WO2016039300A1 - Novel diatom transformation vector and novel promoter sequence including same - Google Patents

Novel diatom transformation vector and novel promoter sequence including same Download PDF

Info

Publication number
WO2016039300A1
WO2016039300A1 PCT/JP2015/075372 JP2015075372W WO2016039300A1 WO 2016039300 A1 WO2016039300 A1 WO 2016039300A1 JP 2015075372 W JP2015075372 W JP 2015075372W WO 2016039300 A1 WO2016039300 A1 WO 2016039300A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
vector
promoter
polynucleotide
seq
Prior art date
Application number
PCT/JP2015/075372
Other languages
French (fr)
Japanese (ja)
Inventor
伊福 健太郎
康浩 菓子野
秀哉 福澤
昌孝 梶川
順 小川
Original Assignee
公立大学法人兵庫県立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人兵庫県立大学 filed Critical 公立大学法人兵庫県立大学
Priority to JP2016547436A priority Critical patent/JP6573400B2/en
Publication of WO2016039300A1 publication Critical patent/WO2016039300A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Definitions

  • the present invention relates to a novel promoter for transforming algae, a vector containing the promoter, and a method for transforming algae using the vector.
  • Marine diatoms one of the algae, are unicellular eukaryotes belonging to a group called so-called yellow plants. Diatoms are estimated to be responsible for about 20-40% of the world's CO 2 fixation, and are extremely important organisms for the global environment as primary producers. Diatoms are organisms that synthesize fats and oils useful for humans, such as EPA (eicosapentaenoic acid).
  • transformation techniques are used for industrial use of living organisms, but it is known that the transformation efficiency of algae is low. Although various studies have been made to increase the transformation efficiency, the transformation method is still limited. In particular, for the horned diatom, which is one of the marine diatoms, its gene introduction method has been studied, but its transformation efficiency is low.
  • An object of the present invention is to provide a novel promoter for transforming algae (for example, diatom), a novel transformation vector containing the promoter, and a method for transforming algae using the vector.
  • the present invention includes the following: (1) a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 10; (2) a polynucleotide having a homology of 80% or more with respect to any one of the nucleotide sequences of SEQ ID NOS: 1 to 10 and functioning as a promoter that causes algae to express a target gene; (3) a promoter having a base sequence in which one or several bases are added, deleted, and / or substituted to any one of SEQ ID NOS: 1 to 10 and causing algae to express a target gene
  • a polynucleotide that functions as: I will provide a.
  • the polynucleotides (1) to (3) may be referred to as the promoter sequence according to the present invention or the promoter sequence according to the present invention.
  • the present invention provides a vector containing the polynucleotide.
  • the present invention Provided is a vector comprising a first expression cassette comprising the polynucleotide and terminator sequences; or a second expression cassette comprising the polynucleotide, drug resistance gene and terminator sequences; or comprising both of these expression cassettes.
  • the present invention provides a method for transforming algae, characterized by introducing the above vector into a host algal cell.
  • the present invention provides a transformant by introducing a vector containing the above-mentioned polynucleotide and a fatty acid hydroxylase gene (eg, fatty acid 2-hydroxylase gene, more specifically, oleic acid 12-hydroxylase gene) into a host algal cell.
  • a fatty acid hydroxylase gene eg, fatty acid 2-hydroxylase gene, more specifically, oleic acid 12-hydroxylase gene
  • the present invention provides a method for producing ricinoleic acid, characterized in that ricinoleic acid is obtained by culturing the transformant.
  • the promoter sequence according to the present invention can efficiently transform algae (for example, diatom).
  • NTC Knowluseotricin
  • Multiple pulse electroporation pulse plan explanation Multiple high-voltage poreing pulses (PP: 9 pulses, 300 V, 5 ms duration, 25 ms interval, 10% decay rate) promote the formation of temporary pores in the cell membrane
  • TP 40 pulses for each polarity, 8 V, 50 ms duration, 50 ms interval, 40% decay rate
  • TP 40 pulses for each polarity, 8 V, 50 ms duration, 50 ms interval, 40% decay rate
  • Each ACAT promoter was placed immediately before the foreign gene cloning site.
  • the constitutive ACAT promoter drives expression of the nourseotricin resistance gene (nat).
  • a terminator for the Lhcr14 gene was placed at the end of both expression cassettes.
  • a HindIII site or EcoRI site can be used to linearize the vector for transformation.
  • the construct also contains an ampicillin resistance gene (AmpR) and an Escherichia coli origin of replication. C. with restriction enzyme cleavage site marked .
  • Gracilis Transformation Vector Map-Nitrate Reductase Gene NR
  • Promoter-Nourseotricin Resistance Gene nat
  • Gracilis transformation vector map-Lhcf4 fcp gene
  • promoter-Nourseotricin resistance gene nat
  • C. with restriction enzyme cleavage site marked .
  • A Transgenic C. elegans transformed with pCgLhcr5p-luc . PCR amplification of nat, luc and psb31 genes in Gracilis strains Genomic DNA isolated from wild type (WT) and four nourseotricin resistant clones was used as template DNA.
  • M 100 bp size ladder marker (B) RT-PCR analysis showing mRNA expression of each gene (C) Genomic Southern blot analysis Total genomic DNA (5 ⁇ g) was cleaved with EcoRI (left) or BamHI (right) and 1% agarose The gel was separated and blotted onto a nylon membrane.
  • a DNA fragment containing the transgene was detected using a digoxigenin (DIG) labeled DNA probe for the luciferase coding region.
  • DIG digoxigenin
  • Stability of luciferase activity after repeated subcultures Transgenic Lhcr5p-luc cells (strain 2) are subcultured in a one-week cycle in the presence (black) or absence (white) of nourseotricin Cultured. The activity of the first subculture in the presence of nourseotricine was defined as 100%.
  • Transgenic C expressing monomeric thistle green protein (mAG) under the control of the Lhcr5 promoter .
  • Light micrograph (A) and fluorescence micrograph (B) of gracilis cells The presence of mAG protein was indicated by green fluorescence.
  • the scale bar is 10 ⁇ m.
  • Induction of luciferase (luc) activity under the control of the nitrate reductase gene (NR) promoter C. cerevisiae transformed with pCgNRp-luc .
  • Gracilis transgenic cell lines were cultured in ammonium medium and transferred to nitrate medium (NO 3 ⁇ ) or fresh ammonium medium (NH 4 + ).
  • the x-axis shows the time after medium change.
  • Gracilis transformation vector map-Lhcf4 (fcp gene) promoter-Zeocin resistance gene (ble) C. with restriction enzyme cleavage site marked .
  • the promoter sequence means a sequence capable of controlling the expression of any target gene located downstream in an algal cell, for example, a diatom, particularly a hornwort cell.
  • the promoter sequence of the present invention is obtained by subjecting a polynucleotide constituting a non-coding region located upstream of a gene highly expressed in Chaetoceros gracilis to a method generally used in the art, such as draft analysis and RNA sequencing analysis. You can search by doing it.
  • Examples of the polynucleotide constituting the non-coding region located upstream of the gene highly expressed in Chaetoceros gracilis include the following sequences: CgLhcr14p (SEQ ID NO: 1); CgACATp (SEQ ID NO: 2); CgLhcr5p (SEQ ID NO: 3); CgACSLp (SEQ ID NO: 4); CgNRp (SEQ ID NO: 5); CgbTublinp (SEQ ID NO: 6); CgATPSp (SEQ ID NO: 7); CgLhcf4p (SEQ ID NO: 8); CgLhcf1p_A (SEQ ID NO: 9); CgLhcf1p_B (SEQ ID NO: 10).
  • the promoter sequence of the present invention includes (1) a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 10.
  • the promoter sequence of the present invention has (2) 80% or more, 90% or more, 95% or more, 97%, or 99% or more homology to any one of SEQ ID NOS: 1 to 10, Furthermore, a polynucleotide that functions as a promoter that brings about expression of a target gene in algae can be mentioned.
  • the promoter sequence of the present invention includes (3) one or several of the nucleotide sequences of SEQ ID NOS: 1 to 10 (preferably 1 to 100, preferably 1 to 50, more preferably 1 to 30). More preferably, 1 to 10 or less is more preferable, and 1 to 5 or less is particularly preferable.
  • a promoter having an added, deleted and / or substituted base sequence and causing algae to express the target gene examples include functional polynucleotides.
  • the promoter sequence of the present invention can be obtained by a method generally used in the art, for example, by separating from the upstream of a gene highly expressed in Chaetoceros gracilis , and can be amplified and used by PCR method. it can. Or you may synthesize
  • the “target gene” is a gene encoding a protein desired to be produced, and is not particularly limited.
  • Vector of the present invention provides a vector comprising the above promoter sequence.
  • the vector of the present invention may contain one or more promoter sequences (for example, 1 to 5, 1 to 3, 1 or 2) according to the present invention.
  • the type of vector is not particularly limited as long as it can be introduced into algal cells.
  • vectors such as a plasmid vector, a phage vector, and a cosmid vector are preferable, and a plasmid vector is preferable.
  • the vector of the present invention can be used to introduce any desired gene.
  • the target gene include ricinoleic acid synthase.
  • the vector of the present invention may contain any drug resistance gene whose expression can be controlled by the promoter sequence of the present invention.
  • drug resistance genes for selecting transformants for example, nourseotricin resistance gene, ampicillin resistance gene, kanamycin resistance gene, neomycin resistance gene, zeocin resistance gene, chloramphenicol resistance gene, erythromycin resistance gene
  • Selection using multiple drug resistances can be used for multiple introductions of genes into host cells.
  • the vector of the present invention may contain other sequences included in general vectors.
  • it may contain a so-called regulatory sequence such as an operator, terminator, enhancer or the like that regulates the expression of the target gene.
  • a promoter different from the present invention and a gene controlled by the promoter for example, drug resistance gene may be included.
  • the vector of the present invention can be prepared by methods well known to those skilled in the art. For example, it can be obtained by amplifying the promoter sequence of the present invention using a primer provided with an appropriate restriction enzyme site and inserting it into a donor vector cut with a restriction enzyme. Alternatively, it can be prepared by a method using an In-Fusion (trademark) reaction.
  • the promoter sequence of the present invention may be introduced into a donor vector as an expression cassette having a terminator sequence incorporated downstream thereof.
  • the target gene may be incorporated between the promoter sequence and the terminator sequence.
  • the terminator sequence in the present invention is not particularly limited as long as it functions in algal cells, and examples thereof include CgLhcr14 terminator sequence: CgLhcr14ter (SEQ ID NO: 11).
  • the expression cassette is: A nucleic acid construct comprising at least a promoter sequence and a terminator sequence; A nucleic acid construct comprising at least a promoter sequence and a gene of interest; or a nucleic acid construct comprising at least a promoter sequence, a gene of interest and a terminator sequence; And may contain introns, spacer sequences, enhancer sequences and the like.
  • the vectors of the present invention are: A first expression cassette comprising a promoter sequence and a terminator sequence; or a second expression cassette comprising a promoter sequence, a drug resistance gene and a terminator sequence, or both.
  • the first expression cassette can be used to insert a gene of interest.
  • the target gene may be inserted into the first expression cassette.
  • the second expression cassette can be used to select transformants.
  • the first expression cassette is a promoter sequence according to the present invention (for example, CgLhcr14p; CgACATp; CgLhcr5p; CgACSLp; CgNRp; CgbTublinp; CgATPSp; CgLhcf4p; CgLhcf1p_A; And an expression cassette containing a terminator sequence (for example, CgLhcr14ter) incorporated downstream thereof.
  • a promoter sequence for example, CgLhcr14p; CgACATp; CgLhcr5p; CgACSLp; CgNRp; CgbTublinp; CgATPSp; CgLhcf4p; CgLhcf1p_A
  • an expression cassette containing a terminator sequence for example, CgLhcr14ter
  • the second expression cassette includes a promoter sequence according to the present invention (for example, CgLhcr14p; CgACATp; CgLhcr5p; CgACSLP; CgNRp; CgbTublinp; CgATPSp; CgLhcf4p; CgLhcf1p_A; And an expression cassette comprising a terminator sequence (eg, CgLhcr14ter) incorporated downstream thereof, and a drug resistance gene (eg, nat, ble) incorporated between the promoter sequence and the terminator sequence.
  • a promoter sequence for example, CgLhcr14p; CgACATp; CgLhcr5p; CgACSLP; CgNRp; CgbTublinp; CgATPSp; CgLhcf4p; CgLhcf1p_A
  • an expression cassette comprising a terminator sequence (eg, CgLhcr14ter) incorporated downstream thereof, and
  • the present invention provides a method for transforming algae, which comprises introducing the vector into a host algal cell.
  • the host used in the method of the present invention is not particularly limited as long as it is an algal cell.
  • preferred host algae cells include diatoms (e.g., central diatoms or pterygium diatoms) and variants thereof, preferably hornflower and variants thereof, more preferably Chaetoceros gracilis and variants thereof.
  • the host cell can be transformed by being retained in the host cell in a state in which the target gene is incorporated into the chromosome, plasmid, plastid or mitochondrial DNA in the host cell.
  • the culture conditions of the transformant can be appropriately selected based on the host algal cell, the promoter sequence, and the target gene.
  • the transformant can be cultured using a normal culture method such as shaking culture or continuous culture.
  • the culture conditions may be appropriately selected depending on the culture method and the like.
