WO2016028087A1 - Microporous sp-copper silicate having plane quadrilateral cu(o)4 structure in which cu(o)4 unit is not linked by bridging oxygen, sp-copper silicate in which part of cu is substituted with one or more other metal atoms, and use thereof - Google Patents

Microporous sp-copper silicate having plane quadrilateral cu(o)4 structure in which cu(o)4 unit is not linked by bridging oxygen, sp-copper silicate in which part of cu is substituted with one or more other metal atoms, and use thereof Download PDF

Info

Publication number
WO2016028087A1
WO2016028087A1 PCT/KR2015/008666 KR2015008666W WO2016028087A1 WO 2016028087 A1 WO2016028087 A1 WO 2016028087A1 KR 2015008666 W KR2015008666 W KR 2015008666W WO 2016028087 A1 WO2016028087 A1 WO 2016028087A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper silicate
microporous
unit
silicate
copper
Prior art date
Application number
PCT/KR2015/008666
Other languages
French (fr)
Korean (ko)
Inventor
윤경병
다타슈보짓
Original Assignee
주식회사 지오엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지오엔 filed Critical 주식회사 지오엔
Publication of WO2016028087A1 publication Critical patent/WO2016028087A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper

Definitions

  • the present invention relates to novel microporous copper silicates, novel microporous copper silicates in which a portion of the framework Cu is substituted with one or more other metals and their use.
  • novel microporous copper silicate according to one embodiment of the invention was named SGU-29.
  • microporous metal silicate is a compound in which at least one metal and silicon form a microporous oxide.
  • Microporous titanosilicates in which the metal is titanium (Ti) are used as various ion exchangers, photocatalysts, thermal catalysts, and adsorbents.
  • microporous titanosilicate, called ETS-10 is widely used as a photocatalyst, a thermal catalyst, and an ion exchanger, and has excellent adsorption ability to lead (Pb), mercury (Hg), and cadmium (Cd) ions.
  • Figure 1 shows a schematic diagram of titanosilicates of the ETS-10 structure. As shown in FIG.
  • ETS-10 has a quantum line in which Ti atoms (blue balls) are connected by an oxygen atom (red balls) to a unique silica skeleton (yellow bars: silicon atoms, red bars: oxygen atoms). wire, -O-Ti (O) 4 -O-Ti (O) 4 -O-), and these quantum wires are orthogonal to each other and arranged regularly.
  • Ti atoms are surrounded by two oxygen atoms (red balls) on the quantum line and four oxygen atoms (red bars) on the silica skeleton to form an octahedral structure.
  • ETS-10 materials in which other metals have been partially or fully substituted have been known.
  • Ti of ETS-10 there are modified ETS-10-based materials in which various kinds of metals such as Co, Ni, and Mn are substituted by about 10%.
  • These modified ETS-10 materials differ from ETS-10 due to the substitution of some of the other metals, resulting in gas adsorption, ion exchange and catalytic properties.
  • a vanadate silicate called AM-6 in which all Ti atoms of ETS-10 are substituted with V atoms.
  • the inventors of the present invention is an octahedral microporous copper silicate (Tihedral type) in which all of the Ti of the ETS-10 is substituted with Cu, so that -O-Cu (O) 4 -O-Cu (O) 4 -O- quantum wires exist.
  • OH-gurisilicate named SCuS-10
  • SCuS-10 has been patented for the material (FIG. 2) and its preparation (registered patent KR10-1243274).
  • Cu atoms are surrounded by two oxygen atoms (red balls) placed on a quantum line and four oxygen atoms (red bars) on a silica skeleton to form an octahedral structure.
  • microporous metal silicates such as microporous copper silicates
  • novel structures and novel components that can be used as adsorbents, ion exchangers, catalysts.
  • a first aspect of the invention provides a first unit selected from the group consisting of Cu (O) 4 , Cu (O) 5 , and Cu (O) 6 and Cu (O) 4 , Cu (O) 5 , and Cu (O). It provides a microporous copper silicate characterized in that some or all of the second unit selected from the group consisting of 6 ) is not connected by crosslinked oxygen.
  • a method for producing a microporous copper silicate in which some or all of the first unit, the second unit, and the nth unit are not connected with crosslinked oxygen according to the first or second aspect.
  • a fourth aspect of the present invention provides a CO 2 adsorbent comprising the microporous copper silicate according to the first or second aspect.
  • a fifth aspect of the present invention provides a NO adsorbent comprising the microporous copper silicate according to the first or second aspect.
  • a sixth aspect of the invention provides a heavy metal adsorbent comprising the microporous copper silicate according to the first or second aspect.
  • a seventh aspect of the present invention provides an inert gas adsorbent comprising the microporous copper silicate according to the first or second aspect.
  • An eighth aspect of the invention provides a catalyst comprising a microporous copper silicate according to the first or second aspect.
  • the inventors have microporous OH- copper silicate (SCuS-10) in which some or all between the Cu (O) 4 units and Cu (O) 4 units if not put an organic or inorganic reducing agent required for the production because not lead to cross-linking oxygen It has been found that SP-copper silicates (eg, SGU-29) with planar or strained planar cubic Cu (O) 4 structures can be produced reproducibly.
  • SCuS-10 microporous OH- copper silicate
  • microporous materials with nanopores are used as adsorbents for various gas molecules, ion exchangers for various metal ions, and catalysts for various chemical reactions. Ion exchange characteristics, catalyst characteristics for various catalytic reactions, and the like are different.
  • the transition state or the coordination state of the main group metal forming the skeleton of the microporous material is changed, the adsorption characteristics, ion exchange characteristics, and catalyst characteristics are greatly changed.
  • the coordination number of the transition metal constituting the skeleton of the microporous material is less than 6, the binding force with the adsorbed gas molecules is increased to compensate for the insufficient coordination water, thereby improving the adsorptive properties, and in particular, the preference for specific gas molecules.
  • the catalytic efficiency and catalytic reaction selectivity for specific chemical reactions are increased.
  • FIG. 3 The structure of the microporous planar quadrilateral copper silicate (SGU-29) is shown in FIG. 3, and since there is no oxygen atom directly connecting Cu and Cu atoms in the SCuS-10 structure, -O-Cu (O) 4 -O-Cu (O) 4 -O- mothayeo fulfill the proton Cu atoms silica backbone and only the four oxygen atoms bonded to the plane quadrangle exists in the (square planar) structure that is, Cu (O) 4 Cu ( O) 4 Cu (O) Will be 4
  • the present inventors also prepared for the first time a microporous SP-copper silicate in which a part of copper atoms in the microporous SP-copper silicate (SGU-29) is substituted with one or more metals (FIG. 4) or two or more metals (FIG. 5). It was.
  • the present inventors have found that heavy metals such as carbon dioxide (CO 2 ), nitrogen monoxide (NO), inert gas, cadmium (Cd), lead (Pb), etc., because the microporous SP-copper silicate (SGU-29) has a four-coordinate copper atom. It was found to be excellent in performance as an adsorbent of ions. In particular, even if there is moisture, carbon dioxide adsorption is possible, and the structure is not destroyed by moisture, so it can be reused, and desorption is possible through high temperature or vacuum, and CO 2 , CO, CH 4 , N 2 , O 2 , H 2, etc. It was found that the adsorption selectivity for CO 2 was excellent even in a mixed gas having various molecules together.
  • M (O) 4, M (O) 5 , M (O) 6, etc. may be substituted according to the coordination number of the substituted M oxygen, and the other metal M (O) ) 4 , M (O) 5 , M (O) 6, etc., and the Cu (O) 4 unit is Cu (O) 5 form with some square pyramidal structure and Cu (octahedral) structure with Cu ( O) It may have a structure containing 6 structures.
  • Microporous SP-copper silicate substituted with dissimilar metal M (SGU-29) is expected to have significantly different gas adsorption, ion exchange, and catalytic properties compared to the parent microporous SP-copper silicate. do.
  • the present invention is based on this finding.
  • the microporous copper silicate according to the present invention comprises a first unit selected from the group consisting of Cu (O) 4 , Cu (O) 5 , and Cu (O) 6 and Cu (O) 4 , Cu (O) 5, and Cu. Some or all of the second units selected from the group consisting of (O) 6 are not linked with crosslinked oxygen.
  • the microporous copper silicate according to the present invention has a planar quadrilateral or distorted planar quadrilateral Cu (O) 4 structure because some or all of the Cu (O) 4 units and Cu (O) 4 units are not connected by crosslinked oxygen. It can have
  • microporous copper silicate according to the present invention may have a planar quadrilateral or a distorted planar quadrilateral Cu (O) 4 structure instead of the octahedral TiO 6 of the ETS-10 structure.
  • the copper silicate according to the present invention does not form a quantum wire because some or all of the first unit and the second unit is not connected by crosslinked oxygen, or quantum wires present in the same plane are discontinuously present. For example, it may have a very short quantum wire structure.
  • Newly prepared SP-copper silicate (SGU-29) according to one embodiment of the present invention 1) has the same silica skeleton as the ETS-10 structure, but instead of the tetrahedral type TiO 6 of the ETS-10 structure, planar quadrilateral Cu (O) As a material having four structures,
  • Cu (O) 4 plane quadrilateral unit instead of -O-Ti (O) 4 -O-Ti (O) 4 -O-Ti (O) 4 -O- quantum wire of ETS-10 structure Is a structure in which Cu (O) 4 tetragonal monomers, which are not directly cross-linked with oxygen, are repeatedly present between and Cu (O) 4 tetragonal monomers.
  • the X-ray powder diffraction pattern is similar to ETS-10, but may have a structure in which diffraction peaks (FIG. 6) are moved at slightly higher angles (FIG. 7).
  • the copper silicate of the present invention is not limited thereto.
  • a part or the whole of the second unit is M a1 (O) 4 , M a1 (O) 5 , M a1 (O) 6 , M a2 (O) 4 , M a2 (O) 5 , M a2 (O) 6 .
  • M an (O) 4 , M an (O) 5 , M an (O) 6, or a combination thereof ( an integer from n 1 to 20, M a1 , M a2 , ..., and M an is Cu Other transition metals or main group metals).
  • M a1 , M a2 ,..., And M an may each independently be Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, and W.
  • the microporous copper silicate according to the present invention further comprises some or all of the copper atoms as a kind of other metal atoms such as Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, etc. It may be substituted with a dissimilar metal atom.
  • the microporous copper silicate according to the present invention is a part or all of the copper atoms of two or more different metal atoms, such as two or more kinds (Ni, Co), (Ni, Cr), (Ni Or two or more heterometal atoms such as (Ti), (Co, Cr), (Co, Ti), (Ti, Nb) may be substituted at the same time.
  • M a1 , M a2 ,..., And M an may be each independently Cu, Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, and W.
  • M a1 (O) 4 units and the M a1 (O) 4 units or the M a2 (O) 4 units are not linked by cross-linked oxygen, so that they are either planar or deformed planar quadrilaterals M a1 ( O) 4 or M a2 (O) 4 It may have a structure.
  • some or all of the M a1 (O) 4 units and the M a1 (O) 4 units or the M a2 (O) 4 units are not linked by crosslinked oxygen. So that it may have a planar quadrilateral or a deformed planar quadrilateral M a1 (O) 4 or M a2 (O) 4 structure.
  • first unit and the second unit-containing microporous copper silicate according to the present invention have a planar quadrilateral or a distorted planar quadrilateral M a1 (O) 4 structure instead of the tetrahedral TiO 6 having an ETS-10 structure. Can be.
  • microporous copper silicate according to the present invention does not form a quantum wire because some or all of the adjacent units are not connected by bridging oxygen, or have a structure in which quantum wires present on the same plane are discontinuously present. Can be.
  • a method of preparing a microporous copper silicate in which some or all of the first unit, the second unit, and the n-th unit is not connected with crosslinked oxygen
  • Si source Transition or primary group metal source of the first unit; Transition or main group metal source of the second unit; ... ; Transition or main group metal source of the nth unit; Alkali metal sources; Optionally a structurant; salt; And a first step of preparing water by mixing water;
  • the method for producing microporous copper silicate, in which part or all of the units are not connected by crosslinked oxygen does not use an organic or inorganic reducing agent.
  • an organic or inorganic reducing agent it is also within the scope of the present invention when a small amount of reducing agent is used, unless some or all of the units are linked by crosslinked oxygen.
  • each of the components may be mixed simultaneously or sequentially, and may be performed under heating, cooling, reflux, and / or vacuum if necessary, but is not limited thereto.
  • the pH of the mixture of the first step is preferably 8 to 12.
  • Sulfuric acid can also be used for pH adjustment.
  • the mixture may be aged before hydrothermal reaction.
  • the aging process can be carried out, for example, by stirring the reaction mixture at room temperature or above or below, and by this aging process the reaction mixture can be transformed into a gel state.
  • the second step may be performed by leaving it at room temperature, and may be omitted.
  • the hydrothermal reaction of the third step may be performed by introducing the reaction mixture into a high pressure reactor such as an autoclave and heating to a constant temperature in a closed state.
  • the molar ratio of the Si source: the metal source: the base: the alkali metal source: sulfuric acid: water (H 2 O) is from 1 to 10: 1 to 10: 1 to 20: 1 to 20: 0 to 0.5: 30 To 700.
  • the Si source is selected from the group consisting of silicate salts of alkali or alkaline earth metals, colloidal silica, silica hydrogels, silicic acid, fumed silica, tetraalkylorthosilicates, silicon hydroxides, and combinations thereof. Can be.
  • the Si source may preferably be an aqueous solution in which silica particles of size 100 microns are dispersed at 1 nanometer in ludox or colloidal state, and may be Na 2 SiO 3 or the like.
  • the metal source may be a salt such as a halogen salt, oxide, sulfide, phosphide, perchlorate, chloride, acetate or mixtures thereof.
  • a copper supply source and one kind of dissimilar metal source can be used as a metal supply source.
  • a copper source and two dissimilar metal sources such as dissimilar metal-A sources, dissimilar metals A -B source or a dissimilar metal-C source can be used.
  • the alkali metal includes an alkaline earth metal
  • non-limiting examples of alkali metals include Li, Na, K, Rb, Cs, and the like.
  • Non-limiting examples of alkaline earth metals include Be, Mg, Ca, Sr, Ba and the like.
  • the seed may be OH- copper silicate, SP- copper silicate (SG-29), AM-6, or ETS-10 according to the present invention.
  • the copper silicate according to the present invention is a microporous material, not only can be used as various thermal catalysts and photocatalysts, but also has a good preference for a specific molecule or ion, so that only a specific molecule from a mixture containing a specific molecule or a mixture containing a specific ion can be used. Alternatively, it may be used as an adsorbent and an ion exchanger capable of selectively adsorbing only specific ions.
  • the silicate according to the present invention or the silicate in which some or all of the first unit, the second unit, and the n-th unit are not connected by crosslinked oxygen is oxygen dioxide, heavy metal, nitrogen monoxide, inert gas. Strongly adsorbs. In particular, even when the water absorption of carbon dioxide is excellent in the high selectivity of CO 2, CO, CH 4 of CO 2. In addition, the adsorption amount per unit volume is large, the desorption is possible at a high temperature of 150 ⁇ 300 °C, and even desorption is possible by flowing nitrogen gas in the vacuum can be reused.
  • the copper silicate according to the present invention can be used as a selective gas adsorbent, selective ion exchanger, molecular separation membrane, for example, carbon dioxide adsorbent, carbon dioxide adsorbed selectively in the mixed gas or air containing carbon dioxide, is released after burning fossil fuel fuel It can be used as carbon dioxide adsorption, nitrous acid adsorption, carbon dioxide separation membrane, nitrous acid separation membrane, gas separation membrane, inert gas adsorbent, heavy metal adsorbent or ion exchanger in the exhaust gas.
  • Non-limiting examples of the inert gas in the inert gas adsorbent include He, Ar, Kr, Xe and the like.
  • silicates according to the present invention or silicates in which some or all of the first unit, the second unit, and the n-th unit are not linked by crosslinked oxygen can be used as a selective adsorbent for benzene.
  • cyclohexane is produced by hydrogenation of benzene using a hydrogenation catalyst such as nickel or palladium.
  • the cyclohexane thus prepared is converted to cyclohexanone and eventually used as a raw material of ⁇ -caprolactam, adipic acid, hexamethylenediamine, nylon such as 6-nylon, 6,6-nylon.
  • Cyclohexane's own use is mainly a cleaning liquid or an adhesive in an organic solvent state. It is also used as a test gas for gas masks.
  • the conversion efficiency of nylon may be reduced. Therefore, the copper silicate according to the present invention or a silicate in which part or all of the first unit, the second unit, and the n-th unit according to the present invention are not linked by crosslinked oxygen is adsorbed and removed only benzene, and then cyclohexane is nylon. Conversion may lead to increased nylon productivity.
  • the present invention relates to a mixture comprising benzene with a silicate according to the present invention or a silicate in which some or all of the first, second, and n-th monomers according to the present invention are not linked by crosslinked oxygen. It is possible to provide a method for removing adsorption of benzene comprising the step of contacting.
  • the present invention is a step a to obtain cyclohexane by reacting benzene under a hydrogenation catalyst;
  • the product of step a is contacted with a copper silicate according to the present invention or a silicate in which part or all of the first unit, the second unit, and the nth unit according to the present invention are not linked with crosslinked oxygen to adsorb and remove benzene.
  • Step b can provide a method for producing nylon comprising a step c to convert the cyclohexane obtained in step b to nylon.
  • the adsorbent according to the present invention may be in the form of a powder, pellet, foam, film or a fixed bed column filled with the adsorbent, and may be in the form of a molded article to which the adsorbent is attached.
  • the molding may be made of fiber, including clothing.
  • the copper silicate according to the present invention or the microporous copper silicate in which part or all of the first unit, the second unit, and the n-th unit according to the present invention are not linked with crosslinked oxygen may reduce carbon dioxide contained in the pores. It can also be used as a thermal catalyst and a photocatalyst of various chemical reactions.
  • the copper silicate according to the present invention or the microporous copper silicate in which part or all of the first unit, the second unit, and the n-th unit according to the present invention are not linked with crosslinked oxygen may be used as a catalyst for the dehydrogenation reaction of alcohol. Can be.
  • dehydrogenation of alcohol refers to a reaction in which hydrogen is released from an alcohol molecule, and is also referred to as a hydrogen dehydration reaction of an alcohol. This is a kind of oxidation reaction, and can be called a reverse reaction of hydrogenation.
  • the copper silicate according to the present invention or the microporous copper silicate in which some or all of the first unit, the second unit, and the n-th unit according to the present invention are not connected with crosslinked oxygen is represented by the following Scheme 1 It can be used as a catalyst for the dehydrogenation reaction of the secondary alcohol, in which a common cocatalyst or additive can be used.
  • the microsilicate copper silicate according to the present invention or the microporous copper silicate in which some or all of the first unit, the second unit, and the nth unit is not connected with crosslinked oxygen is used as a catalyst for the dehydrogenation reaction of the secondary alcohol. May also be used.
  • the dehydrogenation of the alcohol may be a vapor phase reaction in which a gaseous reactant reacts under a catalyst in solid form, or a liquid phase reaction in which a reactant dissolved or dispersed in a solvent reacts under a catalyst in solid form. It may be.
  • Copper silicates according to the present invention or microporous copper silicates in which part or all of the first, second and nth units are not linked by crosslinked oxygen according to the present invention can be used as catalysts for dehydrogenation of alcohols.
  • the alcohol include, but are not limited to, ethanol, propanol, cyclohexanol, and the like.
  • it can be converted to acetaldehyde and hydrogen when using ethanol, to acetone and hydrogen when using isopropyl alcohol, and to cyclohexanone and hydrogen when using cyclohexanol. .
  • the present invention has found copper silicates and substituents thereof in which some or all of the Cu (O) 4 units and Cu (O) 4 units are not linked by crosslinked oxygen, and the copper silicates of the present invention are oxygen dioxide, heavy metals, monoxide nitrogen, as well as excellent as an adsorbent of an inert gas, is high, even if a water excellent in carbon dioxide adsorption, and the choice of CO 2, CO, CH 4 of CO 2 also, a large amount per unit volume of the adsorption, desorption is to be under a high-temperature or vacuum It is reusable and furthermore it does not release when it adsorbs mercury and lead.
  • FIG. 1 is a schematic diagram of a microporous titanium silicate having an ETS-10 structure.
  • Ti atoms blue balls form a quantum wire connected to a microporous silica skeleton (yellow bars: silicon atoms, red bars: oxygen atoms) by oxygen atoms (red balls). It is surrounded by two oxygen atoms (red balls) placed on a line and four oxygen atoms (red bars) on a silica skeleton to form an octahedral structure.
  • FIG. 2 is a schematic diagram of a microporous OH-copper silicate having an ETS-10 structure.
  • Cu atoms (green balls) form a quantum wire connected to the microporous silica backbone (yellow bars: silicon atoms, red bars: oxygen atoms) by oxygen atoms (red balls). It is surrounded by two oxygen atoms (red balls) placed on a line and four oxygen atoms (red bars) on a silica skeleton to form an octahedral structure.
  • SGU-29 is a schematic diagram of microporous SP-copper silicate
  • SGU-29 microporous SP-copper silicate
  • Cu atoms (green balls) and other metal atoms A are aligned in the microporous silica backbone (yellow bars: silicon atoms, red bars: oxygen atoms), but there are no oxygen atoms between the Cu and other metal atoms, so the quantum wire
  • Cu atoms and other metal atoms A are surrounded by only four oxygen atoms (red bars) on the silica skeleton to form a square planar or distorted planar quadrilateral structure.
  • other metal atoms may have an octahedral structure.
  • 5 is a schematic diagram of SP-copper silicate including two or more kinds of dissimilar metal elements.
  • Cu atoms (green balls) and other metal atoms A and B are aligned in the silica backbone (yellow bar: silicon atom, red bar: oxygen atom), but there is no oxygen atom between Cu and other metal atoms A and B
  • Cu atoms and other metal atoms A and B are surrounded by only four oxygen atoms (red bars) on a silica skeleton, so that they are square planar or distorted. Planar quadrilateral structure.
  • the other metal atoms may have an octahedral structure, so that adjacent copper atoms may also have a Cu (O) 5 form and an octahedral structure, depending on the type of other metal atoms. It may have a structure containing a Cu (O) 6 structure that is a type structure.
  • FIG. 6 shows the XRD patterns of microporous SP-copper silicate (SGU-29) and ETS-10 molecular sieve.
  • Figure 7 shows the XRD angle and d-spacing value of the microporous SP-copper silicate and ETS-10 molecular sieve.
  • FIG. 9 is a SEM photograph of the microporous SP-copper silicate prepared in Example 1.
  • FIG. 10 is a SEM photograph of the microporous Ti-containing SP-copper silicate (Ti; 47%) prepared in Example 2.
  • FIG. 10 is a SEM photograph of the microporous Ti-containing SP-copper silicate (Ti; 47%) prepared in Example 2.
  • FIG. 11 is an EDS spectrum of Ti (47%)-SP-copper silicate prepared in Example 2.
  • FIG. 12 is an SEM photograph of Ni (26%)-SP-copper silicate prepared in Example 3.
  • FIG. 12 is an SEM photograph of Ni (26%)-SP-copper silicate prepared in Example 3.
  • FIG. 13 is an EDS spectrum of Ni (26%)-SP-coppersilicate prepared in Example 3.
  • FIG. 14 shows breakthrough results of a CO 2 -N 2 mixture, a CO 2 -CH 4 mixture, and a CO 2 -H 2 mixture using SP-copper silicate prepared in Example 1.
  • FIG. 16 shows the results of benzene adsorptive separation experiments using SP-copper silicate prepared in Example 1.
  • Ludox brand of water soluble colloidal silica (10 nm) was used.
  • the SEM photograph of the obtained copper silicate is shown in FIG. 9.
  • the Raman spectrum of the obtained copper silicate is shown in FIG. 8, from which it can be seen that the copper silicate is partially or completely disconnected from copper and oxygen.
  • the copper silicate according to the present invention can obtain cyclohexane having a purity of 100% as a material passing through the copper silicate by adsorbing only benzene for a predetermined time.
  • the copper silicate according to the present invention exhibits a conversion rate equivalent to or better than that of the existing Cu-SiO 2 catalyst.

