WO2016031108A1 - Fmcwレーダー - Google Patents

Fmcwレーダー Download PDF

Info

Publication number
WO2016031108A1
WO2016031108A1 PCT/JP2015/003062 JP2015003062W WO2016031108A1 WO 2016031108 A1 WO2016031108 A1 WO 2016031108A1 JP 2015003062 W JP2015003062 W JP 2015003062W WO 2016031108 A1 WO2016031108 A1 WO 2016031108A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
fmcw radar
frequency
superimposing
cancel
Prior art date
Application number
PCT/JP2015/003062
Other languages
English (en)
French (fr)
Inventor
嘉史 細川
今関 勲
長曽 洋一
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to JP2016544910A priority Critical patent/JP6663115B2/ja
Publication of WO2016031108A1 publication Critical patent/WO2016031108A1/ja
Priority to US15/443,423 priority patent/US10444326B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/038Feedthrough nulling circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means

Definitions

  • the present invention relates to an FMCW (Frequency-Modulated-Continuous Wave) radar.
  • FMCW Frequency-Modulated-Continuous Wave
  • FMCW radar is known as a radar for distance measurement.
  • the FMCW radar continuously transmits a signal whose frequency changes with time and receives a reflected wave from a target.
  • the distance to the target and the moving speed of the target can be measured by analyzing the reflected wave.
  • Such a radar has a transmission system and a reception system, but a signal leaks from the transmission system to the reception system, thereby reducing the measurement accuracy. In particular, as the circuit becomes smaller, the distance between the transmission system and the reception system becomes closer, and the influence of the leakage signal becomes remarkable.
  • an FM signal is supplied on the receiving side via a delay device having the same delay time as a leakage signal from a transmission system to a reception system, and this is supplied to a mixer to thereby apply a leakage signal to a direct current.
  • the leakage signal is attempted to be canceled by converting the component into a component and further removing the DC component (see Patent Document 1).
  • the leakage signal Since the amplitude and phase of the leakage signal from the transmission system to the reception system actually change as the transmission frequency changes, the leakage signal remains as an AC signal having the same period as the period at which the transmission frequency changes. Therefore, the leakage signal cannot be completely canceled by the DC component removal circuit. In addition, since the low frequency component near the direct current is actually removed when removing the direct current component, there is a problem that the measurement accuracy particularly at a short distance is lowered.
  • the object of the present invention is to effectively suppress a decrease in measurement accuracy due to a leakage signal even if the distance between the transmission system and the reception system is close, and in particular, even if the amplitude and phase of the leakage signal change due to a change in transmission frequency.
  • An object is to provide an FMCW radar capable of measuring a distance including a distance with high accuracy.
  • an FMCW radar includes a means for generating a frequency-modulated transmission signal, a means for transmitting a transmission signal, a reception means for receiving a reflected wave based on the transmission signal, and a reception signal.
  • a configuration comprising adjustment means for adjusting the amplitude and phase of a cancel signal for canceling a leakage signal therein according to a change in the frequency of the transmission signal, and superimposing means for superimposing the cancel signal on the reception signal so as to cancel the leakage signal Adopted.
  • the amplitude and phase of the cancel signal for canceling the leak signal in the received signal are adjusted according to the change in the frequency of the transmit signal, the leak signal even if the distance between the transmit system and the receive system is short
  • an FMCW radar that can effectively suppress a decrease in measurement accuracy due to the above, and can measure a distance including a short distance with high accuracy even when the amplitude and phase of a leakage signal change due to a change in transmission frequency.
  • FIG. 1 is a block diagram of an FMCW radar according to an embodiment of the present invention.
  • the FMCW radar shown in FIG. 1 adjusts the amplitude and phase of a cancel signal that cancels a leakage signal (clutter signal) from the transmission system to the reception system in accordance with a change in the frequency of the transmission signal.
  • CLK local oscillator
  • LO local oscillator
  • ATT / LPF low pass filters
  • PA power amplifier
  • Transmit antenna 116 Transmit antenna 116
  • the CLK110 generates a reference signal for generating a transmission signal.
  • the first ATT / LPF 112 supplies the I and Q separated reference signals to the first mixer 114
  • the second ATT / LPF 113 supplies the I and Q separated reference signals to the IMR & CLC circuit 123 and the IF mixer 124, respectively.
  • the LO 111 supplies a local oscillation signal subjected to frequency modulation to the first and second mixers 114 and 122, and sequentially supplies frequency information FI indicating the frequency every time during the frequency sweep to the DSP 130.
  • the first mixer 114 generates a frequency-modulated transmission signal by frequency-converting the reference signal into an RF signal based on the local oscillation signal subjected to frequency modulation.
  • the PA 115 amplifies the RF signal from the first mixer 114, and transmits the frequency-modulated transmission signal to the transmission antenna 116.
  • the transmitting antenna 116 radiates electromagnetic waves toward the target.
  • the reception antenna 120 receives a reflected wave from the target based on the frequency-modulated transmission signal and receives a leaked clutter signal from the transmission antenna 116.
  • the input of the HYB circuit 117 is capacitively coupled to the output of the PA 115, and the HYB circuit 117 separates the transmission signal, which is a single signal, into an I signal and a Q signal having a phase difference of 90 degrees.
  • the RFPS circuit 118 adjusts the amplitude of each of the I signal and the Q signal supplied from the HYB circuit 117 in accordance with the first adjustment value ADJ1 supplied from the DSP 130 in accordance with the frequency information FI. And a cancel signal having the opposite phase to the above.
  • the amplitude and phase of the cancel signal are adjusted so as to have the same amplitude and opposite phase for each frequency with respect to the clutter signal.
