WO2016008375A1 - Switchable glass structure and vehicle window cross-reference to related applications - Google Patents

Switchable glass structure and vehicle window cross-reference to related applications Download PDF

Info

Publication number
WO2016008375A1
WO2016008375A1 PCT/CN2015/083530 CN2015083530W WO2016008375A1 WO 2016008375 A1 WO2016008375 A1 WO 2016008375A1 CN 2015083530 W CN2015083530 W CN 2015083530W WO 2016008375 A1 WO2016008375 A1 WO 2016008375A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
switchable
layer
liquid crystal
structure according
Prior art date
Application number
PCT/CN2015/083530
Other languages
French (fr)
Other versions
WO2016008375A8 (en
Inventor
Xiaohuan Zhang
Songlin SHI
Shuai ZHANG
Maowen YUAN
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to JP2016540638A priority Critical patent/JP6374508B2/en
Priority to KR1020167016171A priority patent/KR20160088369A/en
Priority to BR112016010711-0A priority patent/BR112016010711B1/en
Priority to KR1020187007526A priority patent/KR102127226B1/en
Priority to EA201691025A priority patent/EA036547B1/en
Priority to EP15821927.9A priority patent/EP3170050A4/en
Publication of WO2016008375A1 publication Critical patent/WO2016008375A1/en
Publication of WO2016008375A8 publication Critical patent/WO2016008375A8/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • B32B17/10045Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet
    • B32B17/10055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet with at least one intermediate air space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10504Liquid crystal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10678Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising UV absorbers or stabilizers, e.g. antioxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • B32B2329/06PVB, i.e. polyinylbutyral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays

Definitions

  • the present disclosure generally relates to glass, and more particularly, to a switchable glass structure and a vehicle window.
  • a switchable glass is a glass whose light transmission properties are altered when voltage, light or heat is applied.
  • a switchable glass generally includes an interlayer therein.
  • a switchable glass is generally formed by disposing a Polymer Dispersed Liquid Crystal (PDLC) layer between two glass to form a whole structure, and performing a gluing process to the whole structure under a high temperature and a high pressure.
  • Control electrodes are formed on surfaces of the two glass which surfaces face towards the PDLC layer. By applying voltage to the control electrodes, an electric field is formed in the PDLC layer. The magnitude change of the electric field can control the PDLC layer to switch between a transparent state and an opaque state, such that the switchable glass can whether block light or let light pass through.
  • switchable glass are widely used in a building material field currently, such as in an office, a hotel or other architectures in which privacy is required.
  • the PDLC light valve includes: a first substrate, a second substrate, and liquid crystal and polymers packaged between the first and the second substrates using a package material. A surface of the first substrate and a surface of the second substrate, which surfaces are opposite to each other, are coated with a conductive film of indium tin oxide, respectively.
  • the PDLC light valve further includes a third substrate, where the second substrate is disposed between the first and the third substrates. A surface of the second substrate and a surface of the third substrate, which surfaces are opposite to each other, are coated with a conductive film of indium tin oxide, respectively.
  • Liquid crystal and polymers are packaged between the second and the third substrates using a package material.
  • the above PDLC light valve can be taken as a switchable glass. By combining two layers of such light valves, the minimum transmissivity of the whole light valve structure in a scattering state can be reduced, and a contrast of the light valve may be improved. Besides, each layer of the light valve still has its original thickness which is relatively small, thus, a drive voltage of the PDLC light valve remains unchanged.
  • a switchable glass structure and a vehicle window are required, to improve capability of heat insulation to meet requirements of heat preservation.
  • a switchable glass structure in one aspect, includes: a first glass; a second glass disposed opposite to the first glass, each of the first and the second glass comprising at least two surfaces; a PDLC assembly between the first glass and the second glass; and an anti-radiation coating located on at least one surface of the first and the second glass, the at least one surface being adjacent to the PDLC assembly.
  • a basic idea is forming the anti-radiation coating on at least one surface of the first and the second glass, the at least one surface being adjacent to the PDLC assembly.
  • the anti-radiation coating has good capability of reflecting infrared lights, most infrared lights with high energy may be reflected by the anti-radiation coating and thus cannot pass through the switchable glass structure, such that the switchable glass structure may have improved capability of heat insulation.
  • the first glass is a hollow glass
  • the second glass is a single-layer glass.
  • the first glass includes: a first surface facing away from the PDLC assembly; a second surface facing the other way from the first surface; a third surface disposed opposite to the second surface, wherein there is a gas interlayer between the second and the third surfaces; and a fourth surface facing the other way from the third surface, wherein the anti-radiation coating covers the fourth surface of the first glass, and a surface of the second glass which faces towards the PDLC assembly.
  • the gas interlayer may further improve the switchable glass structure’s capability of heat and sound insulation.
  • the PDLC assembly includes a PDLC layer
  • the anti-radiation coating covers a surface of the first and the second glass which faces towards the PDLC layer and serves as an electrode for driving the PDLC layer. Therefore, there is no need to set extra transparent conductive membranes on two sides of the PDLC layer to drive the PDLC layer, which may reduce a thickness of the switchable glass structure and save costs.
  • the PDLC assembly appears to be white, colorful or black when no voltage is applied, such that the switchable glass structure can appear various colors to meet different application scenarios.
  • FIG. 1 schematically illustrates a stereogram of a switchable glass structure according to an embodiment of the present disclosure
  • FIG. 2 schematically illustrates a sectional view of FIG. 1 along an AA’ line
  • FIG. 3 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure
  • FIG. 4 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure
  • FIG. 5 schematically illustrates a stereogram of a switchable glass structure according to an embodiment of the present disclosure
  • FIG. 6 schematically illustrates a sectional view of FIG. 5 along a BB’ line
  • FIG. 7 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure.
  • FIG. 8 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure.
  • FIG. 1 schematically illustrates a stereogram of a switchable glass structure according to an embodiment of the present disclosure.
  • the switchable glass structure includes: a first glass 102; a second glass 103 disposed opposite to the first glass 102, each of the first and the second glass including at least two surfaces; a PDLC assembly 101 between the first glass 102 and the second glass 103; and an anti-radiation coating located on at least one surface of the first glass 102 and the second glass 103, the at least one surface being adjacent to the PDLC assembly 101.
  • the at least one surface adjacent to the PDLC assembly may include one or more surface of the first and the second glass, but not include surfaces of the first and the second glass which face the exterior of the glass structure.
  • FIG. 2 schematically illustrates a sectional view of the switchable glass structure along an AA’ line.
  • both the first glass 102 and the second glass 103 are single-layer glass.
  • the first glass 102 or the second glass 103 may be formed by various technologies, such as a float glass, a sheet glass or a tempered glass.
  • the first glass 102 or the second glass 103 may be a flat glass or a curved glass having a certain curvature.
  • the first glass 102 and the second glass 103 have a certain transparency.
  • the PDLC assembly 101 includes a PDLC layer 106.
  • the PDLC layer 106 may include a polymer layer and liquid crystal microspheres dispersed in the polymer layer.
  • the polymer layer includes a macromolecule material.
  • the polymer layer may include a material which has a first curvature matching a second curvature of an ordinary light of the liquid crystal microspheres (i.e., a curvature of the liquid crystal microspheres along their macroaxis) . That is to say, the first curvature is equal to the second curvature, or a ratio of the first curvature to the second curvature is within a range from 0.9 to 1.1.
  • the liquid crystal microspheres When no electric field is applied to the PDLC layer 106, the liquid crystal microspheres may be randomly dispersed in the polymer layer. When an electric field is applied to the PDLC layer 106, the liquid crystal microspheres may be orderly dispersed in the polymer layer with their macroaxis arranged along the electric field direction.
  • the PDLC assembly 101 further includes a first transparent conductive membrane 107 and a second transparent conductive membrane 108.
  • the first transparent conductive membrane 107 is disposed between the PDLC layer 106 and the first glass 102
  • the second transparent conductive membrane 108 is disposed between the PDLC layer 106 and the second glass 103.
  • the first transparent conductive membrane 107 and the second transparent conductive membrane 108 may serve as drive electrodes of the PDLC layer 106.
  • the first transparent conductive membrane 107 includes a first substrate 107A and a first transparent conductive layer 107B covering a surface of the first substrate 107A, where the first transparent conductive layer 107B faces towards the PDLC layer 106.
  • the second transparent conductive membrane 108 includes a second substrate 108A and a second transparent conductive layer 108B covering a surface of the second substrate 108A, where the second transparent conductive layer 108B faces towards the PDLC layer 106.
  • the first substrate 107A or the second substrate 108A may be a glass substrate, a transparent plastic substrate or a flexible polyester film.
  • the first transparent conductive layer 107B and the second transparent conductive layer 108B may be indium tin oxide layers formed on the first substrate 107A and the second substrate 108A, respectively. It should be noted that, although the material of the first transparent conductive layer 107B and the second transparent conductive layer 108B is described in the embodiments, the present disclosure is not limited thereto.
  • the first transparent conductive layer 107B and the second transparent conductive layer 108B may include other transparent conductive materials. Wires for electrically connecting the first and the second transparent conductive layers with an external power source are disposed on the first and the second transparent conductive layers, to apply voltage to the first and the second transparent conductive layers.
  • the liquid crystal microspheres When no voltage is applied to the first transparent conductive membrane 107 and the second transparent conductive membrane 108, the liquid crystal microspheres may be randomly dispersed in the polymer layer. Accordingly, a curvature of the polymer layer is different from a curvature of the liquid crystal microspheres, lights entering into the PDLC layer 106 scatters in the liquid crystal microspheres, which makes the lights be emitted from the PDLC layer 106 in various directions. Thus, the PDLC layer 106 is in a scattering state.
  • the liquid crystal microspheres may be orderly dispersed in the polymer layer with their macroaxis parallel with the electric field direction. Accordingly, the curvature of the polymer layer is equal to the curvature of the liquid crystal microspheres, and thus the PDLC layer 106 looks transparent. In this way, the PDLC layer 106 can switch between the transparent state and the scattering state, which makes the switchable glass structure have a dimming function.
  • the PDLC assembly 101 appears to be white, colorful or black when no voltage is applied.
  • a dichroic dye may be incorporated in the PDLC layer which appears to be colorful or black when no voltage is applied.
  • the PDLC layer 106 can appear various colors, such as green or red, when no voltage is applied.
  • a saturability of the color of the PDLC layer 106 decreases.
  • the PDLC layer 106 becomes colorless gradually.
  • the PDLC layer 106 may be formed by a ultra-violet curing process or other curing processes. After the curing process, the PDLC layer 106 becomes sticky, and thus can fixedly connect the first transparent conductive membrane 107 with the second transparent conductive membrane 108, which makes the switchable glass structure stable.
  • an anti-radiation coating 10 covers a surface of the first and the second glass which faces towards the PDLC layer. That is to say, in some embodiments, the anti-radiation coating 10 may cover the surface of the first glass 102 which faces towards the PDLC layer, or cover the surface of the second glass 103 which faces towards the PDLC layer. In some embodiments, the anti-radiation coating 10 may cover the surfaces of the first glass 102 and the second glass 103 which face towards the PDLC layer.
  • the anti-radiation coating 10 may be a low-e coating which is generally used in a low-e glass.
  • the anti-radiation coating 10 may be a multi-layer coating including a silver layer.
  • the anti-radiation coating 10 can reflect infrared lights, such that most infrared lights with high energy may be reflected by the anti-radiation coating 10 and cannot pass through the switchable glass structure. Therefore, the switchable glass structure may have improved capability of heat insulation.
  • the switchable glass structure can be applied on a glass used in a building material field or a vehicle filed. When a temperature outside is relatively low, a room or a vehicle using the switchable glass structure can be kept relatively warm. When a temperature outside is relatively high, a room or a vehicle using the switchable glass structure can be kept relatively cool, In this way, the switchable glass structure not only has a dimming function, but also has a heat preservation function.
  • the anti-radiation coating 10 may include one silver layer, two silver layers or three silver layers.
  • the anti-radiation coating 10 including one silver layer may include a composite layer of Si 3 N 4 and Al, a layer of NiCr, a layer of Ag, a layer of NiCr, and a composite layer of Si 3 N 4 and Al in turn.
  • a composite layer of Si 3 N 4 and Al may include a composite layer of Si 3 N 4 and Al, a layer of NiCr, a layer of Ag, a layer of NiCr, and a composite layer of Si 3 N 4 and Al in turn.
  • the anti-radiation coating 10 including two silver layers may include a composite layer of Si 3 N 4 and Al, a layer of ZnO, a layer of NiCr, a layer of Ag (1) , a layer of NiCr, a layer of ZnO, a composite layer of Si 3 N 4 and Al, a layer of ZnO, a layer of NiCr, a layer of Ag (2) , a layer of NiCr, a layer of ZnO, and a composite layer of Si 3 N 4 and Al in turn.
  • the layer of Ag (1) represents the first silver layer and the layer of Ag (2) represents the second silver layer.
  • the anti-radiation coating 10 including two silver layers may have better capability of reflecting infrared lights, and thus the switchable glass structure using the anti-radiation coating 10 including two silver layers may have better capability of heat insulation.