Abstract

The present invention relates to: a copper silicate in which some or all of a first unit selected from the group consisting of Cu(O)4, Cu(O)5, and Cu(O)6 and a second unit selected from the group consisting of Cu(O)4, Cu(O)5, and Cu(O)6 are not linked by bridging oxygen; a copper silicate containing, among a group of units Man consisting of Man(O)4, Man(O)5 and Man(O)6 (where n is an integer of 1 to 20, and Ma1, Ma2 . . . and Man are different transition metals or main group metals), a first unit selected from a group of units where n is 1, a second unit selected from a group of units where n is 2 . . . and an n th unit selected from a group of units where n is n , wherein some or all of the units adjacent to each other are not linked by bridging oxygen; and a use thereof.

Description

CU(O)4 단위체가 가교 산소로 연결되지 않은 평면사변형 CU(O)4 구조를 갖는 마이크로다공성 SP-구리실리케이트 및 CU의 일부가 일종(一種)이상의 다른 금속원자로 치환된 SP-구리실리케이트, 및 이의 용도Microporous SP-copper silicate having a planar quadrangle CU (O) 4 structure in which CU (O) 4 units are not linked by crosslinked oxygen, and SP-copperilicate in which a portion of the CU is substituted with at least one other metal atom, and Its use
본 발명은 신규 마이크로다공성 구리실리케이트, 골격을 이루는 Cu의 일부가 1종 이상의 다른 금속으로 치환된 신규 마이크로다공성 구리실리케이트 및 이의 용도에 관한 것이다.The present invention relates to novel microporous copper silicates, novel microporous copper silicates in which a portion of the framework Cu is substituted with one or more other metals and their use.
본 발명의 일 구체예에 따른 신규 마이크로다공성 구리실리케이트는 SGU-29라 명명하였다.The novel microporous copper silicate according to one embodiment of the invention was named SGU-29.
통상, 마이크로다공성 금속실리케이트(Microporous Metal silicate)는 1종 이상의 금속과 실리콘이 마이크로다공성 산화물을 형성한 화합물이다. 금속이 타이타니움(Ti)인 마이크로다공성 타이타노실리케이트들은 다양한 이온교환제, 광촉매, 열촉매, 흡착제 등으로 사용되고 있다. 그 중 ETS-10이라고 불리는 마이크로다공성 타이타노실리케이트는 광촉매, 열촉매, 이온교환제 등으로 다양하게 사용되고 있으며 납(Pb), 수은(Hg), 카드뮴(Cd) 이온 등에 대한 흡착력이 우수하다. 도 1에는 ETS-10 구조의 타이타노실리케이트의 모식도가 도시되어 있다. 도 1에 도시된 바와 같이, ETS-10는 고유한 실리카 골격(황색 막대: 실리콘 원자, 적색 막대: 산소원자)에 Ti 원자(청색 공)들이 산소원자(적색 공)에 의해 연결된 양자선(quantum wire, -O-Ti(O)4-O-Ti(O)4-O-)을 이루고 이 양자선들이 서로 직교하며 규칙적으로 배열되어 있는 구조를 가지고 있다. ETS-10 구조의 타이타노실리케이트에서 Ti 원자는 양자선 상에 놓인 산소원자(적색 공) 2개와 실리카 골격 상의 산소원자(적색 막대) 4개로 둘러싸여 있어서 정팔면체(octahedral) 구조를 이룬다. Typically, microporous metal silicate is a compound in which at least one metal and silicon form a microporous oxide. Microporous titanosilicates in which the metal is titanium (Ti) are used as various ion exchangers, photocatalysts, thermal catalysts, and adsorbents. Among them, microporous titanosilicate, called ETS-10, is widely used as a photocatalyst, a thermal catalyst, and an ion exchanger, and has excellent adsorption ability to lead (Pb), mercury (Hg), and cadmium (Cd) ions. Figure 1 shows a schematic diagram of titanosilicates of the ETS-10 structure. As shown in FIG. 1, ETS-10 has a quantum line in which Ti atoms (blue balls) are connected by an oxygen atom (red balls) to a unique silica skeleton (yellow bars: silicon atoms, red bars: oxygen atoms). wire, -O-Ti (O) 4 -O-Ti (O) 4 -O-), and these quantum wires are orthogonal to each other and arranged regularly. In titanosilicates of the ETS-10 structure, Ti atoms are surrounded by two oxygen atoms (red balls) on the quantum line and four oxygen atoms (red bars) on the silica skeleton to form an octahedral structure.
ETS-10의 Ti 대신에 다른 금속들이 일부 또는 전부 치환되어진 물질들이 알려져 왔다. 예컨대, ETS-10의 Ti 대신에 Co, Ni, Mn 등 여러 종류의 금속이 10% 정도 치환된 변형 ETS-10계 물질들이 있다. 이렇게 변형된 ETS-10계 물질들은 치환되어진 일부의 다른 금속들로 말미암아 가스흡착 특성, 이온교환 특성, 촉매 특성 등이 ETS-10과 달라진다. 또한 ETS-10의 Ti 원자를 모두 V 원자로 치환시킨 AM-6라 불리우는 바나도실리케이트가 있다.Instead of Ti of ETS-10, materials in which other metals have been partially or fully substituted have been known. For example, instead of Ti of ETS-10, there are modified ETS-10-based materials in which various kinds of metals such as Co, Ni, and Mn are substituted by about 10%. These modified ETS-10 materials differ from ETS-10 due to the substitution of some of the other metals, resulting in gas adsorption, ion exchange and catalytic properties. There is also a vanadate silicate called AM-6 in which all Ti atoms of ETS-10 are substituted with V atoms.
한편, 본 발명자들은 ETS-10의 Ti이 모두 Cu로 치환되어서 -O-Cu(O)4-O-Cu(O)4-O- 양자선이 존재하는 정팔면체(octahedral)형 마이크로다공성 구리실리케이트 (OH-구리실리케이트, SCuS-10이라 명명됨) 물질(도 2) 및 이의 제조법에 대해 특허출원한 바 있다(등록특허 KR10-1243274). 여기서, Cu 원자는 양자선 상에 놓인 산소원자(적색 공) 2개와 실리카 골격 상의 산소원자(적색 막대) 4개로 둘러싸여 있어서 정팔면체 구조를 이룬다.On the other hand, the inventors of the present invention is an octahedral microporous copper silicate (Tihedral type) in which all of the Ti of the ETS-10 is substituted with Cu, so that -O-Cu (O) 4 -O-Cu (O) 4 -O- quantum wires exist. OH-gurisilicate, named SCuS-10, has been patented for the material (FIG. 2) and its preparation (registered patent KR10-1243274). Here, Cu atoms are surrounded by two oxygen atoms (red balls) placed on a quantum line and four oxygen atoms (red bars) on a silica skeleton to form an octahedral structure.
본 발명의 목적은 흡착제, 이온교환제, 촉매제로 사용가능한, 신규 구조와 신규 성분의 다양한 마이크로다공성 금속실리케이트, 예컨대 마이크로다공성 구리실리케이트를 제공하고자 한다.It is an object of the present invention to provide a variety of microporous metal silicates, such as microporous copper silicates, of novel structures and novel components that can be used as adsorbents, ion exchangers, catalysts.
본 발명의 제1양태는 Cu(O)4, Cu(O)5, 및 Cu(O)6로 구성된 군에서 선택된 제1단위체와 Cu(O)4, Cu(O)5, 및 Cu(O)6로 구성된 군에서 선택된 제2단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 것이 특징인 마이크로다공성 구리실리케이트를 제공한다.A first aspect of the invention provides a first unit selected from the group consisting of Cu (O) 4 , Cu (O) 5 , and Cu (O) 6 and Cu (O) 4 , Cu (O) 5 , and Cu (O). It provides a microporous copper silicate characterized in that some or all of the second unit selected from the group consisting of 6 ) is not connected by crosslinked oxygen.
본 발명의 제2양태는 Man(O)4, Man(O)5 및 Man(O)6로 구성된 단위체 군(Man에서 n = 1 ~ 20의 정수, Ma1, Ma2,..., 및 Man은 서로 상이한 전이금속 또는 주족금속)에서, n = 1인 단위체군에서 선택된 제1단위체, n = 2인 단위체군에서 선택된 제2단위체, … 및 n = n인 단위체군에서 선택된 제n단위체를 함유하는 구리실리케이트에 있어서, 서로 인접한 상기 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 것이 특징인 구리실리케이트를 제공한다.A second aspect of the present invention provides a group of units consisting of M an (O) 4 , M an (O) 5 and M an (O) 6 , in which an integer of n = 1 to 20, M a1 , M a2,. .., And M an are different transition metals or main group metals), a first unit selected from the group of units having n = 1, a second unit selected from the group of units having n = 2,. And in the copper silicate containing the n-th unit selected from the group of units n = n, it provides a copper silicate characterized in that some or all of the adjacent units are not connected by cross-linked oxygen.
본 발명의 제3양태는 제1양태 또는 제2양태에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 마이크로다공성 구리 실리케이트의 제조방법으로서, Si 공급원; 제1단위체의 전이 또는 주족금속 공급원; 제2단위체의 전이 또는 주족금속 공급원; … ; 제n단위체의 전이 또는 주족금속 공급원; 알칼리 금속 공급원; 선택적으로 구조형성제; 염; 및 물을 혼합하여 혼합물을 준비하는 제1단계; 상기 혼합물을 0 내지 300 시간 숙성하는 제2단계; 및 압력반응기에서 50℃에서 내지 300℃에서 1 내지 300 시간 가열하는 제3단계를 포함하는 것이 특징인 마이크로다공성 구리실리케이트 제조방법을 제공한다.According to a third aspect of the present invention, there is provided a method for producing a microporous copper silicate in which some or all of the first unit, the second unit, and the nth unit are not connected with crosslinked oxygen according to the first or second aspect. Source; Transition or primary group metal source of the first unit; Transition or main group metal source of the second unit; … ; Transition or main group metal source of the nth unit; Alkali metal sources; Optionally a structurant; salt; And a first step of preparing water by mixing water; A second step of aging the mixture for 0 to 300 hours; And it provides a method for producing microporous copper silicate comprising a third step of heating for 1 to 300 hours at 50 ℃ to 300 ℃ in a pressure reactor.
본 발명의 제4양태는 제1양태 또는 제2양태에 따른 마이크로다공성 구리실리케이트를 포함하는 CO2 흡착제를 제공한다.A fourth aspect of the present invention provides a CO 2 adsorbent comprising the microporous copper silicate according to the first or second aspect.
본 발명의 제5양태는 제1양태 또는 제2양태에 따른 마이크로다공성 구리실리케이트를 포함하는 NO 흡착제를 제공한다.A fifth aspect of the present invention provides a NO adsorbent comprising the microporous copper silicate according to the first or second aspect.
본 발명의 제6양태는 제1양태 또는 제2양태에 따른 마이크로다공성 구리실리케이트를 포함하는 중금속 흡착제를 제공한다.A sixth aspect of the invention provides a heavy metal adsorbent comprising the microporous copper silicate according to the first or second aspect.
본 발명의 제7양태는 제1양태 또는 제2양태에 따른 마이크로다공성 구리실리케이트를 포함하는 불활성 가스 흡착제를 제공한다.A seventh aspect of the present invention provides an inert gas adsorbent comprising the microporous copper silicate according to the first or second aspect.
본 발명의 제8양태는 제1양태 또는 제2양태에 따른 마이크로다공성 구리실리케이트를 포함하는 촉매제를 제공한다.An eighth aspect of the invention provides a catalyst comprising a microporous copper silicate according to the first or second aspect.
이하, 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명자들은 마이크로다공성 OH-구리실리케이트(SCuS-10) 제조시 요구되는 유기 또는 무기환원제를 넣지 않을 경우 Cu(O)4 단위체와 Cu(O)4 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않아서 평면사변형 또는 변형된(distorted) 평면사변형 Cu(O)4 구조를 갖는 SP-구리실리케이트(예, SGU-29)를 재현성 있게 제조할 수 있다는 것을 발견하였다. 또한, 이때 유기 또는 무기환원제를 사용하더라도 적절히 조절하면, Cu(O)4 단위체와 Cu(O)4 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않아서 평면사변형 또는 변형된(distorted) 평면사변형 Cu(O)4 구조를 갖는 구리실리케이트를 제조할 수 있다는 것을 발견하였다.The inventors have microporous OH- copper silicate (SCuS-10) in which some or all between the Cu (O) 4 units and Cu (O) 4 units if not put an organic or inorganic reducing agent required for the production because not lead to cross-linking oxygen It has been found that SP-copper silicates (eg, SGU-29) with planar or strained planar cubic Cu (O) 4 structures can be produced reproducibly. In addition, even if an organic or inorganic reducing agent is used, when it is properly controlled, some or all of the Cu (O) 4 unit and the Cu (O) 4 unit are not connected to the crosslinked oxygen, so that the planar quadrilateral or distorted planar quadrilateral Cu ( It was found that a copper silicate having an O) 4 structure can be prepared.
일반적으로 나노세공을 가지는 마이크로다공성 물질들은 다양한 가스 분자의 흡착제, 다양한 금속 이온의 이온교환제, 다양한 화학 반응의 촉매제로 사용되는데 구성 원소와 구조가 다르면 다양한 분자들에 대한 흡착특성, 다양한 이온들에 대한이온교환 특성, 다양한 촉매 반응들에 대한 촉매특성 등이 달라진다. 특히 마이크로다공성 물질의 골격을 이루는 전이 또는 주족 금속의 배위상태가 달라지면 흡착특성, 이온교환 특성, 촉매특성이 크게 달라진다. 특히 마이크로다공성 물질의 골격을 이루는 전이금속의 배위수가 6보다 작아지면 부족한 배위수를 메꾸기 위해 흡착된 가스분자와의 결합력이 증대되어 흡착성질이 향상되며 특히 특정 가스분자에 대한 선호도가 증대된다. 또한 특정 화학반응에 대한 촉매효율과 촉매반응선택성이 증가된다. In general, microporous materials with nanopores are used as adsorbents for various gas molecules, ion exchangers for various metal ions, and catalysts for various chemical reactions. Ion exchange characteristics, catalyst characteristics for various catalytic reactions, and the like are different. In particular, if the transition state or the coordination state of the main group metal forming the skeleton of the microporous material is changed, the adsorption characteristics, ion exchange characteristics, and catalyst characteristics are greatly changed. In particular, when the coordination number of the transition metal constituting the skeleton of the microporous material is less than 6, the binding force with the adsorbed gas molecules is increased to compensate for the insufficient coordination water, thereby improving the adsorptive properties, and in particular, the preference for specific gas molecules. In addition, the catalytic efficiency and catalytic reaction selectivity for specific chemical reactions are increased.