  • a method for producing ricinoleic acid provides a transformant by introducing a vector containing the promoter sequence and fatty acid hydroxylase gene according to the present invention into a host algal cell, and cultivating the transformant to obtain ricinoleic acid.
  • a method for producing ricinoleic acid is provided.
  • Ricinoleic acid is a monounsaturated fatty acid having 18 carbon atoms and a hydroxyl group at the C12 position.
  • Ricinoleic acid is a fatty acid hydroxylase (for example, fatty acid 2-hydroxylase, more specifically oleic acid 12-hydroxylase), which is the 12th position of oleic acid, which is a monounsaturated fatty acid of ⁇ -9 fatty acid having 18 carbon atoms. Is synthesized by adding a hydroxyl group.
  • fatty acid hydroxylase for example, fatty acid 2-hydroxylase, more specifically oleic acid 12-hydroxylase
  • fatty acid hydroxylase gene examples include a fatty acid 2-hydroxylase (oleic acid 12-hydroxylase) gene (CpFAH (SEQ ID NO: 12)) derived from Claviceps purpurea NBRC6263 strain.
  • the fatty acid hydroxylase gene of the present invention is also a gene encoding a protein having a nucleotide sequence having homology of 80% or more, 90% or more, 95% or more, or 97% or more with the CpFAH and having fatty acid hydroxylase activity.
  • Algae are generally known to have the ability to biosynthesize oleic acid. In the production of ricinoleic acid, the host is not particularly limited as long as it is an algal cell.
  • Examples of preferred host algae cells include diatoms (e.g., central diatoms or pterygium diatoms) and variants thereof, preferably hornflower and variants thereof, more preferably Chaetoceros gracilis and variants thereof.
  • the medium for synthesizing ricinoleic acid is not particularly limited as long as it is a medium in which ricinoleic acid is synthesized by culturing the transformant.
  • the host cell is diatom, it may be a general medium in which diatom can grow.
  • the culture temperature is not particularly limited as long as it is a temperature at which ricinoleic acid is produced.
  • the host cell when the host cell is a diatom (for example, hornflower), it is preferably 15 to 35 ° C, more preferably 18 to 25 ° C.
  • an example of the medium is Daigo IMK culture medium supplemented with sea salt and 0.2 mM Na 2 SiO 3 .
  • the culture conditions include shaking culture under 50 ⁇ mol photon m ⁇ 2 s ⁇ 1 .
  • the following table shows the terminator sequence of CgLhcr14: CgLhcr14ter (SEQ ID NO: 11).
  • CpFAH fatty acid 2-hydroxylase gene
  • Example 1 Materials and methods ⁇ Diatom culture> C. Gracilis obtained from the University of Texas Culture Collection, Daigo IMK culture medium (Nippon Pharmaceutical Co., Ltd., Osaka, Japan) supplemented with sea salt (Sigma, St. Louis, MO, USA) and 0.2 mM Na 2 SiO 3 Cultured. Grow at 20 ° C. in an artificial weather incubator. A white fluorescent lamp provided an irradiance of 30 ⁇ mol photons m ⁇ 2 s ⁇ 1 under continuous light conditions.
  • the diatom cell is an f / 2 medium containing 0.88 mM NH 4 Cl (ammonium medium) or 0.88 mM NaNO 3 (nitrate medium) as the only nitrogen source (Non-patent Document 6). In culture.
  • Nourseotricin resistance gene nat SEQ ID NO: 13 was excised from the pYL16 plasmid (WERNER BioAgents, Jena, Germany) and subcloned into the BamHI-PstI site of pUC118 (Takara Bio).
  • fucoxanthin chlorophyll a / c-binding proteins (fcp) gene CgLhcr14 terminator region: CgLhcr14ter (110bp, SEQ ID NO: 11) were grown in genomic PCR, an In-Fusion (TM) reaction (Clontech, Palo Alto, CA, USA) was inserted into the downstream HindIII site.
  • TM In-Fusion
  • C.I The Gracilis promoter region was amplified by genomic PCR and subcloned into the EcoRI-BamHI site upstream of pUC118.
  • Table B below shows the length of the amplified promoter sequences and the accession numbers in the GenBank / EMBL / DDBJ database.
  • the primer sets used in genomic PCR are shown in Table A below.
  • the resulting plasmid has a short cloning site (BamHI, XbaI, SalI, PstI), which makes it possible to insert the desired gene.
  • a pUC118 vector containing the promoter region (626 bp) of the acetyl-CoA acetyltransferase (ACAT) gene and the CgLhcr14 terminator sequence was similarly constructed.
  • the nat gene fragment with BglII and NsiI sites at the 5′-end and 3′-end was then amplified from pYL16 by PCR and inserted into the BamHI-PstI site of the second expression cassette.
  • the promoter region of CgLhcr5 in the pCgLhcr5p vector was excised by EcoRI / BamHI digestion and nitrate excised by the same restriction enzyme treatment from the nourseotricin resistant plasmid constructed above. It was replaced with the promoter region (631 bp) of the reductase CgNR gene.
  • the luciferase gene (SEQ ID NO: 44) and thistle green gene (SEQ ID NO: 45) were amplified by PCR using the primers in Table A above and inserted into the BamHI-PstI site of pCgLhcr5p or pCgNRp.
  • a 300V rectangular poreing pulse (pulse duration, 5 ms; 9 pulses; interval 50 ms; 10% decay rate) was applied, followed by an 8 V transfer pulse (pulse duration, 50 ms; 40 pulses for each polarity; interval 50 ms; 40% attenuation).
  • the cells were transferred to 4 mL of IMK medium and then incubated at 20 ° C. for 16-20 hours under a light intensity of 30 ⁇ mol photons m ⁇ 2 s ⁇ 1 to recover with non-selective medium.
  • Cells were collected by centrifugation (700 xg, over 4 minutes) and resuspended in IMK medium (0.2 mL). Transformed cells were selected on IMK agar plates containing 1% agar and nourseotricin (clonNat, WERNER BioAgents) (400 ⁇ g / mL).
  • Genomic DNA was isolated from wild type and transformed cells subcultured 2-3 times on selective media using a DNeasy Plant Mini Kit (Qiagen, Venlo, The Netherlands). The primer pairs listed in Table A above were also used for this analysis for PCR detection of integrated genes in isolated genomic DNA.
  • isolated genomic DNA was digested with EcoRI or BamHI, separated on a 1% agarose gel, and transferred onto Hybond NX membrane (GE Healthcare, Piscataway, NJ, USA) by capillary transfer. .
  • UV cross-linking of the DNA transferred onto the Hybond NX membrane was performed using UVP CL-1000 crosslinker (UVP Inc., Upland, CA, USA).
  • the digoxigenin labeling of the nat and lu cDNA probes, the hybridization between the probe and membrane-bound DNA, and the detection of the hybridization were performed according to the instructions using the DIG DNA Labeling and Detection Kit (Roche, Indianapolis, IN, USA). .
  • Reverse transcription (RT) -PCR was performed with PrimeScript TM RT reagent with gDNA Eraser (Takara Bio, Otsu, Japan) using the same primers used for genomic PCR analysis.
  • Green fluorescence of monomeric thistle green protein (mAG) in transformed diatom cells was analyzed with a BZ-9000 fluorescence microscope (Keyence, Osaka, Japan). The area containing cells was activated at 480 nm and fluorescence emission was detected at 510 nm.
  • Luciferase assays were performed using a luciferase assay kit (Promega, Madison, WI, USA) and a Lumat LB 9507 luminometer (Berthold, Oak Ridge, TN, USA). Luciferase activity was normalized by the protein concentration of the cell extract quantified using an Rc-Dc protein assay kit and a bovine serum albumin standard (Bio-Rad, Hercules, CA, USA).
  • the genes downstream of the isolated promoter encoded the following proteins (Table B above); four FCP proteins (Lhcr5, Lhcr14, Lhcf1 (CgLhcf1p_A and CgLhcf1p_B gene products), and Lhcf4), acetyl -CoA acetyltransferase (ACAT), long chain acetyl-CoA synthetase (ACSL), ⁇ -tubulin (bTublin), ATP synthase (ATPS), and nitrate reductase (NR).
  • ACAT acetyl -CoA acetyltransferase
  • ACSL long chain acetyl-CoA synthetase
  • bTublin ⁇ -tubulin
  • ATPS ATP synthase
  • NR nitrate reductase
  • Non-patent Document 2 Short multiple high voltage pulses (pored pulses) promote the formation of temporary holes in the cell membrane, followed by multiple multiple low voltage pulses (transfer pulses) that facilitate the delivery of DNA into the cell.
  • FIG. 3A shows antibiotic-resistant colony count / 10 8 transformed cells obtained using pUC vectors containing different promoters. Although multiple pulse electroporation was used, consistent with previous reports (Non-Patent Document 1), the pTpfcp / nat vector produced only a few antibiotic-resistant colonies. The remaining vector containing the promoter provided 100-400 antibiotic resistant colonies / 10 8 transformed cells.
  • the vector pCgLhcr5p / CgACATp-nat contains a constitutive promoter for the fucoxanthin chlorophyll a / c binding protein (fcp) gene, and the vector pCgNRp / CgACATp-nat is a nitrate reductase (NR) gene to drive transgene expression.
  • fcp fucoxanthin chlorophyll a / c binding protein
  • NR nitrate reductase
  • Both vectors had a second expression cassette, and the acetyl-CoA acetyltransferase (ACAT) promoter in the second expression cassette driven nat gene expression for antibiotic selection.
  • ACAT acetyl-CoA acetyltransferase
  • FIG. 5 (A) and 5 (B) show the results of genomic PCR and reverse transcription (RT) PCR analysis of four Lhcr5p-luc transformants (strains 1-4), in which the transgene Both (nat and luc) genomic insertion and mRNA expression were confirmed.
  • the psb31 gene which encodes the photosystem II membrane superficial subunit, was analyzed as a control.
  • the psb31 fragment size is different in genomic PCR (765 bp, including intron) and RT-PCR (566 bp in mature mRNA), suggesting that genomic DNA contamination in RT-PCR analysis is negligible, and the luc gene It was confirmed that mRNA and nat gene mRNA were certainly expressed in these strains.
  • the transgene copy number in the transgenic genome was analyzed by Southern blot analysis using the luc gene as a probe. Genomic DNA was digested with HindIII or BamHI. These have zero and one recognition site, respectively, in the linearized pCgLhcr5p-luc vector. The result shows that the introduced foreign DNA has incorporated at most only one or two copies into the chromosomal DNA (FIG. 5C), which helps to reduce the risk of unwanted insertional mutations. I suggested it would be.
  • a fluorescent protein green fluorescent protein, green coral Galaxidae-derived thistle green (AG) (Non-patent Document 3)
  • AG green coral Galaxidae-derived thistle green
  • a monomeric version of modified AG mAG is well suited for visualization of the intracellular localization of the fusion protein. As shown in FIG. 7, about 50% of the transformants having the transgene showed green fluorescence of mAG.
  • ⁇ Inducible expression of luciferase gene by NR promoter> By simply changing the nitrogen source in the culture medium, the promoter of the nitrate reductase gene is transferred to Cylindrotheca fusiformis and T. et al . It has been shown that it can be used to control the expression of transgenes in pseudona (Non-patent Documents 4 and 5).
  • C. Gracilis NR gene (CgNR) expression may be controlled by the same mechanism: induction is turned off in ammonium media and induced when growing in nitrate media.
  • one of the CgNRp-luc transformant strains was grown in f / 2 medium containing NH 4 Cl as a single nitrogen source and then Transferred to f / 2 medium containing NaNO 3 (FIG. 8).
  • the luc activity was induced after 60 minutes and increased more than 20 times the pre-induction value within 8 hours.
  • Example 2 Synthesis of ricinoleic acid A fatty acid 2-hydroxylase (CpFAH) gene derived from ergot fungus ( Claviceps purpurea NBRC6263 ) was incorporated into the multiple cloning site of the pCgLhcr5p vector to obtain pCgLhcr5p-CpFAH by multiple pulse electroporation . Introduced into Gracilis . The obtained transformants CpFAH-3 and CpFAH-4 were transformed into Daigo IMK culture medium (Nippon Pharmaceutical Co., Ltd.) supplemented with sea salt (Sigma, St. Louis, MO, USA) and 0.2 mM Na 2 SiO 3 . (Osaka, Japan) (50 mL) was cultured with shaking (100 rpm) at 20 ° C. under 50 ⁇ mol photon m ⁇ 2 s ⁇ 1 for 8 days.
  • CpFAH fatty acid 2-hydroxylase
  • FIG. 9 shows transgenic C. elegans transformed with pCgLhcr5-CpFAH .
  • the lipid analysis result of gracilis is shown.
  • ricinoleic acid was detected as the fourth largest peak.
  • FIG. 10 shows the MS profile of the CpFAH-4 strain.
  • FIG. 11 shows the RT-PCR results.
  • PCR enzyme KOD FX NEO (TOYOBO JAPAN) 25 cycles (10 seconds, 98 ° C .; 30 seconds, 55 ° C .; 20 seconds, 68 ° C.) Expected product length; 152 bp (CpFAH) and 168 bp ( ⁇ -tubulin) Size marker: 1 kb + ladder (Life Technologies Carlsbad, CA, USA)
  • FIG. 12 shows the amount of ricinoleic acid in the CpFAH-3 and CpFAH-4 strains. Ricinoleic acid accumulated to 0.2-0.3% (w / w) of dry cell weight.
  • FIG. 13 shows the main fatty acid composition of the CpFAH-3 and CpFAH-4 strains. Ricinoleic acid (18: 1-OH) was 4.8-6.7% of the total fatty acids in both CpFAH strains. 16: 1-OH was 1.0% of the total fatty acids in the CpFAH strain.
  • Example 3 An expression vector conferring zeocin resistance was constructed in the same manner as described above in ⁇ Construction of pCgLhcr5p vector (Registration number AB981621) and pCgNRp vector (Registration number AB981622)>. Specifically, in order to construct a second expression cassette for zeocin selection, a ble gene having BglII and NsiI sites at the 5′-end and 3′-end from the pPha-T1 vector (GenBank: AF219942.1) ( The gene) fragment conferring zeocin resistance was amplified by PCR.
  • This fragment was inserted into the BamHI-PstI site of the pUC118 vector containing the promoter region (626 bp) of the acetyl-CoA acetyltransferase (ACAT) gene and the terminator sequence of CgLhcr14 to create a second expression cassette.
  • This insertion destroys the BamHI-PstI site in the second expression cassette (BamHI / BglII and PstI / NsiI pairs create a common complementary end).
  • this second expression cassette was excised with SacI and HindIII and inserted into a nourseotricin resistant plasmid (pCgLhcf4p and pCgNRp) cleaved with the same restriction enzyme, thereby replacing the second expression cassette for zeocin selection.
  • a nourseotricin resistant plasmid pCgLhcf4p and pCgNRp
  • the C.I. When Gracilis was transformed, it was found to have a transformation efficiency (> 100 transformants / 10 8 cells) equivalent to the nourseotricin resistant plasmid.
  • a map of a zeocin resistant plasmid C. gracilis transformation vector in which restriction enzyme cleavage sites are described is shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 The invention provides a novel promoter for transforming algae (e.g., diatoms) having a base sequence of SEQ ID NOS: 1-10 or a base sequence having 80% or higher homology with base this sequence, a novel transformation vector including this promoter, and a method for transforming algae using this vector.

