less. More preferably, it is 0 × 10 5 or less. By using an aromatic polyamide that satisfies the above-described conditions, the resin film A can reliably exhibit its function as a base layer in the organic EL display device 1.
 なお、本明細書中において、ポリアミドの数平均分子量(Mn)および重量平均分子量(Mw)とは、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography)にて測定される。 In the present specification, the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the polyamide are measured by gel permeation chromatography (Gel Permeation Chromatography).
 さらに、芳香族ポリアミドの分子量分布(=Mw/Mn)は、5.0以下であることが好ましく、4.0以下であることがより好ましく、3.0以下であることがより好ましく、2.8以下であることがより好ましく、2.6以下であることがより好ましく、2.4以下であることがさらに好ましく、2.0以上であることが特に好ましい。上述の条件を満足する芳香族ポリアミドを用いることにより、有機EL表示装置1における下地層としての機能を樹脂フィルムAに確実に発揮させることができる。 Furthermore, the molecular weight distribution (= Mw / Mn) of the aromatic polyamide is preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.0 or less. It is more preferably 8 or less, more preferably 2.6 or less, further preferably 2.4 or less, and particularly preferably 2.0 or more. By using an aromatic polyamide that satisfies the above-described conditions, the resin film A can reliably exhibit its function as a base layer in the organic EL display device 1.
 また、芳香族ポリアミドは、芳香族ポリアミドを合成した後に再沈殿の工程を経ることで得られることが好ましい。再沈殿の工程を経て得られた芳香族ポリアミドを用いることにより、有機EL表示装置1における下地層としての機能を樹脂フィルムAに確実に発揮させることができる。
The aromatic polyamide is preferably obtained by synthesizing the aromatic polyamide and then undergoing a reprecipitation step. By using the aromatic polyamide obtained through the reprecipitation step, the resin film A can surely exhibit the function as the base layer in the organic EL display device 1.
 (ポリアミド系樹脂の製造方法)
 次に、上述したポリアミド系樹脂の製造方法の一例について説明する。
(Production method of polyamide resin)
Next, an example of a method for producing the above-described polyamide resin will be described.
 上述したポリアミド系樹脂は、例えば、下記の工程(a)~(e)を含む製造方法を用いて製造することができる。
 なお、以下では、ポリアミド系樹脂としてエポキシ基と反応可能な1つ以上の官能基を含む芳香族ポリアミドを用い、ポリアミド系樹脂中に無機フィラーが含まれる場合について説明する。
 ただし、ポリアミド系樹脂は、下記の製造方法で製造されたポリマーに限定されるものではない。
The above-described polyamide-based resin can be produced, for example, using a production method including the following steps (a) to (e).
In the following, a case where an aromatic polyamide containing one or more functional groups capable of reacting with an epoxy group is used as the polyamide resin and an inorganic filler is contained in the polyamide resin will be described.
However, the polyamide-based resin is not limited to a polymer manufactured by the following manufacturing method.
 工程(a)は、少なくとも1つの芳香族ジアミンを溶剤に溶解させることにより、混合物を得るために実行される。工程(b)は、溶剤内において、少なくとも1つの芳香族ジアミンを少なくとも1つの芳香族ジカルボン酸ジクロライドと反応させることにより、遊離塩酸とポリアミド溶液を得るために実行される。工程(c)は、捕獲試薬による反応によって、混合物中から、遊離塩酸を除去するために実行される。工程(d)は、無機フィラーを混合物中に添加するために実行される。工程(e)は任意の(選択的な)工程であって、多官能エポキシドを添加するために実行される。 Step (a) is performed to obtain a mixture by dissolving at least one aromatic diamine in a solvent. Step (b) is carried out in order to obtain free hydrochloric acid and a polyamide solution by reacting at least one aromatic diamine with at least one aromatic dicarboxylic acid dichloride in a solvent. Step (c) is performed to remove free hydrochloric acid from the mixture by reaction with a capture reagent. Step (d) is performed to add an inorganic filler into the mixture. Step (e) is an optional (optional) step that is performed to add the polyfunctional epoxide.
 本製造方法において用いられる芳香族ジカルボン酸ジクロライドは、例えば、下記一般式で表される化合物を含むものが挙げられる。
Figure JPOXMLDOC01-appb-I000011
Examples of the aromatic dicarboxylic acid dichloride used in this production method include those containing a compound represented by the following general formula.
Figure JPOXMLDOC01-appb-I000011
 p=4、R、R、Rは、それぞれ独立して、水素、ハロゲン(フッ化物、塩化物、臭化物、およびヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール又はハロゲン化アリール等の置換アリール、アルキルエステル、および置換アルキルエステル、並びにその組み合せからなる群から選択され、Gは、共有結合、CH基、C(CH基、C(CF基、C(CX基(但しXはハロゲン)、CO基、O原子、S原子、SO基、Si(CH基、9,9-フルオレン基、置換9,9-フルオレン、およびOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、および置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。 p = 4, R 1 , R 4 , R 5 are each independently hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro, cyano, Selected from the group consisting of substituted alkoxy such as thioalkyl, alkoxy, halogenated alkoxy, substituted aryl such as aryl or aryl halide, alkyl ester, and substituted alkyl ester, and combinations thereof, G 1 is a covalent bond, CH 2 group , C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3 ) 2 Selected from the group consisting of a group, 9,9-fluorene group, substituted 9,9-fluorene, and OZO group, wherein Z is a phenyl group, a biphenyl group, a perfluorinated group Biphenyl group, an aryl group or a substituted aryl group such as 9,9-bisphenyl fluorene groups and substituted 9,9-bisphenyl fluorene.
 以上のような芳香族ジカルボン酸ジクロライドとしては、具体的には、下記のものが挙げられる。
 テレフタロイルジクロライド(Terephthaloyl dichloride)(TPC)
Figure JPOXMLDOC01-appb-I000012
Specific examples of the aromatic dicarboxylic acid dichloride as described above include the following.
Terephthaloyl dichloride (TPC)
Figure JPOXMLDOC01-appb-I000012
 イソフタロイルジクロライド(Isophthaloyl dichloride)(IPC)
Figure JPOXMLDOC01-appb-I000013
Isophthaloyl dichloride (IPC)
Figure JPOXMLDOC01-appb-I000013
 4,4-ビフェニルジカルボニルジクロライド(4, 4’-Biphenyldicarbonyl dichloride)(BPDC)
Figure JPOXMLDOC01-appb-I000014
4,4-Biphenyldicarbonyl dichloride (BPDC)
Figure JPOXMLDOC01-appb-I000014
 ポリアミド溶液を製造する方法の1つまたは複数の実施形態において、芳香族ジアミンは、例えば、下記一般式で表される化合物を含むものが挙げられる。

Figure JPOXMLDOC01-appb-I000015

 ここで、p=4、m=1または2、t=1~3、R、R、R、R、R10、R11は、それぞれ独立して、水素、ハロゲン(フッ化物、塩化物、臭化物、およびヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール又はハロゲン化アリール等の置換アリール、アルキルエステル、および置換アルキルエステル、並びにその組み合せからなる群から選択され、各Rは同一であっても、異なっていてもよく、Rはそれぞれ同一であっても、異なっていてもよく、Rはそれぞれ同一であっても、異なっていてもよく、Rはそれぞれ同一であっても、異なっていてもよく、R10はそれぞれ同一であっても、異なっていてもよく、R11はそれぞれ同一であっても、異なっていてもよく、GおよびGは、共有結合、CH基、C(CH基、C(CF基、C(CX基(但しXはハロゲン)、CO基、O原子、S原子、SO基、Si(CH基、9,9-フルオレン基、置換9,9-フルオレン、およびOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、および置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。
In one or more embodiments of the method for producing a polyamide solution, the aromatic diamine includes, for example, those containing a compound represented by the following general formula.

Figure JPOXMLDOC01-appb-I000015

Here, p = 4, m = 1 or 2, t = 1-3, R 6 , R 7 , R 8 , R 9 , R 10 , R 11 are each independently hydrogen, halogen (fluoride, Chlorides, bromides, and iodides), substituted alkyls such as alkyls, alkyl halides, substituted alkoxys such as nitro, cyano, thioalkyls, alkoxy, halogenated alkoxys, substituted aryls such as aryl or aryl halides, alkyl esters, and Selected from the group consisting of substituted alkyl esters, and combinations thereof, each R 6 may be the same or different, R 7 may be the same or different, and R 8 is each They may be the same or different, R 9 may be the same or different, and R 10 may be the same or different. R 11 may be the same or different, and G 2 and G 3 may be a covalent bond, a CH 2 group, a C (CH 3 ) 2 group, or a C (CF 3 ) 2. Group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3 ) 2 group, 9,9-fluorene group, substituted 9,9-fluorene And Z is an aryl group or substituted aryl such as phenyl group, biphenyl group, perfluorobiphenyl group, 9,9-bisphenylfluorene group, and substituted 9,9-bisphenylfluorene It is a group.
 以上のような芳香族ジアミンとしては、具体的には、下記のものが挙げられる。
 4,4’-ジアミノ-2,2’-ビストリフルオロメチルベンジジン(4, 4’-Diamino-2, 2’-bistrifluoromethylbenzidine)(PFMB)
Figure JPOXMLDOC01-appb-I000016
Specific examples of the aromatic diamine as described above include the following.
4,4'-Diamino-2,2'-bistrifluoromethylbenzidine (PFMB)
Figure JPOXMLDOC01-appb-I000016
 9,9ビス(4-アミノフェニル)フルオレン(9, 9-Bis4-aminophenyl)fluorine)(FDA)
Figure JPOXMLDOC01-appb-I000017
9,9-bis (4-aminophenyl) fluorine (FDA)
Figure JPOXMLDOC01-appb-I000017
 9,9ビス(3-フルオロ-4アミノフェニル)フルオレン(9,9-Bis(3-fluoro-4-aminophenyl)fluorine)(FFDA)
Figure JPOXMLDOC01-appb-I000018
9,9-Bis (3-fluoro-4-aminophenyl) fluorine (FFDA)
Figure JPOXMLDOC01-appb-I000018
 4,4’-ジアミノジフェン酸(4, 4’-Diaminodiphenic acid)(DADP)
Figure JPOXMLDOC01-appb-I000019
4,4'-Diaminodiphenic acid (DADP)
Figure JPOXMLDOC01-appb-I000019
 3,5-ジアミノベンゾイン酸(3, 5-Diaminobenzoic acid)(DAB)
Figure JPOXMLDOC01-appb-I000020
3,5-Diaminobenzoic acid (DAB)
Figure JPOXMLDOC01-appb-I000020
 4,4’-ジアミノ-2,2-ビストリフルオロメトキシベンジジン(4,4’-Diamino-2,2’-bistrifluoromethoxylbenzidine)(PFMOB)
Figure JPOXMLDOC01-appb-I000021
4,4'-Diamino-2,2-bistrifluoromethoxylbenzidine (PFMOB)
Figure JPOXMLDOC01-appb-I000021
 4,4’-ジアミノ-2,2’-ビストリフルオロメチルジフェニルエーテル(4,4’-Diamino-2,2’-bistrifluoromethyldiphenyl ether)(6FODA)
Figure JPOXMLDOC01-appb-I000022
4,4'-Diamino-2,2'-bistrifluoromethyldiphenyl ether (6FODA)
Figure JPOXMLDOC01-appb-I000022
 ビス(4-アミノ-2-トリフルオメチルフェニルオキシル)ベンゼン(Bis(4-amino-2-trifluoromethylphenyloxyl) benzene)(6FOQDA)
Figure JPOXMLDOC01-appb-I000023
Bis (4-amino-2-trifluoromethylphenyloxyl) benzene (6FOQDA)
Figure JPOXMLDOC01-appb-I000023
 ビス(4-アミノ-2トリフルオロメチルフェニルオキシル)ビフェニル(Bis(4-amino-2-trifluoromethylphenyloxyl) biphenyl)(6FOBDA)
Figure JPOXMLDOC01-appb-I000024

 4,4’-ジアミノジフェニルスルホン(Diaminodiphenyl sulfone)(DDS)
Figure JPOXMLDOC01-appb-I000025
 なお、ジアミノジフェニルスルホンは、上記式のような4,4’- ジアミノジフェニルスルホン(4,4’-Diaminodiphenyl sulfone)であってもよいし、3,3’- ジアミノジフェニルスルホン(3,3’-Diaminodiphenyl sulfone)または2,2’- ジアミノジフェニルスルホン(2,2’-Diaminodiphenyl sulfone)であってもよい。
Bis (4-amino-2-trifluoromethylphenyloxyl) biphenyl (6FOBDA)
Figure JPOXMLDOC01-appb-I000024