  • manufacturing cost of the anti-radiation coating 10 including two silver layers may be high, and forming processes thereof may be relatively complicated.
  • the anti-radiation coating 10 including three silver layers may include a composite layer of Si 3 N 4 and Al, a layer of ZnO, a layer of NiCr, a layer of Ag (1) , a layer of NiCr, a layer of ZnO, a composite layer of Si 3 N 4 and Al, a layer of ZnO, a layer of NiCr, a layer of Ag (2) , a layer of NiCr, a layer of ZnO, a composite layer of Si 3 N 4 and Al, a layer of ZnO, a layer of NiCr, a layer of Ag (3) , a layer of NiCr, a layer of ZnO, and a composite layer of Si 3 N 4 and Al in turn.
  • the layer of Ag (1) represents the first silver layer
  • the layer of Ag (2) represents the second silver layer
  • the layer of Ag (3) represents the third silver layer.
  • the anti-radiation coating 10 including three silver layers may have better capability of reflecting infrared lights, and thus the switchable glass structure using the anti-radiation coating 10 including three silver layers may have better capability of heat insulation.
  • the anti-radiation coating 10 may have an infrared light reflectivity within a range from 1%to 15%. In some embodiments, the infrared light reflectivity is positively proportional to the number of silver layers. Although detailed structures of the anti-radiation coating 10 are described in the embodiments, the present disclosure is not limited thereto. In some embodiments, the anti-radiation coating 10 may include four or more silver layers.
  • the anti-radiation coating 10 may be located on at least one of the first glass 102 and the second glass 103 by a magnetron sputtering process.
  • the present disclosure is not limited thereto.
  • the anti-radiation coating 10 may be formed by other processes, such as an evaporation process.
  • a first Ultraviolet (UV) protective film 104 between the first glass 102 and the first transparent conductive membrane 107 is provided a first Ultraviolet (UV) protective film 104, and between the second glass 103 and the second transparent conductive membrane 108 is provided a second UV protective film 105.
  • UV Ultraviolet
  • the first UV protective film 104 and the second UV protective film 105 may include Polyvinyl Butyral (PVB, a macromolecule material molded by plasticizing and squeezing PVB using a plasticizer DHA) or Ethylene-vinyl acetate (EVA) .
  • the first UV protective film 104 and the second UV protective film 105 may be adapted for preventing external UV rays from passing through the switchable glass structure. When the switchable glass structure is applied on a window used in a building material field or a vehicle field, intensity of UV rays entering into a room or a vehicle may be reduced.
  • the first UV protective film 104 and the second UV protective film 105 can protect the PDLC assembly 101.
  • PVB or EVA is a sticky material
  • the first UV protective film 104 including PVB or EVA can fixedly connect the first glass 102 with the first transparent conductive membrane 107
  • the second UV protective film 105 including PVB or EVA can fixedly connect the second glass 103 with the second transparent conductive membrane 108.
  • FIG. 3 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure.
  • a PDLC assembly 101 is the same as the PDLC assembly in the above embodiment shown in FIGs. 1 and 2.
  • a stereogram of the switchable glass structure in this embodiment may be the same as FIG. 1.
  • the first glass 102 may be a hollow glass, and the second glass 103 may be a single-layer glass.
  • the first glass 102 may include a first glass substrate 11, a second glass substrate 12 and a sealed gas interlayer 102E between the first glass substrate 11 and the second glass substrate 12.
  • the first glass substrate 11 and the second glass substrate 12 include four surfaces totally.
  • the first glass substrate 11 includes a first surface 102A facing away from the PDLC assembly 101, and a second surface 102B facing the other way from the first surface 102A.
  • the second glass substrate 12 includes: a third surface 102C disposed opposite to the second surface 102B, wherein the gas interlayer 102E is located between the second and the third surfaces; and a fourth surface 102D facing the other way from the third surface 102C.
  • a surface of a glass substrate facing away from the PDLC assembly means the surface is, compared with other surface (s) of the glass substrate, farther to the PDLC assembly.
  • a surface being facing the other way from another surface means the two surfaces are disposed on two opposite sides of the glass substrate.
  • the anti-radiation coating 10 may cover the second surface 102B of the first glass 102. However, the present disclosure is not limited thereto. In some embodiments, the anti-radiation coating 10 may cover at least one of the following surfaces: the second, the third and the fourth surfaces of the first glass 102, and a surface of the second glass 103 which faces towards the PDLC assembly 101.
  • the switchable glass structure may have better capability of heat insulation.
  • the gas interlayer 102E included in the first glass 102 can make the first glass 102 have better capability of heat and sound insulation, and accordingly the switchable glass structure has better capability of heat and sound insulation.
  • the gas interlayer 102E may be an air interlayer or an inert gas interlayer.
  • the switchable glass structure may have relatively good capability of heat and sound insulation when the gas interlayer 102E is an inert gas interlayer.
  • FIG. 4 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure.
  • a PDLC assembly 101 is the same as the PDLC assembly in the above embodiment shown in FIG. 3.
  • a stereogram of the switchable glass structure in this embodiment may be the same as FIG. 1.
  • both the first glass 102 and the second glass 103 are hollow glass.
  • the second glass 103 may include a third glass substrate 13, a fourth glass substrate 14 and a sealed gas interlayer 103E between the third glass substrate 13 and the fourth glass substrate 14.
  • the third glass substrate 13 and the fourth glass substrate 14 include four surfaces totally.
  • the third glass substrate 13 includes a first surface 103A facing away from the PDLC assembly 101, and a second surface 103B facing the other way from the first surface 103A.
  • the fourth glass substrate 14 includes: a third surface 103C disposed opposite to the second surface 103B, wherein the gas interlayer 103E is located between the second and the third surfaces; and a fourth surface 103D facing the other way from the third surface 103C.
  • the anti-radiation coating 10 may cover the second surface 102B of the first glass 102. However, the present disclosure is not limited thereto. In some embodiments, the anti-radiation coating 10 may cover at least one of the following surfaces: the second, the third and the fourth surfaces of the first glass 102, and the second, the third and the fourth surfaces of the second glass 103.
  • the switchable glass structure may have better capability of heat insulation.
  • the gas interlayer 103E included in the second glass 103 can make the second glass 103 have better capability of heat and sound insulation, and accordingly the switchable glass structure has better capability of heat and sound insulation.
  • the first transparent conductive membrane 107 may not include the first substrate 107A, and the second transparent conductive membrane 108 may not include second substrate 108A.
  • the first transparent conductive membrane 107 only includes the first transparent conductive layer 107B, and the second transparent conductive membrane 108 only includes the second transparent conductive layer 108B.
  • the first transparent conductive layer 107B and the second transparent conductive layer 108B are located on the surfaces of the first glass 102 and the second glass 103 which face towards the PDLC layer 106, and serve as drive electrodes of the PDLC layer 106.
  • the first transparent conductive layer 107B and the second transparent conductive layer 108B may include indium tin oxide.
  • the surfaces of the first glass 102 and the second glass 103 which face away from the PDLC layer 106 are provided with a UV protective coating (not shown) .
  • No PVB or EVA is disposed between the first glass 102 and the PDLC layer 106, or between the second glass 103 and the PDLC layer 106, to avoid influence to the PDLC layer 106 caused by sticky PVB or EVA.
  • FIG. 5 schematically illustrates a stereogram of a switchable glass structure according to an embodiment of the present disclosure.
  • a structure of a PDLC assembly in the switchable glass structure in this embodiment is different from those in the above embodiments.
  • FIG. 6 schematically illustrates a sectional view of the switchable glass structure in FIG. 5 along a BB’ line. Common grounds between this embodiment and the embodiment shown in FIGs. 1 and 2 are not described in detail here, and the difference between this embodiment and the embodiment shown in FIGs. 1 and 2 is described below.
  • a PDLC assembly 201 only includes the PDLC layer 106.
  • an anti-radiation coating 20 covers surfaces of a first glass 202 and a second glass 203 which face towards and contact the PDLC layer 106.
  • the anti-radiation coating 20 may serve as drive electrodes of the PDLC layer 106.
  • the anti-radiation coating 20 may include one silver layer, two silver layers or three silver layers.
  • the anti-radiation coating 20 mainly includes a metal and a metallic oxide, thus, having good conductivity. Besides, the anti-radiation coating 20 lets most visible pass through, thus it may serve as a conductive electrode.
  • the anti-radiation coating 20 formed by a magnetron sputtering process may be relatively even, and thus an even electric field may be formed in the PDLC layer 106, which makes each portion of the PDLC layer 106 have almost the same transparency in the transparent state.
  • the PDLC assembly 201 only includes the PDLC layer 106, and surfaces of the first glass 202 and the second glass 203 which face away from the PDLC layer 106 are provided with a UV protective coating (not shown) .
  • No PVB or EVA is disposed between the first glass 202 and the PDLC layer 106, or between the second glass 203 and the PDLC layer 106, to avoid influence to the PDLC layer 106 caused by sticky PVB or EVA.
  • the PDLC layer 106 may be formed by a ultra-violet curing process or other curing processes. After the curing process, the PDLC layer 106 becomes sticky, and thus can fixedly connect the first glass 202 with the second glass 203, which makes the switchable glass structure stable.
  • FIG. 7 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure.
  • a PDLC assembly 201 is the same as the PDLC assembly in the embodiment shown in FIGs. 5 and 6.
  • a stereogram of the switchable glass structure in this embodiment may be the same as FIG. 5.
  • the first glass 202 may be a hollow glass, and the second glass 203 may be a single-layer glass.
  • the first glass 202 may include a first glass substrate 21, a second glass substrate 22 and a sealed gas interlayer 202E between the first glass substrate 21 and the second glass substrate 22.
  • the first glass substrate 21 and the second glass substrate 22 include four surfaces totally.
  • the first glass substrate 21 includes a first surface 202A facing away from the PDLC assembly 201, and a second surface 202B facing the other way from the first surface 202A.
  • the second glass substrate 22 includes: a third surface 202C disposed opposite to the second surface 202B, wherein the gas interlayer 202E is located between the second and the third surfaces; and a fourth surface 202D facing the other way from the third surface 202C.
  • the anti-radiation coating 20 may cover the fourth surface 202D of the first glass 202, and a surface of the second glass 203 which faces towards the PDLC assembly 201, to serve as electrodes for driving the PDLC layer 106.
  • the present disclosure is not limited thereto.
  • the anti-radiation coating 20 may further cover at least one of the second and the third surfaces of the first glass 202.
  • FIG. 8 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure.
  • a PDLC assembly 201 is the same as the PDLC assembly in the embodiment shown in FIGs. 5 and 6.
  • a stereogram of the switchable glass structure in this embodiment may be the same as FIG. 5.
  • both the first glass 202 and the second glass 203 are hollow glass.
  • the second glass 203 may include a third glass substrate 23, a fourth glass substrate 24 and a sealed gas interlayer 203E between the third glass substrate 23 and the fourth glass substrate 24.
  • the third glass substrate 23 and the fourth glass substrate 24 include four surfaces totally.
  • the third glass substrate 23 includes a first surface 203A facing away from the PDLC assembly 201, and a second surface 203B facing the other way from the first surface 203A.
  • the four glass substrate 24 includes: a third surface 203C disposed opposite to the second surface 203B, wherein the gas interlayer 203E is located between the second and the third surfaces; and a fourth surface 203D facing the other way from the third surface 203C.
  • the anti-radiation coating 20 may cover the fourth surface 202D of the first glass 202 and the fourth surface 203D of the second glass 203, to serve as electrodes for driving the PDLC layer 106.
  • the present disclosure is not limited thereto.
  • the anti-radiation coating 20 may further cover at least one of the second and the third surfaces of the first glass 202, and the second and the third surfaces of the second glass 203.
  • a frame (not shown) is disposed around the first glass and the second glass, to fix the first glass and the second glass.
  • a vehicle window including the switchable glass structure according to any one of the above embodiments.
  • the vehicle window may not only have a dimming function, but also have good capability of heat insulation, which can meet requirements of heat preservation.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Liquid Crystal (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