이러한 이유에 근거하여, 본 발명자들은 -O-Cu(O)4-O-Cu(O)4-O- 양자선이 존재하는 마이크로다공성 OH-구리실리케이트(SCuS-10)에서 Cu(O)4 단위체를 연결해 주는 산소 원자를 일부 또는 전부 제거시킨 마이크로다공성 SP-구리실리케이트 물질을 처음으로 제조하였다.Based on this reason, the inventors have - O -Cu (O) 4 - O -Cu (O) 4 - O - , which exists proton microporous OH- copper silicate in Cu (SCuS-10) (O) 4 A microporous SP-copper silicate material was prepared for the first time in which some or all of the oxygen atoms linking the units were removed.
상기 마이크로다공성 평면사변형 구리실리케이트(SGU-29)의 구조는 도 3에 도시되어 있으며, SCuS-10 구조에서 Cu와 Cu 원자를 직접 연결하는 산소원자가 없어서 -O-Cu(O)4-O-Cu(O)4-O- 양자선을 이루지 못하여 Cu 원자가 실리카 골격에 존재하는 4개의 산소원자와만 결합하여 평면사변형(square planar) 구조 즉, Cu(O)4 Cu(O)4 Cu(O)4로 존재하게 된다.The structure of the microporous planar quadrilateral copper silicate (SGU-29) is shown in FIG. 3, and since there is no oxygen atom directly connecting Cu and Cu atoms in the SCuS-10 structure, -O-Cu (O) 4 -O-Cu (O) 4 -O- mothayeo fulfill the proton Cu atoms silica backbone and only the four oxygen atoms bonded to the plane quadrangle exists in the (square planar) structure that is, Cu (O) 4 Cu ( O) 4 Cu (O) Will be 4
또한, 본 발명자들은 마이크로다공성 SP-구리실리케이트(SGU-29)에서 구리원자 일부를 한 종류 (도 4) 또는 두 종류 (도 5) 이상의 다른 금속으로 치환시킨 마이크로다공성 SP-구리실리케이트도 처음으로 제조하였다.In addition, the present inventors also prepared for the first time a microporous SP-copper silicate in which a part of copper atoms in the microporous SP-copper silicate (SGU-29) is substituted with one or more metals (FIG. 4) or two or more metals (FIG. 5). It was.
나아가, 본 발명자들은 마이크로다공성 SP-구리실리케이트(SGU-29)가 4배위를 갖는 구리원자 때문에 이산화탄소 (CO2), 일산화질소 (NO), 불활성 가스, 카드뮴 (Cd), 납(Pb) 등 중금속 이온의 흡착제로서 성능이 우수하다는 것을 발견하였다. 특히 수분이 있어도 이산화탄소 흡착이 가능하고, 수분에 의해서도 구조가 파괴되지 않아서 재사용이 가능하며, 고온 또는 진공을 통해 탈착이 가능하고, CO2, CO, CH4, N2, O2, H2 등 다양한 분자들이 함께 존재하는 혼합가스에서도 CO2에 대한 흡착선택도가 우수하다는 사실을 발견하였다. Furthermore, the present inventors have found that heavy metals such as carbon dioxide (CO 2 ), nitrogen monoxide (NO), inert gas, cadmium (Cd), lead (Pb), etc., because the microporous SP-copper silicate (SGU-29) has a four-coordinate copper atom. It was found to be excellent in performance as an adsorbent of ions. In particular, even if there is moisture, carbon dioxide adsorption is possible, and the structure is not destroyed by moisture, so it can be reused, and desorption is possible through high temperature or vacuum, and CO 2 , CO, CH 4 , N 2 , O 2 , H 2, etc. It was found that the adsorption selectivity for CO 2 was excellent even in a mixed gas having various molecules together.
한편, 마이크로다공성 SP-구리실리케이트(SGU-29)도 구리 원자 일부를 한 종류 이상의 다른 금속 M (M = Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, W 등)으로 치환이 가능하며, 이때, 치환되어진 M의 산소와의 배위수에 따라 M(O)4, M(O)5, M(O)6 등으로 치환될 수 있고, 옆에 치환되어진 다른 금속 M(O)4, M(O)5, M(O)6 등으로 인해 Cu(O)4 단위가 일부 사각피라미드(square pyramidal)형 구조인 Cu(O)5 형태 및 정팔면체(octahedral)형 구조인 Cu(O)6 구조가 들어 있는 구조를 가질 수 있다. On the other hand, microporous SP-copper silicate (SGU-29) also substitutes some copper atoms with one or more other metals M (M = Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, W, etc.). In this case, M (O) 4, M (O) 5 , M (O) 6, etc. may be substituted according to the coordination number of the substituted M oxygen, and the other metal M (O) ) 4 , M (O) 5 , M (O) 6, etc., and the Cu (O) 4 unit is Cu (O) 5 form with some square pyramidal structure and Cu (octahedral) structure with Cu ( O) It may have a structure containing 6 structures.
이종(異種)금속 M으로 치환된 마이크로다공성 SP-구리실리케이트(SGU-29)는모체인 순수 마이크로다공성 SP-구리실리케이트와 비교할 때 가스흡착 특성, 이온교환 특성, 촉매 특성 등이 현저하게 다를 것으로 예상된다. Microporous SP-copper silicate substituted with dissimilar metal M (SGU-29) is expected to have significantly different gas adsorption, ion exchange, and catalytic properties compared to the parent microporous SP-copper silicate. do.
본 발명은 이러한 발견에 기초한 것이다.The present invention is based on this finding.
본 발명에 따른 마이크로다공성 구리실리케이트는 Cu(O)4, Cu(O)5, 및 Cu(O)6로 구성된 군에서 선택된 제1단위체와 Cu(O)4, Cu(O)5, 및 Cu(O)6로 구성된 군에서 선택된 제2단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 것이 특징이다.The microporous copper silicate according to the present invention comprises a first unit selected from the group consisting of Cu (O) 4 , Cu (O) 5 , and Cu (O) 6 and Cu (O) 4 , Cu (O) 5, and Cu. Some or all of the second units selected from the group consisting of (O) 6 are not linked with crosslinked oxygen.
본 발명에 따른 마이크로다공성 구리실리케이트는 Cu(O)4 단위체와 Cu(O)4 단위체 사이의 일부 또는 전부가 가교 산소로 연결되지 않아서 평면사변형 또는 변형된(distorted) 평면사변형 Cu(O)4 구조를 가질 수 있다.The microporous copper silicate according to the present invention has a planar quadrilateral or distorted planar quadrilateral Cu (O) 4 structure because some or all of the Cu (O) 4 units and Cu (O) 4 units are not connected by crosslinked oxygen. It can have
본 발명에 따른 마이크로다공성 구리실리케이트는 ETS-10 구조의 정팔면체 형 TiO6 대신에 평면사변형 또는 변형된(distorted) 평면사변형 Cu(O)4 구조를 가질 수 있다.The microporous copper silicate according to the present invention may have a planar quadrilateral or a distorted planar quadrilateral Cu (O) 4 structure instead of the octahedral TiO 6 of the ETS-10 structure.
또한, 본 발명에 따른 구리실리케이트는 제1단위체와 제2단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않아서 양자선(quantum wire)을 이루지 못하거나 동일 평면상에 존재하는 양자선이 불연속적으로 존재하는, 예컨대 매우 짧은 양자선(quantum wire) 구조를 가질 수 있다. In addition, the copper silicate according to the present invention does not form a quantum wire because some or all of the first unit and the second unit is not connected by crosslinked oxygen, or quantum wires present in the same plane are discontinuously present. For example, it may have a very short quantum wire structure.
본 발명의 일구체예에 따라 새롭게 제조된 SP-구리실리케이트(SGU-29)는 1) ETS-10 구조와 동일한 실리카 골격을 갖되 ETS-10 구조의 정팔면체 형 TiO6 대신에 평면사변형 Cu(O)4 구조를 가지는 물질로서,Newly prepared SP-copper silicate (SGU-29) according to one embodiment of the present invention 1) has the same silica skeleton as the ETS-10 structure, but instead of the tetrahedral type TiO 6 of the ETS-10 structure, planar quadrilateral Cu (O) As a material having four structures,
2) ETS-10 구조의 -O-Ti(O)4-O-Ti(O)4-O-Ti(O)4-O- 양자선 (quantum wire) 대신에 Cu(O)4 평면사변형 단위체와 Cu(O)4 평면사변형 단위체 사이에 직접 가교 산소로 연결되지 않은 Cu(O)4 평면사변형 단위체가 반복적으로 존재하는 구조이고,2) Cu (O) 4 plane quadrilateral unit instead of -O-Ti (O) 4 -O-Ti (O) 4 -O-Ti (O) 4 -O- quantum wire of ETS-10 structure Is a structure in which Cu (O) 4 tetragonal monomers, which are not directly cross-linked with oxygen, are repeatedly present between and Cu (O) 4 tetragonal monomers.
3) X-ray powder diffraction pattern은 ETS-10과 유사하나 diffraction peak 들(도 6)이 약간씩 더 높은 각도로 이동한 구조(도 7)를 가질 수 있다. 그러나, 본 발명의 구리실리케이트는 이에 제한되지 아니한다.3) The X-ray powder diffraction pattern is similar to ETS-10, but may have a structure in which diffraction peaks (FIG. 6) are moved at slightly higher angles (FIG. 7). However, the copper silicate of the present invention is not limited thereto.
본 발명에 따른 마이크로다공성 구리실리케이트는, 제2단위체 일부 또는 전부가 Ma1(O)4, Ma1(O)5, Ma1(O)6, Ma2(O)4, Ma2(O)5, Ma2(O)6 … Man(O)4, Man(O)5, Man(O)6 또는 이의 조합 (Man에서 n = 1 ~ 20의 정수, Ma1, Ma2,..., 및 Man은 Cu 이외의 서로 상이한 전이금속 또는 주족금속)으로 치환될 수 있다. In the microporous copper silicate according to the present invention, a part or the whole of the second unit is M a1 (O) 4 , M a1 (O) 5 , M a1 (O) 6 , M a2 (O) 4 , M a2 (O) 5 , M a2 (O) 6 . M an (O) 4 , M an (O) 5 , M an (O) 6, or a combination thereof ( an integer from n = 1 to 20, M a1 , M a2 , ..., and M an is Cu Other transition metals or main group metals).
이때, Ma1, Ma2,..., 및 Man은 각각 독립적으로 Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, 및 W일 수 있다. At this time, M a1 , M a2 ,..., And M an may each independently be Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, and W.
일구체예에서, 본 발명에 따른 마이크로다공성 구리실리케이트는, 추가로 구리원자의 일부 또는 전부가 일종(一種)의 다른 금속원자로 이를테면 Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb 등의 이종(異種) 금속원자로 치환된 것일 수 있다.In one embodiment, the microporous copper silicate according to the present invention further comprises some or all of the copper atoms as a kind of other metal atoms such as Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, etc. It may be substituted with a dissimilar metal atom.
다른 일구체예에서, 본 발명에 따른 마이크로다공성 구리실리케이트는, 구리원자의 일부 또는 전부가 이종(二種) 이상의 다른 금속원자로 이를테면 두 종류 이상 (Ni, Co), (Ni, Cr), (Ni, Ti), (Co, Cr), (Co, Ti), (Ti, Nb) 등의 이종(異種) 금속원자로 2가지 이상이 동시에 치환된 것일 수 있다.In another embodiment, the microporous copper silicate according to the present invention is a part or all of the copper atoms of two or more different metal atoms, such as two or more kinds (Ni, Co), (Ni, Cr), (Ni Or two or more heterometal atoms such as (Ti), (Co, Cr), (Co, Ti), (Ti, Nb) may be substituted at the same time.
또한, 본 발명에 따라 Man(O)4, Man(O)5 및 Man(O)6로 구성된 단위체 군(Man에서 n = 1 ~ 20의 정수, Ma1, Ma2,..., 및 Man은 서로 상이한 전이금속 또는 주족금속)에서, n = 1인 단위체군에서 선택된 제1단위체, n = 2인 단위체군에서 선택된 제2단위체, … n = n인 단위체군에서 선택된 제n단위체를 함유하는 구리 실리케이트는 서로 인접한 상기 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 것이 특징이다.Further, according to the present invention, a group of monomers consisting of M an (O) 4 , M an (O) 5 and M an (O) 6 (M an integer of n = 1 to 20, M a1 , M a2 , .. And M an is a transition metal or main group metal different from each other, a first unit selected from the group of units having n = 1, a second unit selected from the group of units having n = 2,. Copper silicate containing the n-th unit selected from the group of units of n = n is characterized in that some or all of the adjoining units are not connected by cross-linked oxygen.
이때, Ma1, Ma2,..., 및 Man는 각각 독립적으로 Cu, Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, 및 W일 수 있다. At this time, M a1 , M a2 ,..., And M an may be each independently Cu, Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, and W.
예컨대, Ma1(O)4 단위체와, Ma1(O)4 단위체 또는 Ma2(O)4 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않아서 평면사변형 또는 변형된(distorted) 평면사변형 Ma1(O)4 또는 Ma2(O)4 구조를 가질 수 있다.For example, some or all of the M a1 (O) 4 units and the M a1 (O) 4 units or the M a2 (O) 4 units are not linked by cross-linked oxygen, so that they are either planar or deformed planar quadrilaterals M a1 ( O) 4 or M a2 (O) 4 It may have a structure.
본 발명에 따른 제1단위체 및 제2단위체 함유 마이크로다공성 실리케이트는 Ma1(O)4 단위체와, Ma1(O)4 단위체 또는 Ma2(O)4 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않아서 평면사변형 또는 변형된(distorted) 평면사변형 Ma1(O)4 또는 Ma2(O)4 구조를 갖는 것일 수 있다. In the first and second unit-containing microporous silicates according to the present invention, some or all of the M a1 (O) 4 units and the M a1 (O) 4 units or the M a2 (O) 4 units are not linked by crosslinked oxygen. So that it may have a planar quadrilateral or a deformed planar quadrilateral M a1 (O) 4 or M a2 (O) 4 structure.