4,4'-Diaminodiphenyl sulfone (DDS)
Figure JPOXMLDOC01-appb-I000025
The diaminodiphenyl sulfone may be 4,4′-diaminodiphenyl sulfone as shown in the above formula, or 3,3′-diaminodiphenyl sulfone (3,3′- Diaminodiphenyl sulfone) or 2,2′-diaminodiphenyl sulfone may be used.
 ポリアミド溶液を製造する方法の1つまたは複数の実施形態において、エポキシ基と反応可能な官能基を含む芳香族ジアミンの官能基は、ジアミン混合物の約1mol%より多く、約10mol%より少ない。ポリアミド溶液を製造する方法の1つまたは複数の実施形態において、エポキシ基と反応可能な官能基を含む芳香族ジアミンの官能基は、カルボキシル基である。ポリアミド溶液を製造する方法の1つまたは複数の実施形態において、ジアミンのいずれか1つは、4,4’-ジアミノジフェニン酸または3,5-ジアミノベンゾイン酸である。ポリアミド溶液を製造する方法の1つまたは複数の実施形態において、エポキシ基と反応可能な官能基を含む芳香族ジアミンの官能基は、ヒドロキシル基である。
In one or more embodiments of the method of making the polyamide solution, the functional group of the aromatic diamine containing a functional group capable of reacting with an epoxy group is greater than about 1 mol% and less than about 10 mol% of the diamine mixture. In one or more embodiments of the method for producing the polyamide solution, the functional group of the aromatic diamine containing a functional group capable of reacting with an epoxy group is a carboxyl group. In one or more embodiments of the method of making the polyamide solution, any one of the diamines is 4,4′-diaminodiphenic acid or 3,5-diaminobenzoic acid. In one or more embodiments of the method for producing the polyamide solution, the functional group of the aromatic diamine containing a functional group capable of reacting with an epoxy group is a hydroxyl group.
 ポリアミド溶液を製造する方法の1つまたは複数の実施形態において、芳香族ポリアミドは、溶剤中の縮合重合を介して精製される。ここで、反応中に発生した塩酸は、酸化プロピレン(PrO)のような捕獲試薬によって捕獲される。なお、塩酸と捕獲試薬との反応から揮発性生成物が産出される。 In one or more embodiments of the method of producing the polyamide solution, the aromatic polyamide is purified via condensation polymerization in a solvent. Here, hydrochloric acid generated during the reaction is captured by a capture reagent such as propylene oxide (PrO). Note that a volatile product is produced from the reaction between hydrochloric acid and the capture reagent.
 本方法内でのポリアミド溶液使用の観点から、捕獲試薬は、酸化プロピレンである。捕獲試薬は、工程(c)の前またはその最中に添加される。工程(c)の前またはその最中に捕獲試薬を添加することにより、工程(c)後の混合物内での凝縮の発生や粘性度を低減させることができ、これにより、ポリアミド溶液の生産性を向上させることができる。捕獲試薬が酸化プロピレンのような有機試薬である場合、これら効果が特に顕著になる。 From the viewpoint of using the polyamide solution in the present method, the capture reagent is propylene oxide. The capture reagent is added before or during step (c). By adding a capture reagent before or during step (c), the occurrence of condensation and viscosity in the mixture after step (c) can be reduced, thereby increasing the productivity of the polyamide solution. Can be improved. These effects are particularly noticeable when the capture reagent is an organic reagent such as propylene oxide.
 樹脂フィルムAの耐熱性向上の観点から、本方法は、さらに、芳香族ポリアミドの末端-COOH基および末端-NH基の一方または双方を末端封止する工程を含む。芳香族ポリアミドの末端は、各末端が-NHである場合、ベンゾイルクロライドを用いた反応によって末端封止することができ、各末端が-COOHである場合、アニリンを用いた反応によって末端封止することができる。しかしながら、末端封止の方法はこれに限定されない。 From the viewpoint of improving the heat resistance of the resin film A, the method further includes a step of end-capping one or both of the terminal —COOH group and the terminal —NH 2 group of the aromatic polyamide. The end of the aromatic polyamide can be end-capped by a reaction using benzoyl chloride when each end is —NH 2 , and the end can be capped by a reaction using aniline when each end is —COOH. can do. However, the end sealing method is not limited to this.
 多官能エポキシドは、フェノールエポキシドおよび環状脂肪族エポキシドからなる群から選択される。具体的には、多官能エポキシドは、ジグリシジル1,2-シクロヘキサンカルボキシレート、トリグリシジルイソシアヌル、テトラグリシジル4,4’-ジアミノフェニルメタン、2,2-ビス(4-グリシジルオキシルフェニル)プロパン、およびこれらの高分子量同族体、ノボラックエポキシド、7H-[1,2-b:5,6-b’]ビスオキシレンオクタハイドロ、およびエポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレートを含む群から選択される。多官能エポキシドの量は、芳香族ポリアミドの重量の約2~10%である。
The polyfunctional epoxide is selected from the group consisting of phenol epoxides and cycloaliphatic epoxides. Specifically, the polyfunctional epoxide includes diglycidyl 1,2-cyclohexanecarboxylate, triglycidyl isocyanur, tetraglycidyl 4,4′-diaminophenylmethane, 2,2-bis (4-glycidyloxylphenyl) propane, and these Selected from the group comprising high molecular weight homologues, novolak epoxides, 7H- [1,2-b: 5,6-b ′] bisoxylene octahydro, and epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate. The amount of polyfunctional epoxide is about 2-10% of the weight of the aromatic polyamide.
 本方法でのポリアミド溶液使用の観点から、芳香族ポリアミドは、最初に、無機フィラーおよび多官能エポキシドの少なくとも一方を添加する前の溶剤内での沈殿および再溶解によって、ポリアミド溶液から分離される。 From the viewpoint of using the polyamide solution in the present method, the aromatic polyamide is first separated from the polyamide solution by precipitation and re-dissolution in a solvent before adding at least one of the inorganic filler and the polyfunctional epoxide.
 再沈殿は通常の方法で行うことができる。再沈殿は、例えば、芳香族ポリアミドをメタノール、エタノール、イソプロピルアルコール等への添加により沈殿させ、芳香族ポリアミドを洗浄し、溶剤に溶解することにより実行される。
 この溶剤としては、後述のものが使用できる。
Reprecipitation can be performed by a usual method. The reprecipitation is performed by, for example, precipitating the aromatic polyamide by adding it to methanol, ethanol, isopropyl alcohol or the like, washing the aromatic polyamide, and dissolving it in a solvent.
As the solvent, those described later can be used.
 本方法でのポリアミド溶液使用の観点から、無機塩を含まないようポリアミド溶液が製造される。
 以上のような工程を経ることによりポリアミド系樹脂を製造することができる。
From the viewpoint of using the polyamide solution in the present method, the polyamide solution is produced so as not to contain inorganic salts.
A polyamide-based resin can be produced through the above steps.
 なお、樹脂フィルムAのナトリウム線(D線)における全光線透過率は、好ましくは40%以上とされ、より好ましくは45%以上とされ、さらに好ましくは50%以上とされ、特に好ましくは60%以上とされる。樹脂フィルムAの全光線透過率を上述のような範囲内に設定することにより、樹脂フィルムAを、ディスプレイ用素子、光学用素子、照明用素子またはセンサー素子の製造に好適に用いることができる。 In addition, the total light transmittance in the sodium wire (D line) of the resin film A is preferably 40% or more, more preferably 45% or more, still more preferably 50% or more, and particularly preferably 60%. It is said above. By setting the total light transmittance of the resin film A within the above-described range, the resin film A can be suitably used for manufacturing a display element, an optical element, an illumination element, or a sensor element.
 また、樹脂フィルムAの厚み方向の波長400nmのリタデーション(Rth)は、200.0nm以下であることが好ましく、190.0nm以下であることがより好ましく、180.0nm以下であることがより好ましく、175.0nm以下であることがより好ましく、173.0nm以下であることがさらに好ましい。なお、樹脂フィルムAのRthは、位相差測定装置にて算出することができる。 The retardation (Rth) at a wavelength of 400 nm in the thickness direction of the resin film A is preferably 200.0 nm or less, more preferably 190.0 nm or less, and more preferably 180.0 nm or less, It is more preferably 175.0 nm or less, and further preferably 173.0 nm or less. The Rth of the resin film A can be calculated with a phase difference measuring device.
 また、樹脂フィルムAは、その熱膨張係数(CTE)が100.0ppm/K以下であることが好ましく、80ppm/K以下であることがより好ましく、60ppm/K以下であることがより好ましく、40ppm/K以下であることがさらに好ましい。なお、樹脂フィルムAのCTEは、熱機械分析装置(TMA)にて測定することができる。 The resin film A preferably has a coefficient of thermal expansion (CTE) of 100.0 ppm / K or less, more preferably 80 ppm / K or less, more preferably 60 ppm / K or less, and 40 ppm. More preferably, it is / K or less. In addition, CTE of the resin film A can be measured with a thermomechanical analyzer (TMA).
 RthおよびCTEをそれぞれ前記範囲内とすることにより、樹脂フィルムAを備える基板において、反りが生じるのを的確に抑制または防止することができる。そのため、かかる基板を用いて得られる、有機EL表示装置1の製造歩留まりを向上させることができる。 By setting Rth and CTE within the above ranges, it is possible to accurately suppress or prevent the occurrence of warpage in the substrate provided with the resin film A. Therefore, the production yield of the organic EL display device 1 obtained using such a substrate can be improved.
 なお、樹脂フィルムAの平均厚さは、特に限定されないが、1~50μm程度であるのが好ましく、5~30μm程度であるのがより好ましい。樹脂フィルムAの平均厚さを前記範囲内にすることで、画素回路10を支持するのに必要かつ十分な機械的強度を樹脂フィルムAに付与することができる。また、それとともに、良好な可撓性を樹脂フィルムAに付与することができる。
The average thickness of the resin film A is not particularly limited, but is preferably about 1 to 50 μm, and more preferably about 5 to 30 μm. By setting the average thickness of the resin film A within the above range, the mechanical strength necessary and sufficient to support the pixel circuit 10 can be imparted to the resin film A. In addition, good flexibility can be imparted to the resin film A.
 (フィラー)
 また、樹脂フィルムAには、必要に応じて各種フィラーが添加されていてもよい。これにより、樹脂フィルムAの熱線膨張率を低減させることができる。
 このフィラーの構成材料としては、例えば、シリカ、アルミナ、酸化チタン等の金属酸化物、マイカ等の鉱物、ガラス、またはこれらの混合物が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。なお、ガラスの種類としては、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、低誘電率ガラス、高誘電率ガラス等が挙げられる。
 また、フィラーとしては、特に無機フィラーが好ましく用いられる。無機フィラーの形状としては、例えば、粒子状、繊維状等が挙げられる。
(Filler)
Various fillers may be added to the resin film A as necessary. Thereby, the thermal expansion coefficient of the resin film A can be reduced.
Examples of the constituent material of the filler include silica, alumina, metal oxides such as titanium oxide, minerals such as mica, glass, or a mixture thereof, and one or more of these may be combined. Can be used. Examples of the glass include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, low dielectric constant glass, and high dielectric constant glass.
As the filler, an inorganic filler is particularly preferably used. Examples of the shape of the inorganic filler include particles and fibers.
 無機フィラーが繊維である場合、前記繊維の平均繊維径は1~1000nmであることが好ましい。上述のような平均繊維径を有する無機フィラーを含む樹脂組成物(ポリマー溶液)を用いることによって、光学特性や可撓性を損なうことなく、樹脂フィルムAの熱線膨張率を低減させることができる。 When the inorganic filler is a fiber, the average fiber diameter of the fiber is preferably 1 to 1000 nm. By using a resin composition (polymer solution) containing an inorganic filler having an average fiber diameter as described above, the thermal linear expansion coefficient of the resin film A can be reduced without impairing optical properties and flexibility.
 ここで、前記繊維は、複数の単繊維から構成されるものであってもよい。この複数の単繊維は、引き揃えられることなく、かつ相互間にマトリックス樹脂の液状前駆体が入り込むように十分に離隔している。この場合、平均繊維径は複数の単繊維の平均径となる。また、前記繊維は、複数本の単繊維が束状に集合して1本の糸条を構成しているものであってもよく、この場合、平均繊維径は1本の糸条の径の平均値として定義される。また、フィルムの透明性向上の観点から、前記繊維の平均繊維径は小さいほど好ましく、また、樹脂フィルムAの製造に用いられる樹脂組成物に含まれるポリマー(ポリアミド等)の屈折率と繊維の屈折率とが近いほど好ましい。例えば、繊維に使用する材質とポリマーの589nmにおける屈折率の差が0.01以下の場合は、繊維径に関わらず透明性の高いフィルムを形成することが可能となる。また、平均繊維径の測定方法としては、例えば電子顕微鏡による観察等が挙げられる。 Here, the fiber may be composed of a plurality of single fibers. The plurality of single fibers are sufficiently separated so that the liquid precursor of the matrix resin enters between them without being aligned. In this case, the average fiber diameter is the average diameter of a plurality of single fibers. Further, the fiber may be one in which a plurality of single fibers are gathered in a bundle to constitute one yarn, and in this case, the average fiber diameter is the diameter of one yarn. Defined as an average value. Further, from the viewpoint of improving the transparency of the film, the average fiber diameter of the fiber is preferably as small as possible, and the refractive index of the polymer (polyamide or the like) contained in the resin composition used for the production of the resin film A and the refraction of the fiber The closer the rate, the better. For example, when the difference in refractive index at 589 nm between the material used for the fiber and the polymer is 0.01 or less, a highly transparent film can be formed regardless of the fiber diameter. Moreover, as a measuring method of an average fiber diameter, observation with an electron microscope etc. are mentioned, for example.
 また、無機フィラーが粒子である場合、前記粒子の平均粒子径は1~1000nmであることが好ましい。上述のような平均粒子径を有する粒子の形態の無機フィラーを含む樹脂組成物を用いることによって、光学特性や可撓性を損なうことなく、樹脂フィルムAの熱線膨張率を低減させることができる。
 ここで、前記粒子の平均粒子径は、平均投影円相当直径のことを言う。
When the inorganic filler is a particle, the average particle diameter of the particle is preferably 1 to 1000 nm. By using a resin composition containing an inorganic filler in the form of particles having the average particle diameter as described above, the thermal linear expansion coefficient of the resin film A can be reduced without impairing optical properties and flexibility.
Here, the average particle diameter of the particles refers to an average projected circle equivalent diameter.
 前記粒子の形状は、特に限定されないが、例えば、球状もしくは真球状、ロッド状、平板状、またはこれらの結合形状が挙げられる。 The shape of the particles is not particularly limited, and examples thereof include a spherical shape or a true spherical shape, a rod shape, a flat plate shape, or a combined shape thereof.
 また、樹脂組成物における固形分中の無機フィラーの割合としては、特に限定されないが、1体積%~50体積%であることが好ましく、2体積%~40体積%であることがより好ましく、3体積%~30体積%であることがさらに好ましい。さらに、樹脂組成物における固形分中のポリマーの割合は、特に限定されないが、50体積%~99体積%であることが好ましく、60~98体積%であることがより好ましく、70~97体積%であることがさらに好ましい。 The proportion of the inorganic filler in the solid content in the resin composition is not particularly limited, but is preferably 1% by volume to 50% by volume, more preferably 2% by volume to 40% by volume. More preferably, the volume is 30% by volume. Further, the ratio of the polymer in the solid content in the resin composition is not particularly limited, but is preferably 50% by volume to 99% by volume, more preferably 60% to 98% by volume, and 70% to 97% by volume. More preferably.
 なお、本明細書中において、「固形分」とは、樹脂組成物中の溶剤以外の成分をいう。固形分の体積換算、無機フィラーの体積換算、および/またはポリマーの体積換算は、ポリマー溶液を調製する際の成分の投入量から算出できる。または、ポリマー溶液から溶剤を除去することでも算出できる。
In the present specification, “solid content” refers to components other than the solvent in the resin composition. The volume conversion of the solid content, the volume conversion of the inorganic filler, and / or the volume conversion of the polymer can be calculated from the input amounts of the components when preparing the polymer solution. Alternatively, it can be calculated by removing the solvent from the polymer solution.
 (エポキシ試薬)
 また、樹脂組成物は、必要に応じて、樹脂組成物の硬化温度を低下させ、かつ、この樹脂組成物から得られる樹脂フィルムAの有機溶媒への耐性を向上させる観点から、ポリアミド系樹脂に加えて、エポキシ試薬を含んでもよい。また、樹脂組成物中に含まれるエポキシ試薬は、多官能エポキシドであることが好ましい。
(Epoxy reagent)
In addition, the resin composition can be made into a polyamide-based resin from the viewpoint of reducing the curing temperature of the resin composition as needed and improving the resistance of the resin film A obtained from the resin composition to an organic solvent. In addition, an epoxy reagent may be included. The epoxy reagent contained in the resin composition is preferably a polyfunctional epoxide.
 本発明の1つまたは複数の実施形態において、多官能エポキシドは、2つ以上のグリシジルエポキシ基を含むエポキシド、または2つ以上の脂環式基を含むエポキシドである。 In one or more embodiments of the present invention, the polyfunctional epoxide is an epoxide containing two or more glycidyl epoxy groups, or an epoxide containing two or more alicyclic groups.
 樹脂組成物が多官能エポキシドを含有する場合、多官能エポキシドの含有量としては、本発明の1つまたは複数の実施形態において、ポリアミド系樹脂の重量に対して約0.1~10重量%が好ましい。 When the resin composition contains a polyfunctional epoxide, the content of the polyfunctional epoxide is, in one or more embodiments of the present invention, about 0.1 to 10% by weight based on the weight of the polyamide-based resin. preferable.
 多官能エポキシドを含有する樹脂組成物は、本発明の1つまたは複数の実施形態において、樹脂フィルムAの硬化温度を低くすることができ、限定されない1つまたは複数の実施形態において、樹脂フィルムAの硬化温度を約200℃~約300℃とすることができる。
 また、多官能エポキシドを含有する樹脂組成物は、本発明の1つまたは複数の実施形態において、樹脂組成物から作製された樹脂フィルムAに、有機溶媒に対する耐性を付与できる。該有機溶媒としては、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセタミド(DMAc)、ジメチルスルホキシド(DMSO)、γ-ブチロラクトン(GBL)等の極性溶媒が含まれる。
The resin composition containing the polyfunctional epoxide can lower the curing temperature of the resin film A in one or more embodiments of the present invention, and in one or more embodiments without limitation, the resin film A The curing temperature of can be about 200 ° C. to about 300 ° C.
Moreover, the resin composition containing a polyfunctional epoxide can impart resistance to an organic solvent to the resin film A produced from the resin composition in one or more embodiments of the present invention. Examples of the organic solvent include polar solvents such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), and γ-butyrolactone (GBL).
 多官能エポキシドを含有する樹脂組成物における硬化温度の低下と有機溶媒に対する耐性向上の効果は、エポキシドによる架橋により得られると推測される。エポキシドによる架橋を促進する観点から、かかる樹脂組成物中に含まれるポリアミド系樹脂は、本発明の1つまたは複数の実施形態において、その主鎖にフリーのペンダンドカルボキシル基を有するか、あるいは、カルボキシル基を有するジアミンモノマーを用いて合成されることが好ましい。 It is speculated that the effect of lowering the curing temperature and improving the resistance to organic solvents in the resin composition containing the polyfunctional epoxide can be obtained by crosslinking with the epoxide. From the viewpoint of promoting crosslinking by epoxide, the polyamide-based resin contained in such a resin composition has, in one or more embodiments of the present invention, a free pendant carboxyl group in its main chain, or It is preferably synthesized using a diamine monomer having a carboxyl group.
  本発明の1つまたは複数の実施形態において、多官能エポキシドは、下記一般構造(α)および(β)を含む群から選択される。
Figure JPOXMLDOC01-appb-I000026
 (ただし、lは、グリシジル基の数を表し、Rは、
Figure JPOXMLDOC01-appb-I000027
および
Figure JPOXMLDOC01-appb-I000028
を含む群から選択される[m=1~4、nおよびsは、それぞれ独立した単位の平均数であって、0~30であり、各R12は、それぞれ独立して、水素、ハロゲン(フッ化物、塩化物、臭化物、およびヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、および置換アルキルエステル、並びにその組み合せからなる群から選択され、Gは、共有結合、CH基、C(CH基、C(CF基、C(CX基(但しXはハロゲン)、CO基、O原子、S原子、SO基、Si(CH基、9,9-フルオレン基、置換9,9-フルオレン、およびOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、および置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基であり、R13は、水素原子またはメチル基であり、R14は、二価有機基である。]。)