Description

珪藻の新規形質転換ベクターおよびその含有する新規プロモーター配列A novel diatom transformation vector and a novel promoter sequence contained therein
 本発明は藻類を形質転換するための、新規プロモーター、当該プロモーターを含むベクター、および当該ベクターを用いる藻類の形質転換方法に関するものである。 The present invention relates to a novel promoter for transforming algae, a vector containing the promoter, and a method for transforming algae using the vector.
 藻類の1つである海洋性珪藻は、いわゆる黄色植物と呼ばれるグループに属する単細胞真核生物である。珪藻は世界のCO固定量の20-40%程度を担うとも見積もられており、一次生産者として地球環境に極めて重要な生物群である。珪藻類は、EPA(エイコサペンタエン酸)に代表されるような、人間にとって有用な油脂などを合成する生物でもある。一般に、生物を工業的に利用するには、形質転換技術が用いられるが、藻類の形質転換効率は低いことが知られている。形質転換効率を上げるべく、種々の研究がなされているものの、依然としてその形質転換方法は限定的である。特に、海洋性中心目珪藻の1つであるツノケイソウについては、その遺伝子導入方法が研究されているがその形質転換効率は低い。Thalassiosira pseudonana由来プロモーター含有Tpfcp/natプラスミドを用いたChaetoceros sp.の形質転換では、形質転換効率は1.5~6形質転換体/10細胞と非常に低く、しかも導入遺伝子の発現は検出されなかった(非特許文献1)。 Marine diatoms, one of the algae, are unicellular eukaryotes belonging to a group called so-called yellow plants. Diatoms are estimated to be responsible for about 20-40% of the world's CO 2 fixation, and are extremely important organisms for the global environment as primary producers. Diatoms are organisms that synthesize fats and oils useful for humans, such as EPA (eicosapentaenoic acid). In general, transformation techniques are used for industrial use of living organisms, but it is known that the transformation efficiency of algae is low. Although various studies have been made to increase the transformation efficiency, the transformation method is still limited. In particular, for the horned diatom, which is one of the marine diatoms, its gene introduction method has been studied, but its transformation efficiency is low. Chaetoceros sp. Using a Tpfcp / nat plasmid containing a promoter derived from Thalassiosira pseudona . In this transformation, the transformation efficiency was as low as 1.5 to 6 transformants / 10 8 cells, and no transgene expression was detected (Non-patent Document 1).
 本発明は、藻類(例えば、珪藻)を形質転換するための新規プロモーター、それを含有する新規形質転換ベクター、およびそのベクターを用いる藻類の形質転換方法を提供することを目的とする。 An object of the present invention is to provide a novel promoter for transforming algae (for example, diatom), a novel transformation vector containing the promoter, and a method for transforming algae using the vector.
 本発明者らは、上記課題を解決すべく検討した結果、Chaetoceros gracilisで高発現している遺伝子のプロモーターが、藻類(例えば、珪藻)を極めて効率的に形質転換できることを見出し、本発明を完成した。 As a result of investigations to solve the above problems, the present inventors have found that a promoter of a gene highly expressed in Chaetoceros gracilis can transform algae (for example, diatoms) extremely efficiently, and completed the present invention. did.
 本発明は、下記:
(1)配列番号1~10いずれかの塩基配列からなるポリヌクレオチド;
(2)配列番号1~10いずれかの塩基配列に対して80%以上の相同性を有し、かつ藻類に目的遺伝子の発現をもたらすプロモーターとして機能するポリヌクレオチド;
(3)配列番号1~10いずれかの塩基配列に対して1個または数個の塩基が付加、欠失および/または置換された塩基配列を有し、かつ藻類に目的遺伝子の発現をもたらすプロモーターとして機能するポリヌクレオチド;
を提供する。なお、本明細書において上記(1)~(3)のポリヌクレオチドを、本発明にかかるプロモーター配列、または本発明のプロモーター配列と称する場合がある。
The present invention includes the following:
(1) a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 10;
(2) a polynucleotide having a homology of 80% or more with respect to any one of the nucleotide sequences of SEQ ID NOS: 1 to 10 and functioning as a promoter that causes algae to express a target gene;
(3) a promoter having a base sequence in which one or several bases are added, deleted, and / or substituted to any one of SEQ ID NOS: 1 to 10 and causing algae to express a target gene A polynucleotide that functions as:
I will provide a. In the present specification, the polynucleotides (1) to (3) may be referred to as the promoter sequence according to the present invention or the promoter sequence according to the present invention.
 本発明は、上記ポリヌクレオチドを含むベクターを提供する。 The present invention provides a vector containing the polynucleotide.
 本発明は、
 上記ポリヌクレオチドおよびターミネーター配列を含む第1発現カセット;または
 上記ポリヌクレオチド、薬剤耐性遺伝子およびターミネーター配列を含む第2発現カセット;を含む、あるいは、これらの両方の発現カセット含むベクターを提供する。
The present invention
Provided is a vector comprising a first expression cassette comprising the polynucleotide and terminator sequences; or a second expression cassette comprising the polynucleotide, drug resistance gene and terminator sequences; or comprising both of these expression cassettes.
 本発明は、上記ベクターを宿主藻類細胞へ導入することを特徴とする、藻類の形質転換方法を提供する。 The present invention provides a method for transforming algae, characterized by introducing the above vector into a host algal cell.
 さらに本発明は、上記ポリヌクレオチドおよび脂肪酸ヒドロキシラーゼ遺伝子(例えば脂肪酸2-ヒドロキシラーゼ遺伝子、より具体的にはオレイン酸12-ヒドロキシラーゼ遺伝子)を含むベクターを宿主藻類細胞へ導入して形質転換体を得、当該形質転換体を培養することによってリシノール酸を得ることを特徴とする、リシノール酸の製造方法を提供する。 Furthermore, the present invention provides a transformant by introducing a vector containing the above-mentioned polynucleotide and a fatty acid hydroxylase gene (eg, fatty acid 2-hydroxylase gene, more specifically, oleic acid 12-hydroxylase gene) into a host algal cell. The present invention provides a method for producing ricinoleic acid, characterized in that ricinoleic acid is obtained by culturing the transformant.
 本発明にかかるプロモーター配列は、藻類(例えば、珪藻)を効率的に形質転換し得る。 The promoter sequence according to the present invention can efficiently transform algae (for example, diatom).
C.gracilisの増殖に対するノウルセオトリシン(NTC)の影響 細胞を種々の濃度の抗生物質を含有するIMK培地でOD700=0.07にて継代培養し、連続的光照射(30μmol光子m-2-1)下、20℃で28日増殖させた。 C. Effect of Knowluseotricin (NTC) on Gracilis Growth Cells were subcultured in IMK medium containing various concentrations of antibiotics at OD700 = 0.07 and continuously irradiated (30 μmol photon m −2 s − 1 ) The cells were grown at 20 ° C. for 28 days. 多重パルスエレクトロポレーションのパルス計画の説明 マルティプル高電圧ポアリングパルス(P.P.:9パルス、300V、5ms継続、25msインターバル、10%減衰率)は、細胞膜に一時的な孔の形成を促進し、その後のマルティプル低電圧トランスファーパルス(T.P.:各極性について40パルス、8V、50ms継続、50msインターバル、40%減衰率)は細胞内部へのDNAの導入を促進する。Multiple pulse electroporation pulse plan explanation Multiple high-voltage poreing pulses (PP: 9 pulses, 300 V, 5 ms duration, 25 ms interval, 10% decay rate) promote the formation of temporary pores in the cell membrane The subsequent multiple low voltage transfer pulse (TP: 40 pulses for each polarity, 8 V, 50 ms duration, 50 ms interval, 40% decay rate) facilitates the introduction of DNA into the cell. ノウルセオトリシン耐性遺伝子(nat)発現を駆動する種々のプロモーターを含有するpUCベクターを用いたC.gracilis細胞の形質転換効率 400μg/mLノウルセオトリシン含有IMK寒天プレートで形質転換細胞を選択した。エラーバーは±SE(n=3~7)を示す。従来のベクター(左端)に比べ、今回単離したプロモーターは、100~200倍の形質転換効率を示した。 C. using pUC vectors containing various promoters that drive the expression of the nourseotricin resistance gene (nat) . Transformation efficiency of gracilis cells Transformed cells were selected on IMK agar plates containing 400 μg / mL nourseotricin. Error bars indicate ± SE (n = 3-7). Compared with the conventional vector (left end), the promoter isolated this time showed a transformation efficiency of 100 to 200 times. 選択培地上のノウルセオトリシン耐性形質転換体のコロニーColonies of nourseotiricin resistant transformants on selective media 制限酵素切断部位が記されたC.gracilis形質転換ベクターのマップ-Lhcr5(fcp遺伝子)のプロモーター-ノウルセオトリシン耐性遺伝子(nat) Lhcr5(fcp遺伝子)、Lhcf4(fcp遺伝子)、硝酸レダクターゼ遺伝子(NR)、およびアセチル‐CoAアセチルトランスフェラーゼ遺伝子(ACAT)のプロモーターをそれぞれ、外来性遺伝子用クローニング部位の直前に設置した。ベクター中、構成的ACATプロモーターは、ノウルセオトリシン耐性遺伝子(nat)の発現を駆動する。Lhcr14遺伝子のターミネーターを両発現カセットの末端に設置した。HindIII部位またはEcoRI部位は形質転換のためにベクターを直鎖化するために使用することができる。 当該構築物はまた、アンピシリン耐性遺伝子(AmpR)およびEscherichia coliの複製起点を含有する。 C. with restriction enzyme cleavage site marked . Gracilis transformation vector map-Lhcr5 (fcp gene) promoter-Nourseotricin resistance gene (nat) Lhcr5 (fcp gene), Lhcf4 (fcp gene), nitrate reductase gene (NR), and acetyl-CoA acetyltransferase gene ( Each ACAT promoter was placed immediately before the foreign gene cloning site. In the vector, the constitutive ACAT promoter drives expression of the nourseotricin resistance gene (nat). A terminator for the Lhcr14 gene was placed at the end of both expression cassettes. A HindIII site or EcoRI site can be used to linearize the vector for transformation. The construct also contains an ampicillin resistance gene (AmpR) and an Escherichia coli origin of replication. 制限酵素切断部位が記されたC.gracilis形質転換ベクターのマップ-硝酸レダクターゼ遺伝子(NR)のプロモーター-ノウルセオトリシン耐性遺伝子(nat) C. with restriction enzyme cleavage site marked . Gracilis Transformation Vector Map-Nitrate Reductase Gene (NR) Promoter-Nourseotricin Resistance Gene (nat) 制限酵素切断部位が記されたC.gracilis形質転換ベクターのマップ-Lhcf4(fcp遺伝子)のプロモーター-ノウルセオトリシン耐性遺伝子(nat) C. with restriction enzyme cleavage site marked . Gracilis transformation vector map-Lhcf4 (fcp gene) promoter-Nourseotricin resistance gene (nat) 制限酵素切断部位が記されたC.gracilis形質転換ベクターのマップ-アセチル‐CoAアセチルトランスフェラーゼ遺伝子(ACAT)のプロモーター-ノウルセオトリシン耐性遺伝子(nat) C. with restriction enzyme cleavage site marked . Gracilis transformation vector map-acetyl-CoA acetyltransferase gene (ACAT) promoter-nourseotricin resistance gene (nat) トランスジェニックC.gracilis細胞における導入遺伝子の組込みおよびmRNA発現(A) pCgLhcr5p-lucで形質転換されたトランスジェニックC.gracilis株中のnat、luc、およびpsb31遺伝子のPCR増幅 野生型(WT)および4つのノウルセオトリシン耐性クローンから単離したゲノムDNAを鋳型DNAとして使用した。M:100bpサイズラダーマーカー(B)各遺伝子のmRNA発現を示すRT-PCR分析(C)ゲノムサザンブロット分析 総ゲノムDNA(5μg)をEcoRI(左)またはBamHI(右)で切断し、1%アガロースゲルで分離して、ナイロン膜にブロットした。ルシフェラーゼコード領域用のジゴキシゲニン(DIG)標識DNAプローブを用いて、導入遺伝子を含むDNAフラグメントを検出した。Transgenic C.I. Transgene integration and mRNA expression in Gracilis cells (A) Transgenic C. elegans transformed with pCgLhcr5p-luc . PCR amplification of nat, luc and psb31 genes in Gracilis strains Genomic DNA isolated from wild type (WT) and four nourseotricin resistant clones was used as template DNA. M: 100 bp size ladder marker (B) RT-PCR analysis showing mRNA expression of each gene (C) Genomic Southern blot analysis Total genomic DNA (5 μg) was cleaved with EcoRI (left) or BamHI (right) and 1% agarose The gel was separated and blotted onto a nylon membrane. A DNA fragment containing the transgene was detected using a digoxigenin (DIG) labeled DNA probe for the luciferase coding region. 繰り返し継代培養を重ねた場合のルシフェラーゼ活性の安定性 トランスジェニックLhcr5p-luc細胞(株2)を、ノウルセオトリシンの存在下(黒)または非存在下(白)で、1週間サイクルで継代培養した。 ノウルセオトリシンの存在下での第1回目の継代培養の活性を100%とした。Stability of luciferase activity after repeated subcultures Transgenic Lhcr5p-luc cells (strain 2) are subcultured in a one-week cycle in the presence (black) or absence (white) of nourseotricin Cultured. The activity of the first subculture in the presence of nourseotricine was defined as 100%. Lhcr5プロモーターの制御下で単量体アザミグリーンタンパク質(mAG)を発現するトランスジェニックC.gracilis細胞の光学顕微鏡写真(A)および蛍光顕微鏡写真(B) mAGタンパク質の存在は、緑色蛍光により示された。 スケールバーは10μmである。Transgenic C. expressing monomeric thistle green protein (mAG) under the control of the Lhcr5 promoter . Light micrograph (A) and fluorescence micrograph (B) of gracilis cells The presence of mAG protein was indicated by green fluorescence. The scale bar is 10 μm. 硝酸レダクターゼ遺伝子(NR)のプロモーター制御下でのルシフェラーゼ(luc)活性の誘導 pCgNRp-lucで形質転換したC.gracilisのトランスジェニック細胞株をアンモニウム培地で培養し、硝酸培地(NO )または新しいアンモニウム培地(NH4)に移した。x軸は培地交換後の時間を示す。a.u.:任意単位エラーバーは±SE(n=3)を示す。Induction of luciferase (luc) activity under the control of the nitrate reductase gene (NR) promoter C. cerevisiae transformed with pCgNRp-luc . Gracilis transgenic cell lines were cultured in ammonium medium and transferred to nitrate medium (NO 3 ) or fresh ammonium medium (NH 4 + ). The x-axis shows the time after medium change. a. u. : Arbitrary unit error bar indicates ± SE (n = 3). pCgLhcr5-CpFAHで形質転換したトランスジェニックC.gracilisの脂質分析Transgenic C. transformed with pCgLhcr5-CpFAH . Gracilis lipid analysis CpFAH-4株のMSプロファイルMS profile of CpFAH-4 strain CpFAH-4株のMSプロファイルMS profile of CpFAH-4 strain CpFAH-4株のMSプロファイルMS profile of CpFAH-4 strain CpFAH-4株のMSプロファイルMS profile of CpFAH-4 strain RT-PCR結果RT-PCR results CpFAH-3株およびCpFAH-4株のリシノール酸の量 リシノール酸は、乾燥細胞重量の0.2~0.3%(w/w)にまで蓄積した。Amount of ricinoleic acid in CpFAH-3 strain and CpFAH-4 strain Ricinoleic acid accumulated to 0.2 to 0.3% (w / w) of dry cell weight. C.gracilisのLhcr5p-CpFAH株の主な脂肪酸組成 リシノール酸(18:1-OH):CpFAH株中の総脂肪酸の4.8~6.7% 16:1-OH:CpFAH株中の総脂肪酸の1.0% C. Major fatty acid composition of Lacr5p-CpFAH strain of gracilis ricinoleic acid (18: 1-OH): 4.8-6.7% of total fatty acids in CpFAH strain 16: 1-OH: 1 of total fatty acids in CpFAH strain .0% 制限酵素切断部位が記されたC.gracilis形質転換ベクターのマップ-Lhcf4(fcp遺伝子)のプロモーター-ゼオシン耐性遺伝子(ble) C. with restriction enzyme cleavage site marked . Gracilis transformation vector map-Lhcf4 (fcp gene) promoter-Zeocin resistance gene (ble) 制限酵素切断部位が記されたC.gracilis形質転換ベクターのマップ-硝酸レダクターゼ遺伝子(NR)のプロモーター-ゼオシン耐性遺伝子(ble) C. with restriction enzyme cleavage site marked . Gracilis transformation vector map-nitrate reductase gene (NR) promoter-zeocin resistance gene (ble)