A switchable glass structure and a vehicle window are provided. The switchable glass structure includes: a first glass(102); a second glass(103) disposed opposite to the first glass(102), each of the first(102) and the second glass(103) including at least two surfaces; a polymer dispersed liquid crystal assembly(101) between the first glass(102) and the second glass(103); and an anti-radiation coating(10) located on at least one surface of the first(102) and the second glass(103), the at least one surface being adjacent to the polymer dispersed liquid crystal assembly(101). The vehicle window is provided with the above switchable glass structure. The anti-radiation coating(10) may have good capability of reflecting infrared lights, thus, most infrared lights with high energy are reflected by the anti-radiation coating(10) and cannot pass through the switchable glass structure, and the switchable glass structure may have improved capability of heat insulation.

Description

SWITCHABLE GLASS STRUCTURE AND VEHICLE WINDOW CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority to Chinese patent application No. 201410333475.2, filed on July 14, 2014, and entitled “SWITCHABLE GLASS STRUCTURE AND VEHICLE WINDOW” , and the entire disclosure of which is incorporated herein by reference.
TECHNICAL FIELD
The present disclosure generally relates to glass, and more particularly, to a switchable glass structure and a vehicle window.
BACKGROUND
A switchable glass is a glass whose light transmission properties are altered when voltage, light or heat is applied. A switchable glass generally includes an interlayer therein. In existing techniques, a switchable glass is generally formed by disposing a Polymer Dispersed Liquid Crystal (PDLC) layer between two glass to form a whole structure, and performing a gluing process to the whole structure under a high temperature and a high pressure. Control electrodes are formed on surfaces of the two glass which surfaces face towards the PDLC layer. By applying voltage to the control electrodes, an electric field is formed in the PDLC layer. The magnitude change of the electric field can control the PDLC layer to switch between a transparent state and an opaque state, such that the switchable glass can whether block light or let light pass through.
Due to the above features, switchable glass are widely used in a building material field currently, such as in an office, a hotel or other architectures in which privacy is required.
Chinese patent publication No. CN201110922U discloses a PDLC light valve. The PDLC light valve includes: a first substrate, a second substrate, and  liquid crystal and polymers packaged between the first and the second substrates using a package material. A surface of the first substrate and a surface of the second substrate, which surfaces are opposite to each other, are coated with a conductive film of indium tin oxide, respectively. The PDLC light valve further includes a third substrate, where the second substrate is disposed between the first and the third substrates. A surface of the second substrate and a surface of the third substrate, which surfaces are opposite to each other, are coated with a conductive film of indium tin oxide, respectively. Liquid crystal and polymers are packaged between the second and the third substrates using a package material. The above PDLC light valve can be taken as a switchable glass. By combining two layers of such light valves, the minimum transmissivity of the whole light valve structure in a scattering state can be reduced, and a contrast of the light valve may be improved. Besides, each layer of the light valve still has its original thickness which is relatively small, thus, a drive voltage of the PDLC light valve remains unchanged.
However, existing switchable glass have bad capability of heat insulation. When applied in building materials or vehicle windows, they cannot meet requirements of heat preservation.
SUMMARY
A switchable glass structure and a vehicle window are required, to improve capability of heat insulation to meet requirements of heat preservation.
In one aspect, a switchable glass structure is provided. The switchable glass structure includes: a first glass; a second glass disposed opposite to the first glass, each of the first and the second glass comprising at least two surfaces; a PDLC assembly between the first glass and the second glass; and an anti-radiation coating located on at least one surface of the first and the second glass, the at least one surface being adjacent to the PDLC assembly.
A basic idea is forming the anti-radiation coating on at least one surface of the first and the second glass, the at least one surface being adjacent to the PDLC  assembly. As the anti-radiation coating has good capability of reflecting infrared lights, most infrared lights with high energy may be reflected by the anti-radiation coating and thus cannot pass through the switchable glass structure, such that the switchable glass structure may have improved capability of heat insulation.
In some embodiments, the first glass is a hollow glass, and the second glass is a single-layer glass. The first glass includes: a first surface facing away from the PDLC assembly; a second surface facing the other way from the first surface; a third surface disposed opposite to the second surface, wherein there is a gas interlayer between the second and the third surfaces; and a fourth surface facing the other way from the third surface, wherein the anti-radiation coating covers the fourth surface of the first glass, and a surface of the second glass which faces towards the PDLC assembly. The gas interlayer may further improve the switchable glass structure’s capability of heat and sound insulation.
In some embodiments, the PDLC assembly includes a PDLC layer, and the anti-radiation coating covers a surface of the first and the second glass which faces towards the PDLC layer and serves as an electrode for driving the PDLC layer. Therefore, there is no need to set extra transparent conductive membranes on two sides of the PDLC layer to drive the PDLC layer, which may reduce a thickness of the switchable glass structure and save costs.
In some embodiments, the PDLC assembly appears to be white, colorful or black when no voltage is applied, such that the switchable glass structure can appear various colors to meet different application scenarios.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 schematically illustrates a stereogram of a switchable glass structure according to an embodiment of the present disclosure;
FIG. 2 schematically illustrates a sectional view of FIG. 1 along an AA’ line;
FIG. 3 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure;
FIG. 4 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure;
FIG. 5 schematically illustrates a stereogram of a switchable glass structure according to an embodiment of the present disclosure;
FIG. 6 schematically illustrates a sectional view of FIG. 5 along a BB’ line;
FIG. 7 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure; and
FIG. 8 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
The above objects, characteristics and advantages of the disclosure may be better understood by referring to the following description in conjunction with accompanying figures.
In embodiments of the present disclosure, switchable glass structures are provided. FIG. 1 schematically illustrates a stereogram of a switchable glass structure according to an embodiment of the present disclosure. Referring to FIG. 1, the switchable glass structure includes: a first glass 102; a second glass 103 disposed opposite to the first glass 102, each of the first and the second glass including at least two surfaces; a PDLC assembly 101 between the first glass 102 and the second glass 103; and an anti-radiation coating located on at least one surface of the first glass 102 and the second glass 103, the at least one surface being adjacent to the PDLC assembly 101. In embodiments of the present disclosure, the at least one surface adjacent to the PDLC assembly may include one or more surface of the first and the second glass, but not include surfaces of the first and the second glass which face the exterior of the glass structure.
FIG. 2 schematically illustrates a sectional view of the switchable glass structure along an AA’ line.
In some embodiments, both the first glass 102 and the second glass 103 are single-layer glass. The first glass 102 or the second glass 103 may be formed by various technologies, such as a float glass, a sheet glass or a tempered glass. The first glass 102 or the second glass 103 may be a flat glass or a curved glass having a certain curvature. The first glass 102 and the second glass 103 have a certain transparency.
The PDLC assembly 101 includes a PDLC layer 106. In some embodiments, the PDLC layer 106 may include a polymer layer and liquid crystal microspheres dispersed in the polymer layer. The polymer layer includes a macromolecule material. In some embodiments, the polymer layer may include a material which has a first curvature matching a second curvature of an ordinary light of the liquid crystal microspheres (i.e., a curvature of the liquid crystal microspheres along their macroaxis) . That is to say, the first curvature is equal to the second curvature, or a ratio of the first curvature to the second curvature is within a range from 0.9 to 1.1. When no electric field is applied to the PDLC layer 106, the liquid crystal microspheres may be randomly dispersed in the polymer layer. When an electric field is applied to the PDLC layer 106, the liquid crystal microspheres may be orderly dispersed in the polymer layer with their macroaxis arranged along the electric field direction.
The PDLC assembly 101 further includes a first transparent conductive membrane 107 and a second transparent conductive membrane 108. The first transparent conductive membrane 107 is disposed between the PDLC layer 106 and the first glass 102, and the second transparent conductive membrane 108 is disposed between the PDLC layer 106 and the second glass 103. The first transparent conductive membrane 107 and the second transparent conductive membrane 108 may serve as drive electrodes of the PDLC layer 106.
In some embodiments, the first transparent conductive membrane 107 includes a first substrate 107A and a first transparent conductive layer 107B covering a surface of the first substrate 107A, where the first transparent conductive layer 107B faces towards the PDLC layer 106. The second transparent conductive membrane 108 includes a second substrate 108A and a second transparent conductive layer 108B covering a surface of the second substrate 108A, where the second transparent conductive layer 108B faces towards the PDLC layer 106.
In some embodiments, the first substrate 107A or the second substrate 108A may be a glass substrate, a transparent plastic substrate or a flexible polyester film. In some embodiments, the first transparent conductive layer 107B and the second transparent conductive layer 108B may be indium tin oxide layers formed on the first substrate 107A and the second substrate 108A, respectively. It should be noted that, although the material of the first transparent conductive layer 107B and the second transparent conductive layer 108B is described in the embodiments, the present disclosure is not limited thereto. In some embodiments, the first transparent conductive layer 107B and the second transparent conductive layer 108B may include other transparent conductive materials. Wires for electrically connecting the first and the second transparent conductive layers with an external power source are disposed on the first and the second transparent conductive layers, to apply voltage to the first and the second transparent conductive layers.