Figure JPOXMLDOC01-appb-I000029
 (ただし、環状構造(cyclic structure)は、
Figure JPOXMLDOC01-appb-I000030
および
Figure JPOXMLDOC01-appb-I000031
を含む群から選択される[R15は、炭素数2~18を有するアルキル鎖であり、該アルキル鎖は、直鎖、分枝鎖または環状骨格を有する鎖であり、mおよびnは、それぞれ独立して、1~30の整数であり、a、b、c、d、eおよびfは、それぞれ独立した0~30の整数である。]。)
In one or more embodiments of the present invention, the polyfunctional epoxide is selected from the group comprising the following general structures (α) and (β):
Figure JPOXMLDOC01-appb-I000026
(Where l represents the number of glycidyl groups and R is
Figure JPOXMLDOC01-appb-I000027
and
Figure JPOXMLDOC01-appb-I000028
[M = 1 to 4, n and s are each an average number of independent units and are 0 to 30, and each R 12 is independently hydrogen, halogen ( Fluoride, chloride, bromide, and iodide), substituted alkyl such as alkyl and alkyl halide, substituted alkoxy such as nitro, cyano, thioalkyl, alkoxy and halogenated alkoxy, substituted aryl such as aryl and aryl halide, alkyl G 4 is selected from the group consisting of esters, substituted alkyl esters, and combinations thereof, and G 4 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 Group (where X is halogen), CO group, O atom, S atom, SO 2 group, Si (CH 3 ) 2 group, 9,9-fluorene group, substituted 9,9-fluorene And Z is an aryl group or substituted aryl such as phenyl group, biphenyl group, perfluorobiphenyl group, 9,9-bisphenylfluorene group, and substituted 9,9-bisphenylfluorene R 13 is a hydrogen atom or a methyl group, and R 14 is a divalent organic group. ]. )

Figure JPOXMLDOC01-appb-I000029
(However, the cyclic structure is
Figure JPOXMLDOC01-appb-I000030
and
Figure JPOXMLDOC01-appb-I000031
[R 15 is an alkyl chain having 2 to 18 carbon atoms, the alkyl chain is a chain having a straight chain, a branched chain, or a cyclic skeleton, and m and n are each Independently, it is an integer of 1 to 30, and a, b, c, d, e and f are each independently an integer of 0 to 30. ]. )
 本発明の1つまたは複数の実施形態において、多官能エポキシドは、
Figure JPOXMLDOC01-appb-I000032
を含む群から選択される(R16は、炭素数2~18を有するアルキル鎖であり、該アルキル鎖は、直鎖、分枝鎖または環状骨格を有する鎖であり、tおよびuは、それぞれ独立して、1~30の整数である)。
In one or more embodiments of the present invention, the multifunctional epoxide is
Figure JPOXMLDOC01-appb-I000032
(R 16 is an alkyl chain having 2 to 18 carbon atoms, and the alkyl chain is a chain having a straight chain, a branched chain or a cyclic skeleton, and t and u are each represented by Independently, an integer from 1 to 30).
 また、本発明の1つまたは複数の実施形態において、多官能エポキシドとしては、具体的には、
 Diglycidyl 1,2-cyclohexanedicarboxylate (DG)
Figure JPOXMLDOC01-appb-I000033

 Triglycidyl isocyanurate (TG)
Figure JPOXMLDOC01-appb-I000034

 Tetraglycidyl 4, 4’-diaminophenyl methane (TTG)
Figure JPOXMLDOC01-appb-I000035

 (3,3’, 4,4’-diepoxy) bicyclohexyl
Figure JPOXMLDOC01-appb-I000036
が挙げられ、その他にも、

Figure JPOXMLDOC01-appb-I000037

等が挙げられる。
In one or more embodiments of the present invention, the polyfunctional epoxide specifically includes:
Diglycidyl 1,2-cyclohexanedicarboxylate (DG)
Figure JPOXMLDOC01-appb-I000033

Triglycidyl isocyanurate (TG)
Figure JPOXMLDOC01-appb-I000034

Tetraglycidyl 4, 4'-diaminophenyl methane (TTG)
Figure JPOXMLDOC01-appb-I000035

(3,3 ', 4,4'-diepoxy) bicyclohexyl
Figure JPOXMLDOC01-appb-I000036
In addition,

Figure JPOXMLDOC01-appb-I000037

Etc.
 (その他の成分)
 さらに、樹脂フィルムAは、その他の成分を含んでもよい。
 その他の成分としては、例えば、酸化防止剤、紫外線吸収剤、染顔料等が挙げられる。

 なお、樹脂フィルムAは、以上のようなポリマー、フィラーおよびその他の成分等と前述した溶剤とを混合し、得られたポリマー溶液(樹脂組成物)を用いて製造される。
(Other ingredients)
Furthermore, the resin film A may contain other components.
Examples of other components include an antioxidant, an ultraviolet absorber, and a dye / pigment.

In addition, the resin film A is manufactured using the polymer solution (resin composition) obtained by mixing the above-described polymer, filler, other components, and the like with the solvent described above.
 ポリマー溶液の製造用の溶剤としては、例えば、クレゾール;N,N-ジメチルアセトミド(DMAc);N-メチル-2-ピロリジノン(NMP);ジメチルスルホキシド(DMSO);1,3-ジメチル-イミダゾリジノン(DMI);N,N-ジメチルホルムアミド(DMF);ブチルセロソルブ(BCS);γ-ブチロラクトン(GBL);もしくはクレゾール、N,N-ジメチルアセトミド(DMAc)、N-メチル-2-ピロリジノン(NMP)、ジメチルスルホキシド(DMSO);1,3-ジメチル-イミダゾリジノン(DMI)、N,N-ジメチルホルムアミド(DMF)、ブチルセロソルブ(BCS)、γ-ブチロラクトン(GBL)の少なくとも1つを含む混合溶剤;これらの組み合わせ;またはこれらの極性溶剤を少なくとも1つ含む混合溶剤であることが好ましい。
Examples of the solvent for producing the polymer solution include cresol; N, N-dimethylacetamide (DMAc); N-methyl-2-pyrrolidinone (NMP); dimethyl sulfoxide (DMSO); 1,3-dimethyl-imidazolide. Non (DMI); N, N-dimethylformamide (DMF); Butyl cellosolve (BCS); γ-butyrolactone (GBL); or Cresol, N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) ), Dimethyl sulfoxide (DMSO); mixed solvent containing at least one of 1,3-dimethyl-imidazolidinone (DMI), N, N-dimethylformamide (DMF), butyl cellosolve (BCS), and γ-butyrolactone (GBL) A combination thereof; or a small amount of these polar solvents. A mixed solvent containing at least one is preferable.
 以上、有機EL表示装置1について説明したが、本発明の表示装置は、有機EL表示装置への適用に限定されず、無機EL表示装置、液晶表示装置、電子ペーパーのような表示装置にも適用可能である。 Although the organic EL display device 1 has been described above, the display device of the present invention is not limited to the application to the organic EL display device, and is also applicable to a display device such as an inorganic EL display device, a liquid crystal display device, and electronic paper. Is possible.
 また、樹脂フィルムAとその上に設けられた複数の薄膜トランジスターBとを有する構造体を「素子積層フィルム(本発明の素子積層フィルムの実施形態)」としたとき、本発明の素子積層フィルムは、表示装置への適用に限定されず、例えば演算装置、駆動装置、制御装置、光電変換装置、照明装置、センサー装置等の表示装置以外の各種デバイスにも適用可能である。 Moreover, when the structure having the resin film A and the plurality of thin film transistors B provided thereon is referred to as “element laminated film (embodiment of the element laminated film of the present invention)”, the element laminated film of the present invention is However, the present invention is not limited to application to a display device, and can be applied to various devices other than a display device such as an arithmetic device, a drive device, a control device, a photoelectric conversion device, a lighting device, and a sensor device.
 また、上述したアクティブマトリクス装置は、上記の構成に限定されず、他の構成であってもよい。

Further, the above-described active matrix device is not limited to the above configuration, and may have another configuration.