또한, 본 발명에 따른 제1단위체 및 제2단위체 함유 마이크로다공성 구리실리케이트는 ETS-10 구조의 정팔면체 형 TiO6 대신에 평면사변형 또는 변형된(distorted) 평면사변형 Ma1(O)4구조를 가지는 것일 수 있다. Further, the first unit and the second unit-containing microporous copper silicate according to the present invention have a planar quadrilateral or a distorted planar quadrilateral M a1 (O) 4 structure instead of the tetrahedral TiO 6 having an ETS-10 structure. Can be.
본 발명에 따른 마이크로다공성 구리실리케이트는 인접한 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않아서 양자선(quantum wire)을 이루지 못하거나 동일 평면상에 존재하는 양자선이 불연속적으로 존재하는 구조를 갖는 것일 수 있다.The microporous copper silicate according to the present invention does not form a quantum wire because some or all of the adjacent units are not connected by bridging oxygen, or have a structure in which quantum wires present on the same plane are discontinuously present. Can be.
본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 마이크로다공성 구리실리케이트의 제조방법은, According to the present invention, a method of preparing a microporous copper silicate in which some or all of the first unit, the second unit, and the n-th unit is not connected with crosslinked oxygen,
Si 공급원; 제1단위체의 전이 또는 주족금속 공급원; 제2단위체의 전이 또는 주족금속 공급원; … ; 제n단위체의 전이 또는 주족금속 공급원; 알칼리 금속 공급원; 선택적으로 구조형성제; 염; 및 물을 혼합하여 혼합물을 준비하는 제1단계; Si source; Transition or primary group metal source of the first unit; Transition or main group metal source of the second unit; … ; Transition or main group metal source of the nth unit; Alkali metal sources; Optionally a structurant; salt; And a first step of preparing water by mixing water;
상기 혼합물을 0 내지 300 시간 숙성하는 제2단계; 및 A second step of aging the mixture for 0 to 300 hours; And
압력반응기에서 50℃에서 내지 300℃에서 1 내지 300 시간 가열하는 제3단계를 포함한다.And a third step of heating at 50 ° C. to 300 ° C. for 1 to 300 hours in a pressure reactor.
본 발명에 따라 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 마이크로다공성 구리실리케이트의 제조방법은, 유기 또는 무기 환원제를 사용하지 않는다. 그러나, 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 한, 소량의 환원제가 사용되는 경우도 본 발명의 범주에 속한다.According to the present invention, the method for producing microporous copper silicate, in which part or all of the units are not connected by crosslinked oxygen, does not use an organic or inorganic reducing agent. However, it is also within the scope of the present invention when a small amount of reducing agent is used, unless some or all of the units are linked by crosslinked oxygen.
제1단계에서, 상기 각 성분들은 동시에 또는 순차적으로 혼합될 수 있으며, 필요한 경우 가열, 냉각, 환류, 및/또는 진공 상태에서 수행할 수 있으나, 이에 제한되는 것은 아니다.In the first step, each of the components may be mixed simultaneously or sequentially, and may be performed under heating, cooling, reflux, and / or vacuum if necessary, but is not limited thereto.
제1단계의 혼합물의 pH는 8 내지 12인 것이 바람직하다. pH조정을 위해, 황산을 사용할 수도 있다.The pH of the mixture of the first step is preferably 8 to 12. Sulfuric acid can also be used for pH adjustment.
상기 혼합물은 수열반응 시키기 전에 숙성시킬 수 있다. 상기 숙성 과정은 예를 들어, 실온 또는 그 이상 또는 이하의 온도에서 상기 반응 혼합물을 교반함으로써 수행될 수 있으며, 이러한 숙성 과정에 의하여 상기 반응 혼합물은 젤(gel) 상태로 변형될 수 있다. 제2단계는 상온에서 방치하여 수행될 수 있으며, 생략도 가능하다.The mixture may be aged before hydrothermal reaction. The aging process can be carried out, for example, by stirring the reaction mixture at room temperature or above or below, and by this aging process the reaction mixture can be transformed into a gel state. The second step may be performed by leaving it at room temperature, and may be omitted.
상기 제3단계의 수열반응은 오토클레이브(autoclave)와 같은 고압 반응기에 상기 반응 혼합물을 도입한 후 밀폐 상태에서 일정온도로 가열하여 수행될 수 있다.The hydrothermal reaction of the third step may be performed by introducing the reaction mixture into a high pressure reactor such as an autoclave and heating to a constant temperature in a closed state.
상기 Si 공급원 : 상기 금속 공급원 : 상기 염기 : 상기 알칼리 금속 공급원 : 황산: 물(H2O) 의 몰 비율은, 1 내지 10 : 1 내지 10 : 1 내지 20: 1 내지 20 : 0 내지 0.5: 30 내지 700일 수 있다. The molar ratio of the Si source: the metal source: the base: the alkali metal source: sulfuric acid: water (H 2 O) is from 1 to 10: 1 to 10: 1 to 20: 1 to 20: 0 to 0.5: 30 To 700.
상기 Si 공급원은 알칼리 금속 또는 알칼리토금속의 실리케이트염, 콜로이드 실리카, 실리카 하이드로겔, 규산(silicic acid), 발연 실리카(fumed silica), 테트라알킬오르소실리케이트, 실리콘 수산화물 및 이들의 조합으로 구성된 군에서 선택될 수 있다. Si 공급원은 바람직하게는 Ludox 또는 콜로이드 상태의 1 나노미터에서 100 마이크론 크기의 실리카 입자가 분산된 수용액일 수 있으며, Na2SiO3 등일 수 있다.The Si source is selected from the group consisting of silicate salts of alkali or alkaline earth metals, colloidal silica, silica hydrogels, silicic acid, fumed silica, tetraalkylorthosilicates, silicon hydroxides, and combinations thereof. Can be. The Si source may preferably be an aqueous solution in which silica particles of size 100 microns are dispersed at 1 nanometer in ludox or colloidal state, and may be Na 2 SiO 3 or the like.
상기 금속 공급원은 염, 예컨대 할로겐염, 산화물, 황화물, 인화물, 퍼클로레이트, 염화물, 아세테이트 또는 이의 혼합물일 수 있다. The metal source may be a salt such as a halogen salt, oxide, sulfide, phosphide, perchlorate, chloride, acetate or mixtures thereof.
상기 전이금속이 구리인 경우, 구리의 공급원은 구리염, 구리산화물, 구리황화물, 구리인화물, 구리퍼클로레이트, 구리아세테이트일 수 있으며, 비제한적인 예로는 CuSO4, Cu(OAc)2, CuX2 (X = F, Cl, Br, I), CuO, Cu2O, Cu(NO3)2, Cu(ClO4)2 등이 있다.When the transition metal is copper, the source of copper may be copper salt, copper oxide, copper sulfide, copper phosphide, copper perchlorate, copper acetate, and non-limiting examples include CuSO 4 , Cu (OAc) 2 , CuX 2 ( X = F, Cl, Br, I), CuO, Cu 2 O, Cu (NO 3 ) 2 , Cu (ClO 4 ) 2, and the like.
한 종류의 이종(異種) 금속원자가 치환된 구리실리케이트를 제조할 때는, 금속 공급원으로, 구리 공급원 및 한 종류의 이종(異種) 금속 공급원을 사용할 수 있다.When manufacturing the copper silicate substituted by one kind of dissimilar metal atom, a copper supply source and one kind of dissimilar metal source can be used as a metal supply source.
두 종류 이상의 이종(異種) 금속원자가 치환된 구리실리케이트를 제조할 때는, 금속 공급원으로, 구리 공급원 및 2 종류의 이종(異種) 금속 공급원, 예컨대 이종(異種)금속-A 소스, 이종(異種)금속-B 소스, 이종(異種)금속-C 소스를 사용할 수 있다. When producing copper silicates substituted with two or more dissimilar metal atoms, a copper source and two dissimilar metal sources such as dissimilar metal-A sources, dissimilar metals A -B source or a dissimilar metal-C source can be used.
염(salt)은 M'X (M’= Li, Na, K, Rb, Cs; X = F, Cl, Br, I) 또는 M'X2 (M' = Mg, Ca, Sr, Ba; X = F, Cl, Br, I) 또는 이의 혼합물일 수 있다.Salt is M'X (M '= Li, Na, K, Rb, Cs; X = F, Cl, Br, I) or M'X 2 (M' = Mg, Ca, Sr, Ba; X = F, Cl, Br, I) or mixtures thereof.
본 발명에서 알칼리 금속은 알칼리토금속을 포함하며, 알칼리 금속의 비제한적인 예로는 Li, Na, K, Rb, Cs 등이 있으며, 알칼리토 금속의 비제한적인 예로는 Be, Mg, Ca, Sr, Ba 등이 있다. In the present invention, the alkali metal includes an alkaline earth metal, and non-limiting examples of alkali metals include Li, Na, K, Rb, Cs, and the like. Non-limiting examples of alkaline earth metals include Be, Mg, Ca, Sr, Ba and the like.
상기 알칼리 금속 공급원은 M“OH(M“ = Li, Na, K, Rb, Cs) 또는 M“(OH)2 (M“= Be, Mg, Ca, Sr, Ba) 또는 이의 혼합물일 수 있다.The alkali metal source may be M “OH (M“ = Li, Na, K, Rb, Cs) or M “(OH) 2 (M“ = Be, Mg, Ca, Sr, Ba) or mixtures thereof.
구조 형성제는 넣을 수도 안 넣을 수도 있으며, 비제한적인 예로는 (CnH2n+1)4N+OH- , (이때, n = 1 내지 30), Ar4-nRnN+OH- (Ar = aryl, R = 수소 또는 C1~4 alkyl), R1R2R3R4N+OH-, Ar1Ar2Ar3Ar4N+OH- 등이 있다. TMAOH(Tetramethylammonium hydroxide)와 같은 tetra alkyl ammonium hydroxide이 바람직하다.Structure-forming agent is also put should be put, non-limiting examples of (C n H 2n + 1) 4 N + OH -, ( wherein, n = 1 to 30), Ar 4-n R n N + OH - (Ar = aryl, R = hydrogen or C 1 ~ 4 alkyl), R 1 R 2 R 3 R 4 N + OH - and the like -, Ar 1 Ar 2 Ar 3 Ar 4 N + OH. Preference is given to tetra alkyl ammonium hydroxides such as Tetramethylammonium hydroxide (TMAOH).
제3단계 전에 씨드(seed) 결정을 추가로 포함하는 것이 바람직하다. 이때, 상기 씨드는 본 발명에 따른 OH-구리실리케이트, SP-구리실리케이트 (SG-29), AM-6, 또는 ETS-10 일 수 있다.It is preferable to further include a seed crystal before the third step. In this case, the seed may be OH- copper silicate, SP- copper silicate (SG-29), AM-6, or ETS-10 according to the present invention.
본 발명에 따른 구리실리케이트는 마이크로다공성 물질이므로, 각종 열촉매 및 광촉매제로 쓰일 수 있을 뿐만아니라, 특정 분자 또는 이온에 대한 선호도가 좋아서 특정 분자가 들어 있는 혼합물 또는 특정 이온이 들어 있는 혼합물로부터 특정 분자만 또는 특정 이온만 선택적으로 흡착할 수 있은 흡착제 및 이온교환제로 쓰일 수 있다.Since the copper silicate according to the present invention is a microporous material, not only can be used as various thermal catalysts and photocatalysts, but also has a good preference for a specific molecule or ion, so that only a specific molecule from a mixture containing a specific molecule or a mixture containing a specific ion can be used. Alternatively, it may be used as an adsorbent and an ion exchanger capable of selectively adsorbing only specific ions.
구체적으로, 본 발명에 따른 구리실리케이트 또는 본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 실리케이트는 이산화산소, 중금속, 일산화질소, 불활성 가스를 강하게 흡착하는 성질이 있다. 특히, 수분이 있어도 이산화탄소 흡착이 우수하고 CO2, CO, CH4 중 CO2의 선택도가 높다. 또한, 단위 부피당 흡착량이 크고, 150~300℃의 고온에서 탈착가능하고 또한 진공 중 질소가스를 흘려주어도 탈착이 가능하여 재사용이 가능하다. Specifically, the silicate according to the present invention or the silicate in which some or all of the first unit, the second unit, and the n-th unit are not connected by crosslinked oxygen is oxygen dioxide, heavy metal, nitrogen monoxide, inert gas. Strongly adsorbs. In particular, even when the water absorption of carbon dioxide is excellent in the high selectivity of CO 2, CO, CH 4 of CO 2. In addition, the adsorption amount per unit volume is large, the desorption is possible at a high temperature of 150 ~ 300 ℃, and even desorption is possible by flowing nitrogen gas in the vacuum can be reused.
나아가, 수은과 납을 흡착하는 경우는 방출하지 아니한다.Furthermore, mercury and lead are not released when adsorbed.
따라서, 본 발명에 따른 구리실리케이트는 선택적 가스흡착제, 선택적 이온교환제, 분자분리막으로 사용될 수 있으며, 예컨대 이산화탄소 흡착제, 이산화탄소가 들어 있는 혼합가스 또는 공기에서 선택적으로 이산화탄소 흡착, 화석연료 연료 연소 후 방출되는 배기가스에서 이산화탄소 흡착, 아질산 흡착, 이산화탄소 분리막, 아질산 분리막, 가스분리막, 불활성 가스 흡착제, 중금속 흡착제 또는 이온교환제 등으로 사용가능하다.Thus, the copper silicate according to the present invention can be used as a selective gas adsorbent, selective ion exchanger, molecular separation membrane, for example, carbon dioxide adsorbent, carbon dioxide adsorbed selectively in the mixed gas or air containing carbon dioxide, is released after burning fossil fuel fuel It can be used as carbon dioxide adsorption, nitrous acid adsorption, carbon dioxide separation membrane, nitrous acid separation membrane, gas separation membrane, inert gas adsorbent, heavy metal adsorbent or ion exchanger in the exhaust gas.
상기 불활성 가스 흡착제에서 불활성 가스의 비제한적인 예로는 He, Ar, Kr, Xe 등이 있다.Non-limiting examples of the inert gas in the inert gas adsorbent include He, Ar, Kr, Xe and the like.
또한, 본 발명에 따른 구리실리케이트 또는 본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 실리케이트는 벤젠에 대한 선택적 흡착제로서 사용이 가능하다.In addition, the silicates according to the present invention or silicates in which some or all of the first unit, the second unit, and the n-th unit are not linked by crosslinked oxygen can be used as a selective adsorbent for benzene.