 本発明のプロモーター配列
 本発明において、プロモーター配列とは、藻類細胞、例えば珪藻類、特にツノケイソウ類細胞において、その下流に配置された任意の目的遺伝子の発現を制御し得る配列を意味する。
Promoter sequence of the present invention In the present invention, the promoter sequence means a sequence capable of controlling the expression of any target gene located downstream in an algal cell, for example, a diatom, particularly a hornwort cell.
 本発明のプロモーター配列は、Chaetoceros gracilisで高発現している遺伝子の上流に位置する非コード領域を構成するポリヌクレオチドを、当該技術分野に一般的な方法、例えば、ドラフト解析およびRNAシークエンシング分析を行うことによって、探索することができる。 The promoter sequence of the present invention is obtained by subjecting a polynucleotide constituting a non-coding region located upstream of a gene highly expressed in Chaetoceros gracilis to a method generally used in the art, such as draft analysis and RNA sequencing analysis. You can search by doing it.
 Chaetoceros gracilisで高発現している遺伝子の上流に位置する非コード領域を構成するポリヌクレオチドには、例えば、下記の配列が挙げられる:
CgLhcr14p  (配列番号1);
CgACATp    (配列番号2);
CgLhcr5p   (配列番号3);
CgACSLp    (配列番号4);
CgNRp      (配列番号5);
CgbTublinp (配列番号6);
CgATPSp    (配列番号7);
CgLhcf4p   (配列番号8);
CgLhcf1p_A (配列番号9);
CgLhcf1p_B (配列番号10)。
Examples of the polynucleotide constituting the non-coding region located upstream of the gene highly expressed in Chaetoceros gracilis include the following sequences:
CgLhcr14p (SEQ ID NO: 1);
CgACATp (SEQ ID NO: 2);
CgLhcr5p (SEQ ID NO: 3);
CgACSLp (SEQ ID NO: 4);
CgNRp (SEQ ID NO: 5);
CgbTublinp (SEQ ID NO: 6);
CgATPSp (SEQ ID NO: 7);
CgLhcf4p (SEQ ID NO: 8);
CgLhcf1p_A (SEQ ID NO: 9);
CgLhcf1p_B (SEQ ID NO: 10).
 本発明のプロモーター配列には、(1)配列番号1~10いずれかの塩基配列からなるポリヌクレオチドが挙げられる The promoter sequence of the present invention includes (1) a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 10.
 本発明のプロモーター配列には、(2)配列番号1~10いずれかの塩基配列に対して80%以上、90%以上、95%以上、97%、または99%以上の相同性を有し、かつ藻類に目的遺伝子の発現をもたらすプロモーターとして機能するポリヌクレオチドが挙げられる。 The promoter sequence of the present invention has (2) 80% or more, 90% or more, 95% or more, 97%, or 99% or more homology to any one of SEQ ID NOS: 1 to 10, Furthermore, a polynucleotide that functions as a promoter that brings about expression of a target gene in algae can be mentioned.
 本発明のプロモーター配列には、(3)配列番号1~10いずれかの塩基配列に対して1個または数個(1以上100以下が好ましく、1以上50以下がより好ましく、1以上30以下がさらに好ましく、1以上10以下がさらに好ましく、1以上5以下が特に好ましい)の塩基配列が付加、欠失および/または置換された塩基配列を有し、かつ藻類に目的遺伝子の発現をもたらすプロモーターとして機能するポリヌクレオチドが挙げられる。 The promoter sequence of the present invention includes (3) one or several of the nucleotide sequences of SEQ ID NOS: 1 to 10 (preferably 1 to 100, preferably 1 to 50, more preferably 1 to 30). More preferably, 1 to 10 or less is more preferable, and 1 to 5 or less is particularly preferable. As a promoter having an added, deleted and / or substituted base sequence and causing algae to express the target gene Examples include functional polynucleotides.
 本発明のプロモーター配列は、当該技術分野に一般的な方法、例えば、Chaetoceros gracilisで高発現している遺伝子の上流から分離することにより入手することができ、PCR法により増幅して使用することができる。あるいは化学的に合成しても良い。 The promoter sequence of the present invention can be obtained by a method generally used in the art, for example, by separating from the upstream of a gene highly expressed in Chaetoceros gracilis , and can be amplified and used by PCR method. it can. Or you may synthesize | combine chemically.
 「目的遺伝子」は、生産の望まれるタンパク質をコードする遺伝子であって、特に限定されない。 The “target gene” is a gene encoding a protein desired to be produced, and is not particularly limited.
 本発明のベクター
 本発明は、上記プロモーター配列を含むベクターを提供する。
 本発明のベクターは、本願発明に係るプロモーター配列を1またはそれ以上(例えば1~5個、1~3個、1または2個)含んでいてもよい。
 ベクターの種類は、藻類細胞へ導入され得るものであれば特に限定されない。例えば、プラスミドベクター、ファージベクター、およびコスミドベクターなどのベクターが挙げられ、好ましくはプラスミドベクターが挙げられる。
Vector of the present invention The present invention provides a vector comprising the above promoter sequence.
The vector of the present invention may contain one or more promoter sequences (for example, 1 to 5, 1 to 3, 1 or 2) according to the present invention.
The type of vector is not particularly limited as long as it can be introduced into algal cells. For example, vectors such as a plasmid vector, a phage vector, and a cosmid vector are preferable, and a plasmid vector is preferable.
 本発明のベクターは任意の目的遺伝子を導入するのに用いられる。目的遺伝子としては、例えばリシノール酸合成酵素などが挙げられる。 The vector of the present invention can be used to introduce any desired gene. Examples of the target gene include ricinoleic acid synthase.
 本発明のベクターには、本発明のプロモーター配列によって発現が制御されうる任意の薬剤耐性遺伝子を含んでいてもよい。例えば、形質転換体を選択するための薬剤耐性遺伝子(例えば、ノウルセオトリシン耐性遺伝子、アンピシリン耐性遺伝子、カナマイシン耐性遺伝子、ネオマイシン耐性遺伝子、ゼオシン耐性遺伝子、クロラムフェニコール耐性遺伝子、エリスロマイシン耐性遺伝子)が挙げられる。複数の薬剤耐性を用いた選抜は、宿主細胞への遺伝子の多重導入に使用されうる。 The vector of the present invention may contain any drug resistance gene whose expression can be controlled by the promoter sequence of the present invention. For example, drug resistance genes for selecting transformants (for example, nourseotricin resistance gene, ampicillin resistance gene, kanamycin resistance gene, neomycin resistance gene, zeocin resistance gene, chloramphenicol resistance gene, erythromycin resistance gene) Can be mentioned. Selection using multiple drug resistances can be used for multiple introductions of genes into host cells.
 本発明のベクターは、一般的なベクターに含まれるその他の配列を含んでいてもよい。例えば、目的遺伝子の発現を調節するオペレーター、ターミネーター、エンハンサーなどのいわゆる調節配列を含んでいてもよい。さらに、本発明とは異なるプロモーターやそれに制御される遺伝子(例えば薬剤耐性遺伝子)などを含んでいてもよい。 The vector of the present invention may contain other sequences included in general vectors. For example, it may contain a so-called regulatory sequence such as an operator, terminator, enhancer or the like that regulates the expression of the target gene. Furthermore, a promoter different from the present invention and a gene controlled by the promoter (for example, drug resistance gene) may be included.
 本発明のベクターは、当業者に周知の方法によって作成することができる。例えば、適切な制限酵素部位を設けたプライマーを用いて本発明のプロモーター配列を増幅し、制限酵素で切断したドナーベクターに挿入することによって得られる。あるいはIn-Fusion(商標)反応を用いる方法によっても作成することができる。 The vector of the present invention can be prepared by methods well known to those skilled in the art. For example, it can be obtained by amplifying the promoter sequence of the present invention using a primer provided with an appropriate restriction enzyme site and inserting it into a donor vector cut with a restriction enzyme. Alternatively, it can be prepared by a method using an In-Fusion (trademark) reaction.
 本発明のプロモーター配列はその下流にターミネーター配列が組み込まれた発現カセットとしてドナーベクターに導入してもよい。プロモーター配列とターミネーター配列の間に目的遺伝子が組み込まれていても良い。
 目的遺伝子を挿入するために、プロモーター配列とターミネーター配列の間には、制限酵素の切断部位が複数存在する多重クローニング部位が存在することが望ましい。
 本発明におけるターミネーター配列は藻類細胞で機能するものであれば特に限定されないが、例えばCgLhcr14のターミネーター配列:CgLhcr14ter(配列番号11)が挙げられる。
The promoter sequence of the present invention may be introduced into a donor vector as an expression cassette having a terminator sequence incorporated downstream thereof. The target gene may be incorporated between the promoter sequence and the terminator sequence.
In order to insert the target gene, it is desirable that a multiple cloning site having a plurality of restriction enzyme cleavage sites exists between the promoter sequence and the terminator sequence.
The terminator sequence in the present invention is not particularly limited as long as it functions in algal cells, and examples thereof include CgLhcr14 terminator sequence: CgLhcr14ter (SEQ ID NO: 11).
 本発明において、発現カセットとは:
 プロモーター配列とターミネーター配列を少なくとも含む核酸構築物;
 プロモーター配列と目的遺伝子を少なくとも含む核酸構築物;または
 プロモーター配列、目的遺伝子、およびターミネーター配列を少なくとも含む核酸構築物;
を意味し、イントロン、スペーサー配列、エンハンサー配列等を含んでいてもよい。
In the present invention, the expression cassette is:
A nucleic acid construct comprising at least a promoter sequence and a terminator sequence;
A nucleic acid construct comprising at least a promoter sequence and a gene of interest; or a nucleic acid construct comprising at least a promoter sequence, a gene of interest and a terminator sequence;
And may contain introns, spacer sequences, enhancer sequences and the like.
 本発明のベクターは:
 プロモーター配列およびターミネーター配列を含む第1発現カセット;または
 プロモーター配列、薬剤耐性遺伝子およびターミネーター配列を含む第2発現カセット;を有していてもよく、あるいは、これらの両方を有していてもよい。
 第1発現カセットは目的遺伝子を挿入するために使用され得る。あるいは、第1発現カセットには目的遺伝子が挿入されていてもよい。
 第2発現カセットは形質転換体を選定するために使用され得る。
The vectors of the present invention are:
A first expression cassette comprising a promoter sequence and a terminator sequence; or a second expression cassette comprising a promoter sequence, a drug resistance gene and a terminator sequence, or both.
The first expression cassette can be used to insert a gene of interest. Alternatively, the target gene may be inserted into the first expression cassette.
The second expression cassette can be used to select transformants.
 本発明において、第1発現カセットとしては、本願発明に係るプロモーター配列(例えば、CgLhcr14p;CgACATp;CgLhcr5p;CgACSLp;CgNRp;CgbTublinp;CgATPSp;CgLhcf4p;CgLhcf1p_A;もしくはCgLhcf1p_B、またはそれらと80%以上の相同性を有するポリヌクレオチド)とその下流に組み込まれたターミネーター配列(例えばCgLhcr14ter)を含む発現カセットが挙げられる。 In the present invention, the first expression cassette is a promoter sequence according to the present invention (for example, CgLhcr14p; CgACATp; CgLhcr5p; CgACSLp; CgNRp; CgbTublinp; CgATPSp; CgLhcf4p; CgLhcf1p_A; And an expression cassette containing a terminator sequence (for example, CgLhcr14ter) incorporated downstream thereof.
 本発明において、第2発現カセットとしては、本願発明に係るプロモーター配列(例えば、CgLhcr14p;CgACATp;CgLhcr5p;CgACSLp;CgNRp;CgbTublinp;CgATPSp;CgLhcf4p;CgLhcf1p_A;もしくはCgLhcf1p_B、またはそれらと80%以上の相同性を有するポリヌクレオチド)、その下流に組み込まれたターミネーター配列(例えばCgLhcr14ter)、およびプロモーター配列とターミネーター配列の間に組み込まれた薬剤耐性遺伝子(例えばnat、ble)を含む発現カセットが挙げられる。 In the present invention, the second expression cassette includes a promoter sequence according to the present invention (for example, CgLhcr14p; CgACATp; CgLhcr5p; CgACSLP; CgNRp; CgbTublinp; CgATPSp; CgLhcf4p; CgLhcf1p_A; And an expression cassette comprising a terminator sequence (eg, CgLhcr14ter) incorporated downstream thereof, and a drug resistance gene (eg, nat, ble) incorporated between the promoter sequence and the terminator sequence.
 形質転換方法
 本発明は、上記ベクターを宿主藻類細胞へ導入することを特徴とする、藻類の形質転換方法を提供する。
Transformation Method The present invention provides a method for transforming algae, which comprises introducing the vector into a host algal cell.
 宿主藻類細胞に本発明のベクターを導入するには、当業者に周知の方法を用いることができ、例えば、パーティクルガン法、ガラスビーズ攪拌法、マイクロインジェクション法、アグロバクテリウム法、酢酸リチウム法、リン酸カルシウム法、プロトプラスト法、多重パルスエレクトロポレーション法などの方法が挙げられる。 In order to introduce the vector of the present invention into host algae cells, methods well known to those skilled in the art can be used. For example, particle gun method, glass bead stirring method, microinjection method, Agrobacterium method, lithium acetate method, Examples of the method include a calcium phosphate method, a protoplast method, and a multiple pulse electroporation method.