 <有機EL表示装置の製造方法>
 ≪第1実施形態≫
 次に、本発明の素子積層フィルムの製造方法の第1実施形態を含む有機EL表示装置1の製造方法について説明する。
<Method for Manufacturing Organic EL Display Device>
<< First Embodiment >>
Next, the manufacturing method of the organic EL display device 1 including the first embodiment of the manufacturing method of the element laminated film of the present invention will be described.
 図3~5は、それぞれ図1に示す有機EL表示装置を製造する方法(本発明の素子積層フィルムの製造方法の第1実施形態)を説明するための縦断面図である。また、図6は、図3(b)に示す有機EL表示装置の平面図である。なお、以下の説明では、説明の便宜上、図3~5中の上側を「上」、下側を「下」という。 3 to 5 are longitudinal sectional views for explaining a method for manufacturing the organic EL display device shown in FIG. 1 (first embodiment of the method for manufacturing an element laminated film of the present invention). FIG. 6 is a plan view of the organic EL display device shown in FIG. In the following description, for convenience of explanation, the upper side in FIGS. 3 to 5 is referred to as “upper” and the lower side is referred to as “lower”.
 有機EL表示装置1を製造する方法は、[1]キャリア基板7を用意し、その上面71(主面)の縁部711(第1部分)に沿って無機コーティング72を形成する表面処理工程と、[2]上面71上に樹脂溶液A0(樹脂組成物)を塗布して樹脂フィルムAを形成し、これにより積層体8(フィルム付き基板)を得るフィルム形成工程と、[3]樹脂フィルムAに対して画素回路10(素子)を形成するとともに封止層400を形成する素子形成工程と、[4]積層体8の縁部711に対応する部分を除去するように積層体8を厚さ方向に切断する切断工程と、[5]キャリア基板7から樹脂フィルムAを剥離(樹脂フィルムAとキャリア基板7とを分離)する剥離工程と、を有する。 The method of manufacturing the organic EL display device 1 includes: [1] a surface treatment step of preparing the carrier substrate 7 and forming the inorganic coating 72 along the edge 711 (first portion) of the upper surface 71 (main surface) thereof. [2] A film forming step of applying the resin solution A0 (resin composition) on the upper surface 71 to form the resin film A, thereby obtaining the laminate 8 (substrate with film); [3] Resin film A Forming the pixel circuit 10 (element) and forming the sealing layer 400, and [4] thickness of the stacked body 8 so as to remove a portion corresponding to the edge 711 of the stacked body 8. A cutting step of cutting in the direction, and [5] a peeling step of peeling the resin film A from the carrier substrate 7 (separating the resin film A and the carrier substrate 7).
 以下、各工程について順次説明する。
 [1]表面処理工程
 [1-1]まず、キャリア基板7を用意する(図3(a)参照)。
Hereinafter, each process will be described sequentially.
[1] Surface treatment step [1-1] First, the carrier substrate 7 is prepared (see FIG. 3A).
 キャリア基板7は、樹脂フィルムAを支持する十分な剛性を有する限り、いかなる基板であってもよい。なお、有機EL表示装置1の製造プロセスにおいて、キャリア基板7が高温に曝される場合には、耐熱性を有する基板が好ましく用いられる。 The carrier substrate 7 may be any substrate as long as it has sufficient rigidity to support the resin film A. In the manufacturing process of the organic EL display device 1, when the carrier substrate 7 is exposed to a high temperature, a substrate having heat resistance is preferably used.
 キャリア基板7の平面視形状は、特に限定されないが、本実施形態では一例として長方形をなしている。 The shape of the carrier substrate 7 in plan view is not particularly limited, but is rectangular as an example in this embodiment.
 キャリア基板7の構成材料としては、例えば、ソーダガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラスのような各種ガラス材料、単結晶シリコン、多結晶シリコンのような各種シリコン材料、サファイア、アルミナのような各種セラミックス材料、ステンレス鋼、アルミニウムのような各種金属材料、ポリイミド、ポリエチレンナフタレートのような各種樹脂材料等が挙げられる。キャリア基板7の構成材料としては、特に透光性を有する材料が好ましく用いられ、ガラス材料がより好ましく用いられる。ガラス材料は、透光性を有するため、樹脂溶液A0を硬化させる際、キャリア基板7側からの露光が可能になるという点で有用である。また、ガラス材料は、比較的安価であり、耐摩耗性も高いことから、製造プロセスの低コスト化という観点からも有用である。 Examples of the constituent material of the carrier substrate 7 include various glass materials such as soda glass, borosilicate glass, alkali-free glass, and quartz glass, various silicon materials such as single crystal silicon and polycrystalline silicon, sapphire, and alumina. Various ceramic materials, various metal materials such as stainless steel and aluminum, various resin materials such as polyimide and polyethylene naphthalate, and the like. As a constituent material of the carrier substrate 7, a light-transmitting material is particularly preferably used, and a glass material is more preferably used. Since the glass material has translucency, it is useful in that exposure from the carrier substrate 7 side is possible when the resin solution A0 is cured. In addition, since glass materials are relatively inexpensive and have high wear resistance, they are also useful from the viewpoint of cost reduction in the manufacturing process.
 また、ガラス材料としては、特にソーダガラスまたは無アルカリガラスが好ましく用いられ、ソーダガラスがより好ましく用いられる。これらは、ガラス材料として広く流通しているため、入手が容易であるとともに、品質が比較的安定している。このため、面積が広い基板でも平坦度が高いので、かかる基板をキャリア基板7として用いることにより、最終的に平坦性に優れた有機EL表示装置1を製造することができる。また、かかるキャリア基板7は、表面粗さも小さいので、後述する剥離工程において樹脂フィルムAにかかる負担を抑えつつ、樹脂フィルムAをキャリア基板7から剥離し易くなる。 Further, as the glass material, soda glass or non-alkali glass is particularly preferably used, and soda glass is more preferably used. Since these are widely distributed as glass materials, they are easily available and the quality is relatively stable. For this reason, since the flatness is high even with a substrate having a large area, by using such a substrate as the carrier substrate 7, it is possible to finally manufacture the organic EL display device 1 having excellent flatness. In addition, since the carrier substrate 7 has a small surface roughness, the resin film A can be easily peeled from the carrier substrate 7 while suppressing a burden on the resin film A in a peeling step described later.
 さらに、ソーダガラスは、樹脂フィルムAとの密着性が比較的小さいという特徴を有する。このため、ソーダガラスで構成されたキャリア基板7を用いることにより、後述する剥離工程において樹脂フィルムAにかかる負担を特に抑えつつ、樹脂フィルムAをキャリア基板7から剥離することができる。 Furthermore, soda glass has a feature that its adhesion to the resin film A is relatively small. For this reason, by using the carrier substrate 7 made of soda glass, the resin film A can be peeled from the carrier substrate 7 while particularly suppressing the burden on the resin film A in the peeling step described later.
 なお、キャリア基板7は、単層(単板)で構成される必要はなく、複数層で構成されていてもよい。その場合、後述するフィルム形成工程において、樹脂フィルムAに最も近く位置する層の構成材料として、上述したガラス材料を用いるようにすればよい。 Note that the carrier substrate 7 does not have to be formed of a single layer (single plate), and may be formed of a plurality of layers. In that case, what is necessary is just to use the glass material mentioned above as a constituent material of the layer located closest to the resin film A in the film formation process mentioned later.
 また、キャリア基板7の上面71には、必要に応じて、各種研磨処理、各種粗面化処理等が施されていてもよい。 Further, the upper surface 71 of the carrier substrate 7 may be subjected to various polishing treatments, various surface roughening treatments, and the like as necessary.
 [1-2]次に、図3(b)に示すように、キャリア基板7の上面71(主面)の縁部711(第1部分)に沿って無機コーティング72を形成する。この無機コーティング72を設けることにより、上面71の縁部711の樹脂フィルムAに対する密着性を相対的に高めることができる。すなわち、上面71を縁部711(第1部分)と中央部712(第2部分)とに分けて規定したとき、縁部711に無機コーティング72を形成することによって、縁部711に対する樹脂フィルムAの密着力を、中央部712に対する樹脂フィルムAの密着力よりも大きくすることができる。これにより、樹脂フィルムAがキャリア基板7から剥がれ難くなり、有機EL表示装置1の製造プロセスの間、キャリア基板7によって樹脂フィルムAをより確実に支持することができる。 [1-2] Next, as shown in FIG. 3B, an inorganic coating 72 is formed along the edge 711 (first portion) of the upper surface 71 (main surface) of the carrier substrate 7. By providing this inorganic coating 72, the adhesiveness with respect to the resin film A of the edge 711 of the upper surface 71 can be improved relatively. That is, when the upper surface 71 is defined by dividing into an edge portion 711 (first portion) and a central portion 712 (second portion), the resin film A for the edge portion 711 is formed by forming the inorganic coating 72 on the edge portion 711. Can be made larger than the adhesive force of the resin film A to the central portion 712. Thereby, the resin film A becomes difficult to peel from the carrier substrate 7, and the resin film A can be more reliably supported by the carrier substrate 7 during the manufacturing process of the organic EL display device 1.
 無機コーティング72の構成材料としては、例えば、酸化ケイ素、酸化亜鉛、インジウム酸化物(IO)、インジウムスズ酸化物(ITO)、フッ素ドープ酸化スズ(FTO)のような各種酸化物材料、窒化ケイ素、窒化チタン、窒化アルミニウムのような各種窒化物材料、炭化ケイ素、炭化チタンのような各種炭化物材料等が挙げられる。無機コーティング72の構成材料としては、特に酸化物材料が好ましく用いられる。酸化物材料によれば、無機コーティング72に対する樹脂フィルムAの密着力を特に高めることができるので、無機コーティング72の面積が小さくても樹脂フィルムAをより確実に支持することができる。このため、後述する切断工程において、積層体8の除去する部分の面積を十分に小さくすることができ、廃棄物の量、すなわち製造プロセス上の無駄を抑えることができる。それとともに、キャリア基板7の大きさを変えることなく、より大型の有機EL表示装置1を製造することができる。 Examples of the constituent material of the inorganic coating 72 include silicon oxide, zinc oxide, indium oxide (IO), indium tin oxide (ITO), various oxide materials such as fluorine-doped tin oxide (FTO), silicon nitride, Examples thereof include various nitride materials such as titanium nitride and aluminum nitride, and various carbide materials such as silicon carbide and titanium carbide. As a constituent material of the inorganic coating 72, an oxide material is particularly preferably used. According to the oxide material, the adhesion of the resin film A to the inorganic coating 72 can be particularly increased, so that the resin film A can be more reliably supported even if the area of the inorganic coating 72 is small. For this reason, in the cutting process mentioned later, the area of the part which the laminated body 8 removes can be made small enough, and the quantity of waste, ie, the waste on a manufacturing process, can be suppressed. At the same time, a larger organic EL display device 1 can be manufactured without changing the size of the carrier substrate 7.
 また、本実施形態では、キャリア基板7の上面71の縁部711に無機コーティング72を形成している。具体的には、本実施形態に係るキャリア基板7は、図6に示すように、平面視形状が長方形をなしており、上面71の縁部711の平面視形状は、キャリア基板7の外縁に沿って、長方形の枠状をなしている。 In this embodiment, the inorganic coating 72 is formed on the edge 711 of the upper surface 71 of the carrier substrate 7. Specifically, as shown in FIG. 6, the carrier substrate 7 according to this embodiment has a rectangular shape in plan view, and the shape in plan view of the edge portion 711 of the upper surface 71 is on the outer edge of the carrier substrate 7. Along with this, a rectangular frame is formed.
 そして、このように上面71の外縁に沿って設定された縁部711に無機コーティング72を形成することにより、例えば製造プロセス中に積層体8に対して外力が加えられた場合でも、積層体8の外縁においてキャリア基板7から樹脂フィルムAが剥離が生じ難くなる。このため、積層体8の外縁を起点にした剥離が進展するのを防止し、製造プロセス中にキャリア基板7から樹脂フィルムAが脱落してしまうのを防止することができる。 Then, by forming the inorganic coating 72 on the edge portion 711 set along the outer edge of the upper surface 71 in this way, even when an external force is applied to the stacked body 8 during the manufacturing process, for example, the stacked body 8 It is difficult for the resin film A to peel off from the carrier substrate 7 at the outer edge. For this reason, it can prevent that the peeling | exfoliation which started from the outer edge of the laminated body 8 progresses, and can prevent that the resin film A falls off from the carrier substrate 7 during a manufacturing process.
 また、換言すれば、本実施形態では、中央部712を取り囲むように無機コーティング72が形成されている(第1部分が設けられている)。このため、製造プロセス中に積層体8に対して外力が加えられ、仮に中央部712において樹脂フィルムAがキャリア基板7から剥離したとしても、樹脂フィルムAがキャリア基板7から脱落したり、捲れたり、キャリア基板7に対して位置がずれたりするのを防止することができる。この結果、後述する素子形成工程において、高い位置精度で画素回路10(素子)を形成することができ、高精細の有機EL表示装置1を製造することが可能になる。 In other words, in this embodiment, the inorganic coating 72 is formed so as to surround the central portion 712 (the first portion is provided). For this reason, an external force is applied to the laminate 8 during the manufacturing process, and even if the resin film A is peeled off from the carrier substrate 7 at the central portion 712, the resin film A may drop off or bend from the carrier substrate 7. The position of the carrier substrate 7 can be prevented from shifting. As a result, the pixel circuit 10 (element) can be formed with high positional accuracy in the element formation process described later, and the high-definition organic EL display device 1 can be manufactured.
 なお、本製造方法では、最終的にキャリア基板7から樹脂フィルムAを剥離することによって有機EL表示装置1を製造する。そのため、後述する切断工程において積層体8の無機コーティング72を形成した縁部711(第1部分)に対応する部分を除去することにより、その後の剥離工程における剥離作業を容易にしている。このため、縁部711に対する樹脂フィルムAの密着力は、剥離工程前においてキャリア基板7から樹脂フィルムAが剥離し難くする(樹脂フィルムAを脱落させ難くする)という観点からは、できるだけ大きい方が好ましい。 In this manufacturing method, the organic EL display device 1 is manufactured by finally peeling the resin film A from the carrier substrate 7. Therefore, by removing a portion corresponding to the edge 711 (first portion) on which the inorganic coating 72 of the laminated body 8 is formed in the cutting step described later, the peeling operation in the subsequent peeling step is facilitated. For this reason, the adhesive force of the resin film A with respect to the edge portion 711 is as large as possible from the viewpoint of making the resin film A difficult to peel from the carrier substrate 7 before the peeling step (making the resin film A difficult to drop off). preferable.
 一方、中央部712に対する樹脂フィルムAの密着力は、剥離工程においてキャリア基板7から樹脂フィルムAを剥離し易くするという観点からは、できるだけ小さい方が好ましい。しかしながら、密着量が小さ過ぎると、切断工程後において、何らのきっかけも与えることなく、キャリア基板7から樹脂フィルムAが脱落してしまうおそれがある。このため、切断工程後の製造プロセスにおける積層体8のハンドリング性の観点から、中央部712に対する樹脂フィルムAの密着力は、何らのきっかけもなく剥離しない程度のであることが好ましい。 On the other hand, the adhesive force of the resin film A to the central portion 712 is preferably as small as possible from the viewpoint of easily peeling the resin film A from the carrier substrate 7 in the peeling step. However, if the adhesion amount is too small, the resin film A may fall off the carrier substrate 7 without giving any trigger after the cutting step. For this reason, it is preferable that the adhesive force of the resin film A with respect to the center part 712 is a grade which does not peel without any trigger from a viewpoint of the handleability of the laminated body 8 in the manufacturing process after a cutting process.
 なお、本明細書における「密着力」とは、単位面積当たりの密着強度をいい、その値は、単位として例えばMPa等を用いて表すことができる。 In addition, “adhesion strength” in the present specification refers to adhesion strength per unit area, and the value can be expressed using, for example, MPa or the like as a unit.
 また、本発明では、無機コーティング72を形成する領域が、上面71の縁部711に限定されることはない。例えば、後述する切断工程において積層体8の除去する部分を縁部711以外に対応するように設定する場合には、それに応じて無機コーティング72を形成する領域を設定するようにすればよい。また、キャリア基板7上に複数の有機EL表示装置1を製造し、その後、切断して個々の有機EL表示装置1に分割した後、最終的にキャリア基板7から有機EL表示装置1を剥離するような場合にも、無機コーティング72を形成する領域は、分割線のパターンに応じて縁部711以外の領域に適宜設定されていてもよい。 In the present invention, the region where the inorganic coating 72 is formed is not limited to the edge 711 of the upper surface 71. For example, when a part to be removed of the stacked body 8 is set to correspond to a portion other than the edge 711 in a cutting step described later, a region for forming the inorganic coating 72 may be set accordingly. Also, a plurality of organic EL display devices 1 are manufactured on the carrier substrate 7, then cut and divided into individual organic EL display devices 1, and finally the organic EL display device 1 is peeled from the carrier substrate 7. Even in such a case, the region where the inorganic coating 72 is formed may be appropriately set in a region other than the edge portion 711 according to the pattern of the dividing line.
 また、中央部712を取り囲むように無機コーティング72が形成されている場合、無機コーティング72は連続しているのが好ましいが、一部が途切れて(断続的で)もよい。 Further, when the inorganic coating 72 is formed so as to surround the central portion 712, the inorganic coating 72 is preferably continuous, but may be partially interrupted (intermittent).
 また、中央部712にも、所定の面積の無機コーティング72が形成されていてもよい。例えば、中央部712において、小面積の無機コーティング72をドット状に形成ことにより、中央部712におけるキャリア基板7に対する樹脂フィルムAの密着力を高める(調整する)ようにしてもよい。 Further, an inorganic coating 72 having a predetermined area may also be formed on the central portion 712. For example, the adhesive force of the resin film A to the carrier substrate 7 in the central portion 712 may be increased (adjusted) by forming a small area inorganic coating 72 in the central portion 712 in a dot shape.
 なお、無機コーティング72の平均厚さは、特に限定されないが、0.01~20μm程度であるのが好ましく、0.05~10μm程度であるのがより好ましい。無機コーティング72の平均厚さを前記範囲内に設定することにより、縁部711に対する樹脂フィルムAの密着力を十分に高めることができるとともに、縁部711と中央部712とで大きな高さの段差が生じるのを防止することができる。これにより、樹脂フィルムAの形状が不良になるのを避けることができる。 The average thickness of the inorganic coating 72 is not particularly limited, but is preferably about 0.01 to 20 μm, and more preferably about 0.05 to 10 μm. By setting the average thickness of the inorganic coating 72 within the above range, the adhesion of the resin film A to the edge portion 711 can be sufficiently increased, and a large height difference between the edge portion 711 and the central portion 712 is obtained. Can be prevented from occurring. Thereby, it can avoid that the shape of the resin film A becomes defective.
 また、縁部711(第1部分)には、無機コーティング72を形成するのに代えて、カップリング剤処理が施されていてもよい。カップリング剤処理によっても、無機コーティング72と同様、縁部711に対する樹脂フィルムAの密着力を、中央部712に対する樹脂フィルムAの密着力よりも大きくすることができる。このため、無機コーティング72と同様、製造プロセス中において、樹脂フィルムAがキャリア基板7から脱落したり、捲れたり、キャリア基板7に対して位置がずれたりするのを防止して、高精細の有機EL表示装置1の製造を可能にする。 Further, instead of forming the inorganic coating 72, the edge portion 711 (first portion) may be subjected to a coupling agent treatment. Also by the coupling agent treatment, the adhesive force of the resin film A to the edge portion 711 can be made larger than the adhesive force of the resin film A to the central portion 712 as in the inorganic coating 72. For this reason, like the inorganic coating 72, the resin film A is prevented from falling off, dripping, or being displaced from the carrier substrate 7 during the manufacturing process. The EL display device 1 can be manufactured.
 カップリング剤としては、キャリア基板7に対する樹脂フィルムAの密着力を高め得るものであれば、特に限定されない。しかしながら、カップリング剤としては、水酸基と脱水縮合によって反応し得る加水分解性基および樹脂フィルムAと反応して結合し得る反応性官能基を有するシラン系カップリング剤やチタン系カップリング剤、変性シリコーンオイル等が一例として挙げられる。 The coupling agent is not particularly limited as long as it can enhance the adhesion of the resin film A to the carrier substrate 7. However, as a coupling agent, a silane coupling agent or a titanium coupling agent having a hydrolyzable group capable of reacting with a hydroxyl group by dehydration condensation and a reactive functional group capable of reacting with the resin film A and bonding, a modified agent Silicone oil etc. are mentioned as an example.
 反応性官能基としては、例えば、アミノ基、エポキシ基、アルキル基、フェニル基、カルボキシル基、水酸基、メルカプト基、イソシアネート基、カルビノール基、酸塩化物等が挙げられる。反応性官能基は、これらの複数種を含んでいてもよい。また、特に、反応性官能基は、アミノ基であるのが好ましい。反応性官能基としてアミノ基を含むカップリング剤を用いることにより、小面積の領域にカップリング処理を施す場合であっても、十分な密着力を発揮することができる。 Examples of reactive functional groups include amino groups, epoxy groups, alkyl groups, phenyl groups, carboxyl groups, hydroxyl groups, mercapto groups, isocyanate groups, carbinol groups, and acid chlorides. The reactive functional group may contain a plurality of these. In particular, the reactive functional group is preferably an amino group. By using a coupling agent containing an amino group as a reactive functional group, sufficient adhesion can be exhibited even when a coupling process is performed on a small area.
 反応性官能基としてアミノ基を有するカップリング剤としては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、またはそれらの塩酸塩等が挙げられる。 Examples of the coupling agent having an amino group as a reactive functional group include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane and N-2- (aminoethyl) -3-aminopropyltrimethoxysilane. 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N -(Vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane, or a hydrochloride thereof.
 なお、キャリア基板7の上面71にカップリング剤処理を施す際には、カップリング剤を溶解する溶媒として、水の他、メチルアルコール、エチルアルコール、イソプロピルアルコールのような低級アルコール類、メチルエチルケトン、アセトンのようなケトン類、テトラヒドロフラン、ジオキサンのような環状エーテル類、フェノール、クレゾールのようなフェノール類、酢酸のようなカルボン酸等を用いるようにしてもよい。この場合、カップリング剤の濃度は、0.05~10質量%程度であるのが好ましく、0.1~5質量%程度であるのがより好ましい。 When the coupling agent treatment is performed on the upper surface 71 of the carrier substrate 7, as a solvent for dissolving the coupling agent, in addition to water, lower alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, methyl ethyl ketone, acetone Ketones such as, cyclic ethers such as tetrahydrofuran and dioxane, phenols such as phenol and cresol, carboxylic acids such as acetic acid, and the like may be used. In this case, the concentration of the coupling agent is preferably about 0.05 to 10% by mass, and more preferably about 0.1 to 5% by mass.