  • the output of the RFPS circuit 118 is connected to the input of the LNA 121, and a cancel signal is superimposed on the received signal so as to cancel the clutter signal.
  • the LNA 121 amplifies a reception signal including a clutter signal that may partially remain.
  • the second mixer 122 frequency-converts the received signal into an IF signal separated into I and Q based on the local oscillation signal subjected to frequency modulation.
  • the IMR & CLC circuit 123 exhibits an image rejection function and generates a cancellation signal having a phase opposite to that of the clutter signal according to the second adjustment value ADJ2 supplied from the DSP 130 according to the frequency information FI.
  • a cancel signal is superimposed on the received signal so as to cancel the signal.
  • the IF mixer 124 frequency-converts the received signal from which the clutter signal has been removed by frequency conversion.
  • the first and second ADCs 125 and 126 convert the I and Q separated outputs of the IF mixer 124 into digital signals, respectively, and pass them to the DSP 130.
  • the DSP 130 calculates the distance to the target and the moving speed of the target by analyzing the reflected wave from the target based on the outputs of the first and second ADCs 125 and 126.
  • the DSP 130 executes the operation in the calibration mode prior to the above normal operation.
  • the setting of the first adjustment value ADJ1 that minimizes the input level to the DSP 130 in a state where no reflected wave is input by the target is stored as a correction value in the memory in the DSP 130.
  • This correction value corresponds to the frequency information FI sent from the LO 111 at this time.
  • the RFPS circuit 118 can be appropriately adjusted using the first adjustment value ADJ1 obtained from the correction value in the memory. Calibration may be performed not only at the initial stage but also periodically / irregularly.
  • the correction value may be acquired only for some points with respect to the change of the transmission frequency, and the correction value may be obtained by interpolation (for example, linearly) between them.
  • a result obtained by calculating (for example, moving average) a calibration result that is performed a plurality of times at regular or irregular intervals may be used as a correction value.
  • the calibration mode operation for the RFPS circuit 118 is performed first (there is no cancel signal output from the IMR & CLC circuit 123 at this time)
  • a calibration operation related to the IMR & CLC circuit 123 is performed (at this time, the RFPS circuit 118 outputs a cancel signal corresponding to the first adjustment value ADJ1 obtained in the calibration mode operation performed earlier).
  • the IMR & CLC circuit 123 can cancel the clutter signal that could not be suppressed by the RFPS circuit 118.
  • FIG. 2 shows a detailed configuration example of the RFPS circuit 118 in FIG.
  • the RFPS circuit 118 shown in FIG. 2 includes two baluns (BLN) 201 and 202 on the input side, two variable gain amplifiers (VGA) 203 and 204, and one balun (BLN) 205 on the output side. .
  • the two BLNs 201 and 202 respectively convert the I signal and Q signal, which are single signals, into differential signals.
  • One VGA 203 amplifies the differential I signal
  • the other VGA 204 amplifies the differential Q signal.
  • the amplitudes of the outputs of both the VGAs 203 and 204 are adjusted according to the first adjustment value ADJ1, respectively.
  • ADJ1 the first adjustment value
  • FIG. 3 shows a detailed configuration example of the CLC unit in the IMR & CLC circuit 123 in FIG. 3 includes an operational amplifier 210 that operates as an inverting amplifier, a first input resistor Rin1, a second input resistor Rin2, and a feedback resistor Rf, and synthesizes signals at a virtual ground point. is there.
  • the second input resistor Rin2 is variable, and the amplitude of the cancel signal I and the amplitude of the cancel signal Q are adjusted by adjusting the resistance value according to the second adjustment value ADJ2.
  • a cancel signal I + Q having the same amplitude and opposite phase as the clutter signal is generated.
  • the RFPS circuit 118 and the IMR & CLC circuit 123 can adjust the amplitude and phase of the cancel signal only by adjusting only the amplitude of each of the I signal and the Q signal, which is advantageous in that the circuit scale can be reduced. .
  • the RFPS circuit 118 and the IMR & CLC circuit 123 in FIG. 1 may be mounted. Since the RFPS circuit 118 is closer to the receiving antenna 120, the effect of canceling the clutter signal is higher, and the power input to the LNA 121 and the second mixer 122 is reduced, so that the distortion characteristics can be relaxed, but the IMR & CLC circuit 123 Since this is in the low frequency region, there is an advantage that cancellation control is easier.
  • the output of the RFPS circuit 118 may be changed so as to be connected between the LNA 121 and the second mixer 122.
  • CLK 110 may be swept in frequency.
  • the frequency information FI of the LO 111 but the frequency information of the CLK 110 is supplied to the DSP 130, and the DSP 130 supplies the adjustment values ADJ1 and ADJ2 according to this frequency information.
  • FIG. 5 is a block diagram of the FMCW radar according to the modification of FIG. 1 and shows an example in which I and Q are not separated.
  • the IMR & CLC circuit 123 in FIG. 1 is a simple CLC circuit 123 in FIG. In the configuration of FIG. 5, the ATT / LPFs 112 and 113 and the HYB circuit 117 in FIG.
  • all circuits except the transmitting antenna 116 and the receiving antenna 120 can have a one-chip configuration.
  • the FMCW radar according to the present invention updates the cancel signal in accordance with the change in the transmission frequency so that the cancel signal follows the change in the clutter signal. Even if the distance is short, it is possible to suppress a decrease in measurement accuracy.
  • Reference signal generator (CLK) 111 Local oscillator (LO) 112,113 Attenuator / Low-pass filter (ATT / LPF) 114 Mixer 115 Power amplifier (PA) 116 Transmitting antenna 117 Hybrid (HYB) circuit 118 RF phase shift (RFPS) circuit 120 Receiving antenna 121 Low noise amplifier (LNA) 122 Mixer 123 Image Rejection & Clutter Cancel (IMR & CLC) Circuit 124 IF Mixer 125, 126 Analog to Digital Converter (ADC) 130 Digital Signal Processor (DSP) 201, 202, 205 Balun (BLN) 203,204 Variable Gain Amplifier (VGA) 210 Operational Amplifiers ADJ1, ADJ2 Adjustment Value FI Frequency Information