When no voltage is applied to the first transparent conductive membrane 107 and the second transparent conductive membrane 108, the liquid crystal microspheres may be randomly dispersed in the polymer layer. Accordingly, a curvature of the polymer layer is different from a curvature of the liquid crystal microspheres, lights entering into the PDLC layer 106 scatters in the liquid crystal microspheres, which makes the lights be emitted from the PDLC layer 106 in various directions. Thus, the PDLC layer 106 is in a scattering state. When different voltages are applied to the first transparent conductive membrane 107 and the second transparent conductive membrane 108 respectively, an electric field of the first  transparent conductive membrane 107 and the second transparent conductive membrane 108 is formed in the PDLC layer 106, and the liquid crystal microspheres may be orderly dispersed in the polymer layer with their macroaxis parallel with the electric field direction. Accordingly, the curvature of the polymer layer is equal to the curvature of the liquid crystal microspheres, and thus the PDLC layer 106 looks transparent. In this way, the PDLC layer 106 can switch between the transparent state and the scattering state, which makes the switchable glass structure have a dimming function.
In some embodiments, the PDLC assembly 101 appears to be white, colorful or black when no voltage is applied. For example, a dichroic dye may be incorporated in the PDLC layer which appears to be colorful or black when no voltage is applied. Based on kinds of the dichroic dye incorporated, the PDLC layer 106 can appear various colors, such as green or red, when no voltage is applied. When voltages are applied to the first transparent conductive membrane 107 and the second transparent conductive membrane 108, a saturability of the color of the PDLC layer 106 decreases. Along with the increment of an electric potential difference between the first transparent conductive membrane 107 and the second transparent conductive membrane 108, the PDLC layer 106 becomes colorless gradually.
In some embodiments, the PDLC layer 106 may be formed by a ultra-violet curing process or other curing processes. After the curing process, the PDLC layer 106 becomes sticky, and thus can fixedly connect the first transparent conductive membrane 107 with the second transparent conductive membrane 108, which makes the switchable glass structure stable.
Referring to FIG. 2, an anti-radiation coating 10 covers a surface of the first and the second glass which faces towards the PDLC layer. That is to say, in some embodiments, the anti-radiation coating 10 may cover the surface of the first glass 102 which faces towards the PDLC layer, or cover the surface of the second glass 103 which faces towards the PDLC layer. In some embodiments, the anti-radiation  coating 10 may cover the surfaces of the first glass 102 and the second glass 103 which face towards the PDLC layer.
In some embodiments, the anti-radiation coating 10 may be a low-e coating which is generally used in a low-e glass. The anti-radiation coating 10 may be a multi-layer coating including a silver layer. The anti-radiation coating 10 can reflect infrared lights, such that most infrared lights with high energy may be reflected by the anti-radiation coating 10 and cannot pass through the switchable glass structure. Therefore, the switchable glass structure may have improved capability of heat insulation. The switchable glass structure can be applied on a glass used in a building material field or a vehicle filed. When a temperature outside is relatively low, a room or a vehicle using the switchable glass structure can be kept relatively warm. When a temperature outside is relatively high, a room or a vehicle using the switchable glass structure can be kept relatively cool, In this way, the switchable glass structure not only has a dimming function, but also has a heat preservation function.
In some embodiments, the anti-radiation coating 10 may include one silver layer, two silver layers or three silver layers.
In some embodiments, the anti-radiation coating 10 including one silver layer may include a composite layer of Si3N4 and Al, a layer of NiCr, a layer of Ag, a layer of NiCr, and a composite layer of Si3N4 and Al in turn. Although the structure of one silver layer is described in the embodiments, the present disclosure is not limited thereto.
In some embodiments, the anti-radiation coating 10 including two silver layers may include a composite layer of Si3N4 and Al, a layer of ZnO, a layer of NiCr, a layer of Ag (1) , a layer of NiCr, a layer of ZnO, a composite layer of Si3N4 and Al, a layer of ZnO, a layer of NiCr, a layer of Ag (2) , a layer of NiCr, a layer of ZnO, and a composite layer of Si3N4 and Al in turn. The layer of Ag (1) represents the first silver layer and the layer of Ag (2) represents the second silver layer. Compared with the  anti-radiation coating 10 including one silver layer, the anti-radiation coating 10 including two silver layers may have better capability of reflecting infrared lights, and thus the switchable glass structure using the anti-radiation coating 10 including two silver layers may have better capability of heat insulation. However, manufacturing cost of the anti-radiation coating 10 including two silver layers may be high, and forming processes thereof may be relatively complicated.
In some embodiments, the anti-radiation coating 10 including three silver layers may include a composite layer of Si3N4 and Al, a layer of ZnO, a layer of NiCr, a layer of Ag (1) , a layer of NiCr, a layer of ZnO, a composite layer of Si3N4 and Al, a layer of ZnO, a layer of NiCr, a layer of Ag (2) , a layer of NiCr, a layer of ZnO, a composite layer of Si3N4 and Al, a layer of ZnO, a layer of NiCr, a layer of Ag (3) , a layer of NiCr, a layer of ZnO, and a composite layer of Si3N4 and Al in turn. The layer of Ag (1) represents the first silver layer, the layer of Ag (2) represents the second silver layer, and the layer of Ag (3) represents the third silver layer. Compared with the anti-radiation coating 10 including two silver layers, the anti-radiation coating 10 including three silver layers may have better capability of reflecting infrared lights, and thus the switchable glass structure using the anti-radiation coating 10 including three silver layers may have better capability of heat insulation.
According to practical manufacturing processes and detailed structures, the anti-radiation coating 10 may have an infrared light reflectivity within a range from 1%to 15%. In some embodiments, the infrared light reflectivity is positively proportional to the number of silver layers. Although detailed structures of the anti-radiation coating 10 are described in the embodiments, the present disclosure is not limited thereto. In some embodiments, the anti-radiation coating 10 may include four or more silver layers.
In some embodiments, the anti-radiation coating 10 may be located on at least one of the first glass 102 and the second glass 103 by a magnetron sputtering process. However, the present disclosure is not limited thereto. In some  embodiments, the anti-radiation coating 10 may be formed by other processes, such as an evaporation process.
Referring to FIG. 2, between the first glass 102 and the first transparent conductive membrane 107 is provided a first Ultraviolet (UV) protective film 104, and between the second glass 103 and the second transparent conductive membrane 108 is provided a second UV protective film 105.
In some embodiments, the first UV protective film 104 and the second UV protective film 105 may include Polyvinyl Butyral (PVB, a macromolecule material molded by plasticizing and squeezing PVB using a plasticizer DHA) or Ethylene-vinyl acetate (EVA) . The first UV protective film 104 and the second UV protective film 105 may be adapted for preventing external UV rays from passing through the switchable glass structure. When the switchable glass structure is applied on a window used in a building material field or a vehicle field, intensity of UV rays entering into a room or a vehicle may be reduced. Besides, as the dimming performance of the PDLC assembly 101 is easily affected by UV rays, the first UV protective film 104 and the second UV protective film 105 can protect the PDLC assembly 101. As PVB or EVA is a sticky material, the first UV protective film 104 including PVB or EVA can fixedly connect the first glass 102 with the first transparent conductive membrane 107, and the second UV protective film 105 including PVB or EVA can fixedly connect the second glass 103 with the second transparent conductive membrane 108.
In sectional views in the accompanying figures, gaps are illustrated between layers of a switchable glass structure, to better present each layer of the switchable glass structure. It should be noted that, in practice, adjacent layers of a switchable glass structure are attached to each other.
FIG. 3 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure. In this embodiment, a PDLC assembly 101 is the same as the PDLC assembly in the above embodiment  shown in FIGs. 1 and 2. A stereogram of the switchable glass structure in this embodiment may be the same as FIG. 1.
Common grounds between this embodiment and the above embodiment are not described in detail here, and the difference between this embodiment and the above embodiment is described below.
In some embodiments, the first glass 102 may be a hollow glass, and the second glass 103 may be a single-layer glass. The first glass 102 may include a first glass substrate 11, a second glass substrate 12 and a sealed gas interlayer 102E between the first glass substrate 11 and the second glass substrate 12.
The first glass substrate 11 and the second glass substrate 12 include four surfaces totally. The first glass substrate 11 includes a first surface 102A facing away from the PDLC assembly 101, and a second surface 102B facing the other way from the first surface 102A. The second glass substrate 12 includes: a third surface 102C disposed opposite to the second surface 102B, wherein the gas interlayer 102E is located between the second and the third surfaces; and a fourth surface 102D facing the other way from the third surface 102C.
It should be noted that, in embodiments of the present disclosure, a surface of a glass substrate facing away from the PDLC assembly means the surface is, compared with other surface (s) of the glass substrate, farther to the PDLC assembly. Besides, in one glass substrate, a surface being facing the other way from another surface means the two surfaces are disposed on two opposite sides of the glass substrate.