 また、縁部711(第1部分)には、無機コーティング72の形成やカップリング剤処理に代えて各種表面処理が施されていてもよい。 Further, the edge portion 711 (first portion) may be subjected to various surface treatments in place of the formation of the inorganic coating 72 and the coupling agent treatment.
 このような表面処理としては、例えば、電子線照射処理、コロナ放電処理、アーク放電処理、エキシマー光の照射処理、プラズマ処理、エッチング処理等が挙げられる。 Examples of such surface treatment include electron beam irradiation treatment, corona discharge treatment, arc discharge treatment, excimer light irradiation treatment, plasma treatment, and etching treatment.
 なお、これらの表面処理により、縁部711には、所定の撥水性が付与されるのが好ましい。 In addition, it is preferable that predetermined | prescribed water repellency is provided to the edge part 711 by these surface treatments.
 具体的には、表面処理後の縁部711に対する水の接触角は、8~40°程度であるのが好ましく、10~35°程度であるのがより好ましく、12~30°程度であるのがさらに好ましい。接触角が前記範囲内に収まるように表面処理を適宜選択することにより、縁部711に対する樹脂フィルムAの密着力を特に高めることができる。 Specifically, the contact angle of water with the edge 711 after the surface treatment is preferably about 8 to 40 °, more preferably about 10 to 35 °, and about 12 to 30 °. Is more preferable. By appropriately selecting the surface treatment so that the contact angle is within the above range, the adhesion of the resin film A to the edge 711 can be particularly enhanced.
 また、水の接触角が前記下限値を下回ると、縁部711の親水性は高くなるものの、樹脂溶液の縁部711に対する親和性が低下し、樹脂フィルムAの密着力が低下するおそれがある。一方、水の接触角が前記上限値を上回ると、縁部711の親油性は高くなるものの、例えばカップリング剤の加水分解性基の縁部711に対する結合性が低下し、やはり樹脂フィルムAの密着力が低下するおそれがある。 Moreover, when the contact angle of water is less than the lower limit, the hydrophilicity of the edge portion 711 is increased, but the affinity for the edge portion 711 of the resin solution is reduced, and the adhesion force of the resin film A may be reduced. . On the other hand, when the contact angle of water exceeds the upper limit, the oleophilicity of the edge portion 711 is increased, but, for example, the binding property to the edge portion 711 of the hydrolyzable group of the coupling agent is lowered, and the resin film A Adhesion may be reduced.
 なお、縁部711の水の接触角は、JIS R 3257(1999)の静滴法に準拠し、25℃の温度に設定した方法で測定された値である。 In addition, the water contact angle of the edge 711 is a value measured by a method set at a temperature of 25 ° C. in accordance with the JIS R 3257 (1999) sessile drop method.
 [2]フィルム形成工程
 次に、図3(c)に示すように、キャリア基板7の上面71(主面)に対して樹脂溶液A0を塗布する。これにより、塗布膜を形成する。なお、図3(c)では、キャリア基板7の上面71全体を覆うように塗布膜を形成しているが、塗布膜の形成領域はこれに限定されず、縁部711の一部を含む上面71を部分的に覆うように形成してもよい。
[2] Film Forming Step Next, as shown in FIG. 3C, the resin solution A0 is applied to the upper surface 71 (main surface) of the carrier substrate 7. Thereby, a coating film is formed. In FIG. 3C, the coating film is formed so as to cover the entire upper surface 71 of the carrier substrate 7, but the formation region of the coating film is not limited to this, and the upper surface including a part of the edge 711. You may form so that 71 may be covered partially.
 樹脂溶液A0を塗布する方法としては、例えば、ダイコート法、インクジェット法、スピンコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法等の各種液相成膜法が用いられる。 As a method for applying the resin solution A0, for example, various liquid phase film forming methods such as a die coating method, an ink jet method, a spin coating method, a bar coating method, a roll coating method, a wire bar coating method, and a dip coating method are used.
 また、樹脂溶液A0の調製に用いられる溶媒としては、トルエン、キシレン、ベンゼン、ジメチルホルムアミド、テトラヒドロフラン、エチルセロソルブ、酢酸エチル、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、メチル-1,3-ブチレングリコールアセテート、1,3-ブチレングリコール-3-モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチル、メチル-3-メトキシプロピオネート等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。この場合、樹脂成分の濃度は、0.5~25質量%程度であるのが好ましく、1~20質量%程度であるのがより好ましい。 Examples of the solvent used for preparing the resin solution A0 include toluene, xylene, benzene, dimethylformamide, tetrahydrofuran, ethyl cellosolve, ethyl acetate, N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylacetamide, Dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl ethyl ketone, cyclohexanone, tetrahydrofuran, methyl-1, 3-butylene glycol acetate, 1,3-butylene glycol 3-monomethyl ether, methyl pyruvate, ethyl pyruvate, include methyl 3-methoxy propionate or the like, can be used singly or in combination of two or more of them. In this case, the concentration of the resin component is preferably about 0.5 to 25% by mass, and more preferably about 1 to 20% by mass.
 次に、塗布膜を乾燥、硬化させ、樹脂フィルムAを得る。これにより、積層体8を得る(図4(d)参照)。 Next, the coating film is dried and cured to obtain a resin film A. Thereby, the laminated body 8 is obtained (refer FIG.4 (d)).
 塗布膜を硬化させる際の加熱温度は、樹脂溶液A0の組成に応じて適宜設定されるが、例えば220~420℃程度であるのが好ましく、280~400℃程度であるのがより好ましく、330~370℃程度であるのがさらに好ましい。 The heating temperature for curing the coating film is appropriately set according to the composition of the resin solution A0, but is preferably about 220 to 420 ° C., more preferably about 280 to 400 ° C., 330 More preferably, it is about 370 ° C.
 また、塗布膜を硬化させる際の加熱時間は、加熱温度に応じて適宜設定されるが、例えば5~300分程度であるのが好ましく、30~240分程度であるのがより好ましい。 Further, the heating time for curing the coating film is appropriately set according to the heating temperature, but is preferably about 5 to 300 minutes, and more preferably about 30 to 240 minutes.
 なお、前述した表面処理工程やフィルム形成工程は、必要に応じて行うようにすればよい。例えば、積層体8が市販されているような場合には、その積層体8を後述する素子形成工程で使用するようにしてもよい。その場合には、表面処理工程やフィルム形成工程を省略することができる。 In addition, what is necessary is just to perform the surface treatment process and film formation process which were mentioned above as needed. For example, when the laminated body 8 is marketed, you may make it use the laminated body 8 at the element formation process mentioned later. In that case, a surface treatment process and a film formation process can be omitted.
 また、縁部711の幅は、縁部711に対する樹脂フィルムAの密着力に応じて適宜設定される。例えば、有機EL表示装置1の製造プロセスにおいて積層体8に加えられる外力の大きさを考慮し、その外力が加わっても縁部711から樹脂フィルムAが剥離しない程度の密着力となるように、縁部711の幅が設定されていればよい。縁部711の幅は、キャリア基板7の大きさによっても異なるが、一例として2~50mm程度に設定される。縁部711の幅が前記下限値を下回ると、単位面積当たりの密着強度の大きさによっては、縁部711であっても樹脂フィルムAが剥離し易くなるおそれがある。一方、縁部711の幅が前記上限値を上回ると、後述する切断工程において除去する積層体8の部分の割合が大きくなり、廃棄物の量が増えるおそれがある。 Further, the width of the edge 711 is appropriately set according to the adhesion of the resin film A to the edge 711. For example, in consideration of the magnitude of the external force applied to the laminate 8 in the manufacturing process of the organic EL display device 1, the adhesion force is such that the resin film A does not peel from the edge 711 even when the external force is applied. The width of the edge part 711 should just be set. The width of the edge portion 711 varies depending on the size of the carrier substrate 7, but is set to about 2 to 50 mm as an example. If the width of the edge portion 711 is less than the lower limit value, the resin film A may be easily peeled even at the edge portion 711 depending on the magnitude of the adhesion strength per unit area. On the other hand, if the width of the edge portion 711 exceeds the upper limit value, the proportion of the portion of the laminated body 8 to be removed in the cutting step described later increases, and the amount of waste may increase.
 なお、前述した無機コーティング72の形成等の表面処理が施された領域の密着力については、例えばASTM D3359-B等に規定されているテープ付着試験に準拠した方法で評価することができる。 In addition, the adhesion strength of the region subjected to the surface treatment such as the formation of the inorganic coating 72 described above can be evaluated by a method based on a tape adhesion test defined in ASTM D3359-B, for example.
 具体的には、まず、積層体8の上面(樹脂フィルムAの上面)の縁部711に対応する部分に切り込みを入れる。この切り込みは、樹脂フィルムAを貫通し、キャリア基板7に達するように形成する。また、この切り込みは、刃のピッチが1mmの多重刃を有するカット治具を用いて形成する。 Specifically, first, a cut is made in a portion corresponding to the edge 711 on the upper surface of the laminate 8 (the upper surface of the resin film A). This notch is formed so as to penetrate the resin film A and reach the carrier substrate 7. The incision is formed by using a cutting jig having multiple blades with a blade pitch of 1 mm.
 次に、積層体8の上面の切り込みを入れた部分に粘着テープ(例えば、ニチバン(株)製セロテープ(登録商標))を貼り付ける。その後、粘着テープを積層体8に十分に押さえ付ける。 Next, an adhesive tape (for example, cello tape (registered trademark) manufactured by Nichiban Co., Ltd.) is applied to the cut portion of the upper surface of the laminate 8. Thereafter, the adhesive tape is sufficiently pressed against the laminated body 8.
 次に、粘着テープの一端を把持し、積層体8の上面(貼り付け面)に対して角度の45°で引っ張って、粘着テープを積層体8から引き剥がす。 Next, one end of the adhesive tape is gripped and pulled at an angle of 45 ° with respect to the upper surface (attachment surface) of the laminate 8, and the adhesive tape is peeled off from the laminate 8.
 次に、積層体8の上面(剥離面)を観察し、樹脂フィルムAが剥離した面積を以下の評価基準に当てはめることにより、縁部711に対する樹脂フィルムAの密着力を評価する。 Next, the adhesive force of the resin film A to the edge 711 is evaluated by observing the upper surface (peeling surface) of the laminate 8 and applying the area where the resin film A is peeled to the following evaluation criteria.
 (密着力の評価基準)
 5B:剥がれなし(剥離した面積が0%である)。
 4B:剥離した面積が5%未満である。
 3B:剥離した面積が5%以上15%未満である。
 2B:剥離した面積が15%以上35%未満である。
 1B:剥離した面積が35%以上65%未満である。
 0B:剥離した面積が65%以上である。
(Evaluation criteria for adhesion)
5B: No peeling (peeled area is 0%).
4B: The peeled area is less than 5%.
3B: The peeled area is 5% or more and less than 15%.
2B: The peeled area is 15% or more and less than 35%.
1B: The peeled area is 35% or more and less than 65%.
0B: The peeled area is 65% or more.
 このような評価方法によれば、キャリア基板7に対する樹脂フィルムAの密着力を定量的に評価することができる。 According to such an evaluation method, the adhesion of the resin film A to the carrier substrate 7 can be quantitatively evaluated.
 例えば、縁部711に対する樹脂フィルムAの密着力は、上記の2B~5Bの評価に相当しているのが好ましく、4Bまたは5Bの評価に相当しているのがより好ましい。密着力がこのような評価に相当する場合、縁部711の面積が小さい場合であっても、製造プロセス中にキャリア基板7から樹脂フィルムAが剥離してしまうのを防止することができる。 For example, the adhesion strength of the resin film A to the edge 711 preferably corresponds to the above-described evaluation of 2B to 5B, and more preferably corresponds to the evaluation of 4B or 5B. When the adhesion force corresponds to such an evaluation, it is possible to prevent the resin film A from being peeled from the carrier substrate 7 during the manufacturing process even when the area of the edge portion 711 is small.
 一方、中央部712に対する樹脂フィルムAの密着力は、縁部711に対する樹脂フィルムAの密着力よりも小さければ特に限定されない。中央部712に対する樹脂フィルムAの密着力と縁部711に対する樹脂フィルムAの密着力との差は、上記評価試験で剥離した面積に基づいて、5%以上であるのが好ましく、10~50%程度であるのがより好ましい。これにより、何らのきっかけもなくキャリア基板7から樹脂フィルムAが剥離してしまうのを防止しつつ、最終的にキャリア基板7から樹脂フィルムAを比較的容易に剥離することができる。 On the other hand, the adhesive force of the resin film A to the central portion 712 is not particularly limited as long as the adhesive force of the resin film A to the edge portion 711 is smaller. The difference between the adhesion force of the resin film A to the central portion 712 and the adhesion force of the resin film A to the edge portion 711 is preferably 5% or more based on the area peeled in the evaluation test. More preferred is the degree. Thereby, the resin film A can finally be peeled relatively easily from the carrier substrate 7 while preventing the resin film A from being peeled from the carrier substrate 7 without any trigger.
 [3]素子形成工程
 [3-1]次に、図4(e)に示すように、樹脂フィルムA上(樹脂フィルムAのキャリア基板7とは反対側)に画素回路10(素子)を形成する。
[3] Element formation step [3-1] Next, as shown in FIG. 4E, the pixel circuit 10 (element) is formed on the resin film A (on the side opposite to the carrier substrate 7 of the resin film A). To do.
 具体的には、まず、樹脂フィルムA上に、導電膜を形成した後、この導電膜をパターニングすることで、ゲート電極200を形成する。 Specifically, first, after forming a conductive film on the resin film A, the conductive film is patterned to form the gate electrode 200.
 樹脂フィルムA上への導電膜の形成は、例えば、アルミニウム、タンタル、モリブデン、チタン、タングステン等の金属材料をスパッタ法等の各種気相成膜法によって供給することにより行うことができる。 The formation of the conductive film on the resin film A can be performed, for example, by supplying a metal material such as aluminum, tantalum, molybdenum, titanium, or tungsten by various vapor deposition methods such as sputtering.
 次いで、各ゲート電極200を覆うように、ゲート絶縁層201を形成する。
 このゲート絶縁層201は、例えば、酸化シリコンまたは窒化シリコン等を主材料として構成される。かかるゲート絶縁層201は、TEOS(テトラエトキシシラン)や酸素ガスおよび窒素ガス等を原料ガスとして用い、プラズマCVD法等を行うことで、形成することができる。
Next, a gate insulating layer 201 is formed so as to cover each gate electrode 200.
The gate insulating layer 201 is composed of, for example, silicon oxide or silicon nitride as a main material. The gate insulating layer 201 can be formed by performing a plasma CVD method or the like using TEOS (tetraethoxysilane), oxygen gas, nitrogen gas, or the like as a source gas.
 次いで、各ゲート絶縁層201上に、導電膜を形成した後、この導電膜をパターニングすることで、ソース電極202およびドレイン電極204を形成する。 Next, after forming a conductive film on each gate insulating layer 201, the source electrode 202 and the drain electrode 204 are formed by patterning the conductive film.
 ゲート絶縁層201上への導電膜の形成は、ゲート電極200を形成するのと同様の方法を用いて行うことができる。 The formation of the conductive film over the gate insulating layer 201 can be performed using a method similar to that for forming the gate electrode 200.
 次いで、各ソース電極202と各ドレイン電極204との間のチャネル領域に対応して半導体層203を形成する。 Next, the semiconductor layer 203 is formed corresponding to the channel region between each source electrode 202 and each drain electrode 204.
 この半導体層203は、例えば、前述した半導体材料の構成元素の一部である半金属元素および/または金属元素を含有する金属ターゲットを用い、酸素および/または窒素含有雰囲気下においてスパッタ法を行う方法、もしくはその他の各種気相成膜法、または各種液相成膜法により形成することができる。
 以上のようにして薄膜トランジスターBが形成される。
For this semiconductor layer 203, for example, a sputtering method is performed in an atmosphere containing oxygen and / or nitrogen using a metal target containing a metalloid element and / or a metal element which is a part of the constituent elements of the semiconductor material described above. Alternatively, it can be formed by various other vapor deposition methods or various liquid deposition methods.
As described above, the thin film transistor B is formed.
 次に、樹脂フィルムAおよびこの樹脂フィルムA上に形成された薄膜トランジスターBを覆うように、平坦化層301を形成する。 Next, a planarization layer 301 is formed so as to cover the resin film A and the thin film transistor B formed on the resin film A.
 次いで、平坦化層301を厚さ方向に貫通するようにコンタクトホールを形成し、その後、コンタクトホール内に導電部300を形成する。 Next, a contact hole is formed so as to penetrate the planarizing layer 301 in the thickness direction, and then a conductive portion 300 is formed in the contact hole.
 平坦化層301上に、各導電部300にそれぞれ対応するように、陽極(個別電極)302を形成する。 An anode (individual electrode) 302 is formed on the planarizing layer 301 so as to correspond to each conductive part 300.
 次いで、各陽極302を覆うように、それぞれ正孔輸送層303を形成する。
 次いで、各正孔輸送層303を覆うように、それぞれ発光層304を形成する。
Next, a hole transport layer 303 is formed so as to cover each anode 302.
Next, a light emitting layer 304 is formed so as to cover each hole transport layer 303.
 次いで、各発光層304を覆うように、それぞれ電子輸送層305を形成する。
 次いで、各電子輸送層305を覆うように、それぞれ陰極306を形成する。
Next, an electron transport layer 305 is formed so as to cover each light emitting layer 304.
Next, a cathode 306 is formed so as to cover each electron transport layer 305.
 なお、これらの各層は、例えば、スパッタ法、真空蒸着法、CVD法等の気相成膜法や、インクジェット法、スピンコート法、キャスティング法等の液相成膜法を用いて形成することができる。 Each of these layers can be formed using, for example, a vapor phase film formation method such as a sputtering method, a vacuum evaporation method, or a CVD method, or a liquid phase film formation method such as an ink jet method, a spin coating method, or a casting method. it can.
 以上のようにして発光素子Cが形成されるとともに、薄膜トランジスターBおよび発光素子Cで構成される画素回路10が形成される。 The light emitting element C is formed as described above, and the pixel circuit 10 including the thin film transistor B and the light emitting element C is formed.
 [3-2]次に、図4(f)に示すように、画素回路10を覆うように封止層400を形成する。 [3-2] Next, as shown in FIG. 4F, a sealing layer 400 is formed so as to cover the pixel circuit 10.
 [4]切断工程
 次に、積層体8の縁部711に対応する部分を除去するように(切り落とすように)、積層体8を厚さ方向に切断する(図5(g)参照)。すなわち、縁部711に対応するキャリア基板7、樹脂フィルムAおよび封止層400をそれぞれ除去するように、積層体8を厚さ方向に切断する。
[4] Cutting Step Next, the stacked body 8 is cut in the thickness direction so as to remove (cut off) a portion corresponding to the edge 711 of the stacked body 8 (see FIG. 5G). That is, the laminate 8 is cut in the thickness direction so as to remove the carrier substrate 7, the resin film A, and the sealing layer 400 corresponding to the edge 711.
 この切断は、例えば、ダイサー等による機械的な方法、レーザー加工法、電子線加工法、ウォータージェット加工法等により行うことができる。図5(g)では、一例として、ダイヤモンドカッター9による切断方法を図示している。 This cutting can be performed by, for example, a mechanical method using a dicer, a laser processing method, an electron beam processing method, a water jet processing method, or the like. In FIG.5 (g), the cutting method by the diamond cutter 9 is illustrated as an example.
 本実施形態に係る縁部711は、図6に示すように、長方形の枠状をなしている。したがって、本工程では、積層体8の枠状をなす縁部711に対応する部分を除去する。 The edge 711 according to the present embodiment has a rectangular frame shape as shown in FIG. Therefore, in this step, a portion corresponding to the edge portion 711 forming the frame shape of the stacked body 8 is removed.
 このような切断により、積層体8から、平面視で長方形の枠状の部分(除去部分81)が除去される。その結果、その除去部分81の内側に位置し、平面視形状が長方形をなす中央部712に対応する積層体8の部分(残存部分82)が残ることとなる。 By such cutting, a rectangular frame-shaped portion (removal portion 81) in the plan view is removed from the stacked body 8. As a result, a portion (remaining portion 82) of the stacked body 8 that is located inside the removed portion 81 and that corresponds to the central portion 712 having a rectangular shape in plan view remains.
 この残存部分82では、除去部分81に比べて相対的に小さい密着力で、キャリア基板7に樹脂フィルムAが密着している。 In the remaining portion 82, the resin film A is in close contact with the carrier substrate 7 with a relatively small adhesive force as compared with the removed portion 81.
 [5]剥離工程
 最後に、残存部分82において、キャリア基板7から樹脂フィルムAを剥離する。これにより、有機EL表示装置1が得られる。
[5] Peeling process Finally, the resin film A is peeled from the carrier substrate 7 in the remaining portion 82. Thereby, the organic EL display device 1 is obtained.
 前述したように、残存部分82では、除去部分81に比べて、キャリア基板7に樹脂フィルムAが相対的に小さい密着力で密着している。このため、残存部分82でのキャリア基板7から樹脂フィルムAを剥離する作業は、比較的容易に行うことができる。例えば、残存部分82に、人の手で軽く力を加えたり、ガスを吹き付けたり、振動を加えたり、残存部分82を湾曲させたりする作業が、剥離のきっかけが生じる。このきっかけが生じた後は、キャリア基板7から樹脂フィルムAを容易に剥離することができる。 As described above, in the remaining portion 82, the resin film A is in close contact with the carrier substrate 7 with a relatively small adhesive force as compared with the removed portion 81. For this reason, the operation | work which peels the resin film A from the carrier substrate 7 in the remaining part 82 can be performed comparatively easily. For example, an operation of lightly applying a force to the remaining portion 82 with a human hand, blowing a gas, applying a vibration, or bending the remaining portion 82 causes a separation. After this trigger occurs, the resin film A can be easily peeled from the carrier substrate 7.
 また、剥離が容易であれば、剥離する際に樹脂フィルムAに加わる負荷が軽減される。このため、本発明によれば、樹脂フィルムAに加わった負荷が、樹脂フィルムA上に形成される画素回路10にも悪影響を及ぼすことを抑制し、これにより、画素回路10の特性が劣化するのを低減することができる。 Moreover, if peeling is easy, the load added to the resin film A when peeling will be reduced. For this reason, according to the present invention, the load applied to the resin film A is suppressed from adversely affecting the pixel circuit 10 formed on the resin film A, thereby deteriorating the characteristics of the pixel circuit 10. Can be reduced.
 さらに、樹脂フィルムAに加わる負荷を低減することによって、樹脂フィルムAの光学特性が低下することも抑制することができる。これにより、樹脂フィルムAの透光性の低下が抑制され、有機EL表示装置1の表示の明度やコントラストの低下を抑制することができる。 Further, by reducing the load applied to the resin film A, it is possible to suppress the optical characteristics of the resin film A from being lowered. Thereby, the fall of the translucency of the resin film A is suppressed, and the fall of the brightness and contrast of the display of the organic electroluminescence display 1 can be suppressed.