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 FMCW(Frequency Modulated Continuous Wave)レーダーに、周波数変調された送信信号を生成する手段(110~114)と、送信信号を送出する手段(115)と、送信信号に基づく反射波を受信する受信手段(121,122)と、受信信号中の漏れ信号を打ち消すキャンセル信号の振幅及び位相を送信信号の周波数の変化に応じて調整する調整手段(130)と、漏れ信号を打ち消すようにキャンセル信号を受信信号に重畳する重畳手段(118,123)とを設ける。

Description

FMCWレーダー
 本発明は、FMCW(Frequency Modulated Continuous Wave)レーダーに関するものである。
 距離測定用のレーダーとして、FMCWレーダーが知られている。FMCWレーダーは、時間とともに周波数が変化する信号を連続的に送出し、目標物からの反射波を受信する。反射波の解析によって、目標物までの距離や目標物の移動速度を測定することができる。このようなレーダーは送信系と受信系とを有するが、送信系から受信系への信号の漏れが発生し、これによって測定精度が下がる。特に回路の小型化につれて、送信系と受信系との距離が近くなり、漏れ信号の影響が顕著となっている。
 ある従来技術によれば、送信系から受信系への漏れ信号と同じだけの遅延時間を持つ遅延器を介して受信側にてFM信号を供給し、これをミキサに与えることによって漏れ信号を直流成分へ変換し、更に直流成分を除去することによって漏れ信号を打ち消そうとしている(特許文献1参照)。
特開平11-183600号公報
 送信系から受信系への漏れ信号の振幅及び位相は実際には送信周波数の変化につれて変化するため、上記従来技術では、送信周波数が変化する周期と同じ周期を持った交流信号として漏れ信号が残留するので、直流成分除去回路では漏れ信号を完全には打ち消すことができない。また、直流成分除去の際に実際には直流近辺の低周波成分も除去されるため、特に近距離の測定精度が落ちる難点もあった。
 本発明の目的は、送信系と受信系との距離が近くても漏れ信号による測定精度の低下を効果的に抑制し、特に送信周波数の変化によって漏れ信号の振幅及び位相が変化しても近距離を含めた距離を高精度で測定できるFMCWレーダーを提供することにある。
 上記目的を達成するため、本発明に係るFMCWレーダーは、周波数変調された送信信号を生成する手段と、送信信号を送出する手段と、送信信号に基づく反射波を受信する受信手段と、受信信号中の漏れ信号を打ち消すキャンセル信号の振幅及び位相を送信信号の周波数の変化に応じて調整する調整手段と、漏れ信号を打ち消すようにキャンセル信号を受信信号に重畳する重畳手段とを備えた構成を採用したものである。
 本発明によれば、受信信号中の漏れ信号を打ち消すキャンセル信号の振幅及び位相を送信信号の周波数変化に応じて調整することとしたので、送信系と受信系との距離が近くても漏れ信号による測定精度の低下を効果的に抑制し、特に送信周波数の変化によって漏れ信号の振幅及び位相が変化しても近距離を含めた距離を高精度で測定できるFMCWレーダーを提供することができる。
本発明の実施形態に係るFMCWレーダーのブロック図である。 図1中のRFPS回路の詳細構成例を示すブロック図である。 図1中のIMR&CLC回路のうちのCLC部の詳細構成例を示すブロック図である。 図3のCLC部の動作を説明するためのベクトル図である。 図1の変形例に係るFMCWレーダーのブロック図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 図1は、本発明の実施形態に係るFMCWレーダーのブロック図である。図1のFMCWレーダーは、送信系から受信系への漏れ信号(クラッタ信号)を打ち消すキャンセル信号の振幅及び位相を送信信号の周波数変化に応じて調整することとしたものであって、基準信号発生器(CLK)110と、局部発振器(LO)111と、第1及び第2の減衰器/ローパスフィルタ(ATT/LPF)112,113と、第1のミキサ114と、電力増幅器(PA)115と、送信アンテナ116と、ハイブリッド(HYB)回路117と、RF位相シフト(RFPS)回路118と、受信アンテナ120と、低雑音増幅器(LNA)121と、第2のミキサ122と、イメージリジェクション&クラッタキャンセル(IMR&CLC)回路123と、IFミキサ124と、アナログデジタル変換器(ADC)125,126と、デジタルシグナルプロセッサ(DSP)130とを備えている。