공업적으로 벤젠에 니켈 또는 팔라듐 등의 수소화 촉매를 이용하여 수소첨가반응을 일으켜 사이클로헥산을 제조한다. 이와 같이 제조된 사이클로헥산은 사이클로헥사논으로 전환되고 결국 ε-카프로락탐, 아디프산, 헥사메틸렌다이아민, 나일론, 예컨대 6-나일론, 6,6-나일론의 원료로 이용된다. 사이클로헥산의 자체 용도는 주로 유기 용매상태로의 세정액이나 접착제 등이다. 또한 방독면의 시험용 기체로 사용되기도 한다.Industrially, cyclohexane is produced by hydrogenation of benzene using a hydrogenation catalyst such as nickel or palladium. The cyclohexane thus prepared is converted to cyclohexanone and eventually used as a raw material of ε-caprolactam, adipic acid, hexamethylenediamine, nylon such as 6-nylon, 6,6-nylon. Cyclohexane's own use is mainly a cleaning liquid or an adhesive in an organic solvent state. It is also used as a test gas for gas masks.
본 발명에 따른 구리실리케이트 또는 본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 실리케이트는 벤젠에 대한 선택적 흡착 능력을 가져 벤젠으로부터 사이클로헥산을 제조하는 공정에서 얻은 벤젠과 사이클로헥산의 혼합물로부터 벤젠만을 선택적으로 흡착 제거할 수 있다.Copper silicates according to the present invention or silicates according to the present invention in which some or all of the first unit, the second unit, and the nth unit are not linked by crosslinked oxygen, have a selective adsorption capacity for benzene to form cyclohexane from benzene. Only benzene can be selectively removed from the mixture of benzene and cyclohexane obtained in the manufacturing process.
특히, 벤젠을 수소화하여 사이클로헥산을 얻은 다음 이를 나일론으로 전환하는 공정에서, 원료인 사이클로헥산과 함께 벤젠이 존재하는 경우 나일론 전환 반응 효율이 떨어질 수 있다. 따라서, 본 발명에 따른 구리실리케이트 또는 본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 실리케이트를 사용하여 벤젠만을 흡착 제거한 다음 사이클로헥산을 나일론으로 전환시키는 경우 나일론 생산성이 증가할 수 있다.In particular, in the process of hydrogenating benzene to obtain cyclohexane and then converting it to nylon, when benzene is present together with the cyclohexane as a raw material, the conversion efficiency of nylon may be reduced. Therefore, the copper silicate according to the present invention or a silicate in which part or all of the first unit, the second unit, and the n-th unit according to the present invention are not linked by crosslinked oxygen is adsorbed and removed only benzene, and then cyclohexane is nylon. Conversion may lead to increased nylon productivity.
이에 따라, 본 발명은 벤젠을 포함하는 혼합물을, 본 발명에 따른 구리실리케이트 또는 본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 실리케이트와 접촉시키는 단계를 포함하는 벤젠의 흡착 제거 방법을 제공할 수 있다.Accordingly, the present invention relates to a mixture comprising benzene with a silicate according to the present invention or a silicate in which some or all of the first, second, and n-th monomers according to the present invention are not linked by crosslinked oxygen. It is possible to provide a method for removing adsorption of benzene comprising the step of contacting.
또한, 본 발명은 벤젠을 수소화 촉매 하에 반응시켜 사이클로헥산을 얻는 제a단계; 상기 제a단계의 생성물을 본 발명에 따른 구리실리케이트 또는 본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 실리케이트와 접촉시켜 벤젠을 흡착 제거하는 제b단계; 및 상기 제b단계에서 얻은 사이클로헥산을 나일론으로 전환시키는 제c단계를 포함하는 나일론의 제조방법을 제공할 수 있다.In addition, the present invention is a step a to obtain cyclohexane by reacting benzene under a hydrogenation catalyst; The product of step a is contacted with a copper silicate according to the present invention or a silicate in which part or all of the first unit, the second unit, and the nth unit according to the present invention are not linked with crosslinked oxygen to adsorb and remove benzene. Step b; And it can provide a method for producing nylon comprising a step c to convert the cyclohexane obtained in step b to nylon.
본 발명에 따른 흡착제는 분말, 펠렛, 발포체, 필름 또는 상기 흡착제가 충진된 고정층 컬럼 형태일 수 있으며, 흡착제가 부착된 성형물 형태일 수 있다. 상기 성형물은 의류를 포함하는 섬유제일 수 있다.The adsorbent according to the present invention may be in the form of a powder, pellet, foam, film or a fixed bed column filled with the adsorbent, and may be in the form of a molded article to which the adsorbent is attached. The molding may be made of fiber, including clothing.
또한, 본 발명에 따른 구리실리케이트 또는 본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 마이크로다공성 구리실리케이트는 세공 속에 내포된 이산화탄소를 환원시킬 수 있는 각종 화학반응의 열촉매 및 광촉매로도 사용될 수 있다.Furthermore, the copper silicate according to the present invention or the microporous copper silicate in which part or all of the first unit, the second unit, and the n-th unit according to the present invention are not linked with crosslinked oxygen may reduce carbon dioxide contained in the pores. It can also be used as a thermal catalyst and a photocatalyst of various chemical reactions.
또한, 본 발명에 따른 구리실리케이트 또는 본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 마이크로다공성 구리실리케이트는 알콜의 탈수소 반응용 촉매로서 사용될 수 있다.Further, the copper silicate according to the present invention or the microporous copper silicate in which part or all of the first unit, the second unit, and the n-th unit according to the present invention are not linked with crosslinked oxygen may be used as a catalyst for the dehydrogenation reaction of alcohol. Can be.
본 발명에서 사용되는 용어, "알콜의 탈수소 반응(dehydrogenation of alcohol)"은 알콜 분자로부터 수소가 이탈하는 반응을 말하며, 알콜의 수소이탈 반응이라고도 한다. 이는 산화 반응의 일종으로, 수소 첨가의 역반응이라 할 수 있다.As used herein, the term "dehydrogenation of alcohol" refers to a reaction in which hydrogen is released from an alcohol molecule, and is also referred to as a hydrogen dehydration reaction of an alcohol. This is a kind of oxidation reaction, and can be called a reverse reaction of hydrogenation.
일 양태로서, 본 발명에 따른 구리실리케이트 또는 본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 마이크로다공성 구리실리케이트는 하기 반응식 1과 같이 1차 알콜의 탈수소 반응용 촉매로서 사용될 수 있고, 이때 당업계에서 사용되는 일반적인 공촉매(cocatalyst) 또는 첨가제(additive)가 사용될 수 있다. 이외에도 본 발명에 따른 구리실리케이트 또는 본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 마이크로다공성 구리실리케이트는 2차 알콜의 탈수소 반응용 촉매로도 사용될 수 있다. 상기 알콜의 탈수소 반응은 고체 형태의 촉매 하에 기상 반응물이 반응하는 기상(vapor phase) 반응일 수 있고, 또는 용매 중에 용해 또는 분산되어 있는 반응물이 고체 형태의 촉매 하에 반응하는 액상(liquid phase) 반응일 수도 있다.In one aspect, the copper silicate according to the present invention or the microporous copper silicate in which some or all of the first unit, the second unit, and the n-th unit according to the present invention are not connected with crosslinked oxygen is represented by the following Scheme 1 It can be used as a catalyst for the dehydrogenation reaction of the secondary alcohol, in which a common cocatalyst or additive can be used. In addition, the microsilicate copper silicate according to the present invention or the microporous copper silicate in which some or all of the first unit, the second unit, and the nth unit is not connected with crosslinked oxygen is used as a catalyst for the dehydrogenation reaction of the secondary alcohol. May also be used. The dehydrogenation of the alcohol may be a vapor phase reaction in which a gaseous reactant reacts under a catalyst in solid form, or a liquid phase reaction in which a reactant dissolved or dispersed in a solvent reacts under a catalyst in solid form. It may be.
[반응식 1] Scheme 1
Figure PCTKR2015008666-appb-I000001
Figure PCTKR2015008666-appb-I000001
본 발명에 따른 구리실리케이트 또는 본 발명에 따라 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 마이크로다공성 구리실리케이트를 알콜의 탈수소 반응용 촉매로서 사용할 수 있는 알콜의 구체적인 종류로는 에탄올, 프로판올, 사이클로헥산올 등을 예로 들 수 있으며, 이에 제한되는 것은 아니다. 예컨대, 에탄올을 사용하는 경우 아세트알데히드와 수소로 전환될 수 있고, 이소프로필 알코올을 사용하는 경우 아세톤과 수소로 전환될 수 있고, 사이클로헥산올을 사용하는 경우 사이클로헥산온과 수소로 전환될 수 있다.Copper silicates according to the present invention or microporous copper silicates in which part or all of the first, second and nth units are not linked by crosslinked oxygen according to the present invention can be used as catalysts for dehydrogenation of alcohols. Specific examples of the alcohol include, but are not limited to, ethanol, propanol, cyclohexanol, and the like. For example, it can be converted to acetaldehyde and hydrogen when using ethanol, to acetone and hydrogen when using isopropyl alcohol, and to cyclohexanone and hydrogen when using cyclohexanol. .
본 발명은 전례없는 Cu(O)4 단위체와 Cu(O)4 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 구리실리케이트 및 이의 치환체를 발견하였으며, 본 발명의 구리실리케이트는 이산화산소, 중금속, 일산화질소, 불활성 가스의 흡착제로서 우수할 뿐만아니라, 수분이 있어도 이산화탄소 흡착이 우수하고 CO2, CO, CH4 중 CO2의 선택도가 높으며, 단위 부피당 흡착량이 크고, 고온 또는 진공하에서 탈착이 가능하여 재사용이 가능하고 나아가, 수은과 납을 흡착하는 경우는 방출하지 아니한다.The present invention has found copper silicates and substituents thereof in which some or all of the Cu (O) 4 units and Cu (O) 4 units are not linked by crosslinked oxygen, and the copper silicates of the present invention are oxygen dioxide, heavy metals, monoxide nitrogen, as well as excellent as an adsorbent of an inert gas, is high, even if a water excellent in carbon dioxide adsorption, and the choice of CO 2, CO, CH 4 of CO 2 also, a large amount per unit volume of the adsorption, desorption is to be under a high-temperature or vacuum It is reusable and furthermore it does not release when it adsorbs mercury and lead.
도 1은 ETS-10 구조를 갖는 마이크로다공성 티타늄실리케이트의 모식도이다.1 is a schematic diagram of a microporous titanium silicate having an ETS-10 structure.
마이크로다공성 실리카 골격(황색 막대: 실리콘 원자, 적색 막대: 산소원자)에 Ti 원자(청색 공)들이 산소원자(적색 공)에 의해 연결된 양자선(quantum wire)을 이루고 있는 구조로서, Ti 원자들은 양자선 상에 놓여진 산소원자(적색 공) 2개와 실리카 골격 상의 산소원자(적색 막대) 4개로 둘러 쌓여 있어서 정팔면체(octahedral)구조를 이룬다. Ti atoms (blue balls) form a quantum wire connected to a microporous silica skeleton (yellow bars: silicon atoms, red bars: oxygen atoms) by oxygen atoms (red balls). It is surrounded by two oxygen atoms (red balls) placed on a line and four oxygen atoms (red bars) on a silica skeleton to form an octahedral structure.
도 2는 ETS-10 구조를 갖는 마이크로다공성 OH-구리실리케이트의 모식도이다.2 is a schematic diagram of a microporous OH-copper silicate having an ETS-10 structure.
마이크로다공성 실리카 골격(황색 막대: 실리콘 원자, 적색 막대: 산소원자)에 Cu 원자(녹색 공)들이 산소원자(적색 공)에 의해 연결된 양자선(quantum wire)을 이루고 있는 구조로서, Cu 원자들은 양자선 상에 놓여진 산소원자(적색 공) 2개와 실리카 골격 상의 산소원자(적색 막대) 4개로 둘러 쌓여 있어서 정팔면체(octahedral)구조를 이룬다.Cu atoms (green balls) form a quantum wire connected to the microporous silica backbone (yellow bars: silicon atoms, red bars: oxygen atoms) by oxygen atoms (red balls). It is surrounded by two oxygen atoms (red balls) placed on a line and four oxygen atoms (red bars) on a silica skeleton to form an octahedral structure.
도 3은 마이크로다공성 SP-구리실리케이트(SGU-29)의 모식도이다.3 is a schematic diagram of microporous SP-copper silicate (SGU-29).
마이크로다공성 실리카 골격(황색 막대: 실리콘 원자, 적색 막대: 산소원자)에 Cu 원자(녹색 공)들이 정렬되어 있으나 Cu 원자들 사이엔 산소 원자들이 없어서 양자선(quantum wire)을 이루지 못하고 있는 구조로서, Cu 원자들은 실리카 골격 상의 산소원자(적색 막대) 4개로만 둘러 쌓여 있어서 평면사변형 (square planar) 또는 변형된(distorted) 평면사변형구조를 이룬다. It is a structure in which Cu atoms (green balls) are arranged in a microporous silica skeleton (yellow bar: silicon atom, red bar: oxygen atom), but there is no oxygen atom between Cu atoms, thereby forming a quantum wire. Cu atoms are surrounded by only four oxygen atoms (red bars) on the silica backbone to form a square planar or distorted planar quadrilateral structure.
도 4는 이종(異種) 금속원소를 포함하는 마이크로다공성 SP-구리실리케이트(SGU-29)의 모식도이다.4 is a schematic diagram of a microporous SP-copper silicate (SGU-29) containing a dissimilar metal element.