 なお、この剥離工程では、上述したようにキャリア基板7から樹脂フィルムAを比較的容易に剥離させることができる。このため、キャリア基板7から樹脂フィルムAの剥離に際して、レーザーの照射等を用いた剥離プロセスを省略したり、照射されるエネルギーの低減を図ったりすることができる。このため、レーザー照射による不具合、例えば樹脂フィルムAや画素回路10の発熱による変質、劣化等を防止することができる。その結果、より信頼性の高い有機EL表示装置1を製造することができる。 In this peeling step, the resin film A can be peeled relatively easily from the carrier substrate 7 as described above. For this reason, when the resin film A is peeled from the carrier substrate 7, a peeling process using laser irradiation or the like can be omitted, or the energy to be irradiated can be reduced. For this reason, the malfunction by laser irradiation, for example, the quality change by the heat_generation | fever of the resin film A and the pixel circuit 10, deterioration, etc. can be prevented. As a result, a more reliable organic EL display device 1 can be manufactured.
 ≪第2実施形態≫
 次に、本発明の素子積層フィルムの製造方法の第2実施形態を含む有機EL表示装置1の製造方法について説明する。
<< Second Embodiment >>
Next, the manufacturing method of the organic electroluminescence display 1 including 2nd Embodiment of the manufacturing method of the element laminated film of this invention is demonstrated.
 図7は、図1に示す有機EL表示装置を製造する他の方法(本発明の素子積層フィルムの製造方法の第2実施形態)を説明するための縦断面図である。なお、以下の説明では、説明の便宜上、図7中の上側を「上」、下側を「下」という。 FIG. 7 is a longitudinal sectional view for explaining another method for manufacturing the organic EL display device shown in FIG. 1 (second embodiment of the method for manufacturing an element laminated film of the present invention). In the following description, for convenience of explanation, the upper side in FIG. 7 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、第2実施形態について説明するが、以下の説明では、第1実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。 Hereinafter, the second embodiment will be described. However, in the following description, differences from the first embodiment will be mainly described, and description of similar matters will be omitted.
 第2実施形態に係る素子積層フィルムの製造方法を含む有機EL表示装置1の製造方法は、切断工程における切断位置が異なる以外、第1実施形態に係る素子積層フィルムの製造方法を含む有機EL表示装置1の製造方法と同様である。 The manufacturing method of the organic EL display device 1 including the method for manufacturing the element laminated film according to the second embodiment is different from the cutting position in the cutting step, and includes the method for manufacturing the element laminated film according to the first embodiment. This is the same as the manufacturing method of the device 1.
 すなわち、本製造方法に係る切断工程では、キャリア基板7の上面71の縁部711(第1部分)に設けられた無機コーティング72に対応する積層体8の部分の全部を除去するように、積層体8を厚さ方向に切断するのではなく、図7(a)に示すように、無機コーティング72に対応する積層体8の一部のみを除去するように、積層体8を厚さ方向に切断する。これにより、積層体8の無機コーティング72に対応する部分の一部が除去されずに残存する。その結果、残存部分82のうち、無機コーティング72が設けられていない部分では、キャリア基板7に対する樹脂フィルムAの密着力が相対的に小さくなっている。一方、残存部分82のうち、無機コーティング72が残存している部分には、無機コーティング72の作用により、キャリア基板7に対する樹脂フィルムAの密着力が相対的に大きくなっている。 That is, in the cutting process according to the present manufacturing method, the lamination is performed so as to remove all of the portion of the laminate 8 corresponding to the inorganic coating 72 provided on the edge 711 (first portion) of the upper surface 71 of the carrier substrate 7. Rather than cutting the body 8 in the thickness direction, as shown in FIG. 7A, the laminate 8 is moved in the thickness direction so that only a part of the laminate 8 corresponding to the inorganic coating 72 is removed. Disconnect. Thereby, a part of part corresponding to the inorganic coating 72 of the laminated body 8 remains without being removed. As a result, in the remaining portion 82 where the inorganic coating 72 is not provided, the adhesion of the resin film A to the carrier substrate 7 is relatively small. On the other hand, the adhesive force of the resin film A to the carrier substrate 7 is relatively large due to the action of the inorganic coating 72 in the remaining portion 82 where the inorganic coating 72 remains.
 よって、本実施形態では、切断工程において除去する無機コーティング72に対応する積層体8の部分の面積を適宜調整することにより、換言すれば、切断工程において残存させる無機コーティング72に対応する積層体8の部分の面積を適宜調整することにより、残存部分82におけるキャリア基板7に対する樹脂フィルムAの剥離容易性を自在に制御することができる。したがって、例えば、中央部712におけるキャリア基板7に対する樹脂フィルムAの密着力が小さ過ぎる場合には、切断作業中にキャリア基板7から樹脂フィルムAが剥離してしまうおそれもある。このため、この剥離を防止し得る程度の密着力が確保されるように、所定の面積の無機コーティング72に対応する積層体8の部分を残存させればよい。 Therefore, in this embodiment, by appropriately adjusting the area of the portion of the laminate 8 corresponding to the inorganic coating 72 to be removed in the cutting step, in other words, the laminate 8 corresponding to the inorganic coating 72 remaining in the cutting step. By appropriately adjusting the area of this part, the ease of peeling of the resin film A from the carrier substrate 7 in the remaining part 82 can be freely controlled. Therefore, for example, when the adhesive force of the resin film A to the carrier substrate 7 at the central portion 712 is too small, the resin film A may be peeled from the carrier substrate 7 during the cutting operation. For this reason, what is necessary is just to leave the part of the laminated body 8 corresponding to the inorganic coating 72 of a predetermined area so that the adhesive force of the grade which can prevent this peeling is ensured.
 なお、残存部分82側に残存させる無機コーティング72の面積は、残存部分82において必要なキャリア基板7に対する樹脂フィルムAの密着力や、無機コーティング72に対する樹脂フィルムAの単位面積当たりの密着強度に応じて適宜設定され、限定されるものではない。一例として、無機コーティング72の全面積の50%以下が残存部分82側に残るように積層体8を切断するのが好ましく、1~40%程度が残るように積層体8を切断するのがより好ましく、3~30%程度が残るように積層体8を切断するのがさらに好ましい。これにより、切断作業中に残存部分82においてキャリア基板7から樹脂フィルムAが剥離するのを抑制するとともに、切断作業の終了後には簡単なきっかけを与えることによって、キャリア基板7から樹脂フィルムAを容易に剥離することができる。 The area of the inorganic coating 72 that remains on the remaining portion 82 side depends on the adhesion strength of the resin film A to the carrier substrate 7 required in the remaining portion 82 and the adhesion strength per unit area of the resin film A to the inorganic coating 72. Are appropriately set and are not limited. As an example, it is preferable to cut the laminate 8 so that 50% or less of the total area of the inorganic coating 72 remains on the remaining portion 82 side, and it is more preferable to cut the laminate 8 so that about 1 to 40% remains. Preferably, the laminate 8 is more preferably cut so that about 3 to 30% remains. Accordingly, the resin film A is prevented from peeling from the carrier substrate 7 at the remaining portion 82 during the cutting operation, and the resin film A is easily removed from the carrier substrate 7 by giving a simple trigger after the cutting operation is completed. Can be peeled off.
 その後、剥離工程において、キャリア基板7から樹脂フィルムAを剥離させることにより、図7(c)に示す有機EL表示装置1が得られる。この際、残存させる無機コーティング72の面積を調整することにより、剥離作業に伴って樹脂フィルムAに加わる負荷を最小限に留め、樹脂フィルムAや画素回路10に加わる悪影響を最小限に留めることができる。 Then, in the peeling step, the organic EL display device 1 shown in FIG. 7C is obtained by peeling the resin film A from the carrier substrate 7. At this time, by adjusting the area of the inorganic coating 72 to remain, it is possible to minimize the load applied to the resin film A along with the peeling operation, and to minimize the adverse effect applied to the resin film A and the pixel circuit 10. it can.
 なお、残存させる無機コーティング72の面積が小さい場合、無機コーティング72からの樹脂フィルムAの剥離作業に、レーザー照射を利用してもよい。残存させる無機コーティング72の面積を小さくすることで、レーザー照射による樹脂フィルムAや画素回路10に加わる悪影響を最小限に留めることができる。 In addition, when the area of the inorganic coating 72 to remain is small, laser irradiation may be used for the peeling operation of the resin film A from the inorganic coating 72. By reducing the area of the inorganic coating 72 that remains, the adverse effect of the laser irradiation on the resin film A and the pixel circuit 10 can be minimized.
 このレーザー照射に用いるレーザー光としては、パルス発振型または連続発光型のエキシマレーザー、炭酸ガスレーザー、YAGレーザーおよびYVOレーザー等が挙げられる。 Examples of the laser light used for the laser irradiation include a pulse oscillation type or a continuous emission type excimer laser, a carbon dioxide gas laser, a YAG laser, and a YVO 4 laser.
 また、図7(c)では、無機コーティング72が樹脂フィルムAに付着した状態を図示しているが、無機コーティング72はキャリア基板7上に残存していてもよい。
 また、無機コーティング72の成膜領域(第1部分)を適宜設定することにより、無機コーティング72が有機EL表示装置1の光学的特性に悪影響を及ぼすのを防止することができる。
FIG. 7C shows a state where the inorganic coating 72 is attached to the resin film A, but the inorganic coating 72 may remain on the carrier substrate 7.
In addition, by appropriately setting the film formation region (first portion) of the inorganic coating 72, the inorganic coating 72 can be prevented from adversely affecting the optical characteristics of the organic EL display device 1.
 以上のような本発明の素子積層フィルムの製造方法の第2実施形態を含む有機EL表示装置1の製造方法においても、前述した第1実施形態を含む有機EL表示装置1の製造方法と同様の効果を奏する。 Also in the manufacturing method of the organic EL display device 1 including the second embodiment of the method for manufacturing the element laminated film of the present invention as described above, the manufacturing method of the organic EL display device 1 including the first embodiment described above is the same. There is an effect.
 以上、本発明の素子積層フィルムの製造方法、素子積層フィルムおよび表示装置について説明したが、本発明はこれに限定されるものではない。例えば、素子積層フィルムの製造方法には、任意の目的の工程が追加されていてもよい。 As mentioned above, although the manufacturing method of the element laminated | multilayer film of this invention, the element laminated film, and the display apparatus were demonstrated, this invention is not limited to this. For example, the process for arbitrary purposes may be added to the manufacturing method of an element laminated film.
 次に、本発明の具体的実施例について説明する。
1.評価用テストピースの作製
 (サンプルNo.1)
 [樹脂組成物の調製]
 <1>溶液を得るため、機械式攪拌機と、窒素注入口および排出口を備える250ml三首丸底フラスコに、PFMB(3.2024g、0.01mol)およびDMAc(30ml)を加えた。
Next, specific examples of the present invention will be described.
1. Preparation of test piece for evaluation (Sample No. 1)
[Preparation of resin composition]
To obtain a <1> solution, PFMB (3.2024 g, 0.01 mol) and DMAc (30 ml) were added to a 250 ml three-necked round bottom flask equipped with a mechanical stirrer and a nitrogen inlet and outlet.
 <2>PFMBが溶液中に完全に溶解した後、PrO(1.7g、0.03mol)を溶液に添加した。その後、溶液を0℃まで冷却した。 <2> After PFMB was completely dissolved in the solution, PrO (1.7 g, 0.03 mol) was added to the solution. The solution was then cooled to 0 ° C.
 <3>撹拌中に、TPC(0.203g、0.001mol)およびIPC(1.827g、0.0090mol)を溶液に添加し、その後、フラスコ壁をDMAc(1.5ml)で洗浄した。 <3> While stirring, TPC (0.203 g, 0.001 mol) and IPC (1.827 g, 0.0090 mol) were added to the solution, and then the flask wall was washed with DMAc (1.5 ml).
 <4>2時間後、ベンゾイルクロライド(0.032g、0.23mmol)を溶液に添加し、さらに2時間撹拌した。 <4> After 2 hours, benzoyl chloride (0.032 g, 0.23 mmol) was added to the solution, and the mixture was further stirred for 2 hours.
 [表面処理]
 次に、ソーダガラス製のキャリア基板(直径125mm)を用意し、一方の面に対してカップリング剤処理を施した。なお、カップリング剤には、3-アミノプロピルトリメトキシシランのイソプロピルアルコール溶液(濃度1質量%)を用いた。
[surface treatment]
Next, a carrier substrate (diameter 125 mm) made of soda glass was prepared, and a coupling agent treatment was performed on one surface. As a coupling agent, an isopropyl alcohol solution (concentration 1% by mass) of 3-aminopropyltrimethoxysilane was used.
 [樹脂フィルムの作製]
 調製した樹脂組成物を用いて、キャリア基板上に樹脂フィルムを形成した。
[Production of resin film]
A resin film was formed on a carrier substrate using the prepared resin composition.
 すなわち、まず、樹脂組成物を平坦なキャリア基板上にスピンコート法により塗布した。 That is, first, the resin composition was applied on a flat carrier substrate by spin coating.
 次に、樹脂組成物を、100℃で1分間乾燥したのち、不活性雰囲気下において350℃で30分間維持することにより、フィルムを硬化処理した。これにより、キャリア基板上に樹脂フィルムを形成してなる評価用テストピースを得た。
 なお、得られた樹脂フィルムの平均厚さは10μmであった。
Next, after the resin composition was dried at 100 ° C. for 1 minute, the film was cured by maintaining at 350 ° C. for 30 minutes in an inert atmosphere. Thereby, the test piece for evaluation formed by forming a resin film on the carrier substrate was obtained.
In addition, the average thickness of the obtained resin film was 10 micrometers.
 (サンプルNo.2)
 [樹脂組成物の調製]
 <1>溶液を得るため、機械式攪拌機と、窒素注入口および排出口を備える250ml三首丸底フラスコに、PFMB(3.041g、0.0095mol)、DAB(0.0761g、0.0005mol)およびDMAc(30ml)を加えた。
(Sample No. 2)
[Preparation of resin composition]
<1> In order to obtain a solution, a 250 ml three-neck round bottom flask equipped with a mechanical stirrer and a nitrogen inlet and outlet was added to PFMB (3.041 g, 0.0095 mol), DAB (0.0761 g, 0.0005 mol). And DMAc (30 ml) was added.
 <2>PFMBが溶液中に完全に溶解した後、PrO(1.7g、0.03mol)を溶液に添加した。その後、溶液を0℃まで冷却した。 <2> After PFMB was completely dissolved in the solution, PrO (1.7 g, 0.03 mol) was added to the solution. The solution was then cooled to 0 ° C.
 <3>撹拌中に、TPC(0.203g、0.001mol)およびIPC(1.827g、0.0090mol)を溶液に添加し、その後、フラスコ壁をDMAc(1.5ml)で洗浄した。 <3> While stirring, TPC (0.203 g, 0.001 mol) and IPC (1.827 g, 0.0090 mol) were added to the solution, and then the flask wall was washed with DMAc (1.5 ml).
 <4>2時間後、ベンゾイルクロライド(0.032g、0.23mmol)を溶液に添加し、さらに2時間撹拌した。 <4> After 2 hours, benzoyl chloride (0.032 g, 0.23 mmol) was added to the solution, and the mixture was further stirred for 2 hours.
 次に、サンプルNo.1と同様にして表面処理を施すとともに樹脂フィルムを形成し、評価用テストピースを得た。
Next, sample no. In the same manner as in Example 1, a surface treatment was performed and a resin film was formed to obtain a test piece for evaluation.
 (サンプルNo.3)
 カップリング剤を3-アミノプロピルトリエトキシシランに変更した以外は、サンプルNo.1と同様にして評価用テストピースを得た。
(Sample No. 3)
Sample No. 1 was changed except that the coupling agent was changed to 3-aminopropyltriethoxysilane. In the same manner as in Example 1, an evaluation test piece was obtained.
 (サンプルNo.4)
 カップリング剤をN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランに変更した以外は、サンプルNo.1と同様にして評価用テストピースを得た。
(Sample No. 4)
Sample No. 5 was changed except that the coupling agent was changed to N-2- (aminoethyl) -3-aminopropyltrimethoxysilane. In the same manner as in Example 1, an evaluation test piece was obtained.
 (サンプルNo.5)
 カップリング剤処理に代えて、酸化ケイ素の蒸着による無機コーティング処理を行った以外は、サンプルNo.1と同様にして評価用テストピースを得た。
(Sample No. 5)
In place of the coupling agent treatment, sample No. 1 was used except that an inorganic coating treatment by vapor deposition of silicon oxide was performed. In the same manner as in Example 1, an evaluation test piece was obtained.
 (サンプルNo.6)
 キャリア基板として無機アルカリガラス製の基板を用いるようにした以外は、サンプルNo.1と同様にして評価用テストピースを得た。
(Sample No. 6)
Sample No. 1 was used except that an inorganic alkali glass substrate was used as the carrier substrate. In the same manner as in Example 1, an evaluation test piece was obtained.
 (サンプルNo.7)
 キャリア基板として無機アルカリガラス製の基板を用いるようにした以外は、サンプルNo.5と同様にして評価用テストピースを得た。
(Sample No. 7)
Sample No. 1 was used except that an inorganic alkali glass substrate was used as the carrier substrate. In the same manner as in Example 5, an evaluation test piece was obtained.
 (サンプルNo.8)
 表面処理を省略した以外は、サンプルNo.1と同様にして評価用テストピースを得た。
(Sample No. 8)
Except for omitting the surface treatment, sample no. In the same manner as in Example 1, an evaluation test piece was obtained.
 (サンプルNo.9)
 表面処理を省略した以外は、サンプルNo.6と同様にして評価用テストピースを得た。
(Sample No. 9)
Except for omitting the surface treatment, sample no. In the same manner as in Example 6, an evaluation test piece was obtained.
2.評価用テストピースの評価
 各サンプルNo.の評価用テストピースを、以下の方法で評価した。
2. Evaluation of test piece for evaluation Each sample No. The evaluation test pieces were evaluated by the following method.
 2.1 全光線透過率
 ヘイズメーター(NDH-2000、日本電色社製)を用い、各評価用テストピースのD線(ナトリウム線)における全光線透過率を測定した。
2.1 Total Light Transmittance Using a haze meter (NDH-2000, manufactured by Nippon Denshoku Co., Ltd.), the total light transmittance of each evaluation test piece at the D line (sodium line) was measured.
 その結果、各サンプルNo.の評価用テストピースは、いずれも、全光線透過率が60%以上であり、良好であった。 As a result, each sample No. All of the test pieces for evaluation had good total light transmittance of 60% or more.
 2.2 密着性
 各評価用テストピースを、ASTM D3359-Bに規定されているテープ付着試験に準拠した方法での試験に供し、キャリア基板に対する樹脂フィルムの密着性を評価した。
2.2 Adhesiveness Each test piece for evaluation was subjected to a test in accordance with a tape adhesion test defined in ASTM D3359-B to evaluate the adhesiveness of the resin film to the carrier substrate.
 その結果、表面処理が施された評価用テストピースでは、密着力の評価が4Bまたは5Bであり、密着性が良好であった。 As a result, in the test piece for evaluation subjected to the surface treatment, the evaluation of the adhesion was 4B or 5B, and the adhesion was good.
 一方、表面処理が省略された評価用テストピースでは、密着力の評価が0Bまたは1Bであり、密着性が低かった。 On the other hand, in the test piece for evaluation in which the surface treatment was omitted, the evaluation of the adhesion was 0B or 1B, and the adhesion was low.
 以上の結果から、本発明によれば、キャリア基板の板面(主面)の少なくとも一部の密着力を部分的に大きくすることにより、例えば表示装置の製造プロセス中におけるキャリア基板からの樹脂フィルムの剥離を抑制することができる。また、その後、密着力が大きい部分を除去することによって、キャリア基板から樹脂フィルムを簡単に剥離することができるようになる。 From the above results, according to the present invention, for example, the resin film from the carrier substrate during the manufacturing process of the display device is obtained by partially increasing the adhesion force of at least a part of the plate surface (main surface) of the carrier substrate. Peeling can be suppressed. Moreover, after that, the resin film can be easily peeled from the carrier substrate by removing the portion having a high adhesion.
 なお、ポリアミド系樹脂に代えて、ポリイミド系樹脂を用いて、前述した各サンプルNo.と同様にして評価用テストピースを作製した。 In addition, each sample No. mentioned above was replaced with a polyimide resin instead of a polyamide resin. A test piece for evaluation was produced in the same manner as described above.
 このテストピースを評価したところ、ポリアミド系樹脂の場合と同様、表面処理によって密着力の増強が図られることが認められた。
When this test piece was evaluated, it was found that the adhesion was enhanced by the surface treatment as in the case of the polyamide-based resin.
 本発明の素子積層フィルムの製造方法は、第1部分と第2部分とを含む主面を有する基板と、前記第1部分に対する前記フィルムの密着力が前記第2部分に対する前記フィルムの密着力よりも大きくなるように、前記主面に密着して設けられたフィルムと、を備えるフィルム付き基板を用意する工程と、前記フィルムの前記基板とは反対側に素子を形成する工程と、前記フィルム付き基板の前記第1部分に対応する部分の少なくとも一部を除去するように前記フィルム付き基板を厚さ方向に切断する工程と、前記基板と前記フィルムとを分離して、素子積層フィルムを得る工程と、を有している。これにより、特殊な装置を用いることなく、素子積層フィルムを効率よく製造することができる。
In the method for producing an element laminated film of the present invention, a substrate having a main surface including a first portion and a second portion, and an adhesion force of the film to the first portion is greater than an adhesion force of the film to the second portion. A film provided in close contact with the main surface, a step of preparing a substrate with a film, a step of forming an element on the opposite side of the film from the substrate, and with the film A step of cutting the substrate with a film in a thickness direction so as to remove at least a part of a portion corresponding to the first portion of the substrate, and a step of separating the substrate and the film to obtain an element laminated film And have. Thereby, an element laminated film can be manufactured efficiently, without using a special apparatus.
1    有機EL表示装置
7    キャリア基板
8    積層体
9    ダイヤモンドカッター
10   画素回路
50   アクティブマトリクス装置
51   データライン
52   選択ライン
53   データ駆動回路
54   行選択回路
55   信号処理回路
71   上面
72   無機コーティング
81   除去部分
82   残存部分
200  ゲート電極
201  ゲート絶縁層
202  ソース電極
203  半導体層
204  ドレイン電極
300  導電部
301  平坦化層
302  陽極
303  正孔輸送層
304  発光層
305  電子輸送層
306  陰極
400  封止層
711  縁部
712  中央部
A    樹脂フィルム
A0   樹脂溶液
B    薄膜トランジスター
C    発光素子
DESCRIPTION OF SYMBOLS 1 Organic EL display device 7 Carrier board 8 Laminated body 9 Diamond cutter 10 Pixel circuit 50 Active matrix device 51 Data line 52 Selection line 53 Data drive circuit 54 Row selection circuit 55 Signal processing circuit 71 Upper surface 72 Inorganic coating 81 Removal part 82 Remaining part 200 Gate electrode 201 Gate insulating layer 202 Source electrode 203 Semiconductor layer 204 Drain electrode 300 Conductive portion 301 Planarizing layer 302 Anode 303 Hole transport layer 304 Light emitting layer 305 Electron transport layer 306 Cathode 400 Sealing layer 711 Edge portion 712 Central portion A Resin film A0 Resin solution B Thin film transistor C Light emitting element