 本発明の方法に使用する宿主は、藻類細胞であれば特に限定されない。好ましい宿主藻類細胞の例は、珪藻類(例えば中心目珪藻または羽状目珪藻)およびその変異体が挙げられ、好ましくはツノケイソウおよびその変異体、より好ましくはChaetoceros gracilisおよびその変異体が挙げられる。 The host used in the method of the present invention is not particularly limited as long as it is an algal cell. Examples of preferred host algae cells include diatoms (e.g., central diatoms or pterygium diatoms) and variants thereof, preferably hornflower and variants thereof, more preferably Chaetoceros gracilis and variants thereof.
 本発明の方法において、目的遺伝子が宿主細胞中の、染色体、プラスミド、プラスチドもしくはミトコンドリアDNAに組み込まれた状態で宿主細胞に保持されることによって、宿主細胞を形質転換することができる。 In the method of the present invention, the host cell can be transformed by being retained in the host cell in a state in which the target gene is incorporated into the chromosome, plasmid, plastid or mitochondrial DNA in the host cell.
 培養
 形質転換体の培養条件は、宿主藻類細胞、プロモーター配列、目的遺伝子に基づいて適宜選択することができる。
 形質転換体の培養は、振とう培養、連続培養等の通常の培養方法を用いて行うことができる。培養条件は、培養方法等により適宜選択すればよい。
Culture The culture conditions of the transformant can be appropriately selected based on the host algal cell, the promoter sequence, and the target gene.
The transformant can be cultured using a normal culture method such as shaking culture or continuous culture. The culture conditions may be appropriately selected depending on the culture method and the like.
 リシノール酸の製造方法
 さらに本発明は、本発明にかかるプロモーター配列および脂肪酸ヒドロキシラーゼ遺伝子を含むベクターを宿主藻類細胞へ導入して形質転換体を得、当該形質転換体を培養することによってリシノール酸を得ることを特徴とする、リシノール酸の製造方法を提供する。
 リシノール酸は炭素数18のω-9脂肪酸の一価不飽和脂肪酸であり、C12位にヒドロキシル基を持つ。リシノール酸は、脂肪酸ヒドロキシラーゼ(例えば脂肪酸2-ヒドロキシラーゼ、より具体的にはオレイン酸12-ヒドロキシラーゼ)により、炭素数18のω-9脂肪酸の一価不飽和脂肪酸であるオレイン酸の12位にヒドロキシル基が付加されることによって、合成される。
Figure JPOXMLDOC01-appb-C000001
A method for producing ricinoleic acid Further, the present invention provides a transformant by introducing a vector containing the promoter sequence and fatty acid hydroxylase gene according to the present invention into a host algal cell, and cultivating the transformant to obtain ricinoleic acid. A method for producing ricinoleic acid is provided.
Ricinoleic acid is a monounsaturated fatty acid having 18 carbon atoms and a hydroxyl group at the C12 position. Ricinoleic acid is a fatty acid hydroxylase (for example, fatty acid 2-hydroxylase, more specifically oleic acid 12-hydroxylase), which is the 12th position of oleic acid, which is a monounsaturated fatty acid of ω-9 fatty acid having 18 carbon atoms. Is synthesized by adding a hydroxyl group.
Figure JPOXMLDOC01-appb-C000001
 脂肪酸ヒドロキシラーゼ遺伝子には、例えば、麦角菌(Claviceps purpurea)NBRC6263株由来の脂肪酸2-ヒドロキシラーゼ(オレイン酸12-ヒドロキシラーゼ)遺伝子(CpFAH(配列番号12))が挙げられる。当該CpFAHと80%以上、90%以上、95%以上、または97%以上の相同性を有する塩基配列からなり、かつ脂肪酸ヒドロキシラーゼ活性を有するタンパク質をコードする遺伝子も、本願発明の脂肪酸ヒドロキシラーゼ遺伝子に含まれる。
 藻類は全般的にオレイン酸生合成能を有することが知られている。リシノール酸の製造において、藻類細胞であれば宿主は特に限定されない。好ましい宿主藻類細胞の例は、珪藻類(例えば中心目珪藻または羽状目珪藻)およびその変異体が挙げられ、好ましくはツノケイソウおよびその変異体、より好ましくはChaetoceros gracilisおよびその変異体が挙げられる。
 リシノール酸を合成するための培地としては、形質転換体を培養することによってリシノール酸が合成される培地であれば特に限定されない。
 宿主細胞が珪藻である場合には、珪藻が生育可能な一般的な培地であればよい。
 培養温度はリシノール酸が産生される温度であれば特に限定されない。例えば、宿主細胞が珪藻(例えばツノケイソウ)である場合には、15~35℃が好ましく、18~25℃がより好ましい。
 宿主が海洋性珪藻類である場合、培地の例として、海塩および0.2mM NaSiOを補充したダイゴIMK培養培地が挙げられる。
 宿主が海洋性珪藻類である場合、培養条件として、50μmol光子m-2-1下、振とう培養が挙げられる。
Examples of the fatty acid hydroxylase gene include a fatty acid 2-hydroxylase (oleic acid 12-hydroxylase) gene (CpFAH (SEQ ID NO: 12)) derived from Claviceps purpurea NBRC6263 strain. The fatty acid hydroxylase gene of the present invention is also a gene encoding a protein having a nucleotide sequence having homology of 80% or more, 90% or more, 95% or more, or 97% or more with the CpFAH and having fatty acid hydroxylase activity. include.
Algae are generally known to have the ability to biosynthesize oleic acid. In the production of ricinoleic acid, the host is not particularly limited as long as it is an algal cell. Examples of preferred host algae cells include diatoms (e.g., central diatoms or pterygium diatoms) and variants thereof, preferably hornflower and variants thereof, more preferably Chaetoceros gracilis and variants thereof.
The medium for synthesizing ricinoleic acid is not particularly limited as long as it is a medium in which ricinoleic acid is synthesized by culturing the transformant.
When the host cell is diatom, it may be a general medium in which diatom can grow.
The culture temperature is not particularly limited as long as it is a temperature at which ricinoleic acid is produced. For example, when the host cell is a diatom (for example, hornflower), it is preferably 15 to 35 ° C, more preferably 18 to 25 ° C.
When the host is marine diatom, an example of the medium is Daigo IMK culture medium supplemented with sea salt and 0.2 mM Na 2 SiO 3 .
When the host is a marine diatom, the culture conditions include shaking culture under 50 μmol photon m −2 s −1 .
 下表に本発明のプロモーター配列の例:配列番号1~10を示す。 The following table shows examples of promoter sequences of the present invention: SEQ ID NOS: 1 to 10.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 下表にCgLhcr14のターミネーター配列:CgLhcr14ter(配列番号11)を示す。 The following table shows the terminator sequence of CgLhcr14: CgLhcr14ter (SEQ ID NO: 11).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 下表に麦角菌(Claviceps purpurea NBRC6263)由来の脂肪酸2-ヒドロキシラーゼ遺伝子(CpFAH)(配列番号12)を示す。 The table below shows the fatty acid 2-hydroxylase gene (CpFAH) (SEQ ID NO: 12) derived from ergot fungus ( Claviceps purpurea NBRC6263).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 以下、本発明を製造例によりさらに詳しく説明するが、本発明はこれらの例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to production examples, but the present invention is not limited to these examples.
 実施例1
 材料および方法
<珪藻培養>
 C.gracilisをthe University of Texas Culture Collectionから入手し、海塩(Sigma、セントルイス、MO、USA)および0.2mM NaSiOを補充したダイゴIMK培養培地(日本製薬(株)、大阪、日本)で培養した。人工気象インキュベーター中、20℃で増殖させた。白色蛍光灯で、連続光条件下、30μmol光子m-2-1の放射照度を提供した。特に記載する場合には、当該珪藻細胞を、唯一の窒素源として0.88mM NHCl(アンモニウム培地)または0.88mM NaNO(硝酸培地)を含有するf/2培地(非特許文献6)で培養した。
Example 1
Materials and methods <Diatom culture>
C. Gracilis obtained from the University of Texas Culture Collection, Daigo IMK culture medium (Nippon Pharmaceutical Co., Ltd., Osaka, Japan) supplemented with sea salt (Sigma, St. Louis, MO, USA) and 0.2 mM Na 2 SiO 3 Cultured. Grow at 20 ° C. in an artificial weather incubator. A white fluorescent lamp provided an irradiance of 30 μmol photons m −2 s −1 under continuous light conditions. In particular, the diatom cell is an f / 2 medium containing 0.88 mM NH 4 Cl (ammonium medium) or 0.88 mM NaNO 3 (nitrate medium) as the only nitrogen source (Non-patent Document 6). In culture.
ノウルセオトリシン耐性プラスミドの構築
 ノウルセオトリシン耐性遺伝子nat(配列番号13)をpYL16プラスミド(WERNER BioAgents、Jena、Germany)から切除し、pUC118(タカラバイオ)のBamHI-PstI部位へサブクローンした。ついで、下記表Aに記載されるプライマーを用いて、フコキサンチンクロロフィルa/c結合タンパク質(fcp)遺伝子CgLhcr14のターミネーター領域:CgLhcr14ter(110bp、配列番号11)をゲノムPCRで増殖し、In-Fusion(商標)反応(Clontech、Palo Alto、CA、USA)によって下流のHindIII部位に挿入した。最後に、C.gracilisのプロモーター領域をゲノムPCRで増幅し、pUC118の上流のEcoRI-BamHI部位にサブクローンした。増幅したプロモーター配列の長さおよびGenBank/EMBL/DDBJデータベースでの受託番号を下記表Bに示す。ゲノムPCRで使用したプライマーセットは下記表Aに示される。
Construction of Nourseotricin Resistance Plasmid The nourseotricin resistance gene nat (SEQ ID NO: 13) was excised from the pYL16 plasmid (WERNER BioAgents, Jena, Germany) and subcloned into the BamHI-PstI site of pUC118 (Takara Bio). Then, using the primers described in Table A, fucoxanthin chlorophyll a / c-binding proteins (fcp) gene CgLhcr14 terminator region: CgLhcr14ter (110bp, SEQ ID NO: 11) were grown in genomic PCR, an In-Fusion ( TM) reaction (Clontech, Palo Alto, CA, USA) was inserted into the downstream HindIII site. Finally, C.I. The Gracilis promoter region was amplified by genomic PCR and subcloned into the EcoRI-BamHI site upstream of pUC118. Table B below shows the length of the amplified promoter sequences and the accession numbers in the GenBank / EMBL / DDBJ database. The primer sets used in genomic PCR are shown in Table A below.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
<pCgLhcr5pベクター(登録番号AB981621)およびpCgNRpベクター(登録番号AB981622)の構築>
(登録番号はDNA DATA BANK of JAPAN(DDBJ)の登録番号)
 構成的遺伝子発現用プラスミドpCgLhcr5pをいくつかのステップで構築した。 下記の構築工程で使用したPCRプライマーは上記表Aに記載される。第1の発現カセットを作成するために、fcp CgLhcr5のプロモーター領域(811bp)を、CgLhcr14のターミネーター配列がHindIII部位に挿入されたpUC118のEcoRI-BamHI部位に挿入した。得られたプラスミドは、短いクローニング部位(BamHI、XbaI、SalI、PstI)を有し、これにより所望の遺伝子を挿入することが可能である。
 抗生物質選択用の第2の発現カセットを構築するために、アセチル-CoAアセチルトランスフェラーゼ(ACAT)遺伝子のプロモーター領域(626bp)およびCgLhcr14のターミネーター配列を含有するpUC118ベクターを同様に構築した。ついで、5’-末端および3’-末端にBglIIおよびNsiI部位を有するnat遺伝子フラグメントをpYL16からPCRで増幅し、第2の発現カセットのBamHI-PstI部位に挿入した。これにより第2の発現カセットにおけるBamHI-PstI部位が破壊される(BamHI/BglIIおよびPstI/NsiIペアは、共通の相補末端を生み出す)。最後に、2つの発現カセットを組み合わせて(第1の発現カセットの完全なプロモーター-ターミネータカセットをPCRで増幅し、第2の発現カセットを含有するpUC118ベクターのEcoRI部位にIn-Fusion(商標)反応によって挿入した)、pCgLhcr5pベクターを得た。いずれかの発現カセットの置き換えを容易にするためにMfeI部位を2つのカセットの間に導入した。
 誘導的遺伝子発現用のpCgNRpベクターを構築するために、pCgLhcr5pベクター中のCgLhcr5のプロモーター領域をEcoRI/BamHI消化で切除し、上記で構築したノウルセオトリシン耐性プラスミドから同様の制限酵素処理で切り出した硝酸レダクターゼCgNR遺伝子のプロモーター領域(631bp)で置き換えた。
 上記表Aのプライマーを用いてルシフェラーゼ遺伝子(配列番号44)およびアザミグリーン遺伝子(配列番号45)をPCRで増幅し、pCgLhcr5pまたはpCgNRpのBamHI-PstI部位に挿入した。
<Construction of pCgLhcr5p vector (registration number AB981621) and pCgNRp vector (registration number AB981622)>
(Registration number is DNA DATA BANK of JAPAN (DDBJ) registration number)
A constitutive gene expression plasmid pCgLhcr5p was constructed in several steps. The PCR primers used in the construction process below are listed in Table A above. To create the first expression cassette, the promoter region (811 bp) of fcp CgLhcr5 was inserted into the EcoRI-BamHI site of pUC118 in which the CgLhcr14 terminator sequence was inserted into the HindIII site. The resulting plasmid has a short cloning site (BamHI, XbaI, SalI, PstI), which makes it possible to insert the desired gene.
To construct a second expression cassette for antibiotic selection, a pUC118 vector containing the promoter region (626 bp) of the acetyl-CoA acetyltransferase (ACAT) gene and the CgLhcr14 terminator sequence was similarly constructed. The nat gene fragment with BglII and NsiI sites at the 5′-end and 3′-end was then amplified from pYL16 by PCR and inserted into the BamHI-PstI site of the second expression cassette. This destroys the BamHI-PstI site in the second expression cassette (BamHI / BglII and PstI / NsiI pairs create a common complementary end). Finally, the two expression cassettes are combined (the complete promoter-terminator cassette of the first expression cassette is amplified by PCR and the In-Fusion reaction in the EcoRI site of the pUC118 vector containing the second expression cassette. PCgLhcr5p vector was obtained. An MfeI site was introduced between the two cassettes to facilitate replacement of either expression cassette.
In order to construct a pCgNRp vector for inducible gene expression, the promoter region of CgLhcr5 in the pCgLhcr5p vector was excised by EcoRI / BamHI digestion and nitrate excised by the same restriction enzyme treatment from the nourseotricin resistant plasmid constructed above. It was replaced with the promoter region (631 bp) of the reductase CgNR gene.
The luciferase gene (SEQ ID NO: 44) and thistle green gene (SEQ ID NO: 45) were amplified by PCR using the primers in Table A above and inserted into the BamHI-PstI site of pCgLhcr5p or pCgNRp.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
pCgLhcr5pベクター(登録番号AB981621)の配列(配列番号53)
Figure JPOXMLDOC01-appb-I000020