 CLK110は、送信信号を生成するための基準信号を発生する。第1のATT/LPF112はI、Q分離された基準信号を第1のミキサ114へ、第2のATT/LPF113はI、Q分離された基準信号をIMR&CLC回路123及びIFミキサ124へそれぞれ供給する。LO111は、周波数変調がかかった局部発振信号を第1及び第2のミキサ114,122へ供給するとともに、周波数掃引中の時々刻々の周波数を示す周波数情報FIをDSP130へ逐次供給する。第1のミキサ114は、周波数変調がかかった局部発振信号をもとに基準信号をRF信号に周波数変換することで、周波数変調された送信信号を生成する。PA115は、第1のミキサ114からのRF信号を増幅することで、周波数変調された送信信号を送信アンテナ116へ送出する。送信アンテナ116は、目標物へ向けて電磁波を放射する。
 受信アンテナ120は、周波数変調された送信信号に基づく目標物からの反射波を受信するとともに、送信アンテナ116から漏えいしたクラッタ信号を受ける。一方、HYB回路117の入力はPA115の出力に容量結合されており、HYB回路117は、シングル信号である送信信号を、90度の位相差を持つI信号及びQ信号に分離する。RFPS回路118は、周波数情報FIに応じてDSP130から供給された第1の調整値ADJ1に応じて、HYB回路117から供給されたI信号及びQ信号の各々の振幅を調整することにより、クラッタ信号と逆位相のキャンセル信号を生成する。つまり、キャンセル信号の振幅及び位相は、クラッタ信号に対して各周波数ごとに同振幅かつ逆位相となるように調整されている。そして、RFPS回路118の出力はLNA121の入力に接続されており、クラッタ信号を打ち消すようにキャンセル信号が受信信号に重畳される。
 LNA121は、一部残留することがあるクラッタ信号を含んだ受信信号を増幅する。第2のミキサ122は、周波数変調がかかった局部発振信号をもとに受信信号を、I、Q分離されたIF信号に周波数変換する。IMR&CLC回路123は、イメージリジェクション機能を発揮するとともに、周波数情報FIに応じてDSP130から供給された第2の調整値ADJ2に応じて、クラッタ信号と逆位相のキャンセル信号を生成して、クラッタ信号を打ち消すようにキャンセル信号を受信信号に重畳する。IFミキサ124は、周波数変換により、クラッタ信号を除去した受信信号を周波数変換する。第1及び第2のADC125,126は、IFミキサ124のI、Q分離された出力をそれぞれデジタル信号に変換してDSP130に渡す。DSP130は、第1及び第2のADC125,126の出力をもとに、目標物からの反射波の解析によって、目標物までの距離や目標物の移動速度を算出する。
 DSP130は、以上の通常動作に先立ってキャリブレーションモードの動作を実行する。例えば、RFPS回路118に関するキャリブレーションモードでは、目標物による反射波の入力が無い状態でDSP130への入力レベルが最小となる第1の調整値ADJ1の設定を、DSP130内のメモリに補正値として記憶する。この補正値は、この時点でLO111から送られる周波数情報FIに対応している。通常動作時にはメモリ内の補正値から得た第1の調整値ADJ1により、RFPS回路118の適切な調整を行うことができる。キャリブレーションは初期時だけでなく、定期的/不定期的に再度行ってもよい。補正値は送信周波数の変化に対していくつかのポイントだけ取得しておき、その間については(例えば線形)補間して補正値を得てもよい。定期的/不定期的に複数回行ったキャリブレーション結果を演算(例えば移動平均化)した結果を補正値としてもよい。以上は、RFPS回路118だけでなく、IMR&CLC回路123でも同様である。また、RFPS回路118とIMR&CLC回路123との両方でクラッタ信号の抑圧を行う場合には、初めにRFPS回路118に関するキャリブレーションモードの動作を行い(このときIMR&CLC回路123のキャンセル信号出力は無し)、次にIMR&CLC回路123に関するキャリブレーション動作を行う(このときRFPS回路118は先に行ったキャリブレーションモード動作で得られた第1の調整値ADJ1に応じたキャンセル信号を出力している)。こうすることで、RFPS回路118で抑圧しきれなかったクラッタ信号をIMR&CLC回路123で打ち消すことができる。