마이크로다공성 실리카 골격(황색 막대: 실리콘 원자, 적색 막대: 산소원자)에 Cu 원자(녹색 공)와 다른 금속원자 A들이 정렬되어 있으나 Cu와 다른 금속 원자들 사이엔 산소 원자들이 없어서 양자선(quantum wire)을 이루지 못하고 있는 구조로서, Cu 원자들과 다른 금속 원자 A들은 실리카 골격 상의 산소원자(적색 막대) 4개로만 둘러 쌓여 있어서 평면사변형 (square planar) 또는 변형된(distorted) 평면사변형구조를 이룬다. 종류에 따라 다른 금속 원자는 정팔면체 형 구조를 가질 수도 있다.Cu atoms (green balls) and other metal atoms A are aligned in the microporous silica backbone (yellow bars: silicon atoms, red bars: oxygen atoms), but there are no oxygen atoms between the Cu and other metal atoms, so the quantum wire As a non-structured structure, Cu atoms and other metal atoms A are surrounded by only four oxygen atoms (red bars) on the silica skeleton to form a square planar or distorted planar quadrilateral structure. Depending on the type, other metal atoms may have an octahedral structure.
도 5는 두 종류 이상의 이종금속원소를 포함하는 SP-구리실리케이트의 모식도이다.5 is a schematic diagram of SP-copper silicate including two or more kinds of dissimilar metal elements.
실리카 골격(황색 막대: 실리콘 원자, 적색 막대: 산소원자)에 Cu 원자(녹색 공)와 다른 금속원자 A, B들이 정렬되어 있으나 Cu와 다른 금속원자들 A,B 사이엔 산소 원자들이 없어서 양자선(quantum wire)을 이루지 못하고 있는 구조로서, Cu 원자들과 다른 금속원자들 A와 B는 실리카 골격 상의 산소원자(적색 막대) 4개로만 둘러 쌓여 있어서 평면사변형 (square planar) 또는 변형된(distorted) 평면사변형 구조를 이룬다. 다른 금속 원자들의 종류에 따라 다른 금속 원자는 정팔면체 형 구조를 가질 수도 있으며 따라서 인접한 구리 원자도 다른 금속 원자의 종류에 따라 사각피라미드(square pyramidal)형 구조인 Cu(O)5 형태 및 정팔면체(octahedral)형 구조인 Cu(O)6 구조가 들어 있는 구조를 가질 수 있다.Cu atoms (green balls) and other metal atoms A and B are aligned in the silica backbone (yellow bar: silicon atom, red bar: oxygen atom), but there is no oxygen atom between Cu and other metal atoms A and B As a structure that does not form a quantum wire, Cu atoms and other metal atoms A and B are surrounded by only four oxygen atoms (red bars) on a silica skeleton, so that they are square planar or distorted. Planar quadrilateral structure. Depending on the type of other metal atoms, the other metal atoms may have an octahedral structure, so that adjacent copper atoms may also have a Cu (O) 5 form and an octahedral structure, depending on the type of other metal atoms. It may have a structure containing a Cu (O) 6 structure that is a type structure.
도 6은 마이크로다공성 SP-구리실리케이트(SGU-29)와 ETS-10 분자체의 XRD 패턴을 도시한 것이다.FIG. 6 shows the XRD patterns of microporous SP-copper silicate (SGU-29) and ETS-10 molecular sieve.
도 7은 마이크로다공성 SP-구리실리케이트와 ETS-10 분자체의 XRD angle과 d-spacing value을 표시한 것이다.Figure 7 shows the XRD angle and d-spacing value of the microporous SP-copper silicate and ETS-10 molecular sieve.
도 8는 실시예 1에서 제조된 마이크로다공성 SP-구리실리케이트와 ETS-10 분자체의 라만스펙트럼을 비교한 것이다. 8 compares the Raman spectrum of the microporous SP-copper silicate prepared in Example 1 with the ETS-10 molecular sieve.
도 9는 실시예 1에서 제조된 마이크로다공성 SP-구리 실리케이트의 SEM 사진이다.9 is a SEM photograph of the microporous SP-copper silicate prepared in Example 1. FIG.
도 10은 실시예 2에서 제조된 마이크로다공성 Ti함유 SP-구리실리케이트(Ti; 47%)의 SEM 사진이다.10 is a SEM photograph of the microporous Ti-containing SP-copper silicate (Ti; 47%) prepared in Example 2. FIG.
도 11은 실시예 2에서 제조된 Ti(47%)-SP-구리실리케이트의 EDS 스펙트럼이다.11 is an EDS spectrum of Ti (47%)-SP-copper silicate prepared in Example 2. FIG.
도 12은 실시예 3에서 제조된 Ni(26%)-SP-구리실리케이트의 SEM 사진이다.12 is an SEM photograph of Ni (26%)-SP-copper silicate prepared in Example 3. FIG.
도 13은 실시예 3에서 제조된 Ni(26%)-SP-구리실리케이트의 EDS 스펙트럼이다.FIG. 13 is an EDS spectrum of Ni (26%)-SP-coppersilicate prepared in Example 3.
도 14는 실시예 1에서 제조된 SP-구리실리케이트를 사용한 CO2-N2 혼합물, CO2-CH4 혼합물, CO2-H2 혼합물에 대한 브레이크쓰루(breakthrough) 실험결과이다. FIG. 14 shows breakthrough results of a CO 2 -N 2 mixture, a CO 2 -CH 4 mixture, and a CO 2 -H 2 mixture using SP-copper silicate prepared in Example 1. FIG.
도 15는 실시예 1에서 제조된 SP-구리실리케이트를 사용한 Pb2+, Cd2+, Cu2+ 이온의 선택성을 다른 물질과 비교한 결과이다.15 is a result of comparing the selectivity of Pb 2+ , Cd 2+ , Cu 2+ ions using SP-copper silicate prepared in Example 1 with other materials.
도 16은 실시예 1에서 제조된 SP-구리실리케이트를 사용한 벤젠 흡착 분리 실험 결과이다.16 shows the results of benzene adsorptive separation experiments using SP-copper silicate prepared in Example 1. FIG.
도 17은 본 발명에 따른 다양한 구리실리케이트를 사용한 알콜의 탈수소 반응 전환율을 조사한 결과이다.17 is a result of investigating the dehydrogenation conversion rate of alcohol using various copper silicates according to the present invention.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited by these examples.
실시예 1: 구리실리케이트의 합성Example 1 Synthesis of Copper Silicate
Ludox 상표의 수용성 콜로이달 실리카(10 nm)를 사용하였다.Ludox brand of water soluble colloidal silica (10 nm) was used.
40 중량% 수용성 콜로이달 실리카 (12.7 g), 25% TMAOH (10 g), NaOH (1.82g), NaCl (8 g), KCl (3 g), CuSO4 (3.58 g), 물 (20-70 g)을 넣고 교반하면서 혼합하여 합성젤을 준비하였다. 상온에서 14 시간 동안 숙성하고, 압력반응기를 이용하여 210 ℃에서 24시간 동안 가열하였다. 합성된 구리 실리케이트를 충분한 양의 탈이온 증류수로 세정하였고, 1 시간 동안 100 ℃에서 건조시켰다. 40 wt.% Water soluble colloidal silica (12.7 g), 25% TMAOH (10 g), NaOH (1.82 g), NaCl (8 g), KCl (3 g), CuSO 4 (3.58 g), water (20-70 g) was added and mixed with stirring to prepare a synthetic gel. Aged at room temperature for 14 hours, and heated at 210 ℃ for 24 hours using a pressure reactor. The synthesized copper silicate was washed with a sufficient amount of deionized distilled water and dried at 100 ° C. for 1 hour.
수득된 구리 실리케이트의 SEM 사진은 도 9에 도시되어 있다. 또한, 수득된 구리 실리케이트 시료는 일반식 (NaxKy)TMACuSi5O12·nH2O (x + y = 1)로 표시될 수 있다.The SEM photograph of the obtained copper silicate is shown in FIG. 9. In addition, the obtained copper silicate sample can be represented by the general formula (Na x K y ) TM ACuSi 5 O 12 nH 2 O (x + y = 1).
상기 수득된 구리 실리케이트의 라만스펙트럼은 도 8에 도시되어 있으며, 이로부터 구리실리케이트에서 구리와 산소간의 결합이 일부 또는 전부 끊어진 것을 확인할 수 있다.The Raman spectrum of the obtained copper silicate is shown in FIG. 8, from which it can be seen that the copper silicate is partially or completely disconnected from copper and oxygen.
실시예 2: Ti(47%)-SP-구리실리케이트의 합성Example 2: Synthesis of Ti (47%)-SP-Curisilicate
Na2SiO3 (9.4 g), 25% TMAOH (3 g), NaOH (0.5g), NaCl (4.6 g), KCl (1.5 g), CuSO4 (1.25 g), Ti(iPrO)4 (0.5 g), 그리고 물(10-40 g)을 넣고 교반하면서 혼합하여 합성젤을 준비한 것을 제외하고는 실시예1와 동일한 방법으로 구리실리케이트를 합성하였다. Na 2 SiO 3 (9.4 g), 25% TMAOH (3 g), NaOH (0.5 g), NaCl (4.6 g), KCl (1.5 g), CuSO 4 (1.25 g), Ti (iPrO) 4 (0.5 g ), And copper silicate was synthesized in the same manner as in Example 1, except that water (10-40 g) was added thereto and mixed with stirring.
수득된 Ti(47%)-구리 실리케이트의 SEM 사진은 도 10에 도시되어 있다. 또한, 수득된 구리 실리케이트 시료는 일반식 (NaxKy)TMA(Ti0.47Cu0.53)Si5O12.47·nH2O (x + y = 1)로 표시될 수 있다. 그리고 제조된 Ti(47%)-구리실리케이트의 EDS 스펙트럼은 도 11에 도시되어 있다.SEM images of the obtained Ti (47%)-copper silicates are shown in FIG. 10. In addition, the obtained copper silicate sample may be represented by the general formula (Na x K y ) TMA (Ti 0.47 Cu 0.53 ) Si 5 O 12.47 nH 2 O (x + y = 1). And the EDS spectrum of the prepared Ti (47%)-copper silicate is shown in FIG.
실시예 3: Ni(26%)-SP-구리실리케이트의 합성Example 3: Synthesis of Ni (26%)-SP-Curisilicate
40 중량% 수용성 콜로이달 실리카 (12.7 g), 25% TMAOH (10 g), NaOH (2.6 g), NaCl (8 g), KCl (3 g), NiCl (1.0 g), CuSO4 (4.5 g), 물 (40-70 g)을 넣고 교반하면서 혼합하여 합성젤을 준비하였다. 상온에서 22 시간 동안 숙성하고, 압력반응기를 이용하여 210 ℃에서 24시간 동안 가열하였다. 그 이후의 과정은 실시예 1와 동일하다. 40 wt.% Water soluble colloidal silica (12.7 g), 25% TMAOH (10 g), NaOH (2.6 g), NaCl (8 g), KCl (3 g), NiCl (1.0 g), CuSO 4 (4.5 g) , Water (40-70 g) was added and mixed with stirring to prepare a synthetic gel. Aged at room temperature for 22 hours, and heated at 210 ℃ for 24 hours using a pressure reactor. The subsequent procedure is the same as in Example 1.
수득된 Ni(26%)-SP-구리실리케이트의 SEM 사진은 도 12에 도시되어 있다. 또한, 수득된 구리 실리케이트 시료는 일반식 (NaxKy)TMACuSi5O12·nH2O (x + y = 1)로 표시될 수 있다. 그리고 제조된 Ni(26%)-SP-구리실리케이트의 EDS 스펙트럼은 도 13에 도시되어 있다.SEM pictures of the obtained Ni (26%)-SP-coppersilicate are shown in FIG. 12. In addition, the obtained copper silicate sample can be represented by the general formula (Na x K y ) TM ACuSi 5 O 12 nH 2 O (x + y = 1). And the EDS spectrum of the prepared Ni (26%)-SP- copper silicate is shown in FIG.
실시예 4: 브레이크쓰루(Breakthrough) 테스트Example 4: Breakthrough Test
습기가 없는 알곤으로 충진된 장갑상자 안에서 내부 지름이 4 mm이고 외부 지름이 6.4 mm인 스테인레스 스틸 튜브에 1 그람의 SP-구리실리케이트를 충진한 후 장갑상자 외부로 가지고 나와서 브레이크쓰루 장치에 연결하였다. 내부가 진공이 되게 한 후 CO2와 질소, CO2와 산소, CO2와 메탄의 1:9 혼합물이 분당 3 mL 속도로 지나가게 하면서 통과해 나온 가스의 성분을 가스크로마토그라프로 정량하여 성분비를 시간에 따라 플롯하였다. 도 14에는 동일한 조건에서 다른 물질들의 브레이크쓰루 결과를 함께 나타내었다. In a glove-filled glove box filled with 1 g of SP-copper silicate in a stainless steel tube with an inner diameter of 4 mm and an outer diameter of 6.4 mm, it was brought out of the glove box and connected to a breakthrough device. After evacuating the inside, a 1: 9 mixture of CO 2 and nitrogen, CO 2 and oxygen, CO 2 and methane is passed at a rate of 3 mL per minute. Plot over time. 14 shows breakthrough results of different materials under the same conditions.
실시예 5: 중금속 이온교환 실험Example 5: Heavy Metal Ion Exchange Experiment
각 중금속 이온의 농도가 1, 5, 10, 20, 40, 60, 80, 100 ppm인 용액 50 mL을 준비한 후 각 용액에 50 mg의 SP-구리실리케이트를 넣어준 후 필요한 기간 동안 자석교반기로 섞어 주었다. 일정시간이 경과한 후 원심분리 통해 얻은 상등액을 ICP-MS를 이용하여 해당 중금속 이온의 농도변화를 조사하였다. 그 결과는 도 15에 도시하였다.Prepare 50 mL of solutions with concentrations of 1, 5, 10, 20, 40, 60, 80, and 100 ppm of each heavy metal ion, add 50 mg of SP-copper silicate to each solution, and mix with a magnetic stirrer for the required period. gave. After a certain period of time, the supernatant obtained through centrifugation was examined for the concentration change of the corresponding heavy metal ion using ICP-MS. The result is shown in FIG.
실시예 6: 벤젠 흡착분리 실험Example 6 Benzene Adsorption Separation Experiment
습기가 없는 알곤으로 충진된 장갑상자 안에서 내부 지름이 4 mm이고 외부 지름이 6.4 mm인 스테인레스 스틸 튜브에 1 그람의 SP-구리실리케이트를 충진한 후 장갑상자 외부로 가지고 나와서 브레이크쓰루 장치에 연결하였다. 내부가 진공이 되게 한 후 도 16과 같이 몰기준으로 벤젠 5% 및 사이클로헥산 95%로 이루어진 혼합물이 상기 SP-구리실리케이트가 충진된 튜브를 분당 3 mL 속도로 지나가게 하면서 통과해 나온 물질의 성분을 가스크로마토그라프로 정량하여 시간에 따라 플롯하였다. 그 결과를 도 16에 나타내었다. In a glove-filled glove box filled with 1 g of SP-copper silicate in a stainless steel tube with an inner diameter of 4 mm and an outer diameter of 6.4 mm, it was brought out of the glove box and connected to a breakthrough device. After allowing the interior to become a vacuum, a mixture of 5% benzene and 95% cyclohexane on a molar basis was passed through the SP-gurisilicate-filled tube at a rate of 3 mL per minute as shown in FIG. Was quantified by gas chromatography and plotted over time. The results are shown in FIG.
도 16을 통해, 본 발명에 따른 구리실리케이트가 일정 시간 동안 벤젠만을 흡착하여 구리실리케이트를 통과한 물질로서 순도 100%의 사이클로헥산을 얻을 수 있음을 확인하였다.16, it was confirmed that the copper silicate according to the present invention can obtain cyclohexane having a purity of 100% as a material passing through the copper silicate by adsorbing only benzene for a predetermined time.
실시예 7: 알콜의 탈수소 반응 실험Example 7 Experiment of Dehydrogenation of Alcohol
촉매로서 각각 Cu-SiO2, Cu/Cu-실리케이트 Ce/Cu-실리케이트 및 Au/Cu/Cu-실리케이트를 사용하여 에탄올을 300℃ 하에 탈수소 반응시켜 아세트알데히드 및 수소로 전환시켰다. 각 촉매별 에탄올의 아세트알데히드로의 전환율을 조사하였다. 그 결과를 도 17에 나타내었다.Cu-SiO 2 , Cu / Cu-silicate Ce / Cu-silicate and Au / Cu / Cu-silicate, respectively, as catalysts were used to convert ethanol to acetaldehyde and hydrogen by dehydrogenation at 300 ° C. The conversion of acetaldehyde of ethanol for each catalyst was investigated. The results are shown in FIG.
도 17을 통해, 본 발명에 따른 구리실리케이트가 기존 Cu-SiO2 촉매와 동등 또는 더욱 우수한 수준의 전환율을 보임을 알 수 있다.17, it can be seen that the copper silicate according to the present invention exhibits a conversion rate equivalent to or better than that of the existing Cu-SiO 2 catalyst.