Figure JPOXMLDOC01-appb-I000021

Figure JPOXMLDOC01-appb-I000022

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024
Sequence of pCgLhcr5p vector (registration number AB981621) (SEQ ID NO: 53)
Figure JPOXMLDOC01-appb-I000020

Figure JPOXMLDOC01-appb-I000021

Figure JPOXMLDOC01-appb-I000022

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024
pCgNRpベクター(登録番号AB981622)の配列(配列番号55)
Figure JPOXMLDOC01-appb-I000025

Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027
Sequence of pCgNRp vector (registration number AB981622) (SEQ ID NO: 55)
Figure JPOXMLDOC01-appb-I000025

Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027
<エレクトロポレーションによるC.gracilisの形質転換>
 非特許文献2に記載されるように、かつ若干修正を加えて、NEPA21装置(NEPAGENE、千葉、日本)を用いて多重パルスエレクトロポレーション行った。対数増殖期(OD700=0.2~0.4)の珪藻細胞を遠心分離(700×g、4分間)により収集し、洗浄し、10%(v/v)IMK培地を含む0.77Mマンニトールで再懸濁した。5.9×10細胞を含有する懸濁液(0.15mL)をHindIIIによって直鎖化されたプラスミド(5μg)と混合し、ついで0.2cm幅のエレクトロポレーションキュベットに移した。300Vの矩形ポアリングパルス(パルス継続時間、5ms;9パルス;インターバル50ms;10%減衰率)を印加し、続いて8Vのトランスファーパルス(パルス継続時間、50ms;各極性について40パルス;インターバル50ms;40%減衰率)を行った。エレクトロポレーションの後、細胞を4mLのIMK培地に移し、ついで非選択的培地で回復させるために、20℃、16~20時間、30μmol光子m-2-1の光強度下でインキュベートした。遠心分離(700×g、4分間以上)で細胞を収集し、IMK培地(0.2mL)に再懸濁した。形質転換した細胞を1%寒天およびノウルセオトリシン(clonNat、WERNER BioAgents)(400μg/mL)を含有するIMK寒天プレートで選択した。
< C. Gracilis transformation>
Multiple pulse electroporation was performed using a NEPA21 apparatus (NEPAGENE, Chiba, Japan) as described in Non-Patent Document 2, with some modifications. Logarithmic growth phase (OD 700 = 0.2-0.4) diatom cells are collected by centrifugation (700 × g, 4 min), washed and 0.77 M with 10% (v / v) IMK medium. Resuspended with mannitol. Suspension (0.15 mL) containing 5.9 × 10 6 cells was mixed with HindIII linearized plasmid (5 μg) and then transferred to a 0.2 cm wide electroporation cuvette. A 300V rectangular poreing pulse (pulse duration, 5 ms; 9 pulses; interval 50 ms; 10% decay rate) was applied, followed by an 8 V transfer pulse (pulse duration, 50 ms; 40 pulses for each polarity; interval 50 ms; 40% attenuation). After electroporation, the cells were transferred to 4 mL of IMK medium and then incubated at 20 ° C. for 16-20 hours under a light intensity of 30 μmol photons m −2 s −1 to recover with non-selective medium. Cells were collected by centrifugation (700 xg, over 4 minutes) and resuspended in IMK medium (0.2 mL). Transformed cells were selected on IMK agar plates containing 1% agar and nourseotricin (clonNat, WERNER BioAgents) (400 μg / mL).
<導入DNAのゲノムへの挿入の分析>
 DNeasy Plant Mini Kit(Qiagen、フェンロ、オランダ)を用いて、選択培地上で2~3回継代培養した野生型および形質転換した細胞からゲノムDNAを単離した。単離したゲノムDNAにおける統合遺伝子のPCR検出のために、上記表Aに記載のプライマーペアをこの分析にも使用した。サザンブロッティングのために、単離したゲノムDNAをEcoRIまたはBamHIで消化し、1%アガロースゲル上で分離し、およびキャピラリートランスファー法によってHybond NX膜(GE Healthcare、ピスカタウェイ、NJ、USA)上に移した。Hybond NX膜上に移されたDNAのUV架橋結合はUVP CL-1000クロスリンカー(UVP Inc.、アップランド、CA、USA)を用いて行った。natおよびlucDNAプローブのジゴキシゲニン標識、該プローブと膜結合DNAとのハイブリダイゼーション、およびハイブリダイゼーションの検出は、DIG DNA Labeling and Detection Kit(Roche、インディアナポリス、IN、USA)を用い使用説明書に従って行った。
<Analysis of insertion of introduced DNA into genome>
Genomic DNA was isolated from wild type and transformed cells subcultured 2-3 times on selective media using a DNeasy Plant Mini Kit (Qiagen, Venlo, The Netherlands). The primer pairs listed in Table A above were also used for this analysis for PCR detection of integrated genes in isolated genomic DNA. For Southern blotting, isolated genomic DNA was digested with EcoRI or BamHI, separated on a 1% agarose gel, and transferred onto Hybond NX membrane (GE Healthcare, Piscataway, NJ, USA) by capillary transfer. . UV cross-linking of the DNA transferred onto the Hybond NX membrane was performed using UVP CL-1000 crosslinker (UVP Inc., Upland, CA, USA). The digoxigenin labeling of the nat and lu cDNA probes, the hybridization between the probe and membrane-bound DNA, and the detection of the hybridization were performed according to the instructions using the DIG DNA Labeling and Detection Kit (Roche, Indianapolis, IN, USA). .
<形質転換した細胞における、導入DNAの発現の分析>
 RNeasy Plant Mini Kit(Qiagen)を用いて、野生型および形質転換した細胞から総RNAを単離した。PrimeScript(商標)RT reagent with gDNA Eraser(タカラバイオ、大津、日本)で、ゲノムPCR分析で使用した同一プライマーを用いて、逆転写(RT)-PCRを行った。形質転換した珪藻細胞中の単量体アザミグリーンタンパク質(mAG)の緑色蛍光を、BZ-9000蛍光顕微鏡(キーエンス、大阪、日本)で分析した。細胞が含まれる範囲を480nmで活性化し、蛍光放射を510nmで検出した。ルシフェラーゼアッセイキット(Promega、マディソン、WI、USA)とLumat LB 9507照度計(Berthold、オークリッジ、TN、USA)を用いてルシフェラーゼアッセイを行った。ルシフェラーゼ活性は、Rc-Dcタンパク質アッセイキットとウシ血清アルブミン標準品(Bio-Rad、ハーキュリーズ、CA、USA)を用いて定量した細胞抽出物のタンパク質濃度により標準化した。
<Analysis of introduced DNA expression in transformed cells>
Total RNA was isolated from wild type and transformed cells using the RNeasy Plant Mini Kit (Qiagen). Reverse transcription (RT) -PCR was performed with PrimeScript RT reagent with gDNA Eraser (Takara Bio, Otsu, Japan) using the same primers used for genomic PCR analysis. Green fluorescence of monomeric thistle green protein (mAG) in transformed diatom cells was analyzed with a BZ-9000 fluorescence microscope (Keyence, Osaka, Japan). The area containing cells was activated at 480 nm and fluorescence emission was detected at 510 nm. Luciferase assays were performed using a luciferase assay kit (Promega, Madison, WI, USA) and a Lumat LB 9507 luminometer (Berthold, Oak Ridge, TN, USA). Luciferase activity was normalized by the protein concentration of the cell extract quantified using an Rc-Dc protein assay kit and a bovine serum albumin standard (Bio-Rad, Hercules, CA, USA).
結果
<形質転換体の選択 ノウルセオトリシンの濃度決定>
 ノウルセオトリシン耐性を獲得した形質転換C.gracilisをスクリーニングするために、C.gracilisの成長を阻害するのに必要とされるノウルセオトリシンの濃度について試験した。図1に示すとおり、28日の培養期間中、400μgmL-1ノウルセオトリシン(液体IMK培地中)はC.gracilisの増殖を完全に阻害した。細胞の増殖は300μgmL-1ノウルセオトリシンで抑制されたが、接種後7日で回復を始めた。細胞密度の違いにかかわらずIMK寒天プレートでも同じような結果が得られた。それ故、C.gracilis形質転換体の選択およびそれに続く維持培養のために、400μgmL-1ノウルセオトリシンを含有するIMK培地を使用した。
Results <Selection of transformants Determination of concentration of nourseotricin>
C. Transformation that acquired resistance to nourseotiricin To screen for gracilis , C. a. We tested for the concentration of nourseotricine required to inhibit the growth of gracilis . As shown in FIG. 1, during the culture period of 28 days, 400MyugmL -1 Knowle Theo tricine (liquid IMK medium) is C. Gracilis growth was completely inhibited. Cell growth was inhibited with 300 μgmL- 1 nourseotricin but began to recover 7 days after inoculation. Similar results were obtained with IMK agar plates regardless of cell density differences. Therefore, C.I. IMK medium containing 400 μgmL- 1 nourseotricin was used for selection of gracilis transformants and subsequent maintenance culture.
<種々のプロモーターを含有するノウルセオトリシン耐性プラスミドを用いたC.gracilisの形質転換>
 下流の遺伝子が高発現(RNAシークエンシング分析によって見積もられた)している、10個のプロモーターを選定した。それぞれ上記表Aのプライマーを用いて単離した。それぞれの配列は表1~10に示す。当該単離されたプロモーターの下流の遺伝子は、以下のタンパク質をコードしていた(上記表B);4つのFCPタンパク質(Lhcr5、Lhcr14、Lhcf1(CgLhcf1p_AとCgLhcf1p_Bの遺伝子産物)、およびLhcf4)、アセチル-CoAアセチルトランスフェラーゼ(ACAT)、長鎖アセチル-CoAシンテターゼ(ACSL)、β-チューブリン(bTublin)、ATPシンターゼ(ATPS)、および硝酸レダクターゼ(NR)。pUC118中、nat遺伝子の上流に5’-UTRを含む単離したプロモーターを挿入した。nat遺伝子の後には転写ターミネータとしてLhcr14遺伝子の3’-UTR配列が挿入された。当該ベクターは制限酵素消化によって直鎖化され、形質転換反応に使用された。
 ノウルセオトリシン耐性プラスミドのC.gracilis細胞への導入は多重パルスエレクトロポレーション(非特許文献2)によって行った。短時間の多重高電圧パルス(ポアリングパルス)は、細胞膜に一時的な穴の形成を促進し、続く長時間の多重低電圧パルス(トランスファーパルス)は、細胞内へのDNAの送達を促進する。
< C. Using a nourseotricin resistant plasmid containing various promoters . Gracilis transformation>
Ten promoters with high expression of downstream genes (estimated by RNA sequencing analysis) were selected. Each was isolated using the primers in Table A above. The respective sequences are shown in Tables 1-10. The genes downstream of the isolated promoter encoded the following proteins (Table B above); four FCP proteins (Lhcr5, Lhcr14, Lhcf1 (CgLhcf1p_A and CgLhcf1p_B gene products), and Lhcf4), acetyl -CoA acetyltransferase (ACAT), long chain acetyl-CoA synthetase (ACSL), β-tubulin (bTublin), ATP synthase (ATPS), and nitrate reductase (NR). In pUC118, an isolated promoter containing a 5′-UTR was inserted upstream of the nat gene. After the nat gene, the 3′-UTR sequence of the Lhcr14 gene was inserted as a transcription terminator. The vector was linearized by restriction enzyme digestion and used for the transformation reaction.
C. of nourseotricin resistant plasmid Introduction into gracilis cells was performed by multiple pulse electroporation (Non-patent Document 2). Short multiple high voltage pulses (pored pulses) promote the formation of temporary holes in the cell membrane, followed by multiple multiple low voltage pulses (transfer pulses) that facilitate the delivery of DNA into the cell. .
 図3Aは、異なるプロモーターを含有するpUCベクターを用いて得られた、抗生物質耐性コロニー数/10形質転換された細胞を示す。多重パルスエレクトロポレーションを使用したがこれまでの報告(非特許文献1)に一致して、pTpfcp/natベクターはわずかにしか抗生物質耐性コロニーを産生しなかった。プロモーターを含有する残りのベクターは、100~400個の抗生物質耐性コロニー/10形質転換細胞を提供した。 FIG. 3A shows antibiotic-resistant colony count / 10 8 transformed cells obtained using pUC vectors containing different promoters. Although multiple pulse electroporation was used, consistent with previous reports (Non-Patent Document 1), the pTpfcp / nat vector produced only a few antibiotic-resistant colonies. The remaining vector containing the promoter provided 100-400 antibiotic resistant colonies / 10 8 transformed cells.
 プロモーターによる形質転換効率の差は、選択培地による選択の間のプロモーターの活性の違いを反映し得る。この実験において、窒素源としてNaNOを含有するIMK培地を使用したので、当該培地では誘導性NRプロモーターはアクティブになり、相当数の抗生物質耐性コロニーを生み出し得る。
 図3Bに示すとおり形質転換後14日にクリアなコロニーが認められ、PCR分析により全ての抗生物質耐性コロニーでnat遺伝子の存在が確認された。
Differences in transformation efficiency with promoters may reflect differences in promoter activity during selection with selective media. In this experiment, IMK medium containing NaNO 3 as the nitrogen source was used, so that the inducible NR promoter was active and could produce a significant number of antibiotic resistant colonies.
As shown in FIG. 3B, clear colonies were observed 14 days after transformation, and the presence of the nat gene was confirmed in all antibiotic-resistant colonies by PCR analysis.
<発現プラスミドpCgLhcr5pおよびpCgNRpの構築>
 ベクターpCgLhcr5p/CgACATp-natは、フコキサンチンクロロフィルa/c結合タンパク質(fcp)遺伝子の構成的プロモーターを含有し、ベクターpCgNRp/CgACATp-natは導入遺伝子の発現を駆動するために硝酸レダクターゼ(NR)遺伝子の誘導性プロモーターを含有した(図4)。両ベクターは、第2の発現カセットを有し、第2の発現カセット中のアセチル-CoAアセチルトランスフェラーゼ(ACAT)プロモーターは抗生物質選択のためのnat遺伝子発現を駆動した。簡単にするために、我々はこれらのベクターをpCgLhcr5pおよびpCgNRpと呼ぶ。BamHI、XbaI、SalI、およびPstI部位は外来性遺伝子を挿入するために利用することができ、EcoRIまたはHindIII部位は形質転換反応のためにベクターを直鎖化するのに使用することができる。
<Construction of expression plasmids pCgLhcr5p and pCgNRp>
The vector pCgLhcr5p / CgACATp-nat contains a constitutive promoter for the fucoxanthin chlorophyll a / c binding protein (fcp) gene, and the vector pCgNRp / CgACATp-nat is a nitrate reductase (NR) gene to drive transgene expression. Of inducible promoters (FIG. 4). Both vectors had a second expression cassette, and the acetyl-CoA acetyltransferase (ACAT) promoter in the second expression cassette driven nat gene expression for antibiotic selection. For simplicity we will call these vectors pCgLhcr5p and pCgNRp. BamHI, XbaI, SalI, and PstI sites can be used to insert foreign genes, and EcoRI or HindIII sites can be used to linearize the vector for transformation reactions.