In some embodiments, the anti-radiation coating 10 may cover the second surface 102B of the first glass 102. However, the present disclosure is not limited thereto. In some embodiments, the anti-radiation coating 10 may cover at least one of the following surfaces: the second, the third and the fourth surfaces of the first glass 102, and a surface of the second glass 103 which faces towards the PDLC assembly 101.
When the anti-radiation coating 10 covers a plurality of surfaces, the switchable glass structure may have better capability of heat insulation.
In some embodiments, the gas interlayer 102E included in the first glass 102 can make the first glass 102 have better capability of heat and sound insulation, and accordingly the switchable glass structure has better capability of heat and sound insulation.
In some embodiments, the gas interlayer 102E may be an air interlayer or an inert gas interlayer. Particularly, the switchable glass structure may have relatively good capability of heat and sound insulation when the gas interlayer 102E is an inert gas interlayer.
FIG. 4 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure. In this embodiment, a PDLC assembly 101 is the same as the PDLC assembly in the above embodiment shown in FIG. 3. A stereogram of the switchable glass structure in this embodiment may be the same as FIG. 1.
Common grounds between this embodiment and the above embodiment shown in FIG. 3 are not described in detail here, and the difference between this embodiment and the above embodiment shown in FIG. 3 is described below.
In some embodiments, both the first glass 102 and the second glass 103 are hollow glass. The second glass 103 may include a third glass substrate 13, a fourth glass substrate 14 and a sealed gas interlayer 103E between the third glass substrate 13 and the fourth glass substrate 14.
The third glass substrate 13 and the fourth glass substrate 14 include four surfaces totally. The third glass substrate 13 includes a first surface 103A facing away from the PDLC assembly 101, and a second surface 103B facing the other way from the first surface 103A. The fourth glass substrate 14 includes: a third surface 103C disposed opposite to the second surface 103B, wherein the gas interlayer 103E  is located between the second and the third surfaces; and a fourth surface 103D facing the other way from the third surface 103C.
In some embodiments, the anti-radiation coating 10 may cover the second surface 102B of the first glass 102. However, the present disclosure is not limited thereto. In some embodiments, the anti-radiation coating 10 may cover at least one of the following surfaces: the second, the third and the fourth surfaces of the first glass 102, and the second, the third and the fourth surfaces of the second glass 103.
When the anti-radiation coating 10 covers a plurality of surfaces, the switchable glass structure may have better capability of heat insulation.
In some embodiments, the gas interlayer 103E included in the second glass 103 can make the second glass 103 have better capability of heat and sound insulation, and accordingly the switchable glass structure has better capability of heat and sound insulation.
Referring to FIGs. 2 to 4, in some embodiments, the first transparent conductive membrane 107 may not include the first substrate 107A, and the second transparent conductive membrane 108 may not include second substrate 108A. The first transparent conductive membrane 107 only includes the first transparent conductive layer 107B, and the second transparent conductive membrane 108 only includes the second transparent conductive layer 108B. The first transparent conductive layer 107B and the second transparent conductive layer 108B are located on the surfaces of the first glass 102 and the second glass 103 which face towards the PDLC layer 106, and serve as drive electrodes of the PDLC layer 106. In some embodiments, the first transparent conductive layer 107B and the second transparent conductive layer 108B may include indium tin oxide. The surfaces of the first glass 102 and the second glass 103 which face away from the PDLC layer 106 are provided with a UV protective coating (not shown) . No PVB or EVA is disposed between the first glass 102 and the PDLC layer 106, or between the second glass 103 and the PDLC layer 106, to avoid influence to the PDLC layer 106 caused by sticky PVB or  EVA.
FIG. 5 schematically illustrates a stereogram of a switchable glass structure according to an embodiment of the present disclosure. A structure of a PDLC assembly in the switchable glass structure in this embodiment is different from those in the above embodiments.
FIG. 6 schematically illustrates a sectional view of the switchable glass structure in FIG. 5 along a BB’ line. Common grounds between this embodiment and the embodiment shown in FIGs. 1 and 2 are not described in detail here, and the difference between this embodiment and the embodiment shown in FIGs. 1 and 2 is described below.
In some embodiments, a PDLC assembly 201 only includes the PDLC layer 106. To enable the PDLC layer 106 to switch between a transparent state and a scattering state, an anti-radiation coating 20 covers surfaces of a first glass 202 and a second glass 203 which face towards and contact the PDLC layer 106. The anti-radiation coating 20 may serve as drive electrodes of the PDLC layer 106.
As described above, in some embodiments, the anti-radiation coating 20 may include one silver layer, two silver layers or three silver layers. The anti-radiation coating 20 mainly includes a metal and a metallic oxide, thus, having good conductivity. Besides, the anti-radiation coating 20 lets most visible pass through, thus it may serve as a conductive electrode. In some embodiments, the anti-radiation coating 20 formed by a magnetron sputtering process may be relatively even, and thus an even electric field may be formed in the PDLC layer 106, which makes each portion of the PDLC layer 106 have almost the same transparency in the transparent state.
In some embodiments, the PDLC assembly 201 only includes the PDLC layer 106, and surfaces of the first glass 202 and the second glass 203 which face away from the PDLC layer 106 are provided with a UV protective coating (not shown) . No PVB or EVA is disposed between the first glass 202 and the PDLC layer  106, or between the second glass 203 and the PDLC layer 106, to avoid influence to the PDLC layer 106 caused by sticky PVB or EVA. In some embodiments, the PDLC layer 106 may be formed by a ultra-violet curing process or other curing processes. After the curing process, the PDLC layer 106 becomes sticky, and thus can fixedly connect the first glass 202 with the second glass 203, which makes the switchable glass structure stable.
FIG. 7 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure. In this embodiment, a PDLC assembly 201 is the same as the PDLC assembly in the embodiment shown in FIGs. 5 and 6. A stereogram of the switchable glass structure in this embodiment may be the same as FIG. 5.
Common grounds between this embodiment and the embodiment shown in FIGs. 5 and 6 are not described in detail here, and the difference between this embodiment and the embodiment shown in FIGs. 5 and 6 is described below.
In some embodiments, the first glass 202 may be a hollow glass, and the second glass 203 may be a single-layer glass. The first glass 202 may include a first glass substrate 21, a second glass substrate 22 and a sealed gas interlayer 202E between the first glass substrate 21 and the second glass substrate 22.
The first glass substrate 21 and the second glass substrate 22 include four surfaces totally. The first glass substrate 21 includes a first surface 202A facing away from the PDLC assembly 201, and a second surface 202B facing the other way from the first surface 202A. The second glass substrate 22 includes: a third surface 202C disposed opposite to the second surface 202B, wherein the gas interlayer 202E is located between the second and the third surfaces; and a fourth surface 202D facing the other way from the third surface 202C.
In some embodiments, the anti-radiation coating 20 may cover the fourth surface 202D of the first glass 202, and a surface of the second glass 203 which faces towards the PDLC assembly 201, to serve as electrodes for driving the PDLC layer  106. However, the present disclosure is not limited thereto. In some embodiments, besides the fourth surface 202D of the first glass 202, and the surface of the second glass 203 which faces towards the PDLC assembly 201, the anti-radiation coating 20 may further cover at least one of the second and the third surfaces of the first glass 202.
FIG. 8 schematically illustrates a sectional view of a switchable glass structure according to an embodiment of the present disclosure. In this embodiment, a PDLC assembly 201 is the same as the PDLC assembly in the embodiment shown in FIGs. 5 and 6. A stereogram of the switchable glass structure in this embodiment may be the same as FIG. 5.
Common grounds between this embodiment and the embodiment shown in FIGs. 5 and 6 are not described in detail here, and the difference between this embodiment and the embodiment shown in FIGs. 5 and 6 is described below.
In some embodiments, both the first glass 202 and the second glass 203 are hollow glass. The second glass 203 may include a third glass substrate 23, a fourth glass substrate 24 and a sealed gas interlayer 203E between the third glass substrate 23 and the fourth glass substrate 24.
The third glass substrate 23 and the fourth glass substrate 24 include four surfaces totally. The third glass substrate 23 includes a first surface 203A facing away from the PDLC assembly 201, and a second surface 203B facing the other way from the first surface 203A. The four glass substrate 24 includes: a third surface 203C disposed opposite to the second surface 203B, wherein the gas interlayer 203E is located between the second and the third surfaces; and a fourth surface 203D facing the other way from the third surface 203C.
In some embodiments, the anti-radiation coating 20 may cover the fourth surface 202D of the first glass 202 and the fourth surface 203D of the second glass 203, to serve as electrodes for driving the PDLC layer 106. However, the present disclosure is not limited thereto. In some embodiments, besides the fourth surface  202D of the first glass 202 and the fourth surface 203D of the second glass 203, the anti-radiation coating 20 may further cover at least one of the second and the third surfaces of the first glass 202, and the second and the third surfaces of the second glass 203.
It should be noted that, in the above embodiments, a frame (not shown) is disposed around the first glass and the second glass, to fix the first glass and the second glass.
In an embodiment, a vehicle window is provided, including the switchable glass structure according to any one of the above embodiments. The vehicle window may not only have a dimming function, but also have good capability of heat insulation, which can meet requirements of heat preservation.
Although the present disclosure has been disclosed above with reference to preferred embodiments thereof, it should be understood that the disclosure is presented by way of example only, and not limitation. Those skilled in the art can modify and vary the embodiments without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure is subject to the scope defined by the claims.