Claims (10)

  1.  第1部分と第2部分とを含む主面を有する基板と、前記第1部分に対する前記フィルムの密着力が前記第2部分に対する前記フィルムの密着力よりも大きくなるように、前記主面に密着して設けられたフィルムと、を備えるフィルム付き基板を用意する工程と、
     前記フィルムの前記基板とは反対側に素子を形成する工程と、
     前記フィルム付き基板の前記第1部分に対応する部分の少なくとも一部を除去するように前記フィルム付き基板を厚さ方向に切断する工程と、
     前記基板と前記フィルムとを互いに分離して、素子積層フィルムを得る工程と、
    を有することを特徴とする素子積層フィルムの製造方法。
    A substrate having a main surface including a first portion and a second portion, and a close contact with the main surface such that an adhesion force of the film to the first portion is larger than an adhesion force of the film to the second portion. A step of preparing a film-equipped substrate comprising:
    Forming an element on the opposite side of the film from the substrate;
    Cutting the substrate with film in the thickness direction so as to remove at least a part of the portion corresponding to the first portion of the substrate with film;
    Separating the substrate and the film from each other to obtain an element laminated film;
    A process for producing an element laminated film, comprising:
  2.  前記フィルム付き基板を用意する工程は、
     前記主面の前記第1部分に対して表面処理を施す工程と、
     前記主面上に樹脂溶液を塗布して前記フィルムを形成する工程と、
    を有する請求項1に記載の素子積層フィルムの製造方法。
    The step of preparing the substrate with film is as follows:
    Applying a surface treatment to the first portion of the main surface;
    Applying a resin solution on the main surface to form the film;
    The manufacturing method of the element laminated | multilayer film of Claim 1 which has these.
  3.  前記表面処理は、無機コーティング処理またはカップリング剤処理である請求項2に記載の素子積層フィルムの製造方法。
    The method for producing an element laminated film according to claim 2, wherein the surface treatment is an inorganic coating treatment or a coupling agent treatment.
  4.  前記基板の構成材料は、ガラスである請求項2または3に記載の素子積層フィルムの製造方法。
    The method for producing an element laminated film according to claim 2 or 3, wherein the constituent material of the substrate is glass.
  5.  前記ガラスは、ソーダガラスまたは無アルカリガラスである請求項4に記載の素子積層フィルムの製造方法。
    The method for producing an element laminated film according to claim 4, wherein the glass is soda glass or alkali-free glass.
  6.  前記第1部分は、前記主面の外縁に沿って設けられている請求項1ないし5のいずれか1項に記載の素子積層フィルムの製造方法。
    The method for manufacturing an element laminated film according to claim 1, wherein the first portion is provided along an outer edge of the main surface.
  7.  前記第1部分は、前記第2部分を取り囲むように設けられている請求項1ないし6のいずれか1項に記載の素子積層フィルムの製造方法。
    The element laminated film manufacturing method according to claim 1, wherein the first part is provided so as to surround the second part.
  8.  前記フィルムの構成材料は、ポリアミド系樹脂である請求項1ないし7のいずれか1項に記載の素子積層フィルムの製造方法。
    The method for producing an element laminated film according to any one of claims 1 to 7, wherein the constituent material of the film is a polyamide-based resin.
  9.  請求項1ないし8のいずれか1項に記載の素子積層フィルムの製造方法により製造されたことを特徴とする素子積層フィルム。
    An element laminated film manufactured by the element laminated film manufacturing method according to claim 1.
  10.  請求項9に記載の素子積層フィルムを備えることを特徴とする表示装置。 A display device comprising the element laminated film according to claim 9.
PCT/JP2014/081449 2014-09-26 2014-11-27 Method for manufacturing element-laminated film, element-laminated film, and display device WO2016046997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016549894A JP6137416B2 (en) 2014-09-26 2014-11-27 Method for producing element laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014196866 2014-09-26
JP2014-196866 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016046997A1 true WO2016046997A1 (en) 2016-03-31