<形質転換したC.gracilis細胞における導入遺伝子の構成的発現>
 C.gracilisにおける外来性遺伝子の発現を試験するために、ホタルルシフェラーゼ遺伝子(luc)をpCgLhcr5pおよびpCgNRpに挿入し、pCgLhcr5p-lucおよびpCgNRp-lucを得た。これらのベクターを用いてC.gracilis細胞を形質転換し、その形質転換効率は>100形質転換体/10細胞であった。平均して、抗生物質耐性株の約50%が、natおよびluc遺伝子の両方を含んだ。図5(A)および図5(B)は、4つのLhcr5p-luc形質転換体(株1~4)のゲノムPCRおよび逆転写(RT)PCR分析の結果を示すが、この中で、導入遺伝子(natおよびluc)のゲノム挿入およびmRNA発現の両方が確認された。psb31遺伝子(これは光化学系IIの膜表在性サブユニットをコードする)をコントロールとして分析した。ゲノムPCR(765bp、イントロンを含む)およびRT-PCR(成熟mRNAにおいて566bp)においてpsb31のフラグメントサイズが異なるので、RT-PCR分析におけるゲノムDNAコンタミネイションが無視できるものであることを示唆し、luc遺伝子mRNAおよびnat遺伝子mRNAがこれらの株で確かに発現したことを確認するものであった。トランスジェニックゲノムにおける導入遺伝子のコピー数を、luc遺伝子をプローブとして用いてサザンブロット分析で分析した。ゲノムDNAをHindIIIまたはBamHIで消化した。これらは直鎖化されたpCgLhcr5p-lucベクター中にそれぞれ、ゼロおよび1つの認識部位を有する。結果は、導入した外来性DNAは、多くても1つまたは2つのコピーしか染色体DNAに組み入れられておらず(図5(C))、これは望ましくない挿入変異のリスクを減らすのに役立つであろうことを示唆した。
<Transformed C.I. Constitutive expression of transgene in Gracilis cells>
C. To test the expression of foreign genes in Gracilis , the firefly luciferase gene (luc) was inserted into pCgLhcr5p and pCgNRp, resulting in pCgLhcr5p-luc and pCgNRp-luc. Using these vectors, C.I. Gracilis cells were transformed and the transformation efficiency was> 100 transformants / 10 8 cells. On average, about 50% of antibiotic resistant strains contained both nat and luc genes. FIGS. 5 (A) and 5 (B) show the results of genomic PCR and reverse transcription (RT) PCR analysis of four Lhcr5p-luc transformants (strains 1-4), in which the transgene Both (nat and luc) genomic insertion and mRNA expression were confirmed. The psb31 gene, which encodes the photosystem II membrane superficial subunit, was analyzed as a control. The psb31 fragment size is different in genomic PCR (765 bp, including intron) and RT-PCR (566 bp in mature mRNA), suggesting that genomic DNA contamination in RT-PCR analysis is negligible, and the luc gene It was confirmed that mRNA and nat gene mRNA were certainly expressed in these strains. The transgene copy number in the transgenic genome was analyzed by Southern blot analysis using the luc gene as a probe. Genomic DNA was digested with HindIII or BamHI. These have zero and one recognition site, respectively, in the linearized pCgLhcr5p-luc vector. The result shows that the introduced foreign DNA has incorporated at most only one or two copies into the chromosomal DNA (FIG. 5C), which helps to reduce the risk of unwanted insertional mutations. I suggested it would be.
 異種発現した遺伝子の安定性を試験するために、株2のLhcr5p-luc(これは高いluc活性を示した)を、ノウルセオトリシンの存在下または非存在下で繰り返し継代培養し、各継代培養の期間の終わりにルシフェラーゼ活性を評価した。図6に示されるとおり、抗生物質の存在・非存在に関わりなく4回の繰り返し継代培養の間に違いはなく、これにより、抗生物質選択圧の非存在下にあっても導入遺伝子は安定に継承され、発現することが示された。 To test the stability of the heterologously expressed gene, the strain 2 Lhcr5p-luc (which showed high luc activity) was repeatedly subcultured in the presence or absence of nourseotricin, Luciferase activity was assessed at the end of the subculture period. As shown in FIG. 6, there is no difference between the four subcultures regardless of the presence or absence of antibiotics, which makes the transgene stable even in the absence of antibiotic selection pressure. It was shown to be inherited and expressed.
 発現を可視化するためにpCgLhcr5pベクターおよびpCgNRpベクターを用い、細胞内のタンパク質生成物を標的とする蛍光性タンパク質(緑色蛍光タンパク質、イシサンゴGalaxeidae由来アザミグリーン(AG)(非特許文献3))の発現を実験した。AGは高い消光係数、蛍光量子収率、および酸安定性を有し、HeLa細胞中でeGFPよりもさらに明るい緑色蛍光を産生する。改変型AGの単量体バージョン(mAG)は融合タンパク質の細胞内局在の可視化に十分に向いている。図7に示すとおり、導入遺伝子を持つ形質転換体の約50%がmAGの緑色蛍光を示した。 Using the pCgLhcr5p vector and the pCgNRp vector to visualize the expression, the expression of a fluorescent protein (green fluorescent protein, green coral Galaxidae-derived thistle green (AG) (Non-patent Document 3)) targeting intracellular protein products is performed. Experimented. AG has a high extinction coefficient, fluorescence quantum yield, and acid stability and produces a brighter green fluorescence in HeLa cells than eGFP. A monomeric version of modified AG (mAG) is well suited for visualization of the intracellular localization of the fusion protein. As shown in FIG. 7, about 50% of the transformants having the transgene showed green fluorescence of mAG.
<NRプロモーターによるルシフェラーゼ遺伝子の誘導的発現>
 培地における窒素源を単に変えることによって、硝酸レダクターゼ遺伝子のプロモーターがCylindrotheca fusiformisおよびT.pseudonanaで導入遺伝子の発現を制御するのに使用できることが示されている(非特許文献4、非特許文献5)。C.gracilis NR遺伝子(CgNR)の発現は、同一のメカニズム:アンモニウム培地では誘導はオフになり、硝酸培地で増殖するときには誘導される;によって制御される可能性がある。
 C.gracilisにおける導入遺伝子の誘導的発現のためのpCgNRpベクターの有効性を試験するために、luc遺伝子を多重クローニング部位に組み込み、pCgNRp-lucを得た。ノウルセオトリシンでの選択の後、抗生物質耐性コロニーの約50%(14/29)がluc遺伝子を保有し、およびluc遺伝子を保有している形質転換体の約60%(9/14)が窒素源として硝酸塩のみを含有するIMK培地でルシフェラーゼ活性を示した。
<Inducible expression of luciferase gene by NR promoter>
By simply changing the nitrogen source in the culture medium, the promoter of the nitrate reductase gene is transferred to Cylindrotheca fusiformis and T. et al . It has been shown that it can be used to control the expression of transgenes in pseudona (Non-patent Documents 4 and 5). C. Gracilis NR gene (CgNR) expression may be controlled by the same mechanism: induction is turned off in ammonium media and induced when growing in nitrate media.
C. To test the effectiveness of PCgNRp vectors for inducible expression of the transgene in gracilis, incorporate luc gene into the multiple cloning site to give the pCgNRp-luc. After selection with nourseotricin, about 50% (14/29) of antibiotic resistant colonies carry the luc gene, and about 60% (9/14) of transformants carrying the luc gene. Luciferase activity was shown in IMK medium containing only nitrate as the nitrogen source.
 CgNRプロモーターによって駆動される誘導的luc発現の反応速度を分析するために、CgNRp-luc形質転換体株の1つを単一窒素源としてNHClを含有するf/2培地で増殖し、ついでNaNOを含有するf/2培地に移した(図8)。luc活性は60分後に発現誘導され、8時間内には誘導前の値の20倍以上に増加した。 To analyze the kinetics of inducible luc expression driven by the CgNR promoter, one of the CgNRp-luc transformant strains was grown in f / 2 medium containing NH 4 Cl as a single nitrogen source and then Transferred to f / 2 medium containing NaNO 3 (FIG. 8). The luc activity was induced after 60 minutes and increased more than 20 times the pre-induction value within 8 hours.
 実施例2
 リシノール酸の合成
 pCgLhcr5pベクターの多重クローニング部位に、麦角菌(Claviceps purpurea NBRC6263)由来の脂肪酸2-ヒドロキシラーゼ(CpFAH)遺伝子を組み込んでpCgLhcr5p-CpFAHを得、これを多重パルスエレクトロポレーションによりC.gracilisに導入した。得られた形質転換体CpFAH-3株およびCpFAH-4株を、海塩(Sigma、セントルイス、MO、USA)および0.2mM NaSiOを補充したダイゴIMK培養培地(日本製薬(株)、大阪、日本)(50mL)中、20℃、50μmol光子m-2-1下、8日間振とう培養(100rpm)した。
Example 2
Synthesis of ricinoleic acid A fatty acid 2-hydroxylase (CpFAH) gene derived from ergot fungus ( Claviceps purpurea NBRC6263 ) was incorporated into the multiple cloning site of the pCgLhcr5p vector to obtain pCgLhcr5p-CpFAH by multiple pulse electroporation . Introduced into Gracilis . The obtained transformants CpFAH-3 and CpFAH-4 were transformed into Daigo IMK culture medium (Nippon Pharmaceutical Co., Ltd.) supplemented with sea salt (Sigma, St. Louis, MO, USA) and 0.2 mM Na 2 SiO 3 . (Osaka, Japan) (50 mL) was cultured with shaking (100 rpm) at 20 ° C. under 50 μmol photon m −2 s −1 for 8 days.
 図9はpCgLhcr5-CpFAHで形質転換したトランスジェニックC.gracilisの脂質分析結果を示す。CpFAH-4株中リシノール酸は4番目に大きいピークとして検出された。
 図10にCpFAH-4株のMSプロファイルを示す。
FIG. 9 shows transgenic C. elegans transformed with pCgLhcr5-CpFAH . The lipid analysis result of gracilis is shown. In the CpFAH-4 strain, ricinoleic acid was detected as the fourth largest peak.
FIG. 10 shows the MS profile of the CpFAH-4 strain.
 図11にRT-PCR結果を示す。
PCR条件
FIG. 11 shows the RT-PCR results.
PCR conditions
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 PCR酵素、KOD FX NEO (TOYOBO JAPAN)
 25サイクル(10秒、98℃;30秒、55℃;20秒、68℃)
 予想生成物長;152bp(CpFAH)および168bp(α-チューブリン)
 サイズマーカー:1kb+ラダー(Life Technologies  Carlsbad, CA, USA)
PCR enzyme, KOD FX NEO (TOYOBO JAPAN)
25 cycles (10 seconds, 98 ° C .; 30 seconds, 55 ° C .; 20 seconds, 68 ° C.)
Expected product length; 152 bp (CpFAH) and 168 bp (α-tubulin)
Size marker: 1 kb + ladder (Life Technologies Carlsbad, CA, USA)
 図12にCpFAH-3株およびCpFAH-4株のリシノール酸の量を示す。リシノール酸は、乾燥細胞重量の0.2~0.3%(w/w)にまで蓄積した。
 図13はCpFAH-3株およびCpFAH-4株の主な脂肪酸組成を示す。
 リシノール酸(18:1-OH)は両CpFAH株中の総脂肪酸の4.8~6.7%であった。16:1-OHはCpFAH株中の総脂肪酸の1.0%であった。
FIG. 12 shows the amount of ricinoleic acid in the CpFAH-3 and CpFAH-4 strains. Ricinoleic acid accumulated to 0.2-0.3% (w / w) of dry cell weight.
FIG. 13 shows the main fatty acid composition of the CpFAH-3 and CpFAH-4 strains.
Ricinoleic acid (18: 1-OH) was 4.8-6.7% of the total fatty acids in both CpFAH strains. 16: 1-OH was 1.0% of the total fatty acids in the CpFAH strain.
 実施例3
 上記<pCgLhcr5pベクター(登録番号AB981621)およびpCgNRpベクター(登録番号AB981622)の構築>に記載された方法と同様の方法で、ゼオシン耐性を付与する発現ベクターの構築を行った。
 具体的には、ゼオシン選択用の第2発現カセットを構築するために、pPha-T1ベクター(GenBank: AF219942.1)から5’-末端および3’-末端にBglIIおよびNsiI部位を有するble遺伝子(ゼオシン耐性を付与する遺伝子)フラグメントをPCRで増幅した。このフラグメントを、アセチル-CoAアセチルトランスフェラーゼ(ACAT)遺伝子のプロモーター領域(626bp)およびCgLhcr14のターミネーター配列を含有するpUC118ベクターのBamHI-PstI部位に挿入して第2の発現カセットを作製した。この挿入により、第2の発現カセットにおけるBamHI-PstI部位が破壊される(BamHI/BglIIおよびPstI/NsiIペアは、共通の相補末端を生み出す)。次に、この第2発現カセットをSacIとHindIIIで切り出し、同じ制限酵素で切断したノウルセオトリシン耐性プラスミド (pCgLhcf4pおよびpCgNRp)に挿入することで、ゼオシン選択用の第2発現カセットに置換した。
 このようにして構築したゼオシン耐性プラスミド(pCgLhcf4p-ble、および、pCgNRp-ble)を用いて実施例1と同様にC.gracilisの形質転換を行ったところ、ノウルセオトリシン耐性プラスミドと同等の形質転換効率(>100形質転換体/10細胞)であった。
 制限酵素切断部位が記されたゼオシン耐性プラスミド(C.gracilis形質転換ベクター)のマップを図14に示す。
Example 3
An expression vector conferring zeocin resistance was constructed in the same manner as described above in <Construction of pCgLhcr5p vector (Registration number AB981621) and pCgNRp vector (Registration number AB981622)>.
Specifically, in order to construct a second expression cassette for zeocin selection, a ble gene having BglII and NsiI sites at the 5′-end and 3′-end from the pPha-T1 vector (GenBank: AF219942.1) ( The gene) fragment conferring zeocin resistance was amplified by PCR. This fragment was inserted into the BamHI-PstI site of the pUC118 vector containing the promoter region (626 bp) of the acetyl-CoA acetyltransferase (ACAT) gene and the terminator sequence of CgLhcr14 to create a second expression cassette. This insertion destroys the BamHI-PstI site in the second expression cassette (BamHI / BglII and PstI / NsiI pairs create a common complementary end). Next, this second expression cassette was excised with SacI and HindIII and inserted into a nourseotricin resistant plasmid (pCgLhcf4p and pCgNRp) cleaved with the same restriction enzyme, thereby replacing the second expression cassette for zeocin selection.
Using the zeocin resistant plasmids (pCgLhcf4p-ble and pCgNRp-ble) constructed in this manner, the C.I. When Gracilis was transformed, it was found to have a transformation efficiency (> 100 transformants / 10 8 cells) equivalent to the nourseotricin resistant plasmid.
A map of a zeocin resistant plasmid ( C. gracilis transformation vector) in which restriction enzyme cleavage sites are described is shown in FIG.
Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031
pCgLhcf4p-bleの配列(配列番号57)
Figure JPOXMLDOC01-appb-I000032