 図2は、図1中のRFPS回路118の詳細構成例を示している。図2のRFPS回路118は、入力側の2つのバラン(BLN)201,202と、2つの可変利得増幅器(VGA)203,204と、出力側の1つのバラン(BLN)205とを備えている。2つのBLN201,202は、各々シングル信号であるI信号及びQ信号をそれぞれ差動信号に変換する。そして、一方のVGA203は差動のI信号を増幅し、他方のVGA204は差動のQ信号を増幅する。この際、両VGA203,204の出力の振幅が、第1の調整値ADJ1に応じてそれぞれ調整される。これらの増幅されたI、Q信号が最後にBLN205を通過する際に重ね合わされて、1つの出力信号が得られる。なお、バランと差動信号の可変利得増幅器とを用いた構成としたが、バランを用いないでシングル信号の可変利得増幅器を用いた構成としてもよい。
 図3は、図1中のIMR&CLC回路123のうちのCLC部の詳細構成例を示している。図3のCLC部は、反転増幅器として動作する演算増幅器210と、第1の入力抵抗Rin1と、第2の入力抵抗Rin2と、帰還抵抗Rfとを備え、仮想接地点にて信号合成する構成である。第2の入力抵抗Rin2は可変であり、その抵抗値を第2の調整値ADJ2に応じて調整することにより、キャンセル信号Iの振幅及びキャンセル信号Qの振幅をそれぞれ調整している。このようにキャンセル信号I及びキャンセル信号Qの各々の振幅を調整することにより、図4に示すように、クラッタ信号と同振幅かつ逆位相のキャンセル信号I+Qを生成するのである。
 以上のとおり、図1の構成によれば、送信周波数の変化によってクラッタ信号の振幅及び位相が変化しても、近距離を含めた距離の測定精度の低下を抑制できる。しかも、RFPS回路118及びIMR&CLC回路123では、それぞれI信号及びQ信号の各々の振幅のみを調整するだけでキャンセル信号の振幅及び位相を調整することができるので、回路規模が縮小できて好都合である。
 なお、図1中のRFPS回路118及びIMR&CLC回路123のうち、いずれか一方のみを実装することとしてもよい。RFPS回路118の方が受信アンテナ120に近いためクラッタ信号のキャンセル効果がより高く、LNA121と第2のミキサ122とに入力する電力が低減するので歪特性を緩和することができるが、IMR&CLC回路123の方が低周波領域であるためキャンセルの制御がより容易であるというメリットがある。RFPS回路118の出力を、LNA121と第2のミキサ122との間に接続するように変更してもよい。
 LO111に代わってCLK110が周波数掃引するようにしてもよい。その場合にはLO111の周波数情報FIではなく、CLK110の周波数情報をDSP130へ供給し、DSP130はこの周波数情報に応じて調整値ADJ1,ADJ2を供給する。
 図5は、図1の変形例に係るFMCWレーダーのブロック図であって、I、Q分離しない例を示している。図1中のIMR&CLC回路123は、図5では単なるCLC回路123となっている。また、図5の構成では、図1中のATT/LPF112,113と、HYB回路117とが不要になる。
 なお、図1及び図5の構成のいずれでも、送信アンテナ116及び受信アンテナ120を除く全回路をワンチップ構成とすることができる。
 以上説明してきたとおり、本発明に係るFMCWレーダーは、送信周波数の変化に応じてキャンセル信号を更新することにより、キャンセル信号をクラッタ信号の変化に追従させることとしたので、送信系と受信系との距離が近くても測定精度の低下を抑制できて有用である。
110 基準信号発生器(CLK)
111 局部発振器(LO)
112,113 減衰器/ローパスフィルタ(ATT/LPF)
114 ミキサ
115 電力増幅器(PA)
116 送信アンテナ
117 ハイブリッド(HYB)回路
118 RF位相シフト(RFPS)回路
120 受信アンテナ
121 低雑音増幅器(LNA)
122 ミキサ
123 イメージリジェクション&クラッタキャンセル(IMR&CLC)回路
124 IFミキサ
125,126 アナログデジタル変換器(ADC)
130 デジタルシグナルプロセッサ(DSP)
201,202,205 バラン(BLN)
203,204 可変利得増幅器(VGA)
210 演算増幅器
ADJ1,ADJ2 調整値
FI 周波数情報