Family

ID=55580554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081449 WO2016046997A1 (en) 2014-09-26 2014-11-27 Method for manufacturing element-laminated film, element-laminated film, and display device

Country Status (3)

Country Link
JP (1) JP6137416B2 (en)
TW (1) TWI607876B (en)
WO (1) WO2016046997A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026155A1 (en) * 2017-07-31 2019-02-07 シャープ株式会社 Method for manufacturing display device, and display device
WO2019049235A1 (en) * 2017-09-06 2019-03-14 シャープ株式会社 Method for manufacturing display device, and apparatus for manufacturing display device
CN110050013A (en) * 2016-12-08 2019-07-23 日产化学株式会社 The manufacturing method of peeling layer
CN113015760A (en) * 2018-11-16 2021-06-22 三菱瓦斯化学株式会社 Polyimide resin, varnish, and polyimide film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6815159B2 (en) * 2016-10-14 2021-01-20 株式会社ジャパンディスプレイ Display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067957A (en) * 2008-09-15 2010-03-25 Ind Technol Res Inst Substrate structure applied in flexible electronic device and fabrication method thereof
JP2013168445A (en) * 2012-02-14 2013-08-29 Kaneka Corp Support with peeling layer, substrate structure, electronic device, and method for manufacturing electronic device
JP2013238863A (en) * 2009-08-28 2013-11-28 Samsung Display Co Ltd Flexible display device and method of manufacturing the same
JP2014086451A (en) * 2012-10-19 2014-05-12 Kaneka Corp Flexible electronic device and manufacturing method of flexible electronic device
WO2014073591A1 (en) * 2012-11-08 2014-05-15 旭化成イーマテリアルズ株式会社 Substrate for flexible device, flexible device and method for producing same, laminate and method for producing same, and resin composition
WO2014092015A1 (en) * 2012-12-13 2014-06-19 旭硝子株式会社 Electronic device manufacturing method, and glass laminate manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216887A (en) * 2004-01-27 2005-08-11 Sony Corp Method of manufacturing thin film device, thin film device, liquid crystal display device and electroluminescence display device
JP2007251080A (en) * 2006-03-20 2007-09-27 Fujifilm Corp Fixing method for plastic substrate, circuit substrate, and manufacturing method therefor
JP2013026546A (en) * 2011-07-25 2013-02-04 Dainippon Printing Co Ltd Substrate for thin film device and method of manufacturing thin film device
WO2013088686A1 (en) * 2011-12-14 2013-06-20 三井化学株式会社 Adhesive resin composition, laminate body, and self-peeling method
JP5898949B2 (en) * 2011-12-27 2016-04-06 パナソニック株式会社 Method for manufacturing flexible device
JP2014022459A (en) * 2012-07-13 2014-02-03 Asahi Kasei E-Materials Corp Laminate and manufacturing method of flexible device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067957A (en) * 2008-09-15 2010-03-25 Ind Technol Res Inst Substrate structure applied in flexible electronic device and fabrication method thereof
JP2013238863A (en) * 2009-08-28 2013-11-28 Samsung Display Co Ltd Flexible display device and method of manufacturing the same
JP2013168445A (en) * 2012-02-14 2013-08-29 Kaneka Corp Support with peeling layer, substrate structure, electronic device, and method for manufacturing electronic device
JP2014086451A (en) * 2012-10-19 2014-05-12 Kaneka Corp Flexible electronic device and manufacturing method of flexible electronic device
WO2014073591A1 (en) * 2012-11-08 2014-05-15 旭化成イーマテリアルズ株式会社 Substrate for flexible device, flexible device and method for producing same, laminate and method for producing same, and resin composition
WO2014092015A1 (en) * 2012-12-13 2014-06-19 旭硝子株式会社 Electronic device manufacturing method, and glass laminate manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050013A (en) * 2016-12-08 2019-07-23 日产化学株式会社 The manufacturing method of peeling layer
WO2019026155A1 (en) * 2017-07-31 2019-02-07 シャープ株式会社 Method for manufacturing display device, and display device
US20200044192A1 (en) * 2017-07-31 2020-02-06 Sharp Kabushiki Kaisha Method of manufacturing display device
US10784466B2 (en) 2017-07-31 2020-09-22 Sharp Kabushiki Kaisha Method of manufacturing display device
WO2019049235A1 (en) * 2017-09-06 2019-03-14 シャープ株式会社 Method for manufacturing display device, and apparatus for manufacturing display device
US10811609B2 (en) 2017-09-06 2020-10-20 Sharp Kabushiki Kaisha Manufacturing method of display device
CN113015760A (en) * 2018-11-16 2021-06-22 三菱瓦斯化学株式会社 Polyimide resin, varnish, and polyimide film
CN113015760B (en) * 2018-11-16 2023-07-28 三菱瓦斯化学株式会社 Polyimide resin, varnish and polyimide film

Also Published As

Publication number Publication date
TW201612017A (en) 2016-04-01
TWI607876B (en) 2017-12-11
JPWO2016046997A1 (en) 2017-04-27
JP6137416B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6137416B2 (en) Method for producing element laminated film
WO2014126210A1 (en) Display element, optical element, and laminated composite for illumination element
WO2014192684A1 (en) Aromatic polyamide solution for manufacturing display elements, optical elements or lighting elements
JP6173630B2 (en) Resin composition, method for producing resin composition, substrate for producing electronic element, and electronic device
US20160208096A1 (en) Solution of aromatic polyamide for producing display element, optical element, illumination element or sensor element
TWI576243B (en) Soultion of aromatic polyamide for producing display element, optical element, or illumination element
JP6153577B2 (en) Aromatic polyamide solutions for the production of display elements, optical elements, illumination elements or sensor elements
JP6099815B2 (en) Method for manufacturing an electronic device
JP6197042B2 (en) Polyamide solution, polyamide film, laminated composite material, display element, optical element, illumination element or sensor element, and method for producing the same
JP2016535104A (en) Resin composition, substrate, method for producing electronic device, and electronic device
JP2016536393A (en) Resin composition, substrate, method for producing electronic device, and electronic device
JP6313285B2 (en) Polyamide solution, cured polyamide resin layer, laminated composite material, display element, optical element, or illumination element and method for producing the same
JP6067922B2 (en) Aromatic polyamide solutions for the production of display elements, optical elements, illumination elements or sensor elements
JP2016535804A (en) Resin composition, substrate, method for producing electronic device, and electronic device
JP2017179266A (en) Aromatic polyamide solution for producing element for display, optical element, element for illumination or a sensor element
TW201736504A (en) Solution of aromatic polyamide for producing display element, optical element, illumination element or sensor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016549894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902744

Country of ref document: EP

Kind code of ref document: A1