Claims (23)

  1. A switchable glass structure, comprising:
    a first glass;
    a second glass disposed opposite to the first glass, each of the first and the second glass comprising at least two surfaces;
    a polymer dispersed liquid crystal assembly between the first glass and the second glass; and
    an anti-radiation coating located on at least one surface of the first and the second glass, the at least one surface being adjacent to the polymer dispersed liquid crystal assembly.
  2. The switchable glass structure according to claim 1, wherein the anti-radiation coating comprises one silver layer, two silver layers or three silver layers.
  3. The switchable glass structure according to claim 1, wherein the polymer dispersed liquid crystal assembly comprises:
    a polymer dispersed liquid crystal layer;
    a first transparent conductive membrane disposed between the polymer dispersed liquid crystal layer and the first glass; and
    a second transparent conductive membrane disposed between the polymer dispersed liquid crystal layer and the second glass, wherein the first and the second transparent conductive membranes serve as electrodes for driving the polymer dispersed liquid crystal layer.
  4. The switchable glass structure according to claim 3, wherein each of the first and the second transparent conductive membranes comprises a substrate and a transparent conductive layer covering a surface of the substrate, the transparent conductive layer facing towards the polymer dispersed liquid crystal layer.
  5. The switchable glass structure according to claim 3, wherein between the first glass and the first transparent conductive membrane, and between the second glass and the second transparent conductive membrane, is respectively provided an  ultraviolet protective film.
  6. The switchable glass structure according to claim 5, wherein the ultraviolet protective film comprises polyvinyl butyral or ethylene-vinyl acetate.
  7. The switchable glass structure according to claim 3, wherein the first transparent conductive membrane is a first transparent conductive layer covering the first glass, and the second transparent conductive membrane is a second transparent conductive layer covering the second glass.
  8. The switchable glass structure according to claim 3, wherein both the first glass and the second glass are single-layer glass, and the at least one surface where the anti-radiation coating is located faces towards the polymer dispersed liquid crystal assembly.
  9. The switchable glass structure according to claim 3, wherein the first glass is a hollow glass, the second glass is a single-layer glass, and the first glass comprises:
    a first surface facing away from the polymer dispersed liquid crystal assembly;
    a second surface facing the other way from the first surface;
    a third surface disposed opposite to the second surface, wherein there is a gas interlayer between the second and the third surfaces; and
    a fourth surface facing the other way from the third surface,
    wherein the anti-radiation coating covers at least one of the following surfaces: the second, the third and the fourth surfaces of the first glass, and a surface of the second glass which faces towards the polymer dispersed liquid crystal assembly.
  10. The switchable glass structure according to claim 3, wherein both the first glass and the second glass are hollow glass and each comprises:
    a first surface facing away from the polymer dispersed liquid crystal assembly;
    a second surface facing the other way from the first surface;
    a third surface disposed opposite to the second surface, wherein there is a gas interlayer between the second and the third surfaces; and
    a fourth surface facing the other way from the third surface,
    wherein the anti-radiation coating covers at least one of the following surfaces: the second, the third and the fourth surfaces of the first glass, and the second, the third and the fourth surfaces of the second glass.
  11. The switchable glass structure according to claim 1, wherein the polymer dispersed liquid crystal assembly comprises a polymer dispersed liquid crystal layer, and the anti-radiation coating covers a surface of the first and the second glass which faces towards the polymer dispersed liquid crystal layer and serves as an electrode for driving the polymer dispersed liquid crystal layer.
  12. The switchable glass structure according to claim 7 or 11, wherein surfaces of the first and the second glass facing away from the polymer dispersed liquid crystal layer are respectively provided with an ultraviolet protective coating.
  13. The switchable glass structure according to claim 11, wherein both the first glass and the second glass are single-layer glass, and the anti-radiation coating covers a surface of the first and the second glass which faces towards and contacts the polymer dispersed liquid crystal layer.
  14. The switchable glass structure according to claim 11, wherein the first glass is a hollow glass, the second glass is a single-layer glass, and the first glass comprises:
    a first surface facing away from the polymer dispersed liquid crystal assembly;
    a second surface facing the other way from the first surface;
    a third surface disposed opposite to the second surface, wherein there is a gas interlayer between the second and the third surfaces; and
    a fourth surface facing the other way from the third surface,
    wherein the anti-radiation coating covers the fourth surface of the first glass, and  a surface of the second glass which faces towards the polymer dispersed liquid crystal assembly.
  15. The switchable glass structure according to claim 14, wherein the anti-radiation coating further covers at least one of the second and the third surfaces of the first glass.
  16. The switchable glass structure according to claim 11, wherein both the first glass and the second glass are hollow glass, and each comprises:
    a first surface facing away from the polymer dispersed liquid crystal assembly;
    a second surface facing the other way from the first surface;
    a third surface disposed opposite to the second surface, wherein there is a gas interlayer between the second and the third surfaces; and
    a fourth surface facing the other way from the third surface,
    wherein the anti-radiation coating covers the fourth surface of the first glass and the fourth surface of the second glass.
  17. The switchable glass structure according to claim 16, wherein the anti-radiation coating further covers at least one of the second and the third surfaces of the first glass, and the second and the third surfaces of the second glass.
  18. The switchable glass structure according to claim 4 or 7, wherein the transparent conductive layer comprises indium tin oxide.
  19. The switchable glass structure according to claim 1, wherein a frame is disposed around the first glass and the second glass to fix the first and the second glass.
  20. The switchable glass structure according to claim 1, wherein the polymer dispersed liquid crystal assembly appears to be white, colorful or black when no voltage is applied.
  21. The switchable glass structure according to claim 20, wherein a dichroic dye is  incorporated in the polymer dispersed liquid crystal assembly which appears to be colorful or black when no voltage is applied.
  22. The switchable glass structure according to claim 9, 10, 14 or 16, wherein the gas interlayer is an air interlayer or an inert gas interlayer.
  23. A vehicle window, comprising the switchable glass structure according to any one of claims 1 to 22.
PCT/CN2015/083530 2014-07-14 2015-07-08 Switchable glass structure and vehicle window cross-reference to related applications WO2016008375A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016540638A JP6374508B2 (en) 2014-07-14 2015-07-08 Smart glass structure and window glass for transportation
KR1020167016171A KR20160088369A (en) 2014-07-14 2015-07-08 Switchable glass structure and vehicle window
BR112016010711-0A BR112016010711B1 (en) 2014-07-14 2015-07-08 SWITCH GLASS STRUCTURE AND VEHICLE WINDOW
KR1020187007526A KR102127226B1 (en) 2014-07-14 2015-07-08 Switchable glass structure and vehicle window
EA201691025A EA036547B1 (en) 2014-07-14 2015-07-08 Switchable glass structure and vehicle window
EP15821927.9A EP3170050A4 (en) 2014-07-14 2015-07-08 Switchable glass structure and vehicle window

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410333475.2A CN105334658A (en) 2014-07-14 2014-07-14 Switchable glass structure and car window
CN201410333475.2 2014-07-14

Publications (2)

Publication Number Publication Date
WO2016008375A1 true WO2016008375A1 (en) 2016-01-21
WO2016008375A8 WO2016008375A8 (en) 2016-05-19

Family

ID=55077905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083530 WO2016008375A1 (en) 2014-07-14 2015-07-08 Switchable glass structure and vehicle window cross-reference to related applications

Country Status (7)

Country Link
EP (1) EP3170050A4 (en)
JP (1) JP6374508B2 (en)
KR (2) KR20160088369A (en)
CN (1) CN105334658A (en)
BR (1) BR112016010711B1 (en)
EA (1) EA036547B1 (en)
WO (1) WO2016008375A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200001A (en) * 2016-09-06 2016-12-07 广东安贝斯科技有限公司 The anti-glare sunglasses of intelligence
CN106313794A (en) * 2016-10-13 2017-01-11 衡山县佳诚新材料有限公司 Composite heat insulation dimming glass and preparation method thereof
WO2019020298A1 (en) 2017-07-27 2019-01-31 Saint-Gobain Glass France Vehicle window pane having pdlc film with a defined droplet size distribution for reducing the corona effect
US10705363B2 (en) 2017-07-13 2020-07-07 Cardinal Ig Company Electrical connection configurations for privacy glazing structures
US10866480B2 (en) 2017-04-20 2020-12-15 Cardinal Ig Company High performance privacy glazing structures
US10968684B2 (en) 2018-08-17 2021-04-06 Cardinal Ig Company Privacy glazing structure with asymetrical pane offsets for electrical connection configurations
US11111720B2 (en) 2019-02-08 2021-09-07 Cardinal Ig Company Low power driver for privacy glazing
US11175523B2 (en) 2019-04-29 2021-11-16 Cardinal Ig Company Staggered driving electrical control of a plurality of electrically controllable privacy glazing structures
CN113703206A (en) * 2021-08-25 2021-11-26 京东方科技集团股份有限公司 Light-adjusting glass and light-adjusting module
US11243421B2 (en) 2018-05-09 2022-02-08 Cardinal Ig Company Electrically controllable privacy glazing with energy recapturing driver
WO2022058684A1 (en) * 2020-09-18 2022-03-24 Saint-Gobain Glass France Laminated liquid crystal glazing with uv cutoff
US11325352B2 (en) 2019-04-29 2022-05-10 Cardinal Ig Company Leakage current detection and control for one or more electrically controllable privacy glazing structures
US11360364B2 (en) 2017-11-06 2022-06-14 Cardinal Ig Company Privacy glazing system with discrete electrical driver
US11448910B2 (en) 2019-04-29 2022-09-20 Cardinal Ig Company Systems and methods for operating one or more electrically controllable privacy glazing structures
US11474385B1 (en) 2018-12-02 2022-10-18 Cardinal Ig Company Electrically controllable privacy glazing with ultralow power consumption comprising a liquid crystal material having a light transmittance that varies in response to application of an electric field
US11872787B2 (en) 2016-11-09 2024-01-16 Corning Incorporated Dimmable window pane with reduced bow and insulated glazing unit comprising the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180115694A (en) * 2016-02-19 2018-10-23 인터코멧, 에스.엘. PDLC film device with patterned electrodes
FR3069660B1 (en) * 2017-07-31 2019-08-30 Saint-Gobain Glass France ELECTROCOMMANDABLE DEVICE WITH VARIABLE DIFFUSION BY LIQUID CRYSTALS.
JP2019045612A (en) * 2017-08-31 2019-03-22 凸版印刷株式会社 Lighting control film and lighting control device using the same
TWI822743B (en) * 2018-03-28 2023-11-21 日商日東電工股份有限公司 Dimming components containing glass film
JP6887618B2 (en) * 2018-05-30 2021-06-16 日本電気硝子株式会社 Laminated body with dimming function
JP7327078B2 (en) * 2019-10-23 2023-08-16 大日本印刷株式会社 Design material and manufacturing method of design material
KR102387874B1 (en) * 2019-11-20 2022-04-18 정운왕 Window film
CN114527608A (en) * 2020-11-23 2022-05-24 合肥京东方显示技术有限公司 Dimming panel, manufacturing method thereof, driving method thereof and dimming building glass
CN112462557B (en) * 2020-11-25 2023-06-30 京东方科技集团股份有限公司 Dimming glass component, method for preparing dimming glass component and vehicle window
CN114740649A (en) * 2022-03-16 2022-07-12 深圳市美丽加科技有限公司 Locally-blocked-response composite spliced liquid crystal dimming film vehicle window
CN117616328A (en) * 2022-03-31 2024-02-27 京东方科技集团股份有限公司 Dimming window and preparation method thereof
WO2024043758A1 (en) * 2022-08-26 2024-02-29 팅크웨어(주) Film for vehicle and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201097035Y (en) * 2007-11-07 2008-08-06 高峻 Intelligent LCD light-adjusting glass for secure clamp glue
CN201097031Y (en) * 2007-11-14 2008-08-06 高峻 Safety clamp glue intelligent LCD side wind shielding and light-adjusting glass for car
US20080317977A1 (en) * 2007-06-22 2008-12-25 Chiefway Engineering Co., Ltd. Light-regulation membrane
US20090135319A1 (en) * 2007-11-26 2009-05-28 Veerasamy Vijayen S Ruggedized switchable glazing, and/or method of making the same
CN201600528U (en) * 2009-12-25 2010-10-06 比亚迪股份有限公司 Automobile smart glass
CN101900908A (en) * 2009-05-27 2010-12-01 比亚迪股份有限公司 Energy-saving dimming glass