Claims (27)

  1. Cu(O)4, Cu(O)5, 및 Cu(O)6로 구성된 군에서 선택된 제1단위체와 Cu(O)4, Cu(O)5, 및 Cu(O)6로 구성된 군에서 선택된 제2단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 것이 특징인 마이크로다공성 구리실리케이트. Cu (O) 4, Cu ( O) 5, and a Cu (O) from the group consisting of: 6 and the selected first monomer Cu (O) 4, Cu ( O) 5, and a Cu (O) 6, selected from the group consisting of Microporous copper silicate, characterized in that some or all of the second unit is not connected by cross-linked oxygen.
  2. 제1항에 있어서, Cu(O)4 단위체와 Cu(O)4 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않아서 평면사변형 또는 변형된(distorted) 평면사변형 Cu(O)4 구조를 갖는, 구리실리케이트.2. The copper of claim 1, wherein some or all of the Cu (O) 4 units and the Cu (O) 4 units are not connected with crosslinked oxygen and thus have a planar quadrilateral or distorted planar cubic Cu (O) 4 structure. Silicate.
  3. 제1항에 있어서, 제1단위체와 제2단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않아서 양자선(quantum wire)을 이루지 못하거나 동일 평면상에 존재하는 양자선이 불연속적으로 존재하는 구조를 갖는 것이 특징인 마이크로다공성 구리실리케이트.The structure of claim 1, wherein some or all of the first unit and the second unit are not connected to each other by crosslinked oxygen, thereby forming a structure in which a quantum wire does not form or discontinuously exists in the same plane. Microporous copper silicate characterized by having.
  4. 제1항에 있어서, 제2단위체 일부가 Ma1(O)4, Ma1(O)5, Ma1(O)6, Ma2(O)4, Ma2(O)5, Ma2(O)6 … Man(O)4, Man(O)5, Man(O)6 또는 이의 조합 (Man에서 n = 1 ~ 20의 정수, Ma1,Ma2,..., 및 Man은 Cu 이외의 상이한 전이금속 또는 주족금속)으로 치환된 것이 특징인 구리실리케이트.The method of claim 1, wherein a portion of the second unit is M a1 (O) 4 , M a1 (O) 5 , M a1 (O) 6 , M a2 (O) 4 , M a2 (O) 5 , M a2 (O ) 6 . M an (O) 4 , M an (O) 5 , M an (O) 6, or a combination thereof ( an integer from n = 1 to 20, M a1 , M a2 , ..., and M an is Cu Copper silicate, characterized in that substituted by a different transition metal or main group metal).
  5. 제4항에 있어서, Ma1,Ma2,..., 및 Man은 각각 독립적으로 Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, W 인 것이 특징인 구리실리케이트.The copper silicate according to claim 4, wherein M a1 , M a2 , ..., and M an are each independently Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, W. 6.
  6. 제1항에 있어서, ETS-10 구조의 정팔면체 형 TiO6 대신에 평면사변형 또는 변형된(distorted) 평면사변형 Cu(O)4 구조를 가지는 것이 특징인 구리실리케이트.The copper silicate according to claim 1, wherein the copper silicate has a planar quadrilateral or a distorted planar quadrilateral Cu (O) 4 structure instead of the tetrahedral TiO 6 having an ETS-10 structure.
  7. Man(O)4, Man(O)5 및 Man(O)6로 구성된 단위체 군(Man에서 n = 1 ~ 20의 정수, Ma1,Ma2,..., 및 Man은 서로 상이한 전이금속 또는 주족금속)에서, n = 1인 단위체군에서 선택된 제1단위체, n = 2인 단위체군에서 선택된 제2단위체, … 및 n = n인 단위체군에서 선택된 제n단위체를 함유하는 구리 실리케이트에 있어서, A group of monomers consisting of M an (O) 4 , M an (O) 5 and M an (O) 6, where M an integer from n = 1 to 20, M a1 , M a2 , ..., and M an are Transition metals or main group metals different from each other), a first unit selected from a group of units having n = 1, a second unit selected from a group of units having n = 2,. And a copper silicate containing an n-th unit selected from the group of units where n = n,
    서로 인접한 상기 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 것이 특징인 구리 실리케이트.Copper silicate, characterized in that some or all of the units adjacent to each other are not connected by cross-linked oxygen.
  8. 제7항에 있어서, 인접한 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않아서 양자선(quantum wire)을 이루지 못하거나 동일 평면상에 존재하는 양자선이 불연속적으로 존재하는 구조를 갖는 것이 특징인 구리 실리케이트.8. The copper of claim 7, wherein some or all of the adjacent units are not connected to each other by cross-linked oxygen, thereby forming a structure in which quantum wires do not form or discontinuously present quantum wires present on the same plane. Silicate.
  9. 제7항에 있어서, Ma1,Ma2,..., 및 Man은 각각 독립적으로 Cu, Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, 및 W로 구성된 군에서 선택된 것이 특징인 구리 실리케이트.8. The method of claim 7, wherein M a1 , M a2 , ..., and M an are each independently selected from the group consisting of Cu, Ti, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, and W Copper silicate characterized by.
  10. 제7항에 있어서, Ma1(O)4 단위체와, Ma1(O)4 단위체 또는 Ma2(O)4 단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않아서 평면사변형 또는 변형된(distorted) 평면사변형 Ma1(O)4 또는 Ma2(O)4 구조를 갖는 것이 특징인 구리실리케이트.The plane of claim 7, wherein some or all of the M a1 (O) 4 units and the M a1 (O) 4 units or the M a2 (O) 4 units are not linked with crosslinked oxygen, thereby making a plane quadrilateral or distorted plane. A copper silicate characterized by having a quadrilateral M a1 (O) 4 or M a2 (O) 4 structure.
  11. 제7항에 있어서, ETS-10 구조의 정팔면체 형 TiO6 대신에 평면사변형 또는 변형된(distorted) 평면사변형 Ma1(O)4 구조를 가지는 것이 특징인 구리실리케이트.8. The copper silicate according to claim 7, wherein the copper silicate has a planar quadrilateral or a distorted planar quadrilateral M a1 (O) 4 structure instead of the tetrahedral TiO 6 having an ETS-10 structure.
  12. 제1항 내지 제11항 중 어느 한 항에 기재된, 제1단위체, 제2단위체, .. 제n단위체 사이 일부 또는 전부가 가교 산소로 연결되지 않은 마이크로다공성 구리 실리케이트의 제조방법으로서,A method for producing a microporous copper silicate according to any one of claims 1 to 11, wherein some or all of the first unit, the second unit, and the nth unit are not linked by crosslinked oxygen.
    Si 공급원; 제1단위체의 전이 또는 주족금속 공급원; 제2단위체의 전이 또는 주족금속 공급원; … ; 제n단위체의 전이 또는 주족금속 공급원; 알칼리 금속 공급원; 선택적으로 구조형성제; 염; 및 물을 혼합하여 혼합물을 준비하는 제1단계; Si source; Transition or primary group metal source of the first unit; Transition or main group metal source of the second unit; … ; Transition or main group metal source of the nth unit; Alkali metal sources; Optionally a structurant; salt; And a first step of preparing water by mixing water;
    상기 혼합물을 0 내지 300 시간 숙성하는 제2단계; 및 A second step of aging the mixture for 0 to 300 hours; And
    압력반응기에서 50℃에서 내지 300℃에서 1 내지 300 시간 가열하는 제3단계를 포함하는 것이 특징인 마이크로다공성 구리 실리케이트 제조방법.Method for producing a microporous copper silicate, characterized in that it comprises a third step of heating for 1 to 300 hours at 50 ℃ to 300 ℃ in a pressure reactor.
  13. 제12항에 있어서, 제1단계의 혼합물의 pH는 8 내지 12인 것이 특징인 마이크로다공성 구리 실리케이트 제조방법.13. The method of claim 12, wherein the pH of the mixture of the first step is 8-12.
  14. 제12항에 있어서, 제3단계 전에 씨드(seed) 결정을 추가 포함하는 것이 특징인 마이크로다공성 구리 실리케이트의 제조방법.13. The method of claim 12, further comprising seed crystals prior to the third step.
  15. 제14항에 있어서, 씨드는 제12항의 제조방법에 의해 제조된 구리실리케이트, SP-구리실리케이트, AM-6 또는 ETS-10인 것이 특징인 마이크로다공성 구리 실리케이트 제조방법.15. The method of claim 14, wherein the seed is copper silicate, SP-copper silicate, AM-6 or ETS-10 prepared by the process of claim 12.
  16. 제12항에 있어서, 상기 Si 공급원 : 상기 금속 공급원 : 상기 염기 : 상기 알칼리 금속 공급원 : 물(H2O) 의 몰 비율이, 1 내지 10 : 1 내지 10 : 1 내지 20: 1 내지 20 : 30 내지 700인 것이 특징인 마이크로다공성 구리 실리케이트 제조방법.The molar ratio of the Si source: the metal source: the base: the alkali metal source: water (H 2 O) is from 1 to 10: 1 to 10: 1 to 20: 1 to 20: 30. Microporous copper silicate production method characterized in that from to 700.
  17. 제12항에 있어서, 상기 Si 공급원은 알칼리 금속 또는 알칼리토금속의 실리케이트염, 콜로이드 실리카, 실리카 하이드로겔, 규산(silicic acid), 발연 실리카(fumed silica), 테트라알킬오르소실리케이트, 실리콘 수산화물 및 이들의 조합으로 구성된 군에서 선택된 것이 특징인 마이크로다공성 구리 실리케이트 제조방법.The method of claim 12 wherein the Si source is a silicate salt of an alkali metal or alkaline earth metal, colloidal silica, silica hydrogel, silicic acid, fumed silica, tetraalkylorthosilicate, silicon hydroxide and their Microporous copper silicate manufacturing method characterized in that selected from the group consisting of a combination.
  18. 제12항에 있어서, 상기 금속 공급원은 염, 산화물, 황화물, 인화물, 퍼클로레이트, 염화물, 아세테이트 또는 이의 혼합물을 포함하는 것이 특징인 마이크로다공성 구리 실리케이트 제조방법.13. The method of claim 12, wherein the metal source comprises salts, oxides, sulfides, phosphides, perchlorates, chlorides, acetates or mixtures thereof.
  19. 제12항에 있어서, 상기 염은 M'X (M' = Li, Na, K, Rb, Cs, X = F, Cl, Br, I) 또는 M'X2 (M'= Mg, Ca, Sr, Ba, X = F, Cl, Br, I) 또는 이의 혼합물을 포함하는 것이 특징인 마이크로다공성 구리 실리케이트 제조방법.The method of claim 12, wherein the salt is M'X (M '= Li, Na, K, Rb, Cs, X = F, Cl, Br, I) or M'X 2 (M' = Mg, Ca, Sr , Ba, X = F, Cl, Br, I) or a mixture thereof, characterized in that it comprises a microporous copper silicate.
  20. 제12항에 있어서, 상기 알칼리 금속 공급원은 M“OH(M“ = Li, Na, K, Rb, Cs) 또는 M“(OH)2 (M“ = Be, Mg, Ca, Sr. Ba) 또는 이의 혼합물인 것이 특징인 마이크로다공성 구리 실리케이트 제조방법.The method of claim 12, wherein the alkali metal source is M “OH (M“ = Li, Na, K, Rb, Cs) or M “(OH) 2 (M“ = Be, Mg, Ca, Sr. Ba) or Method for producing a microporous copper silicate, characterized in that a mixture thereof.
  21. 제1항 내지 제11항 중 어느 한 항에 기재된 마이크로다공성 구리 실리케이트를 포함하는 CO2 흡착제.CO 2 adsorbent comprising the microporous copper silicate according to any one of claims 1 to 11.
  22. 제1항 내지 제11항 중 어느 한 항에 기재된 마이크로다공성 구리 실리케이트를 포함하는 NO 흡착제.The NO adsorbent containing the microporous copper silicate as described in any one of Claims 1-11.
  23. 제1항 내지 제11항 중 어느 한 항에 기재된 마이크로다공성 구리 실리케이트를 포함하는 중금속 흡착제.A heavy metal adsorbent comprising the microporous copper silicate according to any one of claims 1 to 11.
  24. 제1항 내지 제11항 중 어느 한 항에 기재된 마이크로다공성 구리 실리케이트를 포함하는 불활성 가스 흡착제.An inert gas adsorbent comprising the microporous copper silicate according to any one of claims 1 to 11.
  25. 제1항 내지 제11항 중 어느 한 항에 기재된 마이크로다공성 구리 실리케이트를 포함하는 벤젠 흡착제.A benzene adsorbent comprising the microporous copper silicate according to any one of claims 1 to 11.
  26. 제1항 내지 제11항 중 어느 한 항에 기재된 마이크로다공성 구리 실리케이트를 포함하는 촉매.A catalyst comprising the microporous copper silicate according to any one of claims 1 to 11.
  27. 제26항에 있어서, 알콜의 탈수소 반응용 촉매인 것이 특징인 촉매.27. The catalyst of claim 26 which is a catalyst for dehydrogenation of alcohols.
PCT/KR2015/008666 2014-08-19 2015-08-19 Microporous sp-copper silicate having plane quadrilateral cu(o)4 structure in which cu(o)4 unit is not linked by bridging oxygen, sp-copper silicate in which part of cu is substituted with one or more other metal atoms, and use thereof WO2016028087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140108007 2014-08-19
KR10-2014-0108007 2014-08-19