Figure JPOXMLDOC01-appb-I000033

Figure JPOXMLDOC01-appb-I000034
The sequence of pCgLhcf4p-ble (SEQ ID NO: 57)
Figure JPOXMLDOC01-appb-I000032

Figure JPOXMLDOC01-appb-I000033

Figure JPOXMLDOC01-appb-I000034
pCgNRp-bleの配列(配列番号60)
Figure JPOXMLDOC01-appb-I000035

Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037
pCgNRp-ble sequence (SEQ ID NO: 60)
Figure JPOXMLDOC01-appb-I000035

Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037

Claims (5)

  1. (1)配列番号1~10いずれかの塩基配列からなるポリヌクレオチド;
    (2)配列番号1~10いずれかの塩基配列に対して80%以上の相同性を有し、かつ藻類に目的遺伝子の発現をもたらすプロモーターとして機能するポリヌクレオチド;または
    (3)配列番号1~10いずれかの塩基配列に対して1個または数個の塩基が付加、欠失および/または置換された塩基配列を有し、かつ藻類に目的遺伝子の発現をもたらすプロモーターとして機能するポリヌクレオチド。
    (1) a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 10;
    (2) a polynucleotide having a homology of 80% or more with respect to any one of SEQ ID NOS: 1 to 10 and functioning as a promoter that brings about expression of a target gene in algae; or (3) SEQ ID NOs: 1 to A polynucleotide having a base sequence in which one or several bases are added, deleted, and / or substituted with respect to any one of the base sequences, and functioning as a promoter that causes algae to express a target gene.
  2.  請求項1に記載のポリヌクレオチドを含むベクター。 A vector comprising the polynucleotide according to claim 1.
  3.  請求項1に記載のポリヌクレオチドおよびターミネーター配列を含む第1発現カセット;および
     請求項1に記載のポリヌクレオチド、薬剤耐性遺伝子、およびターミネーター配列を含む第2発現カセット;
    を含む請求項2に記載のベクター。
    A first expression cassette comprising the polynucleotide of claim 1 and a terminator sequence; and a second expression cassette comprising the polynucleotide of claim 1, a drug resistance gene, and a terminator sequence;
    The vector according to claim 2, comprising:
  4.  請求項2または3のベクターを宿主藻類細胞へ導入することを特徴とする、藻類の形質転換方法。 An algal transformation method comprising introducing the vector of claim 2 or 3 into a host algal cell.
  5.  請求項1に記載のポリヌクレオチドおよび脂肪酸ヒドロキシラーゼ遺伝子を含むベクターを宿主藻類細胞へ導入して形質転換体を得、当該形質転換体を培養することによってリシノール酸を得ることを特徴とする、リシノール酸の製造方法。 A ricinol acid is obtained by introducing a vector comprising the polynucleotide of claim 1 and a fatty acid hydroxylase gene into a host algae cell to obtain a transformant, and culturing the transformant to obtain ricinoleic acid. Acid production method.
PCT/JP2015/075372 2014-09-08 2015-09-07 Novel diatom transformation vector and novel promoter sequence including same WO2016039300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547436A JP6573400B2 (en) 2014-09-08 2015-09-07 A novel diatom transformation vector and a novel promoter sequence contained therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014182607 2014-09-08
JP2014-182607 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016039300A1 true WO2016039300A1 (en) 2016-03-17

Family

ID=55459048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075372 WO2016039300A1 (en) 2014-09-08 2015-09-07 Novel diatom transformation vector and novel promoter sequence including same

Country Status (2)

Country Link
JP (1) JP6573400B2 (en)
WO (1) WO2016039300A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149695A (en) * 1997-08-07 1999-02-23 Noevir Co Ltd Skin lotion for preventing aging
JPH11116431A (en) * 1997-10-13 1999-04-27 Noevir Co Ltd Preparation for external use for skin
JP2014511140A (en) * 2011-02-02 2014-05-12 ソラザイム、インク Oils that are produced from recombinant oil-producing microorganisms
WO2014088560A1 (en) * 2012-12-04 2014-06-12 Exxonmobil Research And Engineering Company Tetraselmis promoters and terminators for use in eukaryotic cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149695A (en) * 1997-08-07 1999-02-23 Noevir Co Ltd Skin lotion for preventing aging
JPH11116431A (en) * 1997-10-13 1999-04-27 Noevir Co Ltd Preparation for external use for skin
JP2014511140A (en) * 2011-02-02 2014-05-12 ソラザイム、インク Oils that are produced from recombinant oil-producing microorganisms
WO2014088560A1 (en) * 2012-12-04 2014-06-12 Exxonmobil Research And Engineering Company Tetraselmis promoters and terminators for use in eukaryotic cells

Also Published As

Publication number Publication date
JPWO2016039300A1 (en) 2017-06-22
JP6573400B2 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
Ifuku et al. A stable and efficient nuclear transformation system for the diatom Chaetoceros gracilis
AU2009255947B2 (en) Vcp-based vectors for algal cell transformation
TW200815593A (en) Zinc finger nuclease-mediated homologous recombination
Sabatino et al. Establishment of genetic transformation in the sexually reproducing diatoms Pseudo-nitzschia multistriata and Pseudo-nitzschia arenysensis and inheritance of the transgene
US20200157558A1 (en) Algal chloroplastic srp54 mutants
US10041079B2 (en) Compositions and methods for expressing genes in algae
US10351860B2 (en) High efficiency method for algal transformation
AU2019401608A1 (en) Inducible expression of genes in algae
Cho et al. Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens
Yin et al. High-efficiency transformation of a centric diatom Chaetoceros muelleri by electroporation with a variety of selectable markers
CN106414742A (en) Zea mays regulatory elements and uses thereof
WO2014016612A1 (en) Methods and compositions for increasing productivity and viability of algal cells
JP6573400B2 (en) A novel diatom transformation vector and a novel promoter sequence contained therein
US20160186196A1 (en) Method and composition for generating programmed cell death resistant algal cells
CN106103722A (en) Novel corn ubiquitin promoter
US8691505B2 (en) Promoter for use in transformation of algae
AU2015215627A1 (en) A modified microorganism having enhanced biomass synthesis capacity and a method thereof
Gutiérrez et al. Chloroplast dual divergent promoter plasmid for heterologous protein expression in tetraselmis suecica (chlorophyceae, chlorodendrales)
CN107109429A (en) The cabbage type rape seed specific promoters identified by microarray analysis
US20170015979A1 (en) Tetracycline resistant eukaryotic cells expressing an nadp-requiring oxidoreductase
Weeks Genetic transformation of Chlamydomonas nuclear, chloroplast, and mitochondrial genomes
AU2018252745A1 (en) Method of improving resistance to substrate analog of nitric acid in microalga
Kościańska et al. Electroporated intact BY-2 tobacco culture cells as a model of transient expression study.
US9273090B1 (en) Heterologous expression of cellular adhesion molecules
WO2005021766A1 (en) Regulatable gene expression in mammalian cells and mammals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840397

Country of ref document: EP

Kind code of ref document: A1