Claims (10)

  1.  周波数変調された送信信号を生成する手段と、
     前記送信信号を送出する手段と、
     前記送信信号に基づく反射波を受信する受信手段と、
     受信信号中の漏れ信号を打ち消すキャンセル信号の振幅及び位相を前記送信信号の周波数の変化に応じて調整する調整手段と、
     前記漏れ信号を打ち消すように前記キャンセル信号を前記受信信号に重畳する重畳手段とを備えたFMCWレーダー。
  2.  請求項1記載のFMCWレーダーにおいて、
     前記受信手段は低雑音増幅器を有し、前記重畳手段は前記低雑音増幅器の前段で前記重畳を行うFMCWレーダー。
  3.  請求項1記載のFMCWレーダーにおいて、
     前記受信手段は周波数変換のためのミキサを有し、前記重畳手段は前記ミキサの後段で前記重畳を行うFMCWレーダー。
  4.  請求項1記載のFMCWレーダーにおいて、
     前記受信手段は低雑音増幅器と周波数変換のためのミキサとを有し、前記重畳手段は前記低雑音増幅器と前記ミキサとの間で前記重畳を行うFMCWレーダー。
  5.  請求項1記載のFMCWレーダーにおいて、
     前記調整手段は、90度の位相差を持つようにI、Q分離されたキャンセル信号の各々の振幅を調整するFMCWレーダー。
  6.  請求項1記載のFMCWレーダーにおいて、
     前記調整手段は、予め取得した補正データをもとに前記送信信号の周波数の変化に同期して前記キャンセル信号を更新するFMCWレーダー。
  7.  請求項6記載のFMCWレーダーにおいて、
     前記調整手段は、予め取得した前記補正データを線形補間して、前記キャンセル信号の更新に用いる補正データを作成するFMCWレーダー。
  8.  請求項6記載のFMCWレーダーにおいて、
     前記調整手段は、予め取得した前記補正データを平均化して、前記キャンセル信号の更新に用いる補正データを作成するFMCWレーダー。
  9.  請求項6記載のFMCWレーダーにおいて、
     前記調整手段は、前記補正データを定期的に取得するFMCWレーダー。
  10.  請求項1記載のFMCWレーダーにおいて、
     全回路がワンチップで構成されたFMCWレーダー。
PCT/JP2015/003062 2014-08-28 2015-06-18 Fmcwレーダー WO2016031108A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016544910A JP6663115B2 (ja) 2014-08-28 2015-06-18 Fmcwレーダー
US15/443,423 US10444326B2 (en) 2014-08-28 2017-02-27 FMCW radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-173729 2014-08-28
JP2014173729 2014-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/443,423 Continuation US10444326B2 (en) 2014-08-28 2017-02-27 FMCW radar

Publications (1)

Publication Number Publication Date
WO2016031108A1 true WO2016031108A1 (ja) 2016-03-03

Family

ID=55399033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003062 WO2016031108A1 (ja) 2014-08-28 2015-06-18 Fmcwレーダー

Country Status (3)