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69320913T2 (en) * 1992-11-09 1999-03-11 Central Glass Co Ltd Glass plate with an ultraviolet absorbing multilayer coating
JPH1056727A (en) * 1996-08-08 1998-02-24 Terakon:Kk Block for laying cable
WO1998056727A1 (en) * 1997-06-09 1998-12-17 Kaneka Corporation Functional material laminate and process for production thereof
FR2764294B1 (en) 1997-06-10 1999-08-13 Roquette Freres ACARIOGENIC POLYSACCHARIDES AND PROCESS FOR THE MANUFACTURE THEREOF
JP3073130U (en) * 2000-04-06 2000-11-14 サンエス化学工業株式会社 Double glazing
JP2004151575A (en) * 2002-10-31 2004-05-27 Fuji Television Network Inc Dimmer function glass and method for manufacturing dimmer function glass
WO2008007788A1 (en) * 2006-07-14 2008-01-17 Asahi Glass Company, Limited Structure and process for producing the same
JP2010208861A (en) 2007-07-03 2010-09-24 Asahi Glass Co Ltd Toning window material
EP2128688A1 (en) * 2008-05-31 2009-12-02 Saint-Gobain Glass France S.A. Electrically switchable privacy glass pane
FR2937366B1 (en) * 2008-10-17 2010-10-29 Saint Gobain MULTIPLE GLAZING INCORPORATING AT LEAST ONE ANTIREFLECTION COATING AND USE OF ANTIREFLECTION COATING IN MULTIPLE GLAZING
CN201984257U (en) * 2011-03-24 2011-09-21 北京众智同辉科技有限公司 Electro liquid crystal atomizing compound glass with hollow structure
WO2012154663A1 (en) * 2011-05-06 2012-11-15 Pittsburgh Glass Works, Llc Switchable automotive glazing
DE102012013405A1 (en) 2012-07-05 2014-01-09 Audi Ag Diagnostic device for checking a control signal line
WO2014029536A1 (en) * 2012-08-21 2014-02-27 Saint-Gobain Glass France Composite panel with electrically switchable optical properties
US8941788B2 (en) * 2012-12-24 2015-01-27 Guardian Industries Corp. Switchable window having low emissivity (low-E) coating as conductive layer and/or method of making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080317977A1 (en) * 2007-06-22 2008-12-25 Chiefway Engineering Co., Ltd. Light-regulation membrane
CN201097035Y (en) * 2007-11-07 2008-08-06 高峻 Intelligent LCD light-adjusting glass for secure clamp glue
CN201097031Y (en) * 2007-11-14 2008-08-06 高峻 Safety clamp glue intelligent LCD side wind shielding and light-adjusting glass for car
US20090135319A1 (en) * 2007-11-26 2009-05-28 Veerasamy Vijayen S Ruggedized switchable glazing, and/or method of making the same
CN101900908A (en) * 2009-05-27 2010-12-01 比亚迪股份有限公司 Energy-saving dimming glass
CN201600528U (en) * 2009-12-25 2010-10-06 比亚迪股份有限公司 Automobile smart glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3170050A4 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200001A (en) * 2016-09-06 2016-12-07 广东安贝斯科技有限公司 The anti-glare sunglasses of intelligence
CN106313794A (en) * 2016-10-13 2017-01-11 衡山县佳诚新材料有限公司 Composite heat insulation dimming glass and preparation method thereof
CN106313794B (en) * 2016-10-13 2023-09-19 衡山县佳诚新材料有限公司 Composite heat-insulating dimming glass and preparation method thereof
US11872787B2 (en) 2016-11-09 2024-01-16 Corning Incorporated Dimmable window pane with reduced bow and insulated glazing unit comprising the same
US10866480B2 (en) 2017-04-20 2020-12-15 Cardinal Ig Company High performance privacy glazing structures
US11774825B2 (en) 2017-04-20 2023-10-03 Cardinal Ig Company High performance privacy glazing structures
US11467439B2 (en) 2017-07-13 2022-10-11 Cardinal Ig Company Electrical connection configurations for privacy glazing structures
US10989945B2 (en) 2017-07-13 2021-04-27 Cardinal Ig Company Electrical connection configurations for privacy glazing structures
US11934055B2 (en) 2017-07-13 2024-03-19 Cardinal Ig Company Electrical connection configurations for privacy glazing structures
US10705363B2 (en) 2017-07-13 2020-07-07 Cardinal Ig Company Electrical connection configurations for privacy glazing structures
WO2019020298A1 (en) 2017-07-27 2019-01-31 Saint-Gobain Glass France Vehicle window pane having pdlc film with a defined droplet size distribution for reducing the corona effect
CN109588053B (en) * 2017-07-27 2023-03-17 法国圣戈班玻璃厂 Vehicle glazing comprising a PDLC film with a specific droplet size distribution for reducing corona effects
US11262610B2 (en) 2017-07-27 2022-03-01 Saint-Gobain Glass France Vehicle window pane with polymer film with defined droplet size distribution
CN109588053A (en) * 2017-07-27 2019-04-05 法国圣戈班玻璃厂 For reducing the vehicle glazing panels comprising the PDLC film with specific droplet size distribution of corona effect
US11360364B2 (en) 2017-11-06 2022-06-14 Cardinal Ig Company Privacy glazing system with discrete electrical driver
US11698562B2 (en) 2017-11-06 2023-07-11 Cardinal Ig Company Privacy glazing system with discrete electrical driver
US11243421B2 (en) 2018-05-09 2022-02-08 Cardinal Ig Company Electrically controllable privacy glazing with energy recapturing driver
US10968684B2 (en) 2018-08-17 2021-04-06 Cardinal Ig Company Privacy glazing structure with asymetrical pane offsets for electrical connection configurations
US11474385B1 (en) 2018-12-02 2022-10-18 Cardinal Ig Company Electrically controllable privacy glazing with ultralow power consumption comprising a liquid crystal material having a light transmittance that varies in response to application of an electric field
US11111720B2 (en) 2019-02-08 2021-09-07 Cardinal Ig Company Low power driver for privacy glazing
US11681170B2 (en) 2019-04-29 2023-06-20 Cardinal Ig Company Staggered driving electrical control of a plurality of electrically controllable privacy glazing structures
US11448910B2 (en) 2019-04-29 2022-09-20 Cardinal Ig Company Systems and methods for operating one or more electrically controllable privacy glazing structures
US11325352B2 (en) 2019-04-29 2022-05-10 Cardinal Ig Company Leakage current detection and control for one or more electrically controllable privacy glazing structures
US11826986B2 (en) 2019-04-29 2023-11-28 Cardinal Ig Company Leakage current detection and control for one or more electrically controllable privacy glazing structures
US11175523B2 (en) 2019-04-29 2021-11-16 Cardinal Ig Company Staggered driving electrical control of a plurality of electrically controllable privacy glazing structures
FR3114266A1 (en) * 2020-09-18 2022-03-25 Saint-Gobain Glass France LAMINATED GLAZING WITH LIQUID CRYSTAL AND UV CUTTING
WO2022058684A1 (en) * 2020-09-18 2022-03-24 Saint-Gobain Glass France Laminated liquid crystal glazing with uv cutoff
CN113703206B (en) * 2021-08-25 2023-10-17 京东方科技集团股份有限公司 Dimming glass and dimming module
CN113703206A (en) * 2021-08-25 2021-11-26 京东方科技集团股份有限公司 Light-adjusting glass and light-adjusting module

Also Published As

Publication number Publication date
EP3170050A1 (en) 2017-05-24
JP2017502903A (en) 2017-01-26
KR20160088369A (en) 2016-07-25
KR102127226B1 (en) 2020-06-26
JP6374508B2 (en) 2018-08-15
BR112016010711A2 (en) 2017-08-08
CN105334658A (en) 2016-02-17
EA201691025A1 (en) 2017-05-31
WO2016008375A8 (en) 2016-05-19
EA036547B1 (en) 2020-11-20
EP3170050A4 (en) 2018-04-18
KR20180030951A (en) 2018-03-26
BR112016010711B1 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2016008375A1 (en) Switchable glass structure and vehicle window cross-reference to related applications
JP6198719B2 (en) Switchable automotive laminated glass
JP6165126B2 (en) Window glass
CN110636940B (en) High performance privacy glazing structure
CN105473526B (en) Compound glass
KR102064406B1 (en) Sunroof comprising lighting means
KR101970323B1 (en) Laminated Glass with Improved Moisture Proof Properties
JP6166429B2 (en) SPD film and light valve laminate with improved durability
JP6619081B2 (en) Double glazed glass
JP2014518837A5 (en)
US11679649B2 (en) Multifunctional switchable film and constructions including such a film
JP2009534557A (en) Window panels
CN109601014A (en) With the electric control gear for the scattering that liquid crystal is changed can be passed through
EA034775B1 (en) Vehicle laminated glazing
KR20200045913A (en) Transparent display and glass assembly
KR102198423B1 (en) Menufacturing method thin film solar cell and thin film solar cell menufactured thereof
JP2018525303A (en) Method for supplying power to electronic components of a laminated glazing unit, and laminated glazing unit for carrying out said method
KR102109873B1 (en) Light valve film laminated between thin glass and plastic substrate
KR102620804B1 (en) Smart windows assembly
JP7187947B2 (en) Light control sheet and light control glass
WO2016009589A1 (en) Planar optical element, illumination device, and construction material
JP2017157267A (en) Planar optical element, illumination device, and building material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821927

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016010711

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: IDP00201604005

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016540638

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201691025

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20167016171

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015821927

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015821927

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016010711

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160512