Publications (1)

Publication Number Publication Date
WO2016028087A1 true WO2016028087A1 (en) 2016-02-25

Family

ID=55350964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008666 WO2016028087A1 (en) 2014-08-19 2015-08-19 Microporous sp-copper silicate having plane quadrilateral cu(o)4 structure in which cu(o)4 unit is not linked by bridging oxygen, sp-copper silicate in which part of cu is substituted with one or more other metal atoms, and use thereof

Country Status (1)

Country Link
WO (1) WO2016028087A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786810A (en) * 2018-05-18 2018-11-13 东南大学 A kind of magnetism cupric silicate and its application in catalytic degradation methylene blue waste water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888291A (en) * 1994-02-11 1999-03-30 Rhone-Poulenc Chimie Alkaline-earth metal-, copper- and optionally titanium-based silicates, blue or violet pigments based on these silicates, process for their preparation and their use
KR20060119747A (en) * 2005-05-17 2006-11-24 한국화학연구원 Preparation of copper/silica-based nano-composite catalysts used for the dehydrogenation of diethyleneglycol
KR20090102052A (en) * 2008-03-25 2009-09-30 서강대학교산학협력단 Methods for Rapid Synthesis of High―Quality Titanosilicate Molecular Sieve
KR20110089437A (en) * 2008-11-25 2011-08-08 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Reduced copper sulphide sorbent for removing heavy metals
KR101243274B1 (en) * 2011-03-04 2013-03-13 서강대학교산학협력단 Novel copper silicate molecular seive and producing method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888291A (en) * 1994-02-11 1999-03-30 Rhone-Poulenc Chimie Alkaline-earth metal-, copper- and optionally titanium-based silicates, blue or violet pigments based on these silicates, process for their preparation and their use
KR20060119747A (en) * 2005-05-17 2006-11-24 한국화학연구원 Preparation of copper/silica-based nano-composite catalysts used for the dehydrogenation of diethyleneglycol
KR20090102052A (en) * 2008-03-25 2009-09-30 서강대학교산학협력단 Methods for Rapid Synthesis of High―Quality Titanosilicate Molecular Sieve
KR20110089437A (en) * 2008-11-25 2011-08-08 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Reduced copper sulphide sorbent for removing heavy metals
KR101243274B1 (en) * 2011-03-04 2013-03-13 서강대학교산학협력단 Novel copper silicate molecular seive and producing method of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANG, QIZHOU ET AL.: "Hydrothermal synthesis of pure-phase copper silicate Na2Cu2Si4O11 · 2H2O with ammonia as complexing agent", EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, vol. 2011, 2011, pages 2112 - 2117 *
WANG, XIQU ET AL.: "Hydrothermal synthesis and structures of the open-framework copper silicates Na2[Cu2Si4O11](H2O)2 (CuSH-2Na), Na2[CuSi3O8] (CuSH-3Na), Cs2Na4 [Cu2Si12O27(OH)2](OH)2 (CuSH-4NaCs), and Na2[Cu2Si5O13](H2O)3 (CuSH-6Na)", SOLID STATE SCIENCES, vol. 7, 2005, pages 1415 - 1422 *
WANG, XIQU ET AL.: "Nanoporous copper silicates with one-dimensional 12-ring channel systems", ANGEWENDTE CHEMIE INTERNATIONAL EDITION, vol. 42, 2003, pages 2044 - 2047, XP001197473, DOI: doi:10.1002/anie.200351121 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786810A (en) * 2018-05-18 2018-11-13 东南大学 A kind of magnetism cupric silicate and its application in catalytic degradation methylene blue waste water

Similar Documents

Publication Publication Date Title
KR100253962B1 (en) Method of manufacturing molecular sieves
EP2457872B1 (en) Zeolite beta and method for producing same
WO2016108434A1 (en) Zeolite pst-20, preparation method therefor, and method for selectively separating carbon dioxide by using same
JP2013177303A (en) Method for preparing zeolite
KR20160058930A (en) Molecular sieve, manufacturing method therefor, and uses thereof
JPH1176810A (en) Agglomerated zeolite adsorbent, its production and use in separation of industrial gas at not extermely low temperature
JP2010514662A (en) Preparation of pore molecular sieve
WO2021040455A1 (en) Novel aluminum-based metal-organic framework having three dimensional porous structure and comprising at least two types of ligands, preparation method therefor, and use thereof
KR20180033121A (en) Direct synthesis of CU-containing silicoaluminate materials with AEI zeolite structure, and its application in catalysis
WO2003104148A1 (en) Method for synthesizing mesoporous zeolite
EP3461555A1 (en) Improved rho adsorbent compositions, methods of making and using them
CN111592008A (en) Method for in-situ hydrothermal synthesis of Fe-SSZ-13 molecular sieve
KR20140064839A (en) Reduction of oxides of nitrogen in a gas stream using molecular sieve ssz-23
WO2016028087A1 (en) Microporous sp-copper silicate having plane quadrilateral cu(o)4 structure in which cu(o)4 unit is not linked by bridging oxygen, sp-copper silicate in which part of cu is substituted with one or more other metal atoms, and use thereof
KR102181993B1 (en) PST-29 zeolites and manufacturing method thereof, selective separation method as CO2 adsorbents and methylamine synthesis using PST-29 zeolites
EP2928826B1 (en) Synthesis of molecular sieve itq-32
JPH05254826A (en) Synthesis of zeolite of mtt type, product obtained and its application in adsorption and catalyst
KR102337172B1 (en) Rho zeolites and method of making the same
WO2010090386A1 (en) Method for selectively isolating hydrogen or helium using a natrolite-based zeolite, and novel natrolite-based zeolite
JP4873108B2 (en) Carbon dioxide adsorption separation method
CN112661170B (en) Synthetic method of low template agent SSZ-13 molecular sieve
CN110963503B (en) K-SAPO-34 zeolite molecular sieve and preparation method and application thereof
JP2002003208A (en) Method for refining hydrogen gas
WO2017090825A1 (en) Diamine-zeolite composite and method for preparing same
KR101777831B1 (en) Reduction of oxides of nitrogen in a gas stream using molecular sieve ssz-28

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE112(1) EPC ( EPO FORM 1205A DATED 06-06-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 15834273

Country of ref document: EP

Kind code of ref document: A1