Country Link
US (1) US10444326B2 (ja)
JP (1) JP6663115B2 (ja)
WO (1) WO2016031108A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025475A (ja) * 2016-08-10 2018-02-15 株式会社デンソー レーダ用送受信機
CN107728116A (zh) * 2017-09-13 2018-02-23 加特兰微电子科技(上海)有限公司 雷达系统及其泄漏信号抵消电路和方法
WO2018123204A1 (ja) * 2016-12-27 2018-07-05 株式会社ソシオネクスト レーダー装置
CN108535697A (zh) * 2018-03-06 2018-09-14 中国船舶重工集团公司第七二四研究所 一种自适应射频对消提高连续波雷达收发隔离度的方法
JP2020530566A (ja) * 2017-08-08 2020-10-22 日本テキサス・インスツルメンツ合同会社 レーダーシステムにおけるノイズ測定
JP7386863B2 (ja) 2018-11-13 2023-11-27 日本テキサス・インスツルメンツ合同会社 レーダートランシーバ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102429767B1 (ko) * 2017-04-11 2022-08-05 한국전자통신연구원 스위치드 배열 안테나 레이더를 위한 자가 교정 방법
EP3588127B1 (en) * 2018-06-29 2024-02-14 IMEC vzw Spillover cancellation in radar systems
DE102018128334B3 (de) * 2018-11-13 2020-04-09 Infineon Technologies Ag Vorrichtung und verfahren zum einstellen eines untedrückungssignals zum unterdrücken eines hf-störsignals
EP3667358B1 (en) 2018-12-11 2024-03-06 NXP USA, Inc. Leakage cancellation in a radar receiver
US11047952B2 (en) * 2018-12-28 2021-06-29 Qualcomm Incorporated Mitigating mutual coupling leakage in small form factor devices
US11402464B2 (en) * 2019-02-25 2022-08-02 Samsung Electronics Co., Ltd. Radar leakage measurement update
US11656331B2 (en) * 2020-11-30 2023-05-23 Keysight Technologies, Inc. System and method of emulating echo signals from emulated targets with reduced interference

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071751A (ja) * 2005-09-08 2007-03-22 Shimada Phys & Chem Ind Co Ltd レーダー装置
US20070085727A1 (en) * 2005-10-19 2007-04-19 Honeywell International Inc. Methods and systems for leakage cancellation in radar equipped munitions
JP2007281592A (ja) * 2006-04-03 2007-10-25 Brother Ind Ltd 無線通信装置
JP2012533255A (ja) * 2009-07-16 2012-12-20 フリースケール セミコンダクター インコーポレイテッド 受信経路中の漏洩相殺のための集積回路、トランシーバおよびコンピュータ読取り可能記憶素子

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183600A (ja) 1997-12-19 1999-07-09 Toshiba Corp レーダ装置
AU2001286635A1 (en) * 2000-08-22 2002-03-04 Novatel Wireless, Inc. Method and apparatus for transmitter noise cancellation in an rf communications system
US20060198429A1 (en) * 2005-03-02 2006-09-07 Microelectronics Technology Inc. Isolating circuit of transmitting and receiving paths in same frequency carrier
KR101004198B1 (ko) * 2005-09-06 2010-12-24 미쓰비시덴키 가부시키가이샤 누설 신호 상쇄 장치
WO2007119405A1 (ja) 2006-04-03 2007-10-25 Brother Kogyo Kabushiki Kaisha 無線通信装置
US8226003B2 (en) * 2006-04-27 2012-07-24 Sirit Inc. Adjusting parameters associated with leakage signals
US7772997B2 (en) * 2007-08-23 2010-08-10 Sirit Technologies, Inc. Reducing leakage noise in directly sampled radio frequency signals
US8175535B2 (en) * 2008-02-27 2012-05-08 Telefonaktiebolaget Lm Ericsson (Publ) Active cancellation of transmitter leakage in a wireless transceiver
IL206008A0 (en) * 2010-05-27 2011-02-28 Amir Meir Zilbershtain Transmit receive interference cancellation
US8362948B2 (en) * 2010-08-13 2013-01-29 Trex Enterprises Corp Long range millimeter wave surface imaging radar system
WO2014061443A1 (ja) * 2012-10-17 2014-04-24 株式会社村田製作所 送受信装置
US9100099B2 (en) * 2013-02-06 2015-08-04 Samsung Electronics Co., Ltd. Adaptive transmitter leakage cancelation in a transceiver
US9577683B2 (en) * 2013-04-22 2017-02-21 University Of Washington Through Its Center For Commercialization Systems, transceivers, receivers, and methods including cancellation circuits having multiport transformers
US9331735B1 (en) * 2014-05-22 2016-05-03 Hrl Laboratories, Llc GaN based active cancellation circuit for high power simultaneous transmit and receive systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071751A (ja) * 2005-09-08 2007-03-22 Shimada Phys & Chem Ind Co Ltd レーダー装置
US20070085727A1 (en) * 2005-10-19 2007-04-19 Honeywell International Inc. Methods and systems for leakage cancellation in radar equipped munitions
JP2007281592A (ja) * 2006-04-03 2007-10-25 Brother Ind Ltd 無線通信装置
JP2012533255A (ja) * 2009-07-16 2012-12-20 フリースケール セミコンダクター インコーポレイテッド 受信経路中の漏洩相殺のための集積回路、トランシーバおよびコンピュータ読取り可能記憶素子

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564274A (zh) * 2016-08-10 2019-04-02 株式会社电装 雷达用收发机
WO2018029954A1 (ja) * 2016-08-10 2018-02-15 株式会社デンソー レーダ用送受信機
JP2018025475A (ja) * 2016-08-10 2018-02-15 株式会社デンソー レーダ用送受信機
JPWO2018123204A1 (ja) * 2016-12-27 2019-10-31 株式会社ソシオネクスト レーダー装置
WO2018123204A1 (ja) * 2016-12-27 2018-07-05 株式会社ソシオネクスト レーダー装置
US11112486B2 (en) 2016-12-27 2021-09-07 Socionext Inc. Radar apparatus
JP2020530566A (ja) * 2017-08-08 2020-10-22 日本テキサス・インスツルメンツ合同会社 レーダーシステムにおけるノイズ測定
US11555883B2 (en) 2017-08-08 2023-01-17 Texas Instmments Incorporated Noise measurement in a radar system
JP7212217B2 (ja) 2017-08-08 2023-01-25 テキサス インスツルメンツ インコーポレイテッド レーダーシステムにおけるノイズ測定
CN107728116A (zh) * 2017-09-13 2018-02-23 加特兰微电子科技(上海)有限公司 雷达系统及其泄漏信号抵消电路和方法
CN107728116B (zh) * 2017-09-13 2020-10-16 加特兰微电子科技(上海)有限公司 雷达系统及其泄漏信号抵消电路和方法
CN108535697A (zh) * 2018-03-06 2018-09-14 中国船舶重工集团公司第七二四研究所 一种自适应射频对消提高连续波雷达收发隔离度的方法
JP7386863B2 (ja) 2018-11-13 2023-11-27 日本テキサス・インスツルメンツ合同会社 レーダートランシーバ

Also Published As

Publication number Publication date
US10444326B2 (en) 2019-10-15
JP6663115B2 (ja) 2020-03-11
US20170168140A1 (en) 2017-06-15
JPWO2016031108A1 (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6663115B2 (ja) Fmcwレーダー
US9453906B2 (en) Phase calibration circuit and method for multi-channel radar receiver
US20140192923A1 (en) Phased array transmission device
US10243640B2 (en) Phased array transmission device and carrier leak correction method
JP5736545B2 (ja) フェイズドアレーアンテナのブランチ間補正装置及びフェイズドアレーアンテナのブランチ間補正方法
US11112486B2 (en) Radar apparatus
JP4901679B2 (ja) 無線送受信装置及び無線送信方法
US10509106B2 (en) Method for calibrating a radar system
US20100056070A1 (en) Digital signal processor
US11662424B2 (en) Radar apparatus and leakage correction method
US10505770B2 (en) Reception signal processing device, radar, and object detection method
US9331636B2 (en) Time and amplitude alignment in envelope tracking amplification stage
EP3245733B1 (en) Amplitude-noise reduction system and method for ultra-low phase-noise oscillators
US20100323638A1 (en) Phase corrector and phase correction method
US9148103B2 (en) Gain measurement circuit, gain measurement method, and communication apparatus
US10230408B2 (en) Measurement receiver harmonic distortion cancellation
JP2018125794A (ja) 受信装置、受信方法、プログラム
JP2007078463A (ja) 監視レーダ装置
JP2003315395A (ja) ベクトル・ネットワーク・アナライザおよびその位相測定方法
US9100113B2 (en) Auto-heterodyne receiver
WO2022269676A1 (ja) レーダ装置および干渉波抑圧装置
JP2010286343A (ja) レーダ受信機
WO2014045927A1 (ja) パルス圧縮レーダ
JP6298862B2 (ja) 周波数変換器、レーダ装置、無線装置、及び受信装置
JP2016114421A (ja) レーダ装置の信号処理装置、レーダ装置、および校正式作成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836757

Country of ref document: EP

Kind code of ref document: A1